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The goal of this course is the statements of global and local class field theory, and
applications. We will not prove class field theory.

The main reference which we will follow closely is Rabinoff’s notes for a course at
Harvard, 2012. Classical references include [CFT67], [Neu99], and [Ser79]. Some other
online lecture notes (e.g. J. Milne’s notes [Mil20]) can be helpful too.

Preliminaries. Algebra 1, Algebra 2, Number Fields (roughly the first two chapters of
[Neu99], or the first two chapters of [Ser79]; this corresponds to a first course on algebraic
number theory).

OVERVIEW

The goal of class field theory is to classify abelian extensions of a global or local field.

A global field refers to a field which is either a finite extension of Q, or a finite extension
of Fy,(t), where p is a prime.

A local field refers to a field which is either a finite extension of Q, (the field of p-adic
numbers), or a field of the form Fy((t)) = FracF,[t].

An abelian extension means a Galois extension L/ K (finite or infinite) such that Gal(L/K)
is abelian.

Ideal theoretic formulation of global class field theory. Let K be a global field. By
a modulus, we mean a formal product of the form m = v} - - - v*, where v; are places of K
and n; are non-negative integers. It should satisfy the following conditions:

(1) v; cannot be a complex place.

(2) If v; is a real place, then n; € {0,1}.
Recall that the class group of K is the cokernel of a natural map from K> to the free
abelian group Z[Vk,s| generated by the non-archimedean places of K. Given m as above,
we can define a certain subgroup {z € K* | x =1 mod m} of K*, and a map from it to
the free abelian group generated by the non-archimedean places of K not appearing in m.
The cokernel is denoted by Cly,, called the ray class group associated with m. This turns
out to be a finite abelian group.

There is an obvious way to define divisibility relation m|m’, for two moduli m,m’. For

m|m’, there is a natural surjection Cly,s — Cly. As such, the Cl,, for varying m form a
projective system of finite abelian groups.
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By a generalized class group, we mean a quotient group of Cl,, for some choice of m. If
m|m’, then each quotient group of Cly, is naturally identified with a quotient group of Cly,
via the projection Clys — Cl,,. Modulo this equivalence relation, we let . = %k be the
set of all generalized class groups.

Theorem 0.0.1 (Takagi). There is a natural bijection from the set of all finite abelian
extensions of K (inside a fized algebraic closure K ) to the set ..

Theorem 0.0.2 (Artin). If L/K corresponds to G under the above bijection, then there is
a canonical isomorphism Gal(L/K) — G.

Adelic formulation of global class field theory. Let K be a global field. The group of
ideles! for K is a certain subgroup Ay =1k of [[, KS, where v runs over all places of K,
and K, is the completion of K with respect to v. The advantage of Ay over the full [, K
is that it is a Hausdorff locally compact abelian topological group. The diagonal embedding
K* — [, K factors through Aj, and we define Cx = A /K*, called the idele class
group of K. For any finite extension L/K, there is a norm map Ny, /i : Cp — Ck.

Theorem 0.0.3. There is a canonical continuous homomorphism ¢ : Cx — Gal(Kab/IQ,
satisfying the following conditions. (Here K® is the mazimal abelian extension of K in K,
which is infinite over K.)

(1) (Reciprocity) For any finite abelian extension L/K, let ¢r, /i be the composition of
¢ with the natural projection Gal(K*®/K) — Gal(L/K). Then ¢k is surjective,
and its kernel is the image of Ny /i : Cp — Ck.

(2) (Ezistence Theorem) We have a bijection from the set of finite abelian extensions
of K in K to the set of open and finite index subgroups of Cy, sending L/K to
Nz/x(CL).

(3) Some functoriality properties of ¢ when K changes.

Local class field theory. Let K be a local field. The role played by Ck in the global
case is played by K* in the local case. Note that K* is also a Hausdorff locally compact
abelian group.

Theorem 0.0.4. There is a canonical continuous homomorphism ¢ : K* — Gal(K*/K),
satisfying the following conditions.

(1) (Reciprocity) For any finite abelian extension L/K, let ¢r,/k be the composition of
¢ with the natural projection Gal(K*/K) — Gal(L/K). Then b1 K 18 surjective,
and its kernel is the image of Ny i : L* — K*. Moreover, if L/K is unramified
(in which case Gal(L/K) is a cyclic group generated by the Frobenius), then ¢r,
sends any uniformizer in K> to the Frobenius.

(2) (Existence Theorem) We have a bijection from the set of finite abelian extensions
of K in K to the set of open and finite index subgroups of K*, sending L/K to
Np/x(L*).

(3) Some functoriality properties of ¢ when K changes.

Note the similarity to the theorem in the global case.

IThe word “idele” is an abbreviation of “ideal element”
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1. REVIEW OF GLOBAL AND LOCAL FIELDS
1.1. Places. Recall that an absolute value on a field K is a function |-| : K — R satisfying
the axioms:
(1) |z =0iff z =0;
(2) |zyl = |zllyl,Vz,y € K;
B3) |z +yl < |zl + lyl, Vo, y € K.
If the strong triangle inequality holds:

|z +y| <max(|z],[y[), Ve,yeK

then we call | - | non-archimedean. Otherwise we call it archimedean.
An absolute value |-| makes K a metric space by d(x,y) = |« —y]|, and hence a topological
space. It in fact makes K a topological field. We also always assume that | - | takes at

least three different values (i.e., at least one extra value other than 0, 1), which is equivalent
to requiring that the corresponding topology on K is not discrete.

Two absolute values |- | and | - | are called equivalent if there exists e > 0 such that
|-|"=1"1°. A place of K refers to an equivalence class of absolute values.

Exercise 1.1.1. Let K be a field.

(1) Show that two absolute values |- | and |- |" on K are equivalent if and only if they
define the same topology on K.

(2) Show that they are not equivalent if and only if there exists z € K such that |z| < 1
and |z|" > 1.

(3) Prove the Approximation Lemma: Let |- |1,...,| - |n be pairwise non-equivalent
absolute values on K. For any x1,...z, € K and € > 0, there exists y € K such
that |y — x;|; < eforall 1 <i<mn.

Exercise 1.1.2. Prove that for an absolute value |- | on a field K, the following conditions
are equivalent:

(1) || is archimedean (i.e., strong triangle inequality does not always hold).

(2) There exists a real number 0 < e < 1 such that |n| = n® for all n € Z>;. (In
particular K has characteristic zero.)

(3) There exists n € Z1 such that |n| > 1.

(Hint: For the equivalence of (2) and (3), first prove that for any a,b € Zs>2, we have
la] < max(1,|b['°8> ) by considering the base b expansion of a*. For (1) = (3), consider
binomial expansion of (1 + z)*, for z € K.)

Note: Clearly this exercise implies that the only archimedean place on Q is the usual
one. For the exercise, you are not allowed to use this fact.

Fact 1.1.3. Let K be a field. Then there is a surjection from Hom(K,C) (field homomor-
phisms) to the set of archimedean places of K, sending ¢ : K — C to the composition of ¢
with the usual absolute value on C. Two elements of Hom(K, C) are sent to the same place
if and only if they differ by complex conjugation.

The key point is to show that for any archimedean place of K, the completion K of K
with respect to it is isomorphic to either R or C. By Exercise 1.1.2, K must contain Q, and
the restriction of the place to Q is the usual archimedean place of Q. Hence K is a Banach
R-algebra. The desired result then follows from the Gelfand—Mazur theorem, which states
that the only Banach R-algebras which are fields are R and C.
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1.2. Global fields. A global field refers to a field which is either a finite extension of Q, or
a finite extension of F,(t), where p is a prime. In the former case the field is called a number
field, and in the latter case a global function field.

Exercise 1.2.1. Let K be a global function field of characteristic p. Show that there exists
an embedding F,(t) — K which makes K a finite separable extension of F,(t). (Hint: you
may use the fact that K has transcendence degree 1 over IFp, i.e., any maximal subset of K
which is algebraically independent over IF, has exactly one element. You may also induct
on the inseparable degree.)

Let K be a global field. Let Vi denote the set of all places of K, Vi o the set of all
infinite (i.e. archimedean) places of K, and Vi ¢ the set of all finite (i.e. non-archimedean)
places of K.

For each v € Vi, we define a normalized “absolute value” || - ||, : K — Rx¢ as follows.

If v is a real place corresponding to ¢ : K < R, let || - ||, be the usual absolute value on
R pulled back to K via ¢. This represents v.

If v is a complex place corresponding to ¢ : K < C (not factoring through R), the usual
absolute value on C pulled back to K via ¢ represents v. Let || - ||, be the square of it. It is
not an absolute value, since the triangle inequality is not satisfied.

If v € Vy, let | - | be a representative of v. Recall that a discrete valuation on K is a
non-zero group homomorphism ord : K* — Z such that ord(z + y) > min(ord(z), ord(y))
for all z,y € K*. By convention, we always set ord(0) = +oo. If ord is surjective, we say
it is normalized. For the given |- |, there is a unique real number 0 < o < 1 and a unique
normalized discrete valuation ord, : K* — Z such that |z| = a°™®®) for all 2 € K*.
Moreover, ord, depends only on v, not on the representative | - |.

Given v € Vy, we define the valuation ring Ok () := {z € K | ord,(z) > 0}. It is a
subring of K, and a DVR with unique maximal ideal m, = {z € K | ord,(z) > 0}. We
define the residue field of v to be k, := Ok () /My, i.e., the residue field of the DVR Ok (4.
This is always a finite field for a global field K. Define

Il = (#ko) om0,
This is our normalized representative of v.

Fact 1.2.2 (Product formula). For all x € K>, we have ||
for almost all v.

. |z|l, = 1. Here ||x|, =1

1.3. The ring of S-integers. Let S be a non-empty finite subset of Vi containing Vi .
We define the ring of S-integers to be

Ok,s ={f € K|YveVg—S,ord,(f) > 0}.
This is a Dedekind domain whose fraction field is K, and there is a bijection
Vi — S — {non-zero prime ideals of Ok s} = | Spec Ok 5|

sending v to p, 1= {f € Ok, | ord,(f) > 0}. Here |Spec Ok s| denotes the set of closed
points of Spec Ok g. The residue field of p,, is the residue field of v, so it is independent of
S.

If S’ is another finite subset of Vi containing S, then we have Ok ¢ C Ok g, and the
corresponding map Spec Ok s» — Spec Ok s is an open immersion, compatible with the
bijections | Spec Ok s| = Vi — S and | Spec Ok o/| = Vi — §'.
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If K is a number field, there is a minimal choice of S, namely S = Vi . In this case
Ok,s is the usual ring of integers O, namely the integral closure of Z in K. Thus every
Spec Ok, is an open subscheme of Spec Ok by deleting finitely many closed points.

If K is a global function field of characteristic p, let k& be the algebraic closure of I, in
K. Then k is a finite field, called the field of constants in K. There is a unique (up to
isomorphism) smooth, projective, geometrically connected (meaning that Xj is connected)
curve X over k such that K is the field of rational functions k(X) on X. This X plays the
role of Spec Ok in the number field case, in the sense that every Spec Ok s is obtained from
X by deleting finitely many closed points. (However, X is not affine.) More precisely, there
is a canonical bijection

1 X| = Vi, x> v,

Here |X| denotes the set of closed points, and v, is the place corresponding to the discrete
valuation ord, : K* — Z sending f to its “order of zero”? at x. The valuation ring Ok (v2)
(resp. residue field k,) of v, is equal to the local ring Ox , (resp. residue field k(x)) defined
in algebraic geometry. For any finite non-empty subset S of Vi, we view S as a finite set
of closed points of X, and obtain the open subscheme X — S C X. Then X — S is an affine
scheme (which is not true if S = ), and identified with Spec Ok s.

Let K be any global field, and S as above. As for any Dedekind domain, we can consider
the class group Cl(Og g) of Ok g, defined as the group of fractional ideals modulo the group
of principal fractional ideals. By the identification Vi — S = | Spec Ok g/, the class group
is also the cokernel of the map

K* =5 2Z[Vg—S8], f Y ordy(f)[v].
veEVK—S

Here Z[Vi — S] denotes the free abelian group generated by the set Vi — S, whose elements
are finite Z-linear combinations of the symbols [v] for v € Vi — S. As before, we denote by
ord, the normalized discrete valuation corresponding to (the non-archimedean) v. If K is a
global function field K = k(X), we can even consider the cokernel of

KX = Z[Vk], fr Y ord,(f)[v].

veEVEK

This is nothing but the class group (or Picard group) of X.

For more on the geometric point of view towards global function fields, see [Neu99, Ch. I,
§§13-14] for a brief introduction, and [GW20, §15] for a more thorough treatment. (The
bijection Vx — |X| is not discussed in [GW20], but it is an easy consequence of the
valuative criterion for properness and the fact that if vi,v2 € Vi are such that Ok (,,) C
Ok, (vy), then v1 = vy (Exercise).)

1.4. Extensions of global fields. Let L/K be a finite separable extension of global fields.
Then we have a map Vi, — Vi by restriction of absolute values. If w — v, we write w|v.
This map has finite fibers.

Fix a finite non-empty subset S C Vk containing Vk ~, and let T' be the inverse image
of S'in Vi,. Then we have Ok s C Or 1.

Fact 1.4.1. Op 1 is a finite projective Ok s-module.

2Since X is over a non-algebraically closed field k, the rigorous definition of ord, is that it is the canonical
normalized discrete valuation associated with the DVR Ox ;, the local ring of X at x.
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Fix v € Vi — 8, corresponding to a non-zero prime ideal p = p, of O 5. We can consider
the decomposition of p in O r:

g
pOrr = H‘B?,
i=1
where 3; are distinct non-zero prime ideals of Op ;. Let w; € Vi — T be the element
corresponding to *B;. For each w;, the inclusion Or 7 — Op, (,,) induces an isomorphism
Orn1/PBi — kuy,. Similarly, we have Ok s/p — k,. These isomorphisms are compatible
with the natural field extensions Ok s/p < Op 7/%B; and k, < k,, (induced by O ) —
OL,(wi))' Define fl = [k'wi : kv] = [OL,T/mi : OK,S/P]

Fact 1.4.2. The set {wn,...,wy} is equal to {w € Vi | w|v}, so it depends only on v, not
on S. For each 1 < i < g, the integers e;, f; depend only on v and w;, not on S. We write
e(w; /v), f(w;/v) for them. We have

S e(w/o)f(w/v) = [L: K).

weVy,wlv

The last numerical identity can be understood more conceptually as follows. If w|v, then
the completion L,, of L with respect to the place w, is naturally a field extension of the
completion K,. It also contains L, so it is a L @ K,-algebra. We denote the structure
map L Qg K, — Ly by iy

Fact 1.4.3 (Relationship between global and local extensions). The maps i, induce an
isomorphism of K,-algebras

L®K Kv 4 H Lwa T (’Lw(x))w

w,w|v

Moreover, e(w/v) and f(w/v) depend only on the extension of local fields L.,/K,, as they
are the ramification index and residue extension degree of L., /K, (see later). We have
(Lo : K] = e(w/v) f(w/v).

Taking dimensions over K,, we obtain

(1.1) [L:K]= Y [Lu:K,J)=>)_ ew/v)f(w/v).

weVy,wlv w

The first assertion in the above fact is also true for an archimedean place v. In this case,
we define e(w/v) to be [L,, : K,], and define f(w/v) to be 1. Then (1.1) still holds.

1.5. Galois theory for global fields. Let L/K be a finite Galois extension of global
fields. Let G = Gal(L/K). Then G acts on Vi, by g|-| = |¢g71(-)|. Then for each v € Vi, G
permutes {w € Vi | wlv}. For each such w, define the decomposition group D(w/v) to be
the stabilizer of w in G.

For g € D(w/v), as an automorphism of L it preserves the absolute value || - ||, and so
it extends by continuity to a unique automorphism g of L,,. Since K is dense in K, with
respect to || cot ||, we have § € Aut(L,,/K,). Hence we have a homomorphism

¢ : D(w/v) = Aut(L,/Ky), g~ g

By Fact 1.6.1 below, every h € Aut(L,,/K,) automatically preserves || - ||, on L., and so
its restriction to L is an element of D(w/v). This gives an inverse of ¢, and so ¢ is an
isomorphism.
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If O is a G-orbit in the set {w € V, | w|v}, then

(1.1)
S #Dw/v)=#G=[L: K] =" Y [Ly: K]
weO weVry ,wlv
But #D(w/v) = # Aut(L,/K,) < [Ly : K], so we conclude that
e The G-action on {w € Vi, | wjv} is transitive.
e Each L, /K, is a finite Galois extension, with Galois group identified with D(w/v).

From the transitivity, it easily follows that in the current Galois case, e(w/v) and f(w/v)
depend only on v and L/K, not on w. We write them as e(L/v), f(L/v). Moreover, D(w/v)
for different choices of w|v are conjugate. If G is abelian, then they are all equal, and we
denote them by D(L/v).

1.6. Completely valued fields. By a completely valued field, we mean a field together
with an absolute value (K, |-|) such that K is complete with respect to the topology defined
by || (i-e., every Cauchy sequence converges, which is a condition depending only on the
topology). As always we assume that | - | takes at least three values, so K is not discrete.
Often we will only remember the topology of K, not |-|. In other words, we remember only
the equivalence class of | - |.

Fact 1.6.1 (See [Bou87] Ch. I, §2). Let K be a completely valued field, and let V' be a finite
dimensional topological K-vector space (i.e., V is equipped with a topology such that the
addition map V xV — V and scalar multiplication map K xV — V are continuous) which
is Hausdorff. Then every K-subspace of V is closed, and every K -vector space isomorphism
K™ =5V is automatically a homeomorphism (where K™ has the product topology).

Fact 1.6.2. FEvery archimedean completely valued field is topologically isomorphic to R and
C.

The proof was already discussed below Fact 1.1.3.

For a non-archimdean completely valued field (K, |- ), one of the most important facts
is Hensel’s lemma. Let Ox = {z € K | |x| < 1} and mg = {z € K | |z| < 1}. Then O is
a subring of K, and mg is its unique maximal ideal. Define the residue field k := Ok /mg.
Denote the natural map Ox[X] — k[X] by f — f.

Theorem 1.6.3 (Hensel’s Lemma). Let f € Og[X] be such that its image f in k[X] is
non-zero. Suppose we have f = gh for g,h € k[X] which are coprime. Then there exist
g,h € Ok[X] lifting g, h such that deg g = degg, f = gh. (But degh may not equal degh.)

Proof. Without loss of generality we may assume that g is monic. Let g1 € Og[X] be a
monic lift of g, so deg gy = degg. Since g; is monic, we can divide f by g; with remainder
and get f = g1hy + 71 with hy,r1 € Og[X],degr; < deggyr. Then gh1 471 = f = gh. Since
deg7, < degr; < degg; = degg, it follows that h; = h and ¥; = 0. Since g and h are
coprime, there exist ag,by € Ok [X] such that aphy + bog1 € 1+ mg[X]. Let 7 € mg be
such that m € 1Ok [X] and aghy +bog1 € 1 + 7Ok [X]. We induct on n € Z> to construct
gn € Ok[X] such that

® ¢, is a monic lift of g. In particular deg g, = degg.

o If n> 2, then g, € g,_1 + 7" 1Ok[X].

e Dividing f by g, with remainder:

f = gnhn + T’rh hnaT’n E OK[X]) degr’ﬂ < degg’ﬂ7

we have r, € T"Og[X].
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The base case n =1 is already done. Suppose g, has been constructed. Then we also have
By Ty and v, € T Ok [X]. Write r,, = "85, sp, € Og[X]. We claim that aghy, + bogn = 1
mod 7. We have g, = g1 mod m and r, = 0 mod «, so f = gih, mod w. But also
f = ¢g1h1 mod 7. Since g; is monic, its image in (Og /7)[X] is not a zero-divisor. Hence
hn, = h; mod 7. This proves the claim. By the claim, there exist a,, b, € Ox[X] (e.g. a, =
apSn, by = bosy,) such that

anhn + bngn =8, mod .
Moreover, we may replace a, by the remainder of a, divided by g,, and assume that
dega, < degg,. Set

In+1 = Ggn + 7T”an~

We check that it has the desired properties. Only the last one is non-obvious. Write

aphy + bpgn = sy + wty, tn, € Og[X].

We have

gn+1(hn + '/Tnbn) = gnhn + ’/Tn(sn + '/Ttn) + 7Tznanbn =/ mod 7t

This implies the last desired property (but h,4+1 may not be h,, + 7"b,.) We have finished
constructing the g,’s.

Since deg g, is constant, the second property above implies that the limit ¢ = lim, g,
exists in Ok [X], and is monic. It is a lift of g. Divide f by g with remainder:

f=gh+r, degr<degyg.

Then the image of r in (Og/7™)[X] is divisible by the image of g, since the image of f is
divisible by the latter. As g is monic and degr < degg, this is possible only when r = 0
mod 7. This holds for all n, so r = 0. Comparing f = gh and f = gh, we see that h is a
lift of h. (]

Fact 1.6.4. Let (K, ||k) be a completely valued field, and let L/ K be a finite field extension.
Then there is a unique absolute value |- |, on L whose restriction to K is |- |k. The valued

field (L, |- |1) is also complete. Moreover, we have |z|p = |NL/K:E|}(/[L:K] foralze K.

The uniqueness of | - | and the completeness of (L, |- |) follow easily from Fact 1.6.1.
For the existence, we need to check that the formula [N x|k gives an absolute value on
L. If K is archimedean, then it is either R or C, and this is trivial. In the non-archimedean
case, this is shown in the exercise below.

Exercise 1.6.5. Let (K, | -|) be a non-archimedean completely valued field.
(1) Use Hensel’s lemma to show that if f(X) = @, X"+ -+ a1 X + a9 € K[X] is a
power of an irreducible polynomial, then max}" |a;| = max(|a,|, |ag|).
(2) Let L/K be a finite extension. Show that the function L — R>g,2 — [Nz, k()]
is a non-archimedean absolute value on L. (Hint: in order to check [Ny, x(z +
1) < max(1,|Np/g(2)]),Vx € L, relate both Ny g (z 4+ 1) and N, g (z) to the
characteristic polynomial of L — L,y + xy. Then use (1).)

Exercise 1.6.6. Prove the first assertion in Fact 1.4.3 by using Facts 1.6.1 and 1.6.4 in the
following steps.
(1) Each 4, is surjective.
(2) For any K, any field extension K’/K, and any finite separable extension L/K, the
K'-algebra L ® g K’ is a product of finite field extensions of K’. (Hint: apply the
Primitive Element Theorem to L/K.)
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(3) There is a one-to-one correspondence between the L,’s and the field factors of
Lok K'.

By Fact 1.6.4, the absolute value on K extends uniquely to any algebraic extension L/K.
Clearly if two elements of L are conjugate over K (i.e., having the same minimal polynomial),
then they have the same absolute value.

In the following, whenever we consider a finite extension of completely valued fields, the
absolute values are always assumed to be compatible, up to equivalence.

For a non-archimedean completely valued field (K, |- |), we can further divide into the
discretely valued case and the non-discretely valued case, according as whether |[K*| is a
discrete subgroup of Ry . In the discretely valued case, there exists a unique 0 < o < 1 and
a unique normalized discrete valuation ordg : K* — Z such that | - | = a®"% (), Moreover
ordg depends only on the equivalence class of | - |. In this case, Ok is a DVR, and it is
complete in the sense that the natural map

Ok — h£1 (’)K/m?(
n>1
is an isomorphism.

Conversely, for any field K, any normalized (or just non-zero) discrete valuation ordg
on K, if the resulting O = {x € K | ordg(x) > 0} (which is a DVR) is complete, then
(K,a°™x) for any 0 < a < 1 is a completely discretely valued field.

Remark 1.6.7. If K is a completely discretely valued field and L/K is a finite extension,
then the unique extension of absolute value makes L a completely discretely valued field.

1.7. Local fields.

Fact 1.7.1. A non-archimedean completely valued field K is locally compact if and only if
it is discretely valued and the residue field is finite.

Remark 1.7.2. Every archimedean completely valued field (i.e. R or C) is locally compact.
By Fact 1.6.1, if K is a locally compact completely valued field, then so is any finite extension
of it as the latter is homeomorphic to K™.

Definition 1.7.3. A local field is a completely valued field which is locally compact.

Fact 1.7.4. An archimedean local field is R or C. A non-archimedean local field is either a
finite extension of Q, or is isomorphic to Fy((t)), with valuation given by ord( j:; a;t!) =
n, where n € 7. and a, # 0.

1.8. More on polynomials (not using completeness). Let (K,|-|) be a completely
valued field. Define

ord(-) = —Clog|-|: K* = R,
where C' € Ry is a constant. Then ord is a valuation. By Fact 1.6.4, it extends uniquely
to a valuation

_ 1
ord: K* -5 R, x+ K@) K ord(Ng (z)/k ().
Given a non-zero f € K[X], one is thus interested in ord(a) for the roots o of f in K.
Write f(X) = ag+ a1 X + -+ + ap, X™. The Newton polygon of f is defined to be the
lower convex hull of the set {(i,ord(a;)) € R? | 0 < i < n,a; # 0}. Let {s;} be the slopes
of it, and let n; be the multiplicity of s;, i.e., the horizontal distance (within [0,n]) traveled
by the segment of slope s;.
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Theorem 1.8.1 (Newton Polygon). There are precisely n; roots o of f in K (counting
multiplicity) such that ord(a) = —s;.

Proof. [Neu99, Ch. II, (6.3)]. O

Remark 1.8.2. The proof only uses strong triangle inequality and root-coefficient relations.
Thus we can drop the assumption that K is complete if we assume that f splits over K.

The following result is elementary.

Theorem 1.8.3 (Eisenstein criterion). Let (K, |-|) be a discretely valued field (not necessar-
ily complete). Thus O is a DVR with mazimal ideal mp. Let f = X" +a,, X" 1+ +ag €
OklX]. Ifag--+ ,an—1 € mg and agOx = my, then f is irreducible. (Here irreducibility
in Ok [X] orin K[X] are equivalent.)

Polynomials satisfying the assumption are called Fisenstein.

1.9. Extensions of completely discretely valued fields. Let L/K be a finite extension
of completely discretely valued fields. Let [ and k£ denote the residue fields of L and K.
Then [ is a finite extension of k. Define the residue degree

f(L/K) =1l : k]

Recall that an element x € K is called a uniformizer of K if z € mg and 2Ok = mg. Equiv-
alently, ordg () = 1, where ordg is normalized to be surjective. Define the ramification
index

e(L/K) :=ordp(z) € Z>1,
where ordy, is normalized to be surjective. Equivalently, if | - | denotes the absolute value
on L, we have e(L : K) = [|[L*| : |K*|] where |L*| and |K*| are subgroups of Rsg.
Equivalently,

mKOL = mz(L/K).

Fact 1.9.1 ([Ser79, I1.2]). The Ok-module Oy, is free of rank [L : K|. It is the integral
closure of Ok in L. We have e(L/K)f(L/K) =[L : K].

Definition 1.9.2. The extension L/K is called unramified, if e(L/K) = 1 and l/k is
separable. It is called totally ramified, if e(L/K) = [L : K].

Theorem 1.9.3. Let K be a completely discretely valued field.

(1) FEwvery finite unramified extension of K is separable. There is an equivalence of
categories from the category of finite unramified extensions of K to the category
of finite separable extensions of the residue field k, sending L/K to the residue
extension l/k. In other words, every finite separable extension of k can be realized
as the residue extension of a (unique up to isomorphism) finite unramified extension
of K, and if L/K,L' /K are finite unramified then Homp (L, L") — Homy(I,1").

(2) Moreover, if L/K is a finite unramified extension with residue field I, and M/K is
a finite extension with residue field m, then we have Homg (L, M) — Homy(l,m).

(3) Let l/k be a finite separable extension, so by the primitive element theorem | =
k[X]/(f(X)) for a monic irreducible separable f(X) € k[X]. Let f(X) € Ox[X]
be a monic lift of f. Then L = K[X]/(f(X)) is a finite unramified extension of K
whose residue extension is isomorphic to l/k, and we have O = Ok[X].
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(4) If L/K is finite totally ramified and 7, is a uniformizer of L, then L = K(rp),
Or = Oklry], and the monic minimal polynomial of 7y, over Ok is Eisenstein.
Conversely, for any Eisenstein polynomial f(X) € Og[X], the extension L =

K[X]/(f(X)) over K is totally ramified, and X is a uniformizer of L.

Remark 1.9.4. Let L/K be a finite unramified extension, and « € Of, be such that its
image @ in [ generates [ over k. Let f(X) € Ok[X] be the monic minimal polynomial of
«. Then the image f € k[X] must be divisible by the minimal polynomial of & over k, and
hence be equal to the latter since [k(a) : k] = [l : k] = [L : K] > degf. Then by (3),
we have a map between unramified extensions ¢ : K[X]/(f(X)) — L, X — «, inducing an
isomorphism between the residue fields. By (1), ¢ must itself be an isomorphism. Thus, by
(3) again, we conclude that L = K(«) and O, = Ok|a].

Definition 1.9.5. Let K be a completely discretely valued field. An algebraic extension
L/K is called unramified, if every finite subextension L'/K is unramified.

If we fix a separable closure K* of K, then it easily follows from Theorem 1.9.3 that there

is a unique maximal unramified subextension K" /K in K*. Note that the unique extension
of ordi (normalized) to K" is still valued in Z (instead of Q). The residue field of K" is
a separable closure of k. Typically K™ is not finite over K. When it is infinite over K, it
is not complete. Its completion is denoted by K.
Example 1.9.6. Assume that K has positive characteristic. Then a choice of a uniformizer
of K corresponds to an isomorphism k((t)) — K, sending ¢ to the uniformizer. Fix such
an isomorphism. Then for any finite separable [/k, the corresponding finite unramified
extension is I((t))/k((t)).

Example 1.9.7. Assume that K has characteristic zero, and perfect residue field k. Let
p = char(k). Let W(k) be the ring of Witt vectors (see [Ser79, IL.5]). Then W(k) is a
complete DVR containing Z such that p is a uniformizer and its residue field is k. There
is a canonical embedding W (k) — Ok lifting the identity map on k, and the resulting
Frac W (k) — K is a finite totally ramified extension of completely discretely valued fields.
(Here Frac W (k) is equipped with the unique discrete valuation such that the valuation ring
is W(k).) For any finite (automatically separable) extension I/k, the corresponding finite
unramified extension L/K is L = K Q) W(I).

Example 1.9.8. Let L/K be a finite extension such that the residue extension I/k is
separable. Then we have a unique maximal unramified subextension L'/K in L. The residue
field of L’ is I. We have [L’ : K] = f(L/K). A uniformizer of K stays as a uniformizer
of L', so e(L/L') = e(L/K) =[L: K|/f(L/K) = [L : L']. Hence L/L’ is totally ramified.
Thus we have “broken down” the extension L/K into an unramified extension L'/K and a
totally ramified extension L/L’.

Corollary 1.9.9. Let L/K be a finite unramified extension, with residue extension l/k. If
l/k is Galois, then so is L/K, and we have Gal(L/K) = Gal(l/k).

Proof. By the equivalence of categories, the natural map Aut(L/K) — Aut(l/k) is an
isomorphism. If I/k is Galois, then these groups have cardinality [{ : k], and this is equal to
[L: K] since L/K is unramified. O

1.10. Galois theory for local fields. Let L/K be a finite Galois extension of non-
archimedean local fields. Let [/k be the residue extension, and G = Gal(L/K). The
action of G on L preserves ordy, so it stabilizes Oy, and miL for all 4 > 1.
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Definition 1.10.1. The ramification subgroups of G are G; = ker(G' — Aut(Or/mi™)),
forieZ,i > —1.

Thus G; are normal subgroups of G, and we have
G=G_120GyDG; D---.

Clearly ), G; = 1. Since G is finite, this implies that G,, = 1 for some finite m.

The subgroup Gy = ker(G — Gal(l/k)) is called the inertia subgroup. The extension
L% /K is the maximal unramified extension of K inside L, and it is Galois of Galois group
G/Go = Gal(l/k). The extension L/L%° is totally ramified, and it is Galois of Galois group
Go.

The subgroup G is called the wild inertia, while Go/G is called tame inertia. In fact,
let p = char(k). Then G is the unique p-Sylow subgroup of Gg. The extension L% /LS is
totally ramified and tamely ramified in the sense that its degree is coprime to p. It is the
maximal subextension of L/L% which is tamely ramified. In general, a finite extension of
K is called tamely ramified if the ramification index is coprime to p. Thus L% /K is the
maximal subextension of L/K which is tamely ramified.

