THE HODGE-TATE PERIOD MAP ON PERFECTOID SHIMURA VARIETY
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1. INTRODUCTION

1.1. Course description. About a decade ago Scholze discovered that the Siegel modular varieties
(i.e. moduli spaces of polarized abelian varieties with level structure) become perfectoid when passing
to infinite level, and that there is a Hodge-Tate period map from the resulting perfectoid space to a
flag variety [Sch15]. He used the geometry of the period map to prove important p-adic properties
of torsion cohomology classes of locally symmetric spaces, and deduced the existence of Galois repre-
sentations attached to such classes; this was a major breakthrough in the Langlands program. Later,
Caraiani and Scholze used their refinement of the Hodge—Tate period map to prove important van-
ishing properties of torsion cohomology classes of certain Shimura varieties. The proof was simplified
by Koshikawa [[K0s21] by relating the problem to the cohomology of local Shimura varieties. Even
more recently, people have got a clearer understanding of the relationship between the Hodge-Tate
period map and the geometrization of local Langlands via the Fargues—Fontaine curve, in particular
the groundbreaking work of Fargues—Scholze. From this point of view, more general vanishing results
for torsion cohomology classes are being proved.

In this course we will start with the proof of Scholze’s theorem that the Siegel modular varieties
become perfectoid at infinite level. We will then discuss the important geometric properties of the
Hodge-Tate period map as in the works mentioned above. When we move to more recent developments
and more advanced topics, we will still try to give as many proofs as possible.

The main references are [Sch12, Sch13, Sch15] by Scholze, and [CS17, CS19] by Caraiani-Scholze.
Scholze’s expository articles (his CDM report and the two ICM talks), together with the Berkeley
Lectures (2014) by Scholze-Weinstein [SW20] are recommended. Moreover, the notes by Caraiani—
Shin at THES 2022 Summer School [(/S22], and the notes for the Arizona Winter School 2017 on
perfectoid spaces [Bhal7, Carl7, Ked17, Weil7] can be useful.

1.2. The idea of a period map. It is natural to investigate the period maps in general. Let {X,}
be a family of “spaces” parametrized by points s in a “base space” S. One may associate to each X
a linear algebraic invariant L(X;), and hence get the map of sets

S —— {all linear algebraic structures}
S L(Xs).

This can be a very rough construction of a period map.

To make this more concrete, consider {X;} a family of algebraic varieties parametrized by s € S,
where S is the base algebraic variety. By applying a suitable cohomology theory H to X, we would
obtain Hy := H(X,), regarded as a vector space over some field k. Hodge theory dictates that each
H, admits a filtration structure Fil® Hj.

However, it is rarely possible to trivialize the system {H;}s over S. For instance, S may be a
complex manifold, and {Hs}s may be a local system on S which is non-trivial due to m1(S) being
non-trivial. To remedy this, we morally consider measurmg the extent that the trivialization fails to
be effective, by inserting the morphism ¢: S — S, where S parametnzes all trivializations Hy — H,
with H a fixed constant k-vector space. Namely, for each § € S with q(5) = s, the point 5 gives a
trivialization iz: H, — H. (In the complex analytic setting, one can for instance take S to be the
universal covering of S (assumed to be connected); then any local system on S would pull back to
a constant local system on S since the latter is simply connected.) In this situation, we are able to
define the period map
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7: § —— {all filtrations on H}
§— S Fil°H,,
where s = ¢(5) and Fil®*H, is defined as a filtration on H,, passing to that on H via the isomorphism

i5. On the other hand, by definition, the set of all filtrations on H turns out to be a flag variety #/g.
We thus obtain the following diagram:

N

Recall that this diagram arises from an algebraic family of algebraic varieties {X;}scs over S.

Fly.

However, S is often not an algebraic variety but instead some analytic space (i.e. the geometric object
defined by convergent power series); depending on the context, “analytic” will mean complex analytic
or p-adic analytic. It turns out that both ¢ and 7 are analytic morphisms. We will be primarily
interested in the geometry of 7 from the arithmetic point of view.

1.3. A complex analytic example: modular curves. Consider the complex manifold H* = C—R
with the GLy(R)-action via the Mobius transformations:

a b az+b a b 4
= , v € GLy(R), z € H™.
(c d> T +d (c d) 2(R), z €M
Let N > 3 be an integer and define

P(N) = {(Z Z) € QLy(Z): (‘2 Z) - (1 1) mod N},

which is a discrete subgroup of GLa(R). The quotient of H* by the action of I'(IN) defines a smooth
complex manifold

Y(I) = T(V)\ K2,
called the (non-compact) modular curve. It in fact has a unique structure of an affine algebraic variety
over C. It is well known that the following map is a bijection:

Y(N)(C) = {(E,)}/ =
e HE¥ —— (C/(Z+ Z7), ((a,b) — (a + br)/N)).
Here on the right hand side we consider the set of pairs (F,~), where

e [ is an elliptic curve over C, and
e 7 is a full level- N structure, which is equivalent to the choice of an isomorphism (Z/NZ)?
E[N] of groups,
and we mod out by the natural notion of isomorphism. In fact, Y (N) as an algebraic variety is the
moduli space over C of the moduli problem of elliptic curves with level-IV structures. There is thus a
universal family { £} cy () of elliptic curves over Y'(N).

We then discuss the Hodge structure arising from homology for any elliptic curve E over C. The
Betti homology H;(FE,Z) is non-canonically isomorphic to Z2, and it is well known that it admits a
Hodge structure of the form

H\(E,7)®;,C=F "0 g o1
satisfying the complex conjugation condition F~1.0 = F%~1  (Here complex conjugation is defined
with respect to the R-structure Hy(E,Z) ®z R.)

To describe this Hodge structure, we first make a general observation in linear algebra. Assume

that V is a real vector space of even dimension. Then giving a Hodge decomposition

VerC=F10gF0-!
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satisfying F~1.0 = FO~1 is equivalent to having a complex structure on V, i.e., some J € Endg (V) such
that J2 = —1, representing the scalar multiplication by i. To explain this equivalence, note that given
such a J, we can construct F~19 (resp. F®~1) to be the eigenspace of J corresponding to eigenvalue i
(resp. —1).

Now the Hodge structure on Hy(E,Z) is equivalent to a C-structure on H;(FE,Z) ®z R, and the
latter is given by the canonical isomorphism

H\(E,Z) ®z R = Lie E,

where the right-hand side is a C-vector space. Note that Hy(F,Z) ®zC is 2-dimensional over C. Using
the Hodge structure, we define the one-step filtration on it by

Fil’(H\(E,Z) ®7 C) == F®~1,

which is a 1-dimensional subspace of Hy(E,Z) ®z C.

Note that the quotient map q: H* — Y (V) parametrizes all trivializations of H;(F,,Z). Namely,
for each 7 € H* with s = ¢(7), we have the presentation E, = C/Z + Zr, and this presentation gives
an isomorphism H;(Es,Z) = Z + Z7 and hence a trivialization H;(E,Z) = Z? by using the basis
{1,7} of Z + Zr. From the construction above, we obtain the period map

T HY ———————— Gr(2,1)c =PL
T — (Fil° € H(E,,Z) ®; C = C?),
where s = q(7) € Y/(N), and the isomorphism towards C? is defined by 7. Also recall that Gr(2,1)c =
IP)(%: parametrizes all choices of a 1-dimensional C-vector subspace in C2. As an exercise, check that

w(7) = [r: 1],
for a suitable choice of coordinates on IP%:.
In summary, we have the diagram
Hi
/ \
D(N)\H* PL

Note that 7 is in fact independent of the level N. Moreover, it is GLa(R)-equivariant, where GLa(R)
acts naturally on PL. Finally, note that H* = C — R is not an algebraic variety but a C-manifold,
with ¢ and 7 being analytic.

1.4. The p-adic setup. In this subsection we consider a p-adic analogue for the complex period map
for the modular curves. Let p be a prime and write C, = @p. Fix a field isomorphism C = @p, SO we
have an embedding C < C,,. Let E be any elliptic curve over C,. Take the étale cohomology group

Hét(E7 ZP) = Z?)a

which is dual to the Tate module T,E = @n E[p"]. By general p-adic Hodge theory, there is a
Hodge Tate filtration on H} (X, Z,) ®z, C, for any smooth projective variety X over C, (or more
generally, any smooth proper rigid analytic variety X over Z,). In the case of elliptic curves, this is
defined as the image of a natural injection

Lie E* —— H}(E,Zy) ®z, Cp.
Here E* is the dual elliptic curve, and the above injection is an injection from a 1-dimensional C,-vector
space into a 2-dimensional C,-vector space.

Fix an integer N > 3 satisfying p { N. We base change the modular curve Y (Np*) over C along
C — C,, and obtain Y (N pk)@p, an algebraic curve over C,. This construction is in fact independent
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of the choice of C — C,; in fact Y(IV p*) has a canonical model over Q representing the same moduli
problem over Q. For s € Y(IV p’“)(cp, we have the canonical trivialization

krp\ k
Hélt(Es’Z/p Z) = (Z/p Z)27

arising from the trivialization E[p*] & (Z/p*Z)? given by the level structure. Varying the level, it is
reasonable to consider the inverse limit

lim Y (Np*) = lim (- - — Y(Np?) = Y(Np) = Y(N),
k

Here each map Y (Np*) — Y(Np*~!) is finite étale. If we imagine that the inverse limit exists in a
suitable category, then on the inverse limit we would imagine that there is a trivialization of

H, (B, Lyp) = yLnHélt(E& Z/p"7.).
k
The following theorem asserts that this inverse limit exists as a perfectoid space.

Theorem 1.4.1 (Scholze, a moral version, cf. [Sch15]).

(1) There is a unique perfectoid space Yy over C, such that
Y ~ lim Y (Np¥)e,,
k
where ~ can be defined precisely in Definition 3.1.10.
(2) There is a Hodge—Tate period map between adic spaces, written as
T YN — (P(lcp)ad,
encoding the Hodge—Tate filtration
Lie B} < Hy(Es,Zy) ®z, Cp, = C,

at least for C,-valued points s € ?N. Here the last isomorphism comes from the trivialization
HY(E,,Z,) = Zf) fors e }N/N, as one may expect. The target of Tyt is the adic space associated
to P!, often understood as the “analytification” of P'.

(3) The Hodge—Tate period map has interesting geometry, and its fibers can be described (in terms

of Iqusa varieties).

1.5. Perfectoid spaces. A perfectoid space is a highly special kind of adic space. The category of
adic spaces is very robust within the notion of p-adic analytic spaces. Perfectoid spaces do not satisfy
any usual finiteness properties, yet can be very nice from other perspectives.

Definition 1.5.1. A perfectoid field is a complete topological field K whose topology is defined by a
non-archimedean absolute value |- |: K — R such that

(1) | -] is non-discrete, and
(2) if we write p as the residue characteristic, then the ring homomorphism

Ok/p — Ok/p, x+—aP
is surjective.

Non-Example 1.5.2. Any extension of QQ, of finite ramification cannot be perfectoid.

Example 1.5.3. The p-adic completions C, = Q,, and (Qu(p*/P™ )", together with the t-adic com-
pletion (F,(t/7™))", are all perfectoid fields.

Construction 1.5.4 (Tilting). We can elementarily construct a functor
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(Perfectoid fields with residue characteristic p) K

| |

(Perfectoid fields of characteristic p) K®

called tilting. This in particular sends perfectoid fields of mixed characteristic (0, p) to perfectoid fields
of characteristic p.

Theorem 1.5.5 (Fontaine-Wintenberger, Scholze, cf. [FW79, Sch12]).
(1) Let K be a perfectoid field and L be a finite extension of K. Then, with the natural topology,
L is a perfectoid field.
(2) Tilting induces an equivalence of categories
(Finite extensions of K) —— (Finite extensions of K”) _
Lt L’
(1t follows from (1) that this functor is well defined.) In particular, Galx = Galys .

Example 1.5.6. Under tilting, the perfectoid field (Q,(p'/?™ ))" goes to the perfectoid field (I, (¢t*/?™))".
Perfectoid spaces are higher dimensional geometric generalizations of perfectoid fields.

Theorem 1.5.7. Let K be a perfectoid field. Then there is an equivalence of categories

(Perfectoid spaces over K) —— (Perfectoid spaces over K”)
X X’

Moreover, we have an isomorphism of the underlying topological spaces | X| = | X"|, and an equivalence
of the étale sites X g = (X°) .

Remark 1.5.8. The tilting equivalence serves as a main player in Scholze’s proof of weight-monodromy
conjecture, which helps him to reduce the conjecture in certain cases to the equal characteristic case.

Example 1.5.9. Here comes a toy example for an inverse limit of algebraic varieties becoming per-
fectoid. Let K be a perfectoid field, with tilt K”. Consider the projective system

(- — AL — AL — ... AL)

in which each map is given by x — P on the coordinate x. There is a unique perfectoid space X over
K such that

X ~ yLnA}(,
where ~ is in the same sense as in Theorem 1.4.1. Also, as in Theorem 1.5.7, we can consider X,
which is a perfectoid space over K”, and we have

X 21X 2 AR, Xew = (X)er 2 (ARS Y

Here A}ﬁd is the adic space over K” attached to A'. It is not a perfectoid space, but it turns out that

the perfectoid space X° has the same underlying topological space and étale site as A}ﬁd.

1.6. Generalizations and applications. More generally, one can replace the modular curve Y (V)
in the previous discussion by Siegel modular varieties (i.e. moduli space of polarized abelian varieties
with level structures), or even Hodge-type Shimura varieties. Our first main goal in the course is
to understand Theorem 1.4.1 and the generalization to these Shimura varieties. The application lies
in using the geometry of mpT to understand the cohomology of Shimura varieties [CS17, CS19]. We
remark that the geometry of 7wyt has relation with cohomology of Scholze’s local Shimura varieties,
and the geometry of LLC by Fargues—Scholze.
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1.7. Rough description of myr for modular curve. We resume on the setup of §1.4 and only
consider Cp-valued points s on Y (cf. Theorem 1.4.1(2)), namely the classical points. For each
classical point s, we obtain E, over C, with the trivialization H} (Es,Z,) = Zg. In the following
discussion we only consider s in the good reduction locus, which in concrete terms means that Eg over
C, has good reduction, i.e., it extends to an elliptic curve over Oc,. In this case, we denote by E, the
reduction over E,.

Recall that the p*-torsion Gy, :== E[p"] is a finite flat group scheme over F, of rank p?*. Furthermore,
each Ej is either ordinary or supersingular. The distinction is as follows: We write Gp for the identity
component of the group scheme Gy,.

e When E, is ordinary, namely s € ?ﬁrd, the rank of GY is p*. There is a short exact sequence
0— Gy — Gr — Gi/Gr — 0,
in which the quotient is étale and has rank p*. Also, we have
Gi(Fp) = (Gr/GR)(Fp),
and this group is abstractly isomorphic to Z/p*Z. In particular, the surjective reduction map
Es [pk]((cp) — E, [pk](Fp)

is isomorphic to a surjection (Z/p*Z)? — Z/p*Z. We write Cj, for its kernel. Then Cj, is an
order p* cyclic subgroup of Es(C,), known as the canonical subgroup.

These constructions are compatible with the varying of k. More precisely, the following
diagram commutes:

B — 2 B ph

[ [

Ck+1 R d Ck.
e When E, is supersingular, namely s € }7135, we have
v =G, Gr(F,) ={0}.
The ordinary case. Suppose E, is ordinary. In the Tate module,
T,(E,) = lim E,[p"] = Z3,
k
the canonical subgroups {C}} define a rank-1 Z,-submodule C' = @k Cr C Tp(Es). By duality, we
obtain a 1-dimensional Q,-subspace of
Hélt(E57 Zp) Qz, Qp’

Recall that the above is canonically trivialized to Qf,. We thus obtain a line in Qi, i.e., a point
us € PH(Qy).

Proposition 1.7.1. For s in the ordinary locus, we have
71'HT(S) =Us € Pl(@p)~
Also, mur shrinks every connected component of }7]‘\3,” to a point in P1(Qy).

Morally, Proposition 1.7.1 dictates that the restriction of T to ?J\O,rd measures the position of the
canonical subgroup C' = yink Cy in T, (Es). Moreover it is “locally constant”.



8 YIHANG ZHU

The supersingular case. Up to isomorphism there are only finitely many supersingular elliptic curves
over Fp with additional level-N structure, listed as E1,--- , E,,. Denote by f/]\m the locus in 17N (or
rather, the good reduction locus) on which E, ~ E; together with the level-N structure. We shall
describe T on ?Nl Firstly, we have

?N,z’ ~ lim My,
k

where (--+ = My — -+ = M1 — M) is the Lubin—Tate tower to be discussed below, and ~ is in
the same sense as in Theorem 1.4.1.

Construction 1.7.2 (The Lubin-Tate tower and the Drinfeld tower). We start with the formal
scheme 90 over Spf(Oc,) representing the moduli problem of connected p-divisible groups of height
2 and dimension 1. (We omit the formulation of the precise moduli problem.) Abstractly, 9 is
isomorphic to Spf(Oc,[X]). Let Mo = sm:;d be the adic generic fiber of 9, which is an adic space
over C, (isomorphic to the open unit disc over C,). By adding more and more level structures, we get
a tower

(LT) (= My — - — My — Mg =29,

called the Lubin—Tate tower.

Similarly, we can start with the formal scheme 9" over Spf(Oc, ) representing the moduli problem
of certain p-divisible groups of height 4 and dimension 2, together with an Op-action. Here D is the
quaternion algebra over Q,. By passing to the adic generic fiber and adding more and more level
structures, we get the Drinfeld tower

(Dr) (o MY MY — MY = ()2,

Thanks to the classification by Scholze-Weinstein of p-divisible groups [SW13], the Lubin—-Tate
tower and Drinfeld tower become isomorphic at infinite level, i.e., there is a unique perfectoid space
that is ~ lim My and ~ lim, M. Therefore,

YNJ‘ ~ @MZ
k
In particular, for any k£ € N we have a canonical map
Tk - ?N,i — M}C/

For k = 0, we have My being the complement of P!(Q,) in the adic space (P(lcp)ad. This is denoted
by Q and called the Drinfeld upper-half space, analogous to H* = P}(C) — P!(R).

Proposition 1.7.3. The map
T : ?N,i — ME)/ =QC (]P’%:p)ad
s equal to wyT.

Summary on geometry of wyr.
?N D) }7]%5 [ }7]3!’(1
o
(IP’qup)ad = Q u PY(Q,)
Here in the first row we only have D instead of = because we omitted the points of bad reduction.

Remark 1.7.4. (1) Here we have only described myr on classical points. The case can be more
subtle on more general types of points.
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(2) The modular curve Y (V) has a canonical smooth model over Z,, (representing the same moduli
problem over Z,), and the special fiber has a stratification

Y(N)s, = Y(NRIUY (V).

Here the ordinary and supersingular loci are Zariski open and closed, respectively. In contrast,
inside (Pg )™, Q is open and P'(Q,) is closed.

2. ADIC SPACES

2.1. The rough idea. As a rough idea, adic spaces are glued from affinoid adic spaces, resembling
the situation that schemes are glued from affine schemes. For a Huber pair (A, A*), which is a pair of
topological rings AT C A satisfying certain conditions, we can construct the affinoid adic spectrum

Spa(A, AT) := {continuous valuations |- |: A — T'U {0} such that |[A*]| < 1}/ ~,

where T is a totally ordered abelian group written multiplicatively, such as (Rsq, x). The set Y =
Spa(A, A1) is equipped with the so-called adic topology and it has a structure presheaf Oy. Tt is
in general a subtle question as to determine when Oy is a sheaf. When it is a sheaf, we say that
the Huber pair (A, AT) is sheafy. Roughly, adic spaces are glued from Spa(A, AT) where (A, AT) are
Huber pairs.

Definition 2.1.1. An adic space is an object (X, Ox) in the category of locally topologically ringed
spaces, equipped with choice of (equivalence class of) continuous valuations on the local rings Ox ,
for all z € X, which is locally isomorphic to Spa(A4, A1) for a sheafy Huber pair (A, AT).

2.2. Huber rings. We now discuss the conditions we impose on the pair (A, AT).

Definition 2.2.1. Let A be a topological ring.

(1) We say A is Huber if there is an open subring Ay C A such that the topology on Ay is I-adic,
for some finitely generated ideal I of Ay. Recall that the I-adic topology on Ay is the unique
topology such that {I™} is an open neighborhood basis of 0 € Ay. If A is Huber, then any
choice of Ay as above (which is non-unique) is called a ring of definition, and I is called an
ideal of definition.

(2) We say A is Tate if it is Huber and there is @w € A* which is topologically nilpotent, i.e.,
w"™ — 0 as n — oo. Such a choice of w is called a pseudo-uniformizer.

Here are some simple observations about Tate rings. For a Tate ring A, we choose a pseudo-
uniformizer w and a ring of definition Ay C A. Then w™ € Ay for n > 0 since Aq is open. In this
case, we may replace w by w" and assume w € Ag. Then we have the following.

Lemma 2.2.2. The topology on Ag is wAg-adic. Moreover, we have A = Ag[ww™1].

Proof. For any open neighborhood U of 0 in Ay, we show that (wAg)™ C U for all sufficiently large
m. we may assume U = I"™ for some ideal of definition I C Ay. We see from Definition 2.2.1(2) that
w™ — 0, and hence w™ € U = I"™ for m > 0. Since I™ is an ideal, this further implies (wAy)™ C U.
On the other hand, for any m > 0, we need (wAp)™ = w™Ap to be open. But this is true because
the multiplication-by-w™ map is a homeomorphism A — A. O

Conversely, start with any ring Ao and the nonzero-divisor w € Ag, we define A = Ag[ew™!] and
put topology on A by declaring that Ay is open, where the topology on Ay is w-adic. In this case, A
is a priori a topological group and we can check that the multiplication is continuous. Then A is Tate
with Ag is being ring of definition and w( being a pseudo-uniformizer.

Definition 2.2.3. A non-archimedean field is a field K equipped with the absolute value |-|: K — Rxq,
such that
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o |- | takes at least 3 different values, and

o the topology on K induced by | - | is non-archimedean and complete. (We do not require that

| - | is discretely valued.)

Example 2.2.4 (Tate rings). Let K be a non-archimedean field.

(1)
(2)

The ring K is Tate with a ring of definition Ox = {x € K: |z| < 1}. Moreover, for any
w € KX, it is a pseudo-uniformizer if and only if |w| < 1.

Let A be a topological K-algebra, where we require that the map K — A is a homeomorphism
to its image. Then A is Tate if and only if there is an open subring Ay C A such that
{zAp: x € K*} is a neighborhood basis of 0 in A. (Note that each x4y is automatically open
in A, since multiplication by z is a homeomorphism.) In this case, any pseudo-uniformizer w
in K is also a pseudo-uniformizer in A.

Let (A, | - |]) be a normed K-algebra, namely A is a K-algebra and | - ||: A — R is a map
satisfying that

[}

lz|| = 0 if and only if z =0,

[z + yl| < max(|lz[], [y])),

IAz]| = |A| - ||| for any A € K and « € A,

[yl < llz[l - lyll, and

e

We define the topology on A by the metric (z,y) — ||z — y||. Then A is Tate by the criterion
in (2). Indeed, we can take Ay as in (2) to be {a € A: |jal| < 1}.

[¢]

o

o

O

Definition 2.2.5 (Power-bounded elements).

(1)
(2)

In a topological ring A, a subset S C A is bounded if for any neighborhood U of 0, there is a
neighborhood V' of 0 such that S-V C U.
An element a € A is called power-bounded if {a™: n > 1} is a bounded subset of A. We denote

A% := {power-bounded elements},

A% = {topologically nilpotent elements}.

Exercise 2.2.6. Prove the following assertions.

(1)

For any topological ring A, we always have A% D A%,

If A is Huber, then A° is a subring of A.

If A is discrete, then every subset is bounded, and A° = A.

If A is Tate with a ring of definition Ay and a pseudo-uniformizer w, then S C A is a bounded
subset if and only if S C w™ ™A for some n > 1.

Let K be a non-archimedean field, and let (A, ] - ||) be a normed K-algebra. Then S C A
is a bounded subset if and only if sup,cg|s]| < oco. If || - || is further multiplicative (i.e.
llzyl| = ||z| - ||y|| for all z,y € A), then we have A° = {a € A: ||a|| < 1}.

(Gauss Lemma.) Let (A,| - ||) be a normed K-algebra. Let B = {a € A: ||a|]| < 1}, and
J={a € A: |a|| <1}. Then B is a subring, and J is an ideal of B. Assume that the image
of || -||: A = Ry is equal to the image of |- |: K — Rxq. Then the ideal J is prime if and
only if || - || is multiplicative.

Proposition 2.2.7. Suppose A is a Huber ring and B C A is a subring. Then the following are

equivalent:

(1)
(2)

B is a ring of definition in A;
B is open and bounded.

Proof. We leave the implication (1) = (2) as an exercise. For (2) = (1), we need that the topology of
B is J-adic for some finitely generated ideal J C B. Choose Ay C A a ring of definition and I C Ag
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an ideal of definition. Take a finite set T' C Ay generating I as an ideal in Ay. For each integer n > 1,
we write T for the set of all monomials of degree n formed by elements of T'.

Since B is assumed to be open, we have I* C B for some k >> 0 as {I*}}, is a neighborhood basis of
0 in A. (Here I* denotes the k-th power of I as an ideal of Ag.) We fix such a k and define J := T*B,
which is a finitely generated ideal of B. It remains to prove that the topology on B is J-adic.

For any n > 1, we have J" = T"*B. (Here J" denotes the n-th power of J as an ideal of B.) Since
B D I", we have J* D T [" = ["k*+" <hich implies that J™ is open.

Conversely, for any neighborhood U of 0 in B, we need to show that a sufficiently high power of
J is contained in U. As B is assumed to be bounded, there is a neighborhood V of 0 in A such that
V- B C U by Definition 2.2.5(1). There is an integer n such that I™ C V, and hence I - B C U. But
I" - B D J", which completes the proof. O

Corollary 2.2.8. Suppose A is a Huber ring. Then A is bounded if and only the topology on A is adic
defined by some finitely generated ideal.

Note that if A is Huber with a ring of definition Ay, then Aj is bounded (which is one direction of
Proposition 2.2.7). For any a € Ay, the set {a"} is contained in Ay, and hence bounded. It follows
that Ay C A°. In particular, A° is an open subring of A. Moreover, we have the following.

Exercise 2.2.9. When A is a Huber ring, A° is the union of all possible rings of definition in A.
Moreover, this union is filtered, i.e., the union of any two rings of definition is contained in a third.

Definition 2.2.10. Let A be a Huber ring. We call A uniform if the subring of power-bounded
elements A° is bounded, i.e., A° itself is a ring of definition.

Example 2.2.11. Any normed K-algebra (4,] - ||) with || - || multiplicative is uniform since A° =
{a € A: |a|| <1} is bounded (cf. Exercise 2.2.6(5)).

