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The goal of this course is the statements of global and local class field theory, and
applications. We will not prove class field theory.

The main reference which we will follow closely is Rabinoff’s notes for a course at
Harvard, 2012. Classical references include [CF+67], [Neu99], and [Ser79]. Some other
online lecture notes (e.g. J. Milne’s notes [Mil20]) can be helpful too.

Preliminaries. Algebra 1, Algebra 2, Number Fields (roughly the first two chapters of
[Neu99], or the first two chapters of [Ser79]; this corresponds to a first course on algebraic
number theory).

Overview

The goal of class field theory is to classify abelian extensions of a global or local field.
A global field refers to a field which is either a finite extension of Q, or a finite extension

of Fp(t), where p is a prime.
A local field refers to a field which is either a finite extension of Qp (the field of p-adic

numbers), or a field of the form Fq((t)) = FracFq[[t]].
An abelian extension means a Galois extension L/K (finite or infinite) such that Gal(L/K)

is abelian.

Ideal theoretic formulation of global class field theory. Let K be a global field. By
a modulus, we mean a formal product of the form m = vn1

1 · · · v
nk

k , where vi are places of K
and ni are non-negative integers. It should satisfy the following conditions:

(1) vi cannot be a complex place.
(2) If vi is a real place, then ni ∈ {0, 1}.

Recall that the class group of K is the cokernel of a natural map from K× to the free
abelian group Z[VK,f ] generated by the non-archimedean places of K. Given m as above,
we can define a certain subgroup {x ∈ K× | x ≡ 1 mod m} of K×, and a map from it to
the free abelian group generated by the non-archimedean places of K not appearing in m.
The cokernel is denoted by Clm, called the ray class group associated with m. This turns
out to be a finite abelian group.

There is an obvious way to define divisibility relation m|m′, for two moduli m,m′. For
m|m′, there is a natural surjection Clm′ → Clm. As such, the Clm for varying m form a
projective system of finite abelian groups.
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By a generalized class group, we mean a quotient group of Clm for some choice of m. If
m|m′, then each quotient group of Clm is naturally identified with a quotient group of Clm′

via the projection Clm′ → Clm. Modulo this equivalence relation, we let S = SK be the
set of all generalized class groups.

Theorem 0.0.1 (Takagi). There is a natural bijection from the set of all finite abelian
extensions of K (inside a fixed algebraic closure K) to the set S .

Theorem 0.0.2 (Artin). If L/K corresponds to G under the above bijection, then there is

a canonical isomorphism Gal(L/K)
∼−→ G.

Adelic formulation of global class field theory. Let K be a global field. The group of
ideles1 for K is a certain subgroup A×

K = IK of
∏
vK

×
v , where v runs over all places of K,

and Kv is the completion of K with respect to v. The advantage of A×
K over the full

∏
vK

×
v

is that it is a Hausdorff locally compact abelian topological group. The diagonal embedding
K× ↪→

∏
vK

×
v factors through A×

K , and we define CK := A×
K/K

×, called the idele class
group of K. For any finite extension L/K, there is a norm map NL/K : CL → CK .

Theorem 0.0.3. There is a canonical continuous homomorphism ϕK : CK → Gal(Kab/K),
satisfying the following conditions. (Here Kab is the maximal abelian extension of K in K,
which is infinite over K.)

(1) (Reciprocity) For any finite abelian extension L/K, let ϕL/K be the composition of

ϕK with the natural projection Gal(Kab/K)→ Gal(L/K). Then ϕL/K is surjective,
and its kernel is the image of NL/K : CL → CK .

(2) (Existence Theorem) We have a bijection from the set of finite abelian extensions
of K in K to the set of open and finite index subgroups of CK , sending L/K to
NL/K(CL).

(3) Some functoriality properties of ϕK when K changes.

Local class field theory. Let K be a local field. The role played by CK in the global
case is played by K× in the local case. Note that K× is also a Hausdorff locally compact
abelian group.

Theorem 0.0.4. There is a canonical continuous homomorphism ϕK : K× → Gal(Kab/K),
satisfying the following conditions.

(1) (Reciprocity) For any finite abelian extension L/K, let ϕL/K be the composition of

ϕK with the natural projection Gal(Kab/K)→ Gal(L/K). Then ϕL/K is surjective,

and its kernel is the image of NL/K : L× → K×. Moreover, if L/K is unramified
(in which case Gal(L/K) is a cyclic group generated by the Frobenius), then ϕL/K
sends any uniformizer in K× to the Frobenius.

(2) (Existence Theorem) We have a bijection from the set of finite abelian extensions
of K in K to the set of open and finite index subgroups of K×, sending L/K to
NL/K(L×).

(3) Some functoriality properties of ϕK when K changes.

Note the similarity to the theorem in the global case.

1The word “idele” is an abbreviation of “ideal element”
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1. Review of global and local fields

1.1. Places. Recall that an absolute value on a fieldK is a function |·| : K → R≥0 satisfying
the axioms:

(1) |x| = 0 iff x = 0;
(2) |xy| = |x||y|,∀x, y ∈ K;
(3) |x+ y| ≤ |x|+ |y|,∀x, y ∈ K.

If the strong triangle inequality holds:

|x+ y| ≤ max(|x|, |y|), ∀x, y ∈ K

then we call | · | non-archimedean. Otherwise we call it archimedean.
An absolute value | · | makes K a metric space by d(x, y) = |x−y|, and hence a topological

space. It in fact makes K a topological field. We also always assume that | · | takes at
least three different values (i.e., at least one extra value other than 0, 1), which is equivalent
to requiring that the corresponding topology on K is not discrete.

Two absolute values | · | and | · |′ are called equivalent if there exists e > 0 such that
| · |′ = | · |e. A place of K refers to an equivalence class of absolute values.

Exercise 1.1.1. Let K be a field.

(1) Show that two absolute values | · | and | · |′ on K are equivalent if and only if they
define the same topology on K.

(2) Show that they are not equivalent if and only if there exists x ∈ K such that |x| < 1
and |x|′ ≥ 1.

(3) Prove the Approximation Lemma: Let | · |1, . . . , | · |n be pairwise non-equivalent
absolute values on K. For any x1, . . . xn ∈ K and ϵ > 0, there exists y ∈ K such
that |y − xi|i < ϵ for all 1 ≤ i ≤ n.

Exercise 1.1.2. Prove that for an absolute value | · | on a field K, the following conditions
are equivalent:

(1) | · | is archimedean (i.e., strong triangle inequality does not always hold).
(2) There exists a real number 0 < e ≤ 1 such that |n| = ne for all n ∈ Z≥1. (In

particular K has characteristic zero.)
(3) There exists n ∈ Z>1 such that |n| > 1.

(Hint: For the equivalence of (2) and (3), first prove that for any a, b ∈ Z≥2, we have
|a| ≤ max(1, |b|logb a) by considering the base b expansion of ak. For (1) ⇒ (3), consider
binomial expansion of (1 + x)k, for x ∈ K.)

Note: Clearly this exercise implies that the only archimedean place on Q is the usual
one. For the exercise, you are not allowed to use this fact.

Fact 1.1.3. Let K be a field. Then there is a surjection from Hom(K,C) (field homomor-
phisms) to the set of archimedean places of K, sending ϕ : K → C to the composition of ϕ
with the usual absolute value on C. Two elements of Hom(K,C) are sent to the same place
if and only if they differ by complex conjugation.

The key point is to show that for any archimedean place of K, the completion K̂ of K
with respect to it is isomorphic to either R or C. By Exercise 1.1.2, K must contain Q, and

the restriction of the place to Q is the usual archimedean place of Q. Hence K̂ is a Banach
R-algebra. The desired result then follows from the Gelfand–Mazur theorem, which states
that the only Banach R-algebras which are fields are R and C.
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1.2. Global fields. A global field refers to a field which is either a finite extension of Q, or
a finite extension of Fp(t), where p is a prime. In the former case the field is called a number
field, and in the latter case a global function field.

Exercise 1.2.1. Let K be a global function field of characteristic p. Show that there exists
an embedding Fp(t) ↪→ K which makes K a finite separable extension of Fp(t). (Hint: you
may use the fact that K has transcendence degree 1 over Fp, i.e., any maximal subset of K
which is algebraically independent over Fp has exactly one element. You may also induct
on the inseparable degree.)

Let K be a global field. Let VK denote the set of all places of K, VK,∞ the set of all
infinite (i.e. archimedean) places of K, and VK,f the set of all finite (i.e. non-archimedean)
places of K.

For each v ∈ VK , we define a normalized “absolute value” ∥ · ∥v : K → R≥0 as follows.
If v is a real place corresponding to ϕ : K ↪→ R, let ∥ · ∥v be the usual absolute value on

R pulled back to K via ϕ. This represents v.
If v is a complex place corresponding to ϕ : K ↪→ C (not factoring through R), the usual

absolute value on C pulled back to K via ϕ represents v. Let ∥ · ∥v be the square of it. It is
not an absolute value, since the triangle inequality is not satisfied.

If v ∈ Vf , let | · | be a representative of v. Recall that a discrete valuation on K is a
non-zero group homomorphism ord : K× → Z such that ord(x + y) ≥ min(ord(x), ord(y))
for all x, y ∈ K×. By convention, we always set ord(0) = +∞. If ord is surjective, we say
it is normalized. For the given | · |, there is a unique real number 0 < α < 1 and a unique
normalized discrete valuation ordv : K× → Z such that |x| = αordv(x) for all x ∈ K×.
Moreover, ordv depends only on v, not on the representative | · |.

Given v ∈ Vf , we define the valuation ring OK,(v) := {x ∈ K | ordv(x) ≥ 0}. It is a
subring of K, and a DVR with unique maximal ideal mv = {x ∈ K | ordv(x) > 0}. We
define the residue field of v to be kv := OK,(v)/mv, i.e., the residue field of the DVR OK,(v).
This is always a finite field for a global field K. Define

∥ · ∥v := (#kv)
− ordv(·).

This is our normalized representative of v.

Fact 1.2.2 (Product formula). For all x ∈ K×, we have
∏
v∈VK

∥x∥v = 1. Here ∥x∥v = 1
for almost all v.

1.3. The ring of S-integers. Let S be a non-empty finite subset of VK containing VK,∞.
We define the ring of S-integers to be

OK,S := {f ∈ K | ∀v ∈ VK − S, ordv(f) ≥ 0}.

This is a Dedekind domain whose fraction field is K, and there is a bijection

VK − S
∼−→ {non-zero prime ideals of OK,S} = |SpecOK,S |

sending v to pv := {f ∈ OK,S | ordv(f) > 0}. Here |SpecOK,S | denotes the set of closed
points of SpecOK,S . The residue field of pv is the residue field of v, so it is independent of
S.

If S′ is another finite subset of VK containing S, then we have OK,S ⊂ OK,S′ , and the
corresponding map SpecOK,S′ → SpecOK,S is an open immersion, compatible with the
bijections |SpecOK,S | ∼= VK − S and |SpecOK,S′ | ∼= VK − S′.
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If K is a number field, there is a minimal choice of S, namely S = VK,∞. In this case
OK,S is the usual ring of integers OK , namely the integral closure of Z in K. Thus every
SpecOK,S is an open subscheme of SpecOK by deleting finitely many closed points.

If K is a global function field of characteristic p, let k be the algebraic closure of Fp in
K. Then k is a finite field, called the field of constants in K. There is a unique (up to
isomorphism) smooth, projective, geometrically connected (meaning that Xk̄ is connected)
curve X over k such that K is the field of rational functions k(X) on X. This X plays the
role of SpecOK in the number field case, in the sense that every SpecOK,S is obtained from
X by deleting finitely many closed points. (However, X is not affine.) More precisely, there
is a canonical bijection

|X| ∼−→ VK , x 7→ vx.

Here |X| denotes the set of closed points, and vx is the place corresponding to the discrete
valuation ordx : K× → Z sending f to its “order of zero”2 at x. The valuation ring OK,(vx)
(resp. residue field kvx) of vx is equal to the local ring OX,x (resp. residue field k(x)) defined
in algebraic geometry. For any finite non-empty subset S of VK , we view S as a finite set
of closed points of X, and obtain the open subscheme X − S ⊂ X. Then X − S is an affine
scheme (which is not true if S = ∅), and identified with SpecOK,S .

Let K be any global field, and S as above. As for any Dedekind domain, we can consider
the class group Cl(OK,S) of OK,S , defined as the group of fractional ideals modulo the group
of principal fractional ideals. By the identification VK − S ∼= |SpecOK,S |, the class group
is also the cokernel of the map

K× → Z[VK − S], f 7→
∑

v∈VK−S
ordv(f)[v].

Here Z[VK −S] denotes the free abelian group generated by the set VK −S, whose elements
are finite Z-linear combinations of the symbols [v] for v ∈ VK − S. As before, we denote by
ordv the normalized discrete valuation corresponding to (the non-archimedean) v. If K is a
global function field K = k(X), we can even consider the cokernel of

K× → Z[VK ], f 7→
∑
v∈VK

ordv(f)[v].

This is nothing but the class group (or Picard group) of X.
For more on the geometric point of view towards global function fields, see [Neu99, Ch. I,

§§13–14] for a brief introduction, and [GW20, §15] for a more thorough treatment. (The

bijection VK
∼−→ |X| is not discussed in [GW20], but it is an easy consequence of the

valuative criterion for properness and the fact that if v1, v2 ∈ VK are such that OK,(v1) ⊂
OK,(v2), then v1 = v2 (Exercise).)

1.4. Extensions of global fields. Let L/K be a finite separable extension of global fields.
Then we have a map VL → VK by restriction of absolute values. If w 7→ v, we write w|v.
This map has finite fibers.

Fix a finite non-empty subset S ⊂ VK containing VK,∞, and let T be the inverse image
of S in VL. Then we have OK,S ⊂ OL,T .

Fact 1.4.1. OL,T is a finite projective OK,S-module.

2Since X is over a non-algebraically closed field k, the rigorous definition of ordx is that it is the canonical

normalized discrete valuation associated with the DVR OX,x, the local ring of X at x.
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Fix v ∈ VK−S, corresponding to a non-zero prime ideal p = pv of OK,S . We can consider
the decomposition of p in OL,T :

pOL,T =

g∏
i=1

Pei
i ,

where Pi are distinct non-zero prime ideals of OL,T . Let wi ∈ VL − T be the element
corresponding to Pi. For each wi, the inclusion OL,T → OL,(wi) induces an isomorphism

OL,T /Pi
∼−→ kwi

. Similarly, we have OK,S/p
∼−→ kv. These isomorphisms are compatible

with the natural field extensions OK,S/p ↪→ OL,T /Pi and kv ↪→ kwi (induced by OK,(v) ↪→
OL,(wi)). Define fi := [kwi

: kv] = [OL,T /Pi : OK,S/p].

Fact 1.4.2. The set {w1, . . . , wg} is equal to {w ∈ VL | w|v}, so it depends only on v, not
on S. For each 1 ≤ i ≤ g, the integers ei, fi depend only on v and wi, not on S. We write
e(wi/v), f(wi/v) for them. We have∑

w∈VL,w|v

e(w/v)f(w/v) = [L : K].

The last numerical identity can be understood more conceptually as follows. If w|v, then
the completion Lw of L with respect to the place w, is naturally a field extension of the
completion Kv. It also contains L, so it is a L ⊗K Kv-algebra. We denote the structure
map L⊗K Kv → Lw by iw.

Fact 1.4.3 (Relationship between global and local extensions). The maps iw induce an
isomorphism of Kv-algebras

L⊗K Kv
∼−→

∏
w,w|v

Lw, x 7→ (iw(x))w.

Moreover, e(w/v) and f(w/v) depend only on the extension of local fields Lw/Kv, as they
are the ramification index and residue extension degree of Lw/Kv (see later). We have
[Lw : Kv] = e(w/v)f(w/v).

Taking dimensions over Kv, we obtain

(1.1) [L : K] =
∑

w∈VL,w|v

[Lw : Kv] =
∑
w

e(w/v)f(w/v).

The first assertion in the above fact is also true for an archimedean place v. In this case,
we define e(w/v) to be [Lw : Kv], and define f(w/v) to be 1. Then (1.1) still holds.

1.5. Galois theory for global fields. Let L/K be a finite Galois extension of global
fields. Let G = Gal(L/K). Then G acts on VL by g| · | = |g−1(·)|. Then for each v ∈ VK , G
permutes {w ∈ VL | w|v}. For each such w, define the decomposition group D(w/v) to be
the stabilizer of w in G.

For g ∈ D(w/v), as an automorphism of L it preserves the absolute value ∥ · ∥w, and so
it extends by continuity to a unique automorphism g̃ of Lw. Since K is dense in Kv with
respect to ∥ cot ∥w, we have g̃ ∈ Aut(Lw/Kv). Hence we have a homomorphism

ϕ : D(w/v)→ Aut(Lw/Kv), g 7→ g̃.

By Fact 1.6.1 below, every h ∈ Aut(Lw/Kv) automatically preserves ∥ · ∥w on Lw, and so
its restriction to L is an element of D(w/v). This gives an inverse of ϕ, and so ϕ is an
isomorphism.
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If O is a G-orbit in the set {w ∈ VL | w|v}, then∑
w∈O

#D(w/v) = #G = [L : K]
(1.1)
=

∑
w∈VL,w|v

[Lw : Kv].

But #D(w/v) = #Aut(Lw/Kv) ≤ [Lw : Kv], so we conclude that

• The G-action on {w ∈ VL | w|v} is transitive.
• Each Lw/Kv is a finite Galois extension, with Galois group identified with D(w/v).

From the transitivity, it easily follows that in the current Galois case, e(w/v) and f(w/v)
depend only on v and L/K, not on w. We write them as e(L/v), f(L/v). Moreover, D(w/v)
for different choices of w|v are conjugate. If G is abelian, then they are all equal, and we
denote them by D(L/v).

1.6. Completely valued fields. By a completely valued field, we mean a field together
with an absolute value (K, | · |) such that K is complete with respect to the topology defined
by | · | (i.e., every Cauchy sequence converges, which is a condition depending only on the
topology). As always we assume that | · | takes at least three values, so K is not discrete.
Often we will only remember the topology of K, not | · |. In other words, we remember only
the equivalence class of | · |.

Fact 1.6.1 (See [Bou87] Ch. I, §2). Let K be a completely valued field, and let V be a finite
dimensional topological K-vector space (i.e., V is equipped with a topology such that the
addition map V ×V → V and scalar multiplication map K ×V → V are continuous) which
is Hausdorff. Then every K-subspace of V is closed, and every K-vector space isomorphism
Kn ∼−→ V is automatically a homeomorphism (where Kn has the product topology).

Fact 1.6.2. Every archimedean completely valued field is topologically isomorphic to R and
C.

The proof was already discussed below Fact 1.1.3.
For a non-archimdean completely valued field (K, | · |), one of the most important facts

is Hensel’s lemma. Let OK = {x ∈ K | |x| ≤ 1} and mK = {x ∈ K | |x| < 1}. Then OK is
a subring of K, and mK is its unique maximal ideal. Define the residue field k := OK/mK .
Denote the natural map OK [X]→ k[X] by f 7→ f̄ .

Theorem 1.6.3 (Hensel’s Lemma). Let f ∈ OK [X] be such that its image f̄ in k[X] is
non-zero. Suppose we have f̄ = ḡh̄ for ḡ, h̄ ∈ k[X] which are coprime. Then there exist
g, h ∈ OK [X] lifting ḡ, h̄ such that deg g = deg ḡ, f = gh. (But deg h may not equal deg h̄.)

Proof. Without loss of generality we may assume that ḡ is monic. Let g1 ∈ OK [X] be a
monic lift of ḡ, so deg g1 = deg ḡ. Since g1 is monic, we can divide f by g1 with remainder
and get f = g1h1 + r1 with h1, r1 ∈ OK [X],deg r1 < deg g1. Then ḡh̄1 + r̄1 = f̄ = ḡh̄. Since
deg r̄1 ≤ deg r1 < deg g1 = deg ḡ, it follows that h̄1 = h̄ and r̄1 = 0. Since ḡ and h̄ are
coprime, there exist a0, b0 ∈ OK [X] such that a0h1 + b0g1 ∈ 1 + mK [X]. Let π ∈ mK be
such that r1 ∈ πOK [X] and a0h1 + b0g1 ∈ 1+ πOK [X]. We induct on n ∈ Z≥1 to construct
gn ∈ OK [X] such that

• gn is a monic lift of ḡ. In particular deg gn = deg ḡ.
• If n ≥ 2, then gn ∈ gn−1 + πn−1OK [X].
• Dividing f by gn with remainder:

f = gnhn + rn, hn, rn ∈ OK [X], deg rn < deg gn,

we have rn ∈ πnOK [X].
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The base case n = 1 is already done. Suppose gn has been constructed. Then we also have
hn, rn, and rn ∈ πnOK [X]. Write rn = πnsn, sn ∈ OK [X]. We claim that a0hn + b0gn ≡ 1
mod π. We have gn ≡ g1 mod π and rn ≡ 0 mod π, so f ≡ g1hn mod π. But also
f ≡ g1h1 mod π. Since g1 is monic, its image in (OK/π)[X] is not a zero-divisor. Hence
hn ≡ h1 mod π. This proves the claim. By the claim, there exist an, bn ∈ OK [X] (e.g. an =
a0sn, bn = b0sn) such that

anhn + bngn ≡ sn mod π.

Moreover, we may replace an by the remainder of an divided by gn, and assume that
deg an < deg gn. Set

gn+1 = gn + πnan.

We check that it has the desired properties. Only the last one is non-obvious. Write

anhn + bngn = sn + πtn, tn ∈ OK [X].

We have

gn+1(hn + πnbn) = gnhn + πn(sn + πtn) + π2nanbn ≡ f mod πn+1.

This implies the last desired property (but hn+1 may not be hn + πnbn.) We have finished
constructing the gn’s.

Since deg gn is constant, the second property above implies that the limit g = limn gn
exists in OK [X], and is monic. It is a lift of ḡ. Divide f by g with remainder:

f = gh+ r, deg r < deg g.

Then the image of r in (OK/πn)[X] is divisible by the image of g, since the image of f is
divisible by the latter. As g is monic and deg r < deg g, this is possible only when r ≡ 0
mod πn. This holds for all n, so r = 0. Comparing f = gh and f̄ = ḡh̄, we see that h is a
lift of h̄. □

Fact 1.6.4. Let (K, |·|K) be a completely valued field, and let L/K be a finite field extension.
Then there is a unique absolute value | · |L on L whose restriction to K is | · |K . The valued

field (L, | · |L) is also complete. Moreover, we have |x|L = |NL/Kx|
1/[L:K]
K for all x ∈ K.

The uniqueness of | · |L and the completeness of (L, | · |L) follow easily from Fact 1.6.1.
For the existence, we need to check that the formula |NL/Kx|K gives an absolute value on
L. If K is archimedean, then it is either R or C, and this is trivial. In the non-archimedean
case, this is shown in the exercise below.

Exercise 1.6.5. Let (K, | · |) be a non-archimedean completely valued field.

(1) Use Hensel’s lemma to show that if f(X) = anX
n + · · · + a1X + a0 ∈ K[X] is a

power of an irreducible polynomial, then maxni=0 |ai| = max(|an|, |a0|).
(2) Let L/K be a finite extension. Show that the function L → R≥0, x 7→ |NL/K(x)|

is a non-archimedean absolute value on L. (Hint: in order to check |NL/K(x +
1)| ≤ max(1, |NL/K(x)|),∀x ∈ L, relate both NL/K(x + 1) and NL/K(x) to the
characteristic polynomial of L→ L, y 7→ xy. Then use (1).)

Exercise 1.6.6. Prove the first assertion in Fact 1.4.3 by using Facts 1.6.1 and 1.6.4 in the
following steps.

(1) Each iw is surjective.
(2) For any K, any field extension K ′/K, and any finite separable extension L/K, the

K ′-algebra L ⊗K K ′ is a product of finite field extensions of K ′. (Hint: apply the
Primitive Element Theorem to L/K.)
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(3) There is a one-to-one correspondence between the Lw’s and the field factors of
L⊗K K ′.

By Fact 1.6.4, the absolute value on K extends uniquely to any algebraic extension L/K.
Clearly if two elements of L are conjugate overK (i.e., having the same minimal polynomial),
then they have the same absolute value.

In the following, whenever we consider a finite extension of completely valued fields, the
absolute values are always assumed to be compatible, up to equivalence.

For a non-archimedean completely valued field (K, | · |), we can further divide into the
discretely valued case and the non-discretely valued case, according as whether |K×| is a
discrete subgroup of R>0. In the discretely valued case, there exists a unique 0 < α < 1 and
a unique normalized discrete valuation ordK : K× → Z such that | · | = αordK(·). Moreover
ordK depends only on the equivalence class of | · |. In this case, OK is a DVR, and it is
complete in the sense that the natural map

OK → lim←−
n≥1

OK/mnK

is an isomorphism.
Conversely, for any field K, any normalized (or just non-zero) discrete valuation ordK

on K, if the resulting OK = {x ∈ K | ordK(x) ≥ 0} (which is a DVR) is complete, then
(K,αordK ) for any 0 < α < 1 is a completely discretely valued field.

Remark 1.6.7. If K is a completely discretely valued field and L/K is a finite extension,
then the unique extension of absolute value makes L a completely discretely valued field.

1.7. Local fields.

Fact 1.7.1. A non-archimedean completely valued field K is locally compact if and only if
it is discretely valued and the residue field is finite.

Remark 1.7.2. Every archimedean completely valued field (i.e. R or C) is locally compact.
By Fact 1.6.1, ifK is a locally compact completely valued field, then so is any finite extension
of it as the latter is homeomorphic to Kn.

Definition 1.7.3. A local field is a completely valued field which is locally compact.

Fact 1.7.4. An archimedean local field is R or C. A non-archimedean local field is either a
finite extension of Qp or is isomorphic to Fq((t)), with valuation given by ord(

∑+∞
i=n ait

i) =
n, where n ∈ Z and an ̸= 0.

1.8. More on polynomials (not using completeness). Let (K, | · |) be a completely
valued field. Define

ord(·) = −C log | · | : K× → R,
where C ∈ R>0 is a constant. Then ord is a valuation. By Fact 1.6.4, it extends uniquely
to a valuation

ord : K̄× → R, x 7→ 1

[K(x) : K]
ord(NK(x)/K(x)).

Given a non-zero f ∈ K[X], one is thus interested in ord(α) for the roots α of f in K̄.
Write f(X) = a0 + a1X + · · · + anX

n. The Newton polygon of f is defined to be the
lower convex hull of the set {(i, ord(ai)) ∈ R2 | 0 ≤ i ≤ n, ai ̸= 0}. Let {si} be the slopes
of it, and let ni be the multiplicity of si, i.e., the horizontal distance (within [0, n]) traveled
by the segment of slope si.
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Theorem 1.8.1 (Newton Polygon). There are precisely ni roots α of f in K̄ (counting
multiplicity) such that ord(α) = −si.

Proof. [Neu99, Ch. II, (6.3)]. □

Remark 1.8.2. The proof only uses strong triangle inequality and root-coefficient relations.
Thus we can drop the assumption that K is complete if we assume that f splits over K.

The following result is elementary.

Theorem 1.8.3 (Eisenstein criterion). Let (K, |·|) be a discretely valued field (not necessar-
ily complete). Thus OK is a DVR with maximal ideal mK . Let f = Xn+an1

Xn−1+· · ·+a0 ∈
OK [X]. If a0 · · · , an−1 ∈ mK and a0OK = mK , then f is irreducible. (Here irreducibility
in OK [X] or in K[X] are equivalent.)

Polynomials satisfying the assumption are called Eisenstein.

1.9. Extensions of completely discretely valued fields. Let L/K be a finite extension
of completely discretely valued fields. Let l and k denote the residue fields of L and K.
Then l is a finite extension of k. Define the residue degree

f(L/K) := [l : k].

Recall that an element x ∈ K is called a uniformizer of K if x ∈ mK and xOK = mK . Equiv-
alently, ordK(x) = 1, where ordK is normalized to be surjective. Define the ramification
index

e(L/K) := ordL(x) ∈ Z≥1,

where ordL is normalized to be surjective. Equivalently, if | · | denotes the absolute value
on L, we have e(L : K) = [|L×| : |K×|] where |L×| and |K×| are subgroups of R>0.
Equivalently,

mKOL = m
e(L/K)
L .

Fact 1.9.1 ([Ser79, II.2]). The OK-module OL is free of rank [L : K]. It is the integral
closure of OK in L. We have e(L/K)f(L/K) = [L : K].

Definition 1.9.2. The extension L/K is called unramified, if e(L/K) = 1 and l/k is
separable. It is called totally ramified, if e(L/K) = [L : K].

Theorem 1.9.3. Let K be a completely discretely valued field.

(1) Every finite unramified extension of K is separable. There is an equivalence of
categories from the category of finite unramified extensions of K to the category
of finite separable extensions of the residue field k, sending L/K to the residue
extension l/k. In other words, every finite separable extension of k can be realized
as the residue extension of a (unique up to isomorphism) finite unramified extension

of K, and if L/K,L′/K are finite unramified then HomK(L,L′)
∼−→ Homk(l, l

′).
(2) Moreover, if L/K is a finite unramified extension with residue field l, and M/K is

a finite extension with residue field m, then we have HomK(L,M)
∼−→ Homk(l,m).

(3) Let l/k be a finite separable extension, so by the primitive element theorem l ∼=
k[X]/(f̄(X)) for a monic irreducible separable f̄(X) ∈ k[X]. Let f(X) ∈ OK [X]
be a monic lift of f̄ . Then L = K[X]/(f(X)) is a finite unramified extension of K
whose residue extension is isomorphic to l/k, and we have OL = OK [X̄].
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(4) If L/K is finite totally ramified and πL is a uniformizer of L, then L = K(πL),
OL = OK [πL], and the monic minimal polynomial of πL over OK is Eisenstein.
Conversely, for any Eisenstein polynomial f(X) ∈ OK [X], the extension L =
K[X]/(f(X)) over K is totally ramified, and X̄ is a uniformizer of L.

Remark 1.9.4. Let L/K be a finite unramified extension, and α ∈ OL be such that its
image ᾱ in l generates l over k. Let f(X) ∈ OK [X] be the monic minimal polynomial of
α. Then the image f̄ ∈ k[X] must be divisible by the minimal polynomial of ᾱ over k, and
hence be equal to the latter since [k(ᾱ) : k] = [l : k] = [L : K] ≥ deg f . Then by (3),
we have a map between unramified extensions ϕ : K[X]/(f(X)) → L, X̄ → α, inducing an
isomorphism between the residue fields. By (1), ϕ must itself be an isomorphism. Thus, by
(3) again, we conclude that L = K(α) and OL = OK [α].

Definition 1.9.5. Let K be a completely discretely valued field. An algebraic extension
L/K is called unramified, if every finite subextension L′/K is unramified.

If we fix a separable closure Ks of K, then it easily follows from Theorem 1.9.3 that there
is a unique maximal unramified subextension Kur/K in Ks. Note that the unique extension
of ordK (normalized) to Kur is still valued in Z (instead of Q). The residue field of Kur is
a separable closure of k. Typically Kur is not finite over K. When it is infinite over K, it
is not complete. Its completion is denoted by K̆.

Example 1.9.6. Assume that K has positive characteristic. Then a choice of a uniformizer
of K corresponds to an isomorphism k((t))

∼−→ K, sending t to the uniformizer. Fix such
an isomorphism. Then for any finite separable l/k, the corresponding finite unramified
extension is l((t))/k((t)).

Example 1.9.7. Assume that K has characteristic zero, and perfect residue field k. Let
p = char(k). Let W (k) be the ring of Witt vectors (see [Ser79, II.5]). Then W (k) is a
complete DVR containing Z such that p is a uniformizer and its residue field is k. There
is a canonical embedding W (k) ↪→ OK lifting the identity map on k, and the resulting
FracW (k) ↪→ K is a finite totally ramified extension of completely discretely valued fields.
(Here FracW (k) is equipped with the unique discrete valuation such that the valuation ring
is W (k).) For any finite (automatically separable) extension l/k, the corresponding finite
unramified extension L/K is L = K ⊗W (k) W (l).

Example 1.9.8. Let L/K be a finite extension such that the residue extension l/k is
separable. Then we have a unique maximal unramified subextension L′/K in L. The residue
field of L′ is l. We have [L′ : K] = f(L/K). A uniformizer of K stays as a uniformizer
of L′, so e(L/L′) = e(L/K) = [L : K]/f(L/K) = [L : L′]. Hence L/L′ is totally ramified.
Thus we have “broken down” the extension L/K into an unramified extension L′/K and a
totally ramified extension L/L′.

Corollary 1.9.9. Let L/K be a finite unramified extension, with residue extension l/k. If
l/k is Galois, then so is L/K, and we have Gal(L/K) ∼= Gal(l/k).

Proof. By the equivalence of categories, the natural map Aut(L/K) → Aut(l/k) is an
isomorphism. If l/k is Galois, then these groups have cardinality [l : k], and this is equal to
[L : K] since L/K is unramified. □

1.10. Galois theory for local fields. Let L/K be a finite Galois extension of non-
archimedean local fields. Let l/k be the residue extension, and G = Gal(L/K). The
action of G on L preserves ordL, so it stabilizes OL and miL for all i ≥ 1.
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Definition 1.10.1. The ramification subgroups of G are Gi = ker(G → Aut(OL/mi+1
L )),

for i ∈ Z, i ≥ −1.

Thus Gi are normal subgroups of G, and we have

G = G−1 ⊃ G0 ⊃ G1 ⊃ · · · .
Clearly

⋂
iGi = 1. Since G is finite, this implies that Gm = 1 for some finite m.

The subgroup G0 = ker(G → Gal(l/k)) is called the inertia subgroup. The extension
LG0/K is the maximal unramified extension of K inside L, and it is Galois of Galois group
G/G0

∼= Gal(l/k). The extension L/LG0 is totally ramified, and it is Galois of Galois group
G0.

The subgroup G1 is called the wild inertia, while G0/G1 is called tame inertia. In fact,
let p = char(k). Then G1 is the unique p-Sylow subgroup of G0. The extension LG1/LG0 is
totally ramified and tamely ramified in the sense that its degree is coprime to p. It is the
maximal subextension of L/LG0 which is tamely ramified. In general, a finite extension of
K is called tamely ramified if the ramification index is coprime to p. Thus LG1/K is the
maximal subextension of L/K which is tamely ramified.

Define UL = U0
L = O×

L , and U iL = 1 + miL for i ≥ 1. These are abelian groups under
multiplication.

Choose a uniformizer πL of L. For i ≥ 0 we have injective group homomorphisms

Gi/Gi+1 ↪→ U iL/U
i+1
L , s 7→ s(πL)

πL
.

Note that s(πL) ≡ πL mod πi+1
L since s ∈ Gi, and it follows that s(πL)/πL ≡ 1 mod πiL,

i.e., s(πL)/πL ∈ U iL.

Exercise 1.10.2. This map is a well-defined group homomorphism, and it is independent
of the choice of πL.

Now to check the injectivity of this map, we need to show that if s ∈ Gi satisfies that
sπL ≡ πL mod πi+2

L , then sx ≡ x mod πi+2
L for all x ∈ OL. This follows from the fact

that OL = OLG0 [πL] as L/L
G0 is totally ramified.

For i = 0, UL/U
1
L
∼= l× by x 7→ (x mod mL). This is a cyclic group of order prime to p.

For i ≥ 1, the multiplicative group U iL/U
i+1
L is isomorphic to the additive group miL/m

i+1
L

by x 7→ x − 1, and the latter is isomorphic to l, which is a product of Z/pZ. We conclude
that:

• G0/G1 is a cyclic group of order prime to p.
• For i ≥ 1, Gi/Gi+1 is a product of Z/pZ.

This implies that G1 is the unique p-Sylow subgroup of G0. Note that G/G0
∼= Gal(l/k) is

also a cyclic group. Hence G is solvable.
We now introduce the upper numbering of ramification groups. For u ∈ [−1,+∞), define

Gu := Gmin{i∈Z|i≥u}. For u ∈ [0,+∞), define

ϕ(u) = ϕL/K(u) :=

∫ u

0

dt

[G0 : Gt]
.

Also for u ∈ [−1, 0) define
ϕ(u) := u.

Then ϕ is a strictly increasing, continuous, piecewise linear, concave function on [−1,+∞).
It is thus a bijection [−1,+∞)→ [−1,+∞). Let ψ = ψL/K be its inverse function. Then ψ
is strictly increasing, continuous, piecewise linear, convex function on [−1,+∞).
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Definition 1.10.3. The upper numbering of ramification groups is defined by

Gv := Gψ(v), v ∈ [−1,+∞),

i.e.,

Gϕ(u) := Gu, u ∈ [−1,+∞).