Define Uy, = U = O, and U} = 1 +m? for i > 1. These are abelian groups under
multiplication.

Choose a uniformizer 7, of L. For i > 0 we have injective group homomorphisms

Gi/Gi_H;)Uz/Uz—"_l, SH@
TL
Note that s(7) = 7, mod 74" since s € G, and it follows that s(rz)/mz =1 mod 7%,

ie., S(’lTL)/TFL € Ui

Exercise 1.10.2. This map is a well-defined group homomorphism, and it is independent
of the choice of 7.

Now to check the injectivity of this map, we need to show that if s € G; satisfies that
s, = wr, mod 71'?'2, then sx = x mod 71'?'2 for all x € O. This follows from the fact
that Or, = Opc,[rr] as L/L% is totally ramified.

For i =0, U, /U} 2 1* by x — (z mod mp). This is a cyclic group of order prime to p.
For i > 1, the multiplicative group U? / Ui“ is isomorphic to the additive group m¢ /miL+1
by z — x — 1, and the latter is isomorphic to [, which is a product of Z/pZ. We conclude
that:

e Gy/G is a cyclic group of order prime to p.

e Fori > 1, G;/G,41 is a product of Z/pZ.
This implies that G; is the unique p-Sylow subgroup of Gy. Note that G/Gy = Gal(l/k) is
also a cyclic group. Hence G is solvable.

We now introduce the upper numbering of ramification groups. For u € [—1,400), define
Gy := Guinfiezjizu}- For u € [0, +00), define

o) = dryl) = [z

d(u) = u.
Then ¢ is a strictly increasing, continuous, piecewise linear, concave function on [—1, +00).
It is thus a bijection [~1,+00) — [~1,+00). Let ¥ = 91 /k be its inverse function. Then )
is strictly increasing, continuous, piecewise linear, convex function on [—1, 400).

Also for u € [-1,0) define
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Definition 1.10.3. The upper numbering of ramification groups is defined by
G’ = Gyw), ve[-1,+00),

ie.,
G*™ .= @G,, wue [—1, +00).

Now let H C G be a normal subgroup, and K’ = L. Then K’/K is a Galois extension
of Galois group G/H, so we can define (G/H), and (G/H)" with respect to L/K. Also we
can define H, and H" with respect to L/L. It is clear from the definition that we have

H,=HnNG,.
The following theorem is the main reason for considering the upper numbering.
Theorem 1.10.4. For allv € [—1,+00), we have
(G/H)' =G"H/H.
In the rest of this subsection we give a proof of Theorem 1.10.4. For any s € G — {1},
define
ig(s)=max{i€Z|i>—-1,s € G;}+ 1.
The following result is the key.

Proposition 1.10.5. For 0 € G/H,o # 1, we have
. 1 .
ig/u(o) = m Z ic(s).
sEG,s—o

For the proof, we will use the following fact.

Fact 1.10.6 ([Ser79, IIL.6, Prop. 12|, or [Neu99, Ch. II, (10.4)]). For any finite extension
E/K, there exists x € Og such that Og = Og|[x].

Exercise 1.10.7. Suppose O, = Og|[z]. Then for s € G we have
ig(s) = ordp (sx — z).
Here ordy, is the normalized discrete valuation on L.

Proof of Proposition 1.10.5. (See [Ser79, III.1, Prop. 3].) Find « € O, and y € O+ such
that O, = Ok[z] and Ok = Ok|y|, by Fact 1.10.6. Fix s € G lifting 0. Then the left hand
side is equal to

1
ordg (sy —y) = W ordy(s(y) — ),
while the right hand side is equal to
1
m Z OrdL(St(.r) — .T)

teH
Hence it suffices to show that the elements
a=s(y) -y, b= [[(stx)-x)
teH
divide each other in Op. The minimal polynomial of x over K’ is

fX) =[] (X —t2) € Ok [X].

teH
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Then +b = (sf)(z). Since each coefficient ¢; of f lies in O = Ok|y], we know that each
coefficient of s(f)—f, namely s(c¢;)—c;, is divisible by a in O, (e.g., s(y"™)—y" = (sy)"—y™ =
a((sy)" 1 + (sy)" 2y + --- +y"1)). Hence a divides (sf)(x) — f(x) = (sf)(z) = =*b.
Conversely, let g(X) € Ok[X] such that y = g(z). Then g(X) —y € Og/[X] kills z, so it
must be divisible by f(X) in Og/[X]. Thus £b = (sf)(z) divides (s(g — y))(x) in Or. But
s(g) = g since g € Ok[X]. Hence (s(g — y))(z) = g(x) — s(y) = y — s(y) = —a. Thus b
divides a in Op,. O

We now write the right hand side of the formula in Proposition 1.10.5 in a better form.
Let jg(o) := max{ig(s) | s € G,s +— o}. Pick s € G, s — o such that ig(s) = jg(o). Then
seG.siso 1G(8") = Dt ic(st), and it is easy to see (using that the G;’s are subgroups)
that for each t we have
ig(st) = min(ig(t), ja(0)).
Also note that ig(t) = ig(t). Thus by Proposition 1.10.5, we have

/() = % S min(in (t), ja(0)).

teH
It is elementary to check that for all u € [—1, +00], we have
1

e(L/K") > min(in(t),u) = ér/x:(u—1) +1
teH

(e.g., by comparing the derivatives of the two sides). Hence we conclude that
ig/u(0) = ér e (j(o) = 1) + 1.
From this, the following result is immediate:

Theorem 1.10.8 (Herbrand’s theorem). Let u € [~1,400), and v = ¢k (u). Then
G,H/H = (G/H),.

Proof. Let 0 € G/H,o0 # 1. We have 0 € G,H/H if and only if j(o) — 1 > u, if and
only if ¢r,x:(j(0) — 1) > ¢k (u) = v, if and only if ig/y(0) —1 > v, if and only if
o€ (G/H),. O

By Herbrand’s theorem, we have

¢L/K = ¢K//K © ¢L/K'-

Indeed, it suffices to check that the two sides have the same derivative at arbitrary u €
[0,4+00),u ¢ Z. The derivative of the left hand side is |G, |/e(L/K), while that of the right
hand side is
(G/H)o| |Hau|
e(K'/K) e(L/K')’

That the two derivatives are equal follows from Herbrand’s theorem.

where v = ¢/ (u).

Proof of Theorem 1.10.4. By definition, we have (G/H)" = (G/H),, where v = ¢g+/x ().
By Herbrand’s theorem, (G/H), = GwH/H, where x = ¢, /g (w). Thenv = ¢gr /g (dr/x (w)) =
br/ K (w). U
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2. TOPOLOGICAL NOTIONS

2.1. Inverse limits of topological spaces. Recall that a directed set, or a filtered set,
means a set I with a transitive binary relation < such that for any ¢,j € I, there exists
k € I such that i < k,j < k. By an inverse system of sets (or groups, or topological spaces,
or topological groups, etc.) indexed by (I, <), we mean the following data:
e a set (or group, ...) X; for each i € I;
e for any 4,7 € I such that ¢ < j, a transition map (or group homomorphism, ...)
Pij - Xj — )(Z
The transition maps p; ; should satisfy the following:
(1) For any i € I, the map p;; : X; — X; is the identity.
(2) If i < j < kin I, then p;x = pij o pjk.
We denote such an inverse system by (X;);er, suppressing < and p;; from the notation.
For (X;);er an inverse system of sets, we define
X = @Xi = {(,’L‘l) S HXZ ‘ Vi < j,pij(mj) = .%'Z‘}.
i€l i
This is equipped with maps p; : X — X;, by projection to the i-th coordinate. The set X
together with the maps p; is characterized by the following universal property: If Y is a set
and ¢; : Y — X; are maps for all + € I which are compatible with the transition maps p;;,
then there is a unique map ¢ : Y — X such that q; = p; oq for all i € [.

We now consider an inverse system (X );cs of topological spaces. We define X = @ie s X;
as a subset of Hie 1 X; in the same way, and equip it with the subspace topology inherited
from the product topology on J],.; X;. The latter is defined as the coarsest topology (i.e.,
topology with fewest open sets) such that each projection [],.; X; — X; is continuous.
Thus every open set in [[, X; is a union of fundamental open sets, which are of the form

H Uz X H Xi,
i€l S
where Ij is a finite subset of I, and U; is an open set in X; for ¢ € I.
The topology on X = @ie s X is called the inverse limit topology. The topological space

X has a similar universal property (for continuous maps between topological spaces) as in
the set case.

Exercise 2.1.1. If each X; is Hausdorff, then so is X = @iel X;. In this case, X is closed
in [Lie; Xi.
Theorem 2.1.2 (Tychonoff). If each X; is compact, then [[,c; X; is compact.

By the above exercise and theorem, we see that if each X; is Hausdorff compact, then X
is compact.

Exercise 2.1.3. Assume that each X; is Hausdorff compact non-empty. Then @ie s X, #

(. (Hint: use Tychonoff’s theorem, and use the characterization of compactness in terms of
intersecting closed sets.)

Definition 2.1.4. A topological space X is called connected, if it cannot be written as the
disjoint union of two open (equivalently, two closed) subsets.

Let X be a topological space. We define a relation ~ on X by: x ~ y if and only if there
exists a connected subspace Y C X containing both = and y.
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Exercise 2.1.5. Show that ~ is an equivalence relation. Moreover, each equivalence class
is connected.

The equivalence classes are called connected components of X. Thus X is the disjoint
union (in the set-theoretical sense) of its connected components, and each connected com-
ponent is maximal connected.

Definition 2.1.6. A topological space is totally disconnected, if each connected component
has only one element.

Definition 2.1.7. A topological space is profinite, if it is Hausdorff, compact, and totally
disconnected.

Theorem 2.1.8. A topological space is profinite if and only if it is homeomorphic to
@iel X, for an inverse system (X;)icr of finite sets, where each X; is equipped with the
discrete topology.

Exercise 2.1.9. Prove the theorem. Hint: For the “only if” direction, you may construct
(I,<) and (X;); from the given profinite space X in the following way. Let I be the set of
continuous maps f : X — Z such that im(f) is finite. For f,g € I, we define f < g if there
exists a (necessarily unique) map ¢4 : im(g) — im(f) such that f =rs,0g. For f € X,
let Xy :=im(f), and let the transition maps be ry 4. (The idea is that I is the “set of all
continuous maps from X to finite sets”, but we define it in this way to avoid set-theoretical
issues.)

2.2. Topological groups. A topological group is a group G with a topology such that the
multiplication map G x G — G and the inversion map G — G, g — g~ ! are both continuous.
We write e for the identity element of a group.

Proposition 2.2.1. Let G be a topological group.

(1) For every open neighborhood U of e, there exists an open neighborhood V' of e such
that V=V and V-V CU.

(2) For every subgroup H of G, the closure H of H is still a subgroup. If H is normal,
then H is normal.

(3) Ewvery open subgroup is closed. Every closed subgroup of finite index is open.

(4) If G is compact, then every open subgroup is of finite index.

(5) For K,K' compact sets in G, we have K - K' is compact.

(6) G is Hausdorff if and only if {e} is closed. G is discrete if and only if {e} is open.

(7) For any normal subgroup H in G, the group G/H with the quotient topology is a
topological group. It is Hausdorff if and only if H is closed in G, and it is discrete
if and only if H is open in G.

Exercise 2.2.2. Prove the proposition.

If (G;)ier is an inverse system of topological groups, then G = @iel G; equipped with
the natural group structure and the inverse limit topology is a topological group. The maps
G — G; are continuous group homomorphisms, and we have a universal property in terms
of continuous homomorphisms between topological groups.

Definition 2.2.3. A topological group is called profinite, if its underlying topological space
is profinite.
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Theorem 2.2.4. A topological group G is profintie if and only if G is topologically iso-
morphic to @iel G; for an inverse system (G;)icy of finite groups (equipped with discrete
topology). In this case, the natural map

G— lim G/H
H<G open

is an isomorphism. Here each G/H is finite and discrete, so the inverse limit is an inverse
limit of finite groups. (The set of H’s is directed by: H < H' if and only if H D H'.)

Exercise 2.2.5. Prove the theorem. Also prove that for a profinite group, the open normal
subgroups form a neighborhood basis of e.

Remark 2.2.6. Let G be a profinite group. By a cofinal system of open normal subgroups of
G, we mean a set S of open normal subgroups of G such that for every open normal subgroup
V of G (or equivalently, every open neighborhood V' of e), there is H € S contained in V.
Then clearly S is a directed system where H < H' if and only if H D H’'. We have a natural
map
G — lim G /H.
HeS

The same argument proving the last statement in the theorem also shows that this map is
an isomorphism.

Now for an arbitrary topological group G, we define the profinite completion

G := Jim G/H.
H<G
open finite index

This is profinite, with the inverse limit topology. We have a natural map i : G — G ,g— (g
mod H)y.

Exercise 2.2.7. Show that ¢ is continuous, and that for any continuous homomorphism
f G — T where I is a profinite group, there exists a unique continuous homomorphism
f : G — T such that f= fo . (Hint: for the uniqueness of f, first show that ¢ has dense
image. For the existence of f, you can first treat the case where I' is finite, and then in
general use that ' is an inverse limit of finite groups.)

Example 2.2.8. The ring of p-adic integers Z, = mn Z/p™. Its “usual” topology is the
sames as the inverse limit topology, hence profinite.

Example 2.2.9. The profinite completion of Z is 7= I&Hn Z/nZ. Here the transition maps
are Z/mZ — Z/nZ,a — a for n|m.

Exercise 2.2.10. Using Chinese Remainder Theorem, show that there is a canonical iso-
morphism of topological groups Z = Hp Z,, where the product is over all primes p. The

natural map Z — Z is identified with the diagonal embedding Z — [, Zp,n = (n)y.

2.3. Profinite groups arising from a local field. Let K be a non-archimedean local

field. Then the additive groups Ox D mxg D m% D --- and the multiplicative groups
UL DU} DUZ D --- are all profinite, and {m?%},>; (vesp. {Uk},>;) is a cofinal system

of open subgroups of m¥ (resp. Uk ). (Recall that UY = Oy and U}, = 1 +m¥; for i > 1.)

Exercise 2.3.1. Prove these claims.
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By Remark 2.2.6, we have natural isomorphisms

(21) i > i/, Uk < lim Ul /U
n>i n>i

of topological groups.

Lemma 2.3.2. Let A, B be (abstract) abelian groups, equipped with subgroups A = Ag D

Ay DAy D+ and B= By D By D By D ---. Assume that the natural maps
A—1lmA/A,, B—limB/B,

are isomorphisms. Let ¢ : A — B be a homomorphism such that ¢(A,) C B, for each

n > 1. If ¢ induces a surjection (resp. injection) A, /An+1 — Bpn/Bny1 for each n > 0,

then ¢ is a surjection (resp. injection).

Proof. Exercise. (See [Ser79, §V.1, Lem. 2]) O
These ideas can be applied to proving the following result.

Proposition 2.3.3. Let L/K be a finite unramified extension, with residue extension l/k.
Let N be the norm map Ny i : L™ — K*. For each i > 0, we have N(UL) =Us.

Proof. Since [/k is Galois, so is L/K. Let G be the Galois group. We first show that
N(Uz) C U}(. If i = 0, this follows from the fact that ordy, restricts to ordg. If i > 1, let
x=1+y € U, with y € m.. Then

N@)=[A+sy)=14+> sy+ > (s1g)(say) +--- € 1+ mp.
seG seG $1,52€G

But mi N K =mY; since L/K is unramified. Hence N(z) € 14+ m¥, = Ul.

To finish the proof, by the isomorphisms (2.1) and Lemma 2.3.2, it suffices to check that
N induces a surjection U} /Uit — Ul /UL for each i > 0. If i = 0, we have canonical
identifications UY /U} = 1*,U%/U}, = k*, and the map [* — k* is the norm for I/k,
which is surjective. Suppose ¢ > 1. Then after choosing a uniformizer 7y of L we have
an isomorphism [ = O /my, — U} /U sending a + my, (for a € Op) to (1 + 7ha)Us.
Similarly, after choosing a uniformizer of K we have an isomorphism k — U/ U?l. Since
L/K is unramified, we can choose the same uniformizer of K and L. Then the map [ — k
corresponding to N : Ui /U — Uk /U is the trace for I/k (since the “linear term” in
the above formula for N(x) is ) . sy), which is surjective. O

2.4. Review of infinite Galois theory. Recall that an (infinite degree) algebraic exten-
sion of fields L/K is called Galois, if it is separable (i.e., the minimal polynomial over K
of any element of L is separable) and normal (i.e., the minimal polynomial over K of any
element of L splits in L). Equivalently, L/K is the splitting field of a set of separable irre-
ducible polynomials over K. Clearly an algebraic extension L/K is Galois if and only if L
is the union of the finite Galois subextensions L'/K in L.

Let L/K be Galois, and let G = Gal(L/K) := Aut(L/K). Let S be the set of finite
Galois subextensions L'/K in L. Then S is a directed system with L' < L” if and only if
L' c L”. For L’ < L" in S, we have the restriction map Gal(L"/K) — Gal(L'/K), so we
have an inverse system of finite groups (Gal(L'/K))r/es. Since L = {J; gL', we have a
natural isomorphism (of groups)

Gal(L/K) = i

’

Gal(L'/K).
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We equip Gal(L/K) with the inverse limit topology of the right hand side, which is profinite.
This is called the Krull topology on Gal(L/K).

Theorem 2.4.1 (Main Theorem of Galois Theory). Let L/K be a Galois extension, and
let € be the set of intermediate extensions L/E/K.

(1) We have a bijection
{closed subgroups of Gal(L/K)} — &,

sending H to L. The inverse map sends E to Gal(L/FE).

(2) Suppose H corresponds to E. Then H is of finite index in Gal(L/K) (i.e., open) if
and only if E/K 1is finite.

(3) Suppose H corresponds to E. Then H is normal in Gal(L/K) if and only if E/K
is Galois. In this case, we have a natural topological isomorphism Gal(E/K) =
Gal(L/K)/H, where the right hand side has the quotient topology.

Definition 2.4.2. Let G be a topological group. Let Gge be the commutator subgroup,
i.e., the subgroup generated by xyz~'y~! for 2,y € G. Let Gqe, be its closure. Then G e,
is normal in G, and we define the abelianization G* = G/Gqer-

Clearly G is Hausdorff and abelian, and every continuous homomorphism from G to a
Hausdorff abelian topological group factors uniquely through G — G&b.

Definition 2.4.3. By an abelian extension, we mean a Galois extension of fields whose
Galois group is abelian.

Let L/K be a Galois extension. If Ey/K,Es/K are two abelian subextensions, then
so is the compositum EjEs (since E1Es/K is Galois, and Gal(E; E2/K) — Gal(F;/K) x
Gal(E2/K)). Thus inside L/K there is a unique maximal abelian extension E of K. Under
the Galois correspondence, Gal(L/E) = Gal(L/K )qer, and Gal(E/K) = Gal(L/K)2b.

Fix a separable closure K*° of K. Then the maximal abelian subextension of K in K°

is called an absolute maximal abelian extension of K, and we denote it by K?*’. We often
write G for Gal(K*®/K), called the absolute Galois group of K. Then Gal(K*P/K) = Gab.

Remark 2.4.4. If K%, K are two separable closures of K. Then there exist K-isomorphisms
K® = K*, and the set of all such isomorphisms is acted on simply transitively by
Gal(K®/K). 1If we choose such an isomorphism, then we obtain an isomorphism ¢ :
Gal(K*/K) — Gal(K*/K), and different choices would result in different isomorphisms
¢ which are conjugate to each other. Note that all these isomorphisms ¢ : Gal(K*/K) —
Gal(K*'/K) induce the same isomorphism between the abelianizations, thus the same iso-
morphism Gal(K?"/K) — Gal(K?"'/K). Thus the invariant Gal(K*"/K) of K is inde-
pendent of the choice of K* up to canonical isomorphism.

2.5. Infinite decomposition groups. Let K be a global field, and L/K a Galois exten-
sion, possibly of infinite degree. Fix v € Vg, and let S = {w € Vi | w|xg = v}. Here
V1, denotes the set of places of L, and it is defined still as the set of equivalence classes
of absolute values on L, despite that L may not be a global field. The group Gal(L/K)
naturally acts on S, and for w € S we denote the stabilizer of w in Gal(L/K) by D(w/v)
or D(w/K), called the decomposition group.

Exercise 2.5.1. D(w/v) is a closed subgroup of Gal(L/K).
Fix a separable closure M of K,. We have a map
’Y:HOHIK(L,M)—)S, ¢'_>|'|UO¢7
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where |- |, is the canonical absolute value on M (i.e., the unique one that extends the given
one on K,). Since M is separably closed and contains K, the set Homg (L, M) is non-empty,
and is acted on simply transitively by Gal(L/K). It follows that S # 0. Moreover, 7 is
Gal(L/K)-equivariant.

Lemma 2.5.2. The action of Gal(L/K) on S is transitive.

Proof. Let u,w € S. For each finite Galois extension L' /K in L, let T, = {g € Gal(L'/K) |
g-ulr =w|r}. Since Gal(L'/K) acts transitively on the set of places of L’ over v, we have
T # 0. Clearly {g € Gal(L/K) | gu = w} & im , Ty:. Since this is an inverse limit of
non-empty finite (hence compact) sets, this set is non-empty by Exercise 2.1.3. O

Corollary 2.5.3. The map v is a Gal(L/K)-equivariant surjection.

Now consider the case L = K*, a separable closure of K. Fix ¢ € Homg (K*, M), and
let w = v(¢), which is a place of K*® over v. We construct a homomorphism

h:D(w/v) = Gal(M/K,) = Gk,
as follows.

Lemma 2.5.4. For any finite separable extension E/K,, there exists o € E which is
algebraic and separable over K such that E = K,(«).

Proof. By the primitive element theorem, E = K, () for some 8 € E. Let f(X) be the
minimal polynomial of 8 over K,. By Krasner’s lemma (see [Ser79, I1.2, Exercise 2]), for
every polynomial f;(X) € K,[X] whose coefficients are sufficiently close to those of f, f; is
irreducible and F is generated over K, by a root of fi. Since K is dense in K, we can take
f1 € K[X]. Thus E = K,(«a) for a root a of f1. Since a € E, its minimal polynomial over
K, is separable. This polynomial is f;, and it is also the minimal polynomial of o over K
(since it is also irreducible over K). Hence « is separable over K. O

Lemma 2.5.5. The image of ¢ is dense in M.

Proof. Let y € M. Then K,(y) = K,(«) for some o € M which is algebraic and separable
over K, by Lemma 2.5.4. Write y = b,a” + b,_10™ ! + .-+ 4+ by. Let € > 0 be arbitrary.
Since K is dense in K, for each 0 < i < n, we can find ¢; € K such that |c;a® — b;a’|, < e.
(If o # 0, choose |¢; — b;| < €/]al|,; if a® = 0, choose any ¢;.) Let ¢/ = c,a™ + -+ + co.
Then |y — 3’| < e. Note that « lies in the image of ¢ since the latter is the separable closure
of K inside M. Hence y’ lies in the image of ¢. |

Since ¢ has dense image, it induces an isometric isomorphism from the completion (K°*),,

of K* with respect to w to the completion M of M with respect to the canonical absolute
value. For o € D(w/v), we have a unique extension of o to an isometric automorphism &

of (K*®),. Using ¢, we view & as an automorphism of M. This restricts to the identity on
K, so it stabilizes M (as K is the separable closure of M inside M). The restriction &|p
is an element of Gal(M/K,). We define h by

We claim that h is an isomorphism. Indeed, the inverse is given as follows: Let 7 €
Gal(M/K,). Then 7 is automatically isometric, and so it extends uniquely to an isometric
automorphism 7 of M. Using ¢, we view 7 as an isometric automorphism of (K*),,. Since

7 is the identity on K, it stabilizes K*, and moreover 7|gs is an element of D(w/v). The
inverse of h sends 7 to T|x- .
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Lemma 2.5.6. The isomorphism h : D(w/v) — Gal(M/K,) is a topological isomorphism.

Proof. Since both sides are compact Hausdorff (see Exercise 2.5.1), it suffices to show that
h is an open map. Since the open normal subgroups U of Gal(K*®/K) form a neighborhood
basis of 1, it suffices to show that h(D(w/v) NU) is open for such U. Write U = Gal(E/K)
for a finite Galois extension /K in K°. Then D(w/v) NU = D(w/E), and it is clear that
h(D(w/v)NU) = Gal(M/E,’) where v' = w|g. Since E, /K, is finite, Gal(M/E,/) is an
open subgroup of Gal(M/K,) as desired. O

In summary, if we choose any K-embedding ¢ of K® into the separable closure M = (K,)*
of K,, then we obtain via pull-back a place w of K?, as well as a topological isomorphism
h : D(w/v) =+ Gal(M/K,). Note that different choices of ¢ inducing the same w differ
from each other by elements of D(w/v), and so the resulting isomorphisms h : D(w/v) —
Gal(M/K,) differ from each other by conjugation.

3. ADELES AND IDELES

3.1. Restricted product. Let V be a set, and (X, ),ecy be a family of topological spaces.
For almost all v € V', we fix an open set U, in X,. The restricted product of (X,), with
respect to (Uy), is defined as

/
X = H X, = {(z0)0 € H X, |z, € U, for almost all v}.
veV veV

It is equipped with the topology generated by basic open sets of the form

(3.1) Iy x II v
veS veV =S

where S C V is a finite subset, and for each v € S, Y,, is an open set in X,,. Here are some
immediate observations:

(1) If we change the choices of U, for finitely many v, then the set X and its topology
remain unchanged.

(2) If U, = X, for almost all v, then X = [], . Xy, and its topology is the usual
product topology.

(3) On a basic open set as in (3.1), the subspace topology inherited from X is the same
as the product topology coming from Y, and U,,.

Lemma 3.1.1. If each X, is locally compact Hausdorff, and each U, is compact, then X
1s locally compact Hausdorff.

Proof. Any pair of points of X lie in a basic open of the form

U=][x.x [] U
veS veV -8
where S C V is finite. Since U has the product topology, it is Hausdorff, and it follows that
X is Hausdorff. To show that X is locally compact, let £ € X. We need to find a compact
set containing an open neighborhood of z in X. We may assume that x lies in U as above.
Write z = (z,). For v € S, since X, is locally compact, there exists an open neighborhood
V, of z, and a compact set K, such that V,, ¢ K, C X,. Then

HKUX H U,

veS veV -8
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is a compact subset of U by Tychonoff. It contains the open neighborhood ], g Vs X

[loev_g Uy of 2. O

3.2. Adeles. Let K be a global field. The ring of adeles is defined as the restricted product
of K, over all v € Vi, with respect to the open subsets Ok, C K, for non-archimedean v:

!
Ak = [] Ko
veVK
Since each K, is a topological ring and Ok, is a subring, Ak is a topological (commutative)
ring. Since each K, is locally compact Hausdorff, and each Ok, is compact (for non-
archimedean v), Ak is locally compact Hausdorff.
As a variant, for a finite subset S C Vi, we define the adeles away from S to be

I
A}S{ = H K,,
veVKg—S
where the restricted product is again with respect to Ok, for non-archimedean v not in S.
This is also a locally compact Hausdorff topological ring.
For any = € K, we have x € Ok, for almost all v. Hence we have a diagonal embedding

K < A%

Example 3.2.1. As aring, Ag = R x (Z®7Q), and Ay = (Z ®gR). The first isomorphism
follows from the second, and we sketch a proof of the second. By Exercise 2.2.10, we identify
Z with [], Z,. Define the map

[ (H Zp) ®2Q — A = HQP» (p)p @7 = (Tpr)p-
P P

This is well defined since for any r € Q, we have r € Z,, for almost all primes p. Clearly f
is a ring homomorphism, and it is injective since any element of the left hand side can be
written as a pure tensor. To show surjectivity, let (z,), € H; Qp. Then there is a finite set
S of primes such that for each prime p ¢ S, x, € Z,,. For p € S, choose e, € Z>( such that
pray € Zp. Let n = [],cqp € Z. Clearly nz,, € Z, for all primes p. Hence (z), is the
image under f of (nz,), ® L

Now consider a finite extension L/K. Then for each v € Vi, we have the diagonal
embedding
Ly Ky — H L.
weVy,wlv
Taking the product over all v, we obtain a map [[,cy.. Kv — [[,ev, Lw, Which clearly
restricts to an injective ring map
L AK — AL.
We shall always use this to view Ay, as an Ag-algebra. We now form the tensor product of
¢ with the diagonal embedding L < Ay, and get an Ag-algebra map

n: LRk Ax — Ap.
Proposition 3.2.2. The map n is an isomorphism. Moreover, if we equip the left hand

side with the product topology L @ Ag = A%:K] (after choosing a K-basis of L), then n is
a homeomorphism.
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Proof. We only give the proof assuming that L/K is separable. For the general case, see
[Wei95, §VIIL.6].

Let aq,...,a, be a K-basis of L. Recall from Fact 1.4.3 that the tensor product of
Ly Ky — Hw‘v L., with the diagonal embedding L — Hw‘v L., gives rise to a K,-algebra
isomorphism

o Lok Ky = [ [ Lu-
wlv

We claim that for almost all v € Vi, 1, maps the O, -lattice® £, = Y, Ok, - (a; ® 1)
in the left hand side onto the O, -lattice M, = [[,,, Or,, in the right hand side. To see
this, let ¥ be the K-bilinear form on L given by

LXL—)K, (S,t)HTI‘L/K(St)

Since L/K is separable, ¢ is non-degenerate. Write R for L ® ¢ K,. Let 9, be the K,-
bilinear form on R obtained from ¢ by extension of scalars. Then for s,t € R, 1,(s,t) is
nothing but the trace of the K,-linear endomorphism of R given by multiplication by st.
This description of 1, uses only the ring structure and K,-vector space structure on R.
Hence if we use 1, : R — Hw‘ » Lw (which is a K-algebra isomorphism) to carry 1, to the
right hand side, the resulting K,-bilinear form on [],, . L is

wlv

((Sw)un (tw)w) = ZTI‘LW/K,U (Swtw)~

In particular, M, is integral under this pairing, i.e., the pairing of any two elements of M,
lies in Ok,. For any Ok, -lattice N in R, define the dual lattice

NY:={s e R|¢Y,(s,t) € Ok,, VtEN}.

We conclude that M/ := ;1 (M,) satisfies M/ C M.
On the other hand, for almost all v, as long as v is coprime to the discriminant

d(ai, ... o) = det(Trp k(aa;)) € KX,

the lattice £, is self-dual under #,. Also, for almost all v, we have a;; € Op,, for each ¢ and
each w|v. Hence for almost all v we have £, C M) C M)/ C L} = L,, and so L, = M.

We now prove that 7 is an isomorphism of Ag-algebras. It suffices to prove that
aq,...0p, € Ap form an Ag-basis of Ap. Let © = (x4)w € Ar. Then by the isomorphisms
7y, there exist unique a; = (a;.4)v € HUGVK K, for 1 <i <nsuch that x =Y | a;a;. We
only need to show that each a; automatically lies in Ag. For almost all v, the component
(Tw)w)w € lev L,, lies in M,,, and we have n,(L,) = M, by the claim. This means that
(% )w|y must be an Ok, -linear combination of the images of o; € L in lev L,,. In other
words, a;, € Ok, . This proves that a; € Ax as desired.

Note that the product topology on L ®x Ak is independent of the choice of K-basis
of L, since for every g € GL,(K), the map ¢g : A% — A% is a homeomorphism. (This
holds more generally for every g € GL, (Ak), and only uses that Ak is a topological ring.)
To check that n is a homeomorphism, first note that taking finite product commutes with
taking restricted product. Thus the topology on L ® g Ak is identified with the restricted
product topology H;evx (L ®k K,), with respect to the open subsets £, C L ®x K,. By
the claim, we see that 7 takes this topology to the following topology on Ay : the restricted

3An Ok, -lattice in a finite dimensional K,-vector space V is an O, -submodule of V' containing a
K,-basis.
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product topology H;eVK (Hw‘v L.,), with respect to the open subsets M,, C lev Ly, . This
topology clearly agrees with the original topology on Aj. |

Proposition 3.2.3. The image of K < Ak is discrete. The quotient topology on Ax /K
is compact.