Example 2.2.12. The following are some examples and non-examples of Huber and Tate rings.

(1) A discrete ring A is always Huber with the ring of definition A and ideal of definition (0).

(2) Any non-archimedean field K is Tate. Note that K = Ok and K% = mg. The ring of
integers Ok is also Huber but not Tate.

(3) Continue with (2). The ring of formal power series Ok [T, - ,T,] is equipped with the adic
topology defined by (w, T, - ,T,), where @w € mg. It is Huber and bounded, but not Tate.

(4) Similarly, for any discrete ring R, the ring of formal power series R[T},---,T,] is equipped
with the (T3, - ,T,)-adic topology. It is Huber and bounded, but not Tate.

Example 2.2.13 (Affinoid algebra). For any non-archimedean field (K, |- |), consider
A=K(Ty, -, T,y ={f(Th, - ,Ty,) € K[T1,--- ,Ty]: coefficients of f tend to 0}.

It is equipped with the Gauss norm

-1l A— Rxo, > aTh — suplai| k.
ieN” K3

Then (A4, | -]]) is a normed K-algebra, and hence Tate. Moreover, in the notation of Exercise 2.2.6(6),
we have

B={feK(T, - ,T,): all coefficients of f are in Ok}
and

J={fe K({,- - ,T,): all coefficients of f are in mg}.
Note that B/J = (O /mg)[T1,- - ,Ty,], which is an integral domain. Hence by that exercise, || - || is

multiplicative. Then by Exercise 2.2.6(5) and Example 2.2.11, A is uniform and we have
A’ =B ={f € K(T\,---,Ty,): all coefficients of f are in O}.
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This ring is also denoted by Ok (17, -+ ,T,). Note that this is the w-adic completion of O[Ty, -+ ,T,)
for any pseudo-uniformizer w € mg.

The objects in Example 2.2.12 and 2.2.13 are all uniform. The following comes a non-uniform
example.

Example 2.2.14. Let A = Q,[T]/T?. Define Gauss norm on A as before. Then A is a normed
Q,-algebra and hence Tate. However, A° = Z,, +Q,T is unbounded. So A is non-uniform. (Note that
the Gauss norm on A is no longer multiplicative.)

2.3. Definition of adic spectra.

Definition 2.3.1. Suppose A is a Huber ring.
(1) A subring AT C A is called a ring of integral elements if it is open and integrally closed in A
and if it satisfies AT C AY.
(2) When A" C A is a ring of integral elements, we call the pair (A, A™) a Huber pair.

Our goal is now to define Spa(A4, A1) for a Huber pair (A, AT).

Definition 2.3.2. Let A be a topological ring. By a valuation on A we mean a pair (v,I"), where
e [ is a totally ordered abelian group written multiplicatively.
e v: A— T'U{0} is a map such that
o v(ab) = v(a) - v(b),
o v(a+b) < max(v(a),v(d)), and
o v(1) =1, v(0) = 0.
Here 0 is a formal symbol outside I (whose neutral element is denoted by 1), and we keep the
conventions v >0 and v-0=0-+v =0 for all v € T

We call v continuous if for any a € A the set {b € A: v(b) < v(a)} is open.

Exercise 2.3.3. Given a valuation (v,I") on A as above, we have the following.

(1) T is torsion-free, and thus for any a € A, the condition v(a™) = 1 for some n > 1 implies
v(a) = 1. In particular, v(—1) = 1.

(2) For any a,b € A such that v(a) # v(b), we always have v(a + b) = max(v(a), v(b)).

(3) The continuity of v is equivalent to the following condition: For any converging sequence (a,,)
in A with limit a,
(a) If v(a) # 0, then v(a) = v(ay) for n > 0;
(b) If v(a) = 0, then for any b € A such that v(b) # 0, we have v(a,) < v(b) for n > 0.

Fact 2.3.4. Let (v,T") and (v/,I”) be two valuations on A. Then the following are equivalent:
(1) For any a,b € A, v(a) < v(b) if and only if v'(a) < v'(b).
(2) There exist subgroups I'y < T and I’} < I such that T'; U{0} and I'; U{0} contain the images
of v and v’ respectively, and there exists an isomorphism I'; = T’} such that the resulting
bijection T'y U {0} = T") U {0} takes v to v'.

Definition 2.3.5. Say v and v’ are equivalent via ~ in the case (1) or (2) of Fact 2.3.4.
Definition 2.3.6 (Adic spectrum). Let (A, A1) be a Huber pair. Define its adic spectrum to be
Spa(A, AT) = {(v,T") continuous valuation on A: v(AT) <1}/ ~.

The topology on Spa(A, A1) is generated by sets of form

U (;) — (v € Spa(A, AM): o(f) < vl(g) # 0}

for some fixed f, g € A.
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For any finite subset 7' C A and g € A, we write

v(5)=Nv(;)

This is an open set in Spa(A4, AT). If T' = {t1,--- ,t,}, we also write

)

Definition 2.3.7. A subset of Spa(A, AT) is called rational if it is of form

()

where T is a finite subset of A generating an open ideal in A, namely such that T'A is open. (If A is
Tate, any open ideal must be equal to A.)

Lemma 2.3.8. Rational subsets form a basis of topology of Spa(A, A™) and the basis is stable under
finite intersections.

Proof. From Definition 2.3.6, we see the topology of Spa(A, A1) is generated by open subsets of form
U(f/g). We need to show that U(f/g) is a union of rational subsets. For this, let Ay be a ring of
definition, I C Ay be an ideal of definition, and T" be a finite set of generators of I as an ideal of Aj.
IfveU(f/g), then v(g) # 0, and hence by the continuity of v we know that {h € A: v(h) < v(g)} is
an open neighborhood of 0. Then for sufficiently large k& we have T% C I* ¢ {h € A: v(h) < v(g)}. In
other words, v € U(T*/g). Hence we have
k
()-ur(m)
g k>1 g

It remains to show that (f,T*) is an open ideal of A for each fixed k. This is clear as it contains I*.

We now check that the intersection of two rational subsets is rational. Let T}, T5 be finite subsets
of A generating open ideals, and let g1,g2 € A. Then we need to check that U(Ty/g1) NU(T2/g2) is
rational. This set is equal to

U ({t1t27t192;t2911 t1 €T, € Tz}) .
9192
Here in the “numerator” we could have deleted the elements t1to, but then the remaining elements
may not generate an open ideal of A. The point here is that the elements t1ts for ¢; € T} and to € Ts
already generate an open ideal of A, the verification of which we leave as an exercise. O

Remark 2.3.9. An open subset of Spa(A4, A™) of the form

T
g
for a finite set 7' C A may or may not be a rational subset, if we do not require that T generates an

open ideal. (Tt could still be rational, since it may have some other presentation U(7”/g’) where T" is
a finite set generating an open ideal.) When it is not rational, it could be non-quasi-compact.

2.4. Geometry of adic spectra.

Theorem 2.4.1 (Huber, cf. [Hub93, Theorem 3.5(i)]). Let (A, AT) be a Huber pair. The adic spectrum
X = Spa(A, AT) is a spectral topological space, i.e., it satisfies
(a) X has basis of topology {T;}ic1 satisfying that each T; is quasi-compact and that for any i,j € I
there is k € I such that T; N T; = Ty;
(b) X is quasi-compact;
(c) each irreducible closed subset of X has a unique generic point. (This property is called “sober”.)
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Moreover, the rational subsets of X form such a basis and in particular every rational subset is quasi-

compact.

Remark 2.4.2. A topological space is spectral in the sense of Theorem 2.4.1 if and only if it is homeo-
morphic to Spec B for some ring B.

Fact 2.4.3. A topological space (X, 7)) is spectral if
o (X,T) is Ty, and
o there exists a different topology 7’ on the same underlying set X, such that (X, 7") is quasi-
compact and there is a collection {U;} of clopens® in 7’ generating 7.

Moreover, in this case, every U; is quasi-compact for the topology induced from 7.

Proof Sketch of Huber’s Theorem 2.4.1. Let Cont(A) be the set of equivalence classes of continuous
valuations on A, and let Spv(A) be the set of equivalence classes of all valuations on A. We then have

Spa(A, AT) C Cont(A) C Spv(A).

For any ideal I of A such that v/T is equal to v/.J for some finitely generated ideal .J, Huber defines
a subset Spv(A4, ) C Spv(A), which is independent of the topology on A. This definition is technical
and we omit it. We take I := A% . A to be the ideal generated by A%. In this case, we have

Cont(A) C Spv(A4,1).

We define the topology on Spv(A) and Spv(A, I) in the same way as in Definition 2.3.6. On Spv(A4, ),
one can further define rational subsets
U - )
g

in the same way as in Definition 2.3.7, except that one replaces the condition “T'A is open” by the
condition “I C TA”. (For our particular I, these two conditions are equivalent, but the second
condition is in terms of only the pair (A, I), not the topology on A.)

We will need auxiliary topologies on each of the three spaces Spa(A4, A*), Spv(A,I), Spv(A). Let
Spa(A, AT) denote the new topology on Spa(A, AT) which is the coarsest such that every rational
subset is clopen. (This is more refined than the original topology on Spa(A, AT).) Similarly, we
define Spv(A,I) using the notion of rational subsets of Spv(A4,I). In addition, we define a new
topology on Spv(A), denoted by Spv(A)’, to be generated by subsets of the form {v: v(f) < v(g)}
or {v:v(f) < wv(g)} for f,g € A. (Note that Spv(A)’ is more refined than the original topology on
Spv(A), since the latter is generated by {v: v(f) < v(g)} N {v: v(0) < v(g)}.)

It is easily checked that Spv(A) and all its subspaces are Tp. Thus in view of Lemma 2.3.8 and
Fact 2.4.3, in order to prove the theorem it suffices to prove that Spa(A4, AT)’ is quasi-compact. This
is proved in the following three steps.

Step I. Reduce to showing that Spv(A, I)’ is quasi-compact.

It turns out that for any v € Spv(4, I), v is continuous if and only if v(f) < 1 = v(1) for all f € A%,
(This equivalence is not true for a general element v € Spv(A).) Such elements v form the complement
of the rational subset U(1/f) in Spv(A,I). Also, for v to lie in Spa(A, AT), we have the condition
v(f) <1 = v(1) imposed for every f € A'. For each f, this condition defines the rational subset
ﬁ({f, 1}/1) C Spv(A,I). Consequently, Spa(A, AT) is the intersection of certain subsets of Spv(A4,I)
which are either rational subsets or complements of rational subsets of Spv(A, I). Thus the image of
the inclusion Spa(A, AT)" — Spv(A, ) is closed. Moreover, this inclusion is a homeomorphism onto
its image, since every rational subset of Spa(A, AT) is the intersection of Spa(4, AT) with a rational
subset of Spv(A4,T).

N clopen is a subset that is simultaneously closed and open.



THE HODGE-TATE PERIOD MAP ON PERFECTOID SHIMURA VARIETY 15

Step II. Reduce to showing that Spv(A)" is quasi-compact.

This is done through constructing and studying a natural retraction r: Spv(A) — Spv(A,I) for
the inclusion Spv(A,I) < Spv(A). We need the following property: For any rational subset U =
U(T/g) C Spv(A,I) with VTA > I, we have r—1(U) = {v € Spv(A): Vf € T, v(f) < v(g) # 0}.
(This seemingly harmless statement is not true without the condition vVTA O I.) It easily follows that
r induces a continuous map Spv(A4)" — Spv(A,I)’. Since r is surjective and Spv(A)’ is quasi-compact,
we conclude that Spv(A4, )’ is quasi-compact.

Step III. Prove that Spv(A)’ is quasi-compact.

Each v € Spa(A) gives rise to a binary relation | on A, namely f|g if and only if v(f) > v(g). The
resulting map

Spv(A) — {0,1}4x4
is injective with closed image. Here we equip the target with the product topology of the discrete
topology on {0, 1}, which is quasi-compact by Tychonoff’s theorem. Clearly the subspace topology on
Spv(A) defined by the above injection is exactly Spv(A)’. O

Remark 2.4.4. Similar methods of proof also show that Cont(A) and Spv(A) are spectral.

Theorem 2.4.5 (Huber’s reconstruction theorem). Suppose (A, AT) is a Huber pair.
(1) Spa(A, AT) =0 if and only if A = {0}, i.e. the mazimal Hausdorff quotient of A is 0.
(2) Given any f € A, we have f € AT if and only if v(f) < 1 for all v € Spa(A, AT).

Remark 2.4.6. We have the following strengthening of Theorem 2.4.5(2). For any subset .S of A, define
Xs={veCont(A): v(f) <1forall feS}.
Then we have inverse bijections
{all possible rings AT C A} {all possible subsets X C Cont(A) of form}
—

of integral elements X = Xg, where S is any subset of A

At Spa(4, A1)
{feA:v(f)<lforallve X} i X.

Example 2.4.7. We analyze Spa(A, AT) when A is a field.

(1) Let K be a field. Recall that a subring R C K is called a wvaluation subring if we have
Vfe K*,f € Ror f~! € R. Then there are inverse bijections

Spv(K) = {all valuations v: K — I"'U{0}}/ ~ «——— {valuation subrings R C K}
ON R,={feK:v(f)<1}
(’UR,FR) i R.

Here, as for the image of R, we write

o 'gp = K*/R* as an abelian group, together with the total order defined by the rule f < g
if and only if f/g € R.
o vg: K — (K*/R*)U{0}, the natural projection map.
(2) Consider the Huber pair (K, K™T) for a discrete field K. Here KT is any integrally closed
subring of K. Then the bijection in (1) restricts to a bijection

Spa(K, K') +—— {R C K valuation subring such that R D> K*}.

Now we work with the special case that K™ is itself a valuation ring. As an exercise, check

that any valuation subring of K is integrally closed in K. We have the following facts:

(a) Any subring R of K containing K is automatically a valuation subring. All valuation
subrings of K are local.
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(b) There are inverse bijections
{R valuation subring of K: R D Kt} «——— Spec K™

R+ mpg

(K" )y P
Here mp denotes the unique maximal ideal of R.

In this special case where K™ C K is a valuation subring, we have
Spa(K,K') = Spec K.

This is in fact a homeomorphism.

(3) Let K be a non-archimedean field with a ring of integral elements K+. Further, assume K™ is
a valuation subring, i.e. KT is an arbitrary open bounded valuation subring of K. If v is any
valuation on K such that v(K ') < 1, corresponding to the valuation ring R with the unique
maximal ideal mp, then v is continuous if and only if mg D K°. Hence

Spa(K, KT) = {R valuation subring of K: R > K+, mp D K"}
>~ Spec(K+/K%).

Note that this formula is also true in case where K is discrete with the valuation subring KT,
by the discussion in (2).

Definition 2.4.8 (Affinoid field). A Huber pair (A, AT) is called an affinoid field if A is a field whose
topology is either discrete or non-archimedean (induced by |- |: A — R3¢) and if AT is a valuation
subring.

Our previous discussion shows the following:
Proposition 2.4.9. Let (A, A") be an affinoid field. Then Spa(A, A*) is homeomorphic to Spec(A+/A).
Example 2.4.10. (1) By Example 2.4.7(3),

Spa(Qy, Zy) = Spec(Zy, /pZy) = {*}.

More precisely, in this case, the single point is the class of the usual absolute value | - |,.
(2) Consider v € Spa(Zy,Z,). We see v1(0) C Z, is always a prime ideal supp(v).
o If supp(v) = (0), then v extends to a continuous valuation of Q,. This forces v to be |- |,
as in (1).
o If supp(v) = (p), then v factors through v : F, — I" U {0}, where T € Spa(F,,F,) = {x}.
(Here [F,, has the discrete topology. As an exercise, check that Spv(F,) = Spa(F,,F,).) If
we write vy for the single point of Spa(F,,F,), then v9(0) = 0 and vo(x) = 1 for = # 0.
Combining these, we see

Spa(Zp,Zp) ={l |p»v0}

where | - |, is the usual p-adic absolute value and

vol) = 4 7 pfw,
0, otherwise.

2.5. The adic closed unit disc. Let (K,| - |x) be an algebraically closed non-archimedean field.
Consider the uniform Tate ring

A=K({T) = Za”T":aneK, a, —+0asn— oo,
n>=0
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whose topology is given by the multiplicative Gauss norm || f|| = max,>1 |an|x. We have

A = Op(T) = ZanT”: an € Ok, ap —>0asn— oo
n=0

(See Example 2.2.13 for details.)

Exercise 2.5.1. In any normed K-algebra (A, | - ||) such that || - || is multiplicative, the set {a €
A: ||la|| € 1} is an integrally closed subring.

By the exercise (A, AT) = (K(T), Ox(T)) is a Huber pair. We then consider X = Spa(A, AT). The
goal is to describe its points. For any 2 € Ok and r € [0, 1], we introduce the notations
Byr={yeK:|y—z|lg <r},
By, ={yeK:ly—uxlg <r}.
Note that B, , C Bp 1 always holds. For any f € A and any « € By 1, we can evaluate f(x) € By ;.

Exercise 2.5.2 (Maximum modulus principle). Fix an element f € A. Let € By and r € [0, 1].
(1) If r € |K |k, then the function B, , — Rx¢ via y — |f(y)|x has a maximum, and it is reached
on By, — BY,.
(2) For all r € [0, 1], define
Vo (f) = sup [f(y)lk.

yEBm,r
Check that v, , € X is a continuous valuation on A such that v, ,(A%) < 1. Further, if we
have f(T) =", an(T — x)", then

Vg (f) = max|an |k - 7.
(3) For any fi, fo € A, we always have

Uw,r<f1f2) = Ua:,r(fl) . 'Uw,r(fQ)'
(4) We have v, , € Spa(A4, A™).

We are going to give a complete classification of points in X = Spa(A, A™), with A = K(T) D AT =
AY = Og(T), into certain types. It easily follows from the above exercise that for each x € O and
r € [0,1], the function v, ,: A — R is a continuous valuation such that v, ,.(f) < 1 for all f € AT.
Thus v, can be viewed as an element of X.

Construction 2.5.3 (Points in the adic closed unit disc). Assume I' = Ryg for (I)—=(IV) in the
following.

(I) Classical points: vy 0: f — |f(x)|k for z € Ok.

(Il) vy, with z € Ok and r € (0,1] N |K*|k.

(III) vy, with z € Ok, for r € (0,1] but » ¢ |K*|x. Note that for » = 1, the point v, , is
independent of z, and is nothing but the Gauss norm || - || on A. We denote this point by S,
called the Gauss point.

(IV) The points of this type only exist when K is not spherically complete. In this case, we can
have a family F = (Bg,ry O Basrs O -+ ) of closed balls with descending radii r; such that
N, Bz,,,r, = 0. (It follows that lim; 7; > 0.) Then we can construct vy € X by

’U]-'(f) = l%f Vg ,rn (f)
Note that this can happen when K = C,,.

In contrast with I' = Ry before, we now assume I' = 7% x Ry for some generator 7 such that
r <~ <1forallr e (0,1). That is, we equip the abelian group I' 2 Z x R+ with the total order such
that (y",r) < (v, s) if and only if r < s or (r = s and n > m).

Lect.5, Oct 17
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(V) Rank 2 points: Start with a point v, , € X of type (II) or (III) for z € Ok and r € (0,1). We

have

(Z an(T — x>“> = sup |ay| - "

We are to modify this point by ¢ € {£1}, to get vy, € X defined by

Vg,r.e (Z an(T - x)n) = Slrllp |an| : (T’ : 76)n € (’72 X R>0) U {O}

More precisely, the new points of type (V) arises from the following recipe:
(i) Ifr ¢ |K*|k, i.e. vy, is of type (III), then we do not get new points because vy ;e ~ Vg,
i.e., they are equivalent valuations.
(ii) If r € |K*|k, then vy e % vy ,. We see vy, 11 depends on (z,7) only via By, and
Vg, r—1 depends on (x,7) via By .
Now for the type (II) point v, 1 = S (i-e., the Gauss point), we have a new type (V) point
Vg,1,41 Dy the same recipe as above, for each € Og. The point v, , 11 depends on x only
via B;J. Note that the valuation v;;,—1 sends T' € At to 47!, which is > 1. This violates
the defining condition for Spa(A, AT). Hence we do not have points in Spa(A, AT) of the form

Ug,1,—1-

In fact, for vy, of type (II), the closure of {v, ,} in X consists of v, , and certain type (V) points.

More precisely:

e When r € (0,1),

(2.5.1)

{ver} ={vert U{ver r41: Beyr = By, €. ' € By} U{vgr -1}

Moreover, for 2/, 3" € By ., we have vy . 1 = vgr 41 if and only if BY, . = B2, ., if and only
if |#" — "] < r. Thus if we choose an element u € K such that |u| = r and denote by [ the
residue field of K, then the set {vy/ ,41: &’ € By} is in bijection with Al(I) under the map
Vg .41 > the residue class of (2’ — x)/u € Ok. This bijection extends to a bijection

{vw,r} — Plla

where we send v, , to the generic point and send v, , —1 to the closed point co. The above
bijection turns out to be a homeomorphism.

e When r =1, we have v, , = 3, and

W ={B}U{vp i 41: 2" € Og} = All.

Such points in Construction 2.5.3 form Spa(A, AT) whose geometry can be illustrated as a tree. A

more precise description is as follows.

Construction 2.5.4 (Visualizations of points of each type in Construction 2.5.3). Let € Ok and

consider the curve

Cyp={vg,r: 7 €[0,1]} C X.

For r = 0, v, , is a classical point; for r = 1, vz, = f is the Gauss point. We thus regard C, as a

curve going from 3 to the classical point v, ¢ as r decreases. However, we caution that the natural

map [0, 1] — C, is not a homeomorphism.

(I) In the following picture, the curve below denotes the set of all classical points.
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B

Cy
Ok

Each € Ok corresponds to a point v, 1 of type (I) via C,. Hence the classical points are
“endpoints” of the tree X, and the set of them can be identified with O.

We consider v, by fixing 0 # r € |[K*|x and say r = |z — y| with  # y. Then B, , = By,
and hence vy, = v, . Thus the two curves C, and Cy meet at v, ,. Moreover, for ' € [0,7),
we have B, ,» # By, and 80 vy, # vy ., which means that C, and C, actually depart each

other at v, , when they go downward. Thus the point v, , of type (II) is a branching point.
g

Note that the branching dos not happen along the upward direction, i.e., vy ,» = v, for all
" € [r,1]. In other words, the segment of C, from S to v, , is equal to the segment of C, from
B to vg .

Any point v, , of type III is not a branching point. Therefore, the points of type (II) and (IIT)
are seen as “limbs” of the tree X.

By Construction 2.5.3, each point vz of type (IV) is represented by a path on the tree starting
at [, passing through infinitely many branching points, but never reaching an end point. We
can write this path as

Cyp Cy
(ﬂ - Vay,ry = Vagry — )

where the symbol C,, on the i-th edge means that the part of the path from v, |, , to vy, r,

agrees with the corresponding segment of the curve C;,. Therefore, the point vr in the tree
X looks like “the limiting point of ramification points on limbs”.

Again, start with a point v, of type (II) for r < 1. For each distinct ray C, passing through
Vg, downward, we uniquely have vy, 1. On the other hand, from v,, we have a unique
direction going upward, corresponding to vy, 1.

Therefore, we see points of type (V) of rank 2 lie in the closure of points of type (II), or more
heuristically, they are “infinitesimally close to the limbs” of the tree X. For r = 1, namely
for vy, = 3, the visualization is similar, except that we do not have the “upward direction”,
corresponding to the fact that we do not have the point vy, 1.
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Proposition 2.5.5. All points of X are given by Construction 2.5.3.

Proof. Step 1. Use the completion containment
(K[T], O [T]) C (K[T]", O[T]") = (K(T), Ok (T))
to get a natural map (by restricting the valuations)
Spa(K(T), Ok (T)) — Spa(K[T], Ox[T7).
It is a general fact about completions of Huber pairs that the above is a homeomorphism. We will
discuss this general fact later in Proposition 2.6.8.

Step II. Classify points of rank 1.

The rank-one points are by definition continuous valuations v: K[T] — R such that v(Ok[T]) < 1.
Fix such a v. We define r, = v(T — z) for any © € Ok. Since T' — x € Og[T], we have r, € [0, 1].
Thus we can form the ball B, , C By,. Using axioms for v, one can show for any z,y € Ok that

Ty KTy = By, C By,
One can also show that for any f € KT,

’U(f) = wggK Vg, r, (f) = inf sSup |f(y)|K

€0k N:;

by reducing to the case where f is a linear polynomial. Combining these two observations, we can find
a decreasing family (By, », D Bg,.v, O -+ -) such that

o(f) = nf g, . (f)-
This forces such v to be one of the points of type (I)~(IV).
Step III. Classify the rest of the point of X.
In general, for any Huber pair (A, A7) and any (v: A — T'U{0}) € Spa(4, A1), the subset
supp(v) == v~ 1(0)

of A is a prime ideal. (Moreover, the map supp: Spa(A4, AT) — Spec A, v + supp(v) is continuous.)
We define the residue field of v to be the residue field of supp(v), namely

k(v) == Frac(A/ supp(v)).
This v induces a valuation k(v) — I'U{0}, along which the inverse image k(v)* of {y € I': v < 1}U{0}
is a valuation subring of k(v). Consequently, k(v)™ is a local ring with residue field
k(v) = {z € k(x): v(x) < 1}/{z € k(z): v(z) <1} = k(v)*/{z € k(x): v(x) < 1}.

Note that the natural image of A" in k(v) is contained in k(v)™.

Fact 2.5.6. Suppose for X = Spa(4, A"), the Huber pair (4, A") is Tate. Then:
(1) If v,w € X such that v ~» w, i.e. w € {v}, then supp(w) = supp(v).
(2) Fix a point v. Then
{v} =5 {R valuation subring of k(v): im(A" — k(v)*) C R C k(v)T}
— {valuation subrings of x(v) containing im(A™ — k(v))}
= Spa(k(v),im(A"T — k(v))).
Here the first isomorphism sends w to k(w)™, which is a valuation subring of k(w) and we have
k(w) = k(v) by part (1). The second isomorphism is induced by the projection k(v)* — k(v).
In the third line, we equip x(v) with the discrete topology. Moreover, the composition of the

above three bijections is a homeomorphism.
(3) For each w € X there exists a unique point of rank 1, say v € X, such that w € {v}.
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Back to considering the adic closed unit disc Spa(K|[T], Ok [T]). We have already classified all rank
1 points. By Fact 2.5.6 (3), in order to classify all points, we only need to compute the closure of
every rank 1 point. This closure can be computed using Fact 2.5.6 (2). Now all points of rank 1 are
closed except for those of type (II). Take vy, of type (II) with < 1. Then we have k(vy,) = I(T)
and im(A" — k(vy,)) = I. Here [ is the residue field of K. Thus we have

{020} = SpalU(T),1) = P}.
By unwrapping the constructions it is not hard to see that the type (V) points actually realize this
bijection, in the way described in (2.5.1). Similarly, for » = 1, we have x = [(T) and im(A™) = [[T].
The situation is different because
Spa(I(T),[T]) = A;.