Now let H ⊂ G be a normal subgroup, and K ′ = LH . Then K ′/K is a Galois extension
of Galois group G/H, so we can define (G/H)u and (G/H)v with respect to L/K. Also we
can define Hu and Hv with respect to L/LH . It is clear from the definition that we have

Hu = H ∩Gu.
The following theorem is the main reason for considering the upper numbering.

Theorem 1.10.4. For all v ∈ [−1,+∞), we have

(G/H)v = GvH/H.

In the rest of this subsection we give a proof of Theorem 1.10.4. For any s ∈ G − {1},
define

iG(s) := max{i ∈ Z | i ≥ −1, s ∈ Gi}+ 1.

The following result is the key.

Proposition 1.10.5. For σ ∈ G/H, σ ̸= 1, we have

iG/H(σ) =
1

e(L/K ′)

∑
s∈G,s 7→σ

iG(s).

For the proof, we will use the following fact.

Fact 1.10.6 ([Ser79, III.6, Prop. 12], or [Neu99, Ch. II, (10.4)]). For any finite extension
E/K, there exists x ∈ OE such that OE = OK [x].

Exercise 1.10.7. Suppose OL = OK [x]. Then for s ∈ G we have

iG(s) = ordL(sx− x).
Here ordL is the normalized discrete valuation on L.

Proof of Proposition 1.10.5. (See [Ser79, III.1, Prop. 3].) Find x ∈ OL and y ∈ OK′ such
that OL = OK [x] and OK′ = OK [y], by Fact 1.10.6. Fix s ∈ G lifting σ. Then the left hand
side is equal to

ordK′(sy − y) = 1

e(L/K ′)
ordL(s(y)− y),

while the right hand side is equal to

1

e(L/K ′)

∑
t∈H

ordL(st(x)− x).

Hence it suffices to show that the elements

a = s(y)− y, b =
∏
t∈H

(st(x)− x)

divide each other in OL. The minimal polynomial of x over K ′ is

f(X) =
∏
t∈H

(X − tx) ∈ OK′ [X].
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Then ±b = (sf)(x). Since each coefficient ci of f lies in OK′ = OK [y], we know that each
coefficient of s(f)−f , namely s(ci)−ci, is divisible by a inOL (e.g., s(yn)−yn = (sy)n−yn =
a((sy)n−1 + (sy)n−2y + · · · + yn−1)). Hence a divides (sf)(x) − f(x) = (sf)(x) = ±b.
Conversely, let g(X) ∈ OK [X] such that y = g(x). Then g(X) − y ∈ OK′ [X] kills x, so it
must be divisible by f(X) in OK′ [X]. Thus ±b = (sf)(x) divides (s(g − y))(x) in OL. But
s(g) = g since g ∈ OK [X]. Hence (s(g − y))(x) = g(x) − s(y) = y − s(y) = −a. Thus b
divides a in OL. □

We now write the right hand side of the formula in Proposition 1.10.5 in a better form.
Let jG(σ) := max{iG(s) | s ∈ G, s 7→ σ}. Pick s ∈ G, s 7→ σ such that iG(s) = jG(σ). Then∑
s′∈G,s′ 7→σ iG(s

′) =
∑
t∈H iG(st), and it is easy to see (using that the Gi’s are subgroups)

that for each t we have

iG(st) = min(iG(t), jG(σ)).

Also note that iG(t) = iH(t). Thus by Proposition 1.10.5, we have

iG/H(σ) =
1

e(L/K ′)

∑
t∈H

min(iH(t), jG(σ)).

It is elementary to check that for all u ∈ [−1,+∞], we have

1

e(L/K ′)

∑
t∈H

min(iH(t), u) = ϕL/K′(u− 1) + 1

(e.g., by comparing the derivatives of the two sides). Hence we conclude that

iG/H(σ) = ϕL/K′(j(σ)− 1) + 1.

From this, the following result is immediate:

Theorem 1.10.8 (Herbrand’s theorem). Let u ∈ [−1,+∞), and v = ϕL/K′(u). Then
GuH/H = (G/H)v.

Proof. Let σ ∈ G/H, σ ̸= 1. We have σ ∈ GuH/H if and only if j(σ) − 1 ≥ u, if and
only if ϕL/K′(j(σ) − 1) ≥ ϕL/K′(u) = v, if and only if iG/H(σ) − 1 ≥ v, if and only if
σ ∈ (G/H)v. □

By Herbrand’s theorem, we have

ϕL/K = ϕK′/K ◦ ϕL/K′ .

Indeed, it suffices to check that the two sides have the same derivative at arbitrary u ∈
[0,+∞), u /∈ Z. The derivative of the left hand side is |Gu|/e(L/K), while that of the right
hand side is

|(G/H)v|
e(K ′/K)

|Hu|
e(L/K ′)

, where v = ϕL/K′(u).

That the two derivatives are equal follows from Herbrand’s theorem.

Proof of Theorem 1.10.4. By definition, we have (G/H)v = (G/H)x, where v = ϕK′/K(x).
By Herbrand’s theorem, (G/H)x = GwH/H, where x = ϕL/K′(w). Then v = ϕK′/K(ϕL/K′(w)) =
ϕL/K(w). □
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2. Topological notions

2.1. Inverse limits of topological spaces. Recall that a directed set, or a filtered set,
means a set I with a transitive binary relation ≤ such that for any i, j ∈ I, there exists
k ∈ I such that i ≤ k, j ≤ k. By an inverse system of sets (or groups, or topological spaces,
or topological groups, etc.) indexed by (I,≤), we mean the following data:

• a set (or group, ...) Xi for each i ∈ I;
• for any i, j ∈ I such that i ≤ j, a transition map (or group homomorphism, ...)
pi,j : Xj → Xi.

The transition maps pi,j should satisfy the following:

(1) For any i ∈ I, the map pi,i : Xi → Xi is the identity.
(2) If i ≤ j ≤ k in I, then pik = pij ◦ pjk.

We denote such an inverse system by (Xi)i∈I , suppressing ≤ and pij from the notation.
For (Xi)i∈I an inverse system of sets, we define

X = lim←−
i∈I

Xi := {(xi) ∈
∏
i

Xi | ∀i ≤ j, pij(xj) = xi}.

This is equipped with maps pi : X → Xi, by projection to the i-th coordinate. The set X
together with the maps pi is characterized by the following universal property: If Y is a set
and qi : Y → Xi are maps for all i ∈ I which are compatible with the transition maps pij ,
then there is a unique map q : Y → X such that qi = pi ◦ q for all i ∈ I.

We now consider an inverse system (Xi)i∈I of topological spaces. We defineX = lim←−i∈I Xi

as a subset of
∏
i∈I Xi in the same way, and equip it with the subspace topology inherited

from the product topology on
∏
i∈I Xi. The latter is defined as the coarsest topology (i.e.,

topology with fewest open sets) such that each projection
∏
i∈I Xi → Xi is continuous.

Thus every open set in
∏
iXi is a union of fundamental open sets, which are of the form∏

i∈I0

Ui ×
∏

i∈I−I0

Xi,

where I0 is a finite subset of I, and Ui is an open set in Xi for i ∈ I0.
The topology on X = lim←−i∈I Xi is called the inverse limit topology. The topological space

X has a similar universal property (for continuous maps between topological spaces) as in
the set case.

Exercise 2.1.1. If each Xi is Hausdorff, then so is X = lim←−i∈I Xi. In this case, X is closed

in
∏
i∈I Xi.

Theorem 2.1.2 (Tychonoff). If each Xi is compact, then
∏
i∈I Xi is compact.

By the above exercise and theorem, we see that if each Xi is Hausdorff compact, then X
is compact.

Exercise 2.1.3. Assume that each Xi is Hausdorff compact non-empty. Then lim←−i∈I Xi ̸=
∅. (Hint: use Tychonoff’s theorem, and use the characterization of compactness in terms of
intersecting closed sets.)

Definition 2.1.4. A topological space X is called connected, if it cannot be written as the
disjoint union of two open (equivalently, two closed) subsets.

Let X be a topological space. We define a relation ∼ on X by: x ∼ y if and only if there
exists a connected subspace Y ⊂ X containing both x and y.
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Exercise 2.1.5. Show that ∼ is an equivalence relation. Moreover, each equivalence class
is connected.

The equivalence classes are called connected components of X. Thus X is the disjoint
union (in the set-theoretical sense) of its connected components, and each connected com-
ponent is maximal connected.

Definition 2.1.6. A topological space is totally disconnected, if each connected component
has only one element.

Definition 2.1.7. A topological space is profinite, if it is Hausdorff, compact, and totally
disconnected.

Theorem 2.1.8. A topological space is profinite if and only if it is homeomorphic to
lim←−i∈I Xi for an inverse system (Xi)i∈I of finite sets, where each Xi is equipped with the

discrete topology.

Exercise 2.1.9. Prove the theorem. Hint: For the “only if” direction, you may construct
(I,≤) and (Xi)i from the given profinite space X in the following way. Let I be the set of
continuous maps f : X → Z such that im(f) is finite. For f, g ∈ I, we define f ≤ g if there
exists a (necessarily unique) map rf,g : im(g) → im(f) such that f = rf,g ◦ g. For f ∈ X,
let Xf := im(f), and let the transition maps be rf,g. (The idea is that I is the “set of all
continuous maps from X to finite sets”, but we define it in this way to avoid set-theoretical
issues.)

2.2. Topological groups. A topological group is a group G with a topology such that the
multiplication map G×G→ G and the inversion map G→ G, g 7→ g−1 are both continuous.
We write e for the identity element of a group.

Proposition 2.2.1. Let G be a topological group.

(1) For every open neighborhood U of e, there exists an open neighborhood V of e such
that V −1 = V and V · V ⊂ U .

(2) For every subgroup H of G, the closure H̄ of H is still a subgroup. If H is normal,
then H̄ is normal.

(3) Every open subgroup is closed. Every closed subgroup of finite index is open.
(4) If G is compact, then every open subgroup is of finite index.
(5) For K,K ′ compact sets in G, we have K ·K ′ is compact.
(6) G is Hausdorff if and only if {e} is closed. G is discrete if and only if {e} is open.
(7) For any normal subgroup H in G, the group G/H with the quotient topology is a

topological group. It is Hausdorff if and only if H is closed in G, and it is discrete
if and only if H is open in G.

Exercise 2.2.2. Prove the proposition.

If (Gi)i∈I is an inverse system of topological groups, then G = lim←−i∈I Gi equipped with

the natural group structure and the inverse limit topology is a topological group. The maps
G → Gi are continuous group homomorphisms, and we have a universal property in terms
of continuous homomorphisms between topological groups.

Definition 2.2.3. A topological group is called profinite, if its underlying topological space
is profinite.
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Theorem 2.2.4. A topological group G is profintie if and only if G is topologically iso-
morphic to lim←−i∈I Gi for an inverse system (Gi)i∈I of finite groups (equipped with discrete

topology). In this case, the natural map

G→ lim←−
H�G open

G/H

is an isomorphism. Here each G/H is finite and discrete, so the inverse limit is an inverse
limit of finite groups. (The set of H’s is directed by: H ≤ H ′ if and only if H ⊃ H ′.)

Exercise 2.2.5. Prove the theorem. Also prove that for a profinite group, the open normal
subgroups form a neighborhood basis of e.

Remark 2.2.6. Let G be a profinite group. By a cofinal system of open normal subgroups of
G, we mean a set S of open normal subgroups of G such that for every open normal subgroup
V of G (or equivalently, every open neighborhood V of e), there is H ∈ S contained in V .
Then clearly S is a directed system where H ≤ H ′ if and only if H ⊃ H ′. We have a natural
map

G→ lim←−
H∈S

G/H.

The same argument proving the last statement in the theorem also shows that this map is
an isomorphism.

Now for an arbitrary topological group G, we define the profinite completion

Ĝ := lim←−
H�G

open finite index

G/H.

This is profinite, with the inverse limit topology. We have a natural map i : G→ Ĝ, g 7→ (g
mod H)H .

Exercise 2.2.7. Show that i is continuous, and that for any continuous homomorphism
f : G → Γ where Γ is a profinite group, there exists a unique continuous homomorphism

f̂ : Ĝ → Γ such that f = f̂ ◦ i. (Hint: for the uniqueness of f̂ , first show that i has dense
image. For the existence of f , you can first treat the case where Γ is finite, and then in
general use that Γ is an inverse limit of finite groups.)

Example 2.2.8. The ring of p-adic integers Zp = lim←−n Z/p
n. Its “usual” topology is the

sames as the inverse limit topology, hence profinite.

Example 2.2.9. The profinite completion of Z is Ẑ = lim←−n Z/nZ. Here the transition maps

are Z/mZ→ Z/nZ, ā 7→ ā for n|m.

Exercise 2.2.10. Using Chinese Remainder Theorem, show that there is a canonical iso-

morphism of topological groups Ẑ ∼=
∏
p Zp, where the product is over all primes p. The

natural map Z→ Ẑ is identified with the diagonal embedding Z→
∏
p Zp, n 7→ (n)p.

2.3. Profinite groups arising from a local field. Let K be a non-archimedean local
field. Then the additive groups OK ⊃ mK ⊃ m2

K ⊃ · · · and the multiplicative groups
U0
K ⊃ U1

K ⊃ U2
K ⊃ · · · are all profinite, and {mnK}n≥i (resp. {UnK}n≥i) is a cofinal system

of open subgroups of miK (resp. U iK). (Recall that U0
K = O×

K and U iK = 1 +miK for i ≥ 1.)

Exercise 2.3.1. Prove these claims.
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By Remark 2.2.6, we have natural isomorphisms

miK
∼−→ lim←−

n≥i
miK/m

n
K , U iK

∼−→ lim←−
n≥i

U iK/U
n
K(2.1)

of topological groups.

Lemma 2.3.2. Let A,B be (abstract) abelian groups, equipped with subgroups A = A0 ⊃
A1 ⊃ A2 ⊃ · · · and B = B0 ⊃ B1 ⊃ B2 ⊃ · · · . Assume that the natural maps

A→ lim←−
n≥1

A/An, B → lim←−
n≥1

B/Bn

are isomorphisms. Let ϕ : A → B be a homomorphism such that ϕ(An) ⊂ Bn for each
n ≥ 1. If ϕ induces a surjection (resp. injection) An/An+1 → Bn/Bn+1 for each n ≥ 0,
then ϕ is a surjection (resp. injection).

Proof. Exercise. (See [Ser79, §V.1, Lem. 2]) □

These ideas can be applied to proving the following result.

Proposition 2.3.3. Let L/K be a finite unramified extension, with residue extension l/k.
Let N be the norm map NL/K : L× → K×. For each i ≥ 0, we have N(U iL) = U iK .

Proof. Since l/k is Galois, so is L/K. Let G be the Galois group. We first show that
N(U iL) ⊂ U iK . If i = 0, this follows from the fact that ordL restricts to ordK . If i ≥ 1, let
x = 1 + y ∈ U iL, with y ∈ miK . Then

N(x) =
∏
s∈G

(1 + sy) = 1 +
∑
s∈G

sy +
∑

s1,s2∈G
(s1y)(s2y) + · · · ∈ 1 +miL.

But miL ∩K = miK since L/K is unramified. Hence N(x) ∈ 1 +miK = U iK .
To finish the proof, by the isomorphisms (2.1) and Lemma 2.3.2, it suffices to check that

N induces a surjection U iL/U
i+1
L → U iK/U

i+1
K for each i ≥ 0. If i = 0, we have canonical

identifications U0
L/U

1
L
∼= l×, U0

K/U
1
K
∼= k×, and the map l× → k× is the norm for l/k,

which is surjective. Suppose i ≥ 1. Then after choosing a uniformizer πL of L we have
an isomorphism l = OL/mL

∼−→ U iL/U
i+1
L sending a + mL (for a ∈ OL) to (1 + πiLa)U

i+1
L .

Similarly, after choosing a uniformizer of K we have an isomorphism k
∼−→ U iK/U

i+1
K . Since

L/K is unramified, we can choose the same uniformizer of K and L. Then the map l → k
corresponding to N : U iL/U

i+1
L → U iK/U

i+1
K is the trace for l/k (since the “linear term” in

the above formula for N(x) is
∑
s∈G sy), which is surjective. □

2.4. Review of infinite Galois theory. Recall that an (infinite degree) algebraic exten-
sion of fields L/K is called Galois, if it is separable (i.e., the minimal polynomial over K
of any element of L is separable) and normal (i.e., the minimal polynomial over K of any
element of L splits in L). Equivalently, L/K is the splitting field of a set of separable irre-
ducible polynomials over K. Clearly an algebraic extension L/K is Galois if and only if L
is the union of the finite Galois subextensions L′/K in L.

Let L/K be Galois, and let G = Gal(L/K) := Aut(L/K). Let S be the set of finite
Galois subextensions L′/K in L. Then S is a directed system with L′ ≤ L′′ if and only if
L′ ⊂ L′′. For L′ ≤ L′′ in S, we have the restriction map Gal(L′′/K) → Gal(L′/K), so we
have an inverse system of finite groups (Gal(L′/K))L′∈S . Since L =

⋃
L′∈S L

′, we have a
natural isomorphism (of groups)

Gal(L/K) ∼= lim←−
L′∈S

Gal(L′/K).
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We equip Gal(L/K) with the inverse limit topology of the right hand side, which is profinite.
This is called the Krull topology on Gal(L/K).

Theorem 2.4.1 (Main Theorem of Galois Theory). Let L/K be a Galois extension, and
let E be the set of intermediate extensions L/E/K.

(1) We have a bijection

{closed subgroups of Gal(L/K)} ∼−→ E ,
sending H to LH . The inverse map sends E to Gal(L/E).

(2) Suppose H corresponds to E. Then H is of finite index in Gal(L/K) (i.e., open) if
and only if E/K is finite.

(3) Suppose H corresponds to E. Then H is normal in Gal(L/K) if and only if E/K
is Galois. In this case, we have a natural topological isomorphism Gal(E/K) ∼=
Gal(L/K)/H, where the right hand side has the quotient topology.

Definition 2.4.2. Let G be a topological group. Let Gder be the commutator subgroup,
i.e., the subgroup generated by xyx−1y−1 for x, y ∈ G. Let Gder be its closure. Then Gder

is normal in G, and we define the abelianization Gab := G/Gder.

Clearly Gab is Hausdorff and abelian, and every continuous homomorphism from G to a
Hausdorff abelian topological group factors uniquely through G→ Gab.

Definition 2.4.3. By an abelian extension, we mean a Galois extension of fields whose
Galois group is abelian.

Let L/K be a Galois extension. If E1/K,E2/K are two abelian subextensions, then
so is the compositum E1E2 (since E1E2/K is Galois, and Gal(E1E2/K) ↪→ Gal(E1/K) ×
Gal(E2/K)). Thus inside L/K there is a unique maximal abelian extension E of K. Under

the Galois correspondence, Gal(L/E) = Gal(L/K)der, and Gal(E/K) = Gal(L/K)ab.
Fix a separable closure Ks of K. Then the maximal abelian subextension of K in Ks

is called an absolute maximal abelian extension of K, and we denote it by Kab. We often
write GK for Gal(Ks/K), called the absolute Galois group of K. Then Gal(Kab/K) ∼= Gab

K .

Remark 2.4.4. IfKs,Ks′ are two separable closures ofK. Then there existK-isomorphisms
Ks ∼−→ Ks′, and the set of all such isomorphisms is acted on simply transitively by
Gal(Ks/K). If we choose such an isomorphism, then we obtain an isomorphism ϕ :

Gal(Ks/K)
∼−→ Gal(Ks′/K), and different choices would result in different isomorphisms

ϕ which are conjugate to each other. Note that all these isomorphisms ϕ : Gal(Ks/K)
∼−→

Gal(Ks′/K) induce the same isomorphism between the abelianizations, thus the same iso-

morphism Gal(Kab/K)
∼−→ Gal(Kab ′/K). Thus the invariant Gal(Kab/K) of K is inde-

pendent of the choice of Ks up to canonical isomorphism.

2.5. Infinite decomposition groups. Let K be a global field, and L/K a Galois exten-
sion, possibly of infinite degree. Fix v ∈ VK , and let S = {w ∈ VL | w|K = v}. Here
VL denotes the set of places of L, and it is defined still as the set of equivalence classes
of absolute values on L, despite that L may not be a global field. The group Gal(L/K)
naturally acts on S, and for w ∈ S we denote the stabilizer of w in Gal(L/K) by D(w/v)
or D(w/K), called the decomposition group.

Exercise 2.5.1. D(w/v) is a closed subgroup of Gal(L/K).

Fix a separable closure M of Kv. We have a map

γ : HomK(L,M)→ S, ϕ 7→ | · |v ◦ ϕ,
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where | · |v is the canonical absolute value on M (i.e., the unique one that extends the given
one on Kv). SinceM is separably closed and contains K, the set HomK(L,M) is non-empty,
and is acted on simply transitively by Gal(L/K). It follows that S ̸= ∅. Moreover, γ is
Gal(L/K)-equivariant.

Lemma 2.5.2. The action of Gal(L/K) on S is transitive.

Proof. Let u,w ∈ S. For each finite Galois extension L′/K in L, let TL′ = {g ∈ Gal(L′/K) |
g ·u|L′ = w|L′}. Since Gal(L′/K) acts transitively on the set of places of L′ over v, we have
TL′ ̸= ∅. Clearly {g ∈ Gal(L/K) | gu = w} ∼= lim←−L′ TL′ . Since this is an inverse limit of

non-empty finite (hence compact) sets, this set is non-empty by Exercise 2.1.3. □

Corollary 2.5.3. The map γ is a Gal(L/K)-equivariant surjection.

Now consider the case L = Ks, a separable closure of K. Fix ϕ ∈ HomK(Ks,M), and
let w = γ(ϕ), which is a place of Ks over v. We construct a homomorphism

h : D(w/v)→ Gal(M/Kv) = GKv

as follows.

Lemma 2.5.4. For any finite separable extension E/Kv, there exists α ∈ E which is
algebraic and separable over K such that E = Kv(α).

Proof. By the primitive element theorem, E = Kv(β) for some β ∈ E. Let f(X) be the
minimal polynomial of β over Kv. By Krasner’s lemma (see [Ser79, II.2, Exercise 2]), for
every polynomial f1(X) ∈ Kv[X] whose coefficients are sufficiently close to those of f , f1 is
irreducible and E is generated over Kv by a root of f1. Since K is dense in Kv, we can take
f1 ∈ K[X]. Thus E = Kv(α) for a root α of f1. Since α ∈ E, its minimal polynomial over
Kv is separable. This polynomial is f1, and it is also the minimal polynomial of α over K
(since it is also irreducible over K). Hence α is separable over K. □

Lemma 2.5.5. The image of ϕ is dense in M .

Proof. Let y ∈ M . Then Kv(y) = Kv(α) for some α ∈ M which is algebraic and separable
over K, by Lemma 2.5.4. Write y = bnα

n + bn−1α
n−1 + · · · + b0. Let ϵ > 0 be arbitrary.

Since K is dense in Kv, for each 0 ≤ i ≤ n, we can find ci ∈ K such that |ciαi − biαi|v ≤ ϵ.
(If αi ̸= 0, choose |ci − bi| ≤ ϵ/|αi|v; if αi = 0, choose any ci.) Let y′ = cnα

n + · · · + c0.
Then |y− y′| ≤ ϵ. Note that α lies in the image of ϕ since the latter is the separable closure
of K inside M . Hence y′ lies in the image of ϕ. □

Since ϕ has dense image, it induces an isometric isomorphism from the completion (Ks)w
of Ks with respect to w to the completion M̂ of M with respect to the canonical absolute
value. For σ ∈ D(w/v), we have a unique extension of σ to an isometric automorphism σ̃

of (Ks)w. Using ϕ, we view σ̃ as an automorphism of M̂ . This restricts to the identity on

Kv, so it stabilizes M (as Ks
v is the separable closure of M inside M̂). The restriction σ̃|M

is an element of Gal(M/Kv). We define h by

h(σ) = σ̃|M .
We claim that h is an isomorphism. Indeed, the inverse is given as follows: Let τ ∈
Gal(M/Kv). Then τ is automatically isometric, and so it extends uniquely to an isometric

automorphism τ̃ of M̂ . Using ϕ, we view τ̃ as an isometric automorphism of (Ks)w. Since
τ̃ is the identity on K, it stabilizes Ks, and moreover τ̃ |Ks is an element of D(w/v). The
inverse of h sends τ to τ̃ |Ks .
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Lemma 2.5.6. The isomorphism h : D(w/v)
∼−→ Gal(M/Kv) is a topological isomorphism.

Proof. Since both sides are compact Hausdorff (see Exercise 2.5.1), it suffices to show that
h is an open map. Since the open normal subgroups U of Gal(Ks/K) form a neighborhood
basis of 1, it suffices to show that h(D(w/v)∩U) is open for such U . Write U = Gal(E/K)
for a finite Galois extension E/K in Ks. Then D(w/v) ∩U = D(w/E), and it is clear that
h(D(w/v) ∩ U) = Gal(M/Ev′) where v′ = w|E . Since Ev′/Kv is finite, Gal(M/Ev′) is an
open subgroup of Gal(M/Kv) as desired. □

In summary, if we choose anyK-embedding ϕ ofKs into the separable closureM = (Kv)
s

of Kv, then we obtain via pull-back a place w of Ks, as well as a topological isomorphism
h : D(w/v)

∼−→ Gal(M/Kv). Note that different choices of ϕ inducing the same w differ

from each other by elements of D(w/v), and so the resulting isomorphisms h : D(w/v)
∼−→

Gal(M/Kv) differ from each other by conjugation.

3. Adeles and ideles

3.1. Restricted product. Let V be a set, and (Xv)v∈V be a family of topological spaces.
For almost all v ∈ V , we fix an open set Uv in Xv. The restricted product of (Xv)v with
respect to (Uv)v is defined as

X =

′∏
v∈V

Xv =
{
(xv)v ∈

∏
v∈V

Xv | xv ∈ Uv for almost all v
}
.

It is equipped with the topology generated by basic open sets of the form∏
v∈S

Yv ×
∏

v∈V−S
Uv,(3.1)

where S ⊂ V is a finite subset, and for each v ∈ S, Yv is an open set in Xv. Here are some
immediate observations:

(1) If we change the choices of Uv for finitely many v, then the set X and its topology
remain unchanged.

(2) If Uv = Xv for almost all v, then X =
∏
v∈V Xv, and its topology is the usual

product topology.
(3) On a basic open set as in (3.1), the subspace topology inherited from X is the same

as the product topology coming from Yv and Uv.

Lemma 3.1.1. If each Xv is locally compact Hausdorff, and each Uv is compact, then X
is locally compact Hausdorff.

Proof. Any pair of points of X lie in a basic open of the form

U =
∏
v∈S

Xv ×
∏

v∈V−S
Uv,

where S ⊂ V is finite. Since U has the product topology, it is Hausdorff, and it follows that
X is Hausdorff. To show that X is locally compact, let x ∈ X. We need to find a compact
set containing an open neighborhood of x in X. We may assume that x lies in U as above.
Write x = (xv). For v ∈ S, since Xv is locally compact, there exists an open neighborhood
Vv of xv and a compact set Kv such that Vv ⊂ Kv ⊂ Xv. Then∏

v∈S
Kv ×

∏
v∈V−S

Uv
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is a compact subset of U by Tychonoff. It contains the open neighborhood
∏
v∈S Vv ×∏

v∈V−S Uv of x. □

3.2. Adeles. Let K be a global field. The ring of adeles is defined as the restricted product
of Kv over all v ∈ VK , with respect to the open subsets OKv

⊂ Kv for non-archimedean v:

AK :=

′∏
v∈VK

Kv.

Since each Kv is a topological ring and OKv
is a subring, AK is a topological (commutative)

ring. Since each Kv is locally compact Hausdorff, and each OKv is compact (for non-
archimedean v), AK is locally compact Hausdorff.

As a variant, for a finite subset S ⊂ VK , we define the adeles away from S to be

ASK :=

′∏
v∈VK−S

Kv,

where the restricted product is again with respect to OKv
for non-archimedean v not in S.

This is also a locally compact Hausdorff topological ring.
For any x ∈ K, we have x ∈ OKv

for almost all v. Hence we have a diagonal embedding

K ↪→ ASK .

Example 3.2.1. As a ring, AQ ∼= R×(Ẑ⊗ZQ), and A∞
Q
∼= (Ẑ⊗QR). The first isomorphism

follows from the second, and we sketch a proof of the second. By Exercise 2.2.10, we identify

Ẑ with
∏
p Zp. Define the map

f : (
∏
p

Zp)⊗Z Q→ A∞
Q =

′∏
p

Qp, (xp)p ⊗ r 7→ (xpr)p.

This is well defined since for any r ∈ Q, we have r ∈ Zp for almost all primes p. Clearly f
is a ring homomorphism, and it is injective since any element of the left hand side can be
written as a pure tensor. To show surjectivity, let (xp)p ∈

∏′
pQp. Then there is a finite set

S of primes such that for each prime p /∈ S, xp ∈ Zp. For p ∈ S, choose ep ∈ Z≥0 such that
pepxp ∈ Zp. Let n =

∏
p∈S p

ep ∈ Z. Clearly nxp ∈ Zp for all primes p. Hence (xp)p is the

image under f of (nxp)p ⊗ 1
n .

Now consider a finite extension L/K. Then for each v ∈ VK , we have the diagonal
embedding

ιv : Kv ↪→
∏

w∈VL,w|v

Lw.

Taking the product over all v, we obtain a map
∏
v∈VK

Kv →
∏
w∈VL

Lw, which clearly
restricts to an injective ring map

ι : AK ↪→ AL.
We shall always use this to view AL as an AK-algebra. We now form the tensor product of
ι with the diagonal embedding L ↪→ AL, and get an AK-algebra map

η : L⊗K AK → AL.

Proposition 3.2.2. The map η is an isomorphism. Moreover, if we equip the left hand

side with the product topology L⊗K AK ∼= A[L:K]
K (after choosing a K-basis of L), then η is

a homeomorphism.
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Proof. We only give the proof assuming that L/K is separable. For the general case, see
[Wei95, §VIII.6].

Let α1, . . . , αn be a K-basis of L. Recall from Fact 1.4.3 that the tensor product of
ιv : Kv →

∏
w|v Lw with the diagonal embedding L →

∏
w|v Lw gives rise to a Kv-algebra

isomorphism

ηv : L⊗K Kv
∼−→

∏
w|v

Lw.

We claim that for almost all v ∈ VK , ηv maps the OKv
-lattice3 Lv =

∑
iOKv

· (αi ⊗ 1)
in the left hand side onto the OKv

-lattice Mv =
∏
w|v OLw

in the right hand side. To see

this, let ψ be the K-bilinear form on L given by

L× L→ K, (s, t) 7→ TrL/K(st).

Since L/K is separable, ψ is non-degenerate. Write R for L ⊗K Kv. Let ψv be the Kv-
bilinear form on R obtained from ψ by extension of scalars. Then for s, t ∈ R, ψv(s, t) is
nothing but the trace of the Kv-linear endomorphism of R given by multiplication by st.
This description of ψv uses only the ring structure and Kv-vector space structure on R.
Hence if we use ηv : R

∼−→
∏
w|v Lw (which is a Kv-algebra isomorphism) to carry ψv to the

right hand side, the resulting Kv-bilinear form on
∏
w|v Lw is(

(sw)w, (tw)w
)
7→

∑
w

TrLw/Kv
(swtw).

In particular,Mv is integral under this pairing, i.e., the pairing of any two elements ofMv

lies in OKv
. For any OKv

-lattice N in R, define the dual lattice

N∨ := {s ∈ R | ψv(s, t) ∈ OKv , ∀t ∈ N}.

We conclude thatM′
v := η−1

v (Mv) satisfiesM′
v ⊂M′∨

v .
On the other hand, for almost all v, as long as v is coprime to the discriminant

d(α1, . . . , αn) = det(TrL/K(αiαj)) ∈ K×,

the lattice Lv is self-dual under ψv. Also, for almost all v, we have αi ∈ OLw
for each i and

each w|v. Hence for almost all v we have Lv ⊂M′
v ⊂M′∨

v ⊂ L∨
v = Lv, and so Lv =M′

v.
We now prove that η is an isomorphism of AK-algebras. It suffices to prove that

α1, . . . αn ∈ AL form an AK-basis of AL. Let x = (xw)w ∈ AL. Then by the isomorphisms
ηv, there exist unique ai = (ai,v)v ∈

∏
v∈VK

Kv for 1 ≤ i ≤ n such that x =
∑n
i=1 aiαi. We

only need to show that each ai automatically lies in AK . For almost all v, the component
(xw)w|v ∈

∏
w|v Lw lies in Mv, and we have ηv(Lv) =Mv by the claim. This means that

(xw)w|v must be an OKv
-linear combination of the images of αi ∈ L in

∏
w|v Lw. In other

words, ai,v ∈ OKv
. This proves that ai ∈ AK as desired.

Note that the product topology on L ⊗K AK is independent of the choice of K-basis
of L, since for every g ∈ GLn(K), the map g : AnK → AnK is a homeomorphism. (This
holds more generally for every g ∈ GLn(AK), and only uses that AK is a topological ring.)
To check that η is a homeomorphism, first note that taking finite product commutes with
taking restricted product. Thus the topology on L ⊗K AK is identified with the restricted
product topology

∏′
v∈VK

(L ⊗K Kv), with respect to the open subsets Lv ⊂ L ⊗K Kv. By
the claim, we see that η takes this topology to the following topology on AL: the restricted

3An OKv -lattice in a finite dimensional Kv-vector space V is an OKv -submodule of V containing a

Kv-basis.
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product topology
∏′
v∈VK

(
∏
w|v Lw), with respect to the open subsetsMv ⊂

∏
w|v Lw . This

topology clearly agrees with the original topology on AL. □

Proposition 3.2.3. The image of K ↪→ AK is discrete. The quotient topology on AK/K
is compact.

Proof. By Proposition 3.2.2, if K/K ′ is a finite separable extension of global fields, then
to prove the proposition for K it suffices to prove it for K ′. Thus we may assume K = Q
or K = Fp(t) (see Exercise 1.2.1). For K = Q, the set U = (−1, 1) ×

∏
p Zp is an open

neighborhood of 0 in AQ. If x ∈ Q ∩ U , then the condition that x ∈ Zp for all primes p
implies that x ∈ Z, and the condition that −1 < x < 1 implies that x = 0. This proves
that Q is discrete in AQ. To prove that K = Fp(t) is discrete in AK , let U =

∏
v∈VK

OKv
,

which is a neighborhood of 0 in AK . Then K ∩U consists of f ∈ Fp(t) satisfying deg f ≤ 0,
and for every irreducible polynomial g ∈ Fp[t], g does not divide the denominator of f , i.e.,
ordg(f) ≥ 0. (All the discrete valuations on Fp(t) are given by −deg and ordg.) Then f
has to be a constant. Hence K ∩ U = Fp. Since AK is Hausdorff, we can further shrink U
to ensure that K ∩ U = {0}.

To show that AQ/Q is compact, let C = [−1/2, 1/2] ×
∏
p Zp. Then C is a compact

subset of AQ . Let x = (x∞, (xp)p) ∈ AQ. Let S be a finite set of primes such that for all
primes p /∈ S, we have xp ∈ Zp. For each p ∈ S, there exists rp ∈ Q such that rp + xp ∈ Zp,
since Q is dense in Qp. Moreover, we can arrange that the denominator of rp is a p-power.
This is because every rational number can be written as a sum of a rational number whose
denominator is a p-power and another rational number which lies in Zp. (The proof of this
assertion uses the Bézout property of Z: Let q = n

pab ∈ Q, where b is coprime to p. Let

x, y ∈ Z be such that xpa + yb = 1. Then yn
pa + xn

b = q.) Thus rp ∈ Zl for every prime

l ̸= p. Let n ∈ Z be such that n+(
∑
p∈S rp)+x∞ ∈ [−1/2, 1/2]. Then the rational number

n+
∑
p∈S rp satisfies that n+

∑
p∈S rp+x ∈ C. Hence C surjects onto AQ/Q, which implies

that AQ/Q is compact.
We now show that AK/K is compact for K = Fp(t). Let C =

∏
v∈VK

OKv
, which

is compact. Let x = (xv) ∈ AK . Write ∞ for the place corresponding to the discrete
valuation −deg. Thus all the other places correspond to discrete valuations ordg, for g
monic irreducible polynomials in Fp[t]. Let S be a finite subset of VK − {∞} such that for
all v ∈ VK − (S ∪ {∞}), we have xv ∈ OKv

. For each v ∈ S, let rv ∈ K be such that
rv + xv ∈ OKv . Suppose v corresponds to the irreducible polynomial g ∈ Fp[t]. The same
argument as in the case of Q shows that we can arrange that the denominator of rv is a
power of g. (This uses the Bézout property of Fp[t], which is a PID.) Then rv ∈ OKw

for
every w ∈ VK −{∞, v}. Let u ∈ Fp[t] be such that u+ (

∑
v∈S rv) + x∞ ∈ OK∞ . Here, note

that K∞ = F((t−1)) and OK∞ = F[[t−1]] (because under the automorphism K → K, t 7→ t−1,
the place ∞ gets sent to the place corresponding to the irreducible polynomial t). Thus
every element of K∞ is the sum of a finite linear combination of negative powers of t−1 and
an element of OK∞ . Hence u exists. Then we have (u +

∑
v∈S rv) + x ∈ C, which implies

that C surjects onto AK/K. □

3.3. Ideles. Let K be a global field. The group of ideles is defined to be the restricted
product

IK :=

′∏
v∈VK

K×
v ,
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with respect to the compact open subgroups O×
Kv
⊂ K×

v for almost all v. Then IK is a
Hausdorff locally compact topological group (under multiplication).