Proof. By Proposition 3.2.2; if K/K' is a finite separable extension of global fields, then
to prove the proposition for K it suffices to prove it for K’. Thus we may assume K = Q
or K = Fy(t) (see Exercise 1.2.1). For K = Q, the set U = (—1,1) x [[,Z, is an open
neighborhood of 0 in Ag. If x € QN U, then the condition that z € Z, for all primes p
implies that z € Z, and the condition that —1 < x < 1 implies that x = 0. This proves
that Q is discrete in Ag. To prove that K = F)(t) is discrete in Ak, let U =[], oy, Ok, ,
which is a neighborhood of 0 in Ag. Then K NU consists of f € F,(t) satisfying deg f < 0,
and for every irreducible polynomial g € I, [t], g does not divide the denominator of f, i.e.,
ordg(f) > 0. (All the discrete valuations on F,(t) are given by —deg and ord,.) Then f
has to be a constant. Hence K NU = F,. Since Ag is Hausdorff, we can further shrink U
to ensure that K N U = {0}.

To show that Ag/Q is compact, let C' = [-1/2,1/2] x [[,Z,. Then C is a compact
subset of Ag . Let 2 = (o0, (2p)p) € Ag. Let S be a finite set of primes such that for all
primes p ¢ S, we have z,, € Z,,. For each p € S, there exists 1, € Q such that r, + z, € Z,,
since Q is dense in Q. Moreover, we can arrange that the denominator of r, is a p-power.
This is because every rational number can be written as a sum of a rational number whose
denominator is a p-power and another rational number which lies in Z,,. (The proof of this
assertion uses the Bézout property of Z: Let ¢ = ﬁ € Q, where b is coprime to p. Let
z,y € Z be such that xp® + yb = 1. Then % + %t = ¢q.) Thus r, € Z; for every prime
I # p. Let n € Z be such that n+ (3 5 7p) +Zoo € [~1/2,1/2]. Then the rational number
n+),cs7p satisfies that n+3° _grp+2 € C. Hence C surjects onto Ag/Q, which implies
that Ag/Q is compact.

We now show that Ay /K is compact for K = Fp(t). Let C = [],cy, Ok,, which
is compact. Let © = (x,) € Ag. Write oo for the place corresponding to the discrete
valuation —deg. Thus all the other places correspond to discrete valuations ord,, for g
monic irreducible polynomials in F,[t]. Let S be a finite subset of Vx — {oco} such that for
all v € Vg — (S U {o0}), we have z, € Ok,. For each v € S, let r, € K be such that
ry + 2, € Ok, . Suppose v corresponds to the irreducible polynomial g € Fp[t]. The same
argument as in the case of Q shows that we can arrange that the denominator of r, is a
power of g. (This uses the Bézout property of F,[t], which is a PID.) Then r, € Ok, for
every w € Vi —{oo,v}. Let u € Fp[t] be such that u+ (3,4 7v) + 2o € Ok, . Here, note
that Koo = F((t71)) and Ok_ = F[t~!] (because under the automorphism K — K, ¢+t~
the place co gets sent to the place corresponding to the irreducible polynomial ¢). Thus
every element of K is the sum of a finite linear combination of negative powers of t~! and
an element of Ok_ . Hence u exists. Then we have (u+ ) _g7y) + o € C, which implies
that C surjects onto Ag /K. O

3.3. Ideles. Let K be a global field. The group of ideles is defined to be the restricted
product

/
I = ] K

veEVK
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with respect to the compact open subgroups (’)IX{U C K for almost all v. Then Ik is a
Hausdorff locally compact topological group (under multiplication).

We have K¢ C K, for each v and OIXCJ C Ok, for each non-archimedean v. Hence I is
a subset of Ag.

Exercise 3.3.1. The subset Ix consists precisely of the invertible elements of the ring Ag.
The inclusion map [ — Ag is continuous, but not a homeomorphism onto the image. The
map I — Ax x Ag, g+ (9,97 1) is a homeomorphism onto the image.

More generally, if R is a topological ring, then we equip R*, the group of invertible
elements, the subspace topology via R* < Rx R, g~ (g,g~!). This will be the “standard”
topology on R*, not the subspace topology via R* C R. Under this standard topology,
R* is a topological group. With this comment and the above exercise in mind, we will also
denote I by Aj.

Definition 3.3.2. The idele norm is the homomorphism

-1 :Ix = Rso, @ = (2y)y H 1zl

v

Here || - ||, denotes the normalized absolute value at v, and we have ||z,||, = 1 for almost all
v. The kernel of the idele norm is denoted by I}, = (A%)!, called the group of unit ideles.

Exercise 3.3.3. The idele norm is continuous. Hence Ik is a closed subgroup of I.

We have a diagonal embedding K* — Ix (which is a group homomorphism). By the
product formula, it factors through Ik

Example 3.3.4. Let K = Q. We have [ = R* x H; Q, - The idele norm || - || : Ig — Rxo
has a canonical section Rsg — I,z — (z,1,1,---). Hence we have a canonical isomorphism
Ig = Ry x I

Next we study If/Q*. Let z = (z,), € Ig. Let

y = H pordp(zp) c QX )

p primes

This is a finite product because ord,(z,) = 0 for almost all p. Then

1= llall = llzoclloo [ [p7 " = Jlzoe ooy ™"
P
Thus 2o = =y lies in Q*. Hence modulo Q* we have ¢ = (Zoo/To, (p/Too)p) =
(1, (xp/xo0)p). Also note that for each prime p,

X _
xp/xoo = :I:mp/y = ivp(xp) H q ordg(zq) c Z;
4,97P

We conclude that the subgroup [], Z) C If, (with trivial archimedean component) surjects
onto Iy /Q*. Clearly (II, Z;)NQ* =1 (intersection inside Ig) since every element of [[  Z
has trivial archimedean component. Thus we have [, Zx = 1It,/Q*. This is actually an
isomorphism of topological groups. In particular, ]Ié /Q* is compact.

Note that in the above argument, the crucial step was the construction of y, which
depends on the surjectivity of

Q> @Bz v (ordy(y)),



ALGEBRAIC NUMBER THEORY (I) 27

In general, for a number field K, the map

K* — @ Z, y— (ordy(y))s
'UEVK,f

is not necessarily surjective, but it always has finite cokernel, which is nothing but the class
group of K. On the other hand, I} /K> is always compact. We shall see that the finiteness
of class group is closely related to the compactness of Ik /K *.

3.4. Haar measures on local fields. Let G be a locally compact Hausdorff topological
group. Recall that on any topological space, the class of Borel measurable sets or simply
Borel sets is the o-algebra generated by open sets. Thus this class is the minimal class
of subsets which contains all open sets and is closed under taking complement and taking
countable union.

Definition 3.4.1. A Radon measure on G is a function p : {Borel sets in G} — Rx>oU{+o0}
satisfying the following conditions:

(1) u(0) = 0.

(2) If (Bp)nen is a countable family of mutually disjoint Borel sets, then u(J,, Bn) =

> i(By).

(3) For any compact (hence closed) set C, we have u(C) < +o0.

(4) For any open set U, we have u(U) = sup{u(C) | C C U, C is compact}.

(5) For any Borel set B, we have p(B) = inf{u(U) | B C U, U is open}.

Definition 3.4.2. A left Haar measure on G is a non-zero Radon measure p satisfying
u(gB) = u(B) for all g € G and all Borel set B. Similarly, we define right Haar measure.

Theorem 3.4.3. There exists a left Haar measure. Any two left Haar measures differ by
multiplication by a constant in Rsg. Similarly for right Haar measures.

For a systematic discussion of Haar measures, see [Weid0)].
If G is abelian, there is no difference between left and right Haar measures, and we simply
say “Haar measure”.

Example 3.4.4. On the additive group R", a Haar measure is given by the Lebesgue
measure (restricted to Borel sets).

Exercise 3.4.5. Let G be a locally compact Hausdorff topological group. Assume that
there is an open subgroup of G which is profinite. Such G is called locally profinite. For
instance, any open subgroup of (F,+) or (F'*, x), where F' is a non-archimedean local field,
is locally profinite.
(1) Show that 1 € G has a basis of neighborhoods consisting of compact open subgroups.
(2) Suppose u is a Radon measure on G. Show that for any open U we have

w(U) =sup{u(U’) | U" C U, U’ is compact open}.

(3) Show that a left Haar measure on G is uniquely determined by its values on compact
open subgroups (without using the uniqueness in Theorem 3.4.3).
(4) For such G, prove the uniqueness of left Haar measures up to scaling.

Given a left Haar measure p on G, we have the corresponding theory of integration. For
any non-negative Borel measurable function f : G — Rx( (where “Borel measurable” means
that the inverse image of any Borel set is Borel), the integral

n

[ r@aua) = s S a7 @) €[0.+)

n>1,a1,...,an €[0,400) ;4
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is defined. For a general Borel measurable function f : G — R, we say that f is integrable,
or L', if

/ (@) ldu(z) < +oo.
G

In this case, we define

| r@aute) = [ re@ana) - [ r-@auta

where f = fi — f_ and f4, f- > 0. The fact that p is left invariant under G is expressed
by the following identity:

/fgxdu /f Ydu(x), Vg€ G.

Formally, we can “change variable of integration” and have

/f )dp(x /fgxdugx)

So the left invariance can be expressed by the formal rule
(3.2) du(gz) = du(z).

Now let F' be a local field. Fix a Haar measure p on (F,+). For any € F*, multi-
plication by x is a topological automorphism of (F,+), so we can pull back p along this
automorphism to obtain a new Haar measure, which must differ from g by a multiplicative
constant s(z) € Ryg. Concretely, we have

u(xB) = s(x)u(B)
for any Borel set B. Clearly s(z) is independent of the choice of u since another choice
differs just by scaling.

Lemma 3.4.6. For any x € F, s(x) = ||x||, where || - || is the normalized absolute value.

Proof. If F =R or C, take B to be the closed unit disk centered at 0 in F. We may assume
that p is the Lebesgue measure. Then u(B) = 2 or 7 for F = R or C. Note that 2B is the
closed disk of radius |z| centered at 0, where |- | is the usual real or complex absolute value.
So u(zB) = 2|z| or 7|z|? for F =R or C, and it follows that s(x) = |z| or |z|? respectively.

Now assume that F is non-archimedean. Note that both s(-) and || || are homomorphisms
F* — Ryg. Since the group F'* is generated by all uniformizers in F, it suffices to show
that for any uniformizer © we have s(7) = ¢~ where ¢ = |Op/mp|. Since O is compact,
its volume is finite. If u(Op) = 0, then we have u(7"Op) = s(7™)u(Op) = 0 for all n € Z,
and it follows that p(F) = 0 since F' is an increasing union of the open sets 7"Op. This
contradicts with p being non-zero. Hence p(Op) € (0,00). Now Op is the disjoint union
of g cosets x; + mOp, and each coset has volume equal to that of 7Op since pu is invariant.
Hence u(Of) = qu(rOF), from which s(r) = ¢~ 1. O

The lemma can be expressed by the following identity:

(3.3) /F f(g~ )du(z) = |lg] /F f(@)du(z), Vg e FX.

Again, we can compare the above with the formal change of variable:

/ flg™ 2)du(z) = / F(@)dp(gz).
F F
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Thus we have the formal rule

dp(gz) = [lglldp(x).
Note that this does not contradict with (3.2) as here p is Haar measure with respect to the
additive group.
Corollary 3.4.7. Let p be a Haar measure on (F,+). Then a Haar measure u™ on (F*, x)
is given by

W (B) = /F 15 () 2] da(a).

for any Borel set B in F*. For any integrable function f on F* (with respect to u* ), the
function f(z)||z||~! is integrable on F (with respect to p), and we have

x)dp™ (z) = z)||z|| "t du(x).
[ @@ = [ 1@l dua)

Proof. The second assertion is a formal consequence of the first. For the proof of the first
assertion, we admit that the formula defining > gives a Radon measure. We only check
that it is invariant under multiplication by F'*. Let g € F'*. Then

1 (9B) = /F 15 (@) |l2])~ du(z) = llg] /F o5 (9) gz~ dpu(z)

= [ 1s@lel duta) = (B

where the second equality uses (3.3). O
Remark 3.4.8. The corollary can be expressed by the formal rule

dp* (z) = ||z~ dp(z).

3.5. Haar measures on adeles and related spaces. Now let K be a global field. For
each v € Vi, fix a Haar measure u,, on K,. We assume that for almost all non-archimedean
v, py is normalized such that p,(Og,) = 1. (In the proof of Lemma 3.4.6 we saw that
o (Ok,) € (0,+00).) Let p) be the Haar measure on K¢ normalized by p (O ) = 1.
Note that p differs by a normalization factor from the one induced by p, as in Corollary
3.4.7, since the latter would give volume 1 — [k,|~" to Of (because [Ok, : mg,] = |k,| and
OIX{U = OKv —mK,U).

Proposition 3.5.1. There is a unique Haar measure p on (A, +) satisfying the following

condition. For any finite set S C Vi containing Vi o, and for any family of compact sets
(Cy C Ky)ves, we have

N(H Cy x H Ok,) = H 1o (Cy) X H 10Ok, ).
veES vgS vES vgS

Similarly, there is a unique Haar measure p™ on (Aj, x) satisfying the following condition.
For any finite set S C Vi containing Vi, and for any family of compact sets (C, C
K )ypes, we have

p (IT € [T 0k,) = TLwi €)% TL w3 (0%,).
veES vgS veES vgS
For any Borel set B C Ag and any g € Ay, we have
u(gB) = lgllu(B),

where || - || is the idele norm.



30 YIHANG ZHU

Proof. The first two assertions follow from the general theory of obtaining a Haar measure
on a restricted product from Haar measures on the factors. For the third assertion, we know
that there is a constant s(g) such that p(gB) = s(g)u(B), so in order to show s(g) = ||g||
we may take B =[] c5C» X [[,¢5 Ok, as in the first part. We may also assume that S
is sufficiently large such that g, € O[X{v for all v ¢ S, and assume that p,(C,) # 0 for all
v € S. Then by the first part and by Lemma 3.4.6, we have

S(Q)ﬂ(B) = ﬂ(gB) = N(H guCy X H OKU) = H Nv(gvcv) X H ﬂv(oKU)

vES vgS veS vgS
= [L llgollo x TT (Co) x [T 10(Ox,) = lglln(B) # 0.
veES vES vgS

Hence 5(g) = [ g]| O

Remark 3.5.2. By a factorizable integrable function on Ak, we mean a function f : Ax —
R of the form f(x) =[], fo(xy), where f, is an integrable function K, — R and for almost
all v we have f, = 1oy, . (Thus the product [], f.(z,) is always a finite product.) We write
f =@, fu. For such a function, generalizing the first assertion in Proposition 3.5.1 we have

f@du(o) =TT [ fulwdn(z),
Ag v K,
Note that for almost all v, the factor is fKU fo(xy)dpy(ry) = p(Ok,) = 1, so the product

is finite. There is a similar discussion for factorizable integrable functions on Ay and their
integrals.

Recall that the diagonally embedded K in Ak is a discrete subgroup, and Ak /K is
compact. Since every discrete subgroup is closed, Ax /K is also Hausdorff. Hence Ag /K
also has Haar measures. We now describe how they are related to Haar measures on Ag.
Write 7 for the projection Ax — A /K. For any continuous compactly supported function
f A — Rzo, define

m(f): Ax/K R, 4+ K > f(y).
yex+K

The sum is finite since the compact support of f intersects with the discrete set x + K at
only finitely many points. Abstractly, this function is the result of integrating f along fibers
of 7, where we equip each fiber with the counting measure.

Exercise 3.5.3. The function m(f) is continuous.

Proposition 3.5.4. We can choose a Haar measure . on Ak and a Haar measure ji on
Ak /K such that for any continuous compactly supported function f: Ax — R>q, we have

[ @)uta) - / @)

When this holds, we say that i is induced by p.

Proof. This is a consequence of the general theory of quotient Haar measures on homoge-
neous spaces. (Il

The following corollary is the main motivation for us to consider the Haar integration
theory.



ALGEBRAIC NUMBER THEORY (I) 31

Corollary 3.5.5. Let p be a Haar measure on Ak and let fi be the induced Haar measure
on Ag /K. Let S C Vi be a finite subset, and for each v € S let C,, be a closed disk in K,
(of some radius). Let C = [],e5Cv X [l,¢5 Ok, C Ax. If n(C) > ji(Ax/K), then the
projection C — Ak /K is not injective. (Since Ak /K is compact, i(Ag/K) € (0,400))

Proof. By Proposition 3.5.1, u(C) is finite. (This also follows directly from the compactness
of C.) We may assume that p is related to local Haar measures p, on K, as in that
proposition. Let

A= u(C)/ Ak /K) > 1.
For each v € S, find a continuous function f, : K, — [0,1] supported inside C, that is
“sufficiently close” to the indicator function of C), in the sense that

1oy (C
[ ez > 2,
K, A#S
(For v archimedean, take f, to be a “bump function”; for v non-archimedean, take f, to be
the indicator function of C, itself, which is continuous.) Let

f:®f'u®®1(91<u

veS vgS
as in Remark 3.5.2. Then as in that remark, we have

f(@)dp(z)

Ak

=11 /K fo(2)dpo(2) x [ ] 1o(Ok,) > [Loes #o(Co) X)\vas,uv((’)}{v).

veS vgS

By Proposition 3.5.1, the last term is u(C)/A = fG(Ag/K). On the other hand, f is
continuous, compactly supported, and takes values in [0, 1]. If C' — Ak /K is injective then
m f as in Proposition 3.5.4 takes values in [0, 1], and by that proposition we have

f(@)dp(z) = / D@ < Ak /),

Ax
a contradiction. O

3.6. The adelic Minkowski theorem. Recall that the classical Minkowski lemma asserts
that for any complete lattice A in a Euclidean space R™ (i.e., A is a Z-submodule generated
by an R-basis) and any compact, convex, centrally symmetric (i.e. z € S iff —z € S) subset
S C R™, we have
vol(S) > 2" vol(A) = SN A 2 {0}.

Here vol(A) denotes the volume of R™/A, or equivalently the volume of a fundamental
parallelepiped for A, or equivalently |detg| for ¢ € GL,(R) such that g(Z") = A. In
classical applications, one typically starts with a number field K with r; real embeddings
and 19 pairs of complex conjugate complex embeddings. In each of the ro pairs choose a
complex embedding. Then one obtains a diagonal embedding K < R™ x Crz = Rri+2rz,
For any ideal a in O, its image in R™ %272 is a lattice, and one would apply Minkowski’s
lemma to this situation in order to prove finiteness results, e.g., finiteness of the class group.

We shall develop an adelic analogue of the Minkowski theory, and this will be used in
the proof of some fundamental theorems about adeles and ideles. From the latter we can
eventually deduce the classical finiteness results concerning class groups and the groups of
units.
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The main point of adelic Minkowski theory is that the embedding a C K < R™ 1272 s
replaced by the embedding K — Ag. Thus we need a criterion for certain subsets S C Ay
of “nice shape” to satisfy SN K D {0}. We first define these subsets of nice shape. In the
following, let K be a global field.

Definition 3.6.1. For each z = (z,), € Aj, define Sy = {y € Ax | Vo, [|yulo < [|z0]]o}-

Of course S, depends on z only via the numbers ||z,||,, and almost all of these numbers
are equal to 1. Also, observe that S, is of the form

H CU X H OKU,
veS vgS

where S is a finite subset of Vi containing Vi ., and each C, is a closed disk in K,
centered at 0, which is compact. Since the subset ], g Ky X vas Ok, C Ak has the
product topology, we see that S, is compact by Tychonoff.

Theorem 3.6.2 (Adelic Minkowski). There is a constant ¢ = cx > 0 depending only on K
such that for any x € Ay, if ||| > ¢ (where || - || is the idele norm), then S, N K 2 {0}.

Proof. Let p be a Haar measure on Ay, and let i be the induced Haar measure on Ag /K.
Since Ak /K is compact, (A /K) € (0,400). Let

—_

Z={z€ Ak |Yv € Vi co, |2v|o < Yo € Vi 7, ||2ollo < 1}

5; =
Here | - |, denotes the usual absolute value on K, = R or C, not the normalized one. By
the first part of Proposition 3.5.1, we have u(Z) € (0, +o00). Let

¢ =cx = ji(Ar/K)/(Z).

We now show that for any z € A% such that |z| > ¢, we have S, N K 2 {0}.

By the last assertion in Proposition 3.5.1, we have u(xZ) = ||z||u(Z) > a(Ax/K). We
then apply Corollary 3.5.5 to the set Z to conclude that the projection xZ — Ag /K is
not injective. Hence there exist unequal y,y’ € xZ such that a = y — ¢y € K*. Write
y =uzz,y = xz for 2,2/ € Z. For every v € Vi, note that ||z, — 2, ||, <1 since z,2" € Z.
Hence |la|l, = ||zv(20 — 20) |0 < ||2o]|0, and a € K* N S,. O

Exercise 3.6.3. Show that cg = 1 and cp, ;) = 1/p.

Exercise 3.6.4. For K a number field, express cx in terms of the discriminant of K and
the numbers of real and complex places of K. Hint: For QQ, take the Haar measure ug on
Ag coming from the Lebesgue measure on R and the Haar measures p, on @QQ, normalized
by pp(Z,) = 1. Then (Ag/Q) = 1. Use a Z-basis for Ok to identify Ay = Aﬁé and
K = Q% If we equip Ax = A% with the product Haar measure ugd coming from pq, then
i(Ag/K) = 1. It remains to compute the volume of Z C Ak under this Haar measure.
For this, study how this Haar measure comes from local Haar measures pu, on K, for each
v. Show that for each prime p, the local isomorphism Hv|p K, = Qg takes Hv|p Ok, to

Zg. Thus the product Haar measure on (@g coming from p, on Q, is compatible with the
product Haar measure on [[ K, coming from u, on K, normalized by p,(Og,) =1. It

K, @ R%.

vlp

only remains to compare Haar measures on the two sides of Hvl o
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3.7. Two fundamental theorems. Let K be a global field.

Theorem 3.7.1 (Strong approximation). Let vg € Vi, and define A} = H;eva{vo} K,,
where the restricted product is with respect to Ok, C K, for all non-archimedean v # vy.
Then the image of the diagonal embedding K — A} is dense. Equivalently, for any x € A%,
any finite subset S C Vi — {vo}, and any € > 0, there exists y € K such that ||y — x|, <1
for allv # vo and ||y — xy|l, <€ for allv e S.

Proof. The two forms are equivalent by considering a suitable neighborhood basis of z in A}.
We prove the second form. We may enlarge S such that S U {vp} contains all archimedean
places and such that for all v € Vi — (S U {vp}), we have ||z,|l, < 1. We may also assume
that € < 1. Then we need to find y € K such that ||y — x|, < e for all v € S and ||y|l, <1
for all v € Vg — (S U {vp}).

For each w € A%, let

SS; ={z€hAx|Wwe VK 0, lzollo < |Tolo; Yo € Vik.f, lzollo < 7o lw}-

Then S? is open in Ag and is contained in S,,. Clearly Ax can be written as an increasing
union of sets of the form SU. Since Ax /K is compact, there exists w € A% such that S,
maps surjectively onto Ax /K. We fix such a w.

Let ¢ be the constant as in Theorem 3.6.2. We shall choose a w’ € A% such that ||w'|| > c.
Then there exists u € K* N S,. Consider zu~! € Ax. Here v~ € Ay since u € K*.
By the definition of w, there exist « € K and 3 € S,, such that zu~! = a + 3, and so
r = au + fu with au € K. We would like to conclude that au is the desired y. Thus we

need to ensure that
<€ wvVES,
U
1ol {g 1, v¢ SU{v}.

Since 3 € S, and u € Sy, the above can be ensured if we choose w’ to satisfy:

! | <€ vES,
VTP <1, vée SU{uv}.

Since w € A, the above inequalities can be achieved if we choose ||w)]|, to be small for
finitely many v # vo, and to be 1 for all the remaining v # vg. Finally we can choose ||w;, ||+,
to be sufficiently large to arrange that w’ is an element of A} satisfying [Jw’'|| > c. |

Recall that the diagonal embedding K* < A% factors through the unit ideles (A% )!
by the product formula. Since the inclusion map Ay — Ak is continuous (although not a
homeomorphism onto the image) and the image of K in Ak is already discrete, the image
of K* in (A}%)" is discrete.

Theorem 3.7.2. The group (A%)'/K* is compact.

The case for Q was already discussed in Example 3.3.4. For the proof we first need a
technical lemma.

Lemma 3.7.3. The following statements hold.

(1) The subset (A%)' C Ak is closed.
(2) The natural topology on (A}) (i.e., subspace topology inherited from A% ) agrees
with the subspace topology inherited from A .



34 YIHANG ZHU

Proof. The proofs of both parts are based on the following observation: For a non-archimedean
place v, the normalized absolute value || - ||, : K, — R takes values in |k,|* U {0}. Hence
any x € K, satisfying ||z|, < 1 actually satisfies |||, < 1/|k,|. Apart from finitely many
v, the cardinality |k,| is very large, and so the upper bound 1/|k,| is significantly smaller
than 1.

(1) Let z € Ag — (A%)'. We need to find an open neighborhood of x in Ag disjoint
from (A%)!.

Case 1: « ¢ Aj. Then there are infinitely many places v such that ||z,[|, < 1. Note that
for any non-archimedean v, ||z,||, < 1 is equivalent to ||x,||, < 1/2. Hence there exists a
finite subset S C Vi such that [|x,||, < 1 for all v ¢ S, and [], g ||7s]lo < 1. Indeed, let
So = {v | [|wy|ly > 1}, which is finite. Let n € Z>1 be such that [[ g, [[7v[ls < 2", and find
V1,. ..,y such that ||z, ||y, <1/2for all 1 <i<n. Thenlet S =SyU{v1,...,v,}

Given S, we pick a neighborhood U, of z, in K, for each v € S such that for all
(yo)ves € [I,es Uv, we have [T, cqllyolle < 1. Then [],cgUs X [[,¢5 Ok, is the desired
neighborhood of x.

Case 2: x € Aj and |jz|| < 1. In this case, there exists a finite set S with the same
property as in case 1, and the rest of the proof is the same.

Case 3: © € A and ||z|| > 1. Write P = ||z||. Let S be a finite subset of Vi containing
Vi, such that for all v ¢ S we have ||z,|, = 1. We now enlarge S such that for all v ¢ S,
|ky| > 2P. Indeed, if K is a number field, then we can enlarge S such that for all v ¢ S,
v divides a rational prime p > 2P. Then k, D F,. If K is a function field, say a finite
extension of F,(t), then we can enlarge S such that for all v ¢ S, v divides a place of F,(t)
corresponding to a monic irreducible polynomial g in F,,[t] whose degree d satisfies pd > 2P
(as there are only finitely many polynomials of bounded degree). Then k, D F,[t]/(g) whose
cardinality is p?.

Now we have [], .4 [[2o|lo = P > 1. For each v € S, pick a neighborhood U, of z, in
K, such that for all (y,)ves € [[,cg Uv, we have [, s l|5ollo € (1,2P). We now show that
the neighborhood J],cq Us X [[,¢5 Ok, of « in A is disjoint from (AX)'. Suppose y is
an element of this neighborhood, and also lies in (A})!. If there exists vy ¢ S such that
lywollve < 1, then [[yuyllv, < [kuol™" < (2P)~1. Since [[,cq lyolle < 2P, we must have
lly]l <1, a contradiction. Thus for all v ¢ S we have ||y,|/, = 1. Then

Iyl =TT gl € (1,2P),

vES

again contradicting with |jy|| = 1.

(2) It suffices to show that for each x € (A%)!, there is a family of subsets of (A} )!
containing x which is a neighborhood basis in both topologies. Fix xz. Consider a finite
subset S C Vi containing Vi o such that for all v ¢ S, ||z,]|, = 1. For each v € §,
consider an open neighborhood U, of x, in K such that for all (y,)ves € [[,cgUv, we
have [, lyvllo € [2/3,4/3]. This can always be arranged by shrinking U, since we have
[L,cs llzollo = 1. Clearly if we let S and (U, ),es vary, then the resulting sets

U= HUUX HOKU, V:Hva HOIX(v
vES vgS veS vgS

form a neighborhood basis of z in Ax and a neighborhood basis of = in A} respectively. It
remains to show that

UNnAR'=vVn(AR)h
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Clearly the right hand side is contained in the left hand side. Let y € U N (A%)!. If there
exists vg ¢ S such that [|yy,[lv, <1, then [[yy,[lo, < 1/2. Since [[,cq Yol < 4/3, we have

lyl] < 2/3, a contradiction. Hence such vy does not exist, and so y € V. a

Proof of Theorem 3.7.2. By Lemma 3.7.3, we only need to find a compact subset £ C Ak
such that £ N (A%)" maps onto (A%)!/K* under the projection. Let ¢ be the constant
in Theorem 3.6.2, and let x € A% be such that ||z| > ¢. We take E to be S,, which is
compact. We need to show that (A%)! = ((AX)' N S,) - KX. Let y € (AX)! be arbitrary.
Then [|z/y|| = ||z| > ¢, and so there exists r € S, , N K*. We have ry € (A)' N S,. O

3.8. Classical finiteness results. Let K be a global field, and let S be a subset of V. In
the number field case, assume that S contains all the archimedean places. In the function
field case, assume that S is non-empty. Recall that we have the ring of S-integers

Ogs={zeK||z|, <1, Yo ¢S}

This is a Dedekind domain with fraction field K. Its prime ideals are in bijection with the set
Vi — S. As usual, we define the class group Cl(Ok g) of Ok g to be the group of fractional
ideals (i.e., Ok, g-submodules a of K such that there exists € K* with za C Ok, g) modulo
the group of principal fractional ideals (i.e., Ok g-submodules of K generated by a single
element). It is identified with the cokernel of the map

oKX 52V -S| =@z, =Y ordy(z)[].
vgS vgS
Also note that the kernel of @ is exactly the group of units in Ok s:
Ogs={re K" ||zll, =1, Vv ¢ S}.
In order to relate the groups cok(®) = Cl(Ok,s) and ker(®) = O g to ideles, we define

Ak ={(z)s € A | ¢S, [lzn]lo <1} = [[ Ko x [] Ok,
veS vgS

This is a basic open set in Ak, and as such its subspace topology agrees with the product
topology. It is a subring of Ay, and its group of invertible elements is

s =@y e AL W g S, ol =1} = [[ K2 x [] 0%
veS vgS

This is an open subgroup of A%, and we endow it with the subspace topology, which agrees
with the product topology.

Clearly, by definition, Ax (resp. A% ) is the union of Ag g (resp. AIXQ ) over all choices
of S as above.

Now we have the following simple observations:

Oks=KNAks, Opq=K*NAgg.
Moreover, the map ® : K* — Z[Vk — S] extends to a homomorphism

O:Ax = ZVk =S|, (v)vevi — Z ord, (z,)[v].
vgS
The following is a key observation:

Lemma 3.8.1. The map ® induces an isomorphism Aj /(K> Ak ¢) — Cl(Oks)-

Proof. Clearly ® : Ax. — Z[Vk — 5] is surjective, and its kernel is A . O
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In the following, we denote by .#k the image of || - || : Ax — Rso. If K is a number
field, then .#x = Rg. If K is a function field of characteristic p, then .#x = ¢” for some
p-power ¢q. As a fact, g is such that F, is the algebraic closure of F,, in K, and K is the
function field of a projective, smooth, geometrically connected curve over F,. We will not
use this fact.

Theorem 3.8.2. The group Cl(Ok s) is finite.

Proof. By Lemma 3.8.1, we need to show that Ay /(K*A ) is finite. To simplify notation,
write A for (Aj )", and write A§ for (Ax)' N A . We have a short exact sequence

1 AY/AL = A% /AL o Yy /1A% ol — 1.

Clearly ./ /|| A% gl is finite, so A'/A§ is a subgroup of finite index in Ay /A% ¢. Now the

image of K* — Ax /AIX( 5 is contained in A'/Ag, so it suffices to prove the finiteness of
Al/(AS - KX).

This follows from the compactness of A'/K > and the fact that A} is an open subgroup of

Al |

Theorem 3.8.3. The group (9;5 is a finitely generated abelian group of rank #S — 1.