2.6. Completion.

Definition 2.6.1. Let A be a topological ring. Say A is complete if A is Hausdorff and every Cauchy
filter basis has a limit in A.

Fact 2.6.2 (Universal property of completions). There is a continuous map A — A such that A is
complete and this map is universal for all continuous maps A — B for complete B. The A-algebra A
is called the completion of A; it is unique up to unique isomorphism as a topological A-algebra.

Example 2.6.3. If A has I-adic topology for an ideal I, then A is the I-adic completion of A, i.e.,
A= hm A/I™. However, we caution that A may not be [-adically complete as an A-module, that is,

we may not have A & IL” A / I™A. This is not a contradiction with the fact that A is complete. When
we say that Ais complete, it is with respect to some intrinsic topology on A on account of A being a
completion of A; in the current case the topology of A is the inverse limit topology coming from the
discrete topology on A/I™ for all n. This topology is in general different from the I-adic topology on
A. All these problems go away when [ is finitely generated, as we will see below.

The following facts can be more important.

Fact 2.6.4. If A has [-adic topology for a finitely generated ideal I, then the topology on A is
(I - A)-adic.

This can be further extended to the case where A is Huber with a ring of definition Ay and an ideal
of definition I. Denote by ¢: A — A the completion map, and let A\O be the closure of ¥(4p) in 2,
equipped with the subspace topology inherited from A. The notation go clashes with the notation for
the completion of Ag, but the two are actually isomorphic as stated below.

Fact 2.6.5. The map ¢: Ag — Eo identifies the topological ring EO with the completion of Ag. In
particular, by Fact 2.6.4, the topology on Ag is (1(I) - Ag)-adic. Here note that (1) - Ay is a finitely
generated ideal in AO Moreover, Ao is an open subring of A In particular, A is Huber with a ring of
definition Ay and an ideal of definition W(I) - Ap.

Remark 2.6.6. Notation as above, we have a natural isomorphism
A /To ®a, A.
One can actually use the right hand side to construct X, and then show that it satisfies the character-
izing universal property.
Fact 2.6.7. If A is Huber with completion map ¢ : A — ﬁ, then we have a bijection.

{open subrings of A} «~ {open subrings of A}

R P(R)
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Moreover, 1(R) is identified with the completion of R itself. Under this bijection, A° is sent to (A)°.
This bijection also restricts to the following bijections:

{rings of definition of A} +~— {rings of definition of A}
and

{rings of integral elements of A} +~— {rings of integral elements of E}

By virtue of the last bijection, starting with any Huber pair (A, A™) we can take its completion (g, 121\“‘)
which is another Huber pair, where A is the completion of A, and A7 is the closure of the image of
AT in A, itself identified with the completion of A*. By restricting the valuations, we get from the
process above a natural map

©: Spa(A, AT) —s Spa(A, A™).

The following proposition claims the homeomorphism which appeared in the proof of Proposition
2.5.5 before.

Proposition 2.6.8. The map ¢: Spa(g, E*) — Spa(A, A") is a homeomorphism that preserves
rational subsets.

To prove Proposition 2.6.8, we need the following two lemmas.

Lemma 2.6.9 (Minimum modulus principle). Suppose (A, AT) is a Huber pair and take a quasi-
compact subset C C Spa(A, AT). Suppose f € A is such that v(f) # 0 for allv € C. Then there is a
netghborhood U of 0 in A such that for all g € U we have

o(f) >wv(g), YveC.

Proof. Choose a ring of definition Ay C A and an ideal of definition I C Ay. Write I =T - Ay for some
finite set T' C Ay. For each integer n > 1, the set

X, ={v € Spa(A, AT): v(t) <v(f) #0 forall t € T"}

is open. For any v € C, since v is continuous, we see v(f) # 0 implies that {g € A: v(g) < v(f)} is an
open neighborhood of 0, and hence contains I"™ D T™ for some n > 0. This means that v € X,,. Thus
we have
Cc U X,
n>1
Note each t € T satisfies t™ — 0, so for any continuous valuation v on A we must have v(¢) < 1.
(Indeed, for sufficiently large n, t" will lie in {f: v(f) < v(1) = 1}, which is an open neighborhood of

0 in A. Hence v(t") < 1 and so v(t) < 1.) Thus X,, C X,,41 C ---. It then follows from the quasi-
compactness of C' that C' C X, for some n > 0. If so, we can take U = I"*! and then v(g) < v(f) for
all g € U and all v € C. (For the strict inequality again use v(t) < 1 for any t € T'.) O

Example 2.6.10. To illustrate the situation of Lemma 2.6.9, we consider the adic closed unit disc.
Let (K,|-|) be an algebraically closed non-archimedean field. Take
X = Spa(K(T), Ok (T)).
Then the following subset is open in X:
C=X—{voo}={veX:v(T)+#0}.

Take f =T. We have vg ,n+1| € C for all n € N. Also note that

U0,|p"+1\(pn) = ‘pn‘ > vO,lp"‘HI(T) = |pn+1|.

Since p™ — 0 in A, this means there does not exist an open neighborhood U of 0 in A satisfying the

conclusion of Lemma 2.6.9 for f = T. Thus C is not quasi-compact. This C' is an example of an open
subset of Spa(A4, AT) which is not quasi-compact; in particular it is not a rational subset.
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Lemma 2.6.11. Suppose (A, AT) is a complete Huber pair. Take
U=U (fh'" 7fn> c Spa(A,A+)
g

as a rational subset with open ideal (f1,..., fn)A. Then there is a neighborhood V' of 0 in A satisfying
the following condition: For all f € f; + V withi=1,...,n, and for all ¢’ € g+ V, we still have

U_U(flv"‘af/)
g

and (f1,..., f1)A is an open ideal as well.
Proof. We need to make use of the following

Claim. Let B be aring, and J =11 B+ - + r,, B a finitely generated ideal. Assume
that B is J-adically complete. Then for any r} € ry + J2,--- ;7! € r,, + J2, we have
J=riB+---+r B.

To prove the claim, we need to show that the B-module map ¢ : B™ = B®™ — J (by, -+ ,by) —
> b1} is surjective. Both sides are J-adically complete, so it suffices to show that ¢ induces a surjection
between the graded modules associated to the J-adic filtrations on the two sides. (See [Bou64, III.2,
No 8, Cor.2].) Thus we need to show for each i > 0 that ¢ : J'B™/JH B, — J'J/J*1] is surjective.
For this, clearly it is enough to show that {r{,---,7/ } U J? generates J as a B-module. This is true
since the ideal generated by {r{,---,r,,} U J? is contained in the ideal generated by {ri, -+ ,rm},
which is J. The claim is proved.

We now start the proof of the lemma.

Choose a ring of definition Ay in A and an ideal of definition I = (r1,...,7r,)Ag C Ap. Since
(f1,--, fn)A is open, we may assume that I C (f1, -, fn)A. We then write

n
i = E aijfi, aij € A.
=1

Let Vy be a neighborhood of 0 in A such that a;;Vo C I? foralli=1,...,n and j =1,...,m. Then
for arbitrary f! € f; + Vo, if we define

n
r_ g
T, = § al]fi?

we get 1 € 1; + I? and so (r},...,70 )Ag = I by the claim. But this implies that (f],...,f,)A is
again an open ideal in A.

We now show that if we further shrink V4, then we can ensure that U = U(
fi.g' € Vo.

Set fo = g, and U; = U(%) for : = 0,---,n. Thus U = Uy. Since U; is rational, it is
quasi-compact. Since f; is non-zero on U;, using Minimum modulus principle (Lemma 2.6.9) we find

5 e ) for arbitrary

a neighborhood V of 0 in A such that for any f € V, any 0 < i < n, and any v € U;, we have
v(fi) > v(f). We may and shall assume that V C V5 n A%.
We now show that for arbitrary fi € fo+V,---, f}, € fn +V, we have

va" 7f/)
( Iz Y.

Clearly this will imply the lemma. Denote the left hand side by Uj.
We prove Uj D Up. Let v € Up. Then v(fy) > v(fi — f{) foralli =0,--- ,n, since f; — f{ € V. We
then have
o(ff) < max(v(fi),v(fi — f})) < v(fo) = v(fo — fo + fo) = v(f5)-

Hence v € Uy.
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Finally, we prove U} C Up. Let v € U} and suppose v ¢ Uy. We analyze the situation in two cases.
Case one, v(f;) =0 for all ¢ = 0,--- ,n. In this case, supp(v) is an ideal containing all f; and hence
it is open. Since fo — f§ € V. C A% we have fo — f} € \/supp(v) = supp(v). Thus v(f}) =0, a
contradiction with the assumption that v € Uj.

Case two, v(f;) # 0 for some i. We may assume that ¢ is such that v(f;) = max(v(fo), -+ ,v(fn)).
Since v ¢ Uy, we have either v(fy) = 0, or v(f;) > v(fo) for some j. In all cases, we have v(f;) > v(fo).
In particular ¢ # 0. Then v(f}) < max(v(fo),v(fo — f§)) < v(fi) = v(f}), a contradiction. O

Now we are ready to prove that ¢: Spa(zzl\7 121\“‘) — Spa(A, AT) is a homeomorphism which preserves
rational subsets.

Proof of Proposition 2.6.8. 1t is easy to show that ¢ is bijective. Then it remains to show that ¢
preserves rational subsets, since after that it will automatically follow that ¢ is a homeomorphism. It

1

is not hard to show that ™! maps a rational subset of Spa(A4, A™) to a rational subset of Spa(ﬁ, ﬁ*)

Thus it remains to show the following:
e If U = U({f1,...,fn}/g) is rational in Spa(A, A*) and (f1,..., fn)A is open, then o(U) is
rational in Spa(A, A™T).
The natural map ¢: A — A has dense image, so by Lemma 2.6.11, without loss of generality, we may
assume f; = t(h;) and g = ¢(k) with k € A and h; € A for i = 1,...,n. This further implies

p(U)=U (hl"'k' ’h") :

So the proof would be complete if (hq,...,h,) is an open ideal in A.

In general, we observe that U is quasi-compact since it is rational, and ¢(k) = g is non-zero on U.
By Lemma 2.6.9, there is a neighborhood V of 0 in A such that for all y € V we have v(y) < v(g) for
allv e U.

Recall from Fact 2.6.5 that if we take a ring of definition Ag C A and an ideal of definition I C Ay,
then Ay is a ring of definition in A whose topology is (.(I ) - go)—adic. Therefore, up to replacing I by
a power of itself, we can choose I such that ¢«(I) C V. Thus for each y € I, v(¢(y)) < v(g) holds for
any v € U. This implies that v(y) < v(k) for all v € p(U). Consequently,

o hla"'7hn_ hlu"'7hn7T
o) = (Mt ) g (e,

in which T is a finite set of generators of the ideal I in Ag. Then {hy,---,h,} UT generate an open
ideal in A, and so ¢(U) is rational. O

Proposition 2.6.12. Let U C Spa(A, A") be a rational subset. Then there is
o a complete Huber pair (Ay, Af;) associated to U, and
o a map of Huber pairs pg: (A, AT) — (AU,A$),
such that
(1) The map Spa(Ay, Af;) — Spa(A, AT) induced by o is a homeomorphism Spa(Ay, Af;) — U,
and this homeomorphism preserves rational subsets. (Here rational subsets of U refer to those
rational subsets of Spa(A, AT) that are contained in U.)
(2) For each complete Huber pair (B,B™) together with a map ¢: (A, A") — (B,B™"), if the
induced map Spa(B, B*) — Spa(A, AT) factors through U, then ¢ factors uniquely through
©o, i.e.,

(A, Aty —* (B, B™)

|

|

=]
N }3.

|

(AUa A$)
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Proof. We only sketch the construction of (Ay, A§) It is not a priori clear that the construction is
independent of various choices. However, one proves that the construction indeed satisfies the universal
property as in the proposition, from which uniqueness follows.

Choose a ring of definition A9 C A and an ideal of definition I C Ag. We construct (AU,A?}) as

follows. Write
T
o= (2
g

where T is a finite subset of A generating an open ideal. We admit the following claim.

Claim. On A[1/g], there exists a unique ring topology such that Ay[T/g] is open with
(I - Ap[T'/g))-adic topology.

Here existence and uniqueness of a group topology (for addition) satisfying the same conditions is clear.
The key point is to show that this group topology is also a ring topology, i.e., that multiplication is
continuous. Granting the claim, we see A[1/g], equipped with the prescribed topology, is a Huber ring;
we then take its completion and denote the completion by A{T'/g). The integral closure of A*[T/g] in
A[l/g] is a ring of integral elements in the Huber ring A[1/g]. Hence the completion of it is a ring of
integral elements in A(T/g). We denote this ring of integral elements by A(T'/g)". In conclusion we
have obtained a complete Huber pair (A(T'/g), A(T/g)"), and this is our desired (Ay, Af). O

Remark 2.6.13 (Universal property of the A-algebra A(T'/g)). The map A — A(T/g) is universal among
the continuous maps ¢: A — B with complete B and such that ¢(g) is invertible and ¢(T")/¢(g) is
power-bounded? as a set in B.

2.7. The structure presheaf and adic spaces. Fix a Huber pair (4, A*) and let X = Spa(A4, A™).

Definition 2.7.1. Let W C X = Spa(A, AT) be an open subset. Define

Ox(W):= lim Ay, OF(W) = lim Al

ucw ucw
rational rational

Here in both projective limits, the transition maps in the projective system arise from the fact that,
for two rational sets U’ C U, the Huber pair (Ay/, A7) is an algebra over (Ay, Af).

We equip Ox (W) and O% (W) with the inverse limit topology coming from the topologies on Ay
and Af;. Inverse limits of complete rings are complete. Hence Ox (W) and OF (W) are complete rings.
Thus Ox and O} are presheaves sending open sets in X to complete topological rings. However, they
are not sheaves in general.

For a rational subset U C X, we have Ox (U) = Ay and OF(U) = A}. Since rational subsets form
a basis of the topology, the stalks of Ox and O} are given by

OX,:I: = hﬂ Ox(U) :thU7 O;r(z = thlJ;
zeUCX U U
U rational

Take z € X with corresponding valuation v: A — I' U {0}. For each rational subset U of X
containing z, one checks that v extends uniquely to a continuous valuation v: Ay — I' U {0}. Thus
we obtain a canonical valuation

vg: Ox,, — T U{0}.
Therefore, for a general open subset W C X, and for any f € Ox (W), the valuation v(f) for v € W
makes sense. Namely, we define v(f) to be the canonical valuation on Ox,, applied to the image of f
in Ox .

Fact 2.7.2. Consider X = Spa(A, AT). We naturally view (’)} as a sub-presheaf of Ox.

2A subset S C B is called power-bounded if Un S™ is bounded.



26 YIHANG ZHU

(1) For any open subset W, we have
OFX(W)={f € Ox(W):v(f) <1forallve W}

In particular, OF% is determined by Ox together with the canonical valuations on the stalks
of Ox.
(2) For each x € X, Ox , is a local ring whose residue field is isomorphic to

k(x) = Frac(A/ supp(x)).
(3) We have
(9};3: ={f € Ox,y:v.(f) <1}
Moreover, it is a local ring with maximal ideal {f € O}’m: vy (f) < 1}. Its residue field is

identified with the residue field of k(z)*. (Recall that k(z)* is the valuation subring of k(z)
corresponding to the valuation on k(x) induced by v,.)

Definition 2.7.3. A Huber pair (A, AT) is called sheafy if the presheaf Ox on X = Spa(A, AT) is a
sheaf.

Theorem 2.7.4. The Huber pair (A, AT) is sheafy in the following cases.
(1) A is discrete.
(2) A has a noetherian ring of definition.
(3) A is Tate and strongly noetherian, i.e., for each n > 1,

A(Ty,....\T,)) = {f € A[Ty,...,T,]: coefficients of f tend to 0 in A}
is noetherian.
(4) (A, A") is perfectoid, cf. [SW20, Theorem 7.1] and see Definition 3.1.1.

Definition 2.7.5. Let f: A — B be a continuous map between Huber rings A and B. It is of
topologically finite type (TFT) if
(i) B is complete,
(ii) there are rings of definition Ay C A and By C B such that f(A4y) C By,
(iii) B is a finitely generated algebra over f(A) - By, and
(iv) there is n € N and a surjective open continuous map

Ao(z1,...,xn) — By
of Ag-algebras.

Proposition 2.7.6. If f: A — B is of topological finite type, and A satisfies (2) or (3) of Theorem
2.7.4, then B also satisfies (2) or (3) respectively.

Proposition 2.7.7. Every non-archimedean field K is (Tate and) strongly noetherian.

Definition 2.7.8 (Adic spaces). We define a category ¥ as follows.

e Each object of ¥ is a tuple (X, Ox, {v: }zex), where
o X is a topological space,
o Ox is a sheaf of topological rings such that Ox , is a local ring for all z € X, and
o v, for each x € X is an equivalence class of valuations on Ox , such that supp(v,) is the
maximal ideal of Ox ;.
e Each morphism of ¥ is the data consisting of
o amap f: X — Y of topological spaces, together with
o amap Oy — f.Ox of sheaves of topological rings, satisfying the property that the induced
maps between stalks of Ox and Oy are compatible with the canonical valuations.
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An adic space is an object of ¥ that is locally isomorphic to Spa(A, AT) € ¥ for a sheafy Huber
pair (A, AT). Morphisms between adic spaces are by definition morphisms in ¥

Lect.7, Oct 24
Remark 2.7.9. The functor
(Sheafy Huber pairs)°® —— (Adic spaces)
(A, AT) ————— Spa(A, A™).

is in fact fully faithful.

In the sequel, we shall write Spa(A) for Spa(4, A*) in the occasion where A+ = A°.
2.8. Adic spaces arising from usual algebraic geometry.

2.8.1. Locally noetherian formal schemes. Locally, such a formal scheme is of the form Spf A, where
A is a noetherian topological ring which is complete with respect to the I-adic topology for an ideal
I C A. Then (A, A) is a sheafy Huber pair by Theorem 2.7.4(2). We obtain a functor

(Locally noetherian formal schemes) — (Adic spaces), X +—— X4

by gluing the local constructions
Spf A — (Spf A)*d = Spa(A4, A).

This functor turns out to be fully faithful.

We caution the reader that the underlying topological spaces of X and X2¢ are typically different.
For instance, Spf Z, has one point, and Spa(Z,, Z,) has two points.

The following situation is typical. Let K be a non-archimedean field. Assume that Ok is noetherian,
and pick a pseudo-uniformizer w € K*. Let X be an Og-scheme that is locally of finite type. We
can think of X as an integral model of X . By completing X along its special fiber, we get a locally
noetherian formal scheme X. (For example, one can take X = Spec A and see X = Spf (E) where A is
the w-adic completion @n A/w"™ equipped with the w-adic topology.) We then obtain an adic space
x4 over Spa(Op) (short hand notation for Spa(Ox, Ox)).

In this situation, X2 is locally of finite type over Spa(Of ). The meaning of “locally finite type” will
be defined later, in Definition 2.9.3. This condition allows us to take the generic fiber, i.e., the fiber
product X24 X Spa(0x) Spa(K) exists in the category of adic spaces. (Recall that Spa(K) is shorthand
notation for Spa(K,Ok).) We denote this fiber product by %f;d, and call it the adic generic fiber of
X3 or of X. Locally, if X2 (or any adic space locally of finite type over Spa(Of)) is of the form
Spa(A, A1), then the generic fiber is nothing but the rational open set in Spa(A4, A") consisting of v
such that v(w) # 0.

Example 2.8.1. Let K and Ok be as above. Consider the affine line X = Spec Ok [T]. Its completed
noetherian formal scheme is

X = Spf(Ok(T)),

where we recall that
O (T) = {ZanT”: an € Ok, an — 0}
n=0
is the w-adic completion of Ok |[T]. Accordingly,
%?,d = Spa(Ox(T)[1/p], Ox(T)) = Spa(K(T), Ox(T)),

which is the closed unit disc. Here O (T)[1/p] is equipped with the topology such that Ox(T) is
open. This can be regarded as the “good reduction locus in Xg”.
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2.8.2. Base changing a scheme to an adic space. We have an obvious forgetful functor

(Adic spaces) _forget | (Locally ringed spaces)

S S.

Namely, we view the structure sheaf of topological rings as a sheaf of abstract rings, and we forget the

distinguished equivalence class of valuations on each stalk of the structure sheaf.

Proposition 2.8.2. Let f: Y — Z be a morphism of schemes. Assume that f is locally of finite type.
Assume S is an adic space covered by Spa(A, AT) such that
o either A contains a noetherian ring of definition,
o or A is both Tate and strongly noetherian,
implying that (A, AT) is a sheafy Huber pair from Theorem 2.7.4. Let g: S — Z be a morphism of
locally ringed spaces. Then there exists an adic space R together with a morphism R — S of adic
spaces, equipped with a morphism R — Y of locally ringed spaces, satisfying the universal property
below.
e The following square diagram commutes, and for any adic space R' — S equipped with a
morphism R — Y making a similar diagram commutative, there exists a unique map R’ — R
of adic spaces fitting into the following commutative diagram

Y
— 7z
Moreover, R — S is locally of finite type (see Definition 2.9.3). For fized S — Z, the formation
of the adic space R over S is functorial with respect to the scheme Y over Z. That is, if we

have two Z-schemes Y1,Ys and a Z-scheme map Y1 — Yo, then we obtain two adic spaces
Ry, Ry over S together with a map Ry — Ry over S.

As an application of Proposition 2.8.2, we consider Z = Spec K, where K is a non-archimedean field.
For S = Spa(K) := Spa(K,Ok) and S — Z the obvious map (in fact, S = Z), and any K-scheme Y
locally of finite type, we get the fiber product

Y ><Spec K Spa(K)a

which is an adic space over Spa(K), still locally of finite type. We thus obtain a functor from schemes
locally of finite type over K to adic spaces locally of finite type over Spa(K). Here the proposition is
applicable since K is Tate and strongly noetherian.

Similarly, assuming that Ok is a DVR, we can take Z = SpecOg, S = Spa(Ok), and take
g: S — Y to be the “identity map”. That is, each of S and Z consists of two points, a generic point
n and a special point s. At the level of topological spaces we let g send s to s and send 7 to 7. At
the level of sheaves, we define Oz({n}) = K — Os({n}) = K to be the identity map, and define
0z(Z) = Oxg — Og(8) = Ok to be the identity map. We thus obtain a functor from schemes locally
of finite type over Ok to adic spaces locally of finite type over Spa(O).

We will sketch the construction of the fiber product in Proposition 2.8.2 at least in the affine case.
For this we need some preparations.

2.9. Power series with convergence speed. Fix a Huber ring A. A subset M C A is called
admissible if M is finite and M A is an open ideal. (This is non-standard terminology.) Let n > 1 be
an integer and My, ..., M, be admissible subsets. Define

AX )y = AXq, . X))y
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to be the ring of formal power series

> a4, X" € A[X]

satisfying the following “converging speed” condition: For any neighborhood U of 0 in E, we have
for all but finitely many indices v = (v4,...,v,) that a, € M{*MJ?*--- M} - U. In the sequel, we
abbreviate M{*M3?--- My~ - U as M" - U. This condition here can be understood in the following
way. Suppose My = --- = M,, = {w} for some @ € A%. Then our requirement is that a, — 0 in a
way faster than w1+ ¥ — (.

The topology of A(X) s is given as follows: For each neighborhood U of 0 in g, consider the subset

{Za,,X”: a, € M - U for all u} C A(X) s

We require these subsets for all U form a neighborhood basis of 0 in A(X) .

Fact 2.9.1. The ring A(X) ), with the above topology is a complete Huber ring, and the natural map
A — A(X) s is continuous.

Fact 2.9.2. Let A — B be a map of Huber rings. Then it is of topological finite type (cf. Definition
2.7.5) if and only if B is complete and there exists a continuous surjective open map of A-algebras
A(X)py — B for suitable n and M, .-+, M,.

Now fix a Huber pair (A, AT). Take My, ..., M, as before. Then we get a Huber pair
(A<X>JVI’ A<X>$I)v
where A(X)7, is the integral closure in A(X)ys of the subset {}_ a,X":a, € M" - At for all v}.

Definition 2.9.3. We say that a map between Huber pairs ¢: (A, AT) — (B, B™) is of topologically
finite type if there are admissible My, ..., M, in A together with a continuous surjective open map
@: A{X)yr — B extending p: A — B, and such that B exactly equals the integral closure in B
of $(A(X)7},). We say that a map between adic spaces X — Y is locally of finite type, if for each
x € X we can find an open Spa(B, BT) C X containing z, an open Spa(A, AT) containing the image
of Spa(B, BY), such that the map (A4,A%) — (B, BT) corresponding to the map Spa(B, B*) —
Spa(A, AT) is of topologically finite type.

Sketch of Proposition 2.8.2. We are now in a position to give the construction of the fiber product in
Proposition 2.8.2; at least in the affine case:

S > Z = Spec B[X1,...,X,]/1
Spa(4, A*) Spec B

The idea to do this is to use (A(X)ar, A(X)1,) to construct larger and larger “polydiscs” in A”™.
Namely, for varying M corresponding to stricter and stricter converging speed conditions, elements of
A(X)p have larger and larger “polydiscs of convergence” in A™. More precisely, these polydiscs are
given by Spa(A(X)u, A(X)}1,). If we take a suitable union of them, then we would obtain the desired
base change in the situation I = 0 with Z = A';. For general I, we need to take the quotient of each
(A(X)n, A(X)7,) by I in a suitable way.

Note that it is possible to fix a finite subset £ C A% such that E - A is open. For each integer
k > 1, E* is an admissible subset and we write

A(k) = A<X1,,Xn>Ek ’’’’’ Ek
and naturally get a Huber pair (A(k), A(k)™) from (A, AT) as explained before.
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If I = (0), the case would be easy, because we obtain Spec B[ X1, ..., X,]/I = A% and it suffices to
take

A% Xgpec B Spa(A, AT) = lim Spa(A(k), A(k)T).
k

Here for any h > k, we obtain a map (A(h), A(h)™) — (A(k), A(k)T). After taking Spa(—), the image
turns out to be a rational subset. Hence the direct limiting makes sense in the category of adic spaces.
In general, we have the map
gkt BIX1,..., Xo] —— A(k)

X, — X
extending B — A, which comes from
Spa(A, AT) — Spec B.