We have K×
v ⊂ Kv for each v and O×

Kv
⊂ OKv

for each non-archimedean v. Hence IK is
a subset of AK .

Exercise 3.3.1. The subset IK consists precisely of the invertible elements of the ring AK .
The inclusion map IK ↪→ AK is continuous, but not a homeomorphism onto the image. The
map IK → AK × AK , g 7→ (g, g−1) is a homeomorphism onto the image.

More generally, if R is a topological ring, then we equip R×, the group of invertible
elements, the subspace topology via R× ↪→ R×R, g 7→ (g, g−1). This will be the “standard”
topology on R×, not the subspace topology via R× ⊂ R. Under this standard topology,
R× is a topological group. With this comment and the above exercise in mind, we will also
denote IK by A×

K .

Definition 3.3.2. The idele norm is the homomorphism

∥ · ∥ : IK → R>0, x = (xv)v 7→
∏
v

∥xv∥v.

Here ∥ · ∥v denotes the normalized absolute value at v, and we have ∥xv∥v = 1 for almost all
v. The kernel of the idele norm is denoted by I1K = (A×

K)1, called the group of unit ideles.

Exercise 3.3.3. The idele norm is continuous. Hence I1K is a closed subgroup of IK .

We have a diagonal embedding K× → IK (which is a group homomorphism). By the
product formula, it factors through I1K .

Example 3.3.4. Let K = Q. We have IQ = R××
∏′
pQ×

p . The idele norm ∥ · ∥ : IQ → R>0

has a canonical section R>0 → IQ, x 7→ (x, 1, 1, · · · ). Hence we have a canonical isomorphism

IQ ∼= R>0 × I1Q.

Next we study I1Q/Q×. Let x = (xv)v ∈ IQ. Let

y =
∏

p primes

pordp(xp) ∈ Q×.

This is a finite product because ordp(xp) = 0 for almost all p. Then

1 = ∥x∥ = ∥x∞∥∞
∏
p

p− ordp(xp) = ∥x∞∥∞y−1.

Thus x∞ = ±y lies in Q×. Hence modulo Q× we have x ≡ (x∞/x∞, (xp/x∞)p) =
(1, (xp/x∞)p). Also note that for each prime p,

xp/x∞ = ±xp/y = ± xp
pordp(xp)

∏
q,q ̸=p

q− ordq(xq) ∈ Z×
p .

We conclude that the subgroup
∏
p Z×

p ⊂ I1Q (with trivial archimedean component) surjects

onto I1Q/Q×. Clearly (
∏
p Z×

p )∩Q× = 1 (intersection inside IQ) since every element of
∏
p Z×

p

has trivial archimedean component. Thus we have
∏
p Z×

p
∼= I1Q/Q×. This is actually an

isomorphism of topological groups. In particular, I1Q/Q× is compact.
Note that in the above argument, the crucial step was the construction of y, which

depends on the surjectivity of

Q× →
⊕
p

Z, y 7→ (ordp(y))p.
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In general, for a number field K, the map

K× →
⊕

v∈VK,f

Z, y 7→ (ordv(y))v

is not necessarily surjective, but it always has finite cokernel, which is nothing but the class
group of K. On the other hand, I1K/K× is always compact. We shall see that the finiteness
of class group is closely related to the compactness of I1K/K×.

3.4. Haar measures on local fields. Let G be a locally compact Hausdorff topological
group. Recall that on any topological space, the class of Borel measurable sets or simply
Borel sets is the σ-algebra generated by open sets. Thus this class is the minimal class
of subsets which contains all open sets and is closed under taking complement and taking
countable union.

Definition 3.4.1. A Radon measure onG is a function µ : {Borel sets in G} → R≥0∪{+∞}
satisfying the following conditions:

(1) µ(∅) = 0.
(2) If (Bn)n∈N is a countable family of mutually disjoint Borel sets, then µ(

⋃
nBn) =∑

n µ(Bn).
(3) For any compact (hence closed) set C, we have µ(C) < +∞.
(4) For any open set U , we have µ(U) = sup{µ(C) | C ⊂ U, C is compact}.
(5) For any Borel set B, we have µ(B) = inf{µ(U) | B ⊂ U, U is open}.

Definition 3.4.2. A left Haar measure on G is a non-zero Radon measure µ satisfying
µ(gB) = µ(B) for all g ∈ G and all Borel set B. Similarly, we define right Haar measure.

Theorem 3.4.3. There exists a left Haar measure. Any two left Haar measures differ by
multiplication by a constant in R>0. Similarly for right Haar measures.

For a systematic discussion of Haar measures, see [Wei40].
If G is abelian, there is no difference between left and right Haar measures, and we simply

say “Haar measure”.

Example 3.4.4. On the additive group Rn, a Haar measure is given by the Lebesgue
measure (restricted to Borel sets).

Exercise 3.4.5. Let G be a locally compact Hausdorff topological group. Assume that
there is an open subgroup of G which is profinite. Such G is called locally profinite. For
instance, any open subgroup of (F,+) or (F×,×), where F is a non-archimedean local field,
is locally profinite.

(1) Show that 1 ∈ G has a basis of neighborhoods consisting of compact open subgroups.
(2) Suppose µ is a Radon measure on G. Show that for any open U we have

µ(U) = sup{µ(U ′) | U ′ ⊂ U, U ′ is compact open}.
(3) Show that a left Haar measure on G is uniquely determined by its values on compact

open subgroups (without using the uniqueness in Theorem 3.4.3).
(4) For such G, prove the uniqueness of left Haar measures up to scaling.

Given a left Haar measure µ on G, we have the corresponding theory of integration. For
any non-negative Borel measurable function f : G→ R≥0 (where “Borel measurable” means
that the inverse image of any Borel set is Borel), the integral∫

G

f(x)dµ(x) := sup
n≥1,a1,...,an∈[0,+∞)

n∑
i=1

aiµ(f
−1(ai)) ∈ [0,+∞]
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is defined. For a general Borel measurable function f : G→ R, we say that f is integrable,
or L1, if ∫

G

|f(x)|dµ(x) < +∞.

In this case, we define∫
G

f(x)dµ(x) =

∫
G

f+(x)dµ(x)−
∫
G

f−(x)dµ(x) ∈ R

where f = f+ − f− and f+, f− ≥ 0. The fact that µ is left invariant under G is expressed
by the following identity:∫

G

f(gx)dµ(x) =

∫
G

f(x)dµ(x), ∀g ∈ G.

Formally, we can “change variable of integration” and have∫
G

f(x)dµ(x) =

∫
G

f(gx)dµ(gx).

So the left invariance can be expressed by the formal rule

dµ(gx) = dµ(x).(3.2)

Now let F be a local field. Fix a Haar measure µ on (F,+). For any x ∈ F×, multi-
plication by x is a topological automorphism of (F,+), so we can pull back µ along this
automorphism to obtain a new Haar measure, which must differ from µ by a multiplicative
constant s(x) ∈ R>0. Concretely, we have

µ(xB) = s(x)µ(B)

for any Borel set B. Clearly s(x) is independent of the choice of µ since another choice
differs just by scaling.

Lemma 3.4.6. For any x ∈ F , s(x) = ∥x∥, where ∥ · ∥ is the normalized absolute value.

Proof. If F = R or C, take B to be the closed unit disk centered at 0 in F . We may assume
that µ is the Lebesgue measure. Then µ(B) = 2 or π for F = R or C. Note that xB is the
closed disk of radius |x| centered at 0, where | · | is the usual real or complex absolute value.
So µ(xB) = 2|x| or π|x|2 for F = R or C, and it follows that s(x) = |x| or |x|2 respectively.

Now assume that F is non-archimedean. Note that both s(·) and ∥·∥ are homomorphisms
F× → R>0. Since the group F× is generated by all uniformizers in F , it suffices to show
that for any uniformizer π we have s(π) = q−1 where q = |OF /mF |. Since OF is compact,
its volume is finite. If µ(OF ) = 0, then we have µ(πnOF ) = s(πn)µ(OF ) = 0 for all n ∈ Z,
and it follows that µ(F ) = 0 since F is an increasing union of the open sets πnOF . This
contradicts with µ being non-zero. Hence µ(OF ) ∈ (0,∞). Now OF is the disjoint union
of q cosets xi + πOF , and each coset has volume equal to that of πOF since µ is invariant.
Hence µ(OF ) = qµ(πOF ), from which s(π) = q−1. □

The lemma can be expressed by the following identity:∫
F

f(g−1x)dµ(x) = ∥g∥
∫
F

f(x)dµ(x), ∀g ∈ F×.(3.3)

Again, we can compare the above with the formal change of variable:∫
F

f(g−1x)dµ(x) =

∫
F

f(x)dµ(gx).
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Thus we have the formal rule
dµ(gx) = ∥g∥dµ(x).

Note that this does not contradict with (3.2) as here µ is Haar measure with respect to the
additive group.

Corollary 3.4.7. Let µ be a Haar measure on (F,+). Then a Haar measure µ× on (F×,×)
is given by

µ×(B) =

∫
F

1B(x)∥x∥−1dµ(x).

for any Borel set B in F×. For any integrable function f on F× (with respect to µ×), the
function f(x)∥x∥−1 is integrable on F (with respect to µ), and we have∫

F×
f(x)dµ×(x) =

∫
F

f(x)∥x∥−1dµ(x).

Proof. The second assertion is a formal consequence of the first. For the proof of the first
assertion, we admit that the formula defining µ× gives a Radon measure. We only check
that it is invariant under multiplication by F×. Let g ∈ F×. Then

µ×(gB) =

∫
F

1gB(x)∥x∥−1dµ(x) = ∥g∥
∫
F

1gB(gx)∥gx∥−1dµ(x)

=

∫
F

1B(x)∥x∥−1dµ(x) = µ×(B),

where the second equality uses (3.3). □

Remark 3.4.8. The corollary can be expressed by the formal rule

dµ×(x) = ∥x∥−1dµ(x).

3.5. Haar measures on adeles and related spaces. Now let K be a global field. For
each v ∈ VK , fix a Haar measure µv on Kv. We assume that for almost all non-archimedean
v, µv is normalized such that µv(OKv

) = 1. (In the proof of Lemma 3.4.6 we saw that
µv(OKv

) ∈ (0,+∞).) Let µ×
v be the Haar measure on K×

v normalized by µ×
v (O×

Kv
) = 1.

Note that µ×
v differs by a normalization factor from the one induced by µv as in Corollary

3.4.7, since the latter would give volume 1−|kv|−1 to O×
Kv

(because [OKv
: mKv

] = |kv| and
O×
Kv

= OKv
−mKv

).

Proposition 3.5.1. There is a unique Haar measure µ on (AK ,+) satisfying the following
condition. For any finite set S ⊂ VK containing VK,∞, and for any family of compact sets
(Cv ⊂ Kv)v∈S, we have

µ(
∏
v∈S

Cv ×
∏
v/∈S

OKv
) =

∏
v∈S

µv(Cv)×
∏
v/∈S

µv(OKv
).

Similarly, there is a unique Haar measure µ× on (A×
K ,×) satisfying the following condition.

For any finite set S ⊂ VK containing VK,∞, and for any family of compact sets (Cv ⊂
K×
v )v∈S, we have

µ×(
∏
v∈S

Cv ×
∏
v/∈S

O×
Kv

) =
∏
v∈S

µ×
v (Cv)×

∏
v/∈S

µ×
v (O×

Kv
).

For any Borel set B ⊂ AK and any g ∈ A×
K , we have

µ(gB) = ∥g∥µ(B),

where ∥ · ∥ is the idele norm.
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Proof. The first two assertions follow from the general theory of obtaining a Haar measure
on a restricted product from Haar measures on the factors. For the third assertion, we know
that there is a constant s(g) such that µ(gB) = s(g)µ(B), so in order to show s(g) = ∥g∥
we may take B =

∏
v∈S Cv ×

∏
v/∈S OKv

as in the first part. We may also assume that S

is sufficiently large such that gv ∈ O×
Kv

for all v /∈ S, and assume that µv(Cv) ̸= 0 for all
v ∈ S. Then by the first part and by Lemma 3.4.6, we have

s(g)µ(B) = µ(gB) = µ(
∏
v∈S

gvCv ×
∏
v/∈S

OKv
) =

∏
v∈S

µv(gvCv)×
∏
v/∈S

µv(OKv
)

=
∏
v∈S
∥gv∥v ×

∏
v∈S

µv(Cv)×
∏
v/∈S

µv(OKv ) = ∥g∥µ(B) ̸= 0.

Hence s(g) = ∥g∥. □

Remark 3.5.2. By a factorizable integrable function on AK , we mean a function f : AK →
R of the form f(x) =

∏
v fv(xv), where fv is an integrable function Kv → R and for almost

all v we have fv = 1OKv
. (Thus the product

∏
v fv(xv) is always a finite product.) We write

f =
⊗

v fv. For such a function, generalizing the first assertion in Proposition 3.5.1 we have∫
AK

f(x)dµ(x) =
∏
v

∫
Kv

fv(xv)dµv(xv).

Note that for almost all v, the factor is
∫
Kv

fv(xv)dµv(xv) = µv(OKv
) = 1, so the product

is finite. There is a similar discussion for factorizable integrable functions on A×
K and their

integrals.

Recall that the diagonally embedded K in AK is a discrete subgroup, and AK/K is
compact. Since every discrete subgroup is closed, AK/K is also Hausdorff. Hence AK/K
also has Haar measures. We now describe how they are related to Haar measures on AK .
Write π for the projection AK → AK/K. For any continuous compactly supported function
f : AK → R≥0, define

π!(f) : AK/K → R≥0, x+K 7→
∑

y∈x+K
f(y).

The sum is finite since the compact support of f intersects with the discrete set x +K at
only finitely many points. Abstractly, this function is the result of integrating f along fibers
of π, where we equip each fiber with the counting measure.

Exercise 3.5.3. The function π!(f) is continuous.

Proposition 3.5.4. We can choose a Haar measure µ on AK and a Haar measure µ̄ on
AK/K such that for any continuous compactly supported function f : AK → R≥0, we have∫

AK

f(x)dµ(x) =

∫
AK/K

(π!f)(x)dµ̄(x).

When this holds, we say that µ̄ is induced by µ.

Proof. This is a consequence of the general theory of quotient Haar measures on homoge-
neous spaces. □

The following corollary is the main motivation for us to consider the Haar integration
theory.
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Corollary 3.5.5. Let µ be a Haar measure on AK and let µ̄ be the induced Haar measure
on AK/K. Let S ⊂ VK be a finite subset, and for each v ∈ S let Cv be a closed disk in Kv

(of some radius). Let C =
∏
v∈S Cv ×

∏
v/∈S OKv

⊂ AK . If µ(C) > µ̄(AK/K), then the
projection C → AK/K is not injective. (Since AK/K is compact, µ̄(AK/K) ∈ (0,+∞))

Proof. By Proposition 3.5.1, µ(C) is finite. (This also follows directly from the compactness
of C.) We may assume that µ is related to local Haar measures µv on Kv as in that
proposition. Let

λ = µ(C)/µ̄(AK/K) > 1.

For each v ∈ S, find a continuous function fv : Kv → [0, 1] supported inside Cv that is
“sufficiently close” to the indicator function of Cv in the sense that∫

Kv

fv(z)dµv(z) >
µv(Cv)

λ
1

#S

.

(For v archimedean, take fv to be a “bump function”; for v non-archimedean, take fv to be
the indicator function of Cv itself, which is continuous.) Let

f =
⊗
v∈S

fv ⊗
⊗
v/∈S

1OKv

as in Remark 3.5.2. Then as in that remark, we have∫
AK

f(x)dµ(x)

=
∏
v∈S

∫
Kv

fv(z)dµv(z)×
∏
v/∈S

µv(OKv
) >

∏
v∈S µv(Cv)×

∏
v/∈S µv(OKv

)

λ
.

By Proposition 3.5.1, the last term is µ(C)/λ = µ̄(AK/K). On the other hand, f is
continuous, compactly supported, and takes values in [0, 1]. If C → AK/K is injective then
π!f as in Proposition 3.5.4 takes values in [0, 1], and by that proposition we have∫

AK

f(x)dµ(x) =

∫
AK/K

(π!f)(x)dµ̄(x) ≤ µ̄(AK/K),

a contradiction. □

3.6. The adelic Minkowski theorem. Recall that the classical Minkowski lemma asserts
that for any complete lattice Λ in a Euclidean space Rn (i.e., Λ is a Z-submodule generated
by an R-basis) and any compact, convex, centrally symmetric (i.e. x ∈ S iff −x ∈ S) subset
S ⊂ Rn, we have

vol(S) ≥ 2n vol(Λ)⇒ S ∩ Λ ⊋ {0}.
Here vol(Λ) denotes the volume of Rn/Λ, or equivalently the volume of a fundamental
parallelepiped for Λ, or equivalently |det g| for g ∈ GLn(R) such that g(Zn) = Λ. In
classical applications, one typically starts with a number field K with r1 real embeddings
and r2 pairs of complex conjugate complex embeddings. In each of the r2 pairs choose a
complex embedding. Then one obtains a diagonal embedding K ↪→ Rr1 × Cr2 ∼= Rr1+2r2 .
For any ideal a in OK , its image in Rr1+2r2 is a lattice, and one would apply Minkowski’s
lemma to this situation in order to prove finiteness results, e.g., finiteness of the class group.

We shall develop an adelic analogue of the Minkowski theory, and this will be used in
the proof of some fundamental theorems about adeles and ideles. From the latter we can
eventually deduce the classical finiteness results concerning class groups and the groups of
units.
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The main point of adelic Minkowski theory is that the embedding a ⊂ K ↪→ Rr1+2r2 is
replaced by the embedding K ↪→ AK . Thus we need a criterion for certain subsets S ⊂ AK
of “nice shape” to satisfy S ∩K ⊋ {0}. We first define these subsets of nice shape. In the
following, let K be a global field.

Definition 3.6.1. For each x = (xv)v ∈ A×
K , define Sx = {y ∈ AK | ∀v, ∥yv∥v ≤ ∥xv∥v}.

Of course Sx depends on x only via the numbers ∥xv∥v, and almost all of these numbers
are equal to 1. Also, observe that Sx is of the form∏

v∈S
Cv ×

∏
v/∈S

OKv
,

where S is a finite subset of VK containing VK,∞, and each Cv is a closed disk in Kv

centered at 0, which is compact. Since the subset
∏
v∈S Kv ×

∏
v/∈S OKv

⊂ AK has the
product topology, we see that Sx is compact by Tychonoff.

Theorem 3.6.2 (Adelic Minkowski). There is a constant c = cK > 0 depending only on K
such that for any x ∈ A×

K , if ∥x∥ > c (where ∥ · ∥ is the idele norm), then Sx ∩K ⊋ {0}.

Proof. Let µ be a Haar measure on AK , and let µ̄ be the induced Haar measure on AK/K.
Since AK/K is compact, µ̄(AK/K) ∈ (0,+∞). Let

Z = {z ∈ AK | ∀v ∈ VK,∞, |zv|v ≤
1

2
; ∀v ∈ VK,f , ∥zv∥v ≤ 1}.

Here | · |v denotes the usual absolute value on Kv = R or C, not the normalized one. By
the first part of Proposition 3.5.1, we have µ(Z) ∈ (0,+∞). Let

c = cK = µ̄(AK/K)/µ(Z).

We now show that for any x ∈ A×
K such that ∥x∥ > c, we have Sx ∩K ⊋ {0}.

By the last assertion in Proposition 3.5.1, we have µ(xZ) = ∥x∥µ(Z) > µ̄(AK/K). We
then apply Corollary 3.5.5 to the set xZ to conclude that the projection xZ → AK/K is
not injective. Hence there exist unequal y, y′ ∈ xZ such that a = y − y′ ∈ K×. Write
y = xz, y′ = xz′ for z, z′ ∈ Z. For every v ∈ VK , note that ∥zv − z′v∥v ≤ 1 since z, z′ ∈ Z.
Hence ∥a∥v = ∥xv(zv − z′v)∥v ≤ ∥xv∥v, and a ∈ K× ∩ Sx. □

Exercise 3.6.3. Show that cQ = 1 and cFp(t) = 1/p.

Exercise 3.6.4. For K a number field, express cK in terms of the discriminant of K and
the numbers of real and complex places of K. Hint: For Q, take the Haar measure µQ on
AQ coming from the Lebesgue measure on R and the Haar measures µp on Qp normalized
by µp(Zp) = 1. Then µ̄(AQ/Q) = 1. Use a Z-basis for OK to identify AK ∼= AdQ and

K ∼= Qd. If we equip AK ∼= AdQ with the product Haar measure µ⊗d
Q coming from µQ, then

µ̄(AK/K) = 1. It remains to compute the volume of Z ⊂ AK under this Haar measure.
For this, study how this Haar measure comes from local Haar measures µv on Kv for each
v. Show that for each prime p, the local isomorphism

∏
v|pKv

∼= Qdp takes
∏
v|pOKv

to

Zdp. Thus the product Haar measure on Qdp coming from µp on Qp is compatible with the
product Haar measure on

∏
v|pKv coming from µv on Kv normalized by µv(OKv

) = 1. It

only remains to compare Haar measures on the two sides of
∏
v|∞Kv

∼= Rd.
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3.7. Two fundamental theorems. Let K be a global field.

Theorem 3.7.1 (Strong approximation). Let v0 ∈ VK , and define Av0K =
∏′
v∈VK−{v0}Kv,

where the restricted product is with respect to OKv
⊂ Kv for all non-archimedean v ̸= v0.

Then the image of the diagonal embedding K ↪→ Av0K is dense. Equivalently, for any x ∈ Av0K ,
any finite subset S ⊂ VK −{v0}, and any ϵ > 0, there exists y ∈ K such that ∥y− xv∥v ≤ 1
for all v ̸= v0 and ∥y − xv∥v < ϵ for all v ∈ S.

Proof. The two forms are equivalent by considering a suitable neighborhood basis of x in Av0K .
We prove the second form. We may enlarge S such that S ∪ {v0} contains all archimedean
places and such that for all v ∈ VK − (S ∪ {v0}), we have ∥xv∥v ≤ 1. We may also assume
that ϵ < 1. Then we need to find y ∈ K such that ∥y− xv∥v < ϵ for all v ∈ S and ∥y∥v ≤ 1
for all v ∈ VK − (S ∪ {v0}).

For each w ∈ A×
K , let

S0
w = {z ∈ AK | ∀v ∈ VK,∞, ∥zv∥v < ∥xv∥v; ∀v ∈ VK,f , ∥zv∥v ≤ ∥xv∥v}.

Then S0
w is open in AK and is contained in Sw. Clearly AK can be written as an increasing

union of sets of the form S0
w. Since AK/K is compact, there exists w ∈ A×

K such that Sw
maps surjectively onto AK/K. We fix such a w.

Let c be the constant as in Theorem 3.6.2. We shall choose a w′ ∈ A×
K such that ∥w′∥ > c.

Then there exists u ∈ K× ∩ Sw′ . Consider xu−1 ∈ AK . Here u−1 ∈ AK since u ∈ K×.
By the definition of w, there exist α ∈ K and β ∈ Sw such that xu−1 = α + β, and so
x = αu + βu with αu ∈ K. We would like to conclude that αu is the desired y. Thus we
need to ensure that

∥βvuv∥v

{
< ϵ, v ∈ S,
≤ 1, v /∈ S ∪ {v0}.

Since β ∈ Sw and u ∈ Sw′ , the above can be ensured if we choose w′ to satisfy:

∥w′
vwv∥v

{
< ϵ, v ∈ S,
≤ 1, v /∈ S ∪ {v0}.

Since w ∈ A×
K , the above inequalities can be achieved if we choose ∥w′

v∥v to be small for
finitely many v ̸= v0, and to be 1 for all the remaining v ̸= v0. Finally we can choose ∥w′

v0∥v0
to be sufficiently large to arrange that w′ is an element of A×

K satisfying ∥w′∥ > c. □

Recall that the diagonal embedding K× ↪→ A×
K factors through the unit ideles (A×

K)1

by the product formula. Since the inclusion map A×
K → AK is continuous (although not a

homeomorphism onto the image) and the image of K in AK is already discrete, the image
of K× in (A×

K)1 is discrete.

Theorem 3.7.2. The group (A×
K)1/K× is compact.

The case for Q was already discussed in Example 3.3.4. For the proof we first need a
technical lemma.

Lemma 3.7.3. The following statements hold.

(1) The subset (A×
K)1 ⊂ AK is closed.

(2) The natural topology on (A×
K)1 (i.e., subspace topology inherited from A×

K) agrees
with the subspace topology inherited from AK .
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Proof. The proofs of both parts are based on the following observation: For a non-archimedean
place v, the normalized absolute value ∥ · ∥v : Kv → R takes values in |kv|Z ∪ {0}. Hence
any x ∈ Kv satisfying ∥x∥v < 1 actually satisfies ∥x∥v ≤ 1/|kv|. Apart from finitely many
v, the cardinality |kv| is very large, and so the upper bound 1/|kv| is significantly smaller
than 1.

(1) Let x ∈ AK − (A×
K)1. We need to find an open neighborhood of x in AK disjoint

from (A×
K)1.

Case 1: x /∈ A×
K . Then there are infinitely many places v such that ∥xv∥v < 1. Note that

for any non-archimedean v, ∥xv∥v < 1 is equivalent to ∥xv∥v ≤ 1/2. Hence there exists a
finite subset S ⊂ VK such that ∥xv∥v ≤ 1 for all v /∈ S, and

∏
v∈S ∥xv∥v < 1. Indeed, let

S0 = {v | ∥xv∥v > 1}, which is finite. Let n ∈ Z≥1 be such that
∏
v∈S0

∥xv∥v < 2n, and find

v1, . . . , vn such that ∥xvi∥vi ≤ 1/2 for all 1 ≤ i ≤ n. Then let S = S0 ∪ {v1, . . . , vn}.
Given S, we pick a neighborhood Uv of xv in Kv for each v ∈ S such that for all

(yv)v∈S ∈
∏
v∈S Uv, we have

∏
v∈S ∥yv∥v < 1. Then

∏
v∈S Uv ×

∏
v/∈S OKv is the desired

neighborhood of x.
Case 2: x ∈ A×

K and ∥x∥ < 1. In this case, there exists a finite set S with the same
property as in case 1, and the rest of the proof is the same.

Case 3: x ∈ A×
K and ∥x∥ > 1. Write P = ∥x∥. Let S be a finite subset of VK containing

VK,∞ such that for all v /∈ S we have ∥xv∥v = 1. We now enlarge S such that for all v /∈ S,
|kv| > 2P . Indeed, if K is a number field, then we can enlarge S such that for all v /∈ S,
v divides a rational prime p > 2P . Then kv ⊃ Fp. If K is a function field, say a finite
extension of Fp(t), then we can enlarge S such that for all v /∈ S, v divides a place of Fp(t)
corresponding to a monic irreducible polynomial g in Fp[t] whose degree d satisfies pd > 2P
(as there are only finitely many polynomials of bounded degree). Then kv ⊃ Fp[t]/(g) whose
cardinality is pd.

Now we have
∏
v∈S ∥xv∥v = P > 1. For each v ∈ S, pick a neighborhood Uv of xv in

Kv such that for all (yv)v∈S ∈
∏
v∈S Uv, we have

∏
v∈S ∥yv∥v ∈ (1, 2P ). We now show that

the neighborhood
∏
v∈S Uv ×

∏
v/∈S OKv

of x in AK is disjoint from (A×
K)1. Suppose y is

an element of this neighborhood, and also lies in (A×
K)1. If there exists v0 /∈ S such that

∥yv0∥v0 < 1, then ∥yv0∥v0 ≤ |kv0 |−1 < (2P )−1. Since
∏
v∈S ∥yv∥v < 2P , we must have

∥y∥ < 1, a contradiction. Thus for all v /∈ S we have ∥yv∥v = 1. Then

∥y∥ =
∏
v∈S
∥yv∥v ∈ (1, 2P ),

again contradicting with ∥y∥ = 1.
(2) It suffices to show that for each x ∈ (A×

K)1, there is a family of subsets of (A×
K)1

containing x which is a neighborhood basis in both topologies. Fix x. Consider a finite
subset S ⊂ VK containing VK,∞ such that for all v /∈ S, ∥xv∥v = 1. For each v ∈ S,
consider an open neighborhood Uv of xv in K×

v such that for all (yv)v∈S ∈
∏
v∈S Uv, we

have
∏
v ∥yv∥v ∈ [2/3, 4/3]. This can always be arranged by shrinking Uv, since we have∏

v∈S ∥xv∥v = 1. Clearly if we let S and (Uv)v∈S vary, then the resulting sets

U =
∏
v∈S

Uv ×
∏
v/∈S

OKv
, V =

∏
v∈S

Uv ×
∏
v/∈S

O×
Kv

form a neighborhood basis of x in AK and a neighborhood basis of x in A×
K respectively. It

remains to show that

U ∩ (A×
K)1 = V ∩ (A×

K)1.
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Clearly the right hand side is contained in the left hand side. Let y ∈ U ∩ (A×
K)1. If there

exists v0 /∈ S such that ∥yv0∥v0 < 1, then ∥yv0∥v0 ≤ 1/2. Since
∏
v∈S ∥yv∥v ≤ 4/3, we have

∥y∥ ≤ 2/3, a contradiction. Hence such v0 does not exist, and so y ∈ V . □

Proof of Theorem 3.7.2. By Lemma 3.7.3, we only need to find a compact subset E ⊂ AK
such that E ∩ (A×

K)1 maps onto (A×
K)1/K× under the projection. Let c be the constant

in Theorem 3.6.2, and let x ∈ A×
K be such that ∥x∥ > c. We take E to be Sx, which is

compact. We need to show that (A×
K)1 = ((A×

K)1 ∩ Sx) ·K×. Let y ∈ (A×
K)1 be arbitrary.

Then ∥x/y∥ = ∥x∥ > c, and so there exists r ∈ Sx/y ∩K×. We have ry ∈ (A×
K)1 ∩ Sx. □

3.8. Classical finiteness results. Let K be a global field, and let S be a subset of VK . In
the number field case, assume that S contains all the archimedean places. In the function
field case, assume that S is non-empty. Recall that we have the ring of S-integers

OK,S = {x ∈ K | ∥x∥v ≤ 1, ∀v /∈ S}.
This is a Dedekind domain with fraction fieldK. Its prime ideals are in bijection with the set
VK −S. As usual, we define the class group Cl(OK,S) of OK,S to be the group of fractional
ideals (i.e., OK,S-submodules a of K such that there exists x ∈ K× with xa ⊂ OK,S) modulo
the group of principal fractional ideals (i.e., OK,S-submodules of K generated by a single
element). It is identified with the cokernel of the map

Φ : K× → Z[VK − S] =
⊕
v/∈S

Z, x 7→
∑
v/∈S

ordv(x)[v].

Also note that the kernel of Φ is exactly the group of units in OK,S :
O×
K,S = {x ∈ K× | ∥x∥v = 1, ∀v /∈ S}.

In order to relate the groups cok(Φ) = Cl(OK,S) and ker(Φ) = O×
K,S to ideles, we define

AK,S := {(xv)v ∈ AK | ∀v /∈ S, ∥xv∥v ≤ 1} =
∏
v∈S

Kv ×
∏
v/∈S

OKv
.

This is a basic open set in AK , and as such its subspace topology agrees with the product
topology. It is a subring of AK , and its group of invertible elements is

A×
K,S = {(xv)v ∈ A×

K | ∀v /∈ S, ∥xv∥v = 1} =
∏
v∈S

K×
v ×

∏
v/∈S

O×
Kv
.

This is an open subgroup of A×
K , and we endow it with the subspace topology, which agrees

with the product topology.
Clearly, by definition, AK (resp. A×

K) is the union of AK,S (resp. A×
K,S) over all choices

of S as above.
Now we have the following simple observations:

OK,S = K ∩ AK,S , O×
K,S = K× ∩ A×

K,S .

Moreover, the map Φ : K× → Z[VK − S] extends to a homomorphism

Φ : A×
K → Z[VK − S], (xv)v∈VK

7→
∑
v/∈S

ordv(xv)[v].

The following is a key observation:

Lemma 3.8.1. The map Φ induces an isomorphism A×
K/(K

×A×
K,S)

∼−→ Cl(OK,S).

Proof. Clearly Φ : A×
K → Z[VK − S] is surjective, and its kernel is A×

K,S . □
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In the following, we denote by MK the image of ∥ · ∥ : A×
K → R>0. If K is a number

field, then MK = R>0. If K is a function field of characteristic p, then MK = qZ for some
p-power q. As a fact, q is such that Fq is the algebraic closure of Fp in K, and K is the
function field of a projective, smooth, geometrically connected curve over Fq. We will not
use this fact.

Theorem 3.8.2. The group Cl(OK,S) is finite.

Proof. By Lemma 3.8.1, we need to show that A×
K/(K

×A×
K,S) is finite. To simplify notation,

write A1 for (A×
K)1, and write A1

S for (A×
K)1 ∩ A×

K,S . We have a short exact sequence

1→ A1/A1
S → A×

K/A
×
K,S

∥·∥−−→MK/∥A×
K,S∥ → 1.

Clearly MK/∥A×
K,S∥ is finite, so A1/A1

S is a subgroup of finite index in A×
K/A

×
K,S . Now the

image of K× → A×
K/A

×
K,S is contained in A1/A1

S , so it suffices to prove the finiteness of

A1/(A1
S ·K×).

This follows from the compactness of A1/K×, and the fact that A1
S is an open subgroup of

A1. □

Theorem 3.8.3. The group O×
K,S is a finitely generated abelian group of rank #S − 1.

For the proof we need two lemmas.

Lemma 3.8.4. For any finite closed interval [a, b] ⊂ R, the set

{x ∈ O×
K,S | ∀v ∈ S, ∥x∥v ∈ [a, b]}

is finite.

Proof. The set in question is the intersection of K× with the set

{(xv)v ∈ A×
K | ∀v ∈ S, ∥xv∥v ∈ [a, b]; ∀v /∈ S, ∥xv∥v = 1}

in A×
K . The latter set is compact in A×

K , and K× is discrete in A×
K , so the intersection is

finite. □

The following lemma is also of independent interest.

Lemma 3.8.5. We have {x ∈ K× | ∀v ∈ VK , ∥x∥v = 1} = {roots of unity in K×}. This
group is finite.

Proof. Clearly the right hand side is contained in the left hand side. To prove the reverse
containment, it suffices to show that the left hand side is a finite group. This is a special
case of Lemma 3.8.4. □

Proof of Theorem 3.8.3. Let B =
∏
v∈S K

×
v , and let B1 = {(xv)v∈S ∈ B |

∏
v∈S ∥xv∥v =

1}. Then B1 is a subgroup of B under coordinate-wise multiplication. We view O×
K,S as a

subgroup of B via the diagonal embedding. Then it is a subgroup of B1.
Let L : B → RS be the map (xv)v∈S 7→ (log ∥xv∥v)v∈S . Let H be the hyperplane in RS

defined by the condition that the sum of all the coordinates is zero. Thus B1 = L−1(H).
By lemma 3.8.4, the intersection of any compact neighborhood of 0 in RS with L(O×

K,S) is

finite, so L(O×
K,S) ⊂ H ⊂ RS is a discrete subgroup. By Lemma 3.8.5, kerL|O×

K,S
is finite.