For the proof we need two lemmas.
Lemma 3.8.4. For any finite closed interval [a,b] C R, the set
{reOfg|vweS, [l € b}
is finite.
Proof. The set in question is the intersection of K * with the set
{(zo)v € AR | V0 €S, |lzo]lv € [a,b]; Vv ¢ S, [lzo]lo =1}

in Aj. The latter set is compact in Ay, and K* is discrete in A%, so the intersection is
finite. |

The following lemma is also of independent interest.

Lemma 3.8.5. We have {x € K* | Yv € Vg, ||z|l, = 1} = {roots of unity in K*}. This
group s finite.

Proof. Clearly the right hand side is contained in the left hand side. To prove the reverse
containment, it suffices to show that the left hand side is a finite group. This is a special
case of Lemma 3.8.4. (]

Proof of Theorem 3.8.3. Let B = [],.q K, and let B' = {(2y)ves € B | [ esll@ollo =
1}. Then B! is a subgroup of B under coordinate-wise multiplication. We view OIX(’ gasa
subgroup of B via the diagonal embedding. Then it is a subgroup of B'.

Let L: B — RY be the map (7,)ves — (log||zy]|s)ves. Let H be the hyperplane in R
defined by the condition that the sum of all the coordinates is zero. Thus B! = L~1(H).
By lemma 3.8.4, the intersection of any compact neighborhood of 0 in R with L((’)Ixﬂs) is

finite, so L(Oj ¢) C H C RS is a discrete subgroup. By Lemma 3.8.5, ker L|ox . is finite.
s K,
Hence OIX(, g is finitely generated of rank at most dimg H = #5 — 1.
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To prove that the rank is exactly #S — 1, we need to prove that L((’)IXCS) is a complete
lattice in H. We divide the proof into the number field case and the function field case.

In the number field case, pick an archimedean place vg. Then the projection RS —
RS~{v0} induces an isomorphism ¢ : H — RS~{v} We have

o(L(BY) = ] logl&],

veS—{vp}

since log || - ||v, : K5 — R is surjective. Now the above is equal to

I =rx J[ z-log#k.

UEVK,QC—{U()} UGSQVKyf

Hence in order to prove that L((’)[XQ g) is a complete lattice in H it suffices to prove that
¢(L(B"))/o(L(O% s)) is compact, and for this it suffices to show that B' /O ¢ is compact.
We have a projection Ax ¢ N (Ag)! — B', mapping (z,)vevy t0 (¥y)ves. This is a con-
tinuous surjective homomorphism. Thus it suffices to show that (Ax ¢ N (Ax)")/Ok ¢ is
compact, where O[X(, g maps into Aﬁ) g diagonally (across all places). But this group is an
open, and hence closed, subgroup of the compact group (Aj)'/K*. Hence this group is
compact as desired.

In the function field case, we first note that L(B') is a complete lattice in H. Indeed,
it is clearly a discrete subgroup of H as every || - ||, : K, — Rsq has discrete image. We
now show that it is a complete lattice. If S has only one element, then there is nothing
to prove, so suppose that S has at least two elements. Pick an arbitrary vy € S. Again
the projection R® — RS~{vo} induces an isomorphism ¢ : H —» RS {%} Note that
{Ives—(uoy lmollo | (@v) € TToes—(uy Ko} and [[KJ |lu, are both infinite subgroups of the
infinite cyclic group .#x. Hence ¢(L(B')) is of finite index in [Toes—(uoy 108 1K |- Since
the latter is a complete lattice in RS~{%} we conclude that L(B) is a complete lattice in
H. Now in order to show that L( IX(S) is a complete lattice in H, it again suffices to show
that B!/ OIX(, g is compact. This is proved in the same way as in the number field case. [

3.9. The idele class group. Let K be a global field.

Definition 3.9.1. The idele class group of K is Cx = A /K*.

The idele norm || - || : Ax — || - || descends to Ck by the product formula for K. We
shall view || - || as a homomorphism Cx — Rsg, and denote its kernel by C}.. Of course
Ck = (A%)'/K*, which we have seen is compact.

Again, let .# be the image of || - || : A — Rso. Clearly there exists a continuous
homomorphism s : 4 — A} which is a section of || - ||. (In the number field case, pick an
archimedean place v of K, and let 5: R-o — KX be a continuous homomorphism that is
a section of || - [y, : K\ — Rso. For instance, if K,, = R then we can take 5(t) = ¢, and if

K,, = C we can take 3(t) = v/t. Thendefine s : #x = Rsg — A%, t— (3(¢),1,1,---) € AF
where 5(t) appears at the place vg. In the function field case, write .#x = ¢*. Pick any
xz € A with ||z|| = ¢, and define s(¢™) = 2".) Once such a section is chosen, we obtain
isomorphisms of topological groups

Aﬁg/fKX(A;()l, CK%/%KXC}(.
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Now let L be a finite separable extension of K. Then we obtain natural maps Ax —
Ap, A% — AY, which are compatible with the inclusions K < L, K* < L*. Thus we
obtain a natural map Cx — Cf.

Lemma 3.9.2. The map Cx — Cp, is injective.

Proof. We need to show that the intersection of L* and A} inside A} is K*. For this, it
suffices to show that the intersection of L and A inside A, is K. This immediately follows
from the canonical isomorphism L @y A = Aj. O

Write || - ||k : Ag — Rso, || - ||z : A} — Ry for the idele norms respectively.

Exercise 3.9.3. Write ¢ for the map Axg < Ap. Show that for any z € Aj, we have
. L:K
i)l = llal .

Proposition 3.9.4. The map Cx — C is a closed embedding.

Proof. By Exercise 3.9.3, we have a commutative diagram with exact rows

1 Ci Ck My 1
ii ll l(.)[LrK]
1 Ct CrL M1, 1

The map i : C} — C} is an injective continuous homomorphism between compact Hausdorff
groups, so it is a closed embedding.

First assume that K, L are function fields, so .#, .#7 are infinite cyclic groups in Rsq.
Then as a topological space, C is the disjoint union of .#x-copies of Ck. More precisely,
each coset of C} in Ck is open and closed, and homeomorphic to C}. Similarly for Cf,.
Since i : Cx — C7, is injective, it suffices to show that it is a closed map. Let B be a closed
subset of Ci. Then B is of the form Hte/tK B,, where By is a closed subset of the coset of
C} in Cg corresponding to t. Now different cosets of C'} in Ck are mapped into different
cosets of C} in Cp, since ()51 . # — ) is injective. In Op, if in each coset of C}
we take a closed subset, then the union of them is closed. Hence it suffices to show that
each B; has closed image in C,. This easily follows from the fact that C} — C} is a closed
embedding.

Now assume that K, L are number fields. Pick a continuous homomorphism s : #Zx —
Aj that is a section of || - || k. By Exercise 3.9.3, the composite map

/ (/1K) s x @ X

st M =Rsg —— Ry =Mk = Ay = AT
is a continuous homomorphism which is a section of || - ||.. Using the sections s and s’ to
make identifications Cx = Ck x Rxg,C = Cl x Rsg, the map i : Cx — CL becomes
(z,t) ~ (i(2),t!FK]) for & € C},t € Rsg. This is clearly a closed embedding since i :
C} — Cj] is a closed embedding. O

We have seen that the Ag-module Ay is isomorphic to L ® g Ak, so it is free of rank
[L : K]. For any € A, the multiplication map = : Ay — Ap,y — ay is Ag-linear, so
we can consider its determinant, which is an element of Ag. This determinant is called the
norm of x to Ak, denoted by Nz k().

Lemma 3.9.5. The following statements hold.
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(1) For any x € Ar, we have x € A} if and only if Ny i (x) € Ag. In particular, we
have a group homomorphism N i : Af — Aj.
(2) We have a commutative diagram

L—>A;

NL/K\L lNL/K

KHAK

)

where N, /i : L — K is the usual norm for a field extension.
(3) Forz = (ww)w € AL, we have Np ;i (2) = (yo)v, with yo =Lyev, wjo NLw/K, (Tw)-
(4) For xz € A}, we have Ny k(z)||x = |||z
(5) Forx € Ax C A, we have Nk (x) = oKl

Proof. Exercise. O

By the lemma, we have a homomorphism N,k : Cp — Ck that is compatible with || -
and || - || k. In particular it restricts to a homomorphism C} — C.

3.10. The identity connected component. Next we study the identity connected com-
ponent of Ck. For any topological group G, we denote by G the identity connected
component, i.e., the connected component of the identity element.

Lemma 3.10.1. The subset GO is a closed normal subgroup of G. If H is a connected
subgroup of G such that the homogeneous space G/H with the quotient topology is totally
disconnected, then H = G°.

Proof. The closure of any connected subset is connected, so G is closed. For any g € G,
the map G — G,z — gxg~' is a homeomorphism sending e to e, so it stabilizes G°. Hence
G° is normal. If H is as in the lemma, then clearly H C G°. The image of G* in G/H,
being connected and containing e, must be {e}. Hence G° = H. ]

Remark 3.10.2. It is not always true that G//G° is totally disconnected.

Definition 3.10.3. An element g of a group G is called divisible, if for every n € Z>; there
exists h € G such that A" = g.

Let K be a number field. Let D denote the image of (I],cy,. _ K)? under the com-
posite map [[,cy, K — A — Ck. Let Dk be the closure of Dj. Since Df is a
subgroup, so is Dy

Proposition 3.10.4. Let K be a number field. We have
Dy = C% = {divisible elements of C}.
The quotient group Ck /Dy is profinite.
For the proof we need some preparations.

Definition 3.10.5. A topological group is called locally profinite, if it has an open subgroup
which is profinite.

Lemma 3.10.6. Any locally profinite group is totally disconnected.
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Proof. Suppose G has an open subgroup H which is locally profinite. Since H is an open
subgroup, it is closed. Hence G° N H is open and closed in G°. Since G° is connected,
we must have G N H = Gy, i.e., G ¢ H. Then since H is totally disconnected, we have
G° = {e}. This implies that G is totally disconnected. O

Lemma 3.10.7. Let ¢ : G — H be a surjective continuous homomorphism from a profinite
group G to a Hausdorff topological group H. Then ¢ is a quotient map, and H is profinite.

Proof. Since G is compact and H is Hausdorff, ¢ is a closed map, and hence a quotient map.
(If U is a subset of H such that ¢~1(U) is open, then U is open since H—U = ¢(G—¢~(U))
is closed.) Let N = ker ¢, which is a closed normal subgroup of G. Since ¢ is a quotient map,
we have a topological isomorphism G/N = H. Since G is compact, so is H. It remains to
show that G/N = H is totally disconnected. For this, it suffices to show that any non-trivial
element of G/N has an open and closed neighborhood disjoint from the trivial element. (As
it then follows that the connected component of the trivial element is singleton.) The
quotient map G — G/N is open (as for any quotient map between topological groups) and
closed (as G is compact and G/N is Hausdorff). Hence it suffices to show that any non-
trivial V-coset g/N in G has an open and closed neighborhood which is disjoint from N. For
any y € gN, the set G — N is an open neighborhood of y. Since G is a profinite group, y
has a neighborhood basis consisting of compact open sets (by Exercise 2.2.5). Hence y has
a compact open neighborhood U, contained in G — N. Since gN is compact, there exist
finitely many y1, -+, yn € gIN such that gN C |J;_, U,,. Then |J;_, Uy, is the desired open
and closed (since it is compact) neighborhood of gN. O

Lemma 3.10.8. In a profinite group, the only divisible elements is e.

Proof. The profinite group is an inverse limit of finite groups. In each finite group, the only
divisible element is the trivial element. (|

X

Proof. Let U = [[,ev, o K % [loevy , Ok, This is an open subgroup of Ak, and its
subspace topology agrees with the product topology. By the definition of D, the map
U — Ck/Dg factors through the following quotient of U (equipped with product topology):

U= [ Wx [[{=yx ] ok

v complex v real veVE, f

Here, for v real, the quotient map K, — {+£1} is the sign map. Clearly U’ is profinite.
Since Ck /Dy is Hausdorff (as Dy is by definition closed), we conclude by Lemma 3.10.7
that the image of U in Cx/Dg is profinite. But U is open in Ck, so its image is open
in Cx/Dgk. Hence Ck/Dg is locally profinite, and in particular totally disconnected by
Lemma 3.10.6. Since Dy is the closure of the connected subgroup D) in Ck, it is itself
a connected subgroup. Then by Lemma 3.10.1, we have Di = C%. We have already seen
that Cx /Dy is Hausdorff totally disconnected. To show it is profinite, we need to check
that it is compact. Clearly || - || : Cx — Rsq restricts to a surjection D} — R-o. Hence
Cg = DKC}(. Since C}( is compact, Cx /Dy is compact.

Finally, we need to check that Dy is equal to the set of divisible elements. Since Cx /D
is profinite, by Lemma 3.10.8 all divisible elements of C'x are contained in Dy . Conversely,
we need to check that for any n € Z>1, the image of the n-th power map Cx — Cg,x — 2"
contains Dg. This image already contains D', since every element of (HveVK,OC KX)0 =
RZ, x (C*)® is divisible, so it suffices to check that this image is closed. We have a (non-
canonical) isomorphism Cx = CL x Rsq. Clearly the n-th power map on R~ has closed
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image (= Rxg). The n-th power map on C} has closed image because C is compact
Hausdorff. 0

The function field case is slightly different, but the ideas are similar.

Proposition 3.10.9. Let K be a function field. Then C} is profinite and Ck is locally
profinite. In particular C is totally disconnected and C% = {e}. The only divisible element
of Ck 1is e.

Proof. Let U = [[,cy, Ok, This is an open subgroup of A, and profinite. Its image in
Ck is open, and profinite by Lemma 3.10.7. Hence C is locally profinite, and in particular
totally disconnected by Lemma 3.10.6. Now C}; is Hausdorff and compact, and it is totally
disconnected since C is. Hence CL is profinite. We have a non-canonical isomorphism
Ck = Ck x ¢%. The factor Ck has no non-trivial divisible elements since it is profinite
(Lemma 3.10.8). The factor ¢Z = Z clearly has no non-trivial divisible elements. O

Remark 3.10.10. For K a number field, global class field theory states that the profinite
group Ck /Dy is canonically isomorphic to the abelianized absolute Galois group G2 =
Gal(K®P/K). For K a function field, we have Cx = C'k x ¢%, and the profinite completion

Ck = C} x ¢%. In this case global class field theory states that Cx is canonically isomorphic
to Gab.

4. CLASS FIELD THEORY

4.1. Class field theory for Q and Q,. For Q and Q,, the corresponding global and
local class field theories involve essentially the cyclotomic extensions. We first recall some
generalities about cyclotomic extensions.

Let K be a field of characteristic zero. For m € Z>1, let (,,, denote a primitive m-th root
of unity in a (fixed) algebraic closure K of K. The extension K ((,,)/K is the splitting field
of X™ — 1, and is hence Galois. It is called the m-th cyclotomic extension of K. We have
a canonical injective homomorphism

a:Gal(K((n)/K) — (Z/mZ)*™,

sending o to a+mZ such that o({) = ¢* for any m-th root of unity. In particular, K(¢,)/K
is an abelian extension whose degree divides ¢(m) = #(Z/mZ)*.
We define the m-th cyclotomic polynomial to be

P (X) = 11 (X —w).
primitive m-th roots of unity w
A priori, ®,,(X) has coefficients in a chosen algebraically closed field where we consider the
roots of unity, but note that each ®,,(X) is a monic polynomial and we have the recursive

relations
Xxm 1

B H1§d<m,d|m (I)d(X) .

Hence we have ®,,(X) € Z[X], and the definition is independent of any choice of alge-
braically closed field.

BUX) =X —1, Bp(X)

Lemma 4.1.1. The following conditions are equivalent.
(1) ®,,,(X) is irreducible in K[X].
(2) a:Gal(K((n)/K) — (Z/mZ)* is an isomorphism.
(3) [K(¢m) : K] = ¢(m).
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(4) ®,,(X) is the minimal polynomial of ¢, over K.
Proof. Easy exercise. O
Theorem 4.1.2 (Gauss). For any m € Z>1, ®,,(X) is irreducible in Q[X].

Exercise 4.1.3. We prove the theorem in steps. Assume ®,, is not irreducible in Q[X].
Since it is a monic polynomial in Z[X], it is not irreducible in Z[X] by Gauss’s Lemma.
Hence ®,,, = fg, with f, g € Z[X], f irreducible, and deg f,degg > 1.

(1) Suppose ( is a root of f such that (? is a root of g for some prime p coprime to m.
Show that f divides g” inside Fp[X].

(2) Under the above assumption, show that ®,, has a multiple root, which is a contra-
diction.

(3) Use the above results to show that every primitive m-th root of unity is a root of
f, finishing the proof.

As a consequence, we have an isomorphism « : Gal(Q((,,)/Q) — (Z/mZ)*. Define
Y 2 (Z)MZ)* = Gal(Q(Gn)/Q), x> a H(z™h).

For any finite abelian extension of global fields L/ K, and for any non-archimedean place
v of K, the decomposition group D(L/v) C Gal(L/K) is well defined. If v is unramified
in L/K, then for any place w of L above v, D(L/v) = D(w/v) is canonically isomorphic
to Gal(l,/ky,), where [, denotes the residue field of L at w and k, denotes the residue
field of K at v. This is a cyclic group with a distinguished generator, namely the Frobenius

Ly = Ly, T+ 7%, Moreover, this Frobenius element of D(L/v) is independent of the choice
of w. We shall denote it by Frob,, and call it the Frobenius element at v of Gal(L/K).

Proposition 4.1.4. A prime p € Q is unramified in Q((,,) if and only if p does not divide
m. In this case, ¥y, (p~1) € Gal(Q(()/Q) is the Frobenius at p.

Exercise 4.1.5. Admit the first statement in the proposition. Also admit that the ring
of integers in Q((y,) is Z[(m]. Prove that 1,,(p~!) is the Frobenius at p. (Hint: the more
difficult part is to prove that this actually lies in the decomposition group.)

For m|m/, we have Q((n) C Q((n), and we have a commutative diagram

(Z/m'Z)* 2 Gal(Q(Cr)/Q)

| |

(Z/mZ)* —2"> Gal(Q((m)/Q)

where the vertical map on the left is a +m/Z — a + mZ, and the vertical map on the right
is restriction. Taking inverse limit over m, we obtain an isomorphism of profinite groups

Y1 2% =1im(Z/mZ)* = Gal(Qeye/Q).

Here Qcyc denotes the union of all Q(¢,,) in Q, and we identify @m(Z/mZ)X with Z*, the
group of invertible elements of the ring Z = the profinite completion of Z.

Exercise 4.1.6. Equip Z = lim 7Z/mZ with the inverse limit topology (where each Z/mZ

is discrete), so it is the profinite completion of Z. Equip 7% with the subspace topology
inherited along Z* < Z X Z,z + (z,2~'). Show that there is a natural isomorphism of
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topological groups Z* l'&nm(Z/mZ)>< (where the right hand side has the inverse limit

topology). Also show that there is a natural isomorphism of topological groups 7%
[, Z;. (Compare with Exercise 2.2.10.)

Theorem 4.1.7 (Kronecker-Weber theorem). We have Qcy. = QP.

Thus 9 is an isomorphism 7* = Gab. The left hand side is related to the idele class
group as follows.

Lemma 4.1.8. The group A(XD s generated by its subgroups R~ X 7% = Rsg X Hp Ly and
Q*. The intersection of the two subgroups is trivial.

Proof. The argument is similar to Example 3.3.4. For any (z,), € Aa, let y = Hp porde(ze) ¢

Q*. Then y=! - (z,), lies in RX x Z*. If the coordinate in R is negative, then we can
multiply this element by —1 € Q* to move it into Rsg x Z*. This shows that the two
subgroups in question generate Aa. Obviously their intersection is trivial. ]

By the lemma, we have a topological isomorphism Rsg X 7% = Cg induced by the
inclusion Ry X Z* < A(S. Clearly this isomorphism maps R-g x {1} to Dg = C(%. Hence

Cg/Dg is canonically identified with Z*. In this way we can view 1) as an isomorphism
~ b
¢ : CQ/DQ — G& .

We shall also view 9 as a map from Cg or A(S towards Gab. It is called the global Artin
map for Q.

For each prime p, we have a canonical injective homomorphism Q) — Aé sending y
to (xy), with z, = 1 for v # p and x, = y. By composition we obtain an (injective)
homomorphism Q — Cg.

Corollary 4.1.9. Let p be a prime, and m € Z>1 not divisible by p. Then the composite
homomorphism

Q> Co % G = Gal(Q(n)/Q)
maps any uniformizer of Q, to the Frobenius at p.

Proof. Let m be a uniformizer in Q,;, and let z be its image in A@. Thus © = (x,), with

2y, = 1 for v # p and 2, = m. Let y be the element p € Q* viewed as an element of
Ag via the diagonal embedding Q* — Agj. Then y~lr = (2,), With 2,0 = p~! € Ry,
zy = p 1 € ZX for v ¢ {oo,p}, and z, = p~lm € Z, . Hence y iz € Ry x 7*. The
composite map R~ X 7x = Cq — Co/Dg = 7* is just projection to the second factor.
Hence the image of « under Ag — Cp/Dg = Z* is the element whose component in Zy
is p~! for v # p and whose component in Zy is p~ . The projection of this element in
(Z/mZ)* is p~—t. Thus the corollary follows from Proposition 4.1.4. O

In Proposition 4.2.5 below, we will see that the conclusion of the corollary (or just for
almost all primes) uniquely characterizes .
Now we discuss the local class field theory for Q,.

Theorem 4.1.10 (Local Kronecker—Weber theorem). We have Q;b = Qp eyt = U, Qp(Gm)-
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To simplify notation we write K, for Q,(¢,,). Thus G%‘; = lim Gal(K,,,/Q,). For each
m, we write a,,, for the canonical injection Gal(K,,/Q,) — (Z/mZ)*. The main difference
from the situation for Q is that «,, is not always an isomorphism.

Write m = np” where n is not divisible by p.

Fact 4.1.11. The extension K,/Q), is unramified, and the extension Kpr/Qp is totally
ramified.

Clearly K,, is the compositum of K,, and K. It follows from the above fact that K,,/Q,
and K- /Q, are linearly disjoint. Hence Gal(K,,/Q,) = Gal(K,/Q,) x Gal(K,-/Q,). By
Chinese Remainder Theorem we also have (Z/mZ)* = (Z/nZ)* x (Z/p"Z)*. The map
am : Gal(K,,,/Qp) — (Z/mZ)™ is compatible with the maps «, : Gal(K,,/Q,) — (Z/nZ)*
and a,r @ Gal(K,r/Q,) — (Z/p"Z)* with respect to the direct product decompositions.

Fact 4.1.12. The map «,, sends the Frobenius to p 4+ nZ. In particular, K, : Qp)] is equal

to the order of p in (Z/nZ)*, and the image of av, is the subgroup generated by p, denoted
by (P)(z/nz)x - The map apr is an isomorphism.

Define a map
Jm 1 Q= pPXZS — im(am) = (P)@/mzyx X (L) L) C (Z/nL)* x(Z/p"L)* = (Z/mZ)*,

sending p" to p" € (p)z/nz)x, and sending x € Z, to the image of 271 under the natural
projection Z) — (Z/p"Z)*. Then define

U QF 275 (o) 225 Gal(Km/Qp).

The maps v, are continuous, and they form a compatible family. We therefore obtain a
continuous homomorphism

¥ Qp = lim Gal(K, /Qp) = Gy

This is called the local Artin map for Q,.

The local Artin map satisfies various deep properties. We state only two which are
relatively straightforward.

For the first property, recall that the maximal unramified extension Q" /Q, is an abelian
extension and there are canonical isomorphisms Gal(Q)'/Q,) = Gal(F,/F,) = Z, where the

topological generator 1 € Z corresponds to the Frobenius. We therefore have a canonical
quotient map G&‘; — Z, which we denote by ord.

Fact 4.1.13. The following diagram commutes:
X ¥ ab
Qp GQp

l ord,, J{ ord

Z—>17
The second property is the so-called Local Global Compatibility. Fix a prime p. For
each m € Z>; and each place p of Q((n) above p, the field Q((mn), is the compositum
of its subfields Q, and Q((,) (cf. Exercise 1.6.6 (1)). Thus Q((m)p = Qp(ém). Recall
that Gal(Q({m)p/Qp) is canonically identified with the decomposition group D(Q(¢,)/p) C
Gal(Q((m)/Q). We thus obtain a map i, : Gal(Qu(¢n)/Qp) — Gal(Q(¢n)/Q). It is
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independent of the choice of p by commutativity. The maps i,, for varying m form a
morphism between the two inverse systems. Hence we obtain a map

i: Gy — Gy
Fact 4.1.14 (Local-Global compatibility). The following diagram commutes:

P
X b
QP Gap

L

AL 2> aab,
4.2. Global class field theory. Let K be a global field.

Theorem 4.2.1 (Reciprocity Law). There is a continuous homomorphism v : Cx — G322
with dense image, called the global Artin map, satisfying the following properties. For each

finite abelian extension L/K, write 1,k for the composite map Ck v, G2 — Gal(L/K).

(1) For each v € Vi, consider the composite map f, : K — Ck AL7LN Gal(L/K). If

v is non-archimedean, then f, kills OIX(U if and only v is unramified in L. When
this holds, f, sends any uniformizer to Frob, € Gal(L/K). If v is archimedean and
unramified in L (i.e., either v is complex or every place of L above v is real), then
fo = 1. If v is archimedean and ramifies in L (i.e., v is real and every place of L
above v is complex) then f, factors through the sign map K} = R* — {£1} and
sends —1 to the complex conjugation in Gal(L/K) arising from a complex embedding
L — C corresponding to a complex place above v.
(2) The map v, i is surjective, and its kernel is Ny ) (Cp).

Remark 4.2.2. By Lemma 4.2.6, condition (1) for almost all places v € Vi already uniquely
characterizes ¢, . Hence 1 is unique.

Remark 4.2.3. The surjectivity of ¢,k follows from the property that 1 x has dense
image. By (2), for every finite abelian extension L/K, the subgroup Ny, (Cr) C Ck is
open and of finite index. This is highly non-trivial.

Theorem 4.2.4 (Existence Theorem). A subgroup of Ck is open and of finite index if and
only if it is of the form N,k (CL) for a finite abelian extension L/K.

Theorems 4.2.1 and 4.2.4 are the two main theorems of global class field theory.
We now show that a weaker version of condition (1) in Theorem 4.2.1 already uniquely
characterizes ¥ :

Proposition 4.2.5. Let L/K be a finite abelian extension of global fields. Let ¢, ¢’ be
two continuous homomorphisms Cx — Gal(L/K). Assume that there is a finite subset
S C Vi containing all archimedean places and all places which ramify in L such that for all
v € Vg — S, the composite maps K — Ck 2, Gal(L/K) and K} — Ck LN Gal(L/K)
both send every uniformizer to Frob,. Then ¢ = ¢'. In particular, the global Artin map
Y s O — G2 is unique.

The key to the proof is the following lemma.

Lemma 4.2.6. Let K be a global field, and let S be a finite subset of V. Then the subgroup
(A ={z € A} |z, =1, Yv € S} of A} has dense image in Ck.
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Remark 4.2.7. The notation (A%.)* is justified as follows: Define A% to be the restricted
product of K, for v ¢ S, and define (A%)* to be its group of invertible elements, equipped
with the subspace topology via (A%.)* — A% x A% 2 + (z,77'). Then as a topological
group (A%)* is the restricted product of K¢ for v ¢ S. Moreover, the natural bijection
between (A%.)* defined this way and the subgroup of A% in Lemma 4.2.6 (with the subspace
topology inherited from A% ) is a topological isomorphism.

Proof of Lemma 4.2.6. 1t suffices to prove that for any 2 € A% and any open neighborhood
U of z, we have U N (K* - (A%)*) # 0. Up to shrinking U, we may assume that U =
[Toer Us x vaT OIX(U, where T is a finite subset of Vi containing S, and each U, is an open
neighborhood of z, in K. By Strong Approximation (Theorem 3.7.1), there exists y € K
such that y € K, lies in U,, for each v € T. (This is merely a very weak consequence of Strong
Approximation.) In particular y # 0. Define z = (z,) € A by z, =y forv e T and z, =1
for v ¢ T. Then y~'z € (AL)* C (A3)*, and z € U. Hence z € U N (K> - (A%)*). O

Proof of Proposition J.2.5. We claim that for z € (A%)*, we have

$x)=¢'(x)= ][] Froby®)

veEVE—S

(where the product is finite). The proposition then follows from the claim and Lemma 4.2.6.
Let T C Vi be a finite subset containing S such that z,, € O for all v ¢ T" and such
that [[,er{1} X ITyev, 7 Ok, is contained in ker(¢) Nker(¢’) (which can be arranged since
ker(¢) and ker(¢’) are open subgroups of Ck). For each v, write i, for the map K — Ck.
Then the two elements x and [], . _g (%) in Ck differ by an element of ker(¢) Nker(¢’).
Hence

o) =o( ] iv(w)) = [ Froby®@) = TJ Frobyd ),

veT—S veT—S veVrg—S

and the same computation holds for ¢'. |

As a consequence of Theorems 4.2.1 and 4.2.4, we have a classification of finite abelian
extensions of K.

Corollary 4.2.8 (Classification of finite abelian extensions). The map
{finite abelian extensions L/K in K°} — {open finite index subgroups of Ck},

sending L to Np,/x(CL) is an inclusion-reversing bijection.

Proof. The map is surjective by Theorem 4.2.4. Injectivity and the inclusion-reversing
property follow from the following claim: For finite abelian extensions L and L’ of K in
K?, we have L C L' if and only if N/ /x(Cr/) C Np/k(Cr). The “only if” direction follows
from the transitivity of norms: The composition

Npr/p Nr/x
CL

CL/ OK
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is equal to N7/, . We now show the “if” direction. Let M = LL' C K?b. This is a finite
abelian extension of K. We have a commutative diagram

Gal(M/K)

y l/
restr
VLK

Ox =" Gal(L/K)

restr
Yk

Gal(L'/K)

By Theorem 4.2.1(2), all the arrows are surjective. By Theorem 4.2.1(2) and our assumption,
ker(¢r /) C ker(tpr k). Therefore we have

ker(Gal(M/K) — Gal(L'/K)) C ker(Gal(M/K) — Gal(L/K)).
By Galois theory we conclude that L C L'. O

4.3. Further information on the global Artin map. The global Artin map ¢ : Cx —
G”}P is not an isomorphism. However, it induces a topological isomorphism

Cx/Dk — G32
when K is a number field, and a topological isomorphism
Cx = Wi

when K is a global function field and W2 is the Weil group inside G%° which we will define.
We prove these statements using Theorems 4.2.1 and 4.2.4.

Proposition 4.3.1. If K is a number field, then ¢ : Cx — G3 is surjective, its kernel
is Dy, and it induces a topological isomorphism Cr /Dy — G&2.

Proof. Since Dy is connected and G2 is totally disconnected, we have Dy C kert)x. Thus
Yy induces a continuous homomorphism C /Dy — G32. By Proposition 3.10.4, Cx /Dy is
profinite, so the image of 1 is closed. But this image is dense (which is stated in Theorem
4.2.1), so Yk is surjective. We now show that ker iy = Dg. By Theorem 4.2.1(2) and
Theorem 4.2.4, ker 1k is contained in all open finite index subgroups of Ck. In particular
D is also contained in all such subgroups. The image of any open finite index subgroup
of Ck in Ck/Dg is an open subgroup of Ck /Dy, and conversely the inverse image of
any open subgroup of Ck /Dy is an open finite index subgroup of Ck (since Cx /Dy is
compact). Hence ker(¢x )/ Dk is contained in all open subgroups of Cx /D . Since Ck /D
is profinite, the intersection of all its open subgroups is trivial. Thus ker(¢x) = Dk.

It follows that ¢k induces a continuous bijective homomorphism Cx /Dy — G32. This
must be a homeomorphism since both sides are Hausdorff. O

Exercise 4.3.2. If K is a number field, then every open subgroup of Ck is of finite index.

The situation with a global function field is more complicated. Let K be a global function
field of characteristic p, and let k be the algebraic closure of F, in K. Then k is a finite
field. For every n, let k, be the degree n extension of k. Let K, = K ® k,. This is a
field extension of K. It is a Galois extension, and Gal(K,,/K) = Gal(k,/k) = Z/nZ. Hence
K, /K is an abelian extension. We write Froby for the canonical generator of Gal(K,,/K)
corresponding to the automorphism x — z!*! in Gal(k,/k). As an automorphism of K,
Froby is the map k, ®x K = k, Qg K,z @ y — ¥l @ Y.
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Lemma 4.3.3. The extension K,/K is unramified at every place v € Vi. Moreover,
Frob, € Gal(K,,/K) is given by Frob, = FrobLk”:k], where k, denotes the residue field at v.