We write A(k)/I for the quotient of A(k) by the ideal generated by gi(I). There is a unique topology
on A(k)/I as a Huber ring such that the canonical quotient map A(k) — A(k)/I is continuous and
open. Define (A(k)/I)T to be the integral closure in A(k)/I of the image of A(k)*. It turns out
that (A(k)/I,(A(k)/I)") is sheafy, as A(k)/I either has a noetherian ring of definition or is Tate and
strongly noetherian, depending on which of the two properties the original A has. For each h > k, the

natural morphism
Ry := Spa(A(k) /I, (A(k)/I)") — Spa(A(h)/I,(A(h)/I)") = R
is an isomorphism onto a rational subset of Rj;. Then the desired base change is taken as
(Spec Blz1, ..., x,]/I) Xspec B Spa(A4, AT) == lim Ry..
k
O
Example 2.9.4. Take A =B = Q, and I = (0). Then we can take E = {p}. We aim to compute the

base change

R ——— SpecQ,[X]

[ |

SpaQ, —— SpecQ,
Following the recipe above, we get

Ak) = {ZanX": an € Qp, an/p™* — O}

n

and A(k)™ is the integral closure in A(k) of

AR)H = {ZanX": an/p™* = 0, a,/p"* € Zp} .

Note that we have an isomorphism
(A(k), A(k) ™) —— (Qp(X), Zp(X))
X pF X

which in particular shows that A(k)™ is in fact already integrally closed in A(k), so A(k)™ = A(k)*.
By this isomorphism, it is reasonable to call Ry = Spa(A(k), A(k)™) the closed disc centered at origin

of radius p¥. Tt is also easy to see that for k < h, the natural map R*¥ — R" is an isomorphism onto
the rational subset {v: v(X) < v(p~*) # 0}, which is another justification for this terminology.
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Remark 2.9.5. Let K be a non-archimedean field such that Ok is noetherian. Let 2 be a locally
finite-type scheme over Og. Then we have seen two ways of obtaining an adic space over Spa(K).
First: 3%‘17 where 3 is the formal scheme obtained by completing 2 along the special fiber. Second,
ffﬁd = ZK Xspeck OSpa K. The first is naturally an open in the second. Indeed, in the affine case
% = Spec Ok [Xy, -+ ,X,]/I and following the notation in the Sketch of Proposition 2.8.2 (applied to

A=B=K with Z = %, = SpecK[X1,---,X,]/I), we have
324~ Ry = Spa(A(0), A(0)1) © lim Ry = zpd,
k

3. PERFECTOID SHIMURA VARIETIES

3.1. Perfectoid spaces.

Definition 3.1.1. Fix a non-archimedean field (K, |- |) with residue characteristic p.

(1) Say K is a perfectoid field if | - | is non-discrete (i.e., |K*| is not a discrete subgroup of Rsq)

and the Frobenius map
®:=0Ok/p— Ox/p
sending x to xP is surjective.

(2) Fix a perfectoid field K asin (1). Let A be a Huber K-algebra, i.e., A is a Huber ring equipped
with a continuous homomorphism K — A. We say that A is perfectoid if it is uniform (i.e. A°
is bounded), complete, and such that ®: A°/p — A°/p is surjective.

(3) Let (A, AT) be a Huber pair such that A is a perfectoid K-algebra in the sense of (2). Then
we call (A, AT) a perfectoid Huber pair over K. Note that we do not require that (A, A1)
should be over (K, Ok).

The following lemma collects some basic facts about Huber algebras over a non-archimedean field.

Lemma 3.1.2. Let K be a non-archimedean field, A be a Huber ring, and ¢: K — A be a continuous
homomorphism. Assume that A is Hausdorff. The following statements hold.

(1) o(Ok) is bounded, and in particular it is contained in A°.
(2) For any ring of definition Ay C A, we have p~1(Ag) C Ok.
(3) ¢ induces a homeomorphism K — p(K).

Proof. If w € K* is a pseudo-uniformizer, then so is p(w) € A. Statement (1) then follows from
Lemma 2.2.2 (cf. also Exercise 2.2.6 (4)). Suppose (2) is false. Then there exists a pseudo-uniformizer
w € K* such that w~! € p~1(Ap). On the other hand p~1(Ap) is open and hence it contains @w" O
for some n > 0. We conclude that o(K) C Ag. By Lemma 2.2.2; any neighborhood of 0 in Ay contains
o(w)F Ay for sufficiently large k, which contains ¢(K). In particular 1 € Ag is in the closure of 0,
contradicting with the assumption that A is Hausdorff. Having proved (2), we see that ¢(Ok) is open
in AN p(K). It then follows from Lemma 2.2.2 that ¢: K — (K) is an open map, and hence a
homeomorphism. O

Remark 3.1.3. There exist more general notions of perfectoid Huber rings without reference to perfec-
toid fields. We will not need them.

Exercise 3.1.4. Let K be a non-archimedean field, and let A be a Huber K-algebra that is Hausdorff
and uniform. Then A is a normed K-algebra with norm satisfying ||1]] = 1.

Hint. Fix a pseudo-uniformizer @ € K. Show that
||| = inf{|A]: A € K* A"tz € A"}

is a norm on A (satisfying all axioms in Example 2.2.4) and defines the same topology
as the original topology on A. Then show that ||1|] = 1 using the fact A° N K = Ok,
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which follows from Lemma 3.1.2. (Alternatively, if ||1|| < 1, then ||1]| = 0 and A is
not Hausdorff.)

Thus for every perfectoid algebra A over a perfectoid field K, we know that A is a complete normed
K-algebra (= Banach K-algebra).

Fix K a perfectoid field.

Fact 3.1.5. Let (A, AT) be a perfectoid Huber pair over K. Then it is sheafy. Moreover, for any
rational subset U in X = Spa(A4, A1), the Huber K-algebra Ox (U) is perfectoid.

Definition 3.1.6. A perfectoid space over K is an adic space covered by Spa(A4, A1) such that each
(A, A") is a perfectoid Huber pair over K. (Again we do not require that Ox C AT, so a perfectoid
space over K may not admit a map to Spa(K, Ok).)

Caution 3.1.7. The subtlety lying in Definition 3.1.6 is that when (A4, A*) is a Huber pair, with A a
K-algebra, such that Spa(A, AT) is a perfectoid space over K, it is not known whether A is a perfectoid
K-algebra.

Example 3.1.8. The following are perfectoid fields:

@p(ﬂp"o)/\v Qp(pl/poo)A~

Let us verify the first one. Call the field K. The extension Q,(u,r)/Q, is totally ramified of degree
@(p"), which is unbounded as r — 400. Hence the absolute value on K is non-discrete. Let z € Ok /p.
Then x can be lifted to some element of Og, (,,) = Zp[ppr] for some finite r, say & = Y7, a;(*, where
a; € Z, and ( is a primitive p"-th root of unity. Let £ be a p"*!-th root of unity such that &7 = (.
Then y = Y, a;&" € O satisfies that y? = z in O /p. (Note that a = a; mod pZ,.)

Example 3.1.9 (Perfectoid unit disc). Let K be a perfectoid field. Consider

A= K(TV),
which collects all formal power series ZueZ[l o]0 a,T", satisfying that for any neighborhood U of 0
in K, we have a, € U for almost all v. The Gauss norm || - || on A is defined by
-1 > aT” s suplay.
veZ[1/pl>o0 v

Then (A, ] - ||) is a complete normed K-algebra. We have
{a€ A:|a| <1} = OK<T1/”°°> = {Za,,T” € A:a, € Ok for all 1/},
Since || - || shares the same image as | - |, and since
{a € A: |la] <1}/{a € A: [la]| <1} = k[TV/P7]

is an integral domain (where k is the residue field of K), we conclude by Exercise 2.2.6 and Example
2.2.11 that || - || is multiplicative, that A is uniform, and that A® = Og(T'/?7). Since | - || is
multiplicative and since A = {z: ||z|| < 1}, we know that A° is integrally closed by Exercise 2.5.1.
Thus (A, A°) is a complete, uniform, and Huber pair over Spa(K, Ok).

(Note that A° is also isomorphic to the w-adic completion of O [T/P”], where w is a pseudo-
uniformizer in K*.)

We check that (A, A) is a perfectoid Huber pair. It remains to check that ®: A%/p — A%/p is
surjective. This is obvious since A°/p = (O /p)[T*/?”], and since ®: O /p — Ok /p is surjective by
K being a perfectoid field.

The perfectoid space Spa(A, A%) is referred to as the perfectoid closed unit disc.

Fix a perfectoid field K and a perfectoid space X over K.
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Definition 3.1.10. Let (X;); be an inverse system of adic spaces over K, whose transition maps are
assumed to be quasi-compact and quasi-separated. Let ¢ = (¢;); be a system of compatible maps
pi: X = X;. We say ¢ induces

X ~lim X;
i
(where the right side is merely a formal symbol but not necessarily an adic space) if
(i) ¢ induces a homeomorphism
i
where |X| and |X;| are underlying topological spaces of X and X;, respectively, and the

projective limit is equipped with the inverse limit topology.
(ii) X is covered by opens Spa(A, AT) with each A being perfectoid and such that the subset

U U m(0x,(U) - A)
i UCX;
of A is dense. Here the second union is over all affinoid opens U = Spa(Ox (U), 0% (U)) in X;
containing the image of Spa(A4, A1) — X 5 X;.
The above definition makes precise the sense of ~ in Theorem 1.4.1(1).

Example 3.1.11. We have

Spa(K(T"/P™), 0k (T"?7)) ~ lim Spa(K(T), Ox(T)).
T—TP
Here all objects in the inverse system are copies of Spa(K(T), Ox(T)), indexed by N. The transition
maps between adjacent copies are given by K(T) — K(T),> a,T" — >_ a,,TP".

The following is a useful fact.

Proposition 3.1.12. If we have X ~ @Z X, induced by ¢ as in Definition 3.1.10, then the pair
(X, @) represents the functor
(Perfectoid spaces over K) ———— Sets
Y %iini Homg (Y, X;).

In particular, (X, ) is unique up to a unique isomorphism.
3.2. Review of abelian schemes.

Definition 3.2.1. Let S be a scheme. An abelian scheme X — S is a proper smooth group scheme
that is geometrically connected.

As a group scheme, an abelian scheme X is equipped with group operations
m: X xg X — X, e:S—X, i: X —X,

which respectively serve as the roles of multiplication, identity, and inverse operations. We also call e
the neutral section.

Fact 3.2.2. The group structure on an abelian scheme is automatically commutative. Further, any
S-scheme map X — Y between abelian schcmes preserving neutral sections is automatically a group
homomorphism.

Definition 3.2.3. An isogeny between abelian schemes is a homomorphism f: X — Y that is surjec-
tive and quasi-finite. (It follows that f is finite flat.)



34 YIHANG ZHU

From now on, in all our discussions of abelian schemes, we tacitly assume that the base scheme S is
noetherian and that the abelian scheme X — S is projective, i.e., X admits a closed embedding into
P(€) for a coherent sheaf & over S. (This assumption turns out to be automatic if S is the spectrum
of a field, but not in general.)

Fact 3.2.4. Consider the functor
EX/S: Tr'—— {(L’L)}/ =,
where on the right side,

e [ is a line bundle over X7 = X xg T, and
o v:epL = Or is an isomorphism of Op-modules. Here er is the neutral section er: T — Xp.

Then this functor is represented by an S-scheme Picx,g which is smooth and locally of finite type over
S. Moreover, Picx/g is a group scheme with respect to the tensor product of line bundles.

Fact 3.2.5. There exists a unique clopen subscheme XV of Picy /s such that fiberwise it is the neutral
connected component (i.e., the connected component of the group scheme containing the neutral
section). Moreover, the following are true.

(1) XV is projective over S. In particular, it is an abelian scheme over S, called the dual abelian
scheme of X.

(2) XVV = X canonically.

(3) For each isogeny p: X — Y, we can canonically obtain the dual isogeny ¢¥: YV — XV by
pulling back line bundles along ¢.

Construction 3.2.6 (Mumford line bundle and Mumford homomorphism). Let X — S be an abelian
scheme. Starting with a line bundle L on X, we consider

m: X xgX — X, pri: XxgX—X (i=1,2)
and define
M(L) = (m*L) ® (priL~") @ (pr3L ™),
which is a line bundle on X xg X = Xx. Also, restricted to the neutral section X — Xx, 9(L)
is canonically trivialized. Hence we get an X-valued point of Picy,g, namely a map X — Picx/s.
Because X is fiberwise connected, the map X — Picx /g factors through X V. This leads to an S-scheme
morphism
AL): X — XV,

One easily checks that A(L) preserves the neutral sections, and hence A(L) is a homomorphism.
Fact 3.2.7. Let S = Speck for some field k. If L is ample, then A = A(L) is an isogeny. Moreover,

in this case it is symmetric, meaning that A\: X — XY and \V: XVV = X — XV are the same
morphism.

Remark 3.2.8. Suppose k is algebraically closed and S = Spec k. Take a closed point z € X (k). Then
A(L)(z) € XV (k) C Picy (k) = Pic(X)

is given by the isomorphism class of the line bundle t:L ® L™! on X, where t,: X — X is the
translation-by-z map y — x + y.

Definition 3.2.9 (Polarization). Let X — S be an abelian scheme.
(1) A polarization of X is a homomorphism
A X — XV
such that for any geometric point s of S, the fiber morphism

)\gl Xg —>X§/
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is of form A(Lg), where Lz is an ample line bundle on X5. Note that any polarization X is
always a symmetric isogeny.
(2) We say a polarization X is principal if it is an isomorphism.

Remark 3.2.10. If \: X — XV is a polarization, then there exists a line bundle L on X which is
relatively ample over S, such that [2]\ = A(L).

3.3. Frobenius and Verschiebung. We now consider abelian schemes specifically over characteristic
p. Let S be the base scheme, assumed to have characteristic p > 0. Let X — S be an abelian scheme.
Then we have the absolute Frobenius Fr: S — S, which is the identity on the underlying topological
space and sends each f € Og to fP. Similarly, we have Fr: X — X. We define X® by the pullback
diagram below, which is an abelian scheme over S as well. We also define F: X — X®) to make
the following diagram commute, and call it the relative Frobenius. Note that F is a morphism of
S-schemes, unlike Fr: X — X which does not preserve the structure morphism X — S.

X
|
S

Fact 3.3.1. The relative Frobenius F: X — X is an isogeny of degree p?, where g is the relative

>

F

i:

dimension of X over S. If S = Speck with k a field, then F' is purely inseparable.

There is also a naturally defined homomorphism V: X®) — X called the Verschiebung. It is in
fact defined for any flat commutative group scheme X over S. The definition is a bit complicated, and
we omit it. We have

VoF=[p: X — X
in this generality. In the current case with an abelian scheme X — S, the above relation uniquely
characterizes V, and implies that V is an isogeny of degree p9. (Recall that deg[n] = n29.)

Remark 3.3.2. We have F oV = [p]: X®») — X®) Indeed, we have FoV o F = Fo[p| = [p|o F.
Since F is an isogeny, we can cancel it from the right and get F o V = [p].

3.4. Siegel modular varieties. Fix a vector space V over Q of dimension 2g, together with a sym-
plectic pairing (i.e., non-degenerate alternating form) 1. We can and do fix an identification V' = Q%9

such that v is defined by
0 I
_ ot g
Yz, y) = <_Ig 0) Y-

Note that the natural lattice Z29 C Q29 is self-dual with respect to ¢. The symplectic similitude group
GSpy, = GSp(V, %) is the reductive group scheme over Z whose points in a commutative ring R are
given by

GSpay(R) = {x € GLgy(R): v(z) € R*, 2 <—0]g %) 2 =v(z)- (_OIg 15,) } .

We write G for GSp,,. The scalar v(z) defines a map v: G — Gy, and thus there is a short exact
sequence
1— Sp(V,v) — G G,,, — 1.
Fix a prime p. Suppose K, is mazimal, and choose K? to be a small compact open subgroup of
G(Z™). This means

K, =G(Z,), K’ CT(N)? ={geGZP): g=1mod N}
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for some integer N > 3 with p{ N. We then write
K =KPK, C G(Ay).

Theorem 3.4.1 (Mumford). There is a smooth quasi-projective scheme Xk over SpecZy, of dimen-
sion g(g + 1)/2, representing the functor

S {(A»)\ﬂ?)}/ gv
where

o A is a projective abelian scheme of relative dimension g over S,
e )\ is a principal polarization of A, and
o 1) is a KP-level structure on A.

We omit the general definition of the notion of a KP-level structure for now. In the special case
KP = T(N)®), such a structure is equivalent to the choice of an isomorphism

n: A[N] = (Z/NZ)%

of group schemes such that the alternating form on A[N] given by A corresponds to ¥ mod N on
(Z/NZ)?9 up to scalar.

We give more explanations about the isomorphism above. On A[N], the alternating form given by
A refers to the Weil pairing

id,\)

& A[N] x A[N] 9N AIN] x AV[N] =5

where e is a canonical map. We explain e in the special case where S = Speck for an algebraically
closed field k. Let z € A[N] and L € AV[N]. Then L is a line bundle on A such that L& = 0 ,. Since
L € AV, we have for each integer n > 1 that L®™ = [n]*L, where [n]: A — A is the multiplication-
by-n map. Thus we can fix an isomorphism between line bundles ¢: [N]*L — O 4. Then we have a

commutative diagram

R

t;[N]*L — 1204 = Oyu.
[N]*L z Oa
Here the left vertical isomorphism comes from the fact that x is of N-torsion and hence [N] = [N]ot,.

The right vertical map is an automorphism of @4 whose N-th power is trivial, i.e., a section of uy.

We have explained that the alternating form on A[N] given by \ refers to e*. The requirement that
the isomorphism n: A[N] = (Z/NZ)?9 should take e* to vy mod N up to scalar really means that
we are able to relate a uy-valued alternating form on (Z/NZ)%9, i.e. e*(n(-),n(-)), to a Z/NZ-valued
alternating form, i.e. 1 mod N, after some choice of isomorphism uy — Z/NZ of group schemes
over S. Thus the precise meaning of a level I'(N)®)-structure is as below.

Definition 3.4.2. A level-T'(N)®) structure is a pair (1,t), where
e 7 is an isomorphism of group schemes A[N] — (Z/NZ)?9 over S, and
e t: uny — Z/NZ is an isomorphism of group schemes over S
such that 7 takes ¢ o e* to ¢ mod N
We observe that the functor S — {t: uy — Z/NZ over S} on Z,)-schemes is represented by
Spec Z(y,)[Cn] together with a particular choice of (. Hence there is a morphism
XF(N)(p)Kp — Spec Z(p) [CN}

In the sequel, for general K? (including K? = T'(N)®)), we still denote a KP-level structure by a
single letter 7.
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Theorem 3.4.3 (Shimura and Deligne). The C-valued points have a uniformization
Xk.0(C) = G(Q\H3, x G(Af)/K.
Moreover, the Q-scheme Xk g is the Shimura variety associated to the data (G,Hfg, K).

About the last point, here the difficulty lies in what one means by “the” Shimura variety. Shimura
and Deligne discovered a way to uniquely and abstractly characterize a canonical model over Q for the
C-variety G(Q)\”Hfg x G(Ay)/K. The characterization is modeled on the theory of complex multipli-
cation, but it does not refer to any moduli problem involving abelian schemes. In the current case,
Xk, turns out to satisfy that characterization.

For smaller compact open subgroups U C K, = G(Z,), we still have smooth quasi-projective Q-
schemes

finite étale

Xkru,Q XKkrK,,Q-

These are also Shimura varieties, and we have
Xkru,0(C) = G(Q)\H3, x G(As)/KPU.

Moreover, one can easily describe the moduli problem over Q represented by Xkruy g for the following

choices:
U=T(p") ={9 € G(Zy): g=1modp"},

U=Ty(p") = {g €G(Zy):g= (; *> mod p" (with size g blocks)}
*k

U=Ts{p") ={g€To(p"): v(9) =1 mod p"}.

(Here the subscript “s” stands for “special” or “Scholze”.) Thus we have
Kp = G(Zp) D To(p") D Ts(p") D T(p").

Our definition of T's(p™) refers to [Sch15, Definition II1.1.1], but note that there is possibly a typo in
Scholze’s paper (namely he considers the condition det(g) = 1 as opposed to v(g) = 1).
We now describe the moduli problems over Q for the above three cases of U.

(1) For U=T'(p"), Xkru,g represents

S {(A N0 1)} =,

where
e (A N\ n) € Xk(S5), and
o (1p,1t,) is a level-p™ structure, which has the same meaning as in Definition 3.4.2 with N
replaced by p™.
In this case, we get a natural morphism of Q-schemes

Xeorpmy,o — Spec Q(e2™/P") (A, N\, 0, np, tp) — Ly

as the latter represents the moduli over Q of isomorphisms g, % Z/p"7Z. We shall denote
this morphism by %,,.
(2) For U =Ty(p"™), Xkru,g represents

S—{(A,An, D)}/ =,

where
o (A, \,n) € Xk(5), and
e D is a subgroup of order p™¢ in A[p"] (whose order is p?"9), which is totally isotropic with
respect to e, i.e., e*(D, D) = 0.
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(3) For U =Ty(p"), Xkru,q represents
S—{(A4,An, D, tp)}/) =,
where (A,\,1,D) € Xgory(pr), and t, is an isomorphism ji,n s Z/p"Z. In particular, we
have
tp: Xkor,(pm),0 — Spec Q(e™i/P™),
We have
Xerrry,o — Xm0 — Xkeror),0 — Xk
(A, X n,1p,tp) —— (A, A\, n, D, t,) —— (A, \,n,D) —— (A, \,n).

Here 1,: A[p"] — (Z/p™)? leads to D = 1, ' (Dy), where Dy is the subgroup (Z/p"Z)? of (Z/p"Z)*
given by the embedding of the first g coordinates.

Varying the level, we have a commutative diagram of Shimura varieties over Q: (we omit writing
the subscripts Q)

XKpF(pn+1) e XKpl"(pn)

J |

Xkrr, (prt1) —— Xker,(pm)

| |

XKpFO(pn+1) _— XKpFO(pn).

e.g., the top horizontal map sends (), t,) to their restrictions to p™-torsions, and the bottom horizontal
map sends D to D[p"] = DN A[p"]. They all map to Xk g, and all the maps between the Shimura
varieties of different levels are finite étale. Moreover, the following diagram commutes, and the square
is Cartesian:

Xkrr(pr) —
\ tp \
XKPFS(pn) i Spec@(62m/pn)

l l

XKPFO(pn) —_— Spec Q

Notation 3.4.4. Since K? is always fixed, we can simplify the notation by denoting Xk, = Xkrk, z,
over Zj,. For each U € {T'(p™),T'o(p"),s(p™)}, denote Xy := Xkru,g, over Q.

We will also fix a compatible system of p™-th roots of unity (,» € @p. Then we have a commutative
diagram

Xrpr) Xr. (o)

Moreover the change-of-level maps, from level p"*! to level p", is compatible with Spec Q,((yn+1) —

Spec Qp(Cpn)-

3.5. The sheaf of translation-invariant differentials. Let 7: A — S be an abelian scheme. Let
g be the relative dimension, and let e: S — A be the neutral section. Then we have an isomorphism

6*9114/5 zmQh/S



THE HODGE-TATE PERIOD MAP ON PERFECTOID SHIMURA VARIETY 39

of vector bundles of rank g on A. Intuitively, the left side is the cotangent space of A at e, which is
isomorphic to the space of all translation-invariant global differentials on A; the right side is the space
of all global differentials on A, which are all automatically translation-invariant since A is proper.

More precisely, we have a natural isomorphism u: w*e*Q}A /s = Q}q /s for all group schemes A over
S; see [EvdGM, (3.15)]. The geometric meaning of this isomorphism is that regular functions times
translation-invariant differentials give rise to all differentials (up to taking a sum). Now for an abelian
scheme A over S, a standard application of cohomology and base change yields that the natural map
Ogs — m.04 is an isomorphism. (Here we use that 7 is proper, flat, surjective, and all its geometric
fibers are connected and reduced.) It then easily follows that for any locally finite free Og-module
L, the adjunction map L — mw,n*L is an isomorphism. Applying this to L = B*Q}q/sv we obtain
e*Q}A/S = ﬂ*w*e*Q}L‘/S = W*Q}L‘/S as desired. Here the last isomorphism is . (u).

Consider the following line bundle on S:

wass = N(e" Uy g)-
We describe the functoriality of w4,s. Given a pullback diagram

AT 4

|

s —2 S,
we have 9114,/3, = f*Q,lq/s- The neutral section e’: S — A’ = A xg S’ is equal to (e o g,id). Hence
Qa9 = g*(e*Qyyg). Thus,
warys = g'ways.
In particular, if S is of characteristic p and we take g = Fr to be the absolute Frobenius on S, then
Waw /s EFriwy s = wffs-

In fact, we have Fr*L = L®P for any line bundle L on S.
Similarly, if f: A” — A is a homomorphism of abelian schemes over S, then there is a canonical
map f *Qh /s (2114, /s Pulling back along the neutral section S — A’ we obtain a canonical map

wa/s —» War/s-
3.6. Hasse invariant in characteristic p. Let A — S be an abelian scheme, and assume that S has
characteristic p. Recall from §3.3 that we have Frobenius and Verschiebung maps

F:A— AP v AP 4 4

with the composition V o F = [p]. Here F, V, and [p] are isogenies of degrees p?, pY, and p?9,
respectively.

Definition 3.6.1. By functoriality, the homomorphism V: A®) — A induces a map

wa/s — Waw g = w%fs.
This gives a canonical section of w%g_l), called the Hasse invariant of A/S, written as

Ha(A/S) € T(S, 5% ).

Proposition 3.6.2 (Equivalent conditions for ordinary). Let k be an algebraically closed field of
characteristic p. Let A be an abelian scheme over S = Speck of dimension g. Then the following are
equivalent:

(1) #Alp](k) = p.

(2) Alpl(k) =2Z/pZ.

(3) The mazimal étale quotient of Alp] has order p9.
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a(A/k) # 0.

)
5) The p-divisible group A[p™] is isomorphic to (pipe)? X (Qp/Z,)9.
) H

) Ker(V: AP — A) is an étale group scheme.

Definition 3.6.3. When one of the conditions in Proposition 3.6.2 holds, we say A is ordinary.

Remark 3.6.4. In (1) and (3), p? is the maximal possible number. Similarly, if we consider p™-torsion,
then p™ is the maximal possible number.

Partial Proof of Proposition 3.6.2. The equivalence between (1)—(5) can be given by standard argu-
ments. We consider (3)(6)(7) below. Since F: A — AP is an isogeny, we have an isomorphism
A/Ker(F) = A® induced by F. The relation V o F = [p] then implies the following short exact

sequence
0 — Ker(F) — Alp| £, Ker(V) — 0,

where Ker(F') and Ker(V') are group schemes of order p9 and Ker(F) is connected. Thus the maximal
étale quotient of A[p] is isomorphic to that of Ker(V'). Hence (3) is equivalent to (7). Moreover,

(7) <= V is étale <= V induces an isomorphism on cotangent space at e <= (6).
This completes the proof. O

Definition 3.6.5. Let A be an abelian scheme over S, where S is of characteristic p. We say A is
ordinary if for any geometric point § — 5, the abelian scheme Az is ordinary.