Hence O×
K,S is finitely generated of rank at most dimRH = #S − 1.
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To prove that the rank is exactly #S − 1, we need to prove that L(O×
K,S) is a complete

lattice in H. We divide the proof into the number field case and the function field case.
In the number field case, pick an archimedean place v0. Then the projection RS →

RS−{v0} induces an isomorphism ϕ : H
∼−→ RS−{v0}. We have

ϕ(L(B1)) =
∏

v∈S−{v0}

log ∥K×
v ∥v,

since log ∥ · ∥v0 : K×
v0 → R is surjective. Now the above is equal to∏

v∈VK,∞−{v0}

R×
∏

v∈S∩VK,f

Z · log#kv.

Hence in order to prove that L(O×
K,S) is a complete lattice in H it suffices to prove that

ϕ(L(B1))/ϕ(L(O×
K,S)) is compact, and for this it suffices to show that B1/O×

K,S is compact.

We have a projection A×
K,S ∩ (A×

K)1 → B1, mapping (xv)v∈VK
to (xv)v∈S . This is a con-

tinuous surjective homomorphism. Thus it suffices to show that (A×
K,S ∩ (A×

K)1)/O×
K,S is

compact, where O×
K,S maps into A×

K,S diagonally (across all places). But this group is an

open, and hence closed, subgroup of the compact group (A×
K)1/K×. Hence this group is

compact as desired.
In the function field case, we first note that L(B1) is a complete lattice in H. Indeed,

it is clearly a discrete subgroup of H as every ∥ · ∥v : K×
v → R>0 has discrete image. We

now show that it is a complete lattice. If S has only one element, then there is nothing
to prove, so suppose that S has at least two elements. Pick an arbitrary v0 ∈ S. Again
the projection RS → RS−{v0} induces an isomorphism ϕ : H

∼−→ RS−{v0}. Note that
{
∏
v∈S−{v0} ∥xv∥v | (xv) ∈

∏
v∈S−{v0}K

×
v } and ∥K×

v0∥v0 are both infinite subgroups of the

infinite cyclic group MK . Hence ϕ(L(B1)) is of finite index in
∏
v∈S−{v0} log ∥K

×
v ∥v. Since

the latter is a complete lattice in RS−{v0}, we conclude that L(B1) is a complete lattice in
H. Now in order to show that L(O×

K,S) is a complete lattice in H, it again suffices to show

that B1/O×
K,S is compact. This is proved in the same way as in the number field case. □

3.9. The idele class group. Let K be a global field.

Definition 3.9.1. The idele class group of K is CK = A×
K/K

×.

The idele norm ∥ · ∥ : A×
K → ∥ · ∥ descends to CK by the product formula for K. We

shall view ∥ · ∥ as a homomorphism CK → R>0, and denote its kernel by C1
K . Of course

C1
K = (A×

K)1/K×, which we have seen is compact.

Again, let MK be the image of ∥ · ∥ : A×
K → R>0. Clearly there exists a continuous

homomorphism s : MK → A×
K which is a section of ∥ · ∥. (In the number field case, pick an

archimedean place v0 of K, and let s̃ : R>0 → K×
v0 be a continuous homomorphism that is

a section of ∥ · ∥v0 : K×
v0 → R>0. For instance, if Kv0 = R then we can take s̃(t) = t, and if

Kv0 = C we can take s̃(t) =
√
t. Then define s : MK = R>0 → A×

K , t 7→ (s̃(t), 1, 1, · · · ) ∈ A×
K

where s̃(t) appears at the place v0. In the function field case, write MK = qZ. Pick any
x ∈ A×

K with ∥x∥ = q, and define s(qn) = xn.) Once such a section is chosen, we obtain
isomorphisms of topological groups

A×
K
∼= MK × (A×

K)1, CK ∼= MK × C1
K .
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Now let L be a finite separable extension of K. Then we obtain natural maps AK ↪→
AL,A×

K ↪→ A×
L , which are compatible with the inclusions K ↪→ L,K× ↪→ L×. Thus we

obtain a natural map CK → CL.

Lemma 3.9.2. The map CK → CL is injective.

Proof. We need to show that the intersection of L× and A×
K inside A×

L is K×. For this, it
suffices to show that the intersection of L and AK inside AL is K. This immediately follows
from the canonical isomorphism L⊗K AK ∼= AL. □

Write ∥ · ∥K : A×
K → R>0, ∥ · ∥L : A×

L → R>0 for the idele norms respectively.

Exercise 3.9.3. Write i for the map AK ↪→ AL. Show that for any x ∈ A×
K , we have

∥i(x)∥L = ∥x∥[L:K]
K .

Proposition 3.9.4. The map CK → CL is a closed embedding.

Proof. By Exercise 3.9.3, we have a commutative diagram with exact rows

1 // C1
K

//

i

��

CK //

i

��

MK

(·)[L:K]

��

// 1

1 // C1
L

// CL //ML
// 1

The map i : C1
K → C1

L is an injective continuous homomorphism between compact Hausdorff
groups, so it is a closed embedding.

First assume that K,L are function fields, so MK ,ML are infinite cyclic groups in R>0.
Then as a topological space, CK is the disjoint union of MK-copies of C1

K . More precisely,
each coset of C1

K in CK is open and closed, and homeomorphic to C1
K . Similarly for CL.

Since i : CK → CL is injective, it suffices to show that it is a closed map. Let B be a closed
subset of CK . Then B is of the form

∐
t∈MK

Bt, where Bt is a closed subset of the coset of

C1
K in CK corresponding to t. Now different cosets of C1

K in CK are mapped into different

cosets of C1
L in CL since (·)[L:K] : MK → ML is injective. In CL, if in each coset of C1

L

we take a closed subset, then the union of them is closed. Hence it suffices to show that
each Bt has closed image in CL. This easily follows from the fact that C1

K → C1
L is a closed

embedding.
Now assume that K,L are number fields. Pick a continuous homomorphism s : MK →

A×
K that is a section of ∥ · ∥K . By Exercise 3.9.3, the composite map

s′ : ML = R>0
(·)1/[L:K]

−−−−−−→ R>0 = MK
s−→ A×

K
i−→ A×

L

is a continuous homomorphism which is a section of ∥ · ∥L. Using the sections s and s′ to
make identifications CK ∼= C1

K × R>0, CL ∼= C1
L × R>0, the map i : CK → CL becomes

(x, t) 7→ (i(x), t[L:K]) for x ∈ C1
K , t ∈ R>0. This is clearly a closed embedding since i :

C1
K → C1

L is a closed embedding. □

We have seen that the AK-module AL is isomorphic to L ⊗K AK , so it is free of rank
[L : K]. For any x ∈ AL, the multiplication map x : AL → AL, y 7→ xy is AK-linear, so
we can consider its determinant, which is an element of AK . This determinant is called the
norm of x to AK , denoted by NL/K(x).

Lemma 3.9.5. The following statements hold.
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(1) For any x ∈ AL, we have x ∈ A×
L if and only if NL/K(x) ∈ A×

K . In particular, we

have a group homomorphism NL/K : A×
L → A×

K .
(2) We have a commutative diagram

L //

NL/K

��

AL
NL/K

��
K // AK

,

where NL/K : L→ K is the usual norm for a field extension.
(3) For x = (xw)w ∈ AL, we have NL/K(x) = (yv)v, with yv =

∏
w∈VL,w|v NLw/Kv

(xw).

(4) For x ∈ A×
L , we have ∥NL/K(x)∥K = ∥x∥L.

(5) For x ∈ AK ⊂ AL, we have NL/K(x) = x[L:K].

Proof. Exercise. □

By the lemma, we have a homomorphism NL/K : CL → CK that is compatible with ∥ ·∥L
and ∥ · ∥K . In particular it restricts to a homomorphism C1

L → C1
K .

3.10. The identity connected component. Next we study the identity connected com-
ponent of CK . For any topological group G, we denote by G0 the identity connected
component, i.e., the connected component of the identity element.

Lemma 3.10.1. The subset G0 is a closed normal subgroup of G. If H is a connected
subgroup of G such that the homogeneous space G/H with the quotient topology is totally
disconnected, then H = G0.

Proof. The closure of any connected subset is connected, so G0 is closed. For any g ∈ G,
the map G→ G, x 7→ gxg−1 is a homeomorphism sending e to e, so it stabilizes G0. Hence
G0 is normal. If H is as in the lemma, then clearly H ⊂ G0. The image of G0 in G/H,
being connected and containing e, must be {e}. Hence G0 = H. □

Remark 3.10.2. It is not always true that G/G0 is totally disconnected.

Definition 3.10.3. An element g of a group G is called divisible, if for every n ∈ Z≥1 there
exists h ∈ G such that hn = g.

Let K be a number field. Let D′
K denote the image of (

∏
v∈VK,∞

K×
v )

0 under the com-

posite map
∏
v∈VK,∞

K×
v ↪→ A×

K → CK . Let DK be the closure of D′
K . Since D′

K is a

subgroup, so is DK .

Proposition 3.10.4. Let K be a number field. We have

DK = C0
K = {divisible elements of CK}.

The quotient group CK/DK is profinite.

For the proof we need some preparations.

Definition 3.10.5. A topological group is called locally profinite, if it has an open subgroup
which is profinite.

Lemma 3.10.6. Any locally profinite group is totally disconnected.
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Proof. Suppose G has an open subgroup H which is locally profinite. Since H is an open
subgroup, it is closed. Hence G0 ∩ H is open and closed in G0. Since G0 is connected,
we must have G0 ∩H = G0, i.e., G

0 ⊂ H. Then since H is totally disconnected, we have
G0 = {e}. This implies that G is totally disconnected. □

Lemma 3.10.7. Let ϕ : G→ H be a surjective continuous homomorphism from a profinite
group G to a Hausdorff topological group H. Then ϕ is a quotient map, and H is profinite.

Proof. Since G is compact and H is Hausdorff, ϕ is a closed map, and hence a quotient map.
(If U is a subset of H such that ϕ−1(U) is open, then U is open since H−U = ϕ(G−ϕ−1(U))
is closed.) Let N = kerϕ, which is a closed normal subgroup of G. Since ϕ is a quotient map,
we have a topological isomorphism G/N ∼= H. Since G is compact, so is H. It remains to
show that G/N ∼= H is totally disconnected. For this, it suffices to show that any non-trivial
element of G/N has an open and closed neighborhood disjoint from the trivial element. (As
it then follows that the connected component of the trivial element is singleton.) The
quotient map G→ G/N is open (as for any quotient map between topological groups) and
closed (as G is compact and G/N is Hausdorff). Hence it suffices to show that any non-
trivial N -coset gN in G has an open and closed neighborhood which is disjoint from N . For
any y ∈ gN , the set G − N is an open neighborhood of y. Since G is a profinite group, y
has a neighborhood basis consisting of compact open sets (by Exercise 2.2.5). Hence y has
a compact open neighborhood Uy contained in G − N . Since gN is compact, there exist
finitely many y1, · · · , yn ∈ gN such that gN ⊂

⋃n
i=1 Uyi . Then

⋃n
i=1 Uyi is the desired open

and closed (since it is compact) neighborhood of gN . □

Lemma 3.10.8. In a profinite group, the only divisible elements is e.

Proof. The profinite group is an inverse limit of finite groups. In each finite group, the only
divisible element is the trivial element. □

Proof. Let U =
∏
v∈VK,∞

K×
v ×

∏
v∈VK,f

O×
Kv

. This is an open subgroup of A×
K , and its

subspace topology agrees with the product topology. By the definition of DK , the map
U → CK/DK factors through the following quotient of U (equipped with product topology):

U ′ =
∏

v complex

{1} ×
∏
v real

{±1} ×
∏

v∈VK,f

O×
Kv
.

Here, for v real, the quotient map K×
v → {±1} is the sign map. Clearly U ′ is profinite.

Since CK/DK is Hausdorff (as DK is by definition closed), we conclude by Lemma 3.10.7
that the image of U in CK/DK is profinite. But U is open in CK , so its image is open
in CK/DK . Hence CK/DK is locally profinite, and in particular totally disconnected by
Lemma 3.10.6. Since DK is the closure of the connected subgroup D′

K in CK , it is itself
a connected subgroup. Then by Lemma 3.10.1, we have DK = C0

K . We have already seen
that CK/DK is Hausdorff totally disconnected. To show it is profinite, we need to check
that it is compact. Clearly ∥ · ∥ : CK → R>0 restricts to a surjection D′

K → R>0. Hence
CK = DKC

1
K . Since C1

K is compact, CK/DK is compact.
Finally, we need to check that DK is equal to the set of divisible elements. Since CK/DK

is profinite, by Lemma 3.10.8 all divisible elements of CK are contained in DK . Conversely,
we need to check that for any n ∈ Z≥1, the image of the n-th power map CK → CK , x 7→ xn

contains DK . This image already contains D′
K since every element of (

∏
v∈VK,∞

K×
v )

0 ∼=
Rr>0 × (C×)s is divisible, so it suffices to check that this image is closed. We have a (non-
canonical) isomorphism CK = C1

K × R>0. Clearly the n-th power map on R>0 has closed
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image (= R>0). The n-th power map on C1
K has closed image because C1

K is compact
Hausdorff. □

The function field case is slightly different, but the ideas are similar.

Proposition 3.10.9. Let K be a function field. Then C1
K is profinite and CK is locally

profinite. In particular CK is totally disconnected and C0
K = {e}. The only divisible element

of CK is e.

Proof. Let U =
∏
v∈VK

O×
Kv

. This is an open subgroup of A×
K , and profinite. Its image in

CK is open, and profinite by Lemma 3.10.7. Hence CK is locally profinite, and in particular
totally disconnected by Lemma 3.10.6. Now C1

K is Hausdorff and compact, and it is totally
disconnected since CK is. Hence C1

K is profinite. We have a non-canonical isomorphism
CK ∼= C1

K × qZ. The factor C1
K has no non-trivial divisible elements since it is profinite

(Lemma 3.10.8). The factor qZ ∼= Z clearly has no non-trivial divisible elements. □

Remark 3.10.10. For K a number field, global class field theory states that the profinite
group CK/DK is canonically isomorphic to the abelianized absolute Galois group Gab

K =
Gal(Kab/K). For K a function field, we have CK ∼= C1

K × qZ, and the profinite completion

ĈK ∼= C1
K×qẐ. In this case global class field theory states that ĈK is canonically isomorphic

to Gab
K .

4. Class field theory

4.1. Class field theory for Q and Qp. For Q and Qp, the corresponding global and
local class field theories involve essentially the cyclotomic extensions. We first recall some
generalities about cyclotomic extensions.

Let K be a field of characteristic zero. For m ∈ Z≥1, let ζm denote a primitive m-th root

of unity in a (fixed) algebraic closure K of K. The extension K(ζm)/K is the splitting field
of Xm − 1, and is hence Galois. It is called the m-th cyclotomic extension of K. We have
a canonical injective homomorphism

α : Gal(K(ζm)/K) ↪→ (Z/mZ)×,

sending σ to a+mZ such that σ(ζ) = ζa for any m-th root of unity. In particular, K(ζm)/K
is an abelian extension whose degree divides ϕ(m) = #(Z/mZ)×.

We define the m-th cyclotomic polynomial to be

Φm(X) =
∏

primitive m-th roots of unity ω

(X − ω).

A priori, Φm(X) has coefficients in a chosen algebraically closed field where we consider the
roots of unity, but note that each Φm(X) is a monic polynomial and we have the recursive
relations

Φ1(X) = X − 1, Φm(X) =
Xm − 1∏

1≤d<m,d|m Φd(X)
.

Hence we have Φm(X) ∈ Z[X], and the definition is independent of any choice of alge-
braically closed field.

Lemma 4.1.1. The following conditions are equivalent.

(1) Φm(X) is irreducible in K[X].
(2) α : Gal(K(ζm)/K)→ (Z/mZ)× is an isomorphism.
(3) [K(ζm) : K] = ϕ(m).
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(4) Φm(X) is the minimal polynomial of ζm over K.

Proof. Easy exercise. □

Theorem 4.1.2 (Gauss). For any m ∈ Z≥1, Φm(X) is irreducible in Q[X].

Exercise 4.1.3. We prove the theorem in steps. Assume Φm is not irreducible in Q[X].
Since it is a monic polynomial in Z[X], it is not irreducible in Z[X] by Gauss’s Lemma.
Hence Φm = fg, with f, g ∈ Z[X], f irreducible, and deg f, deg g ≥ 1.

(1) Suppose ζ is a root of f such that ζp is a root of g for some prime p coprime to m.
Show that f divides gp inside Fp[X].

(2) Under the above assumption, show that Φm has a multiple root, which is a contra-
diction.

(3) Use the above results to show that every primitive m-th root of unity is a root of
f , finishing the proof.

As a consequence, we have an isomorphism α : Gal(Q(ζm)/Q)
∼−→ (Z/mZ)×. Define

ψm : (Z/mZ)× ∼−→ Gal(Q(ζm)/Q), x 7→ α−1(x−1).

For any finite abelian extension of global fields L/K, and for any non-archimedean place
v of K, the decomposition group D(L/v) ⊂ Gal(L/K) is well defined. If v is unramified
in L/K, then for any place w of L above v, D(L/v) = D(w/v) is canonically isomorphic
to Gal(lw/kv), where lw denotes the residue field of L at w and kv denotes the residue
field of K at v. This is a cyclic group with a distinguished generator, namely the Frobenius
lw → lw, x 7→ x#kv . Moreover, this Frobenius element ofD(L/v) is independent of the choice
of w. We shall denote it by Frobv and call it the Frobenius element at v of Gal(L/K).

Proposition 4.1.4. A prime p ∈ Q is unramified in Q(ζm) if and only if p does not divide
m. In this case, ψm(p−1) ∈ Gal(Q(ζm)/Q) is the Frobenius at p.

Exercise 4.1.5. Admit the first statement in the proposition. Also admit that the ring
of integers in Q(ζm) is Z[ζm]. Prove that ψm(p−1) is the Frobenius at p. (Hint: the more
difficult part is to prove that this actually lies in the decomposition group.)

For m|m′, we have Q(ζm) ⊂ Q(ζm′), and we have a commutative diagram

(Z/m′Z)×

��

ψm′ // Gal(Q(ζm′)/Q)

��
(Z/mZ)×

ψm // Gal(Q(ζm)/Q)

where the vertical map on the left is a+m′Z 7→ a+mZ, and the vertical map on the right
is restriction. Taking inverse limit over m, we obtain an isomorphism of profinite groups

ψ : Ẑ× = lim←−
m

(Z/mZ)× ∼−→ Gal(Qcyc/Q).

Here Qcyc denotes the union of all Q(ζm) in Q, and we identify lim←−m(Z/mZ)× with Ẑ×, the

group of invertible elements of the ring Ẑ = the profinite completion of Z.

Exercise 4.1.6. Equip Ẑ = lim←−m Z/mZ with the inverse limit topology (where each Z/mZ
is discrete), so it is the profinite completion of Z. Equip Ẑ× with the subspace topology

inherited along Ẑ× ↪→ Ẑ × Ẑ, x 7→ (x, x−1). Show that there is a natural isomorphism of
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topological groups Ẑ× ∼−→ lim←−m(Z/mZ)× (where the right hand side has the inverse limit

topology). Also show that there is a natural isomorphism of topological groups Ẑ× ∼−→∏
p Z×

p . (Compare with Exercise 2.2.10.)

Theorem 4.1.7 (Kronecker–Weber theorem). We have Qcyc = Qab.

Thus ψ is an isomorphism Ẑ× ∼−→ Gab
Q . The left hand side is related to the idele class

group as follows.

Lemma 4.1.8. The group A×
Q is generated by its subgroups R>0 × Ẑ× = R>0 ×

∏
p Z×

p and

Q×. The intersection of the two subgroups is trivial.

Proof. The argument is similar to Example 3.3.4. For any (xv)v ∈ A×
Q , let y =

∏
p p

ordp(xp) ∈
Q×. Then y−1 · (xv)v lies in R× × Ẑ×. If the coordinate in R× is negative, then we can

multiply this element by −1 ∈ Q× to move it into R>0 × Ẑ×. This shows that the two
subgroups in question generate A×

Q . Obviously their intersection is trivial. □

By the lemma, we have a topological isomorphism R>0 × Ẑ× ∼−→ CQ induced by the

inclusion R>0 × Ẑ× ↪→ A×
Q . Clearly this isomorphism maps R>0 × {1} to DQ = C0

Q. Hence

CQ/DQ is canonically identified with Ẑ×. In this way we can view ψ as an isomorphism

ψ : CQ/DQ
∼−→ Gab

Q .

We shall also view ψ as a map from CQ or A×
Q towards Gab

Q . It is called the global Artin
map for Q.

For each prime p, we have a canonical injective homomorphism Q×
p → A×

Q sending y

to (xv)v with xv = 1 for v ̸= p and xp = y. By composition we obtain an (injective)
homomorphism Q×

p → CQ.

Corollary 4.1.9. Let p be a prime, and m ∈ Z≥1 not divisible by p. Then the composite
homomorphism

Q×
p → CQ

ψ−→ Gab
Q → Gal(Q(ζm)/Q)

maps any uniformizer of Q×
p to the Frobenius at p.

Proof. Let π be a uniformizer in Q×
p , and let x be its image in A×

Q . Thus x = (xv)v with

xv = 1 for v ̸= p and xp = π. Let y be the element p ∈ Q× viewed as an element of
A×

Q via the diagonal embedding Q× → A×
Q . Then y−1x = (zv)v with z∞ = p−1 ∈ R>0,

zv = p−1 ∈ Z×
v for v /∈ {∞, p}, and zp = p−1π ∈ Z×

p . Hence y−1x ∈ R>0 × Ẑ×. The

composite map R>0 × Ẑ× ∼−→ CQ → CQ/DQ ∼= Ẑ× is just projection to the second factor.

Hence the image of x under A×
Q → CQ/DQ ∼= Ẑ× is the element whose component in Z×

v

is p−1 for v ̸= p and whose component in Z×
p is p−1π. The projection of this element in

(Z/mZ)× is p−1. Thus the corollary follows from Proposition 4.1.4. □

In Proposition 4.2.5 below, we will see that the conclusion of the corollary (or just for
almost all primes) uniquely characterizes ψ.

Now we discuss the local class field theory for Qp.

Theorem 4.1.10 (Local Kronecker–Weber theorem). We have Qab
p = Qp,cycl =

⋃
mQp(ζm).
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To simplify notation we write Km for Qp(ζm). Thus Gab
Qp

∼= lim←−mGal(Km/Qp). For each
m, we write αm for the canonical injection Gal(Km/Qp)→ (Z/mZ)×. The main difference
from the situation for Q is that αm is not always an isomorphism.

Write m = npr where n is not divisible by p.

Fact 4.1.11. The extension Kn/Qp is unramified, and the extension Kpr/Qp is totally
ramified.

Clearly Km is the compositum of Kn and Kpr . It follows from the above fact that Kn/Qp
and Kpr/Qp are linearly disjoint. Hence Gal(Km/Qp) ∼= Gal(Kn/Qp) × Gal(Kpr/Qp). By
Chinese Remainder Theorem we also have (Z/mZ)× ∼= (Z/nZ)× × (Z/prZ)×. The map
αm : Gal(Km/Qp)→ (Z/mZ)× is compatible with the maps αn : Gal(Kn/Qp)→ (Z/nZ)×
and αpr : Gal(Kpr/Qp)→ (Z/prZ)× with respect to the direct product decompositions.

Fact 4.1.12. The map αn sends the Frobenius to p+ nZ. In particular, [Kn : Qp] is equal
to the order of p in (Z/nZ)×, and the image of αn is the subgroup generated by p, denoted
by ⟨p⟩(Z/nZ)× . The map αpr is an isomorphism.

Define a map

jm : Q×
p
∼= pZ×Z×

p → im(αm) = ⟨p⟩(Z/nZ)××(Z/prZ)× ⊂ (Z/nZ)××(Z/prZ)× ∼= (Z/mZ)×,

sending pn to pn ∈ ⟨p⟩(Z/nZ)× , and sending x ∈ Z×
p to the image of x−1 under the natural

projection Z×
p → (Z/prZ)×. Then define

ψm : Q×
p

jm−−→ im(αm)
α−1

m−−→ Gal(Km/Qp).

The maps ψm are continuous, and they form a compatible family. We therefore obtain a
continuous homomorphism

ψ : Q×
p → lim←−

m

Gal(Km/Qp) ∼= Gab
Qp
.

This is called the local Artin map for Qp.
The local Artin map satisfies various deep properties. We state only two which are

relatively straightforward.
For the first property, recall that the maximal unramified extension Qur

p /Qp is an abelian

extension and there are canonical isomorphisms Gal(Qur
p /Qp) ∼= Gal(F̄p/Fp) ∼= Ẑ, where the

topological generator 1 ∈ Ẑ corresponds to the Frobenius. We therefore have a canonical

quotient map Gab
Qp
→ Ẑ, which we denote by ord.

Fact 4.1.13. The following diagram commutes:

Q×
p

ψ //

ordp

��

Gab
Qp

ord
��

Z // Ẑ

The second property is the so-called Local Global Compatibility. Fix a prime p. For
each m ∈ Z≥1 and each place p of Q(ζm) above p, the field Q(ζm)p is the compositum
of its subfields Qp and Q(ζm) (cf. Exercise 1.6.6 (1)). Thus Q(ζm)p ∼= Qp(ζm). Recall
that Gal(Q(ζm)p/Qp) is canonically identified with the decomposition group D(Q(ζm)/p) ⊂
Gal(Q(ζm)/Q). We thus obtain a map im : Gal(Qp(ζm)/Qp) → Gal(Q(ζm)/Q). It is
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independent of the choice of p by commutativity. The maps im for varying m form a
morphism between the two inverse systems. Hence we obtain a map

i : Gab
Qp
→ Gab

Q .

Fact 4.1.14 (Local-Global compatibility). The following diagram commutes:

Q×
p

ψ //

��

Gab
Qp

i

��
A×

Q
ψ // Gab

Q .

4.2. Global class field theory. Let K be a global field.

Theorem 4.2.1 (Reciprocity Law). There is a continuous homomorphism ψK : CK → Gab
K

with dense image, called the global Artin map, satisfying the following properties. For each

finite abelian extension L/K, write ψL/K for the composite map CK
ψK−−→ Gab

K → Gal(L/K).

(1) For each v ∈ VK , consider the composite map fv : K×
v → CK

ψL/K−−−→ Gal(L/K). If
v is non-archimedean, then fv kills O×

Kv
if and only v is unramified in L. When

this holds, fv sends any uniformizer to Frobv ∈ Gal(L/K). If v is archimedean and
unramified in L (i.e., either v is complex or every place of L above v is real), then
fv = 1. If v is archimedean and ramifies in L (i.e., v is real and every place of L
above v is complex) then fv factors through the sign map K×

v = R× → {±1} and
sends −1 to the complex conjugation in Gal(L/K) arising from a complex embedding
L ↪→ C corresponding to a complex place above v.

(2) The map ψL/K is surjective, and its kernel is NL/K(CL).

Remark 4.2.2. By Lemma 4.2.6, condition (1) for almost all places v ∈ VK already uniquely
characterizes ψL/K . Hence ψ is unique.

Remark 4.2.3. The surjectivity of ψL/K follows from the property that ψK has dense
image. By (2), for every finite abelian extension L/K, the subgroup NL/K(CL) ⊂ CK is
open and of finite index. This is highly non-trivial.

Theorem 4.2.4 (Existence Theorem). A subgroup of CK is open and of finite index if and
only if it is of the form NL/K(CL) for a finite abelian extension L/K.

Theorems 4.2.1 and 4.2.4 are the two main theorems of global class field theory.
We now show that a weaker version of condition (1) in Theorem 4.2.1 already uniquely

characterizes ψK :

Proposition 4.2.5. Let L/K be a finite abelian extension of global fields. Let ϕ, ϕ′ be
two continuous homomorphisms CK → Gal(L/K). Assume that there is a finite subset
S ⊂ VK containing all archimedean places and all places which ramify in L such that for all

v ∈ VK − S, the composite maps K×
v → CK

ϕ−→ Gal(L/K) and K×
v → CK

ϕ′

−→ Gal(L/K)
both send every uniformizer to Frobv. Then ϕ = ϕ′. In particular, the global Artin map
ψK : CK → Gab

K is unique.

The key to the proof is the following lemma.

Lemma 4.2.6. Let K be a global field, and let S be a finite subset of VK . Then the subgroup
(ASK)× = {x ∈ A×

K | xv = 1, ∀v ∈ S} of A×
K has dense image in CK .
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Remark 4.2.7. The notation (ASK)× is justified as follows: Define ASK to be the restricted
product of Kv for v /∈ S, and define (ASK)× to be its group of invertible elements, equipped
with the subspace topology via (ASK)× → ASK × ASK , x 7→ (x, x−1). Then as a topological
group (ASK)× is the restricted product of K×

v for v /∈ S. Moreover, the natural bijection
between (ASK)× defined this way and the subgroup of A×

K in Lemma 4.2.6 (with the subspace

topology inherited from A×
K) is a topological isomorphism.

Proof of Lemma 4.2.6. It suffices to prove that for any x ∈ A×
K and any open neighborhood

U of x, we have U ∩ (K× · (ASK)×) ̸= ∅. Up to shrinking U , we may assume that U =∏
v∈T Uv×

∏
v/∈T O

×
Kv

, where T is a finite subset of VK containing S, and each Uv is an open

neighborhood of xv in K×
v . By Strong Approximation (Theorem 3.7.1), there exists y ∈ K

such that y ∈ Kv lies in Uv for each v ∈ T . (This is merely a very weak consequence of Strong
Approximation.) In particular y ̸= 0. Define z = (zv) ∈ A×

K by zv = y for v ∈ T and zv = 1
for v /∈ T . Then y−1z ∈ (ATK)× ⊂ (ASK)×, and z ∈ U . Hence z ∈ U ∩ (K× · (ASK)×). □

Proof of Proposition 4.2.5. We claim that for x ∈ (ASK)×, we have

ϕ(x) = ϕ′(x) =
∏

v∈VK−S
Frobordv(xv)

v

(where the product is finite). The proposition then follows from the claim and Lemma 4.2.6.
Let T ⊂ VK be a finite subset containing S such that xv ∈ O×

Kv
for all v /∈ T and such

that
∏
v∈T {1}×

∏
v∈VK−T O

×
Kv

is contained in ker(ϕ)∩ker(ϕ′) (which can be arranged since

ker(ϕ) and ker(ϕ′) are open subgroups of CK). For each v, write iv for the map K×
v → CK .

Then the two elements x and
∏
v∈T−S iv(xv) in CK differ by an element of ker(ϕ)∩ ker(ϕ′).

Hence

ϕ(x) = ϕ(
∏

v∈T−S
iv(xv)) =

∏
v∈T−S

Frobordv(xv)
v =

∏
v∈VK−S

Frobordv(xv)
v ,

and the same computation holds for ϕ′. □

As a consequence of Theorems 4.2.1 and 4.2.4, we have a classification of finite abelian
extensions of K.

Corollary 4.2.8 (Classification of finite abelian extensions). The map

{finite abelian extensions L/K in Ks} → {open finite index subgroups of CK},

sending L to NL/K(CL) is an inclusion-reversing bijection.

Proof. The map is surjective by Theorem 4.2.4. Injectivity and the inclusion-reversing
property follow from the following claim: For finite abelian extensions L and L′ of K in
Ks, we have L ⊂ L′ if and only if NL′/K(CL′) ⊂ NL/K(CL). The “only if” direction follows
from the transitivity of norms: The composition

CL′
NL′/L−−−−→ CL

NL/K−−−−→ CK
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is equal to NL′/K . We now show the “if” direction. Let M = LL′ ⊂ Kab. This is a finite
abelian extension of K. We have a commutative diagram

Gal(M/K)

restr

��

restr

$$

CK

ψM/K

66

ψL/K //

ψL′/K ,,

Gal(L/K)

Gal(L′/K)

By Theorem 4.2.1(2), all the arrows are surjective. By Theorem 4.2.1(2) and our assumption,
ker(ψL′/K) ⊂ ker(ψL/K). Therefore we have

ker(Gal(M/K)→ Gal(L′/K)) ⊂ ker(Gal(M/K)→ Gal(L/K)).

By Galois theory we conclude that L ⊂ L′. □

4.3. Further information on the global Artin map. The global Artin map ψK : CK →
Gab
K is not an isomorphism. However, it induces a topological isomorphism

CK/DK
∼−→ Gab

K

when K is a number field, and a topological isomorphism

CK
∼−→W ab

K

when K is a global function field andW ab
K is the Weil group inside Gab

K which we will define.
We prove these statements using Theorems 4.2.1 and 4.2.4.

Proposition 4.3.1. If K is a number field, then ψK : CK → Gab
K is surjective, its kernel

is DK , and it induces a topological isomorphism CK/DK
∼−→ Gab

K .

Proof. Since DK is connected and Gab
K is totally disconnected, we have DK ⊂ kerψK . Thus

ψK induces a continuous homomorphism CK/DK → Gab
K . By Proposition 3.10.4, CK/DK is

profinite, so the image of ψK is closed. But this image is dense (which is stated in Theorem
4.2.1), so ψK is surjective. We now show that kerψK = DK . By Theorem 4.2.1(2) and
Theorem 4.2.4, kerψK is contained in all open finite index subgroups of CK . In particular
DK is also contained in all such subgroups. The image of any open finite index subgroup
of CK in CK/DK is an open subgroup of CK/DK , and conversely the inverse image of
any open subgroup of CK/DK is an open finite index subgroup of CK (since CK/DK is
compact). Hence ker(ψK)/DK is contained in all open subgroups of CK/DK . Since CK/DK

is profinite, the intersection of all its open subgroups is trivial. Thus ker(ψK) = DK .
It follows that ψK induces a continuous bijective homomorphism CK/DK → Gab

K . This
must be a homeomorphism since both sides are Hausdorff. □

Exercise 4.3.2. If K is a number field, then every open subgroup of CK is of finite index.

The situation with a global function field is more complicated. Let K be a global function
field of characteristic p, and let k be the algebraic closure of Fp in K. Then k is a finite
field. For every n, let kn be the degree n extension of k. Let Kn = K ⊗k kn. This is a
field extension of K. It is a Galois extension, and Gal(Kn/K) ∼= Gal(kn/k) ∼= Z/nZ. Hence
Kn/K is an abelian extension. We write Frobk for the canonical generator of Gal(Kn/K)
corresponding to the automorphism x 7→ x|k| in Gal(kn/k). As an automorphism of Kn,
Frobk is the map kn ⊗K K → kn ⊗K K,x⊗ y 7→ x|k| ⊗ y.
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Lemma 4.3.3. The extension Kn/K is unramified at every place v ∈ VK . Moreover,

Frobv ∈ Gal(Kn/K) is given by Frobv = Frob
[kv:k]
k , where kv denotes the residue field at v.

Proof. Let v ∈ VK . Let k′ = kv ∩ kn. Fix a uniformizer t ∈ Kv. Then we have a canonical
isomorphism Kv

∼= kv((t)). We have

Kn⊗K Kv
∼= kn⊗k kv((t)) ∼= kn⊗k k′⊗k′ kv((t)) ∼= k⊕[k′:k]

n ⊗k′ kv((t)) ∼=
(
kn⊗k′ kv((t))

)⊕[k′:k]
.

It is easy to see that kn ⊗k′ kv is a field, and we have kn ⊗k′ kv((t)) ∼= (kn ⊗k′ kv)((t)), which
is a local field and an unramified extension of kv((t)). Hence v is unramified in Kn in view of
Fact 1.4.3. More precisely, for every place w of Kn above v, we have Kn,w

∼= (kn⊗′
k kv)((t)).

Now a general element Frobik ∈ Gal(Kn/K) ∼= Gal(kn/k) belongs to the decomposition

group D(Kn/v) if and only if it acts trivially on k′ ⊂ kn. In this case, Frobik induces the

automorphism x⊗ y 7→ x|k|
i ⊗ y on the residue field kn⊗k′ kv of every place of Kn above v.

Thus Frobv = Frobik if and only if{
x|k|

i

= x, ∀x ∈ k′;
x|kv| ⊗ y|kv| = x|k|

i ⊗ y, ∀x⊗ y ∈ kn ⊗k′ kv.

This holds if and only if i ≡ [kv : k] (mod n). Hence we have Frobv = Frob
[kv:k]
k . □

Lemma 4.3.4. The image of ∥ · ∥ : A×
K → R>0 is |k|Z. We have a commutative diagram

CK
∥·∥ //

ψK

��

|k|Z

��
Gab
K

// Gal(Kn/K) = ⟨Frobk⟩ ∼= Z/nZ

,

where the vertical map on the right sends |k|−1 to Frobk.