Proof. Let v € Vi. Let k' = k, Nk,,. Fix a uniformizer ¢t € K,. Then we have a canonical
isomorphism K, = k,((t)). We have

K @k Ky 2 ki @ ko (£) 22 b @1 K @ b (£) 22 KEF M @4 by (£) 22 (B @10 b (1) 2.

It is easy to see that k, @y k, is a field, and we have k,, @ k, () = (kn, @k ky)(t)), which
is a local field and an unramified extension of k, ((¢)). Hence v is unramified in K, in view of
Fact 1.4.3. More precisely, for every place w of K,, above v, we have K, ., = (k, @}, k,)((t)).

Now a general element Frob € Gal(K, /K) = Gal(k,/k) belongs to the decomposition
group D(K, /v) if and only if it acts trivially on k' C k,. In this case, Frob} induces the
automorphism =z ® y 2 @ y on the residue field k,, ®j k, of every place of K, above v.
Thus Frob,, = Frob}, if and only if

okl = r, Vzek;
AL y\kv\ = ¢k @ y, Yz Quy € ky Qu ke.

This holds if and only if ¢ = [k, : k] (mod n). Hence we have Frob, = F‘robgﬂk“:k]. O
Lemma 4.3.4. The image of || - || : A — Rso is |k|?. We have a commutative diagram
o -1 e |

Jox |
G —— Gal(K,/K) = (Froby) = Z/nZ

where the vertical map on the right sends |k|=! to Froby,.

Proof. Since for each v € Vi we have k, D k, the image of || - || is contained in |k|?. Assume
this image is |k|"Z for some 7 € Z>1. By Lemma 4.3.3, the extension K,,/K is everywhere
unramified. Hence by the proof of Proposition 4.2.5, for each x € Aj; we have

Vi, rc(a) = [ Frob® ) € Gal(K, /K).
vEVE
By Lemma 4.3.3, the above formula becomes
Vi, k(@) = H FrobLk”:k] ordy (zv)
vEVEK

But g, /x is a surjection onto Gal(kK,/K), so there exists vg € Vi such that [k,, : k] =1
(mod n). Then |k|"% contains |k,,|? = |k|F0*Z Hence r divides [k, : k], and so 7 is
coprime to n. But this holds for all n, so r = 1.

To show the commutativity of the diagram, we simply compare the above formula for
Yk, /k with the formula

HxH _ H ‘kv|—ordv(xv): H |k|—[ku:k]ordv(xu)_

veEVK vEVK
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We have Gal({J,, Kn/K) = lim Gal(K,/K) = Hm Z/nZ = 7. Here the topological
generator 1 € Z C s corresponds to Froby € ILnn Gal(K,/K), i.e., the element whose
image in each Gal(K,,/K) is Froby. We denote by ord the natural map

G — Gal(| JK./K) = Z.

This map also has the following alternative interpretation: The algebraic closure of k in K?P
is algebraically closed (because for each n we have k, C K,, C K*"), and we denote it by
k. Thus Gal(k/k) = 2, where 1 corresponds to Froby,. The map ord is just the restriction
map G2 = Gal(K**/K) — Gal(k/k).

We also denote by ord the homomorphism Cx — Z such that for each x € Ck, ||z| =
|k|~°r4(=) Then by Lemma 4.3.4 we have a commutative diagram

CK&Z.

-

G?}) ord 2
In particular, 15 (Ck) is contained in ord ™' (Z) C GgP.

Definition 4.3.5. The abelianized Weil group for a global function field K is the subgroup
ord™1(Z) C G3P. Let I} = ord™'(0) C G3P. We equip W2P with the unique topology such
that I} is open in W2 and such that the subspace topology on I} inherited from W32P
agrees with the subspace topology inherited from G3P.

Concretely, we can pick group-theoretic section Z — W2P of ord : W& — Z. Then we
obtain a group isomorphism W2P = | e X Z (since Wl'@“(b is abelian). The topology on T/Vl'@“(b is
such that this isomorphism is a homeomorphism, where the right hand side has the product
topology, with I}, having the subspace topology inherited from G%° and Z having discrete

topology. From this we also see that the topology on W& makes it a topological group.

Exercise 4.3.6. The inclusion map W2 — G3° is continuous and has dense image, but it
is not a homeomorphism onto the image.

ord

Exercise 4.3.7. Denote the composite map G = Gal(K*/K) — G3> == 7 also by ord.
Let Wi = ord_l(Z) C Gk and I = ord_l(Z) C Gg. Fix a set-theoretic section Z — W
of ord and thereby obtain a bijection Wx = I'x X Z. Equip Wi with the topology such that
this bijection is a homeomorphism, with Ix having the subspace topology inherited from
Gk and Z having the discrete topology. Show that this topology on Wi is independent of
the choice of the section. Show that W is a topological group. Show that WP is naturally
identified with the abelianization of W as a topological group (i.e., W modulo the closure
of the derived subgroup).

We then have a commutative diagram with exact rows:

1 clL Cx 2457 0

- T

1 I wab 24, 7 0
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Proposition 4.3.8. The maps ¥ : Cx — W& and ¢ : Ci — I} are topological
isomorphisms.

Proof. Fix a group-theoretic section s : Z — Ck of ord : Cx — Z. Use this to identify
Ck = CL x Z as topological groups. Note that 1k os : Z — W2 is a section of ord :
Wf(b — Z, and we use this to identify Wf}b &~ [ x Z as topological groups. Under these
identifications, the map ¢ : Cr — W2 becomes Ck x Z — It x Z, (z,n) = (Vi (z),n).
Thus it suffices to prove that ¢ : Ci — I} is a topological isomorphism. This map is
continuous since ¥y : Ck — G% is continuous and Il has the subspace topology in G&P.
Recall from Proposition 3.10.9 that C') is profinite. In particular it is compact. The group
I} is Hausdorff. Hence it suffices to show that ¢x : C} — G52 is a bijection.

To show injectivity, suppose z € C is such that 1k (x) = 1. By Theorem 4.2.1(2) and
Theorem 4.2.4, x lies in every open finite index subgroup of Cx. Let U be an arbitrary
open subgroup of C}, (which is automatically of finite index). Then U x Z C Ck x Z = Ck
is an open finite index subgroup of Ck, so it must contain x. It follows that x € U. Since
U is arbitrary and C is profinite, we conclude that = 1. This proves injectivity.

It remains to prove the surjectivity of 95 : Ch — I5.. Let g € I}. Since ¢ : O — G
has dense image, there is a sequence (2,,)n>1 C Ck such that g (z,) — g in G3>. Thus
ord(z,) = ord(¢Y i (x,)) — ord(g) = 0 in Z. This means for any m € Z>1, for all sufficiently
large n the integer ord(zx,,) is divisible by m. Let y € Cx be such that ord(y) = 1. We claim
that Vg (y~ @) — 1 in G3. Since G2} is profinite, we only need to show that for any
open subgroup U of G342, the image of ¢ (y~°"4(@»)) in G232 /U is trivial for all sufficiently
large n. This is true since for all sufficiently large n, the order |G4P /U| divides ord(z,,), and
wK(yi ord(zn)) _ qu(yfl)ord(mn).

By the claim, we have g (z,y~ Ord(”’")) — g in G2, Since each z,y~ ord(zn) lieg in Ch,
this implies that g lies in the closure of ¥k (C}) in G&2. But C} is compact, so ¥ (C) is
closed in G3P. This proves the surjectivity. O

4.4. Functoriality of the global Artin map. Let L/K be a finite separable extension
of global fields. Choose a K-isomorphism L*® 2 K* and thereby identify G = Gal(L*/L)
with an open subgroup of G = Gal(K?®/K). The inclusion G, < Gk induces a continuous
homomorphism i : G2 — G3>, which is independent of all choices.

Theorem 4.4.1 (Norm functoriality). We have a commutative diagram

Cy v Gzzb

CK&G%’

The second form of functoriality involves a transfer map V : G2 — G, We first define
it for groups without topology.

Let G be an abstract group (without topology) and H a finite index subgroup of G.
We will define a canonical homomorphism V : G*® — H?P| called the transfer map. The
most natural origin of this map is the restriction map Hi(G,Z) — H;(H,Z) between
group homology. The two homology groups are canonically identified with G*” and H?P
respectively. Here we define V' by hand as follows.

Choose a set theoretic section 6§ : H\G — G of the projection G — H\G. For each
g € Gandt e H\G, we have 0(t)g € HO(tg) tautologically. Hence there is a unique element
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2¢,g € H such that
0(t)g = w1,40(tg).
Define a map

V:G—H, g~ H Ti,g-
teH\G

We check that the composition of V with H — H?" is a group homomorphism, and therefore
V induces a group homomorphism G — H?P. For g1, g € G, we have

0(t)g192 = Tt,4,0(t91)92 = Tt g, Ttg, 4,0(tg192)-
Hence

Lt,g192 = Lt,g1%tg1,92+

Therefore, inside H?P, we have

V(9192) H Lt,91Ttg1,92 = H Ttg1 | - H Ltg1,g2

te H\G te H\G teH\G
= II #o || II @0 ) =Va)V(o2).
te H\G te H\G
Hence V induces a group homomorphism V : G#> — Hab,
Exercise 4.4.2. The homomorphism V : G2 — H?P is independent of the choice of 6.

Now suppose G is a topological group and H is an open subgroup of G of finite index. The
map V : G — H constructed above is automatically continuous. The same computation as
above shows that the composition of V with H — H?", where H?" is the abelianization as a
topological group (i.e. H modulo the closure of the derived subgroup) is a homomorphism. It
is therefore a continuous homomorphism, and induces a continuous homomorphism G*® —
Hab,

Exercise 4.4.3. Verify that V : G — H is continuous.

Applying the above construction to the open subgroup (of finite index) Gy C Gk, we
obtain the transfer map V : G& — G3P.

Theorem 4.4.4. [Transfer functoriality] We have a commutative diagram

CL *) Gab
Y
% 3 Gab

where the vertical map on the left is the closed embedding induced by Ay, — AY (see Propo-
sition 3.9.4).
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4.5. Local class field theory. Let K be a non-archimedean local field, with residue field
k. The following two theorems are the main theorems of local class field theory.

Theorem 4.5.1 (Local Reciprocity Law). There is a continuous homomorphism Y :
K* — G with dense image, called the local Artin map, satisfying the following conditions:

(1) For each finite unramified extension L/K, the composition ¢ /r : K* Y, G —
Gal(L/K) sends every uniformizer in K> to the Frobenius element in Gal(L/K).
(2) For each finite abelian extension L/K, the composition the composition Yy K :
K, G3> — Gal(L/K) is surjective and its kernel is Ny, (L*).
Remark 4.5.2. It follows that N,k (L*) as above is open and of finite index in K*.

Theorem 4.5.3 (Local Existence Theorem). A subgroup of K* is open and of finite index
if and only if it is of the form N i (L*) for a finite abelian extension L/K.

Corollary 4.5.4 (Classification of finite abelian extensions). The map
{finite abelian extensions L/K in K*} — {open finite index subgroups of K>},
sending L to Np /i (L*) is an inclusion-reversing bijection.

Proof. This follows from Theorems 4.5.1 and 4.5.3, by the same argument as in the proof
of Corollary 4.2.8. O

Proposition 4.5.5. Assume Corollary 4.5.4. Then the local Artin map ¥ as in Theorem
4.5.1 is unique.

Proof. Suppose ¢k, ¥y are two Artin maps. Since K* is generated by uniformizers as a
group, it suffices to show that for any fixed uniformizer 7, we have ¢ (7) = V¥ (7).

Let L/K be an arbitrary finite abelian extension. Then Ny, 5 (L*) is open and of finite
index in K* = 7% x Of. It can be easily seen that any open and finite index subgroup
of % x O} contains a subgroup of the form 7% x UM for some n,m € Z>1. Note that
7L x O and 7% x U are both open and of finite index in K. Hence they are respectively
of the form Ng, /i (E,) and N /x (K ,,) for unique finite abelian extensions E,, /K and
Ky m/K. Thus we can find n,m € Z>q such that

Npx(L*) D™ x Uf* =Ng, jx(EX) NNk (KX,
The right hand side contains (in fact, equals, by the same proof as Corollary 4.2.8)
NEn'KW,7n/K((En ! Kﬂ-7m) x )'

Since the bijection in Corollary 4.5.4 is inclusion-reversing, we conclude that L C E,, - Ky .
Thus we have shown that
K®= | En Krm.
n,m>1

It remains to show that for each n and m, we have ¢g, /i (7) = ¥ /() and Ypc /i () =
WK, K (m). Let K, be the unique degree n unramified extension of K. It follows from
Proposition 2.3.3 that N, /x (K}) = 72 x O %. Hence by Corollary 4.5.4 we have K,, = E,,.
Then since 1k and ¢} both satisfy condition (1) in Theorem 4.5.1, we have ¢ g, /x(7) =
w/En/K(ﬂ.) = Frob € Gal(K,/K). Since m € Ng_ k(K ), and since ¢k and 1} both
satisfy condition (2) in Theorem 4.5.1, we have Vg /x(7T) = ¢}(W,m/K(7T) =1. O
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Remark 4.5.6. This proof of uniqueness of ¥k relies on Corollary 4.5.4, which relies on
Theorem 4.5.3. This is unlike the global case, where the uniqueness of the global Artin map
could be proved unconditionally.

Similar to the global function field case, we define ord : G2 — Gal(K“/K) = Z, where
1 € Z corresponds to the Frobenius. Define Wi C G3° to be the inverse image of Z under
ord, and define I, C G% to be the kernel of ord. Equip W2 with the topology such that
It is open and I} has the subspace topology inherited from G3P.

Proposition 4.5.7. We have a commutative diagram with exact rows, and the vertical maps
are topological isomorphisms:

1 0% K*x 247 0
lwk lw
1 I, wab 2d 7 0

Proof. This follows from the two main theorems Theorem 4.5.1 and Theorem 4.5.3, in the
same way as Proposition 4.3.8. ([l

Similar to the global Artin map, the local Artin map satisfies norm and transfer functo-
riality.
Theorem 4.5.8 (Norm and transfer functoriality). Let L/K be a finite separable extension.
Then we have a commutative diagram

wL b
L* ——= G¥

e |

x5 gab
where i is induced by the inclusion Gy — Gg. We have a commutative diagram
Lx YL Gib
VT
KX Y Gab
UK
where V' is the transfer map.

Finally, we state the local-global compatibility of Artin maps. Let K be a global field,
and v a non-archimedean place of K. As before, if we choose a K-algebra embedding
i: K* < (K,)®, then we obtain a closed embedding Gx, — Gk, whose image is the
decomposition group of the place of K® over v determined by 7. The induced map G%})v —
G3P is independent of the choice of i.

Theorem 4.5.9 (Local-global compatibility). We have a commutative diagram

Ky

Ox —25- Gab,
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4.6. Lubin-Tate theory. Let K be a non-archimedean local field. Fix a uniformizer .
For each n € Z>1, Lubin—Tate theory explicitly constructs a finite abelian extension K ,,/K
(which is actually equal to K, in the proof of Proposition 4.5.5), together with an explicit
isomorphism a, : 0% /UL — Gal(K,,,/K). For instance, for K = Q, and 7 = p, we have
Krn = Qu(¢pn), and ay, is the usual isomorphism (Z/p"Z)* — Gal(Q,({pn)/Qp). For
n|n’, we have K ,, C K, . The o, are compatible for varying n, and in the inverse limit
we obtain a topological isomorphism « : O — Gal(K,/K), where K, := J,, Kx n-

Each K , is totally ramified over K, and hence linearly disjoint from any unramified
extension of K. Thus we have

Gal(K" - K, /K) = Gal(K"/K) x Gal(K,/K).
This allows us to define
Y KX =718 x OF — Gal(K™ - K, /K) = Gal(K" /K) x Gal(K,/K)
(7", z) — (Frob”, a(z™1)).

Assume Theorem 4.5.1, i.e., the existence of an (abstract) local Artin map ¢x. We will
use Lubin-Tate theory to prove the following:

e Local Kronecker-Weber: K" - K, = K2P.

e The map ¢y : K* — G5 (here the target is G2 by the above statement) is
independent of 7, and it is equal to the abstract k. (In particular, this proves the
uniqueness of ¥k, and gives an explicit description of ¥k.)

e Theorem 4.5.3.

We need the notion of a formal group law. This can be motivated in two ways. First,
suppose we have a Lie group (or a group object in any reasonable geometric setting, such
as a group variety over a field), and suppose we fix local coordinates near the identity
element such that the identity element has coordinate 0. If the group is “analytic”, then
the multiplication operation for elements sufficiently close to the identity, can be described
in terms of their coordinates by power series. In other words, if ¢(g) is the coordinate of a
group element g, then t(gh) is a (vector-valued) power series in ¢(g) and t(h), at least for g, h
sufficiently close to the identity. This power series must satisfy some algebraic properties
reflecting the axioms for a group.

As a second motivation, consider A = {z € K | |z| < 1}. Note that for any F(X,Y) €
Ok[X,Y], and any z,y € A, the power series F(z,y) converges in A. Thus we can define a
group structure on A by (z,y) — F(x,y) as long as F(X,Y) satisfies suitable axioms.

Definition 4.6.1. Let R be a commutative ring. A (one-dimensional, commutative) formal
group law F over R is a formal power series F(X,Y) € R[X,Y] satisfying the following
conditions:

(1) (Deforming standard addition.) F(X,Y)= X +Y mod (X,Y)2.

(2) (Commutativity.) F(X,Y) = F(Y, X).

(3) (Associativity.) F(X,F(Y,Z)) = F(F(X,Y),Z) € R[X,Y, Z]. (Here the substitu-

tions make sense because F' has no constant term.)

Exercise 4.6.2. Let F be a formal group law. Then F(X,0) = F(0,X) = X (i.e., “0 is

the zero element”), and there exists a unique i(X) € R[X] (“the inversion operation”) such
that i(X) = —X mod (X?) and F(X,i(X)) =0.

Example 4.6.3. The additive group G, is given by F(X,Y) = X + Y. The multiplicative
group G, is given by F(X,Y) = 1+ X)1+Y) -1 = X +Y + XY. (Think of X
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as the coordinate of a group element 1 + X, on which the group operation is the usual
multiplication.)

Definition 4.6.4. Let F, G be formal group laws over R. By a homomorphism f : F — G,
we mean an element f(X) € R[X] such that f(0) = 0 and G(f(X), f(Y)) = f(F(X,Y)).
For two homomorphisms f1, fo : F — G, their sum is defined as

fi+e f2 = G(f1(X), f2(X)).
This is another homomorphism F' — G. For homomorphisms f: F' — G and g : G — H,
define their composition
gof=g(f(X))

This is a homomorphism F — H.

Under this definition of homomorphisms and their compositions, we obtain the category
of formal group laws over R. In particular, we obtain a notion of isomorphism.

Exercise 4.6.5. A homomorphism f : F — G between formal group laws over R is an
isomorphism if and only if f/(0) € R lies in R*.

For a formal group law F', the set of endomorphisms End(F') is a ring, where multiplica-
tion is composition and addition is (f1, f2) — f1 +F fa.

Exercise 4.6.6. Check that End(F) is indeed a ring.

Definition 4.6.7. Let Ry be a subring of R. By a formal Rg-module over R, we mean
a pair (F,[-]r), where F' is a formal group law over R, and [-]r is a ring homomorphism
Ro — End(F) such that for every a € Ry, we have [a]#(X) = aX mod (X?).

Let K be a non-archimedean local field. Fix a uniformizer 7. Let the residue field be F,.

Definition 4.6.8. A Lubin—Tate formal group law with respect to (K, ) is a formal Og-
module (F, [/]p) over Ok such that [7]p(X) = X? mod mg. (Here we say two formal power
series over Ok are congruent modulo myg if they are coefficient-wise congruent.)

Example 4.6.9. Let K = Q, and 7 = p. We define a formal Z,-module over Z, as follows.
The underlying formal group is G, i.e., F(X,Y) = (1+ X)(1+Y) — 1. For a € Z,, define

dr=(1+X)"—1:=Y (Z)X”

n>1

Here, (%) is defined to be a(a—1)---(a—n+1)/nl. As a function in a, this is a continuous
function Z, — Q,. Since it takes Z into Z, it takes Z, into Z,. Thus [a]r € Z,[X]. One
checks that [-]p makes F' a formal Z,-module over Z,. We have [p|r = (1+ X)? — 1= X?
mod p, so (F,[-]r) is a Lubin-Tate formal group law.

Exercise 4.6.10. In the above example, check that [-]z makes F' a formal Z,-module over
L.

Remark 4.6.11. If F' € Og[X,Y] is a formal group law over Ok and e € Ok [X] is an
endomorphism of F, then (F mod mg) € F,[X,Y] is a formal group law over F,, and (e
mod mg) € Fy[X] is an endomorphism of it. Moreover, for any formal group law F' over
F,, the power series e(X) = X? is always an endomorphism of F'. This is the “Frobenius
endomorphism”.

Definition 4.6.12. Let & = {e(X) € Og[X] | e(X) = 7X mod (X?), e(X) = X1
mod mK}.
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Clearly if (F, [-]r) is a Lubin—Tate formal group law with respect to (K, x), then [7]p € &;.

Theorem 4.6.13. We have a bijection from the set of Lubin—Tate formal group laws with
respect to (K, m) to the set &, sending (F,[-|r) to [7]F.

Lemma 4.6.14 (Key Lemma). Let e,é € ;. Letn > 1 and aq,...,a, € O. Then there
exists a unique ¢(X1,...,Xn) € Ox[X1,...,Xn] such that

(X1, X)) =1 X1+ +ap,X, mod (Xi,...,X,)?
and
e(d(Xq,..., X)) =de(X1),...,e(Xn))-
Proof. Set ¢1 = a1 X1+ -+ a, X,,. We inductively construct ¢ by ¢r = ¢r_1 + Qx, where
Qy; is a degree k homogeneous polynomial in Og[X7, ..., X,]. These should satisfy:
(4.1) e(or(X1,..., X)) = dp(e(X1),...,é(X,)) mod (Xq,...,X,)F .

Then ¢ = limy ¢, = ¢p1 + Q2 + Q3 + - - - satisfies the desired conditions. This proves the
existence of ¢. For the uniqueness, let ¢ be another candidate of ¢, and let ¢, be the part
of ¢ consisting of terms of degree at most k. Then ¢, must satisfy (4.1). In the inductive
construction of ¢y, we shall see that @ has a unique choice. Hence each ¢y is uniquely
determined by ¢j_;. Since ¢ = ¢1, we have ¢, = ¢y, for all k, and hence ¢ = ¢.

We now construct ¢y, inductively such that (4.1) holds. For k = 1, (4.1) holds because
e(X) = &(X) = 71X mod (X?), which implies that the two sides are both congruent to
a1 X1+ +a,wX, mod (Xi,...,X,)% Suppose ¢ has been constructed and it satisfies
(4.1). Let Qg+1 be a degree k 4+ 1 homogeneous polynomial, to be determined. Let ¢pi1 =

ok + Qry1. Then
e(dr+1(X)) = e(dr(X)) + €' (0(X))Qr1(X) mod (Xi, ..., X,)" 2.
Since ¢ (0) = 0, we have ¢/ (¢ (X)) = €/(0) mod (X1,...,X,), and so €/ (¢r(X))Qr+1(X) =
e(0)Qri1(X) = mQry1(X) mod (X1,...,X,)**2. Thus
e(Pr+1(X)) = e(9r(X) + 1Qp41 (X)  mod (X,..., X,) 2.
On the other hand,

Pr1(6(X1), ..., 8(Xy)) = dr(e(X1), ..., e(Xn)) + Qr1(e(X1), ..., e(Xn))
= m(é(xl), cone(Xn) + Qepr (X, -+, 7X,) mod (X1,...,X,)F?
= ¢r(e(X1), ..., e(Xn)) + 71 Qri1(X)

where the congruence is because é(X;) = 7X; mod (X?) and the last equality is because
Qk+1 is homogeneous of degree k + 1. Hence (4.1) is equivalent to

(" — 1) Qpy1(X) = e(9n(X)) — dr(e(X1),...,e(Xp)) mod (Xy,..., X,) 2.

By the induction hypothesis, the right hand side has no terms of degree < k. So we
can and must take Qpyq to be (7FT! — 7)~! times the degree k + 1 homogeneous part of
e(or(X)) — pr(e(X1),...,8(X,)). We still need to ensure that Q41 has coefficients in O,
for which it suffices to show that e(¢r(X)) — ¢r(é(X1),...,8(X,)) =0 mod mg. This is
true because

(This is the “Frobenius property” of the polynomial X7 over O /mg =TF,.) O
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Proposition 4.6.15. For each e € &, there exists a unique formal group I, over Ok such
that e € End(F,).

Proof. The power series F, = F(X,Y) must satisfy F(X,Y) = X +Y mod (X,Y)? and
F(e(X),e(Y)) = e(F(X,Y)). By Lemma 4.6.14, there is a unique such F. It remains
to show that this F' is a formal group. All the axioms are checked by using the unique-
ness in Lemma 4.6.14. For instance, to show F(F(X,Y),Z) = F(X,F(Y, Z)), call the left
hand side Gi; and the right hand side G5. Then G; = Gy = X +Y + Z mod (X,Y, Z)?,

and we have Gi(e(X),e(Y),e(2)) = F(F(e(X),e(Y)), e(Z)) = F(e(F(X,Y)) e(Z)) =
e(F(F(X,Y),Z)) = e(G1(X,Y, Z)), and similarly Ga(e(X),e(Y),e(Z)) = (GQ(X Y, 7)).
Hence G; = G5 by the uniqueness in Lemma 4.6.14. O

Proposition 4.6.16. For each e € &, there is a unique ring homomorphism [-|p, : O —
F, making F. a formal Og-module and such that [w]p, = e. In particular, the formal
Ok -module F, is Lubin—Tate with respect to (K, 7).

Proof. For each a € Ok, we need to find a power series [a] = [a]F, € Ox[X] such that

(1) [a)(X) =aX mod (X?)

(2) [ab] = [a] o [b]

(3) [r] =e

(4) [a]oe=-eo]d]

(5) [a+b)(X) = Fe([a](X), [D)(X)).

Here, (1) (2) (5) are the axioms for a formal Og-module, and (3) is the requirement in the
proposition. (4) is a consequence of (2) and (3). Now (1) and (4) uniquely determine [a], by
Lemma 4.6.14. To show (2) (3) (5), one easily check that in each case the right hand side
satisfies the unique characterization of the left hand side (i.e., (1) and (4)). For instance, to
prove (5), we have

Fe([a](X), [0)(X)) = [a](X) + [B](X) = aX +bX mod (X?),

and

Proof of Theorem 4.6.13. The inverse map is given by e — (Fe, []r.)- |

Proposition 4.6.17. Fore,e € &, there exists a unique formal Ok -module homomorphism
¢ = ¢e,z: Fe = Fg such that ¢'(0) = 1. In particular, ¢ is an isomorphism.

Proof. The power series ¢ € O [X] must satisfy
(1) ¢(X) =X mod (X?).

(2) ¢olalr, =[a]lr. o¢ for all a € O.

(3) gpoe=¢€oqg.

(4) p(Fe(X,Y)) = Fe(o(X), ¢(Y)).

Here (3) is the special case of (2) for a = m. By Lemma 4.6.14, (1) and (3) uniquely
determine ¢. To check (2), call the left hand side G; and the right hand side Go. We have
G1(X) =G2(X) =aX mod (X?). We have

Gi(e(X)) =dolalp, ce=doeolap =eodoldr =e(Gi(X)),
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and similarly Ga(e(X)) = €(G2(X)). Hence G; = G2 by the uniqueness in Lemma 4.6.14.
To check (4), call the left hand side G; and the right hand side G3. Then Gy = Gy = X +Y
mod (X,Y)2. We have

Gi(e(X), e(Y)) = ¢(e(Fe(X,Y)) = €(d(Fe(X,Y))) = e(Gh (X, Y)),

and similarly Ga(e(X),e(Y)) = é(G2(X,Y)). Hence G; = G by the uniqueness in Lemma
4.6.14. ]

Let A={z € K | |z| < 1}. Fix e € &.. For x,y € A, the power series F,(x,y) converges
in A. In fact, there is a finite extension L/K containing z and y. The completeness of L,
the condition that |z|,|y| < 1, and the fact that F.(X,Y") has coefficients in O, guarantee
that F.(z,y) converges in L. Moreover, F.(z,y) € my, since F, has no constant term and
its coefficients are in Q.

It is easy to see that the axioms for a formal group imply that A together with the
binary operation (x,y) — Fe(z,y) is an abelian group. Moreover, for each a € Ok, the
power series [a] . () converges in A for a similar reason as above. The scalar multiplication
Okg x A — A, (a,z) — [a]p (z) is compatible with the above-mentioned abelian group
structure on A, and we thus obtain an Og-module structure on A. We denote this Og-
module by Ae.

For each Og-module M and n € Z>q, we write M,, = {z e M | mkz =0} ={x € M |
7"z = 0}.

Definition 4.6.18. For 7 a uniformizer of K and n € Z>q, let K, = K(A.,), where
e €&y

Lemma 4.6.19. The extension K, ,/K is independent of the choice of e € &.

Proof. For e, e € &, let ¢ : I, — F; be the isomorphism as in Proposition 4.6.17. Then
we have an Of-module isomorphism A, — Az, z — ¢(x). Here, the power series ¢(z)
converges in A. This isomorphism maps A, , onto Az ,. Moreover, for x € A, if = lies in a
finite extension L/K, then ¢(z) also lies in L since ¢ is a power series with coefficients in
Ok. Hence K(Az,) C K(Ae,n). (Here we are not using that K(Ag,,) or K(A.,,) are finite
over K.) By symmetry we have equality. a

Lemma 4.6.20. The extension K, ,/K is finite Galois.

Proof. Let e(X) = X7+ 7nX. Then e € &, and so K., = K(A.y). By definition,
Ac . is the set of all roots in A of the polynomial [7"]g,, which is the n-fold composition
eM(X) =eoeo---0e(X). The leading term of e (X) is X9, and we have e(™(X) = X"
mod mg. Hence all slopes of its Newton polygon are negative, which means that all its
roots in K are in A. This proves that K5 5 is finite and normal over K.

We show that K, is separable over K by induction on n. We may assume that K has
characteristic p > 0, so ¢ = 0 in K. We have ¢/(X) = 7, so e¢(X) has no multiple roots.
Hence Kr ;i is separable over K. It remains to prove that K , 11 is separable over Ky .
Note that for any a € A, 41, we have [7]p, (@) = e(a) € Ac . Hence K 41 is generated
over K, by some roots of e(X) — § for § running over A.,. The derivative of e(X) — 3
is again 7, so e(X) — § has no multiple roots. Thus K, ,11 is separable over K, ,,, as
desired. ]

Lemma 4.6.21. Let e € &,. The multiplication-by-t map A — A, is surjective and its
kernel has cardinality q.
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Proof. We may assume that e(X) = X%+ nX. For surjectivity, we need to show that
for any 8 € A, the polynomial e(X) — 8 has a root in A. The Newton polygon of this
polynomial have only negative slopes, so all its roots in K are in A. To show that the kernel
has cardinality ¢, we need to show that e(X) has ¢ distinct roots in A, or equivalently, that
¢(X) has no multiple roots (since all its roots are in A). Clearly 0 is a simple root of e(X),
so we only need to show that g(X) = e(X)/X = X! + 7 has no multiple roots. We have
g (X) = (g—1)X92, but X =0 is not a root of g(X). O

Proposition 4.6.22. For e € & and n € Z>1, the Og-module A, , is isomorphic to
(’)K/m?(

Proof. By the surjectivity in Lemma 4.6.21, we have a short exact sequence of O-modules
0— Agy 2SO Ay Aen — 0.