Corollary 3.6.6. Keeping the notations above, A is ordinary if and only if Ha(A/S) € T'(S, wf%fl))

1s invertible. In particular, if this holds, then

w%g_l) ~ Og.

Notation 3.6.7. We write A®") := (A®""))®)_ Define
Fr:A— APY s APY) 4

by iteration. For instance, F"t! is the composition of F: A — A®") followed by the relative Frobenius
for A®™):
'n.+1)

F: AP 5 (AP")) ) = 4

It is easy to see that V™ o F = [p"]: A — A. We observe that for algebraically closed k, since
A®P) = A/Ker(F), we have

AP [p](k) = Alp](k)/(Ker(F))(k) = A[p](k).

Consequently, if A is ordinary, then so also is A®), and then by induction so is A®").
Using the short exact sequence

0 — Ker(F™) — A[p"] ——— Ker(V") — 0,

by the same argument as before we see that A is ordinary if and only if Ker(V") is étale, generalizing
Proposition 3.6.2(7). (Indeed, when the base is an algebraically closed field, F™ is purely inseparable
since it is a composition of such maps. Hence Ker(F™) is connected.)



THE HODGE-TATE PERIOD MAP ON PERFECTOID SHIMURA VARIETY 41

3.7. Lifting to characteristic 0. Let R be a p-adically complete flat Z,-algebra. Let A be an abelian
scheme over Spec R. Consider A; := A®g R/p.> Assume A; is ordinary. Then for n € N, we have the
short exact sequence

(*) 0 — Ker(F") — A;[p"] — Ker(V") — 0.

Here F': A} — A(lp ) and V: Agp ) A; are the Frobenius and Verschiebung maps. From the following
proposition, this short exact sequence lifts canonically from R/p to R.

Proposition 3.7.1. Assuming A; is ordinary, there exists a unique closed subgroup scheme C, =
Cn(A) of Alp™], which is flat over R and lifts Ker(F™).

Definition 3.7.2. The unique subgroup scheme C), in Proposition 3.7.1 is called the n-th canonical
subgroup of A.
Using Proposition 3.7.1, the sequence (x) has a canonical lift to R, read as
0— C, — APp"] — Ap"]/C,, — 0.
By definition, the reduction of A/C,, modulo p is exactly A;/Ker(F") = Agpn), and the natural map
fiA— A/C,

is a canonical lift of F": 4; — Agp "), Recall that Agp ) s still ordinary. Hence we can consider
canonical subgroups of A/C,,. We denote the first canonical subgroup by

Ci = C1(A4/Ch).

Clearly, C,, is an order p™¥ subgroup scheme in A[p"], the latter having order p?*9. It follows that
Alp"]/C,, also has order p™9. Using f, we identify

Alp"]/Cn = f(A]p"]) C (A/Cy)[p"].
In other words, the left hand side is an order p™9 subgroup of (A/C,)[p"].

Example 3.7.3. For n = 1, the order of (4/C,)[p] is p?9, and we get two subgroups of order p? in it,
namely f(A[p]) (which is isomorphic to the quotient A[p]/C1(A)) and C] = C1(A/C1(A)).

Lemma 3.7.4. Inside (A/C,)[p"], the intersection
f(A[p"]) nCy = {o}.
Proof. As usual we identify the reduction of A/C,, mod p with A(lp”). Notice that f(A[p"]) is an
n n n+1
étale lifting of Ker(V": Agp N Ay), while C] is a lifting of Ker(F': A§p ) Agp ’ )). The latter

is a connected group scheme over R/p. It follows that f(A[p"]) N CY is an étale lift over R of some
connected group scheme over R/p, and hence it must be trivial.

Abusing language, we say that A is ordinary over R if A; is ordinary over R/p. Observe that when
this is the case, the canonical subgroups C,, of A satisfy C; C Co C ---. So if some subgroup of A[p"]
is disjoint from C1, then it is also disjoint from all C;.

Suppose A is ordinary over R and admits a principal polarization \: A —~+ AY. Then AV is also
ordinary. There is a perfect pairing

e: A[p"] x AY[p"] — ppn

of group schemes over R.
For C,,(A) C A[p"] we define C,,(A)* to be the annihilator of C,,(A) under this perfect pairing. Its
order is p®9 /p"9 = p"9, equal to that of C,,(A).

Claim. C,(A)t = C,(AY).

3Here we use the notation Aj that refers to A, .= A®gr R/p"™.

Lect.10, Nov 2
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For the claim, it indeed suffices to prove that C,(A)* lifts Ker(F": A} — (AY)®")).
On the other hand, we already know that C,,(A) lifts Ker(F™: Ay — Agp )). We need
that these two kernels are annihilators of each other under the reduced perfect pairing

e Ai[p"] x AY[p"] — ppn,
which we still denote by e through an abuse of notation.
The general picture is described as follows. Given morphisms A T B 9 0of
abelian schemes, we naturally obtain

AV f BY O oV

There are canonical pairings
eq: Kerg x Ker g\ — Gy,

and
egor: Ker(go f) x Ker(f" 0g") — G,
which are compatible with the maps f: Ker(go f) — Ker(g) and Ker(g") < Ker(f" o
g¥). Tt follows that Ker(f) C Ker(go f) and Ker(g¥) C Ker(f¥ o g¥) annihilate each
other under e4o¢. In fact, they are annihilators of each other.
We apply this to

f=F A = AP g=vro AP o4y

We finish the argument by the following fact: (F™)V: (Agp n))v — AY is equal to V"
for AY, where (Agp ))V is canonically identified (AY)®").

Each principal polarization A\: A — AY must take C,(A4) to C,(AY) by functoriality, and this is
equal to C,,(A)* by the above claim. Hence
s Ap") x Ap"] s A" x AV ") < e
restricts trivially to Cp,(A) x Cy,(A4), i.e., Cy,(A) is a totally isotropic subgroup; it is also maximal since
its order is p™9.

3.8. Idea of anti-canonical tower. We now pass to the local rational picture and consider

XKP,QP = XK,, XSpec Z, SpeC @p'

Associated to this, the adic space (Xk,g,)™

contains the open good reduction locus, namely the adic
space attached to the p-adic formal completion of the Z,-scheme Xk, .

The following discussion is only heuristic and informal.

Definition 3.8.1. Inside the locus of good reduction in (Xk,,q,)*, let X' denote the open that is
the ordinary locus, parameterizing (A, A, ) such that A has a good and ordinary reduction. Let Xli’g‘(ipn)
denote the inverse image of X;(”;d under Xfi;l(pn)@p — (Xk,,0,)*. Informally, Xﬁ;?pn) parameterizes
(A, \,n,D), where A has a good and ordinary reduction, and D is a I'y(p™)-level structure on (the

generic fiber of) A.

Construction 3.8.2 (Canonical section). The natural map Xf’g‘(ipn) — Xﬁid, (A, N\ n,D) — (A, A\ n)
has the canonical section (A, A\,n) — (A, A\, n, Cr(A)).

Construction 3.8.3 (Anti-canonical embedding). There is another morphism

i R — A
defined by

(A, A, m) — (A/Cn(A), X 0, A]p"]/Cr(A)).
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It turns out to be an open embedding. We call it the anti-canonical embedding, and denote its image
by

ord,a ord
Aro(pm) © Ao (pm):

(with superscript “a”).

Here we used that C,, is totally isotropic, and therefore A/C,, inherits a principal polarization \
from X on A; further, A[p"]/C, is totally isotropic with respect to this inherited polarization. Also,
the KP-level structure n on A induces a KP-level structure 7’ on A/C,,(A).

Definition 3.8.4. The anti-canonical tower is the projective system on the following right side:

l l

X = XL (e 1)st
1 1
ord ~ ord,a

XK,, _— Xro(pn) n-th
{ {

l l

xgrd —=— xrde, 0-th

Here the horizontal maps are i,, the vertical maps on the right side are the natural ones, and the
vertical maps on the left are given as follows:

(a) The map from the (n+1)-st X,Q;d to the n-th Xé’id is given by the canonical quotient A — A/C.
(b) The map from the n-th X,?}r?d to the 0-th X,g;d is given by A — A/C,,.

Note that A/Cy is a lift of Agp ) where Aj is the mod p reduction of A. Thus the transition maps
on the left look like some kind of characteristic zero lift of the Frobenius. Essentially using this idea,
one can show that

Jim Xli);‘(ilﬁ )~ (Certain perfectoid space),
n

at least after the base change to a perfectoid field.
Recall that our ultimate goal is to show that
l'gl(XF(pn),@p)ad ~ (Certain perfectoid space).
n

To go from the first statement to the second, we need to pass from the I'g(p™)-tower to the I'(p™)-
tower (this step is highly non-trivial because the I'(p™) are cofinal among all compact open subgroups
of G(Qy), while the I'g(p™) are not cofinal), and to extend from the ordinary anti-canonical locus to
the full Shimura variety (and even its Baily—Borel compactification).

3.9. Neighborhood of anti-canonical tower. We need to extend the construction of canonical
subgroups slightly outside the ordinary locus. That is, we want to extend to an e-neighborhood of the
ordinary locus, in the sense of p-adic geometry. For now our discussion will be purely algebraic for a
while.

Notation 3.9.1. We write
ZEYCI — ZP[MPOO]A c Q;}’cl _ Qp(ﬂp“)A'

For each r € N, Q, (1) is a totally ramified extension over Q, of degree ¢(p”). Thus p-adic valuations
of elements of Z$¥°! are rational numbers of the form a/@(p") for a,r € Zzo. (Note that o(p”) — oo as
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r — 00.) Let £ be such a rational number, and assume that 0 < e < 1/2. We write p° for any element
of Z;yd whose p-adic valuation is e.

3.9.1. Canonical subgroup. Fix R to be a p-adically complete flat Zzyd—algebra.

Theorem 3.9.2 (Illusie, see [Sch15, Cor.I11.2.2]). In the following we understand each “group” as a
finite locally free commutative group scheme over the base.* Also a “subgroup” means a closed subgroup
scheme which is also locally free. Let G be a group over R and take G1 := G ®g R/p. Let C; C G1 be
a subgroup with quotient Hy = G1/CY.

Assume the multiplication-by-p° map on the Lie complex of Hy is null-homotopic for some 0 < € <
1/2. Then there exists a subgroup C' C G over R such that

C®rR/p'™°=C1®p), R/p"°

as subgroups of G @p R/p*—¢.
In particular, if we can take e =0 (which is equivalent to Hy being étale), then Cy lifts to R.

Remark 3.9.3. We explain the Lie complex of H; in Theorem 3.9.2. Let S be any ring, and let H be
a finite locally free commutative group scheme over S. The Lie complex of H over S, denoted by / H,
is represented by a perfect complex of S-modules with amplitude in [0, 1]. The 0-th homology of Py is
exactly

Lie H = Homs(e*QH/S, S)

The full /5 is defined by the similar formula as above, replacing Hom with RHom, e* with derived
e*, and Qg by the cotangent complex Lp,g. In practice, if H sits in a short exact sequence
0— H— A— B — 0 where A and B are smooth commutative group schemes (not necessarily finite),
then /5 is represented by the complex (Lie A — Lie B).

Example 3.9.4. If H; = p, for some n invertible in R/p, then the short exact sequence 1 — u,, —
Gy, ﬂ> G, — 1 gives that

u, = (R/p = R/p).
In this case the Lie complex is null-homotopic. One can take € = 0 to fit in Theorem 3.9.2.

Lemma 3.9.5. Let X be a scheme over R such that Qﬁ(/R 1s killed by p° for some € > 0. Then for

each & > € such that p° makes sense in R, the map
X(R) — X(R/p°)
18 injective.
Proof. See [Sch15, Lemma II1.2.4]. O

We now consider the application of Theorem 3.9.2. Let A be an abelian scheme over R. For any
§ > 0 such that p® makes sense, we write Ry for R/pé, and write As for A ®g Rs. In the following
we always assume 0 < e < 1/2.

Definition 3.9.6. We say A or A; is O(n,¢) for an integer n € Z>; and 0 < e < 1/2 if

Ha(A/R)®" /@D € T(Ry, w57 V) = R,

divides p° as elements in R;. Here we pick an arbitrary trivialization of the line bundle wy, ,g,, which
does not affect the condition.

Our goal is to define a notion that is more general than ordinary, and in that context define (weak)
canonical subgroups. The following result clarifies the existence and uniqueness of such subgroups.

4Note that our base scheme, for instance R, is not necessarily noetherian here, and finite locally free is stronger than
finite flat.
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Theorem 3.9.7 (Weak canonical subgroup). Suppose the abelian scheme A over R is O(n,e) for
some 0 < € < 1/2. Then there exists a unique closed subgroup C, C Alp™], called the n-th weak

canonical subgroup, which is locally free over R and lifts the group scheme Ker(F™: A; — Ag”")) over
1—¢

R/p modulo p'~—¢, i.e.,
Cn ®g R/p'~° = Ker(F") ®@g/, R/p'~°.
Moreowver,
(1) For H := Alp"]/C,,, the multiplication-by-p* map kills Qg /g.
(2) Given any other p-adically complete flat Zzyd-algebm R’ with R — R, we have
Crn(R) = {s € A[p"|(R'): s = 0 mod p(1=5)/P"}.

Proof. Step I. For the existence, we want to lift Ker(F™: A; — Agpn)) whose cokernel in A;[p"] is
exactly H; = Ker(V™: A(lp ) A1). To apply Ilusie’s Theorem 3.9.2 we must check if multiplication
by p® on / 7, is null-homotopic. For this, by Remark 3.9.3 we have

Iy, = (LieAgpn) AN Lie Ay).

Here V denotes the induced map of V' between Lie algebras. As a direct consequence of definitions,
we have

det V* = Ha(A /Ry)®"~D/0-1) ¢ wf%;”.

Note. Suppose L is finite free R/p-module, and consider a 2-term complex L ENYS
Let A(f) be the adjugate of f, so that fo A(f) = A(f) o f = det f. The diagram

L—1 1

J g J
det f A(f) det f
'/ f
L — L
exhibits that multiplication by det f on the complex L EN A null-homotopic.

Using the note above, we see that multiplication by Ha(A;/R;)®" ~1/(P=1is null-homotopic on ng.
In particular, multiplication by p® is null-homotopic on / H,- S0 we are in the same case as described
by Theorem 3.9.2 with G = A[p"], and the desired existence follows. Then we have

Cn @ R/p'™* = Ker(F") @y, R/p' .
But it still remains to check (1) and (2) and to check uniqueness.
Step II. We prove (1). For simplicity, write Q = Qp, . Suppose p° kills Q/pt=¢Q. Then Lect.11, Nov 14
POC PO =l pr C pl2 L pleeq = 2260 req o L pR-20)teq

where 1 — 2¢ > 0 since € < 1/2. Since  is p-adically complete, it follows that pQ = 0. Thus we only
need to check that p® kills Q/p'~Q. But the latter is isomorphic to

QH®R3175/R175'

To check that Qpg,r,_./r,_. is killed by p®, it suffices to prove that p® already kills Qp, /g, , since
we have H ®r Ri1—. = H; ®g, R1_.. But recall that p° is null-homotopic on ZHl (see Step I). So
p® = 0 on (Lie Hy)Y, the dual Lie algebra of Hy, which is €*Qy, /r,, where e is the neutral section of
w: Hi — Spec R1. On the other hand, we have

* %k
QHl/Rl =T € QHl/Rl’

Hence p®, already killing e*Qp, /g, , also kills Qp, /g, , as desired. This finishes the proof of (1).
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Step III. The uniqueness of C,, follows from (2). This is because C,, is locally of form Spec R’
for such R’, and then one can apply Yoneda’s lemma to determine it. To prove (2), we may assume
R = R’ without loss of generality. For any s € C,(R), it is known that

C,Qr Ri_. = Ker(F”) ®r, Ri_c.

So the image of s in A(Ry_.) = A1(R1_c), denoted by s1_., lies in the kernel of F'™. By the definition
of F'™ we have the commutative diagram:

A (R—.) - Agpn)(Rl—e)

S

where Frl! Ry_. is the ring Ry_. viewed as an Rj-algebra via Ry — Ri_., = — ajpn; the slant arrow
is induced by id: A, — A; and the Rj-algebra map g : Ri_. — Fr"Ri_., = — 2P". To see that
the above diagram indeed commutes, using definition of Fr” in §3.3 together with the fact that Fr™

A1 (FI'ZR175)

commutes with any morphism ¢: Spec R1_. — A; in characteristic p, there are commutative diagrams:

Spec Ry_.
A Spec R1_.

Fr t
Spec Ry \Agp” — A

Su J

Spec R; B Spec Ry .

Beginning with ¢: Spec R;_. — A; on the top, the image of ¢ under F™: Ay (R1_.) — A1 (FrlR1_.)
should be given by the composition Fr" ot = ¢ o Fr". Thus the first diagram indeed commutes.

Since s1_. is a point of the affine scheme Aj[p"], its having trivial image under the induced map
g: A1 [p"](R1i—c) = A1[p"|(Fri R;_.) is equivalent to its being congruent to zero modulo Ker(g). But
from the construction

Ker(g) ={z € R': = pTc) = (p(l—a)/p")’
or in other words
Ri_./Ker(g) = Ri—c)/pn-
This proves the inclusion LHS C RHS.

For the converse inclusion, we start with s € RHS and then by the same argument as above we
have F"(s;_.) = 0. Thus s;_. is a point of C,,(R/p*~¢) that has zero image in H(R/p'~¢), where
H = Alp"]/C,, as before. By the conclusion in (1) and by Lemma 3.9.5 applied to § = 1 — ¢, the map

H(R) — H(R/p'™)

is injective. So the image of s € A[p"](R) in (A[p"]/Cyr)(R) is zero. Hence s € C,,(R), which proves
that LHS D RHS. This also completes the proof of uniqueness for the above-mentioned reason. O

Definition 3.9.8. For 0 < ¢ < 1/2, say A or A; is strongly O(n, <) if Ha(A;)P" divides p° in the same
sense as in Definition 3.9.6. In this case, we call the weak canonical subgroup C,, in Theorem 3.9.7 the

canonical subgroup. We say (strongly) O(n), when we mean (strongly) O(n,¢) for some unspecified
0<e<1/2

Note that the strong O(n,e) is equivalent to the strong O(1,e/p™). Also, we have the following
trivial observations:
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(a) Any ordinary abelian scheme A is O(n,0) for all n € Z>1.
(b) The O(n,¢) implies the O(m,¢’) for all 1 < m < n and &’ > e.
In particular, when O(n,¢) holds we have a sequence of weak canonical subgroups C,,,Cp_1,- .
By Theorem 3.9.7(2) we have C;, D Cr,mq1 D -+ -.

Proposition 3.9.9. Suppose A is strongly O(n). In this case A possesses a canonical subgroup Cy,(A)
and we write B == A/Cy,(A). Then B is strongly O(m) if and only if A is strongly O(n 4+ m). (Here
¢ is deliberately suppressed because the values of it needed for A and B can differ.) If so, there is a
short exact sequence

0— Cr(A) — Cpym(A) — Cr(B) — 0,

where the latter map is induced from the group quotient map A — B.

Proof. The only nontrivial part is to check that A — B really maps Cj, 4 (A) onto C,,(B). It suffices
to prove for R as in Theorem 3.9.7(2) that Cp4(A)(R') = Cp(B)(R'). Again, we may assume that
R’ = R. Let H := B[p™]/Cy,(B). So it further reduces to proving that each s € C,, 1, (A)(R) has zero
image in H.

Here comes the key idea. Let € be such that B is (strongly) O(m,e). As in the proof of Theorem
3.9.7, we know that H(R) — H(R/p'~¢) is injective. So it is enough to check that s is mapped to
0 in H(R/p'=¢). Modulo p'~¢ we respectively have congruences between A and A;, and between
B and AY". Then H is congruent to B¥") R
A — B — H are congruent to

m
which is congruent to Agp . So the natural maps

)

Al jald Agpn) ™ Agp7”+n) .

Hence we only need to check that modulo p'—¢, s is killed by F™*™. But this follows from the definition
of Cpym(A). O

Proposition 3.9.10. Assume that A is strongly O(n) and its unique canonical subgroup is C,. Then
for any geometric point T of Spec R[1/p], we have

Cn(@) = (Z/p")?,
for g = dim Az.
Recall that we always have Az[p"] = (Z/p™)?9 in this case.

Proof. Note that the group scheme A[p™] over Spec R[1/p] is étale. So the statement holds for all
geometric points of some connected component if it is true for one geometric point in it. On the other
hand, for each connected component Z of Spec R[1/p], by a standard specialization argument there
exists a map Spec O — Spec R whose image lies in Z, where K is a non-archimedean algebraically
closed field. Thus we can reduce to the case where R = Ok, and it suffices to show C,,(K) = (Z/p™)9.
For this, we already know that

Cu(K) C Ap"|(K) = (Z/p")*

and that C,(K) has order p"9. Suppose C,(K) % (Z/p™)? for the sake of contradiction. Write
Co(K)=2Z/p" @ ---@®Z/p™ with integers r1,...,7r < n. Note that not all of r;’s are equal to n by
our assumption, and this forces k& > g. It follows that (C,,(K)N A[p])(K) has more than p9 = #C;(K)
elements. So there exists s € (C,(K) N A[p])(K) — C1(K). Let t be the image of s in H = A[p]/C;.
Then ¢t € H(K) — {0}. Since C,, is a finite group scheme over Ok, we can extend s to § € C,,(Ok).
Similarly, we get an extended image £ € H(Og) of 5. Then 5 is mapped to 0 in C,, (O /p==)/P") by
Theorem 3.9.7(2), and thus # is mapped to 0 in H(Og /pt—=)/P").

From the fact that A is strongly O(n, ), which is equivalent to being strongly O(1,e/p™), we see
applying Theorem 3.9.7(1) to n = 1 renders that p*/?" kills Qp/0,.. It follows that H(R) — H(R/p°)

Lect.12, Nov 16
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is injective for all § > ¢/p" by Lemma 3.9.5. So taking § = (1 —¢)/p™ we get { = 0. Hence t = 0 in
H(K), a contradiction. O

Remark 3.9.11. In applications, A over R will be equipped with a principal polarization. Then by the
uniqueness of C,,, the same argument as that preceding §3.8 shows that C), is totally isotropic with
respect to that polarization. It follows that the subgroup (= Fp-vector subspace) C,(z)[p] C Alp](Z)
is totally isotropic, and hence its order cannot exceed p9. Thus we obtain a simpler proof of the above
proposition.

3.9.2. Canonical Frobenius lifts. We keep the settings on Shimura varieties as in §3.4. Recall that
X = Xkrq(z,) 18 an Z,)-scheme, which is the moduli for principally polarized abelian varieties with
extra KP-level structure.

Construction 3.9.12. Let X be the p-adic completion of X Xgpecz,, Zgy"l, which is a formal scheme
over Spf Zgyd. We then take the generic fiber of the associated adic space

X =20 = 2 X gever gover) Spa(QY, Z5).
Recall that X locally looks like Spf R for some R equipped with the p-adic topology. Correspondingly,
x2d is covered by Spa(R, R), and X is covered by the rational opens in Spa(R, R) defined by v(p) # 0.
Consider for K, € {T's(p™),T'(p™)} that
Xk,,0 — SpecQ(4pn)
Xg —— SpecQ.

Based on this, we make the following definition.

Definition 3.9.13. Define X*? to be the adification of the finite-type Q&¥'-scheme Xgever = XQXspec
Spec QY i.e.,

x2d = XQ;ycl X Spec Qe Spa Q;yd,

which is a finite-type adic space over Spa((@;yd). Also, for K, € {T's(p™),T'(p™)}, define X,i‘j to be the
adification of Xk, @ XspecQ(u,n) SPeC ngd, ie.,

X = (Xk,,0 XSpeeiuyn) SPO Q™) Xgpeo g Spa Qe

which is also a finite-type adic space over Spa(ngCl). Then X admits an open embedding into X4,
and X is exactly the good reduction locus in X*!. The finite étale map Xk, o — Xg induces a finite
étale map (in the category of adic spaces) Xﬁi — X2d. Denote by Xk, the preimage of X’ along this
map. Thus we have the following diagram:

Xpd o Xy,

L

X2 5 X = good reduction locus.

Remark 3.9.14. Note that X has an integral model, i.e., a formal scheme over Spf Z;yd such that X is
the adic generic fiber of that. However, Xk, do not have such integral models.

We say a few words about the “functor of points” of X. Let R be a p-adically complete Zgyd—algebra.
Then Spf R is a formal scheme over Spf Z;¥ 1. We claim that giving a map

SpfR —— X



THE HODGE-TATE PERIOD MAP ON PERFECTOID SHIMURA VARIETY 49

over Spf Z]C)yd is equivalent to giving a map Spec R — XZzycl over Spec Zgyd. The latter can be inter-
preted by the moduli description, that is, a triple (A, A, n) of principally polarized abelian variety with
Kp-level structure over Spec R. Our claim is true because if XZ;ycl is locally of the form Spec S, then X
is of the form Spf S;\, where SQ denotes the p-adic completion of S. Then HomSpf zve! (Spf R, Spf Slf) =
Hom,, ; geva (S),R) = Homeye (S, R).

Over XZ;ycl we have the universal abelian scheme coming from the moduli problem. We can p-
adically complete it, and get a formal abelian scheme 2 over X. In combination with the previous
paragraph, we see that 2l has the following property: For any Spf R — X as above, the pullback of 2
over Spf R is automatically algebraizable, i.e., it comes from an abelian scheme over Spec R.

Definition—Proposition 3.9.15. Fix 0 < ¢ < 1 such that p°® € Zgyd makes sense. There exists a
morphism X(e) — X of formal schemes over Spf Z$¥“! such that X(e) is flat over Z&¥'. It represents
the following moduli problem: For any p-adically complete flat Zgyd—algebra R, the set of morphisms
Spf R — X(e) is in bijection with the set of pairs (f, [u]), where
e fisamap Spf R — X, and
e [u] is an extra datum as follows. The datum of f is equivalent to the datum of a map
f: Spec R — X eva. Pulling back the universal abelian scheme we then obtain an abelian
scheme A over R. Consider the Hasse invariant Ha(A;) € wf%l ®grR/pof Ay = A®Rr (R/p).
(Note that w4, g is a free R-module of rank 1.) Take u € wfﬁ{p) such that modulo p,
u-Ha(A41) =p° € R/p.

Define [u] to be the equivalence class of u under the relation that u ~ v if v/ = u(1 — p'=<h)
for some h € R.

Proof. 1t suffices to prove the existence as the uniqueness would follow from Yoneda’s lemma. Given
f: Spf R — X together with the data for defining u as above, we fix a lift Ha € w%?{l) of Ha :=

Ha(A1/Ry) € “’1?1(1/);11) with Ry := R/p. Suppose we have u as in the moduli problem. Then
u-Ha = p° — ph=p°(1 - p'~°h)

for some h € R. Thus we may change u by the factor 1 — p!~¢h, and arrange that w - Ha = pE.
Conversely, if we have u and u' such that v - Ha = «’ - Ha = p° and such that [u] = [«/], then we claim
that u = u’. Indeed, suppose u = u'(1 — p!=¢h) € R. Then, without modulo p,

" =u-Ha=u'-Ha(l —p'~*h) = p*(1 = p'~*h) = p° — ph.