Proof. Since for each v ∈ VK we have kv ⊃ k, the image of ∥ · ∥ is contained in |k|Z. Assume
this image is |k|rZ for some r ∈ Z≥1. By Lemma 4.3.3, the extension Kn/K is everywhere
unramified. Hence by the proof of Proposition 4.2.5, for each x ∈ A×

K we have

ψKn/K(x) =
∏
v∈VK

Frobordv(xv)
v ∈ Gal(Kn/K).

By Lemma 4.3.3, the above formula becomes

ψKn/K(x) =
∏
v∈VK

Frob
[kv :k] ordv(xv)
k .

But ψKn/K is a surjection onto Gal(Kn/K), so there exists v0 ∈ VK such that [kv0 : k] ≡ 1

(mod n). Then |k|rZ contains |kv0 |Z = |k|[kv0 :k]Z. Hence r divides [kv0 : k], and so r is
coprime to n. But this holds for all n, so r = 1.

To show the commutativity of the diagram, we simply compare the above formula for
ψKn/K with the formula

∥x∥ =
∏
v∈VK

|kv|− ordv(xv) =
∏
v∈VK

|k|−[kv :k] ordv(xv).

□
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We have Gal(
⋃
nKn/K) ∼= lim←−nGal(Kn/K) ∼= lim←−n Z/nZ

∼= Ẑ. Here the topological

generator 1 ∈ Z ⊂ Ẑ corresponds to Frobk ∈ lim←−nGal(Kn/K), i.e., the element whose

image in each Gal(Kn/K) is Frobk. We denote by ord the natural map

Gab
K → Gal(

⋃
n

Kn/K) ∼= Ẑ.

This map also has the following alternative interpretation: The algebraic closure of k in Kab

is algebraically closed (because for each n we have kn ⊂ Kn ⊂ Kab), and we denote it by

k̄. Thus Gal(k̄/k) ∼= Ẑ, where 1 corresponds to Frobk. The map ord is just the restriction
map Gab

K = Gal(Kab/K)→ Gal(k̄/k).
We also denote by ord the homomorphism CK → Z such that for each x ∈ CK , ∥x∥ =

|k|− ord(x). Then by Lemma 4.3.4 we have a commutative diagram

CK

ψK

��

ord // Z� _

��
Gab
K

ord // Ẑ

.

In particular, ψK(CK) is contained in ord−1(Z) ⊂ Gab
K .

Definition 4.3.5. The abelianized Weil group for a global function field K is the subgroup
ord−1(Z) ⊂ Gab

K . Let I ′K = ord−1(0) ⊂ Gab
K . We equip W ab

K with the unique topology such
that I ′K is open in W ab

K and such that the subspace topology on I ′K inherited from W ab
K

agrees with the subspace topology inherited from Gab
K .

Concretely, we can pick group-theoretic section Z → W ab
K of ord : W ab

K → Z. Then we
obtain a group isomorphism W ab

K
∼= I ′K ×Z (since W ab

K is abelian). The topology on W ab
K is

such that this isomorphism is a homeomorphism, where the right hand side has the product
topology, with I ′K having the subspace topology inherited from Gab

K and Z having discrete
topology. From this we also see that the topology on W ab

K makes it a topological group.

Exercise 4.3.6. The inclusion map W ab
K → Gab

K is continuous and has dense image, but it
is not a homeomorphism onto the image.

Exercise 4.3.7. Denote the composite map GK = Gal(Ks/K)→ Gab
K

ord−−→ Ẑ also by ord.

Let WK = ord−1(Z) ⊂ GK and IK = ord−1(Z) ⊂ GK . Fix a set-theoretic section Z→WK

of ord and thereby obtain a bijection WK
∼= IK×Z. Equip WK with the topology such that

this bijection is a homeomorphism, with IK having the subspace topology inherited from
GK and Z having the discrete topology. Show that this topology on WK is independent of
the choice of the section. Show that WK is a topological group. Show that W ab

K is naturally
identified with the abelianization ofWK as a topological group (i.e., WK modulo the closure
of the derived subgroup).

We then have a commutative diagram with exact rows:

1 // C1
K

//

ψK

��

CK
ord //

ψK

��

Z // 0

1 // I ′K // W ab
K

ord // Z // 0
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Proposition 4.3.8. The maps ψK : CK → W ab
K and ψK : C1

K → I ′K are topological
isomorphisms.

Proof. Fix a group-theoretic section s : Z → CK of ord : CK → Z. Use this to identify
CK ∼= C1

K × Z as topological groups. Note that ψK ◦ s : Z → W ab
K is a section of ord :

W ab
K → Z, and we use this to identify W ab

K
∼= I ′K × Z as topological groups. Under these

identifications, the map ψK : CK → W ab
K becomes C1

K × Z→ I ′K × Z, (x, n) 7→ (ψK(x), n).
Thus it suffices to prove that ψK : C1

K → I ′K is a topological isomorphism. This map is
continuous since ψK : C1

K → Gab
K is continuous and I ′K has the subspace topology in Gab

K .
Recall from Proposition 3.10.9 that C1

K is profinite. In particular it is compact. The group
I ′K is Hausdorff. Hence it suffices to show that ψK : C1

K → Gab
K is a bijection.

To show injectivity, suppose x ∈ C1
K is such that ψK(x) = 1. By Theorem 4.2.1(2) and

Theorem 4.2.4, x lies in every open finite index subgroup of CK . Let U be an arbitrary
open subgroup of C1

K (which is automatically of finite index). Then U ×Z ⊂ C1
K ×Z ∼= CK

is an open finite index subgroup of CK , so it must contain x. It follows that x ∈ U . Since
U is arbitrary and C1

K is profinite, we conclude that x = 1. This proves injectivity.
It remains to prove the surjectivity of ψK : C1

K → I ′K . Let g ∈ I ′K . Since ψK : CK → Gab
K

has dense image, there is a sequence (xn)n≥1 ⊂ CK such that ψK(xn) → g in Gab
K . Thus

ord(xn) = ord(ψK(xn))→ ord(g) = 0 in Ẑ. This means for any m ∈ Z≥1, for all sufficiently
large n the integer ord(xn) is divisible by m. Let y ∈ CK be such that ord(y) = 1. We claim
that ψK(y− ord(xn)) → 1 in Gab

K . Since Gab
K is profinite, we only need to show that for any

open subgroup U of Gab
K , the image of ψK(y− ord(xn)) in Gab

K /U is trivial for all sufficiently
large n. This is true since for all sufficiently large n, the order |Gab

K /U | divides ord(xn), and
ψK(y− ord(xn)) = ψK(y−1)ord(xn).

By the claim, we have ψK(xny
− ord(xn))→ g in Gab

K . Since each xny
− ord(xn) lies in C1

K ,
this implies that g lies in the closure of ψK(C1

K) in Gab
K . But C1

K is compact, so ψK(C1
K) is

closed in Gab
K . This proves the surjectivity. □

4.4. Functoriality of the global Artin map. Let L/K be a finite separable extension
of global fields. Choose a K-isomorphism Ls ∼= Ks, and thereby identify GL = Gal(Ls/L)
with an open subgroup of GK = Gal(Ks/K). The inclusion GL ↪→ GK induces a continuous
homomorphism i : Gab

L → Gab
K , which is independent of all choices.

Theorem 4.4.1 (Norm functoriality). We have a commutative diagram

CL

NL/K

��

ψL // Gab
L

i

��
CK

ψK // Gab
K

The second form of functoriality involves a transfer map V : Gab
K → Gab

L . We first define
it for groups without topology.

Let G be an abstract group (without topology) and H a finite index subgroup of G.
We will define a canonical homomorphism V : Gab → Hab, called the transfer map. The
most natural origin of this map is the restriction map H1(G,Z) → H1(H,Z) between
group homology. The two homology groups are canonically identified with Gab and Hab

respectively. Here we define V by hand as follows.
Choose a set theoretic section θ : H\G → G of the projection G → H\G. For each

g ∈ G and t ∈ H\G, we have θ(t)g ∈ Hθ(tg) tautologically. Hence there is a unique element
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xt,g ∈ H such that

θ(t)g = xt,gθ(tg).

Define a map

Ṽ : G→ H, g 7→
∏

t∈H\G

xt,g.

We check that the composition of Ṽ with H → Hab is a group homomorphism, and therefore
Ṽ induces a group homomorphism Gab → Hab. For g1, g2 ∈ G, we have

θ(t)g1g2 = xt,g1θ(tg1)g2 = xt,g1xtg1,g2θ(tg1g2).

Hence

xt,g1g2 = xt,g1xtg1,g2 .

Therefore, inside Hab, we have

Ṽ (g1g2) =
∏

t∈H\G

xt,g1xtg1,g2 =

 ∏
t∈H\G

xt,g1

 ·
 ∏
t∈H\G

xtg1,g2


=

 ∏
t∈H\G

xt,g1

 ·
 ∏
t∈H\G

xt,g2

 = Ṽ (g1)Ṽ (g2).

Hence Ṽ induces a group homomorphism V : Gab → Hab.

Exercise 4.4.2. The homomorphism V : Gab → Hab is independent of the choice of θ.

Now suppose G is a topological group andH is an open subgroup of G of finite index. The
map Ṽ : G→ H constructed above is automatically continuous. The same computation as
above shows that the composition of Ṽ with H → Hab, where Hab is the abelianization as a
topological group (i.e.H modulo the closure of the derived subgroup) is a homomorphism. It
is therefore a continuous homomorphism, and induces a continuous homomorphism Gab →
Hab.

Exercise 4.4.3. Verify that Ṽ : G→ H is continuous.

Applying the above construction to the open subgroup (of finite index) GL ⊂ GK , we
obtain the transfer map V : Gab

K → Gab
L .

Theorem 4.4.4. [Transfer functoriality] We have a commutative diagram

CL
ψL // Gab

L

CK
?�

OO

ψK // Gab
K

V

OO

where the vertical map on the left is the closed embedding induced by A×
K ↪→ A×

L (see Propo-
sition 3.9.4).
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4.5. Local class field theory. Let K be a non-archimedean local field, with residue field
k. The following two theorems are the main theorems of local class field theory.

Theorem 4.5.1 (Local Reciprocity Law). There is a continuous homomorphism ψK :
K× → Gab

K with dense image, called the local Artin map, satisfying the following conditions:

(1) For each finite unramified extension L/K, the composition ψL/K : K× ψK−−→ Gab
K →

Gal(L/K) sends every uniformizer in K× to the Frobenius element in Gal(L/K).
(2) For each finite abelian extension L/K, the composition the composition ψL/K :

K× ψK−−→ Gab
K → Gal(L/K) is surjective and its kernel is NL/K(L×).

Remark 4.5.2. It follows that NL/K(L×) as above is open and of finite index in K×.

Theorem 4.5.3 (Local Existence Theorem). A subgroup of K× is open and of finite index
if and only if it is of the form NL/K(L×) for a finite abelian extension L/K.

Corollary 4.5.4 (Classification of finite abelian extensions). The map

{finite abelian extensions L/K in Ks} → {open finite index subgroups of K×},

sending L to NL/K(L×) is an inclusion-reversing bijection.

Proof. This follows from Theorems 4.5.1 and 4.5.3, by the same argument as in the proof
of Corollary 4.2.8. □

Proposition 4.5.5. Assume Corollary 4.5.4. Then the local Artin map ψK as in Theorem
4.5.1 is unique.

Proof. Suppose ψK , ψ
′
K are two Artin maps. Since K× is generated by uniformizers as a

group, it suffices to show that for any fixed uniformizer π, we have ψK(π) = ψ′
K(π).

Let L/K be an arbitrary finite abelian extension. Then NL/K(L×) is open and of finite

index in K× = πZ × O×
L . It can be easily seen that any open and finite index subgroup

of πZ × O×
L contains a subgroup of the form πnZ × UmL for some n,m ∈ Z≥1. Note that

πnZ×O×
K and πZ×UmL are both open and of finite index in K×. Hence they are respectively

of the form NEn/K(E×
n ) and NKπ,m/K(K×

π,m) for unique finite abelian extensions En/K and
Kπ,m/K. Thus we can find n,m ∈ Z≥1 such that

NL/K(L×) ⊃ πnZ × UmL = NEn/K(E×
n ) ∩NKπ,m/K(K×

π,n).

The right hand side contains (in fact, equals, by the same proof as Corollary 4.2.8)

NEn·Kπ,m/K((En ·Kπ,m)×).

Since the bijection in Corollary 4.5.4 is inclusion-reversing, we conclude that L ⊂ En ·Kπ,m.
Thus we have shown that

Kab =
⋃

n,m≥1

En ·Kπ,m.

It remains to show that for each n andm, we have ψEn/K(π) = ψ′
En/K

(π) and ψKπ,m/K(π) =

ψ′
Kπ,m/K

(π). Let Kn be the unique degree n unramified extension of K. It follows from

Proposition 2.3.3 that NKn/K(K×
n ) = πnZ×O×

K . Hence by Corollary 4.5.4 we haveKn = En.
Then since ψK and ψ′

K both satisfy condition (1) in Theorem 4.5.1, we have ψEn/K(π) =

ψ′
En/K

(π) = Frob ∈ Gal(Kn/K). Since π ∈ NKπ,n/K(K×
π,n), and since ψK and ψ′

K both

satisfy condition (2) in Theorem 4.5.1, we have ψKπ,m/K(π) = ψ′
Kπ,m/K

(π) = 1. □
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Remark 4.5.6. This proof of uniqueness of ψK relies on Corollary 4.5.4, which relies on
Theorem 4.5.3. This is unlike the global case, where the uniqueness of the global Artin map
could be proved unconditionally.

Similar to the global function field case, we define ord : Gab
K → Gal(Kur/K) ∼= Ẑ, where

1 ∈ Z corresponds to the Frobenius. Define W ab
K ⊂ Gab

K to be the inverse image of Z under
ord, and define I ′K ⊂ Gab

K to be the kernel of ord. Equip W ab
K with the topology such that

I ′K is open and I ′K has the subspace topology inherited from Gab
K .

Proposition 4.5.7. We have a commutative diagram with exact rows, and the vertical maps
are topological isomorphisms:

1 // O×
K

//

ψK

��

K× ord //

ψK

��

Z // 0

1 // I ′K // W ab
K

ord // Z // 0

Proof. This follows from the two main theorems Theorem 4.5.1 and Theorem 4.5.3, in the
same way as Proposition 4.3.8. □

Similar to the global Artin map, the local Artin map satisfies norm and transfer functo-
riality.

Theorem 4.5.8 (Norm and transfer functoriality). Let L/K be a finite separable extension.
Then we have a commutative diagram

L×

NL/K

��

ψL // Gab
L

i

��
K× ψK // Gab

K

where i is induced by the inclusion GL ↪→ GK . We have a commutative diagram

L× ψL // Gab
L

K×
?�

OO

ψK // Gab
K

V

OO

where V is the transfer map.

Finally, we state the local-global compatibility of Artin maps. Let K be a global field,
and v a non-archimedean place of K. As before, if we choose a K-algebra embedding
i : Ks ↪→ (Kv)

s, then we obtain a closed embedding GKv
↪→ GK , whose image is the

decomposition group of the place of Ks over v determined by i. The induced map Gab
Kv
→

Gab
K is independent of the choice of i.

Theorem 4.5.9 (Local-global compatibility). We have a commutative diagram

K×
v

ψKv //
� _

��

Gab
Kv

��
CK

ψK // Gab
K .
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4.6. Lubin-Tate theory. Let K be a non-archimedean local field. Fix a uniformizer π.
For each n ∈ Z≥1, Lubin–Tate theory explicitly constructs a finite abelian extensionKπ,n/K
(which is actually equal to Kπ,n in the proof of Proposition 4.5.5), together with an explicit

isomorphism αn : O×
K/U

n
K

∼−→ Gal(Kπ,n/K). For instance, for K = Qp and π = p, we have

Kπ,n = Qp(ζpn), and αn is the usual isomorphism (Z/pnZ)× ∼−→ Gal(Qp(ζpn)/Qp). For
n|n′, we have Kπ,n ⊂ Kπ,n′ . The αn are compatible for varying n, and in the inverse limit

we obtain a topological isomorphism α : O×
K

∼−→ Gal(Kπ/K), where Kπ :=
⋃
nKπ,n.

Each Kπ,n is totally ramified over K, and hence linearly disjoint from any unramified
extension of K. Thus we have

Gal(Kur ·Kπ/K) ∼= Gal(Kur/K)×Gal(Kπ/K).

This allows us to define

ψLT
K : K× = πZ ×O×

K → Gal(Kur ·Kπ/K) ∼= Gal(Kur/K)×Gal(Kπ/K)

(πr, x) 7→ (Frobr, α(x−1)).

Assume Theorem 4.5.1, i.e., the existence of an (abstract) local Artin map ψK . We will
use Lubin-Tate theory to prove the following:

• Local Kronecker–Weber: Kur ·Kπ = Kab.
• The map ψLT

K : K× → Gab
K (here the target is Gab

K by the above statement) is
independent of π, and it is equal to the abstract ψK . (In particular, this proves the
uniqueness of ψK , and gives an explicit description of ψK .)

• Theorem 4.5.3.

We need the notion of a formal group law. This can be motivated in two ways. First,
suppose we have a Lie group (or a group object in any reasonable geometric setting, such
as a group variety over a field), and suppose we fix local coordinates near the identity
element such that the identity element has coordinate 0. If the group is “analytic”, then
the multiplication operation for elements sufficiently close to the identity, can be described
in terms of their coordinates by power series. In other words, if t(g) is the coordinate of a
group element g, then t(gh) is a (vector-valued) power series in t(g) and t(h), at least for g, h
sufficiently close to the identity. This power series must satisfy some algebraic properties
reflecting the axioms for a group.

As a second motivation, consider Λ = {x ∈ K | |x| < 1}. Note that for any F (X,Y ) ∈
OK [[X,Y ]], and any x, y ∈ Λ, the power series F (x, y) converges in Λ. Thus we can define a
group structure on Λ by (x, y) 7→ F (x, y) as long as F (X,Y ) satisfies suitable axioms.

Definition 4.6.1. Let R be a commutative ring. A (one-dimensional, commutative) formal
group law F over R is a formal power series F (X,Y ) ∈ R[[X,Y ]] satisfying the following
conditions:

(1) (Deforming standard addition.) F (X,Y ) ≡ X + Y mod (X,Y )2.
(2) (Commutativity.) F (X,Y ) = F (Y,X).
(3) (Associativity.) F (X,F (Y,Z)) = F (F (X,Y ), Z) ∈ R[[X,Y, Z]]. (Here the substitu-

tions make sense because F has no constant term.)

Exercise 4.6.2. Let F be a formal group law. Then F (X, 0) = F (0, X) = X (i.e., “0 is
the zero element”), and there exists a unique i(X) ∈ R[[X]] (“the inversion operation”) such
that i(X) ≡ −X mod (X2) and F (X, i(X)) = 0.

Example 4.6.3. The additive group Ga is given by F (X,Y ) = X + Y . The multiplicative
group Gm is given by F (X,Y ) = (1 + X)(1 + Y ) − 1 = X + Y + XY. (Think of X
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as the coordinate of a group element 1 + X, on which the group operation is the usual
multiplication.)

Definition 4.6.4. Let F,G be formal group laws over R. By a homomorphism f : F → G,
we mean an element f(X) ∈ R[[X]] such that f(0) = 0 and G(f(X), f(Y )) = f(F (X,Y )).
For two homomorphisms f1, f2 : F → G, their sum is defined as

f1 +G f2 := G(f1(X), f2(X)).

This is another homomorphism F → G. For homomorphisms f : F → G and g : G → H,
define their composition

g ◦ f := g(f(X)).

This is a homomorphism F → H.

Under this definition of homomorphisms and their compositions, we obtain the category
of formal group laws over R. In particular, we obtain a notion of isomorphism.

Exercise 4.6.5. A homomorphism f : F → G between formal group laws over R is an
isomorphism if and only if f ′(0) ∈ R lies in R×.

For a formal group law F , the set of endomorphisms End(F ) is a ring, where multiplica-
tion is composition and addition is (f1, f2) 7→ f1 +F f2.

Exercise 4.6.6. Check that End(F ) is indeed a ring.

Definition 4.6.7. Let R0 be a subring of R. By a formal R0-module over R, we mean
a pair (F, [·]F ), where F is a formal group law over R, and [·]F is a ring homomorphism
R0 → End(F ) such that for every a ∈ R0, we have [a]F (X) ≡ aX mod (X2).

Let K be a non-archimedean local field. Fix a uniformizer π. Let the residue field be Fq.

Definition 4.6.8. A Lubin–Tate formal group law with respect to (K,π) is a formal OK-
module (F, [·]F ) over OK such that [π]F (X) ≡ Xq mod mK . (Here we say two formal power
series over OK are congruent modulo mK if they are coefficient-wise congruent.)

Example 4.6.9. Let K = Qp and π = p. We define a formal Zp-module over Zp as follows.
The underlying formal group is Gm, i.e., F (X,Y ) = (1 +X)(1 + Y )− 1. For a ∈ Zp, define

[a]F = (1 +X)a − 1 :=
∑
n≥1

(
a

n

)
Xn.

Here,
(
a
n

)
is defined to be a(a− 1) · · · (a−n+1)/n!. As a function in a, this is a continuous

function Zp → Qp. Since it takes Z into Z, it takes Zp into Zp. Thus [a]F ∈ Zp[[X]]. One
checks that [·]F makes F a formal Zp-module over Zp. We have [p]F = (1 +X)p − 1 ≡ Xp

mod p, so (F, [·]F ) is a Lubin-Tate formal group law.

Exercise 4.6.10. In the above example, check that [·]F makes F a formal Zp-module over
Zp.

Remark 4.6.11. If F ∈ OK [[X,Y ]] is a formal group law over OK and e ∈ OK [[X]] is an
endomorphism of F , then (F mod mK) ∈ Fq[[X,Y ]] is a formal group law over Fq, and (e
mod mK) ∈ Fq[[X]] is an endomorphism of it. Moreover, for any formal group law F over
Fq, the power series e(X) = Xq is always an endomorphism of F . This is the “Frobenius
endomorphism”.

Definition 4.6.12. Let Eπ = {e(X) ∈ OK [[X]] | e(X) ≡ πX mod (X2), e(X) ≡ Xq

mod mK}.
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Clearly if (F, [·]F ) is a Lubin–Tate formal group law with respect to (K,π), then [π]F ∈ Eπ.

Theorem 4.6.13. We have a bijection from the set of Lubin–Tate formal group laws with
respect to (K,π) to the set Eπ, sending (F, [·]F ) to [π]F .

Lemma 4.6.14 (Key Lemma). Let e, ē ∈ Eπ. Let n ≥ 1 and a1, . . . , an ∈ OK . Then there
exists a unique ϕ(X1, . . . , Xn) ∈ OK [[X1, . . . , Xn]] such that

ϕ(X1, . . . , Xn) ≡ a1X1 + · · ·+ anXn mod (X1, . . . , Xn)
2

and

e(ϕ(X1, . . . , Xn)) = ϕ(ē(X1), . . . , ē(Xn)).

Proof. Set ϕ1 = a1X1+ · · ·+anXn. We inductively construct ϕk by ϕk = ϕk−1+Qk, where
Qk is a degree k homogeneous polynomial in OK [X1, . . . , Xn]. These should satisfy:

e(ϕk(X1, . . . , Xn)) ≡ ϕk(ē(X1), . . . , ē(Xn)) mod (X1, . . . , Xn)
k+1.(4.1)

Then ϕ = limk ϕk = ϕ1 + Q2 + Q3 + · · · satisfies the desired conditions. This proves the
existence of ϕ. For the uniqueness, let ϕ̄ be another candidate of ϕ, and let ϕ̄k be the part
of ϕ̄ consisting of terms of degree at most k. Then ϕ̄k must satisfy (4.1). In the inductive
construction of ϕk, we shall see that Qk has a unique choice. Hence each ϕk is uniquely
determined by ϕk−1. Since ϕ1 = ϕ̄1, we have ϕk = ϕ̄k for all k, and hence ϕ = ϕ̄.

We now construct ϕk inductively such that (4.1) holds. For k = 1, (4.1) holds because
e(X) ≡ ē(X) ≡ πX mod (X2), which implies that the two sides are both congruent to
a1πX1+ · · ·+anπXn mod (X1, . . . , Xn)

2. Suppose ϕk has been constructed and it satisfies
(4.1). Let Qk+1 be a degree k + 1 homogeneous polynomial, to be determined. Let ϕk+1 =
ϕk +Qk+1. Then

e(ϕk+1(X)) ≡ e(ϕk(X)) + e′(ϕk(X))Qk+1(X) mod (X1, . . . , Xn)
k+2.

Since ϕk(0) = 0, we have e′(ϕk(X)) ≡ e′(0) mod (X1, . . . , Xn), and so e′(ϕk(X))Qk+1(X) ≡
e′(0)Qk+1(X) = πQk+1(X) mod (X1, . . . , Xn)

k+2. Thus

e(ϕk+1(X)) ≡ e(ϕk(X)) + πQk+1(X) mod (X1, . . . , Xn)
k+2.

On the other hand,

ϕk+1(ē(X1), . . . , ē(Xn)) = ϕk(ē(X1), . . . , ē(Xn)) +Qk+1(ē(X1), . . . , ē(Xn))

≡ ϕk(ē(X1), . . . , ē(Xn)) +Qk+1(πX1, · · · , πXn) mod (X1, . . . , Xn)
k+2

= ϕk(ē(X1), . . . , ē(Xn)) + πk+1Qk+1(X)

where the congruence is because ē(Xi) ≡ πXi mod (X2
i ) and the last equality is because

Qk+1 is homogeneous of degree k + 1. Hence (4.1) is equivalent to

(πk+1 − π)Qk+1(X) ≡ e(ϕk(X))− ϕk(ē(X1), . . . , ē(Xn)) mod (X1, . . . , Xn)
k+2.

By the induction hypothesis, the right hand side has no terms of degree ≤ k. So we
can and must take Qk+1 to be (πk+1 − π)−1 times the degree k + 1 homogeneous part of
e(ϕk(X))−ϕk(ē(X1), . . . , ē(Xn)). We still need to ensure that Qk+1 has coefficients in OK ,
for which it suffices to show that e(ϕk(X)) − ϕk(ē(X1), . . . , ē(Xn)) ≡ 0 mod mK . This is
true because

e(ϕk(X))− ϕk(ē(X1), . . . , ē(Xn)) ≡ ϕk(X)q − ϕk(Xq
1 , . . . , X

q
n) ≡ 0 mod mK .

(This is the “Frobenius property” of the polynomial Xq over OK/mK = Fq.) □
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Proposition 4.6.15. For each e ∈ Eπ, there exists a unique formal group Fe over OK such
that e ∈ End(Fe).

Proof. The power series Fe = F (X,Y ) must satisfy F (X,Y ) ≡ X + Y mod (X,Y )2 and
F (e(X), e(Y )) = e(F (X,Y )). By Lemma 4.6.14, there is a unique such F . It remains
to show that this F is a formal group. All the axioms are checked by using the unique-
ness in Lemma 4.6.14. For instance, to show F (F (X,Y ), Z) = F (X,F (Y, Z)), call the left
hand side G1 and the right hand side G2. Then G1 ≡ G2 ≡ X + Y + Z mod (X,Y, Z)2,
and we have G1(e(X), e(Y ), e(Z)) = F (F (e(X), e(Y )), e(Z)) = F (e(F (X,Y )), e(Z)) =
e(F (F (X,Y ), Z)) = e(G1(X,Y, Z)), and similarly G2(e(X), e(Y ), e(Z)) = e(G2(X,Y, Z)).
Hence G1 = G2 by the uniqueness in Lemma 4.6.14. □

Proposition 4.6.16. For each e ∈ Eπ, there is a unique ring homomorphism [·]Fe
: OK →

Fe making Fe a formal OK-module and such that [π]Fe = e. In particular, the formal
OK-module Fe is Lubin–Tate with respect to (K,π).

Proof. For each a ∈ OK , we need to find a power series [a] = [a]Fe ∈ OK [[X]] such that

(1) [a](X) ≡ aX mod (X2).
(2) [ab] = [a] ◦ [b]
(3) [π] = e
(4) [a] ◦ e = e ◦ [a].
(5) [a+ b](X) = Fe([a](X), [b](X)).

Here, (1) (2) (5) are the axioms for a formal OK-module, and (3) is the requirement in the
proposition. (4) is a consequence of (2) and (3). Now (1) and (4) uniquely determine [a], by
Lemma 4.6.14. To show (2) (3) (5), one easily check that in each case the right hand side
satisfies the unique characterization of the left hand side (i.e., (1) and (4)). For instance, to
prove (5), we have

Fe([a](X), [b](X)) ≡ [a](X) + [b](X) ≡ aX + bX mod (X2),

and

Fe([a](e(X)), [b](e(X))) = Fe(e([a](X)), e([b](X))) = e(Fe([a](X), [b](X))).

□

Proof of Theorem 4.6.13. The inverse map is given by e 7→ (Fe, [·]Fe
). □

Proposition 4.6.17. For e, ē ∈ Eπ, there exists a unique formal OK-module homomorphism
ϕ = ϕe,ē : Fe → Fē such that ϕ′(0) = 1. In particular, ϕ is an isomorphism.

Proof. The power series ϕ ∈ OK [[X]] must satisfy

(1) ϕ(X) ≡ X mod (X2).
(2) ϕ ◦ [a]Fe

= [a]Fē
◦ ϕ for all a ∈ OK .

(3) ϕ ◦ e = ē ◦ ϕ.
(4) ϕ(Fe(X,Y )) = Fē(ϕ(X), ϕ(Y )).

Here (3) is the special case of (2) for a = π. By Lemma 4.6.14, (1) and (3) uniquely
determine ϕ. To check (2), call the left hand side G1 and the right hand side G2. We have
G1(X) ≡ G2(X) ≡ aX mod (X2). We have

G1(e(X)) = ϕ ◦ [a]Fe
◦ e = ϕ ◦ e ◦ [a]Fe

= ē ◦ ϕ ◦ [a]Fe
= ē(G1(X)),
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and similarly G2(e(X)) = ē(G2(X)). Hence G1 = G2 by the uniqueness in Lemma 4.6.14.
To check (4), call the left hand side G1 and the right hand side G2. Then G1 ≡ G2 ≡ X+Y
mod (X,Y )2. We have

G1(e(X), e(Y )) = ϕ(e(Fe(X,Y ))) = ē(ϕ(Fe(X,Y ))) = ē(G1(X,Y )),

and similarly G2(e(X), e(Y )) = ē(G2(X,Y )). Hence G1 = G2 by the uniqueness in Lemma
4.6.14. □

Let Λ = {x ∈ K | |x| < 1}. Fix e ∈ Eπ. For x, y ∈ Λ, the power series Fe(x, y) converges
in Λ. In fact, there is a finite extension L/K containing x and y. The completeness of L,
the condition that |x|, |y| < 1, and the fact that Fe(X,Y ) has coefficients in OK , guarantee
that Fe(x, y) converges in L. Moreover, Fe(x, y) ∈ mL since Fe has no constant term and
its coefficients are in OK .

It is easy to see that the axioms for a formal group imply that Λ together with the
binary operation (x, y) 7→ Fe(x, y) is an abelian group. Moreover, for each a ∈ OK , the
power series [a]Fe

(x) converges in Λ for a similar reason as above. The scalar multiplication
OK × Λ → Λ, (a, x) 7→ [a]Fe(x) is compatible with the above-mentioned abelian group
structure on Λ, and we thus obtain an OK-module structure on Λ. We denote this OK-
module by Λe.

For each OK-module M and n ∈ Z≥1, we write Mn = {x ∈ M | mnKx = 0} = {x ∈ M |
πnx = 0}.

Definition 4.6.18. For π a uniformizer of K and n ∈ Z≥1, let Kπ,n = K(Λe,n), where
e ∈ Eπ.

Lemma 4.6.19. The extension Kπ,n/K is independent of the choice of e ∈ Eπ.

Proof. For e, ē ∈ Eπ, let ϕ : Fe → Fē be the isomorphism as in Proposition 4.6.17. Then
we have an OK-module isomorphism Λe

∼−→ Λē, x 7→ ϕ(x). Here, the power series ϕ(x)
converges in Λ. This isomorphism maps Λe,n onto Λē,n. Moreover, for x ∈ Λe, if x lies in a
finite extension L/K, then ϕ(x) also lies in L since ϕ is a power series with coefficients in
OK . Hence K(Λē,n) ⊂ K(Λe,n). (Here we are not using that K(Λē,n) or K(Λe,n) are finite
over K.) By symmetry we have equality. □

Lemma 4.6.20. The extension Kπ,n/K is finite Galois.

Proof. Let e(X) = Xq + πX. Then e ∈ Eπ, and so Kπ,n = K(Λe,n). By definition,
Λe,n is the set of all roots in Λ of the polynomial [πn]Fe , which is the n-fold composition

e(n)(X) = e◦e◦ · · · ◦e(X). The leading term of e(n)(X) is Xqn , and we have e(n)(X) ≡ Xqn

mod mK . Hence all slopes of its Newton polygon are negative, which means that all its
roots in K̄ are in Λ. This proves that Kπ,n is finite and normal over K.

We show that Kπ,n is separable over K by induction on n. We may assume that K has
characteristic p > 0, so q = 0 in K. We have e′(X) = π, so e(X) has no multiple roots.
Hence Kπ,1 is separable over K. It remains to prove that Kπ,n+1 is separable over Kπ,n.
Note that for any α ∈ Λe,n+1, we have [π]Fe

(α) = e(α) ∈ Λe,n. Hence Kπ,n+1 is generated
over Kπ,n by some roots of e(X) − β for β running over Λe,n. The derivative of e(X) − β
is again π, so e(X) − β has no multiple roots. Thus Kπ,n+1 is separable over Kπ,n, as
desired. □

Lemma 4.6.21. Let e ∈ Eπ. The multiplication-by-π map Λe → Λe is surjective and its
kernel has cardinality q.
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Proof. We may assume that e(X) = Xq + πX. For surjectivity, we need to show that
for any β ∈ Λ, the polynomial e(X) − β has a root in Λ. The Newton polygon of this
polynomial have only negative slopes, so all its roots in K are in Λ. To show that the kernel
has cardinality q, we need to show that e(X) has q distinct roots in Λ, or equivalently, that
e(X) has no multiple roots (since all its roots are in Λ). Clearly 0 is a simple root of e(X),
so we only need to show that g(X) = e(X)/X = Xq−1 + π has no multiple roots. We have
g′(X) = (q − 1)Xq−2, but X = 0 is not a root of g(X). □

Proposition 4.6.22. For e ∈ Eπ and n ∈ Z≥1, the OK-module Λe,n is isomorphic to
OK/mnK .

Proof. By the surjectivity in Lemma 4.6.21, we have a short exact sequence of OK-modules

0→ Λe,1
inclusion−−−−−→ Λe,n+1

mult. by π−−−−−−−→ Λe,n → 0.

By Lemma 4.6.21, |Λe,1| = q. Hence by induction |Λe,n| = qn. By the classification of
finite-cardinality modules over the PID OK , we have

Λe,n ∼=
t⊕
i=1

OK/meiK .

But the π-torsion in Λe,n is exactly Λe,1, and it has q-elements. Hence t = 1, and we have
Λe,n ∼= OK/mnK since its cardinality is qn. □

Corollary 4.6.23. For e ∈ Eπ and n ∈ Z≥1, the scalar multiplication map induces a

canonical isomorphism (OK/mnK)× = O×
K/U

n
K

∼−→ AutOK−mod(Λe,n).

Let n ∈ Z≥1. The action of Gal(Kπ,n/K) on Kπ,n stabilizes Λe,n for each e ∈ Eπ, since
Λe,n is defined inside the maximal ideal of Kπ,n by power series equations with coefficients
in OK , and the Galois action is continuous. Similarly, the Gal(Kπ,n/K)-action on Λe,n is
via OK-module automorphisms. In view of Corollary 4.6.23, we obtain a homomorphism

ρπ,n : Gal(Kπ,n/K)→ O×
K/U

n
K

by considering the Gal(Kπ,n/K)-action on Λe,n. This homomorphism is independent of the
choice of e since for e, ē ∈ Eπ the canonical isomorphism Λe → Λē is given by a power series
over OK and the latter is preserved by the Galois action. Moreover, ρπ,n is injective since
Kπ,n is generated by Λe,n over K. Thus Kπ,n/K is a finite abelian extension.