By Lemma 4.6.21, |A. 1] = ¢. Hence by induction |A¢ | = ¢". By the classification of
finite-cardinality modules over the PID Ok, we have

t
e;
Aoy & @ O /mi.
i=1

But the m-torsion in A. , is exactly Ac i, and it has g-elements. Hence ¢t = 1, and we have
Aen = Og/m since its cardinality is ¢™. O

mult. by 7
E——

Corollary 4.6.23. For e € & and n € Zyy, the scalar multiplication map induces a
canonical isomorphism (O /m)* = OF% JUR — Auto, —mod(Aen)-

Let n € Z>1. The action of Gal(K,,/K) on K , stabilizes A, ,, for each e € &, since
Ac p, is defined inside the maximal ideal of K , by power series equations with coefficients

in Ok, and the Galois action is continuous. Similarly, the Gal(K, ,/K)-action on A, , is
via Og-module automorphisms. In view of Corollary 4.6.23, we obtain a homomorphism

P Gal(Ky , /K) = OF /U

by considering the Gal(K ,,/K)-action on A, ;. This homomorphism is independent of the
choice of e since for e, e € &, the canonical isomorphism A, — A; is given by a power series
over Ok and the latter is preserved by the Galois action. Moreover, p, ., is injective since
K, is generated by A, over K. Thus K ,/K is a finite abelian extension.

Example 4.6.24. For K = Q, and @ = p, pr,, is the usual homomorphism (isomorphism)
Gal(Qp(¢pn)/Qp) — (Z/p"Z)* sending T to a + p"Z such that 7(Cpn) = (-
Theorem 4.6.25. Let n € Z>1. The following statements hold.

(1) The extension K, /K is totally ramified and its degree is (¢ — 1) .
(2) The homomorphism py n is an isomorphism.
(3) We have m € Nk k(K ,,).

Proof. Let e(X) = X9+ 7X and g(X) = e(X)/X. Let m € K be a non-zero root of e(X),
and for 7 > 2 we inductively pick 7; € K to be a non-zero root of e(X) — m;_1. By Newton
polygon considerations, we know (by induction) that

v
(¢ —1)gi—t

Here ord : K= — Q is the valuation extending the normalized valuation ord : K* — Z. By
induction, m; € A, ;. Therefore the ramification index e(K ,,/K) is at least the denominator

ord(m;) =
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of ord(m,), namely (¢ — 1)¢"~!. On the other hand, the right hand side of the injection
pram: Gal(Kyn/K) — OF JUR has cardinality (¢ — 1)¢"~!. Statements (1) and (2) follow.

To show (3), let u,(X) be the composed polynomial goeo---oe where e appears n — 1
times. Then degu, = (¢ — 1)¢"~!, and by induction u,(7,) = 0. By the formula for
ord(m,), the degree of 7, over K is at least (¢ — 1)¢"~'. Hence K, , = K(m,), and u,, is
the minimal polynomial of 7, over K. Thus Ng_ /x (=) = un(0) = 7. O

Remark 4.6.26. In the above proof, we found the explicit description Ky ,, = K[X]/(u,(X)).

For n|n/, we have K ,, C K ,, and we have a commutative diagram

Gal(Kyw /K) 222 0% JU

l |

Pr.n

Gal(K, ,/K) ——= O /UE

where the vertical map on the left is restriction and the vertical map on the right is induced
by identity on O. Thus denoting K, := |J,, Kr » and taking inverse limit over n, we obtain
a topological isomorphism p, : Gal(K,/K) — O}.

Let KT be the compositum K" - K, inside K2, Since each Ky 5, is totally ramified
over K, we have

Gal(K™ /K) = Gal(K"/K) x Gal(K,/K).
We define
Y KX =71% x 0F — Gal(KYT /K) = Gal(K™/K) x Gal(K,/K)

by sending (7", z) to (Frob”, p-1(z1)).
Theorem 4.6.27. Both KT and ¥} are independent of the choice of the uniformizer .

We need to use the completion K of K™ with respect to the canonical absolute value
on K. Note that K is completely discretely valued, and the normalized discrete valuation
ord : K* — Z extends that on K*. We have filtrations

_ .0 1 2
and
X _ 770 1 2

where U}( =1 —|—mif{ for ¢ > 1. By the completeness of K, these two filtrations are complete
in the sense that the natural projections induce isomorphisms

Oy = lim Oy /mi, of = @O?{/U}é.

The element Frob € Gal(K""/K) acts on K" as an isometry, and hence it extends to an
isometry K — K, which we still denote by Frob.

Lemma 4.6.28. The endomorphisms Op — Op,x — x — Frob(z) and (9;5( — O;,m =
x Frob(z)~! are both surjective.
Proof. These endomorphisms preserve the filtrations above since Frob is an isometry. By

Lemma 2.3.2, it suffices to check that the corresponding endomorphisms on the successive
quotients m’, /m’f;rl and Uy / U}jl are surjective (for all ¢ > 0). In the first case for all i > 0

and in the second case for i > 1, we are reduced to the surjectivity of O /my = F, —
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F,,x — x—Frob(z) = z—2z9. In the second case for i = 0, we are reduced to the surjectivity
oquX —>qu,33»—>a:Frob(x)_1 =gl 9. O

We now let m, @ be two uniformizers in K, and write w = 7u, with u € O). Let e € &,
and f € €. For any formal power series over G(Xi,...,X,) over O, we define Frob(G)
by applying Frob to each coefficient of G. The following lemma generalizes the uniqueness
in Lemma 4.6.14.

Lemma 4.6.29. Suppose G1(X1,...,X,),Go(X1,..., X)) € Op[X1,..., X,,] satisfy
Gi(X1,...,X,) =Ga(Xy,...,X,) mod (X1,...,X,)2

and
Frob(G;)(e(X1), - ... e(Xn)) = f(Gi(X1,..., Xn))
fori=1,2. Then G1 = Gs.

Proof. Write G for G1, and let Qi be the homogeneous degree k part of G. It suf-
fices to show that for & > 2, @y is uniquely determined by @Q; for ¢ < k — 1 and the
condition that Frob(G)(e(X1),...,e(Xy)) = f(G(X1,...,X,)). The degree k homoge-
neous part of Frob(G)(e(X1),...,e(X,)) is equal to the degree k homogeneous part R of
Y icn1 Frob(Q:)(e(X1), ..., e(Xn)) plus Frob(Qr) (7 X1, ..., 7X,) = 7% Frob(Q)(X). The
degree k homogeneous part of f(G(X1,...,X,)) is equal to the degree k homogeneous part
Sof f(O,cp_1 Qi(X)) plus wQy(X). Thus Qy is determined by

R+ 7% Frob(Qy) = S + wQy,.

Here R and S are determined by @; for ¢ < k — 1. We must show that the above equation,
where R and S are viewed as fixed, uniquely determines Q. This boils down to the claim
that for any fixed 3 € Oy, the equation

wx — 7" Frob(z) + =0
has at most one solution z € K. Suppose = and y are two solutions. Then
w(z —y) = 7" Frob(z — y).

If z # y, then the two sides have different valuations (since Frob preserves the valuation), a
contradiction. 0

Proposition 4.6.30. The formal Og-modules F, and Fy over Oy are isomorphic. More
precisely, fiz € € O;{ such that Frob(e) = eu (which exists by Lemma 4.6.28). There exists
0(X) € O [X] satisfying the following conditions.

(1) 6(X) =eX mod (X?).

(2) Frob( (X)) = 6([u ] . (X))

(3) fo8 =TFrob(f)o

(4) O(Fe(X,Y)) = Ff(Q(X) 0(Y)).

(5) 6((alr, (X)) = [al 7 (0(X)), Va € Ok.

Note that conditions (1) (4) (5) imply that € is an isomorphism F. — F}; between
formal Og-modules over O Indeed, by (1), (4), and Exercise 4.6.5, 6 is an isomorphism
of formal groups. Then (5) immediately implies that the inverse of § is also compatible with
the formal Og-module structures.
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Proof. We first construct 0(X) = Y oo, a; X* satisfying (1) and (2). Let a; = ¢, and con-
struct a; € O inductively such that

n n

Frob(» a;X") =Y ai[u]r, (X)" mod (X™F1).

i=1 i=1
That this holds for n = 1 is precisely our assumption that Frob(e) = eu. Now sup-
pose ary,...,a, are constructed. To construct a,41, we need Frob(a,+1) to be equal to
the coefficient C' of X"t in > "  a;[u]p, (X)? plus a,11u™™!. Thus we need to solve
Frob(a,11) — u"ta,+; = C for a,,1. By Lemma 4.6.28, we can write u"* = bFrob(b)~!
for a fixed b € 0;{_ Thus y = ba,+1 should satisfy Frob(y) — y = Frob(b)C. By Lemma
4.6.28, we can solve this equation in y € Op. Thus we have shown the existence of 0
satisfying (1) and (2).

We now show that such 6 can be modified to satisfy (3). By (1) and Exercise 4.6.5, 6 has
composition inverse 71 € O [X]. Let h = Frob(f) oeo6~' € O;[X]. Then by (2) we
have

h=0o0[ulp, oeof ™ =0ounlp, o' =0ocoulp, 0 .
Since e and [u]F, have coefficients in Ok, we have
Frob(h) = Frob(f) o e o [u]p, o Frob(8~!) = Frob(f) oceo ! = h.
Hence h € Ok [X]. We now check that h € £,. We have h(0) = 0, and the linear coefficient
of his eure™! = ur = w. Modulo mg, we have
h = Frob(f) o (X + X9) 007!,
o
h(X) = (Frob(9))(0~1(X)?) = (0071 (X)))" = X“.

Thus h € £, and we have the canonical isomorphism ¢, : Fy 5 F), as in Proposition
4.6.17. Let 61 = ¢5p 06. Then 6 still satisfies conditions (1) and (2) (since Frob(#;) =
¢, 0 Frob(6)), and we have

Frob(f;)oeo ;! = ¢spnohodn; = f.

Thus 6; also satisfies (3).

We now assume that 6 satisfies (1) (2) (3). One then checks that 6 satisfies (4) and (5)
using Lemma 4.6.29. For (4), call the left hand side G1(X,Y") and right hand side G3(X,Y).
Then

Frob(G1)(e(X), e(Y)) = Frob(0)(e(Fe(X,Y))) = f(O(Fe(X,Y))) = f(G1(X,Y)),
and
Frob(Gy)(¢(X), e(Y)) = Fy(Frob(6)(e(X)), Frob(6) (e(Y)))
= Fr(f(0(X)), f(6(Y))) = f(G2(X,Y)).

Moreover, G1(X) = G2(X) = €¢(X +Y) mod (X,Y)?2. Hence G; = Gs.
For (5), call the left hand side Gy and the right hand side G5. Then

Frob(Gh)(e(X)) = Frob(6)ola]r, oe(X) = Frob(#)oeo[a]r, (X) = fobola]r, (X) = f(G1(X)),

and
Frob(G2)(e(X)) = [a]r, o Frob(0) o e(X) = [a]r, o f 0 0(X) = f(G2(X)).
Moreover G; = G = eaX mod (X?), so G1 = G. O
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Proof of Theorem 4.6.27. We first show that KT is independent of w. Let 7, be two
uniformizers of K. We shall show that K" - K., = K" - K, for each n > 1. Let
e=X94+n1X € & and f = X9+ wX € &,. Let 6 be as in Proposition 4.6.30, with
respect to m, @, e, f. Let C be the completion of K. There is a natural embedding K —C.
We make the set A" = {z € C | [z] < 1} into Og-modules A, and A’ using F. and Fy
respectively. Note that the mi-torsion Af , in Af is actually equal to A, ,, because both

sets consist of all the roots of the polynomial (™ = eo---oein K. Similarly, A},n =Asp.
Clearly 6 induces an Ok-module isomorphism A, — A’,x — 0(x), and hence a bijection
AL, — A’ ,,- Thus we have

Apn=0(Acn)-

Since 6(X) € Op[X], every element of (Ac ) can be arbitrarily approximated by el-
ements of Op[Ac ], and hence arbitrarily approximated by elements of Ogur[A ,]. Thus
Ay, =6(A. ) is contained in the topological closure of K" - K ,, in C. Therefore K, , is
contained in this topological closure. By symmetry, the topological closures of K" - K
and K" - K ,, in C are equal. By Lemma 4.6.31 below, we can recover K" - K ,, from its
topological closure in C' by taking algebraic elements over K, and similarly for K" - K ,,.
Hence K - K ,, = K" - K, as desired. We have proved that K" is independent of 7.

We now show that ¢} is independent of 7. We write 1, for the version of ¥ defined
using . We only need to show that ¢, (w) = ¥ (w) whenever 7, w are two uniformizers.
Indeed, if we know this, then for any uniformizer " we have ¥ (w) = ¢ (w), since they
are both equal to ¢ (w). Keeping m and 7’ fixed and letting w vary, we conclude that
1/)71' = 1/177/-

We now show that ¢, (w) = ¥ (w). Recall that ¢ (w) acts as the Frobenius on K™
and acts trivially on K, for all n. Write w = mu. Now ¢ (w) = ¢ (mu) also acts as
the Frobenius on K", and it sends € A., to [u™']g,(z). Thus it sends 0(z) € A,
to Frob(8)([u=1]g, (), since it acts on the coefficients of 0, which are in K, as Frob. By
property (2) in Proposition 4.6.30, Frob(0)([u=!]r, (z)) = 6(x). Thus ¢, (w) fixes () for
every & € A.,. Since Ay, = 6(A.,), we see that ¢.(w) fixes As,. Hence ¥, (w) acts
trivially on K ,, for all n. [l

Lemma 4.6.31. Let L be an intermediate extension of K/K such that ord(L*) =17 c Q
for some e € Z>1. Then L is algebraically closed inside its completion L.

Remark 4.6.32. If L/K is finite, then L = ﬁ, and there is nothing to prove.

Proof. Suppose not. Then there is a non-trivial finite extension L;/L inside L. By our
assumption, the canonical absolute value on L is a discrete valuation. Hence we have (see
[Ser79, §11.3, Thm. 1 (iii)], cf. Fact 1.4.3)

Lo L= HLLU;

where w runs over places of L; over the canonical place of L. Every such w must be over
the canonical place of K. Since K is complete and L; is algebraic over K, there is only one
such w. We conclude that [Ly ,, : L] = [L; : L]. This is by hypothesis > 1, so L is a proper
closed subset of L;,,. In particular, L is not dense in L; for the topology on L; defined
by w. This topology on L; is just the subspace topology L C L, and L is dense in L, a
contradiction. O
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Remark 4.6.33. In Lemma 4.6.31, we crucially used that L is algebraic over a complete
discretely valued field. For instance Q is not algebraically closed inside its p-adic completion

Qp.

Theorem 4.6.34. Assume Theorem J.5.1, and let Y be a local Artin map as in that
theorem. The following statements hold.

(1) (Local Kronecker—Weber.) We have K* = KT,

(2) (Explicit formula for the local Artin map.) We have i = X, (Here both maps
have the same target Gal(K**/K) = Gal(K'/K).) In particular, 1k is unique.

(3) The Local Existence Theorem (Theorem 4.5.3) holds.

Lemma 4.6.35. Assume Theorem J.5.1. Then for finite abelian extensions L/K and L'/ K
in K*, we have L C L' if and only if Ny (L*) D Ny i (L),

Proof. The same as the proof of Corollary 4.2.8. g

Lemma 4.6.36. Assume Theorem 4.5.1. The composition of 1y : K* — G5 with the
restriction map G%> — Gal(KYT/K) is equal to %F.

Proof. Tt suffices to show that the two maps send every uniformizer 7 in K to the same
image. We have KT = K" . K, so it suffices to show that ¢ (7)|gur = Y ()| eur and
Vi (m)|k, = ¥ (7)|k,. In other words, we need to show that 1 () acts on every finite
unramified extension L/K as the Frobenius, and acts trivially on K, for every n > 1. The
first property is condition (1) in Theorem 4.5.1. The second property follows from condition
(2) in Theorem 4.5.1 and the fact that 7 € Nk /x (K ,,) (Theorem 4.6.25 (3)). O

For r € Z>1, let K, /K be the degree r unramified extension. For a uniformizer 7 € K
and r,n € Z>1, let Ny, := 72 x Up C K*. Let Ky pp =Ky - Kp .

Lemma 4.6.37. Assume Theorem 4.5.1. We have Nk k(K ,) = Narn-

Proof. By the definition of ¥¥*, N, ,., is contained in the kernel of

LT
KX 255 Gal(KT /K) — Gal(Kprn/K).
By Lemma 4.6.36, this kernel is equal to the kernel of ¢g k. By Theorem 4.5.1 (2), the
latter kernel is equal to Ng _  /x (K, ). Thus we have Ny ., C Ng_ /(KX ). To
prove that they are equal, it suffices to show that the have the same finite index in K*. By
Theorem 4.5.1 (2), the index of N /(K}y, ,) in K* is equal to [Ky ., : K], and this
is equal to r(¢ — 1)¢g" ™! by Theorem 4.6.25. Clearly the index of Ny, , in K* is also this
number, as desired. O

Proof of Theorem 4.6.54. Let w be a uniformizer in K. For part (1), let L/K be an arbitrary
finite abelian extension. We need to show that L is contained in K , , for suitable r,n. By
Lemmas 4.6.35 and 4.6.37, it suffices to show that Nz ,x(L*) contains Ny ., for suitable
r,n. By Theorem 4.5.1 (2), Ny ,x(L*) is a finite index open subgroup of K*. It is easy
to see that every finite index open subgroup of K> contains Ny ., for suitable r,n. This
proves part (1).

Part (2) follows from part (1) and Lemma 4.6.36.

For part (3), we need to show that a subgroup of K is finite index and open if and only if
it is of the form Ny, /i (L) for some finite abelian extension L/K. The “if” part follows from
Theorem 4.5.1 (2). We now prove the “only if” part. Let U C K* be a finite index open
subgroup. Then, as we mentioned earlier, U contains Ny ;. for suitable r,n. By Theorem
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4.5.1 (2) and Lemma 4.6.37, 1k induces an isomorphism K* /N ., — Gal(Ky ,n/K).
Let H be the image of U/Ny ., under this isomorphism. Let L = Kﬁr’n. Then L/K is a

finite abelian extension, and clearly ker v, = U. By Theorem 4.5.1 (2), this implies that
U=Np/g(L*). |

4.7. Ideal theoretic formulation of global class field theory. Let K be a global field.
For simplicity, we shall assume that K is a number field, and ignore the global function field
case.

Definition 4.7.1. A modulus of K is a formal finite product v{* - -- v with v; € Vx and
e; € Z>1, satisfying the following conditions:

e No v; is a complex place.
e If v; is a real place, then e; = 1.

Sometimes we also allow e; to be 0, with the understanding that in that case v; does not
really appear in the modulus. If m, m’ are two moduli of K, we define the obvious notion of
divisibility m|m’. If a place v appears in m, we also write v|m. In this case, we shall denote
by e, the exponent of v in m (when no confusion arises).

Definition 4.7.2. Let m be a modulus. Define the following subgroup of Aj:

Un= J] K:x I EKesox J[ 0xx ][] Uw.

VEVEK 0o, vtm VEVEK, oo,v|m vEVE, §,vtm vEVEK, f,v|m
Clearly Uy, is an open subgroup of Aj. If mlm/, then Uy D Uyy.
Exercise 4.7.3. Every open subgroup of Ay contains Uy for some modulus m.

Definition 4.7.4. Let m be a modulus.
(1) Let I gn) be the group of fractional ideals of K which are coprime to m, i.e., fractional
ideals of the form p7* - - - p;'* where p; are prime ideals of O, n; € Z—{0}, and none
of p; appears in m. More formally, Ié;n) is the free abelian group Z[v € Vi r,v { m]
generated by the finite places of K not dividing m.
(2) Let K (Xm) be the multiplicative group consisting of x € K* such that for every

archimedean place v|m we have © € K, 5o (here K, = R) and for every non-
archimedean place v|m we have » € Up? =1+ mjy . Here e, > 1 is the exponent
of v in m.

Note that if x € K(fn), then the principal fractional ideal zOf lies in I?)

since x € O
for every non-archimedean v|lm. Thus we obtain a group homomorphism K (Xm) — I}m)

sending = to xOk. If we identify Iﬁ?) with Z[v € Vi ¢,v t m], then this homomorphism
sends x to
Z ord, (x)[v].
vEVK, §,0fm
Definition 4.7.5. The ray class group with respect to a modulus m is the cokernel of the

map K(fn) — Iﬁ(m). It is denoted by Cly, (K).

Example 4.7.6. If m = 1 is trivial, then Cl,;(K) is the usual class group CI(K) of the
number field K.
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Example 4.7.7. Let K = Q, and m = oop{*---ptr, where p; are prime numbers and
e; € Z>1. Let m = pf*---p&r. Since Cl(Q) = 1, every fractional ideal in Q is principal.
Thus every fractional ideal has a unique positive rational generator. Hence the group I(Sn)
is identified with the group of positive rational numbers of the form a/b where a,b € Z>4
are both coprime m. There is a natural surjective homomorphism I(é)m) — (Z/mZ)* sending
a/b as above to ab~'. The kernel of this homomorphism consists of a/b such that a/b € R
and such that for each 1 < i < n we have a/b € 1+ p{'Z, C Q, - This is exactly Q(Xm).
Hence we have a short exact sequence

1= Q= 1§ = (Z/mZ)*.
In particular, Cly, (Q) is canonically identified with (Z/mZ)*.
Similarly, if m = m, then Cl,(Q) is canonically identified with (Z/mZ)* /{£1}.
We now need to relate the ray class group to ideles.

Definition 4.7.8. Let m be a modulus. Define the following subgroup of Aj:

/
Vo= JI ESx I EKesox [ EXx ] Ug-

VEVEK oo, ,vim VEVEK oo, ,v|m vEVEK, ¢,0fm veEVEK, fvlm
Here the restricted product is with respect to the O .

Clearly projection to the components indexed by v € Vi ¢,v { m induces an isomorphism

/
Vo/Un — [  EJ/O%,.

vEVE, f,vim

The maps ord, induce an isomorphism from the right hand side to @UeVK £ ofm 7 = II(?I).

Hence we obtain a canonical isomorphism
Vm/UmK(fn) = Cln (K).

Here, on the left hand side, K (fn) is a subgroup of K*, which embeds diagonally into A% as
usual. It is easy to see that Vi, N K* = K (fn), so the quotient makes sense.

On the other hand, since Vi, N K* = K (fn), we have an injection

Vi Un K5y = A3/ K" Un.

m)
We claim that this is a surjection. Indeed, if we let S = Vi o U {v € Vi ¢ | v{m}, then by
Lemma 4.2.6, (A%;)* has dense image in Cx = A% /K*. Since Uy, is open in A%, (A3)
surjects onto Ay /K*Upy. Clearly (A%3)* C Vi, so the claim is proved.
In conclusion, we have canonical isomorphisms
Vin/Un K ) = Cln(K).
and
Vin/Un K () = A% /K" Up,.
We write Uy, for the image of Uy, in Cx = A% /K*. Composing the above two isomorphisms

we obtain a canonical isomorphism

Crc /U = Clu(K).
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Remark 4.7.9. Note that for a general element z = (z,), € A, there is no direct formula
for its image under A% — Cg/Upn — Cln(K). Nevertheless, by our previous argument,
the isomorphism Ck /Uy, — Cly(K) is characterized as follows. Let S = Vi oo U {v €
Vic.,; | v 1 m} as before. Then the natural map (A%-)* — Cf /Uy is surjective, and the
composite map

(A = O Uy = Cln(K)

sends (7,)y¢g to Zues ord, (z)[v].

Corollary 4.7.10. For any modulus m, the group Cly(K) is finite. If m|m’, then the
natural map Cly (K) — Cly(K) induced by the inclusion Z[v € Vi y,v t W] — Zv €
Vi, f,vtm], [v] = [v], is surjective.

Proof. Since Uy, is an open subgroup of Cf, it is of finite index in Cx by Exercise 4.3.2.
Alternatively, clearly the idele norm || - || : A — Ry is surjective on Uy, hence the
compact Ck surjects onto C/Uy. But the latter is discrete since Uy, is open in C, so it
is finite. The surjectivity follows from Remark 4.7.9 and the surjectivity of the natural map
CK/Um/—)CK/Um. O

By Corollary 4.2.8, we have a bijection between finite abelian extensions of K in K" and
finite index open subgroups of C. Let Ky, /K be the finite abelian extension corresponding
to Uy C Ck. This is called the ray class field corresponding to m. By Theorem 4.2.1, the
Artin map induces an isomorphism

Vi, /i Ok /U — Gal(Kn/K).
By identifying the left hand side with Cl,, (K), we also regard this as an isomorphism
Vi, /K Cln(K) — Gal(Kn/K).

Proposition 4.7.11. The following statements hold.

(1) (Abstract Kronecker-Weber.) We have K*® = | Ku, where m runs through all
moduli.

(2) Let m be a modulus. For any v € Vi not dividing m, v is unramified in Ky.
(If v is archimedean, this means that either v is complex or every place of Ky
above v is real.) The Artin map Cly(K) — Gal(Kyn/K) sends every [v], where
v € Vi 5,v{m, to Frob,.

(3) If mjw/, then Ky C K. We have a commutative diagram

VK /K

C]m/ (K) — Gal(Km//K)

\L lrcs
VKm/K

Ol (K) ———=% . Gal(Kn/K)

where the vertical arrow on the left is the natural map.
4) For any two moduli m,m’, we have Ky N K = Kycdimm/). Here the ged of two
ged(m,m’)
moduli are defined in the obvious way.

Proof. (1) For any finite abelian extension L/K, the subgroup H = Ny /x(Cr) C Ck is
open. Hence its preimage in A% is open, and it contains Uy, for some m by Exercise 4.7.3.
Then H contains Uy, and so L is contained in K, since the bijection in Corollary 4.2.8 is
inclusion-reversing.
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(2) For v € Vi not dividing m, to show that v is unramified in Ky, we need to show that
the image of K, ~¢ in Ck is contained in U when v is archimedean and that the image of
OIX(U in Cg is contained in Uy when v is non-archimedean, in view of Theorem 4.2.1. This
follows directly from the definition of Uy,.

(3) Since Uy D Uy, we have Ky, C K. By Remark 4.7.9, in the diagram

(A% ) — Ok [Uns —> Clow (K)

L

(A%)* ——= Ck /U —= Cln(K)

the outer square commutes. Here S = Vi oo U{v € Vg s [vim}, §' = Vi oo U{v € Vi |
v {m’}, and the vertical arrow in the middle is induced by identity on Ck. Since the first
horizontal map in each row is surjective, and since the left hand side square commutes, it
follows that the right hand side square commutes. The desired statement then follows.

(4) Let L1/K,Ly/K be finite abelian extensions in K*". Let L = L; N Ly. Let H; =
Nz,/k(Cr,) and H = N/, (Cp). Since H = ker ¢y, /i, H; = ker ¢, /i, and Gal(K* /L) =
Gal(K®*/L,) - Gal(K® /L), we have H = H; - Hy. By this general fact, for (4) it suffices
to prove that Ugcq(m,m’y = Um - Un. This can be checked directly from the definition. — [J

Let L/K be a finite abelian extension in K. By Proposition 4.7.11 (1) and (4), there
exists a unique minimal modulus m such that L C Ky,. Namely, m is the gcd of all moduli
n such that L C K,. We call this m the conductor of L/K, and denote it by fr,/x.

Proposition 4.7.12. A place of K divides f i if and only if it ramifies in L.

Proof. Let v be a place of K not dividing f; k. Then by Proposition 4.7.11 (2), v is
unramified in Ky, .. But L C Kj, ., so v is unramified in L.

Conversely, suppose v is a place of K which is unramified in L. Let m be a modulus of
K such that L C Ky. Then H := Ny, (CL) contains Ng_/kx(Ck,,) = Uw. By Theorem
4.2.1, H = kert,/x and ¢/ kills the image of le(v (resp. K.X) in Cx when v is non-
archimedean (resp. real), we know that H contains the image of Ok (resp. K) in Ck.
Let n be the modulus obtained from m by deleting the power of v. Then U, is generated by
U and the image of Ok (resp. K\) in Ag. Hence U, C H, and it follows that L C K.
Therefore fr,/ i divides n, and v does not divide fr,/x- O

Definition 4.7.13. Let L/K be a finite abelian extension in K*P. A modulus m of K is
said to be admissible for L/K, if it satisfies the following two conditions:

(1) Every finite place v of K not dividing m is unramified in L.
(2) By (1), define the map 11(?1) = Z[v € Vg ¢,v{m] = Gal(L/K), [v] — Frob,. This
maps factors through Cly, (K).

When this is the case, we call the map Cly(K) — Gal(L/K) the Artin map.

This definition does not rely on any knowledge about class field theory. One can think
of this definition as an “explicit” relation between m and L/K.

Proposition 4.7.14. A modulus m is admissible for L/K if and only if L C Ky,.

Proof. Suppose L C Ky,. Then every finite place v not dividing m is unramified in K, by
Proposition 4.7.11 (2), and hence unramified in L. The map Ign) — Gal(L/K), [v] = Frob,
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factors as
VKm /K

1™ = Cly(K)

Hence m is admissible for L/K.
Conversely, suppose m is admissible for L/K. Let n be a modulus of K such that m|n
and L C K. In particular, we also have K, C K,,. Consider the diagram

Gal(Kn/K) — Gal(L/K).

¢K“ K
ClLy(K) —— ~ Gal(K./K)

i \Lres
VK m /K

Clp(K) —————— Gal(Kn,/K)

Gal(L/K)

Here the map f is the Artin map which exists since m is admissible for L/K. The left
upper square commutes. The outer diagram also commutes, as can be checked on each
generator [v] (with v € Vi f,v {n) of Cl,(K). Since ¢k, )k and 1k, are isomorphisms,
it follows that the restriction map Gal(K,/K) — Gal(L/K) factors through the restriction
map Gal(K,/K) — Gal(K,/K). By Galois theory, this means that L C K. O

The following result characterizes the ray class field Ky, “explicitly”.

Corollary 4.7.15. Let m be a modulus of K. The extension Ky /K is the unique finite
abelian extension L/K in K such that m is admissible for L/K and such that the Artin
map Cly(K) — Gal(L/K) is an isomorphism.

Exercise 4.7.16. Let m be a modulus of Q of the form m = com, as in Example 4.7.7. Use
the above corollary to show that the ray class field corresponding to m is Q((n,)-

Definition 4.7.17. Let L/K be a finite abelian extension. Let m be a modulus of K.
Let Nz, g (m) denote the subgroup of Cly, (K') generated by elements of the form f(L/v)[v],
where v € Vg r,v{m, and f(L/v) = f(w/v) for any w € Vi, above v.

Exercise 4.7.18. Let L/K be a finite abelian extension. The image of the composite map

Cr EL—/L Ck — CK/ﬁm =~ Cly (K)

is Nz i (m).

Proposition 4.7.19. Let L/K be a finite abelian extension. Let m be a modulus of K
admissible for L/K. Then the Artin map Cly(K) — Gal(L/K) is surjective with kernel
Nz /k(m).

Proof. This directly follows from Theorem 4.2.1 and Exercise 4.7.18. ]

We summarize what we have proved in the following theorem, which is the ideal theoretic
formulation of global class field theory.

Theorem 4.7.20. Let K be a number field. The following statements hold.

(1) (Reciprocity Law.) For every finite abelian extension L/K, there is a modulus m of
K which is admissible for L/ K. The Artin map Cly,(K) — Gal(L/K) is surjective
with kernel Ny /g (m).
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(2) (Existence Theorem.) For every modulus m, there is a unique finite abelian extension
Kun/K such that m is admissible for Ky and the Artin map Cly(K) — Gal(L/K)
s an isomorphism.

(3) (Abstract Kronecker-Weber.) We have K* = J,, Km. Moreover, a finite abelian
extension L/K in K* is contained in Ky if and only if m is admissible for L/ K.

(4) Let L/K be a finite abelian extension. The conductor frr, defined as the ged of all
admissible moduli for L/ K, is divisible precisely by the places of K which ramify in
L.

5. APPLICATIONS

5.1. Hilbert class field. Let K be a number field. Let H/K be the ray class field cor-
responding to the trivial modulus. This is called the Hilbert class field of K. We have a
canonical isomorphism Cl(K) — Gal(H/K). In particular, the degree [H : K] is equal to
the class number hx = | C1(K)| of K.