Since R is p-torsion-free, we have h = 0, i.e. u = u/. We conclude that the moduli problem over the
fixed f is equivalent to the classification of © € R such that w - Ha = p°. So if we cover X by Spf R
and for each Spf R we pick a lift Ha as above, then the moduli problem of X(e) is represented by the
formal scheme glued from

Spf R(u)/(u - Ha — p°).

The above formal scheme is indeed flat over Z]‘;yd. O

From the proof above we make the following observation. It is clear that, in the sense of §2.8.1,
taking the adic generic fiber of Spf R gives Spa (A4, A*) where A = R[1/p] and A7 is the integral closure
of R in A. The topology on A is such that R is an open subring with restricted topology the same as
the usual p-adic topology. Further, taking the adic generic fiber of Spf R{u)/(u - Ha — PpF), we get a
rational subset

U <1%> = {v € Spa(A, At): v(p°) < v(Ha) # 0} C Spa(A, A™).

Lect.13, Nov 21
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The map X(g) < X of formal schemes is not an open embedding. However, the argument above
shows that at the level of adic generic fibers we get an open embedding. Recall the notation from
Construction 3.9.12 that X = %f]d7 and take X(e) = %(E)Zd. The upshot is as follows:

(a) X(e) — X is an open embedding even if X(g) < X is not.
(b) X(e) C X(&') whenever ¢ < €.

Clearly X (¢) is an open neighborhood of the good ordinary reduction locus in X. We think of ¢ as
measuring how large this neighborhood is.

Notation 3.9.16. Let ) be a formal scheme over Spf Z;” b, Write

V/p = Xgppze SPE(ZE /p)-
We make the following observation.
Proposition 3.9.17. Over Spf(Zgyd/p), there is a natural isomorphism
(X(7'e)/P) P = (X(07'€)/P) Xsprzevet sy i SPEET p) = () [p.
Proof. Let Spf R be a test formal scheme over Zgyd /p. Then

(X(p~'e)/p)P/(R) = (X(p~'e)/p)(Fr.R).

Here Fr. R is equal to R as a ring but seen as a (Z;yCl /p)-algebra by pre-composing the structure map
Zgyd/p — R with Fr: Zgyd/p — Z;}"Cl/p7 x + aP. The Fr,R-points of X(p~'le)/p are by definition
pairs (f, [u]), where

£+ Spec(Fr,R) — X eva = Xz, xz, Z
is the map of Zgyd-schemes. But the datum of f is equivalent to the datum of a map of Z,-schemes
[+ Spec R = Spec(Fr.R) — Xz, .

Here we are crucially using the fact that X eye is the base change of Xz , i.e., the moduli space
P

of abelian schemes is already defined over Z,. So the map f above admits a moduli interpretation,

namely an abelian scheme A over R with a principal polarization and KP-level structure. Since R is of

characteristic p, the element u is an element of Q%;p) such that uHa(A/R) = p*/? € Fr,R. (Here a

priori p*/P € Z;yd but we multiplicate it with 1 € Fr,R to get p/? = p/P .1 € Fr.R.) On the other
hand, as F,-algebras there is an identity Ir,R = R under which p/P s pf. So the condition is also
read as

u-Ha(A/R) =p® € R.

Therefore, by comparing this with Definition—Proposition 3.9.15, we can interpret (f, [u]) as an R-point
of X(g)/p. This proves the desired canonical isomorphism. O

By Proposition 3.9.17 above we have the following commutative diagram

(X(p~te)/p)® —=— X(e)/p

! |

(x/p)») ———— X/p.

The lower horizontal is an isomorphism because X is defined over Z,.
Definition 3.9.18. Define 2(¢) to be the pullback of the universal family 2 along ¥(¢) — X.

Construction 3.9.19. Modulo p, we work on Zzyd /p and obtain the commutative diagrams
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g: Upte)/p — Ap~le)/p)® —— Ae)/p

! I l

pr X(ple)/p —I (X(p~le)/p)P —— X(e)/p

! I |

©o: xX/p —E—— (X/p)P) —=— X/p.

where the F’s are the relative Frobenius maps over Z&¥! /p, and the twistings (-)®) mean (-) X Spf(ZEY /p),Fr

Spf(Zs¥*! /p). The following are moduli interpretations of the three horizontal maps above.

e The map ¢p: X/p — X/p sends an R-point f: Spf R — X/p to ¢o(f): Spf R SN Spf R AN
X/p. Here Fr denotes the absolute Frobenius on R. In terms of the moduli of abelian schemes,
this is equivalent to taking the relative Frobenius twist over R, that is

©o: A/R+— AP /R,

where A® = A Xspf r,Fr Opf R. (This notation is different from the notation used in the
diagram.)

e The map ¢: X(p~te)/p — X(g)/p begins with the pair (f, [u]). From the argument above we
can identify f with an abelian scheme A/R, and we have u € wfﬁ{p ). Then

p: (A, [u]) — (AP, [u?]).

This construction makes sense for the following reason. Since w%’ r = Waw /g We have u? €

w%’}(%l—l’) = wf((pl)_/%). Also Ha(AW) ¢ wf((f)ﬁ{) is equal to Ha(A)P € w%’g_p).
e When pulled back along an R-point of X(p~'¢)/p corresponding to A/R as above, the map ¢
becomes a map A — A®) between abelian schemes over R. This is nothing but the relative

Frobenius for A over R.

Moreover, the diagrams between g, ¢, ¢ can be lifted to those before modulo p. We first need some
preparation.

Construction 3.9.20. We discuss two maps of Q-schemes
Xr. )
Xo Xo
Recall that a (necessarily characteristic 0) point of Xp_,n) corresponds to the tuple (A, \,n, D) over
aring R over Q. Here \: A —+ AV is the principal polarization, 7 is the KP-level structure, and D is
the T's(p™)-level structure. More precisely, the datum of D consists of two parts: one is a choice of a

p"-th root of unity that we omit to discuss, and the other is the totally isotropic subgroup D C A[p"]
such that D = (Z/p™)9 over each geometric fiber. We have

e (A7>‘a777D) — (Av)‘777>7

ma: (A, A0, D) — (A/D, N, 7').
This mq is simply the forgetful map, and we think of it as the standard map from Xt (,n) to Xq. As
for the definition of 7y, we say a few words on the definition of X', a principal polarization on A/D.
Consider

A/D+L A2 AY T (A/D)Y,
where ¢ is the canonical projection of group schemes. Here comes the explanation of this. By func-
toriality of the Weil pairing, D C A[p"] is annihilated by ¢"((A/D)[p"]) C AY[p"]; also, since D is
totally isotropic with respect to e* (see (2) on page 37), it is annihilated by A(D). Recall that if A has
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relative dimension g over R, then A[p"] is finite of order p?"9; further, both D and D+ = \(D) are of
order p"9. Tt follows that ¢V ((A/D)"[p"]) = D+ = X\(D). So go A"t oq": (A/D)V — A/D kills the
full p"-torsion, i.e., it factors through the multiplication-by-p™ map. Then we can define

For degree reason, u is an isomorphism. One can check that A =

oqo)\floqv.

- L
SN

~1 is really a polarization.

Proposition 3.9.21. Fiz 0 < e < 1/2 such that p° € Zgyd makes sense.

(1)

(2)

There exists a unique diagram lifting the top two rows in the diagram in Construction 3.9.19

modulo p' ¢, of the form

For any integer m € Z~g, the formal abelian scheme
A(p~™e) — X(p~™e)

is strongly O(m,e), in the sense that for any (Spf R)-point of X(p~"™e) we get a strongly
O(m,e) abelian scheme A over Spec R. In a similar sense, we get the canonical subgroup C,,
of A(p~™e)[p™] of level m. This induces a morphism on the adic generic fiber

tm: X(p~™e) — Xp_(pmy,

which “maps a point corresponding to A to a point corresponding to A/Cy,(A) equipped with
Ts(p™)-level structure A[p™]/Cm(A)” The rigorous definition of t,, will be explained in the
proof. This vy, is an open immersion of adic spaces, and we have commutative Cartesian
diagram

X(pfmflg) (% XFS(pm-H)

@:ﬂ J

X(p~™me) ——"— X (pm),

where F is as in (1) and the right vertical map is induced by the natural scheme morphism

Xp, (pmt1)y = Xp (pm), (A, D) = (A, D[p™]). In particular, (F)i;d is finite étale since the right

vertical map is finite étale.
The universal family A(e) over X(g) is weakly O(1,¢). Hence we get the weakly canonical
subgroup Cy in the sense of (2). Define Xp_p(e) to be the pullback via the Cartesian diagram

X, (p)(€) — A
l g
X(E) — X.
Then the following is a commutative diagram.:
X(p~le) > Xr_(p)(e)
7| |
X(e) — 94— x(e).

The image of 11 is open and closed in Xr_(,)(€), equal to the anti-canonical locus Xt (p)(€)a-
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We give an informal explanation of Proposition 3.9.21. Note that in Proposition 3.9.21, (3) is about
increasing the level from m = 0 to m = 1, and (2) is about increasing the level from m > 1 to m + 1.
In the good reduction locus X of X2, we have open subsets

e CX(pTMe)C - CX(pTle) C X(e) C X

These are all open neighborhoods of the “ordinary locus” X (0). Roughly speaking, the open X (p~"¢)
(resp. X(¢)) has the property that “the abelian scheme A over it” (in an informal sense; to make this
rigorous we have to consider the formal model X(p~"™¢) of X (p~™¢)) is strongly O(m,€) (resp. weakly
O(1,£)). On the other hand, between these X(p~™¢), in addition to the inclusion maps we have
lifted Frobenius maps F: X(p~("™t1e) — X(p~™e). These maps are finite étale as opposed to open
immersions, and they form the Frobenius tower

o xpme) s (e te) s X(e).

Moreover, this tower is isomorphic to the anti-canonical tower, which is obtained from the natural
tower --- — Ap pmy — -+ = Ap () — & first restricted to X'(e) C & and then restricted to
Xr,(p)(€)a C X, (p)(€), that is

e —— Xps(pm)(€)a —_— s — Xps(p)(a)a — X(&)

The key point of Proposition 3.9.21 is that these two towers are isomorphic via (tm )m>1-

The anti-canonical tower is said to be “overconvergent as a whole tower” in the sense that at each
level I's(p™), the member X (,m)(€)a is determined as the inverse image of At (p)(g)a C AT, (p) along
Xr (pmy = Xp (p), Where AT (,)(€)a is an “e-neighborhood of the anti-canonical ordinary locus in
A, (p)”; we do not need to shrink & when m increases.

Proof of Proposition 3.9.21. As usual, let R be a p-adically complete Z;yd—algebra. If the map Spf R —
X(p~™e) for m > 1 defines a pair (f, [u]) that corresponds to an abelian scheme A/R (together with

principal polarization and away-from-p level structure) and u € w%ﬁ{p ), with

u-Ha(A/R)) =pP ¢ €Ry,

then Ha?" must divide p°, namely A is strongly O(m, ). Similarly, if m = 0, then Ha(P~D/(=1) — Ha
divides p®, namely A is O(1,¢).

(1) Define the following map by moduli

Fy: X(p~le) ———— X(¢)
(A/R, [u]) —— ((A/C1)/R, [u?]),
where on the source u € w%;p) and the image A/C; makes sense because A is O(1,¢). We then
define ﬁm: A — A/C4 to be the natural projection. Then the desired diagram exists and commutes.

It is unique from uniqueness of C7.

(2) The difficulty lies in figuring out the definition of ¢,,. We use the following argument to reduce
it to figuring out certain level structure on A. Let R be a p-adically complete Zgyd—algebra. We fix
f:SpfR— X = (XZ;ycl)/\. We know that f is induced by a scheme map Spec R — XZ;ycl which we
still denote by f, and we denote by A the corresponding abelian scheme over Spec R. Since XZ;ycl is of
finite type over Zgyd, there exist Ry and fy, where Ry is a finite-type Z;yd—subalgebra of R, and fj is
a map of Zgyd—schemes fo: Spec Ry — XZ;ycl inducing f. At the level of adic generic fibers, we want

to lift the map f24: (Spf R)2d — X4 along X2d . — X2 On the other hand, there are bijections
n n Ds(p™)
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lig(fo,Ro){liftings of fo[1/p]*d: (Spec Ry[1/p])?? — X34 along X34 — X2}

Ts(p™)
!

ling, ;. g,y Uliftings of fo[1/p]: Spec Ro[1/p] = Xqoer along Xy, (,m) qovet = Xgea}

!

{liftings of f[1/p]: Spec R[1/p] — Xggyer along X

!

{To(p™)-level structures on A ®g R[1/p|}

Fs (pm’),(@;yd — XQ;ycl}

Here the direct limits are over the set of pairs (fy, Ro) as above. The first set admits an obvious map
to the set of liftings of fj;d: (Spf R)%d — X2 along Xfif(pm) — X34 since we can first restrict to the
open subspace (Spf R)24 C (Spec Ro[1/p])*® (here Ry denotes the p-adic completion of Ro) and then
pre-compose with the adic generic fiber of the natural map Spf R — Spf R}. To explain the three

bijections, we need the general fact:

Fact. If Y — Z is a finite étale map of finite-type schemes over @;yd then there is
a natural bijection between the set of sections of Y — Z and the set of sections of
yad 5 zad,

In practice, take Y = Xp. () gevel X gever Spec Ro[1/p] and Z = Xever X gever Spec Ro[1/p] to get the
S I 7) 52 P P
first bijection. The second bijection is by the finite type of XQcycl and X, (pm),Q5ve! The third bijection
P s s p
follows from the isomorphism

(391) XFS(pm),Q;,yCI = er(p"L);Qp XSpCC Qp(p’pm) Spe(j Q;yd =~ XFO(;D""),QP XSpec Qp SPEC szCI

in view of Xt_pm).0 = Xry(pm),0 XSpec@ Spec Q(ppm ).
Granting the bijections, we now aim to define ¢, to fit in the diagram

. (pm)
T J
Lm/,’
B
X(p~™e) X.

For this, one first defines f: X(p~™e) — X via the moduli interpretation A — A/C,,. (Here, the
definition of the principal polarization on A/C,, is similar to the definition of 79 in Construction
3.9.20, using that C, is totally isotropic with respect to the polarization on A, which follows from the
uniqueness of Cp,, cf. the discussion preceding §3.8.) We then lift ff,‘d to ty, by taking

(A[p™]/Cm) @r R[1/p]

as Io(p™)-level structure on A @ g R[1/p]. (One checks that the above is indeed totally isotropic with
respect to the principal polarization on A/C,,, using the fact that C,, is totally isotropic with respect
to the principal polarization on A.)

Next we check that ¢, is an open embedding. As in Construction 3.9.20, define 71, m2: Xr_ pm) — X
via m1 (A4, D) = A and mo(A, D) = A/D, where D is the totally isotropic subgroup given by the level
structure. Consider the composition

Lm

X(p~™e) = Ap () —— X.

Informally, this composition admits a moduli interpretation (A, [u]) — (A/C,, A[p™]/Cm) — A/A[p™].
Formally, the composition is the adic generic fiber of the map X(p~™¢) — X, (4, [u]) — A/A[p™]. Note
that the map 0: Xq, — Xq,, A — A/A[p™] is an isomorphism. Now 73 o ¢, is the restriction to the
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open X (p~™e) C X of the adification #2 : X2d = X2d of §. Hence 5 0 1, is an open embedding.
Since o is finite étale, ¢, is an open embedding.

To check the commutativity of the given diagram in (2), recall that A/R is O(m + 1) and we have
the short exact sequence

0— Ci1(A) — Cy1(A) — Cr(A/CL(A)) — 0.

The original given diagram can be written as the moduli interpretation

A (A G (A), Alp™ /Gy (4))

l i

where B := A/Ci(A). From the short exact sequence and definition, B/Cy,(B) =2 A/Cp,4+1(A) and
Cm(B) = Ciry1(A)/C1(A). So it suffices to show that the right vertical map sends the source level
structure to its p™-torsion. But this follows from

B[p™]/Cn(B) = {x € A: [p"|z € C1(A)}/Crmia (A).

Here the condition on z € A implies that = € A[p™*1].

It remains to check the Cartesian property. Observe that ﬁx is finite and locally free of rank
pdim X = p9(9+1)/2 hecause it is a lift of relative Frobenius modulo p'~=. So (F )ad is finite étale (it is
étale because the two horizontal maps are open embeddings and the right vertical map is finite étale)

of degree p9(9+1)/2_ Tt then suffices to prove that the finite étale map
Xropm+1),@, — XTo(pm),Qp

has degree p?9t1)/2, (Here we have T'y instead of Ty, in view of (3.9.1).) This will be proved in Lemma
3.9.22 below. This finishes the proof of (2).

(3) The commutativity can be shown in the same way as in (2). The image of ¢; is clearly open
in X (p)(e). For checking it to be closed, note that we have a finite map F: X(p~te) — X(e)
coming from a finite locally free map X(p~'e) — X(¢) between formal schemes, and a finite étale map
At (p)(e) = X(e). Also, ¢ is an open immersion. So ¢; is a closed immersion.

We have already obtained the clopen adic subspace im(t1) C &7, (,)(g), but we also need to identify
it with the “anti-canonical locus” &7_(,)(€)a. We do not offer the complete proof, and we do not even
give the rigorous definition of Ar_(,)(€)a. Rather, we are contented in checking only the following.
Let K be an algebraically closed non-archimedean extension of Qp” ! and let Spf Ox — X(p~'¢) be a
point corresponding to A/Og. Then A has a canonical subgroup C; of level 1, and in shorthand

(B, D) = ((4/C1)k, (Alpl/C1) k)

We shall check that (B, D) is anti-canonical, i.e. Cy(B) N D = 0. Take a geometric point § €
(C1(B)ND)(K). It first lifts to some s € A[p](K) and then extends to s € A[p](Ok). Since s € C1(B),
by the formula for C; in Theorem 3.9.7(2), s = 0 mod p(*=)/? in B = A/C}(A). Set H := A[p]/C1(A)
and then s is mapped to zero in H(Og /p(t=2)/P). Also, p*/? kills Qp/0y > 80 s is mapped to zero in

H(Og). Then s € C1(A)(Ok) and hence s = 0. This finishes the proof. O

Lemma 3.9.22. For m > 1, we have
[Fo(pm) . FO(p"H_lH — pg(5+1)/2.

Proof. Recall that I'o(p™) consists of matrices g € G(Z,) such that g = ( ) mod p™ with size g
blocks. Note that both T'o(p™) and T'o(p™*!) contain I'(p™*?!) = Ker(G(Z,) — G(Z,/p™1)). Let U

Lect.15, Nov 28
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and U’ be the images of I'o(p™) and To(p™™!') in G(Z,/p™ "), respectively. Then we shall compute
[U:V].

For any ring R and any A, B,C,D € My(R), we have (4 5) € G(R) if and only if there exists
(unique) v € R* such that

Av e\ (o L\ (A BY_ [0 I
Bt p*)\-1, o/\C DJ —1, '

Indeed, the above implies that det (4 £)* = 129 € R*, and hence (4 B) € GL,(R). The above
equality is equivalent to

A'C=C'A, A'D-C'B=v-I,

Let V' consist of matrices of the form (%) in G(Z,/p™""). Then by definition we have U’ C V'. We
claim that U’ = V'. Indeed, if (4 B) € G(Z,/p™""), then we have A'D = v - I, for v € (Z,/p™)*.
In particular, A and D are invertible. Choose arbitrary lifts A e My(Z,) and 7 € Z, of A and
v. Then A € GLy(Z,), and # € Z)Y. Define D = i+ (A*)™1. Then (4 B) € G(Z,) is a lift of
(4 B) € G(Zy/p™"). We conclude that U =V’

We now calculate the cardinality of U’ by counting the choices of A, B, D,v. We can choose v to
be an arbitrary element of (Z,/p™*1)*, and choose A to be an arbitrary element of GL,(Z,/p™"!).
Then D is determined as v - (A')~1. In addition, we can choose B to be an arbitrary element of
My (Zy,/p™*t). Write R for Z,/p™ . We conclude that

#U' = #R - #GLy(R) - #M,(R).

Now let V consist of matrices (4 B) € G(Z,/p™"") such that C = 0 mod p™. Clearly we have
U C V. We claim that they are equal. Indeed, let (6‘ g) € V. Then by the equation A*D = C*B+vl,
we have A, D € GL,(Z,/p™*'), because the right hand side is congruent to vI, modulo p™ and hence
invertible over Z,/p™*!. Find an arbitrary lift A € GL,(Z,) of A, and find an arbitrary symmetric
matrix E € My(Z,) lifting the symmetric matrix A'C' € M(Z,/p"*"'). Set C = (A*)"'E. Then we
have A'C' = CA, and C is a lift of C. In particular, C = 0 mod p™. Fix a lift 7 € Z) of v, fix a
lift B € M,(Z,) of B, and set D = (A%)~'(C*B + v1,). Then D lifts D. We have thus found a lift
(é, g) € To(p™) C G(Zy) of (4 B) € V. We conclude that U = V.

Similarly as before, we calculate the cardinality of U by counting the choices of A, B,C, D,v. The
condition C' = 0 mod p™ implies that C = p™Cy for some Cy € My(Z,/p™"). Moreover, only the
image of Cy in My (F,) is well defined, and this element and C' determine each other. We shall thus
think of Cy as in My (F,). We have seen that A and D are invertible. Thus whenever A, B,C,v are
fixed with A invertible, D is uniquely determined by the second equation. Now B can be arbitrarily
chosen from M, (Z/p™*!). From the equation A'C = C'A, we see that after fixing A, C can be
determined by the symmetric matrix A*C as A is always invertible. Now this matrix is symmetric if
and only if the image of A*Cy in My(F,) is symmetric, and the latter matrix and Cy determine each
other. Hence the choice of C' amounts to the choice of a symmetric matrix over IF,,. Thus,

#U = #R" - #GLg(R) - #My(R) - #Sym, (Fp),

where R = Z,/p™*! and Sym, (F,) is the set of symmetric matrices over F,.
To conclude, we have

[Co(p™) : To(p™ )] = [U : U] = #Sym, (F,,) = p?0 /2,
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Summary of Proposition 3.9.21. Fix 0 < ¢ < 1/2 and p° € Zgyd. Then set Xp y(e) C A (p to
be the inverse image of X(¢) C X along Xp_(,) — X. We have the open embedding t1: X(p~'e) —
X (p(€), A — (A/Cy, Alp]/C1), whose image is the anti-canonical locus &p_(,)(€)a, a clopen in
X, (py(€). More generally, for each m > 1, we can define the clopen anti-canonical locus X _(,m)(€)a C
Ar, (pm) to be the inverse image of A (,)(€)a along the natural map A, (,m)y — Ap_(p). Then we get
two towers

l l

X(p~™e) — X, (pm) (€)a

] |

X(p~mHe) —s X (mo1)(€)a

1 1

! !
X(p~le) —=—— X () (9)a
| |

X(e) —4—— X(e).

Corollary 3.9.23. There exists a unique perfectoid space Xp_(pe)(€)a over ngd such that
Ar, (p)(€)a ~ M XD, (pm) (€)a

in the sense of Definition 3.1.10.

Proof. We replace the tower in question by the isomorphic tower (X(p~™¢)).,. By construction we
regard the formal scheme X(p~"¢) as the integral model for X (p~™¢). The transition morphisms

F: X(p7™ te) — X(p ™)
are finite. So we can take inverse limit in the category of formal schemes to get

%ps(poo)(e)a = &iﬂ}%(pimcﬂ.
m,F

Note that if for a fixed integer mg we have an open Spf R,,, C X(p~™°¢), then the inverse image of it
in X(p~™e) for m = mg (resp. in Xp_(pe)(€)a) is also affine, say Spf R, (resp. Spf Ro.). Here Ry is
the p-adic completion of ligm R,,, where the injective limit is taken over transition maps R,, — R,11
that lift relative Frobenii modulo the pseudo-uniformizer p*~¢ of Zzyd. Thus R is a perfectoid almost
Z;yd—algebra. In particular, R [1/p] is a perfectoid algebra over Q;yd, with the topology such that
R C Roo[1/p] is open and p-adic. Using this, we get the desired perfectoid space by taking the adic
generic fiber

A, (p=) (€)a = (Xr, (pe)(€)a)i”

The uniqueness was discussed in Proposition 3.1.12. O

3.9.3. Tilting perfectoid anti-canonical neighborhood. In this course we have not yet defined the tilt of
a perfectoid space, but for now we describe the tilt of the perfectoid space Ap_(pe)(€)a without proof,
to get some impression. Consider the scheme X7z, over Z,, and base change it to Spec Ok along the
natural map Z, — F, — Og. Here K = F,(t!/(»=VP™)) which is the fraction field of

A
O = F,[tY/P~Dr™] = (H_I)an[tl/(p_l)pn]> )

n t
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We then formally t-adically complete the scheme X, , to get a formal scheme X’ over Spf Ox. Hence
we have an adic generic fiber X/, as an adic space over SpalK. There exists a unique perfectoid space

yrperf @X/ — @1( 2} X’ g} X/),
[

where ® is the relative Frobenius over K. Such X’P®*f can be easily constructed as follows. Each local
chart Spa(R, Rt) C X’ corresponds to a local chart Spa(RPe, RT-Perf) in x/perf Here

R—i—,perf — @R+7 Rperf _ R+’perf[1/p].
D

The perfectoid space X'P*! is over the perfectoid field K, and the latter is the tilt of ngcl_

Remark 3.9.24. Similarly, one has the following perfect flat t-adic formal scheme over Spf Ok:
xrert = Jim ¥
T

Fact 3.9.25. The tilt of Xp_(p=)(€)a is the open subspace in X'P" cut out by the condition [Ha| >
[t¢]. That is, given a local chart X’ O Spa(R, RT), we look at the inverse image of the open locus
{v € Spa(R, RT): v(Ha) > v(t?)} in &A’P*"f. Here Ha is defined on X’ because it is in characteristic p.

Notation 3.9.26. For m > 1, let Xp(,m)(e) (resp. Appm)(g)a) be the inverse image of X'(g) (resp.
X, (p) (€)a) 10 Xpm).

Now we obtain a new anti-canonical tower of level I'(p™), read as
(~ R 4 XF(pm)(E)a — Xp(pm71)(€)a —_— s —> Xp(p) (6)3).

Note that as subgroups in G(Z,) the level I'(p™) tends to be trivial as m — oo, whereas I's(p™) does
not. So the towers should not be expected to be isomorphic, i.e., we expect
W Xppm) (€)a % Hm Xp, (m) (€)a-

Nevertheless, the perfectoidness for e-neighborhood is preserved when we pass to the full level I'(p™).
Corollary 3.9.27. Fiz 0 < e < 1/2. There exists a unique perfectoid space
Xl“(poc) (€)a ~ 1&1’1 Xl“(pm) (E)a.