Example 4.6.24. For K = Qp and π = p, ρπ,n is the usual homomorphism (isomorphism)
Gal(Qp(ζpn)/Qp)→ (Z/pnZ)× sending τ to a+ pnZ such that τ(ζpn) = ζapn .

Theorem 4.6.25. Let n ∈ Z≥1. The following statements hold.

(1) The extension Kπ,n/K is totally ramified and its degree is (q − 1)qn−1.
(2) The homomorphism ρπ,n is an isomorphism.
(3) We have π ∈ NKπ,n/K(K×

π,n).

Proof. Let e(X) = Xq + πX and g(X) = e(X)/X. Let π1 ∈ K be a non-zero root of e(X),
and for i ≥ 2 we inductively pick πi ∈ K to be a non-zero root of e(X)− πi−1. By Newton
polygon considerations, we know (by induction) that

ord(πi) =
1

(q − 1)qi−1
.

Here ord : K
× → Q is the valuation extending the normalized valuation ord : K× → Z. By

induction, πi ∈ Λe,i. Therefore the ramification index e(Kπ,n/K) is at least the denominator
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of ord(πn), namely (q − 1)qn−1. On the other hand, the right hand side of the injection
ρπ,n : Gal(Kπ,n/K)→ O×

K/U
n
K has cardinality (q − 1)qn−1. Statements (1) and (2) follow.

To show (3), let un(X) be the composed polynomial g ◦ e ◦ · · · ◦ e where e appears n− 1
times. Then deg un = (q − 1)qn−1, and by induction un(πn) = 0. By the formula for
ord(πn), the degree of πn over K is at least (q − 1)qn−1. Hence Kπ,n = K(πn), and un is
the minimal polynomial of πn over K. Thus NKπ,n/K(−πn) = un(0) = π. □

Remark 4.6.26. In the above proof, we found the explicit descriptionKπ,n = K[X]/(un(X)).

For n|n′, we have Kπ,n ⊂ Kπ,n′ , and we have a commutative diagram

Gal(Kπ,n′/K)
ρπ,n′

//

��

O×
K/U

n′

K

��
Gal(Kπ,n/K)

ρπ,n // O×
K/U

n
K

where the vertical map on the left is restriction and the vertical map on the right is induced
by identity on O×

K . Thus denoting Kπ :=
⋃
nKπ,n and taking inverse limit over n, we obtain

a topological isomorphism ρπ : Gal(Kπ/K)
∼−→ O×

K .
Let KLT be the compositum Kur · Kπ inside Kab. Since each Kπ,n is totally ramified

over K, we have
Gal(KLT/K) ∼= Gal(Kur/K)×Gal(Kπ/K).

We define

ψLT
K : K× = πZ ×O×

K → Gal(KLT/K) ∼= Gal(Kur/K)×Gal(Kπ/K)

by sending (πr, x) to (Frobr, ρ−1
π (x−1)).

Theorem 4.6.27. Both KLT and ψLT
K are independent of the choice of the uniformizer π.

We need to use the completion K̆ of Kur with respect to the canonical absolute value
on Kur. Note that K̆ is completely discretely valued, and the normalized discrete valuation
ord : K̆× → Z extends that on K×. We have filtrations

OK̆ = m0
K̆
⊃ m1

K̆
⊃ m2

K̆
⊃ · · ·

and
O×
K̆

= U0
K̆
⊃ U1

K̆
⊃ U2

K̆
⊃ · · ·

where U i
K̆

= 1+mi
K̆

for i ≥ 1. By the completeness of K̆, these two filtrations are complete

in the sense that the natural projections induce isomorphisms

OK̆ ∼= lim←−
n

OK̆/m
n
K , O×

K̆
∼= lim←−

n

O×
K̆
/UnK .

The element Frob ∈ Gal(Kur/K) acts on Kur as an isometry, and hence it extends to an

isometry K̆ → K̆, which we still denote by Frob.

Lemma 4.6.28. The endomorphisms OK̆ → OK̆ , x 7→ x − Frob(x) and O×
K̆
→ O×

K̆
, x 7→

xFrob(x)−1 are both surjective.

Proof. These endomorphisms preserve the filtrations above since Frob is an isometry. By
Lemma 2.3.2, it suffices to check that the corresponding endomorphisms on the successive
quotients mi

K̆
/mi+1

K̆
and U i

K̆
/U i+1

K̆
are surjective (for all i ≥ 0). In the first case for all i ≥ 0

and in the second case for i ≥ 1, we are reduced to the surjectivity of OK̆/mK̆ = Fq →
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Fq, x 7→ x−Frob(x) = x−xq. In the second case for i = 0, we are reduced to the surjectivity

of F×
q → F×

q , x 7→ xFrob(x)−1 = x1−q. □

We now let π,ϖ be two uniformizers in K, and write ϖ = πu, with u ∈ O×
K . Let e ∈ Eπ

and f ∈ Eϖ. For any formal power series over G(X1, . . . , Xn) over OK̆ , we define Frob(G)
by applying Frob to each coefficient of G. The following lemma generalizes the uniqueness
in Lemma 4.6.14.

Lemma 4.6.29. Suppose G1(X1, . . . , Xn), G2(X1, . . . , Xn) ∈ OK̆ [[X1, . . . , Xn]] satisfy

G1(X1, . . . , Xn) ≡ G2(X1, . . . , Xn) mod (X1, . . . , Xn)
2

and

Frob(Gi)(e(X1), . . . , e(Xn)) = f(Gi(X1, . . . , Xn))

for i = 1, 2. Then G1 = G2.

Proof. Write G for G1, and let Qk be the homogeneous degree k part of G. It suf-
fices to show that for k ≥ 2, Qk is uniquely determined by Qi for i ≤ k − 1 and the
condition that Frob(G)(e(X1), . . . , e(Xn)) = f(G(X1, . . . , Xn)). The degree k homoge-
neous part of Frob(G)(e(X1), . . . , e(Xn)) is equal to the degree k homogeneous part R of∑
i≤k−1 Frob(Qi)(e(X1), . . . , e(Xn)) plus Frob(Qk)(πX1, . . . , πXn) = πk Frob(Qk)(X). The

degree k homogeneous part of f(G(X1, . . . , Xn)) is equal to the degree k homogeneous part
S of f(

∑
i≤k−1Qi(X)) plus ϖQk(X). Thus Qk is determined by

R+ πk Frob(Qk) = S +ϖQk.

Here R and S are determined by Qi for i ≤ k − 1. We must show that the above equation,
where R and S are viewed as fixed, uniquely determines Qk. This boils down to the claim
that for any fixed β ∈ OK̆ , the equation

ϖx− πk Frob(x) + β = 0

has at most one solution x ∈ K̆. Suppose x and y are two solutions. Then

ϖ(x− y) = πk Frob(x− y).

If x ̸= y, then the two sides have different valuations (since Frob preserves the valuation), a
contradiction. □

Proposition 4.6.30. The formal OK-modules Fe and Ff over OK̆ are isomorphic. More

precisely, fix ϵ ∈ O×
K̆

such that Frob(ϵ) = ϵu (which exists by Lemma 4.6.28). There exists

θ(X) ∈ OK̆ [[X]] satisfying the following conditions.

(1) θ(X) ≡ ϵX mod (X2).
(2) Frob(θ(X)) = θ([u]Fe(X)).
(3) f ◦ θ = Frob(θ) ◦ e.
(4) θ(Fe(X,Y )) = Ff (θ(X), θ(Y )).
(5) θ([a]Fe

(X)) = [a]Ff
(θ(X)), ∀a ∈ OK .

Note that conditions (1) (4) (5) imply that θ is an isomorphism Fe
∼−→ Ff between

formal OK-modules over OK̆ . Indeed, by (1), (4), and Exercise 4.6.5, θ is an isomorphism
of formal groups. Then (5) immediately implies that the inverse of θ is also compatible with
the formal OK-module structures.
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Proof. We first construct θ(X) =
∑∞
i=1 aiX

i satisfying (1) and (2). Let a1 = ϵ, and con-
struct ai ∈ OK̆ inductively such that

Frob(

n∑
i=1

aiX
i) ≡

n∑
i=1

ai[u]Fe(X)i mod (Xn+1).

That this holds for n = 1 is precisely our assumption that Frob(ϵ) = ϵu. Now sup-
pose a1, . . . , an are constructed. To construct an+1, we need Frob(an+1) to be equal to
the coefficient C of Xn+1 in

∑n
i=1 ai[u]Fe(X)i plus an+1u

n+1. Thus we need to solve
Frob(an+1)− un+1an+1 = C for an+1. By Lemma 4.6.28, we can write un+1 = bFrob(b)−1

for a fixed b ∈ O×
K̆
. Thus y = ban+1 should satisfy Frob(y) − y = Frob(b)C. By Lemma

4.6.28, we can solve this equation in y ∈ OK̆ . Thus we have shown the existence of θ
satisfying (1) and (2).

We now show that such θ can be modified to satisfy (3). By (1) and Exercise 4.6.5, θ has
composition inverse θ−1 ∈ OK̆ [[X]]. Let h = Frob(θ) ◦ e ◦ θ−1 ∈ OK̆ [[X]]. Then by (2) we
have

h = θ ◦ [u]Fe ◦ e ◦ θ−1 = θ ◦ [uπ]Fe ◦ θ−1 = θ ◦ e ◦ [u]Fe ◦ θ−1.

Since e and [u]Fe
have coefficients in OK , we have

Frob(h) = Frob(θ) ◦ e ◦ [u]Fe
◦ Frob(θ−1) = Frob(θ) ◦ e ◦ θ−1 = h.

Hence h ∈ OK [[X]]. We now check that h ∈ Eϖ. We have h(0) = 0, and the linear coefficient
of h is ϵuπϵ−1 = uπ = ϖ. Modulo mK , we have

h ≡ Frob(θ) ◦ (X 7→ Xq) ◦ θ−1,

so

h(X) ≡ (Frob(θ))(θ−1(X)q) ≡
(
θ(θ−1(X))

)q
= Xq.

Thus h ∈ Eϖ, and we have the canonical isomorphism ϕf,h : Ff
∼−→ Fh as in Proposition

4.6.17. Let θ1 = ϕf,h ◦ θ. Then θ1 still satisfies conditions (1) and (2) (since Frob(θ1) =
ϕf,h ◦ Frob(θ)), and we have

Frob(θ1) ◦ e ◦ θ−1
1 = ϕf,h ◦ h ◦ ϕh,f = f.

Thus θ1 also satisfies (3).
We now assume that θ satisfies (1) (2) (3). One then checks that θ satisfies (4) and (5)

using Lemma 4.6.29. For (4), call the left hand side G1(X,Y ) and right hand side G2(X,Y ).
Then

Frob(G1)(e(X), e(Y )) = Frob(θ)(e(Fe(X,Y ))) = f(θ(Fe(X,Y ))) = f(G1(X,Y )),

and

Frob(G2)(e(X), e(Y )) = Ff
(
Frob(θ)(e(X)),Frob(θ)(e(Y ))

)
= Ff

(
f(θ(X)), f(θ(Y ))

)
= f(G2(X,Y )).

Moreover, G1(X) ≡ G2(X) ≡ ϵ(X + Y ) mod (X,Y )2. Hence G1 = G2.
For (5), call the left hand side G1 and the right hand side G2. Then

Frob(G1)(e(X)) = Frob(θ)◦[a]Fe
◦e(X) = Frob(θ)◦e◦[a]Fe

(X) = f◦θ◦[a]Fe
(X) = f(G1(X)),

and

Frob(G2)(e(X)) = [a]Ff
◦ Frob(θ) ◦ e(X) = [a]Ff

◦ f ◦ θ(X) = f(G2(X)).

Moreover G1 ≡ G2 ≡ ϵaX mod (X2), so G1 = G2. □
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Proof of Theorem 4.6.27. We first show that KLT is independent of π. Let π,ϖ be two
uniformizers of K. We shall show that Kur · Kπ,n = Kur · Kϖ,n for each n ≥ 1. Let
e = Xq + πX ∈ Eπ and f = Xq + ϖX ∈ Eϖ. Let θ be as in Proposition 4.6.30, with
respect to π,ϖ, e, f . Let C be the completion of K. There is a natural embedding K̆ → C.
We make the set Λ′ = {x ∈ C | |x| < 1} into OK-modules Λ′

e and Λ′
f using Fe and Ff

respectively. Note that the mnK-torsion Λ′
e,n in Λ′

e is actually equal to Λe,n, because both

sets consist of all the roots of the polynomial e(n) = e ◦ · · · ◦ e in K. Similarly, Λ′
f,n = Λf,n.

Clearly θ induces an OK-module isomorphism Λ′
e

∼−→ Λ′
f , x 7→ θ(x), and hence a bijection

Λ′
e,n

∼−→ Λ′
f,n. Thus we have

Λf,n = θ(Λe,n).

Since θ(X) ∈ OK̆ [[X]], every element of θ(Λe,n) can be arbitrarily approximated by el-
ements of OK̆ [Λe,n], and hence arbitrarily approximated by elements of OKur [Λe,n]. Thus
Λf,n = θ(Λe,n) is contained in the topological closure of Kur ·Kπ,n in C. Therefore Kϖ,n is
contained in this topological closure. By symmetry, the topological closures of Kur ·Kπ,n

and Kur ·Kϖ,n in C are equal. By Lemma 4.6.31 below, we can recover Kur ·Kπ,n from its
topological closure in C by taking algebraic elements over K, and similarly for Kur ·Kϖ,n.
Hence Kur ·Kπ,n = Kur ·Kϖ,n as desired. We have proved that KLT is independent of π.

We now show that ψLT
K is independent of π. We write ψπ for the version of ψLT

K defined
using π. We only need to show that ψπ(ϖ) = ψϖ(ϖ) whenever π,ϖ are two uniformizers.
Indeed, if we know this, then for any uniformizer π′ we have ψπ(ϖ) = ϕπ′(ϖ), since they
are both equal to ϕϖ(ϖ). Keeping π and π′ fixed and letting ϖ vary, we conclude that
ψπ = ψπ′ .

We now show that ψπ(ϖ) = ψϖ(ϖ). Recall that ψϖ(ϖ) acts as the Frobenius on Kur

and acts trivially on Kϖ,n for all n. Write ϖ = πu. Now ψπ(ϖ) = ψπ(πu) also acts as
the Frobenius on Kur, and it sends x ∈ Λe,n to [u−1]Fe

(x). Thus it sends θ(x) ∈ Λf,n
to Frob(θ)([u−1]Fe

(x)), since it acts on the coefficients of θ, which are in K̆, as Frob. By
property (2) in Proposition 4.6.30, Frob(θ)([u−1]Fe(x)) = θ(x). Thus ψπ(ϖ) fixes θ(x) for
every x ∈ Λe,n. Since Λf,n = θ(Λe,n), we see that ψπ(ϖ) fixes Λf,n. Hence ψπ(ϖ) acts
trivially on Kϖ,n for all n. □

Lemma 4.6.31. Let L be an intermediate extension of K/K such that ord(L×) = 1
eZ ⊂ Q

for some e ∈ Z≥1. Then L is algebraically closed inside its completion L̂.

Remark 4.6.32. If L/K is finite, then L = L̂, and there is nothing to prove.

Proof. Suppose not. Then there is a non-trivial finite extension L1/L inside L̂. By our
assumption, the canonical absolute value on L is a discrete valuation. Hence we have (see
[Ser79, §II.3, Thm. 1 (iii)], cf. Fact 1.4.3)

L1 ⊗L L̂ ∼=
∏
w

L1,w

where w runs over places of L1 over the canonical place of L. Every such w must be over
the canonical place of K. Since K is complete and L1 is algebraic over K, there is only one
such w. We conclude that [L1,w : L̂] = [L1 : L]. This is by hypothesis > 1, so L̂ is a proper
closed subset of L1,w. In particular, L is not dense in L1 for the topology on L1 defined

by w. This topology on L1 is just the subspace topology L1 ⊂ L̂, and L is dense in L̂, a
contradiction. □
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Remark 4.6.33. In Lemma 4.6.31, we crucially used that L is algebraic over a complete
discretely valued field. For instance Q is not algebraically closed inside its p-adic completion
Qp.

Theorem 4.6.34. Assume Theorem 4.5.1, and let ψK be a local Artin map as in that
theorem. The following statements hold.

(1) (Local Kronecker–Weber.) We have Kab = KLT.
(2) (Explicit formula for the local Artin map.) We have ψK = ψLT

K . (Here both maps
have the same target Gal(Kab/K) = Gal(KLT/K).) In particular, ψK is unique.

(3) The Local Existence Theorem (Theorem 4.5.3) holds.

Lemma 4.6.35. Assume Theorem 4.5.1. Then for finite abelian extensions L/K and L′/K
in Kab, we have L ⊂ L′ if and only if NL/K(L×) ⊃ NL′/K(L′,×).

Proof. The same as the proof of Corollary 4.2.8. □

Lemma 4.6.36. Assume Theorem 4.5.1. The composition of ψK : K× → Gab
K with the

restriction map Gab
K → Gal(KLT/K) is equal to ψLT

K .

Proof. It suffices to show that the two maps send every uniformizer π in K to the same
image. We have KLT = Kur ·Kπ, so it suffices to show that ψK(π)|Kur = ψLT

K (π)|Kur and
ψK(π)|Kπ = ψLT

K (π)|Kπ . In other words, we need to show that ψK(π) acts on every finite
unramified extension L/K as the Frobenius, and acts trivially on Kπ,n for every n ≥ 1. The
first property is condition (1) in Theorem 4.5.1. The second property follows from condition
(2) in Theorem 4.5.1 and the fact that π ∈ NKπ,n/K(K×

π,n) (Theorem 4.6.25 (3)). □

For r ∈ Z≥1, let Kr/K be the degree r unramified extension. For a uniformizer π ∈ K
and r, n ∈ Z≥1, let Nπ,r,n := πrZ × UnK ⊂ K×. Let Kπ,r,n := Kr ·Kπ,n.

Lemma 4.6.37. Assume Theorem 4.5.1. We have NKπ,r,n/K(K×
π,r,n) = Nπ,r,n.

Proof. By the definition of ψLT
K , Nπ,r,n is contained in the kernel of

K× ψLT
K−−→ Gal(KLT/K)→ Gal(Kπ,r,n/K).

By Lemma 4.6.36, this kernel is equal to the kernel of ψKπ,r,n/K . By Theorem 4.5.1 (2), the

latter kernel is equal to NKπ,r,n/K(K×
π,r,n). Thus we have Nπ,r,n ⊂ NKπ,r,n/K(K×

π,r,n). To

prove that they are equal, it suffices to show that the have the same finite index in K×. By
Theorem 4.5.1 (2), the index of NKπ,r,n/K(K×

π,r,n) in K
× is equal to [Kπ,r,n : K], and this

is equal to r(q − 1)qn−1 by Theorem 4.6.25. Clearly the index of Nπ,r,n in K× is also this
number, as desired. □

Proof of Theorem 4.6.34. Let π be a uniformizer inK. For part (1), let L/K be an arbitrary
finite abelian extension. We need to show that L is contained in Kπ,r,n for suitable r, n. By
Lemmas 4.6.35 and 4.6.37, it suffices to show that NL/K(L×) contains Nπ,r,n for suitable

r, n. By Theorem 4.5.1 (2), NL/K(L×) is a finite index open subgroup of K×. It is easy

to see that every finite index open subgroup of K× contains Nπ,r,n for suitable r, n. This
proves part (1).

Part (2) follows from part (1) and Lemma 4.6.36.
For part (3), we need to show that a subgroup of K× is finite index and open if and only if

it is of the form NL/K(L×) for some finite abelian extension L/K. The “if” part follows from

Theorem 4.5.1 (2). We now prove the “only if” part. Let U ⊂ K× be a finite index open
subgroup. Then, as we mentioned earlier, U contains Nπ,r,n for suitable r, n. By Theorem
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4.5.1 (2) and Lemma 4.6.37, ψK induces an isomorphism K×/Nπ,r,n
∼−→ Gal(Kπ,r,n/K).

Let H be the image of U/Nπ,r,n under this isomorphism. Let L = KH
π,r,n. Then L/K is a

finite abelian extension, and clearly kerψL/K = U . By Theorem 4.5.1 (2), this implies that

U = NL/K(L×). □

4.7. Ideal theoretic formulation of global class field theory. Let K be a global field.
For simplicity, we shall assume that K is a number field, and ignore the global function field
case.

Definition 4.7.1. A modulus of K is a formal finite product ve11 · · · venn with vi ∈ VK and
ei ∈ Z≥1, satisfying the following conditions:

• No vi is a complex place.
• If vi is a real place, then ei = 1.

Sometimes we also allow ei to be 0, with the understanding that in that case vi does not
really appear in the modulus. If m,m′ are two moduli of K, we define the obvious notion of
divisibility m|m′. If a place v appears in m, we also write v|m. In this case, we shall denote
by ev the exponent of v in m (when no confusion arises).

Definition 4.7.2. Let m be a modulus. Define the following subgroup of A×
K :

Um =
∏

v∈VK,∞,v∤m

K×
v ×

∏
v∈VK,∞,v|m

Kv,>0 ×
∏

v∈VK,f ,v∤m

O×
Kv
×

∏
v∈VK,f ,v|m

UevKv
.

Clearly Um is an open subgroup of A×
K . If m|m′, then Um ⊃ Um′ .

Exercise 4.7.3. Every open subgroup of A×
K contains Um for some modulus m.

Definition 4.7.4. Let m be a modulus.

(1) Let I
(m)
K be the group of fractional ideals ofK which are coprime to m, i.e., fractional

ideals of the form pn1
1 · · · p

nk

k where pi are prime ideals of OK , ni ∈ Z−{0}, and none

of pi appears in m. More formally, I
(m)
K is the free abelian group Z[v ∈ VK,f , v ∤ m]

generated by the finite places of K not dividing m.
(2) Let K×

(m) be the multiplicative group consisting of x ∈ K× such that for every

archimedean place v|m we have x ∈ Kv,>0 (here Kv = R) and for every non-
archimedean place v|m we have x ∈ UevKv

= 1 + mevKv
. Here ev ≥ 1 is the exponent

of v in m.

Note that if x ∈ K×
(m), then the principal fractional ideal xOK lies in I

(m)
K since x ∈ O×

Kv

for every non-archimedean v|m. Thus we obtain a group homomorphism K×
(m) → I

(m)
K

sending x to xOK . If we identify I
(m)
K with Z[v ∈ VK,f , v ∤ m], then this homomorphism

sends x to ∑
v∈VK,f ,v∤m

ordv(x)[v].

Definition 4.7.5. The ray class group with respect to a modulus m is the cokernel of the

map K×
(m) → I

(m)
K . It is denoted by Clm(K).

Example 4.7.6. If m = 1 is trivial, then Clm(K) is the usual class group Cl(K) of the
number field K.
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Example 4.7.7. Let K = Q, and m = ∞pe11 · · · penn , where pi are prime numbers and
ei ∈ Z≥1. Let m = pe11 · · · penn . Since Cl(Q) = 1, every fractional ideal in Q is principal.

Thus every fractional ideal has a unique positive rational generator. Hence the group I
(m)
Q

is identified with the group of positive rational numbers of the form a/b where a, b ∈ Z≥1

are both coprime m. There is a natural surjective homomorphism I
(m)
Q → (Z/mZ)× sending

a/b as above to āb̄−1. The kernel of this homomorphism consists of a/b such that a/b ∈ R>0

and such that for each 1 ≤ i ≤ n we have a/b ∈ 1 + peii Zp ⊂ Q×
p . This is exactly Q×

(m).

Hence we have a short exact sequence

1→ Q×
(m) → ImQ → (Z/mZ)×.

In particular, Clm(Q) is canonically identified with (Z/mZ)×.
Similarly, if m = m, then Clm(Q) is canonically identified with (Z/mZ)×/{±1}.

We now need to relate the ray class group to ideles.

Definition 4.7.8. Let m be a modulus. Define the following subgroup of A×
K :

Vm =
∏

v∈VK,∞,v∤m

K×
v ×

∏
v∈VK,∞,v|m

Kv,>0 ×
′∏

v∈VK,f ,v∤m

K×
v ×

∏
v∈VK,f ,v|m

UevKv
.

Here the restricted product is with respect to the O×
Kv

.

Clearly projection to the components indexed by v ∈ VK,f , v ∤ m induces an isomorphism

Vm/Um
∼−→

′∏
v∈VK,f ,v∤m

K×
v /O×

Kv
.

The maps ordv induce an isomorphism from the right hand side to
⊕

v∈VK,f ,v∤m Z ∼= I
(m)
K .

Hence we obtain a canonical isomorphism

Vm/UmK
×
(m)

∼−→ Clm(K).

Here, on the left hand side, K×
(m) is a subgroup of K×, which embeds diagonally into A×

K as

usual. It is easy to see that Vm ∩K× = K×
(m), so the quotient makes sense.

On the other hand, since Vm ∩K× = K×
(m), we have an injection

Vm/UmK
×
(m) ↪→ A×

K/K
×Um.

We claim that this is a surjection. Indeed, if we let S = VK,∞ ∪ {v ∈ VK,f | v ∤ m}, then by
Lemma 4.2.6, (ASK)× has dense image in CK = A×

K/K
×. Since Um is open in A×

K , (ASK)×

surjects onto A×
K/K

×Um. Clearly (ASK)× ⊂ Vm, so the claim is proved.
In conclusion, we have canonical isomorphisms

Vm/UmK
×
(m)

∼−→ Clm(K).

and

Vm/UmK
×
(m)

∼−→ A×
K/K

×Um.

We write Ūm for the image of Um in CK = A×
K/K

×. Composing the above two isomorphisms
we obtain a canonical isomorphism

CK/Ūm
∼−→ Clm(K).
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Remark 4.7.9. Note that for a general element x = (xv)v ∈ A×
K , there is no direct formula

for its image under A×
K → CK/Ūm

∼−→ Clm(K). Nevertheless, by our previous argument,

the isomorphism CK/Ūm
∼−→ Clm(K) is characterized as follows. Let S = VK,∞ ∪ {v ∈

VK,f | v ∤ m} as before. Then the natural map (ASK)× → CK/Ūm is surjective, and the
composite map

(ASK)× → CK/Ūm
∼−→ Clm(K)

sends (xv)v/∈S to
∑
v/∈S ordv(xv)[v].

Corollary 4.7.10. For any modulus m, the group Clm(K) is finite. If m|m′, then the
natural map Clm′(K) → Clm(K) induced by the inclusion Z[v ∈ VK,f , v ∤ m′] ↪→ Z[v ∈
VK,f , v ∤ m], [v] 7→ [v], is surjective.

Proof. Since Ūm is an open subgroup of CK , it is of finite index in CK by Exercise 4.3.2.
Alternatively, clearly the idele norm ∥ · ∥ : A×

K → R>0 is surjective on Um, hence the
compact C1

K surjects onto CK/Ūm. But the latter is discrete since Ūm is open in CK , so it
is finite. The surjectivity follows from Remark 4.7.9 and the surjectivity of the natural map
CK/Ūm′ → CK/Ūm. □

By Corollary 4.2.8, we have a bijection between finite abelian extensions of K in Kab and
finite index open subgroups of CK . Let Km/K be the finite abelian extension corresponding
to Ūm ⊂ CK . This is called the ray class field corresponding to m. By Theorem 4.2.1, the
Artin map induces an isomorphism

ψKm/K : CK/Ūm
∼−→ Gal(Km/K).

By identifying the left hand side with Clm(K), we also regard this as an isomorphism

ψKm/K : Clm(K)
∼−→ Gal(Km/K).

Proposition 4.7.11. The following statements hold.

(1) (Abstract Kronecker–Weber.) We have Kab =
⋃

mKm, where m runs through all
moduli.

(2) Let m be a modulus. For any v ∈ VK not dividing m, v is unramified in Km.
(If v is archimedean, this means that either v is complex or every place of Km

above v is real.) The Artin map Clm(K)
∼−→ Gal(Km/K) sends every [v], where

v ∈ VK,f , v ∤ m, to Frobv.
(3) If m|m′, then Km ⊂ Km′ . We have a commutative diagram

Clm′(K)

��

ψK
m′/K

∼
// Gal(Km′/K)

res

��
Clm(K)

ψKm/K

∼
// Gal(Km/K)

where the vertical arrow on the left is the natural map.
(4) For any two moduli m,m′, we have Km ∩ Km′ = Kgcd(m,m′). Here the gcd of two

moduli are defined in the obvious way.

Proof. (1) For any finite abelian extension L/K, the subgroup H = NL/K(CL) ⊂ CK is

open. Hence its preimage in A×
K is open, and it contains Um for some m by Exercise 4.7.3.

Then H contains Ūm, and so L is contained in Km since the bijection in Corollary 4.2.8 is
inclusion-reversing.
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(2) For v ∈ VK not dividing m, to show that v is unramified in Km we need to show that
the image of Kv,>0 in CK is contained in Ūm when v is archimedean and that the image of
O×
Kv

in CK is contained in Ūm when v is non-archimedean, in view of Theorem 4.2.1. This
follows directly from the definition of Um.

(3) Since Um ⊃ Um′ , we have Km ⊂ Km′ . By Remark 4.7.9, in the diagram

(AS′

K )× // //
� _

��

CK/Um′

��

∼ // Clm′(K)

��
(ASK)× // // CK/Um

∼ // Clm(K)

the outer square commutes. Here S = VK,∞ ∪ {v ∈ VK,f | v ∤ m}, S′ = VK,∞ ∪ {v ∈ VK,f |
v ∤ m′}, and the vertical arrow in the middle is induced by identity on CK . Since the first
horizontal map in each row is surjective, and since the left hand side square commutes, it
follows that the right hand side square commutes. The desired statement then follows.

(4) Let L1/K,L2/K be finite abelian extensions in Kab. Let L = L1 ∩ L2. Let Hi =
NLi/K(CLi

) and H = NL/K(CL). Since H = kerψL/K , Hi = kerψLi/K , and Gal(Kab/L) =

Gal(Kab/L1) · Gal(Kab/L2), we have H = H1 ·H2. By this general fact, for (4) it suffices
to prove that Ugcd(m,m′) = Um · Um′ . This can be checked directly from the definition. □

Let L/K be a finite abelian extension in Kab. By Proposition 4.7.11 (1) and (4), there
exists a unique minimal modulus m such that L ⊂ Km. Namely, m is the gcd of all moduli
n such that L ⊂ Kn. We call this m the conductor of L/K, and denote it by fL/K .

Proposition 4.7.12. A place of K divides fL/K if and only if it ramifies in L.

Proof. Let v be a place of K not dividing fL/K . Then by Proposition 4.7.11 (2), v is
unramified in KfL/K

. But L ⊂ KfL/K
, so v is unramified in L.

Conversely, suppose v is a place of K which is unramified in L. Let m be a modulus of
K such that L ⊂ Km. Then H := NL/K(CL) contains NKm/K(CKm

) = Ūm. By Theorem

4.2.1, H = kerψL/K and ψL/K kills the image of O×
Kv

(resp. K×
v ) in CK when v is non-

archimedean (resp. real), we know that H contains the image of O×
Kv

(resp. K×
v ) in CK .

Let n be the modulus obtained from m by deleting the power of v. Then Un is generated by
Um and the image of O×

Kv
(resp. K×

v ) in A×
K . Hence Un ⊂ H, and it follows that L ⊂ Kn.

Therefore fL/K divides n, and v does not divide fL/K . □

Definition 4.7.13. Let L/K be a finite abelian extension in Kab. A modulus m of K is
said to be admissible for L/K, if it satisfies the following two conditions:

(1) Every finite place v of K not dividing m is unramified in L.

(2) By (1), define the map I
(m)
K = Z[v ∈ VK,f , v ∤ m] → Gal(L/K), [v] 7→ Frobv. This

maps factors through Clm(K).

When this is the case, we call the map Clm(K)→ Gal(L/K) the Artin map.

This definition does not rely on any knowledge about class field theory. One can think
of this definition as an “explicit” relation between m and L/K.

Proposition 4.7.14. A modulus m is admissible for L/K if and only if L ⊂ Km.

Proof. Suppose L ⊂ Km. Then every finite place v not dividing m is unramified in Km by

Proposition 4.7.11 (2), and hence unramified in L. The map I
(m)
K → Gal(L/K), [v] 7→ Frobv
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factors as

I
(m)
K → Clm(K)

ψKm/K−−−−−→ Gal(Km/K)→ Gal(L/K).

Hence m is admissible for L/K.
Conversely, suppose m is admissible for L/K. Let n be a modulus of K such that m|n

and L ⊂ Kn. In particular, we also have Km ⊂ Kn. Consider the diagram

Cln(K)

��

∼
ψKn/K // Gal(Kn/K)

res

��
res

$$

Clm(K) ∼
ψKm/K //

f
,,

Gal(Km/K)

Gal(L/K)

Here the map f is the Artin map which exists since m is admissible for L/K. The left
upper square commutes. The outer diagram also commutes, as can be checked on each
generator [v] (with v ∈ VK,f , v ∤ n) of Cln(K). Since ψKn/K and ψKm/K are isomorphisms,
it follows that the restriction map Gal(Kn/K)→ Gal(L/K) factors through the restriction
map Gal(Kn/K)→ Gal(Km/K). By Galois theory, this means that L ⊂ Km. □

The following result characterizes the ray class field Km “explicitly”.

Corollary 4.7.15. Let m be a modulus of K. The extension Km/K is the unique finite
abelian extension L/K in Kab such that m is admissible for L/K and such that the Artin
map Clm(K)→ Gal(L/K) is an isomorphism.

Exercise 4.7.16. Let m be a modulus of Q of the form m =∞m, as in Example 4.7.7. Use
the above corollary to show that the ray class field corresponding to m is Q(ζm).

Definition 4.7.17. Let L/K be a finite abelian extension. Let m be a modulus of K.
Let NL/K(m) denote the subgroup of Clm(K) generated by elements of the form f(L/v)[v],
where v ∈ VK,f , v ∤ m, and f(L/v) = f(w/v) for any w ∈ VL above v.

Exercise 4.7.18. Let L/K be a finite abelian extension. The image of the composite map

CL
NL/K−−−−→ CK → CK/Ūm

∼= Clm(K)

is NL/K(m).

Proposition 4.7.19. Let L/K be a finite abelian extension. Let m be a modulus of K
admissible for L/K. Then the Artin map Clm(K) → Gal(L/K) is surjective with kernel
NL/K(m).

Proof. This directly follows from Theorem 4.2.1 and Exercise 4.7.18. □

We summarize what we have proved in the following theorem, which is the ideal theoretic
formulation of global class field theory.

Theorem 4.7.20. Let K be a number field. The following statements hold.

(1) (Reciprocity Law.) For every finite abelian extension L/K, there is a modulus m of
K which is admissible for L/K. The Artin map Clm(K)→ Gal(L/K) is surjective
with kernel NL/K(m).
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(2) (Existence Theorem.) For every modulus m, there is a unique finite abelian extension
Km/K such that m is admissible for Km and the Artin map Clm(K) → Gal(L/K)
is an isomorphism.

(3) (Abstract Kronecker–Weber.) We have Kab =
⋃

mKm. Moreover, a finite abelian
extension L/K in Kab is contained in Km if and only if m is admissible for L/K.

(4) Let L/K be a finite abelian extension. The conductor fL/K , defined as the gcd of all
admissible moduli for L/K, is divisible precisely by the places of K which ramify in
L.

5. Applications

5.1. Hilbert class field. Let K be a number field. Let H/K be the ray class field cor-
responding to the trivial modulus. This is called the Hilbert class field of K. We have a
canonical isomorphism Cl(K)

∼−→ Gal(H/K). In particular, the degree [H : K] is equal to
the class number hK = |Cl(K)| of K.

Similarly, let H+/K be the ray class field corresponding to the modulus which is the
product of all real places of K. This is called the narrow Hilbert class field of K. The
ray class group in this case is the so-called narrow class group Cl(K)+ of K, namely the
quotient of the group of all fractional ideals by the group of principal ideals generated by
x ∈ K× such that for every embedding K ↪→ R the image of x is positive. (Such elements

x are called totally positive.) We have a canonical isomorphism Cl(K)+
∼−→ Gal(H+/K).

Clearly H is contained in every ray class field of K, and in particular H ⊂ H+.
The characterizations in the next proposition are the “original” definitions of Hilbert

class field and narrow Hilbert class field.

Proposition 5.1.1. The Hilbert class field H of K is the unique maximal abelian extension
of K which is unramified at all places of K. The narrow Hilbert class field H+ of K is the
unique maximal abelian extension of K which is unramified at all finite places of K.