Similarly, let H*/K be the ray class field corresponding to the modulus which is the
product of all real places of K. This is called the narrow Hilbert class field of K. The
ray class group in this case is the so-called narrow class group CI(K)* of K, namely the
quotient of the group of all fractional ideals by the group of principal ideals generated by
x € K* such that for every embedding K < R the image of z is positive. (Such elements
z are called totally positive.) We have a canonical isomorphism C1(K)™ — Gal(H*/K).

Clearly H is contained in every ray class field of K, and in particular H ¢ H™T.

The characterizations in the next proposition are the “original” definitions of Hilbert
class field and narrow Hilbert class field.

Proposition 5.1.1. The Hilbert class field H of K is the unique mazximal abelian extension
of K which is unramified at all places of K. The narrow Hilbert class field HT of K is the
unique mazimal abelian extension of K which is unramified at all finite places of K.

Proof. Clearly H (resp. HT) is unramified over all (resp. all finite) places of K. If L/K
is another such finite abelian extension, then f,x is trivial (resp. a product of some real
places) since it is divisible precisely by the places which ramify in L. Hence Kj, = H
(vesp. Ky, . C HY). Since L C Ky, ., we have L C H (resp. L C H™). O

The Hilbert class field can be used to prove the following interesting statement about
class numbers.

Theorem 5.1.2. Let L/K be a finite extension of number fields. Assume that there is a
place v of K which is totally ramified in L, i.e., there is a unique place w of L above v, and
L. /K, is totally ramified (for v archimedean this means L.,/ K, is C/R, and in particular
[L: K]=2). Then hi divides hy,.

Proof. Fix an embedding L*® — K. Let Hg be the Hilbert class field of K, and Hp,
the Hilbert class field of L. All the fields K, L, Hx, Hy, are inside K. Since Hyx /K is
finite abelian and everywhere unramified, Hx - L/L is also finite abelian and everywhere
unramified. Hence Hy - L C Hj, by the characterization of Hy,. It follows that hy, = [Hy, : L]
is divisible by [Hk - L : L]. We now claim that [Hg - L : L] = hg.

The place v is both unramified and totally ramified in Hx N L, so Hx N L = K. Write
Hyi = K(«a), and let f(X) € K[X] be the minimal polynomial of « over K. Then deg f =
[Hk : K] = hk. To prove the claim it suffices to show that f is irreducible over L. Now f
splits over Hy since Hg /K is Galois, and so every factor h of f in L[X] is the product of
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some linear factors of f in Hx[X]. Hence h € (Hx N L)[X] = K[X], and this proves that f
is still irreducible over L. O

For any finite extension of number fields L/K, there is a natural map Cl(K) — CI(L)
sending the class of a fractional ideal a to the class of the fractional ideal aOy,.

Exercise 5.1.3. If we canonically identify CI(K) as Ck/U; and CI(L) as Cp/U; (where
1 stands for the trivial modulus), then the natural map CI(K) — CI(L) is induced by the
natural map Cx < Cp, (which is induced by A < AY).

Theorem 5.1.4 (Artin’s Principal Ideal Theorem). Let H be the Hilbert class field of K.
Then the natural map CI(K) — CI(H) is trivial. In other words, for every non-zero ideal
a C Ok, aOg is a principal ideal of Op.

For the proof, we need to recall the transfer functoriality of the global Artin map. In
Theorem 4.4.4, this was stated with infinite Galois groups. We now state a version involving
finite Galois groups, which immediately follows from Theorem 4.4.4.

Let M/K be a finite Galois extension in K. Let L/K be a finite extension in M. Let
K, /K be the maximal abelian subextension of M/K, and let Ly /L be the maximal abelian
subextension of M/L. Thus Gal(K;/K) = Gal(M/K)?" and Gal(L,;/L) = Gal(M/L)".
Since Gal(M/L) is a subgroup of Gal(M/K), we have the transfer map

V : Gal(K;/K) = Gal(M/K)* — Gal(L,/L) = Gal(M/L).

The transfer functoriality now states that the following diagram commutes:

YL /L
o " . Gal(Ly/L)
VT
YK, /K
K« Gal(K: /K)

Another ingredient needed in the proof of Theorem 5.1.4 is the following result in group
theory, called the “Principal Ideal Theorem in group theory”. We take it as a black box.
For references, see [Mil20, V.3.19].

Theorem 5.1.5. Let G be a finite group, with derived subgroup Gaer. Then the transfer
map G — (Gaer)? is trivial.

Proof of Theorem 5.1.4. Let H' be the Hilbert class field of H, taken inside K. Then H' is
the maximal finite abelian everywhere unramified extension of H in K. Since H/K is Galois,
every o € Gal(K/K) stabilizes H. Then by the characterization of H’, o also stabilizes H'.
Hence H'/K is Galois. Every subextension L/K in H' is everywhere unramified. Hence by
the characterization of H, we know that H is the maximal abelian extension of K inside
H'/K. By the above discussion on transfer functoriality applied to M = H', L = H, K| =
H,L; = H', and by Exercise 5.1.3, we have the following commutative diagram:

QL) —> > Gal(H'/H)
[
CUK) —> > Gal(H/K)

It remains to show that V : Gal(H/K) — Gal(H'/H) is trivial. Since Gal(H/K) =
Gal(H'/K)*, we have Gal(H'/H) = Gal(H'/K)ger- Thus V being trivial is a special
case of Theorem 5.1.5. ]
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5.2. Weber L-functions. Let K be a number field. The Dedekind zeta function for K is

defined as
(k(s)= > (Na)~*.
aCOxk

Here a runs over non-zero integral ideals, and Na := [O : a]. The variable s is a complex
variable. We shall see that the infinite series converges to an analytic function on Re(s) > 1,

has meromorphic continuation to Re(s) > 1 — m, and is analytic there except a simple
pole at s = 1. By the unique factorization into prime ideals, we have
1
s) = ————, Re(s) > 1.
p prime

We consider the following more refined version.

Definition 5.2.1. Let m be a modulus, and let 8 € Cly, (K). Define the partial zeta function

Ckm(s, R) = Z (Na)~2.

aCOk,a€R

Here a runs over the integral ideals which are coprime to m and whose class in Cly, (K) is &.

Theorem 5.2.2. The series defining (i m (s, R) converges to an analytic function on Re(s) >
1. Moreover, (x m(s, R) has meromorphic continuation to Re(s) > 1— ﬁ, and is analytic
there except a simple pole at s = 1. The residue at s = 1 is a positive real number depending

only on m, not on K. Denote the residue by pp, .

We postpone the proof. Later we will also give an explicit formula for py,.
The relationship between the partial zeta functions and the Dedekind zeta function is
that when m = 1, we have
Ck(s)= D Crals. R).
RECI(K)
In particular, Theorem 5.2.2 implies the properties of (i (s) stated above, and moreover the
residue of (x(s) at s = 1 is equal to hx - p1.

Remark 5.2.3. In fact, (x m(s, &) (and hence (x(s)) has meromorphic continuation to the
whole complex plane and satisfies a functional equation. We will not prove it in this course.

Recall that for a finite abelian group G, its Pontryagin dual is the abelian group of
characters GV = Hom(G,C*) = Hom(G, S'). By the classification of finite abelian groups,
it is easy to see that G is non-canonically isomorphic to G. The canonical double dual
map G — (GY)V is an isomorphism. We have

_ G, x=1€G, _ IGl, g=1€G,
ZX(Q){O, YeaY - {1}; ZX(Q){O, gea— {1},

geG XEGY

Definition 5.2.4. For x € Cly(K)Y, define the Weber L-function
Lm0 = Y @)= S (@l R).

aCOgk,coprime to m ReCly, (K)

Corollary 5.2.5. The function Li (s, X) is meromorphic on Re(s) > 1 — ﬁ, and is

analytic away from s = 1. If x # 1, then it is analytic at s = 1. If x = 1, then it has a
simple pole at s = 1, with residue | Cly (K)| -« pm.
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Proof. This follows from Theorem 5.2.2 as the residue at s = 1 is given by pn ZﬁeClm(K) X(R).
O

Example 5.2.6. Again by the unique factorization into prime ideals and the multiplicativity
of x, we have

1
LK,m(SaX) - , prirnHe p)(m 1 _ X(p)<Np)_s7 RG(S) > 1

In particular,

Lgm(ss D)= Y Cems8)= ][] Wﬁm) II a-mw™.

RECIn (K) p prime,ptm p prime,p|m

The function [], ,imepim(1 — (Np)~%) is of course an entire function on C and its zeros
are well understood. Hence the analytic property of Ly w(s,1) is closely related to that of
Ck (s). For instance, comparing the residues at s = 1 we obtain

(5.1) |Clu(K)| - pm =hic-p1- [ Q= Np)™).
p prime,p|m
Example 5.2.7. Let m = com be a modulus for Q, as in Example 4.7.7. Then Cl,(G) =

(Z/mZ)*. For a character x on this group, the associated Weber L-function is the classical
Dirichlet L-function

s 1
L(s,x) = Z x(n)n™% = H W
n>1,(n,m)=1 p.ptm X\PP
The following result is where we use class field theory.
Lemma 5.2.8. Let E/K be a finite abelian extension. Let m be a modulus admissible for

E/K. Letn be the modulus of E that is the product of all the finite places of E which divide
places of K appearing in m. Then

LE,n(Sa 1) = H LK,m(57>~()'
XEGal(B/K)V

Here x is the composition of x : Gal(E/K) — C* with the Artin map Clyn(K) — Gal(E/K).

Proof. A prime ideal of E is coprime to n if and only if it is over a prime ideal of K coprime
to m. Let p be a prime ideal of K coprime to m. Since m is admissible for E/K, p is
unramified in £. Thus pOg = q;---q4 where the q; are distinct prime ideals of E. It
suffices to check that

d 1 1
2 Uiwe=- U e
We shall proceed somewhat formally and ignore the necessary analytic justifications. Taking
the logarithm of the left hand side, we obtain
g oo o)

S Na) =g 3y,

i=1n=1 n=1
where y = (Np)~*%, and f = f(q:/p) = [F : K]/g. The logarithm of the right hand side of
(5.2) is

o0

S kM =00 > mO))y" /.

xE€Gal(E/K)V n=1 n=1 x€Gal(E/K)Y
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Here p, is the character on Gal(E/K)Y sending x to x(p)™. Note that x(p)™ = x(Frob,)",
and Froby has order f in Gal(E/K). Thus p, is trivial precisely when n is divisible by f.
Thus the above is equal to

Y. [E:Kly*/n=> [E:Kly"/fn=g> y/"/n,

n>1, fln n=1 n=1
as desired. O

Theorem 5.2.9. Let x € Clyn(K)Y be non-trivial. Then L w(s,x) is analytic and non-zero
at s =1.

Proof. In Lemma 5.2.8, take F to be the ray class field K. Then we get
Len(s;, )= [  Lrm(s.x)
Xeclﬂl(K)v

For x # 1, each Lk w(s,x) is analytic at s = 1. Moreover both Lg .(s,1) and L (s, 1)
have a simple pole at s = 1. Hence Lg m(s, x) must be non-zero at s = 1 for non-trivial x,
because otherwise the possible zeros will cancel with the pole of Ly (s, 1). ]

5.3. Digression: analytic properties of the partial zeta function. We make an an-
alytic digression in order to prove Theorem 5.2.2. We will also give an explicit formula for
the residue py,.

We first need some general facts about Dirichlet series, namely series of the form

o0
= Z apn”?
n=1
Here a,, are fixed complex numbers, and s is a complex variable.

Lemma 5.3.1. If f(s) converges for some so € C, then it converges for all s such that
Re(s) > Re(so), and the convergence is uniform on any compact subset of this region.

Proof. We shall use the following form of summation by parts: If {z,, },>1, {Yn }n>1 are two
sequences, and if Xy = Zﬁf:l Zp, then for N > M > 1 we have

N N-1
Z Tpyn = XNYN — XmyYm41 + Z Xn(Yn = Ynt1)-
n=M+1 n=M+1

Let Py(s) = Ziv:l ann~*. Suppose Re(s) > Re(sg). We need to show that {Py(s)}y is a
Cauchy sequence. For N > M, we apply summation by parts to
N

a, 1
PN(S) o PM(S) - Z nso psS—so’
n=M+1

Taking x, = a,/n®*® and y, = 1/n°"%, we get

N-1

PN(S()) PM SQ 1 1

5.3) P, - P = — P,( —
(5:8) Pr(s) = Pu(s) = o= — 1y + vt n(0) | s T e

Pn(s0) Pr(so) L dy
= Noww (M4 1w + Z P, (s0) s—so) pra—
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The terms

P (s0)
Ns—so

_ [Py (s0)]
" NNRe(s—so0)

Pu(so) | [Pu(s0)l
(M + 1)3—50 (M+ 1)Re(s—so)

tend to zero as N, M — oo, and the convergence is uniform if s stays in a compact set in
{Re(s) > Re(so)}. If s stays in such a compact set, then Re(s — so) > 4 for some § > 0,
and |s — 59| < A for some A > 0. Let C = A - sup,,~1 |Pn(s0)|, which is finite since f(s¢)
converges. Then -

and ‘

N-1 n+1 “+o0 dx
E P (s0)(s — so)/ <C E / / —_
s—sorl| — 1+5 - 1+6
n=M+1 n TEToo n=M+1 x M+1 x

This tends to zero as N, M — oo, and the convergence is uniform on the given compact
set. ]

Define o € [—00,+00] to be inf{Re(s) | f(s) converges}. This is called the abscissa of
convergence of the Dirichlet series f(s). Then f(s) converges for all Re(s) > o( and diverges
for all Re(s) < og. The convergence in Re(s) > o¢ is uniform on compact sets, and therefore
f(s) is an analytic function on this region.

Lemma 5.3.2. Let A, = ZZ=1 an. Suppose there exist C' > 0 and oy > 0 such that
|An| < Cn?t for all n, then f(s) =3 ", ann™* converges for Re(s) > o7.

Proof. In (5.3), take so = 0. Note that Pn(sg) = An. Then we get

N-1 n+1
AN AM + dz
P, - P = — A —_—.
wis) = Puls) = T ~ iy %l ns / —+
The terms
Av|_ AN Av | Au]
Ns NRe(s) (M+]_)s (M+ 1)Re(s)

tend to zero as N, M — oo, when Re(s) > ;. We have

gy = ntl o 1
E Aps —| < E [s|C ———————dzx
st+1 201 lerRe(s)le
n=M+1 n=M+1 n

|s] 5] J—
< |slc Ej / <lslo [ 2
VAT lerRe(s —o1 M1 pl+Re(s)—o1

This tends to zero as N, M — oo, when Re(s) > o;. O

Remark 5.3.3. Suppose that f(s) =), -, ann™° converges at some so. Then a,n=* — 0,
80 a,, = o(n®e(*0)). Then by comparing with the series >~ ., n~ (1% (with § > 0 arbitrary),
we know that f(s) converges absolutely for Re(s) > Re(s) + 14 4. Thus if o is the abscissa
of convergence, then f(s) converges absolutely for Re(s) > o¢ + 1. In practice, suppose
we want to check some algebraic relation between several Dirichlet series on Re(s) > oy
where o( is the maximum of their abscissa of convergence. Since they are all analytic on
this region, it suffices to check the relation on Re(s) > o9+ 1 (by the uniqueness of analytic
continuation), and so we may assume that the Dirichlet series in question are all absolutely
convergent. This allows us to justify operations such as reordering the infinite sums.
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Example 5.3.4. The Riemann zeta function ((s) = Y -, n~ %, as a Dirichlet series, con-
verges for Re(s) > 1, since the partial sums of the coefficients 4,, = n. It diverges for s = 1,
so the abscissa of convergence is 1.

For an integer r > 2, consider (.(s) =), ~; apn™°, where

1, rin;
an = .
1—r, rln
Then the partial sums of coefficients are bounded, so (.(s) converges for Re(s) > 0. By
Remark 5.3.3, we may reorder the summation and get

(1- Tsl_l () =D " =r> () = n =Y ban = G(s),

where b, =0 for r tn and b, = 1 for r|n. Hence

()= (1= )G (s)

has meromorphic continuation to Re(s) > 0. The only possible poles of {(s) in this region
are at s satisfying r*~! = 1. Since this holds for all € Z>1, we must have s = 1. Thus the
only possible pole of {(s) in Re(s) > 0 is at s = 1. By comparing with the integral [z~ *dx,
for real s > 1 we have

+oo
C(s) > /1 x” %dx =

s—1’

and

+o0
C(s)—lg/l x‘da:2871.
Hence
1< (s—=1)¢(s) <s.
It follows that ((s) has a simple pole at s = 1 with residue 1.

Theorem 5.3.5. Consider a Dirichlet series f(s) = >, <, an,n™% with partial sums of
coefficients A, = ZZ:l ay. Suppose there exist p € C,C > 0,0 < 01 < 1, such that

|A, — pn| < Cnt.

In other words, A, = pn+ O(n°*). Then f(s) converges for Re(s) > 1, has meromorphic
continuation to Re(s) > o1, and the only possible pole in this region is a simple at s = 1.
The residue at s =1 is p.

Proof. Apply Lemma 5.3.2 to the Dirichlet series f(s) — p((s), and use the fact that {(s) is
meromorphic on Re(s) > 0 with a simple pole at s = 1 with residue 1. O

We now come to the partial zeta functions. Let K be a number field, m a modulus,
R € Clu(K). Then (g m(s,R) is given by the Dirichlet series ) -, a,n™° where a,, is
the number of integral ideals a C O such that a € & and Na = n. The partial sum of
coefficients is thus given by A, = the number of integral ideals a C Ok such that a € R
and Na < n. We denote this number by j(8&,n).

In order to apply Theorem 5.3.5, we need to find an asymptotic formula for j(&,n) of
the form j(R,n) = pn + O(n?). We will use the following lemma for this.
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Lemma 5.3.6. Let D be a (measurable) subset in RN such that OD is (N — 1)-Lipschitz
parametrizable, in the sense that 0D is a finite union of images of Lipschitz functions
RN=1 = RY (i.e., functions satisfying ||¢(z) — é(y)|| < C - ||z —y||). Let L be a lattice in
RY, and let zo € RY. Then

#(tDN (w0 + L)) = volltD) ;v +O0(tN ™Y, R3t— +oo

0 vol(L) ’ '

Here vol(D) is the N-dimensional Lebesque measure of D, and vol(L) denotes the volume
of a fundamental parallelepiped for L.

Proof. See [Lan94, V1.2, Thm. 2]. |

Let N = [K : Q]. Let 1 be the number of real places and ro be the number of complex
places. Consider
B:= [ K,=R"xC2=R2 =R
VEVEK, 0o
Inside it we have the open subset

J = H KU,>O X H K;(

VEVEK oo,v|m vEVEK, 0o,vfm

Then J is a group under multiplication. We embed K diagonally into B as usual. Then
K(Xm) is contained in J. Let Gy, := K(fn) N Oj. Since the embedding G — J is a group
homomorphism, Gy, acts on J by translation. Since Gy, is clearly a finite index subgroup of
O}, and the latter is finitely generated of rank r = 71 + ro — 1 by Dirichlet’s unit theorem,
we know that Gy, is finitely generated of rank r. Let V be a free abelian subgroup of rank
r inside Gy, such that Gy, = V @ (torsion). Let wy = [G : V] = the size of the torsion

subgroup of Gy,. Define

c:B—=R, (Ty)vevi. = H |-
VEVEK 0o
Lemma 5.3.7. The action of V on J has a fundamental domain E with the following
properties:
(1) For any t > 0, we have tE = E. Here scalar multiplication by t is with respect to
the vector space structure on B.
(2) For any t > 0, define E(t) = {z € E | ¢(x) < t}. Thus by (1) we have E(t) =
t'/NE(1). Let D = E(1). Then D is (N — 1)-Lipschitz parametrizable.
(3) The N-dimensional volume of D inside B = RN is

2r1—s(m)ﬂ_r2 R,
where s(m) is the number of real places of K dividing m, and Ry, is the m-regulator
defined as follows. Choose a set of free generators {e1,...,e.} of V. Choose distinct
V1,...,0 € Voo (Which has r +1 =11 + ro elements). Then
R = |det(log [[€]|v, ) 1<ij<r |
Sketch of proof. For details see [Lan94, VI.3, Lem. 1, Pf. of Thm. 3]. Consider the map

[| %ol
g:J= J] R w:(wv)vﬁ(logm)w

UeVK,OO

where N, is 1 if v is real and 2 if v is complex. Note that g restricted to V' C J is induced

by the usual embedding O — [[,cy, R,z = (20)y + (log||zy][s)v, which is used in the
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usual proof of Dirichlet’s unit theorem. Thus as in that proof, we know that g(V) is a full
rank lattice in H, the hyperplane in HveVK,x R defined by the sum of the coordinates being
zero. Moreover, note that g(J) C H. Let F C H be a fundamental parallelepiped for the
lattice g(V) C H. Take E to be g~ 1(F). O

We now start to count j(£,n). We first claim that the class 87! contains an integral

ideal. Indeed, any fractional ideal in this class is of the form Hle p;'" where p; are prime

ideals coprime to m and n; € Z. Let h be the order of Cl,(K). Then Hle pruti also lies

in 87! for all u € Z. For sufficiently large u this is an integral ideal.

Fix an integral ideal b in the class 87!, If a is an integral ideal in the class £, then ab is
trivial in Cl, (K), and so it is of the form 2Ok with z € K Xm . Moreover, = is well defined
up to multiplication by G, and we have x € b since ab C b. We thus have a bijection

{integral a € R} — {z € K(Xm)/G’m | z € b}.

Now if a corresponds to z, then
N(a) = N(b) 'N(@Ox) = N(o) ™" [T =" = N(o)"e(a).
’UGVK)f

Here in writing ¢(z) we view x as an element of B via the embedding K < B. Hence we
get

J®n)=#{z e K(fn)/Gm |z € b,c(z) <nN(b)} = w'#{x € K(fn)/V | 2 € b,c(x) <nN(b)}.

By embedding K (Xm) into J, we get
wwj(8,n) = #E(nN(b)) N {z € K, NbC J}.

Let my be the integral ideal obtained by deleting the archimedean places inside m, and
viewing the formal product of finite places as a product of the corresponding prime ideals.
An element x € b lies in K(fn) if and only if © € mg — {0} and = € K, ¢ for archimedean
v|m. Since b is coprime to m, we have b N my = bmgy. Thus we have
K(fn) Nb=JnN(bmy).
Since E(nN(b)) is inside .J, we have
waj(R,n) = #EnN(b)) N (bmo) = #((nN(b))/V D) N (bmy),

where the intersection is inside B. Now bmg C Ok are two lattices in B, and the latter has
volume 27"24/dy where dg is the discriminant of K. Hence

vol(bmg) = [Ok : bmg]27"2\/dx = N(b)N(mg)2~ "2 \/dx.
Applying Lemma 5.3.6, we obtain
, vol(D) vol(D)
IR = BN (mo) 2 Ve wmN(mo)2-"2v/d i
Plugging in the formula for vol(D) in Lemma 5.3.7, we obtain

N(b)n + O(n'~ %) = n+0(n'~w).

J(R,n) = pmn + O(nl_%)7

with
_2nmsmomr Ry,

Pm = wm\/dKN(mo)

Note that py, is a positive real number, and it is independent of K.
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By Theorem 5.3.5, (k m(s, &) is meromorphic on Re(s) > 1 — % and the only pole in
this region is a simple pole at s = 1, with residue p,,. This completes the proof of Theorem
5.2.2.

Corollary 5.3.8 (The analytic class number formula). We have
Ress=1 Lr,m(s,1) = # Cln(K) - pm.

Proof. By definition, L m(s,1) = ZRGClm(K) Ckm(s, R). Each summand has residue py, at
s=1. (Il
When m = 1, this recovers the usual analytic class number formula
2" (2m)"2 Rk
Ress—1 (i (5) = hic - pr = hig — 0K
wrVdk

Note the following interesting consequence. By (5.1), we have

s(m) w
64)  #Cln(K) = a2 T[0 - (N9) ) = e 2 X T v )

m
plm plm

Example 5.3.9. Let K = Q. Then the regulator Ry, is always 1 since r; +7r2 —1 = 0. The
discriminant is also 1. Thus
pr=—=1L
wQ
Since we know Res;—1 ((s) = 1, the analytic class number formula yields

1 = hgp1 = hq,

implying that Z is PID. For m = com, we have wy, = 1 and N(mg) = m, S0 py = % Hence
(5.4) yields

#Cln(Q) =m[J(1-p ).
pl

Since Cln(Q) = (Z/mZ)*, the above recovers the usual formula for ¢(m). Thus (5.4) can
be viewed as a generalization of this formula.

5.4. Artin L-functions. Let K be a number field. Let V be a finite dimensional vector
space over C, and p : Gx = Gal(K/K) — GL(V) a representation with open kernel. Equiv-
alently, p factors through a representation Gal(L/K) — GL(V') for some finite Galois ex-
tension L/K. If we equip G with the usual profinite topology and equip GL(V) 2 GL,(C)
with the natural topology coming from C, then this assumption on p is also equivalent to
asking that it is continuous. Here the point is that there exists an open neighborhood U of
1 in GL(V) such that any subgroup of GL(V') contained in U is trivial (Exercise). Since the
open subgroups of G form a neighborhood basis of 1, one of them must be contained in
the kernel of p.

In the following, we refer to such a p as a continuous finite dimensional complex repre-
sentation of G.

We define the Artin L-function

L(s, p) = Lic(s, p) = [ ] det(1 — (Np)~*p(Froby) | V»)~".
p

Here, p runs over all primes of K. For each p we choose a decomposition group D, in
Gk, let I, C D, be the inertia subgroup, and let Frob, € D, be an element lifting the
Frobenius element of Dy /I,. The term det(1 — (Np)~*p(Froby) | VI#) is then independent
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of the choices. More concretely, p factors through some finite Gal(L/K), and it suffices
to choose the decomposition groups and the Frobenius elements with respect to the finite
Galois extension L/K.

Fact 5.4.1. For every 6 > 0, the series defining L(s, p) converges absolutely and uniformly
on {s € C|Re(s) > 14 6}. In particular L(s, p) is an analytic function on Re(s) > 1.

Sketch of proof. Let S be the finite set of primes p of K such that I, acts non-trivially on
V. Tt suffices to analyze the convergence of the series obtained by deleting the Euler factors
at S and formally taking logarithm:

log [ det(1 — (Np)~p(Froby) | V)1 = 3 $° 58— Np r(p(Froby)™ | V).

pEsS pgsSm=1

But | Tr(p(Frob,)™ | V)| < dimV since every eigenvalue of p(Frob,)™ is a root of unity.
Hence the above series is majorized by

S B e [T o

pgSm>1 pés

The convergence of the above series is equivalent to that of (x(s). O

Fact 5.4.2. The following relations hold.

(1) If p1,p2 are two continuous finite dimensional complex representations of G, then
L(s,p1 @ p2) = L(s, p1)L(s, p2).

(2) Let E/K be a finite extension, so Gg = Gal(K/E) is a finite index subgroup of
Gg. Let p be a continuous finite dimensional complex representation of Gg. Then
Indg’; p is a continuous finite dimensional complex representation of Gx. We have

Lk (s, Indg¥ p) = L(s, p).
These follow easily from the definition.

Example 5.4.3. Suppose p is one-dimensional. Then p must factor through p : Gal(L/K) —
C* where L/K is a finite abelian extension. (In fact, we may also assume that Gal(L/K)
is cyclic, since any finite subgroup of C* is cyclic.) Let m = f;/x. Define x to be the
composition of the Artin map Cly, — Gal(L/K) with p : Gal(L/K) — C*. Then up to the
finitely many Euler factors indexed by pjm, L(s, p) is nothing but Lx (s, x), the Weber
L-function.

Conjecture 5.4.4 (Artin’s Conjecture). Let p be a non-trivial irreducible finite dimensional
continuous complex representation of Gi. Then L(s,p) has analytic continuation to an
entire function on C.

This conjecture is one of the starting points of the Langlands program. The one-
dimensional case reduces to the analytic continuation of Weber L-functions Example 5.4.3.
This is known, although we will not prove it in our course. (Nevertheless, recall that we
proved that the Weber L-function is analytic at s = 1 for non-trivial y, while it has a pole
at s = 1 for trivial x. This explains why in Artin’s Conjecture p needs to be non-trivial.) In
fact, Weber L-functions belong to a more general class of L-functions, called L-functions at-
tached to Hecke characters (or grossencharacters), and their analytic continuation is known
by the work of Hecke, while a more conceptual proof was given in Tate’s thesis.
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The two dimensional case of Artin’s conjecture is known in many cases, but not all.
This is closely related to Wiles’ proof of Fermat’s Last Theorem. The general case of the
conjecture is widely open.

As an application of class field theory, we can prove the following result (admitting the
meromorphic continuation to C of Weber L-functions).

Theorem 5.4.5. Any Artin L-function L(s,p) has a meromorphic continuation to C.
We need to use the following fact from representation theory of finite groups.

Fact 5.4.6 (Brauer’s theorem). Let G be a finite group, and p a (finite dimensional com-

plex) representation of G. Then there exist subgroups Hy,...,Hy of G, a one-dimensional
representation p; of H; for each i, and integers ny,...,ny € Z, such that as virtual repre-
sentations we have
k
G
p= Zni IndF, p;-
i=1

(Here an equality of virtual representations means that after we move the negative terms
to the other side and understand addition as direct sum, we have an isomorphism of repre-
sentations. Equivalently, it can be understood as an equality between linear combinations of
characters.)

Proof of Theorem 5.4.5. Assume that p factors through Gal(L/K) for a finite Galois ex-
tension L/K. Then there exist intermediate extensions E;/K in L/K (1 < i < k), one-
dimensional representations p; of Gal(L/E;), and integers n; such that p =", n; Indg;f_ Di-

Then
k

k
L(Sa ,0) = H L(Sa Indg; pl)nl = H LE7 (Sa pz)nl .
i=1 i=1
Each Lg, (s, p;) is essentially a Weber L-function, so it has meromorphic continuation to C.
It follows that the same holds for L(s, p). O

Remark 5.4.7. The integers n; can be negative, so in the above proof one cannot control
the poles of L(s, p).

5.5. Chebotarev density theorem. The Chebotarev density theorem generalizes the fa-
mous theorem of Dirichlet on primes in an arithmetic progression. Recall that the theorem
states that for any pair of coprime integers a,m, there exist infinitely many primes in
{a + mk | k € Z}. In other words, each class in (Z/mZ)* contains infinitely many primes.
We shall generalize this to number fields, and also see that the set of primes in each class
in (Z/mZ)* is of density 1/|(Z/mZ)*|, in a suitable sense.

Definition 5.5.1. Let f and g be two complex functions defined on (1,1 + €) for some
€ > 0. We shall write f ~ g if there exists a complex analytic function h defined on an open
disk centered at 1 (with no pole at 1) such that f —g =hon (1,14 ¢€') for some 0 < ¢’ < e.
Roughly speaking, we ask that f — g extends to a complex analytic function near s = 1.

Example 5.5.2. For s > 1, we have

log{(s) = Y Z%p‘m.

primes m=1
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We claim that

pfms

3=

converges absolutely and uniformly for the complex variable s with Re(s) > % + 4, for any
0 > 0. For each p, we have

]. 1 ]_ pi

E < - E p ) = 2 . - < C.p
- —(5+9) — (148 — )

m>2 258 21_p-G+) = 21 _2-G+)

1. 2(3+9) 1 p2(z+9)
EP

where the constant C' depends only on §, not on p. Hence

Z i S Czp_1_26 S Cin—l—Qé < 0.
P n=1

p m=2

1 —ms
Ep

This proves the claim. By the claim, we have
log{(s) ~ Y p*.
P

More generally, let K be a number field. Then for s > 1 we have

logCils)= 30 > ()

p prime ideals m=1

For Re(s) > 0, we have

H3

p m=2

SIK QY Y |

p m=2

1 —ms
E(NP)

because there are at most [K : Q] distinct primes of K above a fixed prime p of Q, and
when p|p we have Np > p. Thus by the above claim we have

log (ke (s) ~ > _(Np)~*.

p

Now recall that (x(s) has a simple pole at s = 1. Hence we can write (x(s) = =25 g(s)
for some g¢(s) analytic and non-zero at s = 1. Then for sufficiently small ¢ > 0, g(s) is real
and positive on (1,1 + €) since (x(s) is so. Thus on such interval we have

log (e (s) = log +log g(s).

s—1

Since g is analytic and non-zero at s = 1, this clearly implies that log (x(s) ~ log 5. We
conclude that

log Cx (s) ~ log S i 1~ Z(Np)_s.
P

Exercise 5.5.3. Let K be a number field. Prove that
dNp)Tte~ YT (Np)T
p p,f(p/Q)=1

Here the extra condition means that the residue extension of p over (p) = p N Q is trivial,
i.e., OK/]J = Fp.
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L_ we have
s—1

Remark 5.5.4. Since log ﬁ — 400 as R2 s — 11, for any f(s) ~ log

lim 1(s)

R>s—1t log ﬁ

In the following, fix K to be a number field.
Definition 5.5.5. Let S be a subset of the set of primes of K. Define the Dirichlet density

of S to be No)—2 No)—2
6(S) = lim Zopes(NP) p)f = lim Lpes(Np)™? 1p) ;
Ras—1+ D ,(Np)™% Ras—1+ log =5

if the limit exists.