Proof. The map
Xp(pm) (€)a — Xpym)(€)a

is finite étale. Pulling back along &p_(p)(€)a — &1, (pm)(€)a, We obtain a finite étale map

ym — XFS(pW)(E)aa

where the right hand side is perfectoid by Corollary 3.9.23. The essence of proof lies in the almost
purity result by Faltings and Scholze [Sch12, Theorem 7.9(iii)].

Almost purity. Let K be any perfectoid field and R be any perfectoid K-algebra. Let

R’ be a finite étale R-algebra. Then the subring R'° of power-bounded elements in R’

is a finite étale almost R°-algebra, and R’ is also perfectoid.
Applying this, we see ), is a perfectoid space. Moreover, applying this again, we see that if in ),
we have an affinoid open Spa(R, RT) with R perfectoid, then the inverse image of it in any ),,» with
m/ > m is of the form Spa(R’, R'") with R’ perfectoid. (The inverse image is always affinoid, since the
transition map is finite.) Using this observation and the fact that a direct limit of perfectoid algebras

is perfectoid, we obtain a perfectoid space
Xr(p<) (€)a ~ LiLnym-

m
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3.10. Baily—Borel compactification. Recall that our ultimate goal is to show that

&Lﬂ Xr(pm)

m
is perfectoid. So we need to get beyond the e-neighborhood and the anti-canonical locus. Moreover,
we want to show that

@ le(10’")

is perfectoid, where % denotes the minimal compactification (aka. Baily-Borel compactification). As
the first step toward these goals, we explain how to extend perfectoidness of @m X, (pmy(€)a to the
analogue of it for the minimal compactification.

Fix an integer g > 1 and set G = GSp,, as before. For any (sufficiently small) compact open
subgroup K C G(Ay), we get a Siegel modular variety Xk over Q. It is smooth, quasi-projective,
but not proper. We have a canonical minimal compactification Xx — X, where Xg is a projective
normal variety over Q. However, Xg is not smooth as long as g > 2. The boundary X§ — Xk has a
stratification, where each stratum is isomorphic to a certain Siegel modular variety for GSp,, with
g < g. Each ¢’ < g will show up, and in general for more than one strata. Thus the boundary has
dimension (g — 1)g/2 and codimension g.

From now on we assume g > 2. All conclusions are valid when g = 1 but need different approaches
to prove. When K = KPK, with K, = G(Z,), i.e. when there is no level at p, Xk has an integral
model Xz, over SpecZ,), and Xg has a canonical integral model X%(p) that is still normal and
projective over Z,). The boundary strata of Xz(p) are canonical integral models of smaller Siegel
modular varieties with no level at p.

Notation 3.10.1. Let X* be the formal p-adic completion of Xg(p) Rz, Zgyd. Take X* = (X*)%d be

the generic adic fiber. For any compact open subgroup K, C G(Z,), let X,Zp C (X )24 be the

cycl
Kp,Qp

inverse image of X* C (X, ).

P

In fact, by properness, we have X* = (X*_,,)*! and X, = (X eyar )24
D

Pr<p

Fact 3.10.2. (1) For the universal abelian variety A" on Xz,, the line bundle w quniv, Xz, €X-
tends canonically to an ample line bundle w on Xgp.
(2) The Hasse invariant Ha € T'(Xp,, w®®~1) extends uniquely to a section Ha € I'(Xg , w®P—1),
(3) For 0 < & < 1/2 such that p° makes sense in Z$®!, the morphism X(¢) — X extends to a
morphism ¥*(g) — X*, which is still locally of form Spf R{u)/(u - Ha — pf) — Spf R, where
Ha € w®®=1) is a lift of Ha € w®®~1 modulo p.

Notation 3.10.3. Set X*(¢) := (X*(¢))2, which admits an open embedding X*(g) — X*.

3.10.1. Hartog’s extension principle. We will apply repeatedly Hartog’s extension principle when work
with canonical Frobenius lifts on minimal compactifications. Loosely, Hartog’s result from multi-
variable complex analysis dictates that, in nice situations, one can extend functions through some
closed subset of codimension > 2. We need algebro-geometric versions of this principle.

Proposition 3.10.4 (Hartog’s extension principle, classical version). Let R be a normal ring (i.e.,
for any p € Spec R the localization Ry, is an integrally closed domain). Assume R is noetherian. Let
Z C Spec R be a closed subscheme of codimension at least 2 everywhere, i.e. allp € Z has height > 2.
Then

HO(Spec R, Ospec R) — HO((Spec R)\Z, Ospec R)

s an isomorphism.

Lect.16, Nov 30
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Proposition 3.10.5 (Hartog’s extension principle, more technical version). Let R be a topologically
finitely generated, flat, and p-adically complete Z,-algebra, such that R = R/p is normal. Fiz f € R
such that its reduction f € R = R/p is not a zero-divisor. Take some 0 < € < 1 such that p° € Z;yd
makes sense.” Consider the algebra

S = (R &z,Z") (u)/(u- f = p°).
Then S is p-adically complete and flat over Z;yd. Fiz a closed subscheme Y C Spec R of codimension
> 2 everywhere, and let Z be its inverse image in Spf S. Then for U = | Spf S|\ Z,
S = HO(Spf S, Ospfs) ;> HO(U, Ospfs).
From now on if the context is clear we will write H°(X) := H°(X,Ox) instead. Here comes the
explanation for applications of Hartog’s extension principle.

e Use Proposition 3.10.4 to extend functions on Xz, or on X to those on sz or X*, respectively.
For instance, it follows that, on the special fiber, Ha € F(Xyp,wp_l) indeed extends from Xp,
to X]F*p.
e Use Proposition 3.10.5 to extend functions on X(g) to X*(e).
By Proposition 3.10.5, when m > 0,

X(p~™Me) —— X*(p~™e).

Namely, F hasa unique extension to the minimal compactification. Moreover, the extended F (i.e., the
right vertical arrow) still lifts the relative Frobenius modulo p! =. When m > 1, the open embeddings
Lm also extend

Ar,pmy) € AR (pm)

[ L
X(p~™Me) C X*(p~™e)

and we denote the extension still by ¢y,.

Notation 3.10.6. Denote the image of ¢,,: X*(p~""¢) — Xﬂ(pm) by Xli‘s(pm)(e)a.

Similarly as in Proposition 3.9.21, we obtain the Cartesian diagram

Lm
X* (pfmfls) i} les(p""+1)

X* (pfmé.) c Lm X;S(pm).

Extending to the minimal compactification, we see the following new result which we haven’t seen
before.

Lemma 3.10.7. Fiz 0 <e <1/2. Then for m >0 the adic space X}, \(€)a is affinoid.

p'rn)
Proof. Since w is ample, there exists m > 0 such that

HY(X7 ,w®P=P") =0, Vix>1

Then we get a global lifting £ of HaP " (caution that Ha itself does not lift), where & is a global section
of the ample line bundle w®®=1P™  Consider

5Note that the proof of [Sch15, Lemma I11.2.10] makes sense only when & # 0.
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(6)a —=—s X*(p~™e) C X7,

*

XFS (™)

where X*(p~™e) is the open locus in X'* cut out by || > [p©].

We first consider the following. Write K = ngd. The open sub-adic space V defined by |zq| > |p°|
in IP’?(’ad is affinoid, where ¢ is from the coordinate (zo : @1 : --- : x,) on P%. Indeed, V C A’;gad,
where A% = {zg # 0} C P. Moreover, if we identify A% with Spec K[t1,--- ,t,] with t; = x;/x0,
then V A" is the closed adic ball defined by |¢;] < 1/|p%].

In our case, X*(p~"¢) is the intersection of the Zariski closed X* ¢ P1*" with an open in PJ*? of
the above form. But we have seen that the latter open is affinoid from the observation above. It easily
follows that X*(p~™e) is affinoid. O

Remark 3.10.8. Lemma 3.10.7 is not true without the compactification.

Using the same argument as before, we get:
Corollary 3.10.9. There exists a unique perfectoid space les(poo)(g)a over Q;yd, such that

25 ey (E)a ~ B A () (£)a

The tilt of A7 (e (€)a Over Qelr =K = F,((t"/P ®=1) is the locus [Ha| > [¢°] in (X"*)Pf, where

(x"™)Pert is the analogue of X'P°'f as before. That is, we first consider
(Xz, ®r, Og)p = X'

Write X'* = (%’*)%d over SpalK. Then (X"*)Pef is the perfectoid space over K such that

(X/*)perf ~ lim X/*.
H
o
Also, Ha extends from X’ to X'*.
Recall that we have used Almost Purity together with the fact that Xp,m) — Xp_(pm) is finite étale,
in order to prove that there is a unique perfectoid space

Xr(poc)(g)a ~ I'&HXF(pm)(S)a.
However, while passing to compactifications, the natural map
Xrm) — Xrpm)

has ramifications at boundary and hence no longer finite étale, unless X is a modular curve. Because of
this new difficulty, we cannot directly prove that @m le(pm) (€)a is perfectoid by the same argument.

Proof of Proposition 3.10.4. Recall the following relationship between local cohomology and depth
from [Gro68, Exposé 111, Prop. 3.3].

Fact. Let X be a locally noetherian scheme and Z C X a closed subscheme. Let %
be a coherent sheaf of Ox-modules. Let n > 1 be an integer. Then the following are
equivalent:

(i) For any open subscheme V' C X, the map

H'(V,Z) — H'(V\Z,.7)
is bijective for ¢ < n — 2 and injective for i =n — 1.
(ii) For any open subscheme V C X, the local cohomology
H\i/mZ(V7 F)=0
foralli: < n—1.
(iii) For any x € Z the depth of %, as an Ox ,-module is at least n.
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Recall that the depth of a finite generated module M over a noetherian local ring (R, mp) is defined
as the maximal length of an M-regular sequence in mg. On the other hand we have another fact.

Fact (Serre’s criterion). A noetherian ring R is normal if and only if Ry, is regular for
any p of height < 1, and simultaneously R, has depth > 2 for any p of height > 2.

Granting these facts, we apply the first with n = 2 and % = Ox. In order to verify (iii) we need that
for any € Z we have depthOx , > 2. But by assumption R is normal and each point x € Z has
height > 2. So the desired result follows from the second fact. O

Proof of Proposition 3.10.5. Fix 0 < e < 1.

Step I. We first show that S — H%(U,Osprs) is injective. Since the source is p-adically sep-
arated and the target is flat over Z]‘;YC17 we reduce to checking the injectivity of H°(SpecS.) —
H°((Spec S.)\Z.), where S, = S Bgever (2! /p®) and Z. is the inverse image of Y in Spec S.. By the
definition of S we have
Se = (R &z, 25 (u)/ (uf,p°) = Re[u]/(ufe),

6).

where R, .= R ®z, (ZIC}’Cl /D). Consider the decomposition

Spec S = N UW := Spec Re[u]/(u) U Spec Re[u]/(f-)
2 Spec R, U Spec(R./ f:)[u]

= Spec R. U (Spec(R/ f) XF, A%cycl/pg).

Take V := Spec R/f C SpecR. Also take V. := Spec(R/f ®F, Z;yd/ps) that is closed inside N =
Spec R, defined by f. = 0. We have

W=V XIFP Al = V'E XZ;ycl/pE Al

ZZyCl/pE Z;ycl/ps .
Consider the closed embedding V. < W, x ~ (2,0). Then WNN = V.. We then describe H°(Spec S.)
and H°((Spec S.)\Z.) as follows.
e Each section in H%(Spec S.) is a pair (g1, g2) such that g € H(N) & R., g2 € H'(W) &
HO(V.)[u], satisfying g1|naw = go|naw, i-e., (g1 mod f) = (g2 mod u) € HO(VL).
e Each section in H°((Spec S.)\Z.) is a pair (g1, g2) such that gy € H°(N\Z.), go € H'(W\Z.) =
HO((V\Y) XF, A%;yd/pf)’ satisfying g1 = g2 on (N N W)\ Z..
We have H°(N\Z.) = H°(N) by Proposition 3.10.4 applied to Y C Spec R. Indeed, the two sides are
the base change (-) ®r, Z&! /p* of H((Spec R)\Y) and H°(Spec R) respectively. The proof is reduced

to the injectivity of
HO(V) @, (257 /p*)[u] = H'(W) —— H°(W\Z) = H'(V\Y) @, (Z5' /p°)[ul-
It then suffices to prove the injectivity of
HO(V) —— H°(V\Y)

where both V and V\Y are F,-schemes. Since V' C Spec R is defined by the vanishing of the non-zero
divisor f € R, we have
depth Oy, = depth Ry -1

for any y € V (see [Gro68, Exposé III, Cor. 2.5]). In particular, for y € VNY, the aboveis > 2—-1=1
by Serre’s criterion for the normal ring R and the fact that Y has codimension > 2 in Spec R. Hence
by the first fact recalled in the Proof of Proposition 3.10.4 we have the desired injectivity.

Step II. For the surjectivity, we first prove it after u-adic completion. Recall that
S = (R &z, Z")(u)/(u- f —p°).
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Let S’ be the u-adic completion of S equipped with (p,u)-adic topology. This topology is the same
as u-adic topology, because u divides p® in S. Thus the underlying topological space |SpfS’|, by
definition, equals | Spec S’/(u)| = | Spec S/(u)| = | Spec R.|, which is a closed topological subspace in
| Spf S|. The u-adic completion of HO(U, Osprs) is HO(U N | Spf S’|, Osprs7) . The goal of this step is
to show that

Sl — I{()(U7 OSpfS/)

is surjective. It suffices to show the surjectivity modulo u. Thus we need to show the surjectivity of
the map

R ®y, Zgyd/pe = R. — H°(U N Spec R., Ospec r.) = H°(U N Spec R, Ogpec 2) ®F, Z;yd/pe.
It then suffices to show the surjectivity of
R — H°(U N Spec R, Ogpec k) = H°((Spec R)\Y, Ogpec k)

But this is just Proposition 3.10.4.

Step III. Suppose ¢ € S’ is such that its image in H?(UNSpf S’, Ogp 57) comes from HO(U, Ospt 5)-
We aim to show that £ € S C S’.

Claim. Suppose v € S'/p® is such that its image in H°(U N Spf(S’/p%), Ospi(s’ /pe))
comes from H°(U, Ogpg(s/pey). Then v € S/p°.

The claim implies our goal for the reason below. We have " = (R ®z,Z5")[u] /(u - f — p®). By the
claim, £ € S’ must be of the form &y(u) + p°(&1(u) + p*(&2(u) + -+ -)), where &;(u) are polynomials in
u. Then £ =&y € S'/p®. Thus £ € S.

Proof of Claim. We have S'/p® = R.[u]/(u- f) and S/p® = Rc[u]/(u - f). It suffices
to show the claim modulo f, because if a power series in R.[u] is congruent to a
polynomial modulo f, then it is congruent to a polynomial modulo fu.

Thus we need: Given an element v € (R./f)[u] such that its image in H°(U N
Spf(R./ f)[u], Ospt(r. /f)[u]) comes from HO(U_H §pec(R5/f)[u], OSpec(R. /f)[u])s Show
that v € (R./f)[u]. By construction R./f = (R/f) ®r, Z$'/p°. Then it is enough to
show that for any v € (R/f)[u] whose image in H°((Spec R/f)\Y, Ospec(/P)[u]) =
HO((Spec R/ f)\Y)[u] lies in HO(U’, Ospec(R/Hu]) = HO((Spec R/ f)\Y)[u], we have
v € (R/f)[u]. Here U’ is the inverse image of (Spec R)\Y under the natural map
Spec(R/f)[u] — Spec R. But this just requires the injectivity of the map R/f —
H°((Spec R/ f)\Y), which is already done in Step 1.

Here comes a brief summary. Now we have shown that
e The ring homomorphism S’ — H°(U N Spf S’, Oyt 57) is surjective.
o If ¢ € S’ is such that its image in H*(UNSpf S, Ogpt s7) comes from H(U, Ogp s), then € € S.
We want the following surjection
S — HY(U,Ogpt 5)-

Step IV. We are to show the injectivity of
H(U, Ospr s) — H(U N Spf S’, Ospe 7).

We first reduce this to the case modulo p°. Then we use the decomposition as in Step I, to reduce

to showing that the map from H((V\Y) xg, A%Cycl /ps) to its u-adic completion is injective. Namely,
P

setting A := HO(V\Y) ®g, Z& /p®, we need to show that the map Afu] — A[u] is injective. This is
clear. O
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3.11. Classical setting of Tate’s normalized trace. We will need yet another version of Hartog’s
extension principle, which allows us, roughly speaking, to “extend perfectoidness to the boundary”. As
preparation, we need a technical machinery, called Tate’s normalized trace.

For motivation, we recall the classical setting of Tate’s normalized trace, which is about certain
totally ramified extensions of local fields. Let K be a finite extension of Q,. Let K be a totally
ramified Z,-extension of K, i.e. it is a totally ramified extension of K and there is an isomorphism
Y: Gal(Ky/K) — Z, of topological groups.

(For instance, here is one way to obtain such an extension: Start with a finite extension
E/Q,. Choose a uniformizer 7 € E, and then obtain the Lubin—Tate extension E,/E
which is the union of all finite abelian extensions E’/E such that 7 € Ng//pE'™.
Then Gal(E,/E) = O} via the Artin map. Choose a positive integer n. Then the
open subgroup 1+ 7"Op C O} corresponds to an intermediate extension E,/E'/E
such that E'/F is finite and Gal(E,/E’) 2 1+ 7"Og. When n is large enough, this

group is isomorphic to Og, and we assume this is the case. But O = ZSB[E:Q"}

, SO we
can find, in multiple ways in general, a closed subgroup H C Gal(E,/E’) such that
Gal(E,/E')/H = Z,. Then Gal(E/E') = 7, and the extension EX /E’ is totally
ramified because E./E is so. We have already seen that E’/Q, is finite, so we can

take K = E' and K., = EX.)
For each n > 0 we write
Kn = (Koo)wil(pnzp).
Then K, /K is a totally ramified extension with Galois group Z,/p"Z, = Z/p"™. This construction

forms a tower

K=KyCK CEyC- CKy=|]JK,.

Definition 3.11.1. For any finite extension of fields E/F, we define the normalized trace as

EE/F = mtrE/F

The first property of this normalized trace is that if E'/E/F are finite extensions then
(tre/p)|lE =trg/p.

Thus for any algebraic extension E/F, not necessarily of finite degree, we can define trg/p: E — F.
In particular, on Ko = J,, K, we have an additive homomorphism

o+

I‘ZEKOO/KI Ko — K

such that (tr)|x, = trg, k. Also, for n > m, we have

_ 1 _
trm |k, = Wtrkn/Km~

Theorem 3.11.2 (Tate). The map tr: Koo — K is continuous, and hence extends to tr: IA(OO — K,
where IA(OO denotes the p-adic completion of K~,. More precisely, there exists a real constant A > 0
such that for any x € K,

T (@) < A-lal,

which implies the continuity of tr.

Proof Idea. One uses ramification theory to compute the valuation of the different ideal %y, ., /K,
in terms of higher ramification groups. The calculation yields that there exists a universal constant
a > 0, independent of n, such that

V(DK i1 /k,) 2 vk (P)(1—a/p™)
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for all n. Here vk denotes the standard valuation on K, and for any ideal .# C Ok, , such as

D, i1 /K, We Write v () for v (b) for any generator b of 7.

In fact one calculates vk (Zk, ., /K,) by using vk (Zk, . ,/k,) = Vk(ZK,1/K) —
vk (Pk, k) and calculating vi (Pk, k). For the latter, the key input is the for-
mula (which holds for an arbitrary finite Galois extension of local fields in place of
Kn/K)

oo

ok (T i) = / (1|62 VY,

-1
where G are the upper-indexed ramification subgroups of Gal(K, /K). Recall that
GY = G¥ Gal(K/K,,)/ Gal(K/K,), where G¥ are the upper-indexed ramification
subgroups of Gal(K./K). Another key observation is that there exists a positive
integer iy such that for all i > iy, we have G¥ jumps from p'Z, C Gal(K/K) = Z,
to pi+1Zp precisely after v increases by v (p). It is then not hard to see that

vk (Zk, k) = vE(P)n+c+p "a,

where ¢ is a constant independent of n, and (a,), is a bounded sequence. From this
we immediately get the desired lower bound for vk (%, ., /., )-

Thus (and in fact equivalently) for all z € K41,

Itrx, .0 /K, (T)] < p| P - a.

Here | - | is the absolute value on K corresponding to vg. As for the normalized trace, we have the
following key estimation

— tI'Kn Kn(l') _ n
Tk, (@) = % < [p Y - e

)

with [p~*| > 1. Moreover, since trg, /x = Wk, /K, , © Wk, /K, , O 0tk /K, we have, for all
x € Ky,

_ _ 1y —(n=D) _

B, /uc ()] < [pH|etre e Ve < p7HC -,

with the constant C' := 3% a/p" < co that is independent of n. O

The above proof clearly gives the following result: For any integers n > m > 0 and = € K,

—(n—-1)

(3.11.1) T, /xc,, (7)) < [p~|ee” " e ~1|Crm

N -],

where | - | is still the absolute value corresponding to vk, and Cy, = > ;= a/p’. Thus for each m > 0,
we know that the normalized trace try, = trx_/k,, : Koo = Ky, satisfies (tr,, )|k, = trg, /x,, for all
n > m and [tr,,(z)] < [p7|“™ - |2| for all 2 € K. In particular, tr,, extends by continuity to a map
tT,, IA(OO — K, satisfying the same bound.

The following result says that any element of K oo can be written as the limit of a canonical sequence
in K.

Corollary 3.11.3. For all x € I?OO, we have

z = lim tr,(z),
n—oo

for try(z) € K,, C K.

Proof. Let y, = try(z). Then we want that y,, — x. For any € > 0 there exists y € K, C Ky such
that |z — y| < £/2. By construction for all n > ny we have y = try,,(y) = tr,,(y). Also, by definition
Yn = tr,(z). Tt follows that whenever n > ng we have y — y, = tr,(y — z), and then

Oy — a.

|y —yn| < |p™
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Since C,, — 0, there exists an integer N > ng such that [p~'|%" < 2 for all n > N. For such n, we

have |y — yn| < 2]y — z|. Therefore,
|7 —yn| Smax(|z —yl, |y —ynl) <20z -yl <e.
It follows that vy, — . O

3.12. Tate’s normalized trace for the anti-canonical tower. Notice that Theorem 3.11.2, (3.11.1),
and Corollary 3.11.3 all rely on following key estimate: For all x € K,,, 11 with m € N,

tI‘K +1/K (J?) ’ 1 m
< a/P" gl

where a is a universal constant independent of n and x.
Let m > 1 and fix 0 < & < 1/2. We shall draw an analogy between the tower

(K=Ky— K — Ky —--+).
and the tower in Proposition 3.9.21:
(= X(p7%) — X(p~'e) — X(e)).
Here the transition maps are the lifted Frobenii. Write n = dim X = g(¢g + 1)/2. Then, we have the
following analogous key estimate: Along the map

— 1
tr = ﬁtr: Ox(p—(erl)E)[l/p] — O%(p*’"s)[l/p]v

the image of Ox(,-m+1).y is contained in p/P" Ox(p-me) for some constant a > 0 independent
of m. (We will prove this for a = (g* + g + 1)e.) Here, p" is the degree of Ox(,-(m+1¢)[1/p] over

Ox(p-me)[1/p]-

Corollary 3.12.1 (Tate’s normalized trace). Fiz an integer m > 1 and 0 < € < 1/2. We have the
normalized trace map

t?m . hﬂ Ox(pfm/s) [1/p] — Ox(p—ms) [1/p]

m’'>m

characterized by the condition that on the m’-th part, one has

Em = (tr: Ox(p—mle)[l/p] — Ox(p*ms) [l/p})

p(m’—m)n

—m ey 7s contained in pfcm 'Ox(pfm,e) for some constant C,, > 0, satisfying

The image ofligm an(p ¢
that Cy,, — 0 as m — oco. So we have an extension of try, by continuity to a map

/
>m

A
(hgll Ox(p_m/a)> []‘/p} = Oxrs(poo)(f)a[]'/p] — Ox(p_mé‘) []‘/p}a
m’ p

satisfying that the image of Oxy_ e\ (e), S contained in p~ ¢

OI{FS(Z,DC) (&)a [1/17};

™ Oxp-me)- Moreover, for any x €

z = lim try,(z).
m—r oo

Assuming the key estimate, the proof of the above corollary is completely analogous to the previous
arguments in the classical setting. We now prepare to prove the key estimate. Note that the key
estimate is equivalent to the following: The trace map

tr: Ox(p*“ﬂ'*l)E)[l/p} — Ox(prs)[l/P]

sends Oy (,-(m+1),) into pn(@ntle . Ox(p-me)-
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Lemma 3.12.2. Let R be a p-adically complete flat Zy-algebra. Fiz Yi,...,Y, € R. Let P,,..., P, €
R(X1,...,X,) be topologically nilpotent elements, or equivalently, each P; has topologically nilpotent
coefficients in R. (Here “topological” always means with respect to the p-adic topology.) Take

S=R(X1,.... X)) /(XP =Y = Py,..., X, — Y, — P,).

Then we have
(1) The ring S is a finite free R-module of rank p™, whose basis is Xfl co X with 0 < dqy ...y iy <
p—1.
(2) If I C R is the ideal generated by p together with all coefficients of all P;’s, then trg/p: S — R
sends S into I™.

We first discuss an example to illustrate Lemma 3.12.2.
Example 3.12.3. Let p =2 and R = Z,. Take
S = (X, Y, 2) /(X = p(X +Y),Y? = p(X +Y), 27 — p(X + V).

Following Lemma 3.12.2, we want to check that trg/r(X) € I® = (p*). By Lemma 3.12.2(1), we
have the basis X®Y?Z¢ with 0 < a,b,¢c < p—1 = 1. To compute trS/R(X), we need to compute
X-(X2Y*Z¢), and trg,p(X) is given by the sum (running through a, b, ¢ € {0,1}) of coefficients of the
monomial X?Y?Z¢ in the expansion of X - (X?Y?Z¢). If a = 0, then X - (X*Y"Z¢) = XY"Z¢, which
does not contribute to the trace since XY?Z¢ is already another element of the basis. So it suffices to
compute with a = 1. For this, we have

XX =[2X]|+2v,

X XY =(2X 4+2Y) Y = 2XY 4 2Y% =[2XY |+ 4X +4Y,

X-XZ=(2X+2Y) Z=[2XZ|+2vZ,
X -XYZ=(2X+2Y) - YZ=2XYZ+2Y?Z=[2XYZ|+2YZ +4XZ +4Y Z.