Proof. Clearly H (resp. H+) is unramified over all (resp. all finite) places of K. If L/K
is another such finite abelian extension, then fL/K is trivial (resp. a product of some real
places) since it is divisible precisely by the places which ramify in L. Hence KfL/K

= H

(resp. KfL/K
⊂ H+). Since L ⊂ KfL/K

, we have L ⊂ H (resp. L ⊂ H+). □

The Hilbert class field can be used to prove the following interesting statement about
class numbers.

Theorem 5.1.2. Let L/K be a finite extension of number fields. Assume that there is a
place v of K which is totally ramified in L, i.e., there is a unique place w of L above v, and
Lw/Kv is totally ramified (for v archimedean this means Lw/Kv is C/R, and in particular
[L : K] = 2). Then hK divides hL.

Proof. Fix an embedding Lab ↪→ K. Let HK be the Hilbert class field of K, and HL

the Hilbert class field of L. All the fields K,L,HK , HL are inside K. Since HK/K is
finite abelian and everywhere unramified, HK · L/L is also finite abelian and everywhere
unramified. Hence HK ·L ⊂ HL by the characterization of HL. It follows that hL = [HL : L]
is divisible by [HK · L : L]. We now claim that [HK · L : L] = hK .

The place v is both unramified and totally ramified in HK ∩ L, so HK ∩ L = K. Write
HK = K(α), and let f(X) ∈ K[X] be the minimal polynomial of α over K. Then deg f =
[HK : K] = hK . To prove the claim it suffices to show that f is irreducible over L. Now f
splits over HK since HK/K is Galois, and so every factor h of f in L[X] is the product of
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some linear factors of f in HK [X]. Hence h ∈ (HK ∩L)[X] = K[X], and this proves that f
is still irreducible over L. □

For any finite extension of number fields L/K, there is a natural map Cl(K) → Cl(L)
sending the class of a fractional ideal a to the class of the fractional ideal aOL.
Exercise 5.1.3. If we canonically identify Cl(K) as CK/Ū1 and Cl(L) as CL/Ū1 (where
1 stands for the trivial modulus), then the natural map Cl(K) → Cl(L) is induced by the
natural map CK ↪→ CL (which is induced by A×

K ↪→ A×
L ).

Theorem 5.1.4 (Artin’s Principal Ideal Theorem). Let H be the Hilbert class field of K.
Then the natural map Cl(K) → Cl(H) is trivial. In other words, for every non-zero ideal
a ⊂ OK , aOH is a principal ideal of OH .

For the proof, we need to recall the transfer functoriality of the global Artin map. In
Theorem 4.4.4, this was stated with infinite Galois groups. We now state a version involving
finite Galois groups, which immediately follows from Theorem 4.4.4.

Let M/K be a finite Galois extension in K. Let L/K be a finite extension in M . Let
K1/K be the maximal abelian subextension of M/K, and let L1/L be the maximal abelian
subextension of M/L. Thus Gal(K1/K) = Gal(M/K)ab, and Gal(L1/L) = Gal(M/L)ab.
Since Gal(M/L) is a subgroup of Gal(M/K), we have the transfer map

V : Gal(K1/K) = Gal(M/K)ab → Gal(L1/L) = Gal(M/L)ab.

The transfer functoriality now states that the following diagram commutes:

CL
ψL1/L // Gal(L1/L)

CK
?�

OO

ψK1/K // Gal(K1/K)

V

OO

Another ingredient needed in the proof of Theorem 5.1.4 is the following result in group
theory, called the “Principal Ideal Theorem in group theory”. We take it as a black box.
For references, see [Mil20, V.3.19].

Theorem 5.1.5. Let G be a finite group, with derived subgroup Gder. Then the transfer
map Gab → (Gder)

ab is trivial.

Proof of Theorem 5.1.4. Let H ′ be the Hilbert class field of H, taken inside K. Then H ′ is
the maximal finite abelian everywhere unramified extension ofH inK. SinceH/K is Galois,
every σ ∈ Gal(K/K) stabilizes H. Then by the characterization of H ′, σ also stabilizes H ′.
Hence H ′/K is Galois. Every subextension L/K in H ′ is everywhere unramified. Hence by
the characterization of H, we know that H is the maximal abelian extension of K inside
H ′/K. By the above discussion on transfer functoriality applied to M = H ′, L = H,K1 =
H,L1 = H ′, and by Exercise 5.1.3, we have the following commutative diagram:

Cl(L)
∼ // Gal(H ′/H)

Cl(K)

OO

∼ // Gal(H/K)

V

OO

It remains to show that V : Gal(H/K) → Gal(H ′/H) is trivial. Since Gal(H/K) =
Gal(H ′/K)ab, we have Gal(H ′/H) = Gal(H ′/K)der. Thus V being trivial is a special
case of Theorem 5.1.5. □
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5.2. Weber L-functions. Let K be a number field. The Dedekind zeta function for K is
defined as

ζK(s) =
∑

a⊂OK

(Na)−s.

Here a runs over non-zero integral ideals, and Na := [OK : a]. The variable s is a complex
variable. We shall see that the infinite series converges to an analytic function on Re(s) > 1,
has meromorphic continuation to Re(s) > 1 − 1

[K:Q] , and is analytic there except a simple

pole at s = 1. By the unique factorization into prime ideals, we have

ζK(s) =
∏

p prime

1

1− (Np)−s
, Re(s) > 1.

We consider the following more refined version.

Definition 5.2.1. Let m be a modulus, and let K ∈ Clm(K). Define the partial zeta function

ζK,m(s,K) =
∑

a⊂OK ,a∈K

(Na)−s.

Here a runs over the integral ideals which are coprime to m and whose class in Clm(K) is K.

Theorem 5.2.2. The series defining ζK,m(s,K) converges to an analytic function on Re(s) >
1. Moreover, ζK,m(s,K) has meromorphic continuation to Re(s) > 1− 1

[K:Q] , and is analytic

there except a simple pole at s = 1. The residue at s = 1 is a positive real number depending
only on m, not on K. Denote the residue by ρm.

We postpone the proof. Later we will also give an explicit formula for ρm.
The relationship between the partial zeta functions and the Dedekind zeta function is

that when m = 1, we have

ζK(s) =
∑

K∈Cl(K)

ζK,1(s,K).

In particular, Theorem 5.2.2 implies the properties of ζK(s) stated above, and moreover the
residue of ζK(s) at s = 1 is equal to hK · ρ1.

Remark 5.2.3. In fact, ζK,m(s,K) (and hence ζK(s)) has meromorphic continuation to the
whole complex plane and satisfies a functional equation. We will not prove it in this course.

Recall that for a finite abelian group G, its Pontryagin dual is the abelian group of
characters G∨ = Hom(G,C×) = Hom(G,S1). By the classification of finite abelian groups,
it is easy to see that G∨ is non-canonically isomorphic to G. The canonical double dual
map G→ (G∨)∨ is an isomorphism. We have∑

g∈G
χ(g) =

{
|G|, χ = 1 ∈ G∨,

0, χ ∈ G∨ − {1};

∑
χ∈G∨

χ(g) =

{
|G|, g = 1 ∈ G,
0, g ∈ G− {1}.

Definition 5.2.4. For χ ∈ Clm(K)∨, define the Weber L-function

LK,m(s, χ) =
∑

a⊂OK ,coprime to m

χ(a)(Na)−s =
∑

K∈Clm(K)

χ(K)ζK,m(s,K).

Corollary 5.2.5. The function LK,m(s, χ) is meromorphic on Re(s) > 1 − 1
[K:Q] , and is

analytic away from s = 1. If χ ̸= 1, then it is analytic at s = 1. If χ = 1, then it has a
simple pole at s = 1, with residue |Clm(K)| · ρm.
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Proof. This follows from Theorem 5.2.2 as the residue at s = 1 is given by ρm
∑

K∈Clm(K) χ(K).

□

Example 5.2.6. Again by the unique factorization into prime ideals and the multiplicativity
of χ, we have

LK,m(s, χ) =
∏

p prime,p∤m

1

1− χ(p)(Np)−s
, Re(s) > 1.

In particular,

LK,m(s, 1) =
∑

K∈Clm(K)

ζK,m(s,K) =
∏

p prime,p∤m

1

1− (Np)−s
= ζK(s)

∏
p prime,p|m

(1− (Np)−s).

The function
∏

p prime,p|m(1 − (Np)−s) is of course an entire function on C and its zeros

are well understood. Hence the analytic property of LK,m(s, 1) is closely related to that of
ζK(s). For instance, comparing the residues at s = 1 we obtain

(5.1) |Clm(K)| · ρm = hK · ρ1 ·
∏

p prime,p|m

(1− (Np)−1).

Example 5.2.7. Let m = ∞m be a modulus for Q, as in Example 4.7.7. Then Clm(G) =
(Z/mZ)×. For a character χ on this group, the associated Weber L-function is the classical
Dirichlet L-function

L(s, χ) =
∑

n≥1,(n,m)=1

χ(n)n−s =
∏
p,p∤m

1

1− χ(p)p−s
.

The following result is where we use class field theory.

Lemma 5.2.8. Let E/K be a finite abelian extension. Let m be a modulus admissible for
E/K. Let n be the modulus of E that is the product of all the finite places of E which divide
places of K appearing in m. Then

LE,n(s, 1) =
∏

χ∈Gal(E/K)∨

LK,m(s, χ̃).

Here χ̃ is the composition of χ : Gal(E/K)→ C× with the Artin map Clm(K)→ Gal(E/K).

Proof. A prime ideal of E is coprime to n if and only if it is over a prime ideal of K coprime
to m. Let p be a prime ideal of K coprime to m. Since m is admissible for E/K, p is
unramified in E. Thus pOE = q1 · · · qg where the qi are distinct prime ideals of E. It
suffices to check that

g∏
i=1

1

1− (Nqi)−s
=

∏
χ∈Gal(E/K)∨

1

1− χ̃(p)(Np)−s
.(5.2)

We shall proceed somewhat formally and ignore the necessary analytic justifications. Taking
the logarithm of the left hand side, we obtain

g∑
i=1

∞∑
n=1

(Nqi)
−sn/n = g

∞∑
n=1

yfn/n,

where y = (Np)−s, and f = f(qi/p) = [E : K]/g. The logarithm of the right hand side of
(5.2) is ∑

χ∈Gal(E/K)∨

∞∑
n=1

χ̃(p)nyn/n =

∞∑
n=1

(
∑

χ∈Gal(E/K)∨

µn(χ))y
n/n.
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Here µn is the character on Gal(E/K)∨ sending χ to χ̃(p)n. Note that χ̃(p)n = χ(Frobp)
n,

and Frobp has order f in Gal(E/K). Thus µn is trivial precisely when n is divisible by f .
Thus the above is equal to∑

n≥1, f |n

[E : K]yn/n =

∞∑
n=1

[E : K]yfn/fn = g

∞∑
n=1

yfn/n,

as desired. □

Theorem 5.2.9. Let χ ∈ Clm(K)∨ be non-trivial. Then LK,m(s, χ) is analytic and non-zero
at s = 1.

Proof. In Lemma 5.2.8, take E to be the ray class field Km. Then we get

LE,n(s, 1) =
∏

χ∈Clm(K)∨

LK,m(s, χ).

For χ ̸= 1, each LK,m(s, χ) is analytic at s = 1. Moreover both LE,n(s, 1) and LK,m(s, 1)
have a simple pole at s = 1. Hence LK,m(s, χ) must be non-zero at s = 1 for non-trivial χ,
because otherwise the possible zeros will cancel with the pole of LK,m(s, 1). □

5.3. Digression: analytic properties of the partial zeta function. We make an an-
alytic digression in order to prove Theorem 5.2.2. We will also give an explicit formula for
the residue ρm.

We first need some general facts about Dirichlet series, namely series of the form

f(s) =

∞∑
n=1

ann
−s.

Here an are fixed complex numbers, and s is a complex variable.

Lemma 5.3.1. If f(s) converges for some s0 ∈ C, then it converges for all s such that
Re(s) > Re(s0), and the convergence is uniform on any compact subset of this region.

Proof. We shall use the following form of summation by parts: If {xn}n≥1, {yn}n≥1 are two

sequences, and if XN =
∑N
n=1 xn, then for N > M ≥ 1 we have

N∑
n=M+1

xnyn = XNyN −XMyM+1 +

N−1∑
n=M+1

Xn(yn − yn+1).

Let PN (s) =
∑N
n=1 ann

−s. Suppose Re(s) > Re(s0). We need to show that {PN (s)}N is a
Cauchy sequence. For N > M , we apply summation by parts to

PN (s)− PM (s) =

N∑
n=M+1

an
ns0

1

ns−s0
.

Taking xn = an/n
s0 and yn = 1/ns−s0 , we get

(5.3) PN (s)− PM (s) =
PN (s0)

Ns−s0
− PM (s0)

(M + 1)s−s0
+

N−1∑
n=M+1

Pn(s0)

(
1

ns−s0
− 1

(n+ 1)s−s0

)

=
PN (s0)

Ns−s0
− PM (s0)

(M + 1)s−s0
+

N−1∑
n=M+1

Pn(s0)(s− s0)
∫ n+1

n

dx

xs−s0+1
.
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The terms ∣∣∣∣PN (s0)

Ns−s0

∣∣∣∣ = |PN (s0)|
NRe(s−s0)

and

∣∣∣∣ PM (s0)

(M + 1)s−s0

∣∣∣∣ = |PM (s0)|
(M + 1)Re(s−s0)

tend to zero as N,M → ∞, and the convergence is uniform if s stays in a compact set in
{Re(s) > Re(s0)}. If s stays in such a compact set, then Re(s − s0) ≥ δ for some δ > 0,
and |s − s0| ≤ A for some A > 0. Let C = A · supn≥1 |Pn(s0)|, which is finite since f(s0)
converges. Then∣∣∣∣∣

N−1∑
n=M+1

Pn(s0)(s− s0)
∫ n+1

n

dx

xs−s0+1

∣∣∣∣∣ ≤ C
N−1∑

n=M+1

∫ n+1

n

dx

x1+δ
≤ C

∫ +∞

M+1

dx

x1+δ
.

This tends to zero as N,M → ∞, and the convergence is uniform on the given compact
set. □

Define σ0 ∈ [−∞,+∞] to be inf{Re(s) | f(s) converges}. This is called the abscissa of
convergence of the Dirichlet series f(s). Then f(s) converges for all Re(s) > σ0 and diverges
for all Re(s) < σ0. The convergence in Re(s) > σ0 is uniform on compact sets, and therefore
f(s) is an analytic function on this region.

Lemma 5.3.2. Let An =
∑n
k=1 an. Suppose there exist C > 0 and σ1 ≥ 0 such that

|An| ≤ Cnσ1 for all n, then f(s) =
∑∞
n=1 ann

−s converges for Re(s) > σ1.

Proof. In (5.3), take s0 = 0. Note that PN (s0) = AN . Then we get

PN (s)− PM (s) =
AN
Ns
− AM

(M + 1)s
+

N−1∑
n=M+1

Ans

∫ n+1

n

dx

xs+1
.

The terms ∣∣∣∣ANNs

∣∣∣∣ = |AN |
NRe(s)

and

∣∣∣∣ AM
(M + 1)s

∣∣∣∣ = |AM |
(M + 1)Re(s)

tend to zero as N,M →∞, when Re(s) > σ1. We have∣∣∣∣∣
N−1∑

n=M+1

Ans

∫ n+1

n

dx

xs+1

∣∣∣∣∣ ≤
N−1∑

n=M+1

|s|C
∫ n+1

n

nσ1

xσ1

1

x1+Re(s)−σ1
dx

≤ |s|C
N−1∑

n=M+1

∫ n+1

n

dx

x1+Re(s)−σ1
≤ |s|C

∫ +∞

M+1

dx

x1+Re(s)−σ1
.

This tends to zero as N,M →∞, when Re(s) > σ1. □

Remark 5.3.3. Suppose that f(s) =
∑
n≥1 ann

−s converges at some s0. Then ann
−s0 → 0,

so an = o(nRe(s0)). Then by comparing with the series
∑
n≥1 n

−(1+δ) (with δ > 0 arbitrary),

we know that f(s) converges absolutely for Re(s) ≥ Re(s)+1+ δ. Thus if σ0 is the abscissa
of convergence, then f(s) converges absolutely for Re(s) ≥ σ0 + 1. In practice, suppose
we want to check some algebraic relation between several Dirichlet series on Re(s) > σ0
where σ0 is the maximum of their abscissa of convergence. Since they are all analytic on
this region, it suffices to check the relation on Re(s) > σ0+1 (by the uniqueness of analytic
continuation), and so we may assume that the Dirichlet series in question are all absolutely
convergent. This allows us to justify operations such as reordering the infinite sums.
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Example 5.3.4. The Riemann zeta function ζ(s) =
∑
n≥1 n

−s, as a Dirichlet series, con-

verges for Re(s) > 1, since the partial sums of the coefficients An = n. It diverges for s = 1,
so the abscissa of convergence is 1.

For an integer r ≥ 2, consider ζr(s) =
∑
n≥1 ann

−s, where

an =

{
1, r ∤ n;
1− r, r|n.

.

Then the partial sums of coefficients are bounded, so ζr(s) converges for Re(s) > 0. By
Remark 5.3.3, we may reorder the summation and get

(1− 1

rs−1
)ζ(s) =

∑
n

n−s − r
∑
n

(nr)−s =
∑
n

n−s − r
∑
n

bnn
−s = ζr(s),

where bn = 0 for r ∤ n and bn = 1 for r|n. Hence

ζ(s) = (1− 1

rs−1
)−1ζr(s)

has meromorphic continuation to Re(s) > 0. The only possible poles of ζ(s) in this region
are at s satisfying rs−1 = 1. Since this holds for all r ∈ Z≥1, we must have s = 1. Thus the
only possible pole of ζ(s) in Re(s) > 0 is at s = 1. By comparing with the integral

∫
x−sdx,

for real s > 1 we have

ζ(s) ≥
∫ +∞

1

x−sdx =
1

s− 1
,

and

ζ(s)− 1 ≤
∫ +∞

1

x−sdx =
1

s− 1
.

Hence

1 ≤ (s− 1)ζ(s) ≤ s.
It follows that ζ(s) has a simple pole at s = 1 with residue 1.

Theorem 5.3.5. Consider a Dirichlet series f(s) =
∑
n≥1 ann

−s with partial sums of

coefficients An =
∑n
k=1 ak. Suppose there exist ρ ∈ C, C > 0, 0 ≤ σ1 < 1, such that

|An − ρn| ≤ Cnσ1 .

In other words, An = ρn + O(nσ1). Then f(s) converges for Re(s) > 1, has meromorphic
continuation to Re(s) > σ1, and the only possible pole in this region is a simple at s = 1.
The residue at s = 1 is ρ.

Proof. Apply Lemma 5.3.2 to the Dirichlet series f(s)− ρζ(s), and use the fact that ζ(s) is
meromorphic on Re(s) > 0 with a simple pole at s = 1 with residue 1. □

We now come to the partial zeta functions. Let K be a number field, m a modulus,
K ∈ Clm(K). Then ζK,m(s,K) is given by the Dirichlet series

∑
n≥1 ann

−s where an is
the number of integral ideals a ⊂ OK such that a ∈ K and Na = n. The partial sum of
coefficients is thus given by An = the number of integral ideals a ⊂ OK such that a ∈ K
and Na ≤ n. We denote this number by j(K, n).

In order to apply Theorem 5.3.5, we need to find an asymptotic formula for j(K, n) of
the form j(K, n) = ρn+O(nσ1). We will use the following lemma for this.
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Lemma 5.3.6. Let D be a (measurable) subset in RN such that ∂D is (N − 1)-Lipschitz
parametrizable, in the sense that ∂D is a finite union of images of Lipschitz functions
RN−1 → RN (i.e., functions satisfying ∥ϕ(x) − ϕ(y)∥ ≤ C · ∥x − y∥). Let L be a lattice in
RN , and let x0 ∈ RN . Then

#
(
tD ∩ (x0 + L)

)
=

vol(D)

vol(L)
tN +O(tN−1), R ∋ t→ +∞.

Here vol(D) is the N -dimensional Lebesgue measure of D, and vol(L) denotes the volume
of a fundamental parallelepiped for L.

Proof. See [Lan94, VI.2, Thm. 2]. □

Let N = [K : Q]. Let r1 be the number of real places and r2 be the number of complex
places. Consider

B :=
∏

v∈VK,∞

Kv
∼= Rr1 × Cr2 ∼= Rr1+2r2 = RN .

Inside it we have the open subset

J =
∏

v∈VK,∞,v|m

Kv,>0 ×
∏

v∈VK,∞,v∤m

K×
v .

Then J is a group under multiplication. We embed K diagonally into B as usual. Then
K×

(m) is contained in J . Let Gm := K×
(m) ∩ O

×
K . Since the embedding Gm → J is a group

homomorphism, Gm acts on J by translation. Since Gm is clearly a finite index subgroup of
O×
K , and the latter is finitely generated of rank r = r1 + r2 − 1 by Dirichlet’s unit theorem,

we know that Gm is finitely generated of rank r. Let V be a free abelian subgroup of rank
r inside Gm such that Gm = V ⊕ (torsion). Let wm = [Gm : V ] = the size of the torsion
subgroup of Gm. Define

c : B → R, (xv)v∈VK,∞ 7→
∏

v∈VK,∞

∥xv∥v.

Lemma 5.3.7. The action of V on J has a fundamental domain E with the following
properties:

(1) For any t > 0, we have tE = E. Here scalar multiplication by t is with respect to
the vector space structure on B.

(2) For any t > 0, define E(t) = {x ∈ E | c(x) ≤ t}. Thus by (1) we have E(t) =
t1/NE(1). Let D = E(1). Then ∂D is (N − 1)-Lipschitz parametrizable.

(3) The N -dimensional volume of D inside B ∼= RN is

2r1−s(m)πr2Rm,

where s(m) is the number of real places of K dividing m, and Rm is the m-regulator
defined as follows. Choose a set of free generators {ϵ1, . . . , ϵr} of V . Choose distinct
v1, . . . , vr ∈ VK,∞ (which has r + 1 = r1 + r2 elements). Then

Rm :=
∣∣det(log ∥ϵi∥vj )1≤i,j≤r∣∣

Sketch of proof. For details see [Lan94, VI.3, Lem. 1, Pf. of Thm. 3]. Consider the map

g : J →
∏

v∈VK,∞

R, x = (xv)v 7→
(
log

∥xv∥v
c(x)Nv/N

)
v
,

where Nv is 1 if v is real and 2 if v is complex. Note that g restricted to V ⊂ J is induced
by the usual embedding O×

K →
∏
v∈VK,∞

R, x = (xv)v 7→ (log ∥xv∥v)v, which is used in the
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usual proof of Dirichlet’s unit theorem. Thus as in that proof, we know that g(V ) is a full
rank lattice in H, the hyperplane in

∏
v∈VK,∞

R defined by the sum of the coordinates being

zero. Moreover, note that g(J) ⊂ H. Let F ⊂ H be a fundamental parallelepiped for the
lattice g(V ) ⊂ H. Take E to be g−1(F ). □

We now start to count j(K, n). We first claim that the class K−1 contains an integral

ideal. Indeed, any fractional ideal in this class is of the form
∏k
i=1 p

ni
i where pi are prime

ideals coprime to m and ni ∈ Z. Let h be the order of Clm(K). Then
∏k
i=1 p

hu+ni
i also lies

in K−1 for all u ∈ Z. For sufficiently large u this is an integral ideal.
Fix an integral ideal b in the class K−1. If a is an integral ideal in the class K, then ab is

trivial in Clm(K), and so it is of the form xOK with x ∈ K×
(m). Moreover, x is well defined

up to multiplication by Gm, and we have x ∈ b since ab ⊂ b. We thus have a bijection

{integral a ∈ K} ∼−→ {x ∈ K×
(m)/Gm | x ∈ b}.

Now if a corresponds to x, then

N(a) = N(b)−1N(xOK) = N(b)−1
∏

v∈VK,f

∥x∥−1
v = N(b)−1c(x).

Here in writing c(x) we view x as an element of B via the embedding K ↪→ B. Hence we
get

j(K, n) = #{x ∈ K×
(m)/Gm | x ∈ b, c(x) ≤ nN(b)} = w−1

m #{x ∈ K×
(m)/V | x ∈ b, c(x) ≤ nN(b)}.

By embedding K×
(m) into J , we get

wmj(K, n) = #E(nN(b)) ∩ {x ∈ K×
(m) ∩ b ⊂ J}.

Let m0 be the integral ideal obtained by deleting the archimedean places inside m, and
viewing the formal product of finite places as a product of the corresponding prime ideals.
An element x ∈ b lies in K×

(m) if and only if x ∈ m0 − {0} and x ∈ Kv,>0 for archimedean

v|m. Since b is coprime to m, we have b ∩m0 = bm0. Thus we have

K×
(m) ∩ b = J ∩ (bm0).

Since E(nN(b)) is inside J , we have

wmj(K, n) = #E(nN(b)) ∩ (bm0) = #
(
(nN(b))1/ND

)
∩ (bm0),

where the intersection is inside B. Now bm0 ⊂ OK are two lattices in B, and the latter has
volume 2−r2

√
dK where dK is the discriminant of K. Hence

vol(bm0) = [OK : bm0]2
−r2

√
dK = N(b)N(m0)2

−r2
√
dK .

Applying Lemma 5.3.6, we obtain

j(K, n) =
vol(D)

wmN(b)N(m0)2−r2
√
dK

N(b)n+O(n1−
1
N ) =

vol(D)

wmN(m0)2−r2
√
dK

n+O(n1−
1
N ).

Plugging in the formula for vol(D) in Lemma 5.3.7, we obtain

j(K, n) = ρmn+O(n1−
1
N ),

with

ρm =
2r1−s(m)(2π)r2Rm

wm

√
dKN(m0)

.

Note that ρm is a positive real number, and it is independent of K.
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By Theorem 5.3.5, ζK,m(s,K) is meromorphic on Re(s) > 1 − 1
N and the only pole in

this region is a simple pole at s = 1, with residue ρm. This completes the proof of Theorem
5.2.2.

Corollary 5.3.8 (The analytic class number formula). We have

Ress=1 LK,m(s, 1) = #Clm(K) · ρm.

Proof. By definition, LK,m(s, 1) =
∑

K∈Clm(K) ζK,m(s,K). Each summand has residue ρm at

s = 1. □

When m = 1, this recovers the usual analytic class number formula

Ress=1 ζK(s) = hK · ρ1 = hK
2r1(2π)r2RK

wK
√
dK

.

Note the following interesting consequence. By (5.1), we have

#Clm(K) = hK
ρ1
ρm

∏
p|m

(1− (Np)−1) = hK
2s(m)R1wmN(m0)

RmwK

∏
p|m

(1− (Np)−1).(5.4)

Example 5.3.9. Let K = Q. Then the regulator Rm is always 1 since r1+ r2− 1 = 0. The
discriminant is also 1. Thus

ρ1 =
2

wQ
= 1.

Since we know Ress=1 ζ(s) = 1, the analytic class number formula yields

1 = hQρ1 = hQ,

implying that Z is PID. For m =∞m, we have wm = 1 and N(m0) = m, so ρm = 1
m . Hence

(5.4) yields

#Clm(Q) = m
∏
p|m

(1− p−1).

Since Clm(Q) = (Z/mZ)×, the above recovers the usual formula for ϕ(m). Thus (5.4) can
be viewed as a generalization of this formula.

5.4. Artin L-functions. Let K be a number field. Let V be a finite dimensional vector
space over C, and ρ : GK = Gal(K/K)→ GL(V ) a representation with open kernel. Equiv-
alently, ρ factors through a representation Gal(L/K) → GL(V ) for some finite Galois ex-
tension L/K. If we equip GK with the usual profinite topology and equip GL(V ) ∼= GLn(C)
with the natural topology coming from C, then this assumption on ρ is also equivalent to
asking that it is continuous. Here the point is that there exists an open neighborhood U of
1 in GL(V ) such that any subgroup of GL(V ) contained in U is trivial (Exercise). Since the
open subgroups of GK form a neighborhood basis of 1, one of them must be contained in
the kernel of ρ.

In the following, we refer to such a ρ as a continuous finite dimensional complex repre-
sentation of GK .

We define the Artin L-function

L(s, ρ) = LK(s, ρ) =
∏
p

det(1− (Np)−sρ(Frobp) | V Ip)−1.

Here, p runs over all primes of K. For each p we choose a decomposition group Dp in
GK , let Ip ⊂ Dp be the inertia subgroup, and let Frobp ∈ Dp be an element lifting the
Frobenius element of Dp/Ip. The term det(1− (Np)−sρ(Frobp) | V Ip) is then independent
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of the choices. More concretely, ρ factors through some finite Gal(L/K), and it suffices
to choose the decomposition groups and the Frobenius elements with respect to the finite
Galois extension L/K.

Fact 5.4.1. For every δ > 0, the series defining L(s, ρ) converges absolutely and uniformly
on {s ∈ C | Re(s) > 1 + δ}. In particular L(s, ρ) is an analytic function on Re(s) > 1.

Sketch of proof. Let S be the finite set of primes p of K such that Ip acts non-trivially on
V . It suffices to analyze the convergence of the series obtained by deleting the Euler factors
at S and formally taking logarithm:

log
∏
p/∈S

det(1− (Np)−sρ(Frobp) | V )−1 =
∑
p/∈S

∑
m≥1

(Np)−ms

m
Tr(ρ(Frobp)

m | V ).

But |Tr(ρ(Frobp)m | V )| ≤ dimV since every eigenvalue of ρ(Frobp)
m is a root of unity.

Hence the above series is majorized by∑
p/∈S

∑
m≥1

(Np)−ms

m
= log

∏
p/∈S

(1− (Np)−s)−1.

The convergence of the above series is equivalent to that of ζK(s). □

Fact 5.4.2. The following relations hold.

(1) If ρ1, ρ2 are two continuous finite dimensional complex representations of GK , then

L(s, ρ1 ⊕ ρ2) = L(s, ρ1)L(s, ρ2).

(2) Let E/K be a finite extension, so GE = Gal(K/E) is a finite index subgroup of
GK . Let ρ be a continuous finite dimensional complex representation of GE. Then
IndGK

GE
ρ is a continuous finite dimensional complex representation of GK . We have

LK(s, IndGK

GE
ρ) = LE(s, ρ).

These follow easily from the definition.

Example 5.4.3. Suppose ρ is one-dimensional. Then ρmust factor through ρ : Gal(L/K)→
C× where L/K is a finite abelian extension. (In fact, we may also assume that Gal(L/K)
is cyclic, since any finite subgroup of C× is cyclic.) Let m = fL/K . Define χ to be the

composition of the Artin map Clm → Gal(L/K) with ρ : Gal(L/K)→ C×. Then up to the
finitely many Euler factors indexed by p|m, L(s, ρ) is nothing but LK,m(s, χ), the Weber
L-function.

Conjecture 5.4.4 (Artin’s Conjecture). Let ρ be a non-trivial irreducible finite dimensional
continuous complex representation of GK . Then L(s, ρ) has analytic continuation to an
entire function on C.

This conjecture is one of the starting points of the Langlands program. The one-
dimensional case reduces to the analytic continuation of Weber L-functions Example 5.4.3.
This is known, although we will not prove it in our course. (Nevertheless, recall that we
proved that the Weber L-function is analytic at s = 1 for non-trivial χ, while it has a pole
at s = 1 for trivial χ. This explains why in Artin’s Conjecture ρ needs to be non-trivial.) In
fact, Weber L-functions belong to a more general class of L-functions, called L-functions at-
tached to Hecke characters (or grossencharacters), and their analytic continuation is known
by the work of Hecke, while a more conceptual proof was given in Tate’s thesis.



ALGEBRAIC NUMBER THEORY (I) 81

The two dimensional case of Artin’s conjecture is known in many cases, but not all.
This is closely related to Wiles’ proof of Fermat’s Last Theorem. The general case of the
conjecture is widely open.

As an application of class field theory, we can prove the following result (admitting the
meromorphic continuation to C of Weber L-functions).

Theorem 5.4.5. Any Artin L-function L(s, ρ) has a meromorphic continuation to C.

We need to use the following fact from representation theory of finite groups.

Fact 5.4.6 (Brauer’s theorem). Let G be a finite group, and ρ a (finite dimensional com-
plex) representation of G. Then there exist subgroups H1, . . . ,Hk of G, a one-dimensional
representation ρi of Hi for each i, and integers n1, . . . , nk ∈ Z, such that as virtual repre-
sentations we have

ρ =
k∑
i=1

ni Ind
G
Hi
ρi.

(Here an equality of virtual representations means that after we move the negative terms
to the other side and understand addition as direct sum, we have an isomorphism of repre-
sentations. Equivalently, it can be understood as an equality between linear combinations of
characters.)

Proof of Theorem 5.4.5. Assume that ρ factors through Gal(L/K) for a finite Galois ex-
tension L/K. Then there exist intermediate extensions Ei/K in L/K (1 ≤ i ≤ k), one-

dimensional representations ρi of Gal(L/Ei), and integers ni such that ρ =
∑
i ni Ind

GK

GEi
ρi.

Then

L(s, ρ) =

k∏
i=1

L(s, IndGK

GEi
ρi)

ni =

k∏
i=1

LEi
(s, ρi)

ni .

Each LEi
(s, ρi) is essentially a Weber L-function, so it has meromorphic continuation to C.

It follows that the same holds for L(s, ρ). □

Remark 5.4.7. The integers ni can be negative, so in the above proof one cannot control
the poles of L(s, ρ).

5.5. Chebotarev density theorem. The Chebotarev density theorem generalizes the fa-
mous theorem of Dirichlet on primes in an arithmetic progression. Recall that the theorem
states that for any pair of coprime integers a,m, there exist infinitely many primes in
{a+mk | k ∈ Z}. In other words, each class in (Z/mZ)× contains infinitely many primes.
We shall generalize this to number fields, and also see that the set of primes in each class
in (Z/mZ)× is of density 1/|(Z/mZ)×|, in a suitable sense.

Definition 5.5.1. Let f and g be two complex functions defined on (1, 1 + ϵ) for some
ϵ > 0. We shall write f ∼ g if there exists a complex analytic function h defined on an open
disk centered at 1 (with no pole at 1) such that f − g = h on (1, 1+ ϵ′) for some 0 < ϵ′ < ϵ.
Roughly speaking, we ask that f − g extends to a complex analytic function near s = 1.

Example 5.5.2. For s > 1, we have

log ζ(s) =
∑

p primes

∞∑
m=1

1

m
p−ms.



82 YIHANG ZHU

We claim that ∑
p

∞∑
m=2

1

m
p−ms

converges absolutely and uniformly for the complex variable s with Re(s) ≥ 1
2 + δ, for any

δ > 0. For each p, we have∑
m≥2

∣∣∣∣ 1mp−ms
∣∣∣∣ ≤ 1

2

∑
m≥2

p−m( 1
2+δ) =

1

2

p−2( 1
2+δ)

1− p−( 1
2+δ)

≤ 1

2

p−2( 1
2+δ)

1− 2−( 1
2+δ)

≤ C · p−1−2δ,

where the constant C depends only on δ, not on p. Hence∑
p

∞∑
m=2

∣∣∣∣ 1mp−ms
∣∣∣∣ ≤ C∑

p

p−1−2δ ≤ C
∞∑
n=1

n−1−2δ <∞.

This proves the claim. By the claim, we have

log ζ(s) ∼
∑
p

p−s.

More generally, let K be a number field. Then for s > 1 we have

log ζK(s) =
∑

p prime ideals

∞∑
m=1

1

m
(Np)−ms.

For Re(s) > 0, we have∑
p

∞∑
m=2

∣∣∣∣ 1m (Np)−ms
∣∣∣∣ ≤ [K : Q]

∑
p

∞∑
m=2

∣∣∣∣ 1mp−ms
∣∣∣∣

because there are at most [K : Q] distinct primes of K above a fixed prime p of Q, and
when p|p we have Np ≥ p. Thus by the above claim we have

log ζK(s) ∼
∑
p

(Np)−s.

Now recall that ζK(s) has a simple pole at s = 1. Hence we can write ζK(s) = 1
s−1g(s)

for some g(s) analytic and non-zero at s = 1. Then for sufficiently small ϵ > 0, g(s) is real
and positive on (1, 1 + ϵ) since ζK(s) is so. Thus on such interval we have

log ζK(s) = log
1

s− 1
+ log g(s).

Since g is analytic and non-zero at s = 1, this clearly implies that log ζK(s) ∼ log 1
s−1 . We

conclude that

log ζK(s) ∼ log
1

s− 1
∼

∑
p

(Np)−s.