Proposition 5.5.6. The following statements hold.

(1) If 6(S) ewists, then 0 < 6(S) <1, and 6(5°) =1 —0(S5).

(2) If S is finite, then 6(S) = 0.

(3) If S1NSy =0, and if two of §(S1),8(S2),8(S1 USs) exist, then the third also exists,

and we have 6(S1) + §(S2) = §(S1 U Sa).

(4) If 6(S1) and 6(Sa) exist, and S1 C Sz, then 6(S1) < 6(Sa2).

(5) If 6(S) = 0, then for any subset T C S we have §(T) = 0.

(6) If 6(S1) and 6(S2) ewist, and §(S2) =1, then 6(S1 N S2) = 6(S7).

(7) ({p | Fp/Q) = 1) = 1.
(8) If 6(S) exists, and T is a subset of S containing all p € S such that f(p/Q) = 1,
then 6(T) = 6(S).

Proof. The first five statements follow from elementary properties of limits. For (6), we
have §(S; — S2) = 0 by (1) and (5). Then apply (3) to S1 = (S1 — S2) U (S1 N S2). (7)
follows from Exercise 5.5.3. To prove (8), first note that §({p € S| f(p/Q) =1}) =6(S5) by
(6) and (7). Then apply the sandwich theorem for limit. O

As an immediate application of our considerations so far, we can compute the density of
the set of split primes. Let L/K be a finite extension. Recall that a prime p of K is said
to split in L, if pOr, = P1---P, with distinet primes P, of L, and moreover e(P;/p) =
f(PBi/p) =1 for each i. (In particular g = [L : K].) We write Spl(L/K) for the set of primes
of K which split in L.

Proposition 5.5.7. Let L/K be a finite Galois extension. Then §(Spl(L/K)) = [L: K]~'.

Proof. A prime 9 of L is above a prime in Spl(L/K) if and only if f(B/K) = e(P/K) = 1.
In this case, NP = N(P N K). Moreover, for each p € Spl(L/K), there are exactly [L : K]
primes of L above p. Hence we have

Y. Np)t=[L:K]T > (NP~ ~[L:K]H D (NB)~™
PESPI(L/K) Bof (B/k)=e(P/K)=1 P.S(B/k)=1

Here the last ~ is because there are only finitely many B with e(/K) > 1. By Proposition
5.5.6(8), the set of primes P of K such that f(/K) = 1 has Dirichlet density 1. Hence

2o sepsm=1 (NB)

S(Spl(L/K)) =[L: K]™* lim . =[L: K]
s—1+ log =
O
Exercise 5.5.8. (1) Let Ly, Ly be two finite extensions of K inside K. Show that
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(2) Let L/K be a finite extension, and M/K its Galois closure. Then Spl(L/K) =
Spl(M/K). (Hint: use part (1).) In particular, we have §(Spl(L/K)) = [L : K]7! if
and only if L/K is Galois.

Corollary 5.5.9. Let Li, Ly be two finite Galois extensions of K inside K. Then the
following are equivalent.
(1) Ly C Ly
(2) Spl(Lo/K) < Spl(Ly /)
(3) There exists a set S of primes of K with 6(S) = 0 such that Spl(Ly/K) — S C
Spl(L1/K).
In particular, a finite Galois extension L/K is uniquely determined by the set Spl(L/K).

Proof. The implications (1) = (2) = (3) are clear. We show (3) = (1). For every p €
Spl(Le/K) — S, we have p € Spl(L1/K) N Spl(La/K) = Spl(L1 L2/ K) by Exercise 5.5.8(1).
Thus

[Ly: K]7' = 6(Spl(Lo/K) — S) < 6(Spl(L1 Ly /K)) = [L1Ly : K]t
Hence L2 = Lng7 i.e., L1 C LQ. O

Up to now we have not used class field theory. The following result generalizes Dirichlet’s
theorem on primes in an arithmetic progression, and its proof uses Theorem 5.2.9, which
we proved using class field theory.

Theorem 5.5.10 (Generalized Dirichlet’s theorem on primes in an arithmetic progression).
Let m be a modulus for K, and fix Ry € Clyn(K). Let S be the set of primes of K which are
coprime to m and whose class in Cly(K) is K. Then §(S) = | Clyn(K)| 7!,

Remark 5.5.11. For K = Q and m = com with m € Z>q, we have Cly (K) = (Z/mZ)*,
and the class of a prime coprime to m in Cl,, (K) is just the usual mod m congruence class of
that prime. Hence in this case the theorem implies that each congruence class in (Z/mZ)*
contains infinitely many primes, i.e. the classical theorem of Dirichlet.

Proof. The proof is essentially the same as the usual proof of Dirichlet’s theorem, which
uses the non-vanishing of the Dirichlet L-function L(s, x) at s = 1 for a non-trivial Dirichlet
character x : (Z/mZ)* — C*. This non-vanishing is of course a special case of Theorem
5.2.9, which we will use.

Let x € Cln(K)V. For s > 1, we have

g Lic(s ) = 32 3 M2 gy

pfm m=1
The series
— X(P)™ o
D> F—(Np)™
m
pfm m=2
is majorized by
- 1 —ms
m
p m=2

+ ¢ as shown in Example 5.5.2.

which converges absolutely and uniformly on Re(s) > %

Thus we have

log Lc.m (s, %) ~ Y x(p)(Np)~*.

pfm
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On the other hand, by Theorem 5.2.9, we have log L (s, x) ~ 0 if x is non-trivial. Hence
— —8 —S 1
Do x(8) D o x(p)(Np)TT~ D (Np) T D 0~ log ——
X€EClm (K)V pim ptm x#1

But the left hand side is equal to

| Clu (K| ) (Np)~*

peS

since for each p fm we have (&5 'p) = 0 unless p € Ko. O

Theorem 5.5.12 (Chebotarev density theorem). Let L/K be a finite Galois extension of
degree N. Fix a conjugacy class C in Gal(L/K). Let S be the set of primes p of K which
are unramified in L and such that the Frobenius conjugacy class Frob(L/p) = {Frob(/p) |
B primes of L above p} is equal to C. Then

Remark 5.5.13. The special cases when C = 1 and when L is the ray class field K, recover
Proposition 5.5.7 and Theorem 5.5.10 respectively. Indeed, in the first case, for a prime p of
K unramified in L (the unramified condition excludes only finitely many primes), it splits
in L if and only if Frob(L/p) = {1}. In the second case, the set of primes of K coprime to
m and having a fixed class in Cly, (K) is precisely the set of primes unramified in Ky, and
whose Frobenius element in Gal(K,,/K) is a fixed element, in view of the Artin isomorphism
Cln(K) & Gal(Ky/K). In this case Gal(Ky,/K) is abelian, so every conjugacy class is a
singleton.

Proof. We first treat the case where L/K is abelian. Find a modulus m of K admissible for
L/K. Then we have the surjective Artin map Cly (K) — Gal(L/K). Let C be the inverse
image of €' in Cly, (K). For a prime of K coprime to m, it lies in .S if and only if its class in
Clyn (K) lies in C. Therefore
C]
0(S) = ———
)= Ta()
by Theorem 5.5.10. But this is equal to |C|/N = 1/N since C is a singleton and C has the
same cardinality as the kernel of Cly, (K) — Gal(L/K).
We now treat the general case. Fix an element ¢ € C, and let f be the order of o. Let
K’ = L{?). Then L/K' is a cyclic extension of degree f. Let

S, = {9 primes of L | P is unramified over K, Frob(P/K) = o},

Sk = {p’ primes of K’ | p’ N K is unramified in L, Frob(L/p') = o, f(p'/K) = 1}.

Here Frob(L/p’) is a well-defined element of Gal(L/K') = (o) since the latter is abelian.

Claim 1. For every p € S, there are exactly % elements of Sy above p. Conversely,
every element of Sy, is above an element of S.

Indeed, the second statement is obvious. We prove the first. For p € S, by definition
the set A = {P € Sp | Plp} is non-empty. For P € A and g € Gal(L/K), we have
Frob(gB/p) = gFrob(B/p)g— = gog~!. Hence ¢'P lies in A if and only if g centralizes o.
Let G, denote the centralizer of o in Gal(L/K). Since Gal(L/K) acts transitively on the
set of primes of L above p, we know that G, acts transitively on A. Moreover, for 9 € A,
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its stabilizer in G, is the decomposition group Gy C G,. But Gy = (Frob(B/p)) = (o).
Hence

Go| _ N/IC|
|Gyl f

Al =

as desired.

Claim 2. Let B € Sy and p’ =P N K'. Then p’ € Sk, and P is the unique prime of
L above p’. Conversely, for every p’ € Sk, there is a unique prime B of L above p’, and
moreover B € Sp.

For the first statement, note that Frob(3/K) = o acts trivially on K’. It follows that
f(p’/K) =1 and that

Frob(L/p') = Frob(B/K’) = Frob(P/K)/ *'/5) = 5.

Hence p’ € Sk/. Moreover, p’ is unramified in L, and f(L/p’) is equal to the order of
Frob(L/p’) = o, which is f = [L : K']. Hence there is a unique prime of L above p’. The
first statement is proved. The second statement is proved similarly.

By the two claims, we have

o =S N = S N = 90 S o

peSsS PeSL pIESK/ p’ESK/
where the last equality is because f(p’/K) = 1. Thus
Clf
6 S = 5 S ’
(5) = osw
(provided that 6(Sg+) exists). Applying the abelian case of the theorem to L/K’ and by
Proposition 5.5.6 (8), we have 6(Sx/) = [L: K|t = f~L. O

As a simple application, we have the following:

Proposition 5.5.14. Let f be a non-constant irreducible polynomial over K. Assume that
f has a root in K, for almost all places v. Then f is of degree 1, i.e., it has a root in K.

Proof. Let L C K be the splitting field of f. Let S be the set of primes p of K unramified
in L and such that f has a root in K,. Then there are only finitely many primes not in S,
so 6(S) = 1. Fix aroot « of f in L. Let p € S, and choose a K-embedding ¢ : L — K,.
Let 8 be a root of f in K,. Then § must lie in the image of ¢, and by the irreducibility
of f, there exists ¢ € Gal(L/K) such that g(a) = 8. Thus up to modifying ¢ we may
assume that (o) = 8 € K,. On the other hand . determines a prime P of L above p,
and the last condition on ¢ implies that Frob(/p)(a) = a. Thus we have shown that for
every p € S, the conjugacy class Frob(L/p) in Gal(L/K) has non-empty intersection with
H = Gal(L/K(«a)). If H is not equal to Gal(L/K), then by elementary group theory there
is a conjugacy class C' in Gal(L/K) disjoint from H. By Theorem 5.5.12, 6(.5) is at most
1—|C|/|L : K] < 1, a contradiction. Hence K(a) = K. O

5.6. The Grunwald—Wang theorem. Reference: [AT68, §X.1]

Let K be a number field and m a positive integer. Suppose an element ¢ of K is an
m~th power in K, for almost all places v, does it follow that ¢ is an m-th power in K? If
the answer is yes for all ¢, then we say that K satisfies the local-global principle for m-th
powers.

In 1928, Grunwald published a false theorem stating that K always satisfies the local-
global principle for m-th powers, for all K and m. Wang found the following counter-
example:
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Exercise 5.6.1. Show that 16 is an 8-th power in Q, for all odd primes p, but not an 8-th
power in Qy or Q. Let K = Q(v/7). Then 16 is an 8-th power in K, for all places v of K,
but not an 8-th power in K.

The mistake in Grunwald’s work arises from careless use of the notation K ({/c). When K
does not contain a primitive n-th root of unity, adjoining different roots of X™ —c to K can
give rise to non-isomorphic extensions of K. For instance, related to the counter-example
of Wang, adjoining different 8-th roots of 16 to Q can give rise to Q(v/2) and Q(v/—2), and
they are obviously non-isomorphic.

Lemma 5.6.2. Assume that K contains a primitive m-th root of unity. Then K satisfies
the local-global principle for m-th powers.

Proof. Assume ¢ € K* is an m-th power in K, for almost all v. Let L/K be the splitting
field of X —c. If X" — c has a root in K, then it splits in K, and in this case for every
prime P of L above p we have Ly = K|, since Ly is the compositum of its subfields L and
K,. Thus 6(Spl(L/K)) =1, and so L = K by Proposition 5.5.7. O

Theorem 5.6.3 (Grunwald-Wang, rough version). Let m = 2'm’ with m’ odd. Assume
that K((o¢)/K is cyclic. Then K satisfies the local-global principle for m-th powers.

Proof. Step 1. Reduce to the case where m is a prime power. For this it suffices to note
that for two coprime integers my,ms, we have (K>)™ N (K*)™2 = (K*)™m™m2,

Step 2. Assuming m is a prime power, and assuming that K((,,)/K is cyclic of prime
power degree, we show that K satisfies the local-global principle for m-th powers. For this,
let ¢ € K* be such that ¢ € (K )™ for almost all v. Then by Lemma 5.6.2 applied to
the base field K ((,,), we have ¢ € (K((n)*)™. Let f(X) = X™ — ¢ € K[X]. Then f(X)
splits over K((p,). Let f(X) = f1(X)--- fr(X) with f;(X) € K[X] irreducible. Let L;/K
be the splitting field of f; inside K ((,). By our assumption on K((,)/K, all intermediate
extensions in K ((pr)/K are totally ordered. Hence there exists ¢y such that L;, C L; for
all i. Now if v is a place of K such that ¢ € (K*)™, then some f; has a root in K,. Since
L; is actually generated by a single root of the irreducible f; (as all roots are related by
multiplying by an m-th root of unity), there exists a K-embedding L; — K,. Hence there
exists a K-embedding L;, — K,, which means that v splits in L;,. Thus for almost all places
v of K, v splits in L;,. By Proposition 5.5.7 this implies that L;, = K, i.e., ¢ € (K*)™.

Step 3. We prove the theorem assuming that m = p® for a prime p. If p = 2, then the
assumption of the theorem states that K((,,)/K is cyclic. It is also of prime power degree
since the degree divides |(Z/mZ)* | which is a power of 2. Hence, by Step 2, K satisfies local-
global principle for m-th powers. It remains to treat the case where p is odd. In view of the
canonical injections Gal(K (¢,)/K) — (Z/mZ)* and Gal(K((,)/K) — (Z/pZ)*, we have
an injection of Gal(K (¢,)/K(¢p)) into the kernel of the natural map (Z/mZ)* — (Z/pZ)*,
which is cyclic of order a power of p. Thus we can apply Step 2 to obtain that the field K(¢,)
satisfies local-global principle for m-th powers. Now let ¢ € K* be such that ¢ € (K))™
for almost all v. Then ¢ € (K((,)*)™. Write ¢ = y™ for y € K((p)*. Let d = [K((p) : K].
Then ¢ = Ng(¢,)/x(¢) = (Nk(c,)/x ()™ € (K*)™. Since dlp — 1, d is coprime to m.
Hence there exist a,b € Z such that ad + bm = 1. Then ¢ = (¢?)%(c?)™ lies in (K*)™. O

To get a more precise version of the above theorem, we need to have a better under-
standing of when K((3r)/K can be non-cyclic. Recall that we have a canonical injection
Gal(K((2r)/K) < (Z/2"Z)*. The problem is that the right hand side is not a cyclic group
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unless r < 2 (e.g. (Z/8Z)* ={1,3,5,7} = Z/27Z x 7./2Z). Nevertheless, we have the canon-
ical subgroup {1} C (Z/2"Z)*, and (Z/2"7Z)* /{x1} is always cyclic. Correspondingly,
inside K ((2¢) we have the subfield K ({ot + C;tl) of index at most 2, and the latter is cyclic
over K. There is a maximal integer s such that K (Cas + (5:') = K. Then K(Cpetr + C;s}rl)
is a quadratic extension of K, and K((ps+1) is either a cyclic extension of K of degree 2
or 4, or a Z/27Z x 7/2Z-extension of K. The non-cyclicity of (any) K((2r)/K is essentially
caused by the latter possibility.

To make these ideas more precise, we first introduce some notations. Inside K we fix a
primitive 2"-th root of unity &, for each r € Z>; in a compatible way, i.e., ffﬂ =¢&,. Let

Nr = Er + gr_l
For instance, we may fix an embedding K — C and choose &, = Then 7, =
2 cos(2mw/2"). Note that £, is a primitive 4-th root of unity, namely “é&s =i = /=17, and it
is of degree at most 2 over K (depending whether —1 is a square in K).
Let K, = K(&,). Thus

o
6271'2/2 )

KCKiCKyCKzC---.
Since n?,; =1, + 1, we have
K(m) C K(n2) C K(ns) C -+ .
Of course each K (7,) is contained in K. Since K, /K is an abelian extension, so is K (n,)/K.
We have m = =2, = 0,m, #0, Vr > 3.
Note that .n, = 1+£3 =1+&_1,80&, = 77;1(1+§r—1) forr > 3. Thus K. C K(Umfr—ﬁ
for r > 3, and then by induction

K, = K(&,nr) = Ka(ny).
For instance,
Q(e*™/?") = Q(i, cos(2mi/27)).
Lemma 5.6.4. Each K(n,)/K is a cyclic extension.

Proof. Consider the canonical injection « : Gal(K,/K) < (Z/2"Z)*. If —1 is not in the
image of «, then « induces an injection of Gal(K,/K) into (Z/2"Z)* /{£1}, which is a
cyclic group. Then K,./K is cyclic, and in particular K (n,.)/K is cyclic.

If —1 is in the image of a, say —1 = a(7). Then 7(¢.) = &1 by the definition of a.
Hence 7, € K\”. But [K, : K(n)] < 2 since K, = Ka(n,). Hence K(n,) = {7 and
Gal(K (n,)/K) injects into (Z/2"7Z)* /{£1}, which is a cyclic group. |

Definition 5.6.5. Let s € Z>; be the largest such that n; € K.

Note that such s exists, since otherwise we have Ky = Ks(n,) = K, for all r, which is
impossible.

Lemma 5.6.6. The following conditions are equivalent.
(1) Gal(Kgy1/K) 2 Z/27 x 7/27Z.

(2) There exists r such that K, /K is not cyclic.

(3) & & K(ns41)-

(4) All of =1,%(ns + 2) are non-squares in K.

Proof. (1) = (2) is trivial. For (2) = (3), assume that & € K(ns4+1). Then for every
r > s+ 1, we have K, = K3(n,) = K(n,). By Lemma 5.6.4 this is cyclic over K. It follows
that K,/K is cyclic for every r > 1. For the equivalence of (1), (3), and (4), note that
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Ksi1 = K(&2,ms11) where €2 = —1 and 77§+1 =15+ 2 are in K. Thus K41 is of the form
K(y/a,Vb) with a,b € K. Such an extension is a Z/2Z x Z/2Z-extension if and only if
a, b, ab are all non-squares in K. O

We now come back to the local-global principle for m-th powers. Let S be a finite set of
places of K. Denote

P(m,S)={ce K* |Yve Vg —S,ce (KX)™}.

Corollary 5.6.7. If P(m,S) # (K*)™, then the following conditions hold:

(1) All of —1,%(ns + 2) are non-squares in K.
(2) We have m = 2'm/ with m’ odd and t > s.

Proof. By Theorem 5.6.3, K;/K must be non-cyclic. By Lemma 5.6.6, (1) holds. If ¢t < s,
then K; = Ks(n;) = K» is quadratic over K, a contradiction. Hence ¢t > s. O

Proposition 5.6.8. Assume (1) (2) in Corollary 5.6.7. Then
P(m,S) C (K*)™ Uz, (K*)™,

where
T =14+ &)™ = Nevq € KX — (K*)™.

Proof. Firstly, since 14+&; = £,117511, and since m = 2m’ with t > s+1, we have (1+&,)™ =
EXansy = ndt . Now if x,, were in (K*)™, then using z,, = 1, = (15 + 2)2t71m/, we
know that (n, +2)2 " € (K*)2'. Thus there exists a 2=L-th root of unity ¢ € K such that
&(ns +2) € (K*)2. By condition (1), —1 is not a square in K, so we must have ¢ € {£1}.
Thus one of (7 + 2) is a square in K, a contradiction with (1).

We now prove the containment. By (1), K3/K is quadratic. We write Gal(Ky/K) =
{1,0}. We have Ky = Ks(ns) = K, = K(&). We check that o(&) = &;1: For this it
suffices to note that &£, and &, + &1 are both in K.

Let x € P(m,S). Since —1 is a square in Ky, by Corollary 5.6.7 applied to the field
K> we have z € (Ky)™. In particular there exists y € Ky such that x = y2'. Then
(yo(y)™1)2" = (zo(z)™1)2" =1, so yo(y) " is a 2'-th root of unity in K,. By condition (1),
we have 1,11 ¢ K> in view of Lemma 5.6.6. In particular {51 ¢ Ks. Since t > s (condition
(2)), yo(y)~! is a 25-th root of unity in Ko, i.e.,

yo(y) ™t = ¢
for some p € Z. We shall see that p being even or odd correspond to x € (K*)™ or
T € Ty (KX *)™ respectively.
Let y; = y&2 € Ky, where A € Z is to be determined. Then y%t = x as well, i.e., y; is
another candidate for y. We have

yio(y) = yoly) H(Eo(&) N = g,

If 41 is even, then we can choose A = —p/2. In other words we can choose y € K» such
that 2 =z and y = o(y), i.e., y € K. In this case, z € (K*)2'. By Theorem 5.6.3, we also
have z € (K*)™. Hence z € (K*)™. (Find integers a,b such that a2’ + bm’ = 1. Then
z = () (zb)™'. Then use 2% € (K*)™ and zb € (K*)2"))

If 1 is odd, then we can choose A such that p + 2\ = m/. In other words we can choose
y € K, such that 42 = z and yo(y)~! = €7 Let z = y(1+&,)™™ € Ky. Then zo(z)™ ' =1,
ie., ze K. Wehave 22 = za;!. Thus zz;;! € (K*)%. Since 2, = (s+2)™/2 withn, € K,

m
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we have z,,, € (K*)™. By Theorem 5.6.3, we have 2 € (K*)™. Hence zxz;,' € (K*)™.
As before, it follows that zz;} € (K*)™. O

Definition 5.6.9. Let Sy be the set of places v of K such that —1 and +(ns + 2) are
non-squares in K,,.

Remark 5.6.10. The condition in the definition of Sy is equivalent to that K, (&2, 7s4+1) is
a Z/2 x Z/2-extension of K,. If v is archimedean, this is impossible. If v divides an odd
prime in @, this is again impossible because K, (&2, ms+1) = Ky (€s+1) is unramified over K,
and hence cyclic over K,. Hence all places in Sy divide 2.

Lemma 5.6.11. Assume (1) (2) in Corollary 5.6.7. Then Sy consists precisely of those
places v such that x,, ¢ (K,))™.

Proof. If v € Sy, then the same argument as in the proof of Proposition 5.6.8 showing
that z,, ¢ (K*)™ shows that x,, ¢ (K))™. Now let v € Vg — Sp. We need to prove
that x,, € (K,)™. If —1 is a square in K, then & € K, and so & € K,(&2,ns) C K,.
Then z,, = (14 &)™ € (K)™, as desired. If one of £(ns + 2) is a square in K, then

either v/ns +2 = +ns41 € K, or \/—(ns +2) = +€ons11 € K,. In either case we have
Ty = N5y = (§ans41)™ lies in (K0)™. (The second equality is because 4|m.) O

Theorem 5.6.12 (Grunwald-Wang, refined version). We have P(m,S) = (K*)™, except
in the so-called special case, where all the following three conditions are satisfied:

(1) All of —1,£(ns + 2) are non-squares in K.
(2) We have m = 2'm/ with m’ odd and t > s.
(3) S D S.
Moreover, in the special case, we have P(m,S) = (K*)™ Uz, (K*)™.

Proof. By Lemma 5.6.11, condition (3) is equivalent to the condition that z,, € P(m,S).
In view of this, the theorem follows from Corollary 5.6.7 and Proposition 5.6.8. O

5.7. Approximating local abelian extensions by global ones. Reference: [ATG6S,
§X.2]

Theorem 5.7.1. Let K be a number field and S a finite subset of Vi. Suppose that for
each v € S we are given a finite abelian extension KV /K, . Then there exists a finite abelian
extension L/K such that for each v € S and each place w of L above v, we have L,, = K"
as extensions of K, .

Remark 5.7.2. If L/K is a finite Galois extension of global fields and wj,ws are places
of L over a place v of K, then L,,, = L,,, as extensions of K,, by the transitivity of the
Gal(L/K)-action on the set of places of L above v. Indeed, if 7 € Gal(L/K) takes w;
to wy, then the isomorphism 7 : L — L induces an isomorphism 7 : Ly, — L, after
completion, and the latter isomorphism restricts to the identity map on K,,.

Remark 5.7.3. If we are given one non-archimedean place v of K and a finite extension
Kv/K,, then it is easy to find a finite extension L/K such that there is exactly one place
w of L over K and moreover L,, = K" as extensions of K,. Indeed, write K¥ = K, («) and
let f(X) € K,[X] be the minimal polynomial of a over K,. By Krasner’s lemma and by
the density of K in K, there exists an irreducible g(X) € K[X] such that K,[X]/(g(X))
is isomorphic to K as extensions of K,. Take L to be K[X]/(g(X)).
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By the classification of finite abelian extensions of global and local fields (Corollaries 4.2.8,
4.5.4) and by the local-global compatibility (Theorem 4.5.9), in order to prove Theorem 5.7.1
it suffices to show that there is an open (and finite index, which is automatic) subgroup N
of C'k such that

I Nkojue, (B = (J] KX)n N.
veS veS
Here the intersection is inside Cx, and we embed [], g K, into Cx by

(Ty)ves = ((@v)ves, (1)11(;25) € A% /KX.

The left hand is an open subgroup of finite index of [],.q K* (equipped with the product
topology). Hence Theorem 5.7.1 follows from the following theorem.

Theorem 5.7.4. Every open finite index subgroup of [, .o K.S is of the form (]

N for some open subgroup N of Ck.

veS UGS ) N

We will see that the proof crucially depends on the Grunwald—Wang theorem.

One subtlety is that when S has more than one element, the product topology on
[I,cq K is finer than the subspace topology inherited from Cx. We write P for [Toes K.
with the product topology, and write P for [, ¢ K¢ with the subspace topology mherlted
from Cgk. Thus the identity map is a continuous map

p—)PCCK.

Theorem 5.7.5. If P, is an open finite index subgroup of P, then its image Py is P is also
open.

For the proof we need two lemmas.
Lemma 5.7.6. If the triple (K, m, S) does not belong to the special case in Theorem 5.6.12,
then PNCR = P™. If (K, m,S) belongs to the special case, then
PNCE =P"Uc,PM,
where ¢y, = (Cmv)ves € P is defined by ¢ =1 for v ¢ So and ¢y p = T, for v € Sp.
Proof. Let a = (ay)yes € P such that it lies in C}?. Then there exists « € K* and b € Ay
such that a = ab™. In particular o € P(m, S). If we are not in the special case of Theorem

5.6.12, then it follows that oo € (K *)™. Then clearly a € P™.
Suppose we are in the special case and that o ¢ (K*)™. Then « € x,,,(K*)™. Hence

a=z,e"

for some e € Aj. Thus the component of ac;,! € P at v € S is e for v € Sy and x,el* for
v €S — Sp. By Lemma 5.6.11, we have ac,! € P™. a

Lemma 5.7.7. For every m € Zs1, P™ is closed in P. Moreover, P/P™ and P/P™ are
compact.

Proof. Using Cx = R x Ck and the compactness of C, it is easy to see that C7 is closed
in Ck. If (K, m,S) does not belong to the special case in Theorem 5.6.12, then by Lemma
5.7.6 we have P™ = PN C% and this is closed in P. Suppose we are in the special case.
Note that o, = 775+1 = (ns +2)™ and ns + 2 € K. Hence xy,,, € (K*)™, and ca,,, € P™
By Lemma 5.7.6 applied to (K, S,2m) (which still belongs to the special case), we have

PNC# = PP U ¢y, PP™ C P™.
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Thus we have
P> cPNC¥ C P"CP.
Clearly [P : P?™] < co. Hence P™ is a finite union of the cosets of PNC%™ in P. It follows
that P™ is closed in P.
The compactness of P/P™ = [loeg K /K™ is directly checked. The compactness of
P/P™ follows since there is a bijective continuous map 15/15m — P/P™. ]

Proof of Theorem 5.7.5. Since Py is of finite index in P, there exists m € Z>1 such that
P™ C Py. Then Py/P™ is open, and hence closed, in P/P™. Since P/P™ is compact, so
is Py/P™. Tt follows that Py/P™ is compact. But by Lemma 5.7.7, P/P™ is Hausdorff.
Hence Py/P™ is closed in P/P™, and so P is closed in P. Since Py is of finite index in P,
it follows that it is open in P. |

By Theorem 5.7.5, in order to prove Theorem 5.7.4 it suffices to prove the following
theorem.

Theorem 5.7.8. Every open finite index subgroup of P is of the form PNN for some open
subgroup N of Ck.

To prove the above theorem we prove two more lemmas.

Lemma 5.7.9. Let Py be an open finite index subgroup of P. For every m € Z>, PoC}
is closed in C7.

Proof. We will use the following general fact (J[AT68, §X.2, Lem. 1]): In a topological group,
if A is a compact subset and B is a closed subset, then A - B is closed.

Let Py be the inverse image of Fy in P. Then F is open. Let W be a compact neighbor-
hood of 1 in P contained in Py (since each K¢ contains arbitrarily small compact neighbor-
hoods of 1). By finite index, there exists N € Z>1 divisible by m and such that P C Py. By
the compactness of Py/P" (which is closed in the compact P/PY), there exists py,- -, px
such that Py = Ule pi PNW. Let W (resp. p;) be the image of W (resp. p;) in P. Then

k
PRCR = piPYWCR.
i=1
But PN C C%, so
k
PCR = piWCR.
i=1
Now each p;WCF is of the form a compact set (p;W) times a closed set (C%), and hence
closed. |

Lemma 5.7.10. Let Py be an open finite index subgroup of P. For each m € Z>1, there
exists an open subgroup N C Ck such that PO N = Py(PNCE) and N D CP.

Proof. By Lemma 5.7.9, P,Cg and PC}} are closed in Ck. Since PyC}} is a subgroup of
finite index and closed in PC}?, it is open in the latter. Therefore there exists a neighborhood
V of 1 in Ck such that

PCE NV C PCE.
Up to shrinking V, we may assume that C}?V is a subgroup of C?. (The point is that
for each place v, there exist arbitrarily small open neighborhoods V,, of 1 in K¢ such that
(K)™V, is a subgroup: If v is non-archimedean we can take V,, to be open subgroups; if v is
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archimedean we can take V,, to be arbitrary contained in the identity connected component
since (K )™ = Kf or (K})™ =Rs¢ C K =R*.)

Then we set N = PyC#'V. This is an open subgroup of Cx containing Cj?. To check
that PN N = Py(Py N C®), we use that for any subsets A, B,C of a group we have
BN (AC)=A-(BnC(C). Applying this to A = Py)CP,B = PCP,C =V, we get

(PC)YNN = PO - (PCENV) = PyCP.

Hence
PNN=PNPCENN=PN(PCR)=PFP(PNCE),
as desired. O

Proof of Theorem 5.7.8. By Lemma 5.7.10, it suffices to find m € Z>, such that PNCE C
Py. First find n such that P* C Py. As in the proof of Lemma 5.7.7, by the Grunwald-Wang
theorem we either have PNCP = P™ or PNC?* C P™. In all cases taking m = 2n we have
PNCR CPCh. O
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