Exercise 5.5.3. Let K be a number field. Prove that∑
p

(Np)−s ∼
∑

p,f(p/Q)=1

(Np)−s

Here the extra condition means that the residue extension of p over (p) = p ∩ Q is trivial,
i.e., OK/p = Fp.
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Remark 5.5.4. Since log 1
s−1 → +∞ as R ∋ s→ 1+, for any f(s) ∼ log 1

s−1 we have

lim
R∋s→1+

f(s)

log 1
s−1

= 1.

In the following, fix K to be a number field.

Definition 5.5.5. Let S be a subset of the set of primes of K. Define the Dirichlet density
of S to be

δ(S) = lim
R∋s→1+

∑
p∈S(Np)

−s∑
all p(Np)

−s = lim
R∋s→1+

∑
p∈S(Np)

−s

log 1
s−1

,

if the limit exists.

Proposition 5.5.6. The following statements hold.

(1) If δ(S) exists, then 0 ≤ δ(S) ≤ 1, and δ(Sc) = 1− δ(S).
(2) If S is finite, then δ(S) = 0.
(3) If S1 ∩S2 = ∅, and if two of δ(S1), δ(S2), δ(S1 ∪S2) exist, then the third also exists,

and we have δ(S1) + δ(S2) = δ(S1 ∪ S2).
(4) If δ(S1) and δ(S2) exist, and S1 ⊂ S2, then δ(S1) ≤ δ(S2).
(5) If δ(S) = 0, then for any subset T ⊂ S we have δ(T ) = 0.
(6) If δ(S1) and δ(S2) exist, and δ(S2) = 1, then δ(S1 ∩ S2) = δ(S1).
(7) δ({p | f(p/Q) = 1}) = 1.
(8) If δ(S) exists, and T is a subset of S containing all p ∈ S such that f(p/Q) = 1,

then δ(T ) = δ(S).

Proof. The first five statements follow from elementary properties of limits. For (6), we
have δ(S1 − S2) = 0 by (1) and (5). Then apply (3) to S1 = (S1 − S2) ∪ (S1 ∩ S2). (7)
follows from Exercise 5.5.3. To prove (8), first note that δ({p ∈ S | f(p/Q) = 1}) = δ(S) by
(6) and (7). Then apply the sandwich theorem for limit. □

As an immediate application of our considerations so far, we can compute the density of
the set of split primes. Let L/K be a finite extension. Recall that a prime p of K is said
to split in L, if pOL = P1 · · ·Pg with distinct primes Pi of L, and moreover e(Pi/p) =
f(Pi/p) = 1 for each i. (In particular g = [L : K].) We write Spl(L/K) for the set of primes
of K which split in L.

Proposition 5.5.7. Let L/K be a finite Galois extension. Then δ(Spl(L/K)) = [L : K]−1.

Proof. A prime P of L is above a prime in Spl(L/K) if and only if f(P/K) = e(P/K) = 1.
In this case, NP = N(P ∩K). Moreover, for each p ∈ Spl(L/K), there are exactly [L : K]
primes of L above p. Hence we have∑

p∈Spl(L/K)

(Np)−s = [L : K]−1
∑

P,f(P/k)=e(P/K)=1

(NP)−s ∼ [L : K]−1
∑

P,f(P/k)=1

(NP)−s.

Here the last ∼ is because there are only finitely many P with e(P/K) > 1. By Proposition
5.5.6(8), the set of primes P of K such that f(P/K) = 1 has Dirichlet density 1. Hence

δ(Spl(L/K)) = [L : K]−1 lim
s→1+

∑
P,f(P/k)=1(NP)−s

log 1
s−1

= [L : K]−1.

□

Exercise 5.5.8. (1) Let L1, L2 be two finite extensions of K inside K. Show that
Spl(L1L2/K) = Spl(L1/K) ∩ Spl(L2/K).
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(2) Let L/K be a finite extension, and M/K its Galois closure. Then Spl(L/K) =
Spl(M/K). (Hint: use part (1).) In particular, we have δ(Spl(L/K)) = [L : K]−1 if
and only if L/K is Galois.

Corollary 5.5.9. Let L1, L2 be two finite Galois extensions of K inside K. Then the
following are equivalent.

(1) L1 ⊂ L2

(2) Spl(L2/K) ⊂ Spl(L1/K)
(3) There exists a set S of primes of K with δ(S) = 0 such that Spl(L2/K) − S ⊂

Spl(L1/K).

In particular, a finite Galois extension L/K is uniquely determined by the set Spl(L/K).

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. We show (3) ⇒ (1). For every p ∈
Spl(L2/K)− S, we have p ∈ Spl(L1/K) ∩ Spl(L2/K) = Spl(L1L2/K) by Exercise 5.5.8(1).
Thus

[L2 : K]−1 = δ(Spl(L2/K)− S) ≤ δ(Spl(L1L2/K)) = [L1L2 : K]−1.

Hence L2 = L1L2, i.e., L1 ⊂ L2. □

Up to now we have not used class field theory. The following result generalizes Dirichlet’s
theorem on primes in an arithmetic progression, and its proof uses Theorem 5.2.9, which
we proved using class field theory.

Theorem 5.5.10 (Generalized Dirichlet’s theorem on primes in an arithmetic progression).
Let m be a modulus for K, and fix K0 ∈ Clm(K). Let S be the set of primes of K which are
coprime to m and whose class in Clm(K) is K0. Then δ(S) = |Clm(K)|−1.

Remark 5.5.11. For K = Q and m = ∞m with m ∈ Z≥2, we have Clm(K) = (Z/mZ)×,
and the class of a prime coprime to m in Clm(K) is just the usual mod m congruence class of
that prime. Hence in this case the theorem implies that each congruence class in (Z/mZ)×
contains infinitely many primes, i.e. the classical theorem of Dirichlet.

Proof. The proof is essentially the same as the usual proof of Dirichlet’s theorem, which
uses the non-vanishing of the Dirichlet L-function L(s, χ) at s = 1 for a non-trivial Dirichlet
character χ : (Z/mZ)× → C×. This non-vanishing is of course a special case of Theorem
5.2.9, which we will use.

Let χ ∈ Clm(K)∨. For s > 1, we have

logLK,m(s, χ) =
∑
p∤m

∞∑
m=1

χ(p)m

m
(Np)−ms.

The series ∑
p∤m

∞∑
m=2

χ(p)m

m
(Np)−ms

is majorized by ∑
p

∞∑
m=2

1

m
(Np)−ms,

which converges absolutely and uniformly on Re(s) ≥ 1
2 + δ as shown in Example 5.5.2.

Thus we have
logLK,m(s, χ) ∼

∑
p∤m

χ(p)(Np)−s.
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On the other hand, by Theorem 5.2.9, we have logLK,m(s, χ) ∼ 0 if χ is non-trivial. Hence∑
χ∈Clm(K)∨

χ(K0)
−1

∑
p∤m

χ(p)(Np)−s ∼
∑
p∤m

(Np)−s +
∑
χ ̸=1

0 ∼ log
1

s− 1
.

But the left hand side is equal to

|Clm(K)|
∑
p∈S

(Np)−s

since for each p ∤ m we have
∑
χ χ(K

−1
0 p) = 0 unless p ∈ K0. □

Theorem 5.5.12 (Chebotarev density theorem). Let L/K be a finite Galois extension of
degree N . Fix a conjugacy class C in Gal(L/K). Let S be the set of primes p of K which
are unramified in L and such that the Frobenius conjugacy class Frob(L/p) = {Frob(P/p) |
P primes of L above p} is equal to C. Then

δ(S) =
|C|
N
.

Remark 5.5.13. The special cases when C = 1 and when L is the ray class field Km recover
Proposition 5.5.7 and Theorem 5.5.10 respectively. Indeed, in the first case, for a prime p of
K unramified in L (the unramified condition excludes only finitely many primes), it splits
in L if and only if Frob(L/p) = {1}. In the second case, the set of primes of K coprime to
m and having a fixed class in Clm(K) is precisely the set of primes unramified in Km and
whose Frobenius element in Gal(Km/K) is a fixed element, in view of the Artin isomorphism
Clm(K) ∼= Gal(Km/K). In this case Gal(Km/K) is abelian, so every conjugacy class is a
singleton.

Proof. We first treat the case where L/K is abelian. Find a modulus m of K admissible for

L/K. Then we have the surjective Artin map Clm(K) → Gal(L/K). Let C̃ be the inverse
image of C in Clm(K). For a prime of K coprime to m, it lies in S if and only if its class in

Clm(K) lies in C̃. Therefore

δ(S) =
|C̃|

|Clm(K)|
by Theorem 5.5.10. But this is equal to |C|/N = 1/N since C is a singleton and C̃ has the
same cardinality as the kernel of Clm(K)→ Gal(L/K).

We now treat the general case. Fix an element σ ∈ C, and let f be the order of σ. Let
K ′ = L⟨σ⟩. Then L/K ′ is a cyclic extension of degree f . Let

SL = {P primes of L | P is unramified over K,Frob(P/K) = σ},

SK′ = {p′ primes of K ′ | p′ ∩K is unramified in L,Frob(L/p′) = σ, f(p′/K) = 1}.
Here Frob(L/p′) is a well-defined element of Gal(L/K ′) = ⟨σ⟩ since the latter is abelian.

Claim 1. For every p ∈ S, there are exactly N
|C|f elements of SL above p. Conversely,

every element of SL is above an element of S.
Indeed, the second statement is obvious. We prove the first. For p ∈ S, by definition

the set A = {P ∈ SL | P|p} is non-empty. For P ∈ A and g ∈ Gal(L/K), we have
Frob(gP/p) = g Frob(P/p)g−1 = gσg−1. Hence gP lies in A if and only if g centralizes σ.
Let Gσ denote the centralizer of σ in Gal(L/K). Since Gal(L/K) acts transitively on the
set of primes of L above p, we know that Gσ acts transitively on A. Moreover, for P ∈ A,
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its stabilizer in Gσ is the decomposition group GP ⊂ Gσ. But GP = ⟨Frob(P/p)⟩ = ⟨σ⟩.
Hence

|A| = |Gσ|
|GP|

=
N/|C|
f

as desired.
Claim 2. Let P ∈ SL and p′ = P ∩ K ′. Then p′ ∈ SK′ , and P is the unique prime of

L above p′. Conversely, for every p′ ∈ SK′ , there is a unique prime P of L above p′, and
moreover P ∈ SL.

For the first statement, note that Frob(P/K) = σ acts trivially on K ′. It follows that
f(p′/K) = 1 and that

Frob(L/p′) = Frob(P/K ′) = Frob(P/K)f(p
′/K) = σ.

Hence p′ ∈ SK′ . Moreover, p′ is unramified in L, and f(L/p′) is equal to the order of
Frob(L/p′) = σ, which is f = [L : K ′]. Hence there is a unique prime of L above p′. The
first statement is proved. The second statement is proved similarly.

By the two claims, we have∑
p∈S

(Np)−s =
|C|f
N

∑
P∈SL

N(P ∩K)−s =
|C|f
N

∑
p′∈SK′

N(p′ ∩K)−s =
|C|f
N

∑
p′∈SK′

(Np′)−s,

where the last equality is because f(p′/K) = 1. Thus

δ(S) =
|C|f
N

δ(SK′)

(provided that δ(SK′) exists). Applying the abelian case of the theorem to L/K ′ and by
Proposition 5.5.6 (8), we have δ(SK′) = [L : K ′]−1 = f−1. □

As a simple application, we have the following:

Proposition 5.5.14. Let f be a non-constant irreducible polynomial over K. Assume that
f has a root in Kv for almost all places v. Then f is of degree 1, i.e., it has a root in K.

Proof. Let L ⊂ K be the splitting field of f . Let S be the set of primes p of K unramified
in L and such that f has a root in Kp. Then there are only finitely many primes not in S,

so δ(S) = 1. Fix a root α of f in L. Let p ∈ S, and choose a K-embedding ι : L ↪→ Kp.
Let β be a root of f in Kp. Then β must lie in the image of ι, and by the irreducibility
of f , there exists g ∈ Gal(L/K) such that g(α) = β. Thus up to modifying ι we may
assume that ι(α) = β ∈ Kp. On the other hand ι determines a prime P of L above p,
and the last condition on ι implies that Frob(P/p)(α) = α. Thus we have shown that for
every p ∈ S, the conjugacy class Frob(L/p) in Gal(L/K) has non-empty intersection with
H = Gal(L/K(α)). If H is not equal to Gal(L/K), then by elementary group theory there
is a conjugacy class C in Gal(L/K) disjoint from H. By Theorem 5.5.12, δ(S) is at most
1− |C|/[L : K] < 1, a contradiction. Hence K(α) = K. □

5.6. The Grunwald–Wang theorem. Reference: [AT68, §X.1]
Let K be a number field and m a positive integer. Suppose an element c of K is an

m-th power in Kv for almost all places v, does it follow that c is an m-th power in K? If
the answer is yes for all c, then we say that K satisfies the local-global principle for m-th
powers.

In 1928, Grunwald published a false theorem stating that K always satisfies the local-
global principle for m-th powers, for all K and m. Wang found the following counter-
example:
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Exercise 5.6.1. Show that 16 is an 8-th power in Qp for all odd primes p, but not an 8-th

power in Q2 or Q. Let K = Q(
√
7). Then 16 is an 8-th power in Kv for all places v of K,

but not an 8-th power in K.

The mistake in Grunwald’s work arises from careless use of the notationK( n
√
c). WhenK

does not contain a primitive n-th root of unity, adjoining different roots of Xn− c to K can
give rise to non-isomorphic extensions of K. For instance, related to the counter-example
of Wang, adjoining different 8-th roots of 16 to Q can give rise to Q(

√
2) and Q(

√
−2), and

they are obviously non-isomorphic.

Lemma 5.6.2. Assume that K contains a primitive m-th root of unity. Then K satisfies
the local-global principle for m-th powers.

Proof. Assume c ∈ K× is an m-th power in Kv for almost all v. Let L/K be the splitting
field of Xm − c. If Xm − c has a root in Kp, then it splits in Kp, and in this case for every
prime P of L above p we have LP = Kp since LP is the compositum of its subfields L and
Kp. Thus δ(Spl(L/K)) = 1, and so L = K by Proposition 5.5.7. □

Theorem 5.6.3 (Grunwald–Wang, rough version). Let m = 2tm′ with m′ odd. Assume
that K(ζ2t)/K is cyclic. Then K satisfies the local-global principle for m-th powers.

Proof. Step 1. Reduce to the case where m is a prime power. For this it suffices to note
that for two coprime integers m1,m2, we have (K×)m1 ∩ (K×)m2 = (K×)m1m2 .

Step 2. Assuming m is a prime power, and assuming that K(ζm)/K is cyclic of prime
power degree, we show that K satisfies the local-global principle for m-th powers. For this,
let c ∈ K× be such that c ∈ (K×

v )
m for almost all v. Then by Lemma 5.6.2 applied to

the base field K(ζm), we have c ∈ (K(ζm)×)m. Let f(X) = Xm − c ∈ K[X]. Then f(X)
splits over K(ζm). Let f(X) = f1(X) · · · fk(X) with fi(X) ∈ K[X] irreducible. Let Li/K
be the splitting field of fi inside K(ζm). By our assumption on K(ζm)/K, all intermediate
extensions in K(ζM )/K are totally ordered. Hence there exists i0 such that Li0 ⊂ Li for
all i. Now if v is a place of K such that c ∈ (K×

v )
m, then some fi has a root in Kv. Since

Li is actually generated by a single root of the irreducible fi (as all roots are related by
multiplying by an m-th root of unity), there exists a K-embedding Li → Kv. Hence there
exists aK-embedding Li0 → Kv, which means that v splits in Li0 . Thus for almost all places
v of K, v splits in Li0 . By Proposition 5.5.7 this implies that Li0 = K, i.e., c ∈ (K×)m.

Step 3. We prove the theorem assuming that m = ps for a prime p. If p = 2, then the
assumption of the theorem states that K(ζm)/K is cyclic. It is also of prime power degree
since the degree divides |(Z/mZ)×| which is a power of 2. Hence, by Step 2, K satisfies local-
global principle for m-th powers. It remains to treat the case where p is odd. In view of the
canonical injections Gal(K(ζm)/K) ↪→ (Z/mZ)× and Gal(K(ζp)/K) ↪→ (Z/pZ)×, we have
an injection of Gal(K(ζm)/K(ζp)) into the kernel of the natural map (Z/mZ)× → (Z/pZ)×,
which is cyclic of order a power of p. Thus we can apply Step 2 to obtain that the field K(ζp)
satisfies local-global principle for m-th powers. Now let c ∈ K× be such that c ∈ (K×

v )
m

for almost all v. Then c ∈ (K(ζp)
×)m. Write c = ym for y ∈ K(ζp)

×. Let d = [K(ζp) : K].
Then cd = NK(ζp)/K(c) = (NK(ζp)/K(y))m ∈ (K×)m. Since d|p − 1, d is coprime to m.

Hence there exist a, b ∈ Z such that ad+ bm = 1. Then c = (cd)a(cb)m lies in (K×)m. □

To get a more precise version of the above theorem, we need to have a better under-
standing of when K(ζ2r )/K can be non-cyclic. Recall that we have a canonical injection
Gal(K(ζ2r )/K) ↪→ (Z/2rZ)×. The problem is that the right hand side is not a cyclic group
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unless r ≤ 2 (e.g. (Z/8Z)× = {1, 3, 5, 7} = Z/2Z×Z/2Z). Nevertheless, we have the canon-
ical subgroup {±1} ⊂ (Z/2rZ)×, and (Z/2rZ)×/{±1} is always cyclic. Correspondingly,
inside K(ζ2t) we have the subfield K(ζ2t + ζ−1

2t ) of index at most 2, and the latter is cyclic

over K. There is a maximal integer s such that K(ζ2s + ζ−1
2s ) = K. Then K(ζ2s+1 + ζ−1

2s+1)
is a quadratic extension of K, and K(ζ2s+1) is either a cyclic extension of K of degree 2
or 4, or a Z/2Z× Z/2Z-extension of K. The non-cyclicity of (any) K(ζ2r )/K is essentially
caused by the latter possibility.

To make these ideas more precise, we first introduce some notations. Inside K we fix a
primitive 2r-th root of unity ξr for each r ∈ Z≥1 in a compatible way, i.e., ξ2r+1 = ξr. Let

ηr = ξr + ξ−1
r .

For instance, we may fix an embedding K → C and choose ξr = e2πi/2
r

. Then ηr =
2 cos(2π/2r). Note that ξ2 is a primitive 4-th root of unity, namely “ξ2 = i =

√
−1”, and it

is of degree at most 2 over K (depending whether −1 is a square in K).
Let Kr = K(ξr). Thus

K ⊂ K1 ⊂ K2 ⊂ K3 ⊂ · · · .
Since η2r+1 = ηr + 1, we have

K(η1) ⊂ K(η2) ⊂ K(η3) ⊂ · · · .
Of course eachK(ηr) is contained inKr. SinceKr/K is an abelian extension, so isK(ηr)/K.
We have η1 = −2, η2 = 0, ηr ̸= 0, ∀r ≥ 3.

Note that ξrηr = 1+ξ2r = 1+ξr−1, so ξr = η−1
r (1+ξr−1) for r ≥ 3. ThusKr ⊂ K(ηr, ξr−1)

for r ≥ 3, and then by induction

Kr = K(ξ2, ηr) = K2(ηr).

For instance,

Q(e2πi/2
r

) = Q(i, cos(2πi/2r)).

Lemma 5.6.4. Each K(ηr)/K is a cyclic extension.

Proof. Consider the canonical injection α : Gal(Kr/K) ↪→ (Z/2rZ)×. If −1 is not in the
image of α, then α induces an injection of Gal(Kr/K) into (Z/2rZ)×/{±1}, which is a
cyclic group. Then Kr/K is cyclic, and in particular K(ηr)/K is cyclic.

If −1 is in the image of α, say −1 = α(τ). Then τ(ξr) = ξ−1
r by the definition of α.

Hence ηr ∈ K
⟨τ⟩
r . But [Kr : K(ηr)] ≤ 2 since Kr = K2(ηr). Hence K(ηr) = K

⟨τ⟩
r , and

Gal(K(ηr)/K) injects into (Z/2rZ)×/{±1}, which is a cyclic group. □

Definition 5.6.5. Let s ∈ Z≥1 be the largest such that ηs ∈ K.

Note that such s exists, since otherwise we have K2 = K2(ηr) = Kr for all r, which is
impossible.

Lemma 5.6.6. The following conditions are equivalent.

(1) Gal(Ks+1/K) ∼= Z/2Z× Z/2Z.
(2) There exists r such that Kr/K is not cyclic.
(3) ξ2 /∈ K(ηs+1).
(4) All of −1,±(ηs + 2) are non-squares in K.

Proof. (1) ⇒ (2) is trivial. For (2) ⇒ (3), assume that ξ2 ∈ K(ηs+1). Then for every
r ≥ s+ 1, we have Kr = K2(ηr) = K(ηr). By Lemma 5.6.4 this is cyclic over K. It follows
that Kr/K is cyclic for every r ≥ 1. For the equivalence of (1), (3), and (4), note that
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Ks+1 = K(ξ2, ηs+1) where ξ
2
2 = −1 and η2s+1 = ηs + 2 are in K. Thus Ks+1 is of the form

K(
√
a,
√
b) with a, b ∈ K. Such an extension is a Z/2Z × Z/2Z-extension if and only if

a, b, ab are all non-squares in K. □

We now come back to the local-global principle for m-th powers. Let S be a finite set of
places of K. Denote

P (m,S) = {c ∈ K× | ∀v ∈ VK − S, c ∈ (K×
v )

m}.

Corollary 5.6.7. If P (m,S) ̸= (K×)m, then the following conditions hold:

(1) All of −1,±(ηs + 2) are non-squares in K.
(2) We have m = 2tm′ with m′ odd and t > s.

Proof. By Theorem 5.6.3, Kt/K must be non-cyclic. By Lemma 5.6.6, (1) holds. If t ≤ s,
then Kt = K2(ηt) = K2 is quadratic over K, a contradiction. Hence t > s. □

Proposition 5.6.8. Assume (1) (2) in Corollary 5.6.7. Then

P (m,S) ⊂ (K×)m ⊔ xm(K×)m,

where

xm = (1 + ξs)
m = ηms+1 ∈ K× − (K×)m.

Proof. Firstly, since 1+ξs = ξs+1ηs+1, and sincem = 2tm′ with t ≥ s+1, we have (1+ξs)
m =

ξms+1η
m
s+1 = ηms+1. Now if xm were in (K×)m, then using xm = ηms+1 = (ηs + 2)2

t−1m′
, we

know that (ηs+2)2
t−1 ∈ (K×)2

t

. Thus there exists a 2t−1-th root of unity ξ ∈ K such that
ξ(ηs + 2) ∈ (K×)2. By condition (1), −1 is not a square in K, so we must have ξ ∈ {±1}.
Thus one of ±(ηs + 2) is a square in K, a contradiction with (1).

We now prove the containment. By (1), K2/K is quadratic. We write Gal(K2/K) =
{1, σ}. We have K2 = K2(ηs) = Ks = K(ξs). We check that σ(ξs) = ξ−1

s : For this it
suffices to note that ξsξ

−1
s and ξs + ξ−1

s are both in K.
Let x ∈ P (m,S). Since −1 is a square in K2, by Corollary 5.6.7 applied to the field

K2 we have x ∈ (K×
2 )m. In particular there exists y ∈ K2 such that x = y2

t

. Then

(yσ(y)−1)2
t

= (xσ(x)−1)2
t

= 1, so yσ(y)−1 is a 2t-th root of unity in K2. By condition (1),
we have ηs+1 /∈ K2 in view of Lemma 5.6.6. In particular ξs+1 /∈ K2. Since t > s (condition
(2)), yσ(y)−1 is a 2s-th root of unity in K2, i.e.,

yσ(y)−1 = ξµs

for some µ ∈ Z. We shall see that µ being even or odd correspond to x ∈ (K×)m or
x ∈ xm(K×)m respectively.

Let y1 = yξλs ∈ K2, where λ ∈ Z is to be determined. Then y2
t

1 = x as well, i.e., y1 is
another candidate for y. We have

y1σ(y1)
−1 = yσ(y)−1(ξsσ(ξs)

−1)λ = ξµ+2λ
s .

If µ is even, then we can choose λ = −µ/2. In other words we can choose y ∈ K2 such

that y2
t

= x and y = σ(y), i.e., y ∈ K. In this case, x ∈ (K×)2
t

. By Theorem 5.6.3, we also

have x ∈ (K×)m
′
. Hence x ∈ (K×)m. (Find integers a, b such that a2t + bm′ = 1. Then

x = (xa)2
t

(xb)m
′
. Then use xa ∈ (K×)m

′
and xb ∈ (K×)2

t

.)
If µ is odd, then we can choose λ such that µ+ 2λ = m′. In other words we can choose

y ∈ K2 such that y2
t

= x and yσ(y)−1 = ξm
′

s . Let z = y(1+ξs)
−m′ ∈ K2. Then zσ(z)

−1 = 1,

i.e., z ∈ K. We have z2
t

= xx−1
m . Thus xx−1

m ∈ (K×)2
t

. Since xm = (ηs+2)m/2 with ηs ∈ K,
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we have xm ∈ (K×)m
′
. By Theorem 5.6.3, we have x ∈ (K×)m

′
. Hence xx−1

m ∈ (K×)m
′
.

As before, it follows that xx−1
m ∈ (K×)m. □

Definition 5.6.9. Let S0 be the set of places v of K such that −1 and ±(ηs + 2) are
non-squares in Kv.

Remark 5.6.10. The condition in the definition of S0 is equivalent to that Kv(ξ2, ηs+1) is
a Z/2 × Z/2-extension of Kv. If v is archimedean, this is impossible. If v divides an odd
prime in Q, this is again impossible because Kv(ξ2, ηs+1) = Kv(ξs+1) is unramified over Kv

and hence cyclic over Kv. Hence all places in S0 divide 2.

Lemma 5.6.11. Assume (1) (2) in Corollary 5.6.7. Then S0 consists precisely of those
places v such that xm /∈ (K×

v )
m.

Proof. If v ∈ S0, then the same argument as in the proof of Proposition 5.6.8 showing
that xm /∈ (K×)m shows that xm /∈ (K×

v )
m. Now let v ∈ VK − S0. We need to prove

that xm ∈ (K×
v )

m. If −1 is a square in Kv, then ξ2 ∈ Kv, and so ξs ∈ Kv(ξ2, ηs) ⊂ Kv.
Then xm = (1 + ξs)

m ∈ (K×
v )

m, as desired. If one of ±(ηs + 2) is a square in Kv, then

either
√
ηs + 2 = ±ηs+1 ∈ Kv or

√
−(ηs + 2) = ±ξ2ηs+1 ∈ Kv. In either case we have

xm = ηms+1 = (ξ2ηs+1)
m lies in (K×

v )
m. (The second equality is because 4|m.) □

Theorem 5.6.12 (Grunwald–Wang, refined version). We have P (m,S) = (K×)m, except
in the so-called special case, where all the following three conditions are satisfied:

(1) All of −1,±(ηs + 2) are non-squares in K.
(2) We have m = 2tm′ with m′ odd and t > s.
(3) S ⊃ S0.

Moreover, in the special case, we have P (m,S) = (K×)m ⊔ xm(K×)m.

Proof. By Lemma 5.6.11, condition (3) is equivalent to the condition that xm ∈ P (m,S).
In view of this, the theorem follows from Corollary 5.6.7 and Proposition 5.6.8. □

5.7. Approximating local abelian extensions by global ones. Reference: [AT68,
§X.2]

Theorem 5.7.1. Let K be a number field and S a finite subset of VK . Suppose that for
each v ∈ S we are given a finite abelian extension Kv/Kv. Then there exists a finite abelian
extension L/K such that for each v ∈ S and each place w of L above v, we have Lw ∼= Kv

as extensions of Kv.

Remark 5.7.2. If L/K is a finite Galois extension of global fields and w1, w2 are places
of L over a place v of K, then Lw1

∼= Lw2
as extensions of Kv, by the transitivity of the

Gal(L/K)-action on the set of places of L above v. Indeed, if τ ∈ Gal(L/K) takes w1

to w2, then the isomorphism τ : L
∼−→ L induces an isomorphism τ : Lw1

∼−→ Lw2 after
completion, and the latter isomorphism restricts to the identity map on Kv.

Remark 5.7.3. If we are given one non-archimedean place v of K and a finite extension
Kv/Kv, then it is easy to find a finite extension L/K such that there is exactly one place
w of L over K and moreover Lw ∼= Kv as extensions of Kv. Indeed, write K

v = Kv(α) and
let f(X) ∈ Kv[X] be the minimal polynomial of α over Kv. By Krasner’s lemma and by
the density of K in Kv, there exists an irreducible g(X) ∈ K[X] such that Kv[X]/(g(X))
is isomorphic to Kv as extensions of Kv. Take L to be K[X]/(g(X)).
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By the classification of finite abelian extensions of global and local fields (Corollaries 4.2.8,
4.5.4) and by the local-global compatibility (Theorem 4.5.9), in order to prove Theorem 5.7.1
it suffices to show that there is an open (and finite index, which is automatic) subgroup N
of CK such that ∏

v∈S
NKv/Kv

(Kv,×) = (
∏
v∈S

K×
v ) ∩N.

Here the intersection is inside CK , and we embed
∏
v∈S K

×
v into CK by

(xv)v∈S 7→ ((xv)v∈S , (1)v/∈S) ∈ A×
K/K

×.

The left hand is an open subgroup of finite index of
∏
v∈S K

×
v (equipped with the product

topology). Hence Theorem 5.7.1 follows from the following theorem.

Theorem 5.7.4. Every open finite index subgroup of
∏
v∈S K

×
v is of the form (

∏
v∈S K

×
v )∩

N for some open subgroup N of CK .

We will see that the proof crucially depends on the Grunwald–Wang theorem.
One subtlety is that when S has more than one element, the product topology on∏
v∈S K

×
v is finer than the subspace topology inherited from CK . We write P̃ for

∏
v∈S K

×
v

with the product topology, and write P for
∏
v∈S K

×
v with the subspace topology inherited

from CK . Thus the identity map is a continuous map

P̃ → P ⊂ CK .

Theorem 5.7.5. If P̃0 is an open finite index subgroup of P̃ , then its image P0 is P is also
open.

For the proof we need two lemmas.

Lemma 5.7.6. If the triple (K,m,S) does not belong to the special case in Theorem 5.6.12,
then P ∩ CmK = Pm. If (K,m,S) belongs to the special case, then

P ∩ CmK = Pm ∪ cmPm,

where cm = (cm,v)v∈S ∈ P is defined by cm,v = 1 for v /∈ S0 and cm,v = xm for v ∈ S0.

Proof. Let a = (av)v∈S ∈ P such that it lies in CmK . Then there exists α ∈ K× and b ∈ A×
K

such that a = αbm. In particular α ∈ P (m,S). If we are not in the special case of Theorem
5.6.12, then it follows that α ∈ (K×)m. Then clearly a ∈ Pm.

Suppose we are in the special case and that α /∈ (K×)m. Then α ∈ xm(K×)m. Hence

a = xme
m

for some e ∈ A×
K . Thus the component of ac−1

m ∈ P at v ∈ S is emv for v ∈ S0 and xme
m
v for

v ∈ S − S0. By Lemma 5.6.11, we have ac−1
m ∈ Pm. □

Lemma 5.7.7. For every m ∈ Z≥1, P
m is closed in P . Moreover, P̃ /P̃m and P/Pm are

compact.

Proof. Using CK ∼= R>0×C1
K and the compactness of C1

K , it is easy to see that CmK is closed
in CK . If (K,m,S) does not belong to the special case in Theorem 5.6.12, then by Lemma
5.7.6 we have Pm = P ∩ CmK and this is closed in P . Suppose we are in the special case.
Note that x2m = η2ms+1 = (ηs + 2)m and ηs + 2 ∈ K. Hence x2m ∈ (K×)m, and c2m ∈ Pm.
By Lemma 5.7.6 applied to (K,S, 2m) (which still belongs to the special case), we have

P ∩ C2m
K = P 2m ∪ c2mP 2m ⊂ Pm.
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Thus we have
P 2m ⊂ P ∩ C2m

K ⊂ Pm ⊂ P.
Clearly [P : P 2m] <∞. Hence Pm is a finite union of the cosets of P ∩C2m

K in P . It follows
that Pm is closed in P .

The compactness of P̃ /P̃m ∼=
∏
v∈S K

×
v /K

×,m
v is directly checked. The compactness of

P/Pm follows since there is a bijective continuous map P̃ /P̃m → P/Pm. □

Proof of Theorem 5.7.5. Since P̃0 is of finite index in P̃ , there exists m ∈ Z≥1 such that

P̃m ⊂ P̃0. Then P̃0/P̃
m is open, and hence closed, in P̃ /P̃m. Since P̃ /P̃m is compact, so

is P̃0/P̃
m. It follows that P0/P

m is compact. But by Lemma 5.7.7, P/Pm is Hausdorff.
Hence P0/P

m is closed in P/Pm, and so P0 is closed in P . Since P0 is of finite index in P ,
it follows that it is open in P . □

By Theorem 5.7.5, in order to prove Theorem 5.7.4 it suffices to prove the following
theorem.

Theorem 5.7.8. Every open finite index subgroup of P is of the form P ∩N for some open
subgroup N of CK .

To prove the above theorem we prove two more lemmas.

Lemma 5.7.9. Let P0 be an open finite index subgroup of P . For every m ∈ Z≥1, P0C
m
K

is closed in CmK .

Proof. We will use the following general fact ([AT68, §X.2, Lem. 1]): In a topological group,
if A is a compact subset and B is a closed subset, then A ·B is closed.

Let P̃0 be the inverse image of P0 in P̃ . Then P̃0 is open. Let W̃ be a compact neighbor-
hood of 1 in P̃ contained in P̃0 (since each K×

v contains arbitrarily small compact neighbor-

hoods of 1). By finite index, there exists N ∈ Z≥1 divisible bym and such that P̃N ⊂ P̃0. By

the compactness of P̃0/P̃
N (which is closed in the compact P̃ /P̃N ), there exists p̃1, · · · , p̃k

such that P̃0 =
⋃k
i=1 p̃iP̃

NW̃ . Let W (resp. pi) be the image of W̃ (resp. pi) in P . Then

P0C
m
K =

k⋃
i=1

piP
NWCmK .

But PN ⊂ CmK , so

P0C
m
K =

k⋃
i=1

piWCmK .

Now each piWCmK is of the form a compact set (piW ) times a closed set (CmK ), and hence
closed. □

Lemma 5.7.10. Let P0 be an open finite index subgroup of P . For each m ∈ Z≥1, there
exists an open subgroup N ⊂ CK such that P ∩N = P0(P ∩ CmK ) and N ⊃ CmK .

Proof. By Lemma 5.7.9, P0C
m
K and PCmK are closed in CK . Since P0C

m
K is a subgroup of

finite index and closed in PCmK , it is open in the latter. Therefore there exists a neighborhood
V of 1 in CK such that

PCmK ∩ V ⊂ P0C
m
K .

Up to shrinking V , we may assume that CmKV is a subgroup of CmK . (The point is that
for each place v, there exist arbitrarily small open neighborhoods Vv of 1 in K×

v such that
(K×

v )
mVv is a subgroup: If v is non-archimedean we can take Vv to be open subgroups; if v is
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archimedean we can take Vv to be arbitrary contained in the identity connected component
since (K×

v )
m = K×

v or (K×
v )

m = R>0 ⊂ K×
v = R×.)

Then we set N = P0C
m
KV . This is an open subgroup of CK containing CmK . To check

that P ∩ N = P0(P0 ∩ CmK ), we use that for any subsets A,B,C of a group we have
B ∩ (AC) = A · (B ∩ C). Applying this to A = P0C

m
K , B = PCmK , C = V , we get

(PCmK ) ∩N = P0C
m
K · (PCmK ∩ V ) = P0C

m
K .

Hence
P ∩N = P ∩ PCmK ∩N = P ∩ (P0C

m
K ) = P0(P ∩ CmK ),

as desired. □

Proof of Theorem 5.7.8. By Lemma 5.7.10, it suffices to find m ∈ Z≥1 such that P ∩CmK ⊂
P0. First find n such that Pn ⊂ P0. As in the proof of Lemma 5.7.7, by the Grunwald-Wang
theorem we either have P ∩CnK = Pn or P ∩C2n

K ⊂ Pn. In all cases taking m = 2n we have
P ∩ CmK ⊂ Pn ⊂ P0. □
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