Then trg/r(X) =24+2+42+42=2% € (p3).
Proof of Lemma 3.12.2. (1) We need the following general fact.

Fact. Let R be a ring and I C R be an ideal such that R is I-complete. Take
elements Fi,...,F, € R[Xy,...,X,]} in the I-adic completion that form a regular
sequence in (R/I)[X1,...,X,]. Suppose the images of ei,...,e; € R[X1,...,X,]
in R[Xy,...,X,])/, Fy,...,F,) form a basis of the latter as an R/I-module. Then
ei,...,e; is a basis of R[Xq,..., X} /(F1,..., Fy,).

The idea to prove this fact is to use induction on k > 1 to show the following: The Koszul complex of
Fi,...,F,, acting on By, := (R/I*)[X1,..., X,], read as

(F1,.,Fp)

AN (BP™) — - — A*(BP") — BP" By,

is acyclic at nonzero degrees, and moreover the 0-th homology (R/I*)[X1,...,X,]/(Fi,...,F,) has
an R/I*-basis eq,...,e;.
To apply this fact to our setting, we need to check the conditions:
(i) The p-adic topology and I-adic topology on R are the same. In particular, R is I-adically
complete, and we have R(X,..., X,) ~ R[X1,..., X,]}.
(i) Al F; = XY - Y, — P, with i =1,...,n form a regular sequence in (R/I)[X1,...,X,].
(iii) The elements X' --- Xi» for 0 <i; < p— 1 form a basis of R[X1,. .., X,]/(I, Fi,..., F,) over
R/I.
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For (i), note that I is a finitely generated ideal, generated by p and those finitely many coefficients
of the P;’s which are not divisible by p. Thus pR C I = (p,r1,...,r:) for finitely many topologically
nilpotent elements r; € R . Then I"™ C pR for m > 0. For (ii), in the ring (R/I)[X1,...,Xn], we
have F; = X? —Y;, and one directly checks that they form a regular sequence. For (iii), it is clear
for the reason that R[X1,...,X,]/(I, F1,...,F,) = (R/1)[X1,...,X,]/(X}Y = Y1,..., XP —V,) with
Y; € R/I. Hence we are able to apply the general fact and obtain (1).

(2) We illustrate the essence of proof by working with n = 2 exclusively, for simplicity. By some
slightly non-trivial reduction arguments, one reduces the proof to showing just that trg,r(X;) € I 2,
(Note that a priori, one must show that trS/R(XfXé’) € I? for all 0 < a,b < p — 1. The point of
this reduction is that for each fixed (a,b), there is a way to change to new coordinates X7, X} such
that X| = X{ X% and such that the form of the problem remains the same for the new coordinates.)
Moreover, one reduces to the case where Y7 = Yo = 0 and P;, P, are polynomials whose degrees in
each one of X7, Xo are at most p — 1. One further reduces to the “universal case” where

R=1Zplari,a24],  i=(i1,i2) €{0,...,p—1}?

and
Pl = E aLiXilX;z, PQ = E a27in1X;2.
2 2

The subtlety here lies in that R is no longer p-adically complete; but R is still I-adically complete for
I = (p,a1,,a2,), so the conclusion of (1) still holds in the current setting, i.e., as an R-module,

S = R<X1,X2>/(X:f - Pl,Xg — Pg)

still has an R-basis X{lXéz with 0 < iy,92 < p—1. Let Iy = (a1,); and I = (asg,;); be ideals generated

by coefficients of P; and Ps, respectively, so that I = (p, I1, I2).

Claim. I N (pl; + I) C I2.
Proof of Claim. Suppose there exists some 7 € I N (pIy + I5) such that r ¢ I2. Then
r is a power series in a;; and ag; with coefficients in Z,, with r ¢ 12

There are only three cases in which » ¢ I?. In the first case, the constant term of
r is not divisible by p?; we observe that it is impossible because € I;. In the second
case, r contains a term c - as; with prime-to-p coefficient c; this is also impossible
because € I;. In the third case, r contains a term c- a1 ; with prime-to-p coefficient
¢; then r does not lie in pI; + I, which is still a contradiction.

Granting the claim, for showing that trg/z(X1) € I?, it suffices to show trg/r(X1) € [ N (ph + I2).
For it lying in I, note that if a basis element XlilXé2 contributes to trg/p(X1) then iy =p—1. (Asin
Example 3.12.3, if t; < p—1 then X3 ~X{1X§2 is another element of basis and contains no contribution
of X{lXéz.) Thus, to compute the trace, we only have to consider for 0 < is < p — 1 that
Xp- XPTIXP = XPXP = PIXP = ay ; X{P X327,
J

Note that the expression on the right hand side is not necessarily an expansion into the basis { X {“Xg"’ |
0 < k1,k2 < p—2}; we may have js + iz > p and in that case we need to use X5 = P to further
simplify. However, it is clear that eventually the coefficient of Xi*X:? is an R-linear combination of
a1 € I and hence itself lies in I;. Finally, it remains to prove that trg/z(X1) € pI1 + Io. As before,

we have
p—1
trg/r(X1) = Z C(i2)
12=0
where C(iy) is the coefficient of X~ ' X2 in P, X%. Now there are two ways that X?~' X2 can appear
in Py X3?. First, P contains the term aly(p_LO)Xf*l, so P X2 contains the term aL(p_l,O)Xf*lXé?.
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Second, for each term ay (,,,)X{' X3 in P such that v + iz > p, we have a contribution XfXé’X;z in
PlXé"’, and this contribution may contain Xfleér" since we need to apply X5 = P; to simplify X;J‘HQ.
Note that in the second way, the coefficient of X?~' X% lies in I, because the simplification X2 = P,
must be applied for at least once. Hence modulo I we can ignore the second way. Thus modulo I
we have

p—1

trg/r(X1) = Z ai,(p—1,0) = Pa1,(p—1,0)

i2=0

and this lies in pI; + I as desired. This finishes the proof.
Our next goal is to prove the key estimate for the tower X(p~™e) of interest. For m > 1 and

0 < e < 1/2, we need to establish that the trace map

tr: O%(p*“”*l)e) [1/])} — Ox(p*’"s) [l/p]
sends Ox(p—(m,+l)€) into p”7(2”+1)5 . O%(p*ms)- Here n = dim X = g(g + 1)/2
For this we need to consider the transition map from Ox(,-mc)[1/p] t0 Ox(p—m+1).)[1/p], which we

recall is the “lifting of relative Frobenius”. Recall from the proof of Definition—Proposition 3.9.15 that
X(p~™¢e) locally looks like

SpE(R &z, ZgY ) (u) /(u- f =7 "),
where Spf R C (Xz,);, and f € R is a local lifting of Ha such that f € R/p is a nonzero-divisor.

Proposition 3.12.4 (Key estimate). Let R be a p-adically complete flat Z,-algebra, which is topolog-
ically of finite type and formally smooth of dimension n over Z,. Let f € R be such that its modulo p
reduction f € R/p is a nonzero-divisor. Take 0 < & < 1/2, and define

Se = (R &z, Z ") ue) /(e - f = p°).
Here u. is seen as a variable. Also define Se, in the same way.
Assume we have a map®
©: Se — Se/p,
such that modulo p'~%, ¢ is the relative Frobenius over Zgyd/pl’s. In other words, it can be given as
Jollows. Write Ry_¢ = R ®g, (Zf,yd/pl_s). Then ¢ mod p'~¢ is the map

Rl—a[ue]/(f cUe — pe) — Rl—e[ue/p]/(f “Ug/p _ps/p)
which sends ue to ug/p and which restricts to Frz ®id on Ri_. = R ®F, Z;ycl/plfa' Then
(1) The map
o[1/p]: Se[1/p] — Se/p[1/p]
is finite and flat of degree p™.
(2) The trace map
tr: Se/p[1/p] — Se[1/p]
sends S p, into p~(ntVeS - Here the trace map is defined by viewing S./p[1/p] as an Sc[1/p]-
algebra via @[1/p] by (1).
Proof Sketch. Define
S = (R&z,Z57) (v)/(f? - v —pF).
Note that there is an R ®ZPZ;y°1—algebra map

78— Se/p

v (ug/p)P.

SRecall that it took non-trivial work to establish the existence of the map X(p~(m*+De) — X(p~™e¢) lifting the
relative Frobenius. (We used the theory of canonical subgroups.) In the current setting, the existing of ¢ : Se — Se/p

lifting the relative Frobenius is really a non-automatic assumption.

Lect.19, Dec 14
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We make the following claims:
(i) After inverting p we get an isomorphism 7[1/p]: S'[1/p] — Se/p[1/p].
(ii) The map 7 is injective.
(iii) The cokernel of 7 is annihilated by p®.
We prove (i) by directly spotting the inverse. To write down (7[1/p])~!, formally we expect that
(r[1/p])~t: ueyp + v'/P. However, we must make sense of v!/? in S’[1/p]. For this, we formally
compute

S _ <p6> 1/p L pele pplopEle ppelopel o1 pelome
= = = = - = -p ‘.
fr f fr p°/v

Here p*/P~¢ makes sense in S’[1/p]. Thus, this formula gives (7[1/p])~1: ucy, — fP71 . p/P== .0
as expected. The claim (ii) is implied by (i) together with the fact that S’ is p-torsion-free (using
Proposition 3.10.5, we see S’ is flat over Z;yd, which can be checked by hand directly). As for (iii), it
is enough to note that the formula for (7[1/p])~! involves only p® on the denominator.

Next we show that : S — S/, factors through S’ as

S~V 8 Ty S,
It suffices to check this modulo p'~¢. Indeed, if we know the factorization modulo p'~¢, then for each
x € S. we have ¢(z) € Im(7) + (p' ). Since 1 — ¢ > ¢, we have (p!=¢) C Im(7) since Coker(7) is
killed by p°. Now to check the factorization modulo p'~¢, we know that ¢ is the relative Frobenius by
assumption, so we can directly check that ¢ factors through Im(7).

(1) Now it remains to show that [1/p]: Sc[1/p] — S’[1/p] is finite flat. For this it is natural to
first recognize (¢ mod p*~¢). Consider the composition (7 mod p'=¢) o (» mod p'=¢) = (¢ mod p*~*°),
which is the same as the relative Frobenius. The idea is that if (7 mod p'~¢) is injective then the above
condition uniquely determines (¢ mod p'~¢). However, this may not be the case. We can control the
kernel of (7 mod p'~¢) as follows. The short exact sequence

0— 85 Se/p — Coker(r) — 0
induces a long exact sequence after ®Z;ychgyC1 /p'~¢, and then produces a quotient map
Tory gever (Coker(1), Zgyd/pl_s) — Ker(r mod p' ).
By (iii), the left hand side is annihilated by pf, and so is Ker(7 mod p'~¢). Now consider the map
V' Ry—eluel/(fue —p°) — Ri—c[v]/(f"v — p%)
sending u. to v and equal to Frz ®id on Ry_. = R ®r, Z;ycl/pl—s. We directly check that
(7 mod p' =) 0 ¢/ = (¢ mod p' =) = (7 mod p*~%) o () mod p'~F).

Write ¢ for (¢ mod p'~¢). Therefore, for any z € S./p'~¢, we have ¢(z) — ¢/(x) € Ker(r mod p'~¢).
We have seen that this kernel is contained in Ker(p® : S’/pt=¢ — S'/p'=¢). Since S’ is p°-torsion free,
we conclude that the pre-image of ¢(z) — 1 (z) along S — S’/p*~¢ is contained in p'~2¢S’. Therefore,
¥ =9/ mod p'—2%.

The upshot is that we have obtained an explicit description of 1) mod p'=2¢ : Ry_o.[uc]/(fu-—p°) —
R1_2:[v]/(fPv — p®). Namely, it sends u. to v and equals Frz ® id on Ri_o..

Using the assumption on R, after a suitable localization, we may assume Frg: R —> R, z+— aP
makes R a finite free R-module with basis Yfl <Y with 0 < dy,...,4, < p— 1, for some fixed
elements Y7,...,Y, € R. (For instance, if R = Z,(Y1,...,Y,), then this is evident.) It follows that
the map (¢ mod p'=2¢) makes Ry_o.[v]/(f? - v — p®) a finite free module over Ry _o.[uc]/(f - ue — p°),
with the same basis. It then follows that the S.-algebra S’ (with structure map ) is isomorphic to

(3.12.1) S 2 SAXy,..., X)) /(XP =Y, — Py,...,XE =Y, — P,),
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with Y1,...,Y, € S and P1,..., P, € S-(X1,...,X,). Here all coefficients of P,;’s are in p'=2¢S.. By
Lemma 3.12.2 (1), we know that ¢[1/p] is finite flat.

(2) Since Coker 7 is annihilated by p° from (iii), we have the inclusion

trs,,,/s/(Se/p) C P75
Therefore, it suffices to show that
trgs.(S") C prTEnES,.
By (3.12.1) and 3.12.2 (2), we have
trg/s.(8') € I" € p =S,
where I is the ideal generated by p together with all coefficients of P;’s. This finishes the proof. [

3.13. Constructing perfectoid anti-canonical neighborhood. We now introduce an important Lect.20, Dec 19
criterion Proposition 3.13.1 of perfectoidness in the limit. The following preparation work will be
useful in its proof.
Recall Tate’s normalized trace from Corollary 3.12.1: For m > 1 and 0 < ¢ < 1/2, we have
normalized trace map
oy 1/1_13 Ox(p-m'e)[1/P] —> Ox(p-me)[1/p]-

The image of ligm Ox(p_mrf) along tr,, is contained in p~ = Oz (p-me) for some constant C', > 0,

/2m o
satisfying that C,, — 0 as m — oco. So we have an extension of tr,, by continuity to a map

H7)’L : OxFS“,oo)(E)a[l/p} — Ox(p77n€) [l/pL

Here recall that X (pe)(€)a is the formal scheme representing the inverse limit lim X(p~™'¢). More-
over, since C, — 0, all functions at infinite level are canonical limits of functions at finite levels, i.e.
for any f € Ox.. o) (e).[1/p] One has

= hnrln trm (f),

where tr,,(f) € Ox(p-me)[1/p] is identified with its image in Ox,_ (). [1/p)-

Consider the anti-canonical neighborhood A} (pm)(e)a. Recall that

AT, (pm)(€)a = X7 (p7e)

is affinoid for m > 0, and this would fail to be true without compactification (see Lemma 3.10.7 and
Remark 3.10.8). Also recall from Corollary 3.10.9 that we have constructed the perfectoid space

les(l’x)(g)a ~ @ng(p’”)(f)a-
Our goal now is to construct the perfectoid space
Ap(pee) (E)a ~ W AP m) (€)a

m

of the full level. In order to achieve this we need the following.

Proposition 3.13.1. Fiz m such that X} (8)a Z X*(p ™) is affinoid. Let

s(p™)

Vm — Xl:ks(pm) ()a

be a finite morphism such that it is étale away from boundary of compactifications, namely it is étale on
Xr (pm)(€)a = AL (ymy (€)a—0. Let Y be the preimage of X ym)(€)a in V5, s0 that Y — Xr (pm)(€)a
is finite étale. Assume Y5, is normal and none of its irreducible component is mapped entirely into the
boundary of Xy (,my(€)a-
For any m’ > m, define
v, — les(pm,)(s)a
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to be the pullback of ¥, along X (pm,)(e)a = AL pmy

Voo — )C‘lfs(p"")(s)a
to be the pullback of V), along Xl’fs(poo)(s)a — les(p’”)
back Ym = Yy, — 0 to Xp (mry(€)a and X, (p=<)(€)a, respectively.
Since les(pm)(a)a is affinoid, each R
Yz, = Spa(Sy, St,). Then

(1) For allm' > m,

(€)a- Also define

(€)a. Similarly, define Yy and Vo by pulling

s(pm,)(s)a is affinoid for m' = m, and so also is Y, ; we write

Sy =H YV, 03 ).
(2) The map
lim §, — H' (¥, 0, )

is injective and has dense image.
(3) Assume Soo = H°(Vos, Oy, ) is a perfectoid QY'-algebra. Then

y:o = Spa(Seo; Sgo)
is an affinoid perfectoid space over Q]‘;yd, and
Yoo ~Im Yy,
m/

Before the proof we have some explanations of statements in Proposition 3.13.1.

(1) Each Yz, is determined by its interior Y, .
(3) The tower (J);,/)m is the same as base change of the tower (A} (pm,)(a)a)m/ along V¥ —

XY (pmy(€)a- The original tower (A} (€)a)m’ is known to have perfectoid limit. In order

FS (p‘,”/)
for the new tower (Y, ) to still have perfectoid limit, we just need Su == H° (Yoo, (’);m) to
be perfectoid. But S, only depends on the interior. So one can essentially work on interior

and the global sections away from boundary.
As an important remark, since we know YV is finite étale over Xp_(p)(€)a, the almost purity result (see
[Sch12, Theorem 7.9(iii)] or proof of Corollary 3.9.27) implies that ), is perfectoid, since Ap_(po)(€)a
is known to be perfectoid. However, caution that this does not directly imply the perfectoidness of
Soo-

Proof Sketch. (1) Begin with V¥, = Spa(Sy,S;\,) we need to show S}, = HO(Vnr, O |
enough to show that Sy, = H%(Ypr, Oy ). Set

Ri=H(X} . ()2, Oxs | (o))

Fs(pm/) Ts(p™’)

). Tt is

Using classical Hartog’s principle (Proposition 3.10.4), one shows that the map R — S, is finite étale.
In particular we obtain the trace map

tre/s, ¢ Sm/ — R

such that the trace pairing induces an isomorphism S — Hompg(S, R), z + (y — trr/s, ,(zy)). Using
this, the proof is reduced to the analogous statement about R, i.e. it reduces to showing

_ 170

R=H (er(pm’) (5)3, OXFS(pm/)(E)a).

But this is just our second version of Hartog’s extension principle (Proposition 3.10.5).
(3) This directly follows from (2) together with the construction.

(2) We only explain that the given map has dense image using Tate’s normalized trace. Injectivity
follows from Tate’s normalized trace as well. By (1), Sy = Ho(ym/,C); ,)- So we need the map

hgsm/ — @Ho(ym’;o;m/) — Ho(yoo7oi~/_oo) = SOO
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to have dense image.

We first explain why this is not obvious. Note that )V, is the perfectoid space with Vs, ~ @m, Vs
This means after localizing at one fixed m by replacing ), with some affinoid open Spa(R,,, R;.), the
tower becomes

(Spa(Bomr, Ry )

and Y, becomes Spa(R, RL) such that R is the completed direct limit of R,,/’s. In particular,
the map injlim,,, R,y = R~ has dense image. However, before localization, it is a priori unclear that
the map between global sections lim H Yy, (’);m,) — H' (Voo O;x) has dense image.

What we want is true because by Tate’s normalized trace (Corollary 3.12.1 and the discussion at
the beginning of this lecture), each local section of Oy,__ is canonically the limit of a canonical sequence
of local sections of Oy , and the local section

f = limy e (1)
is compatible with gluing. Therefore, each global section f € H(Vu, Oy ) is still a limit of tr,,/(f) €
Ho(ym/70y7n/)' D

Next we want to apply the above criterion to the following choice of Jy, — &7 ()

(€)a- Take
y’;‘;’L = Xf‘kl(an)(s)a

which is the inverse image of les(pm)(f)a (as a locally closed in XE (pmy = (X )?") along the

*
FS (pm ) 7Q;y61
map

(X, gre)™ = A0y o) — AT -

Here the level
I

g *> mod p™ (with size g blocks)} c Ts(p™).

Ty(p™) = {96 G(Zp): g= (0 J

Now we need to show Soo = H°(Vso, Oy, ) is perfectoid. Scholze uses really delicate arguments to
show this. We give a very rough outline of the ideas.

(a) The first step is to guess the tilt of S, denoted by S’ _, which is a perfectoid algebra over
Q;ycl,b = [Fp[[tl/(pfl)pwﬂ.

(b) The perfectoid algebra S’ is constructed by hand by using the Siegel modular variety over
characteristic p with I'1 (p™)-level structure. In general, I'1 (p™)-level structure does not make
sense in characteristic p. But the construction of S’ involves only the ordinary locus of the
Siegel modular variety in characteristic p, and in this case the T';(p™)-level structure makes
sense.

(¢) Then, show that the untilt of S, over ngd, which is a perfectoid algebra over ngd, has to
be isomorphic to So.. It follows that S, is perfectoid. The main tool at work is Riemann’s
Hebbarkeitssatz (removable singularity theorem) for perfectoid spaces in characteristic p. One
uses this to sandwich the almost algebra (So/p)? from two sides by

o Computing tilt of the perfectoid space V., and
o Computing tilt of base change of ), to the perfectoid space Xli‘s(poo)(s)a.

The upshot of the above argument is the existence of a perfectoid space with m fixed:
T, (o) ()a ~ B AL (o, (v (E)a-
m’

The new tower with perfectoid limit is more refined in the sense that the intersection level group is
smaller than Ty (pm'). Further, the limit of LHS over m (by first passing to affinoid perfectoid covering,
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and then over each chart taking completed limit of the Huber pairs over m, as apposed to directly
taking the limit in the category of adic spaces) leads to a perfectoid space

AL, (pey (E)a ~ l'&n){fkl(pm)(g)w
Finally, from this, we deduce the existence of perfectoid space
A (pee) (€)a ~ W X ) (€)a-
This step uses the almost purity together with the amazing fact that the level-changing map
Xli‘k(pm)(s)a — kal(pm)(E)a
is finite étale even over the boundary. Caution that this only holds for anti-canonical e-neighborhood
and fails to hold for le(pm) — X (o)
Remark 3.13.2. The last step above uses almost purity. Recall that we encountered this argument

before: We used the perfectoidness of the tower

lim X, () ()

m

to prove perfectoidness of full-level tower yilm A (pm)(€)a by almost purity and the finite étaleness of
the map Xpmy — A (pm)-

Conclusion. We have now proved that for 0 < € < 1/2 there is a perfectoid space over ngd:

XF(poc)(€)a ~ @1 Xf\k(pm) (E)a

m
What remains to do is as follows.
(1) Construct the perfectoid space

)an

XF(pOO) ~ 1.gl‘x/l—‘(pm) = l.gl(Xp(pm)yQ;ycl
m m
(2) Construct the Hodge-Tate period map
THT : Xf\k(poo) — 32&
where %/ is the adic space over ngd associated to some flag variety.

These two things will be done simultaneously. Moreover, if time permits, we will explain the application
of these, that is, to understand the cohomology by using the geometry of le(poo) and mgp. We come
to the outline to do (1) and (2) in the following.

3.14. Hodge—Tate filtration. For the purposes (1)(2) above, we discuss Hodge—Tate exact sequence
and Hodge—Tate filtration for an abelian variety over some suitable p-adic field.
Let L be a discretely valued complete non-archimedean field (such as a finite extension of Q, or

(QEH)A). Let C = L. Let A be an abelian variety over C. Given these, we have a canonical one-step
filtration on H} (A, Zy,) ®z, C = Homg, (T,(A),C), read as

0 C Fil' ¢ HY(A,Z,) ®z, C = Fil’
of C-vector spaces. If we suppose the abelian variety A has dimension g over C, then
dimc Fil' =g, dime Fil° = 2g¢.
The associated graded pieces have the following canonical identifications:
gr! = Fil' = HY(A,0,4),
gr® = Fil®/Fil' = HO(A,Q4)(—1).
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As a remark, in the isomorphism of gr’, the Tate twist (—1) on H°(A,Q4) is used to record the
following: When A happens to be defined over L, both gr and gr! are not only C-vector spaces
but also Galois representations of Gal(L/L); the isomorphisms are equivariant with respect to Galois
actions only after taking the Tate twist. More precisely, if A comes from Ag over L, then

e the Gal(L/L) action on Homg, (T,(A), C) is via the natural action on T},(A) and the natural
action on C' (which extends the tautological action on L by continuity.)
e the filtration Fil' is stable under Gal(F/F).
e the action of Gal(F/F) on H'(A,04) = H'(Ag,04,) ®1 C is via the trivial action on the
first factor and the natural action on the second.
e The action of Gal(F/F) on H°(A,Q4)(—1) = H°(A,Q4) @1 C(—1) is via the trivial action
on the first factor and the natural action on C'(—1), i.e., the natural action on C twisted by
the inverse of the p-adic cyclotomic character Gal(F/F) — /o
Further, one may also assume that A is defined over L by enlarging L if necessary (as A is always
defined over a subfield of C' which is of finite transcendence degree over L, and hence discretely
valued). If this is the case, the filtration has a unique Gal(L/L)-equivariant splitting, i.e. the quotient
gr® = Fil® /Fil1 is canonically a direct summand, and hence we have the Hodge—Tate decomposition

H} (A, Zy) ®z, C = H°(A,Qa)(—1) ® H' (4, 04).
This canonical splitting is due to the fact that H(Gal(L/L),C) = L and H'(Gal(L/L),C(r)) = 0 for

r # 0 (Tate).
The upshot lies in that we have a short exact sequence of C-vector spaces

0— H'(A,04) — HY (A, Z,) @z, C — H(A,Q4)(—1) — 0.
For convenience we take the dual of C-vector spaces, and obtain that
(HT) 0 — (Lie A)(1) — T(A) ®z, C — (Lie AV — 0,

where AV is the dual abelian variety. This (HT) is called the Hodge—Tate exact sequence, and we have
seen that it splits canonically if A is defined over L.

First comments. Assume A has good reduction, i.e. it extends to an abelian scheme A over the ring
of integers O¢. Let G be the p-divisible group associated to A. So G is a p-divisible group over O¢.
Then (HT) becomes in terms of the p-divisible group, written as

0 — (LieG) ®o, C(1) — Tp(Gc) Rz, C — Homop,, ((Lie Gv), ) —0.

Here Lie G is seen as a finite free O¢-module and so is Lie GV. The two maps above have elementary
definitions in terms of the p-divisible group G, see e.g. [SW20, §12.1]. However, just using these
elementary definitions, it would be hard to show we really get an exact sequence. Actually, for any
p-divisible group G over O¢, these elementary definitions will always give an exact sequence as above,
and furthermore this construction enters the following theorem.

Theorem 3.14.1 (Scholze-Weinstein, [SW13, Theorem B]). There is an equivalence between

e The category of p-divisible groups over O¢, and
o The category of pairs (T, W), where T is a finite free Z,-module and W is a C-vector subspace
of T ®z, C.
For one direction, beginning with a p-divisible group G over O¢, we can take T = T,(G¢c) and W as
the image of the first map (Lie G) ®o, C(1) — T,,(Gc) ®z, C in the Hodge-Tate exact sequence for
G. (We no longer require that G comes from an abelian scheme, so the numbers rank T and dim W
are arbitrary, not necessarily satisfying rank T = 2dim W.)

The point to takeaway is that:
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Main idea. The process of extracting the Hodge—Tate exact sequence from the abelian
scheme A over O¢ is like the process of associating to A a p-divisible group over O¢.

Remark 3.14.2. We are mostly working in the case where A has good reduction for simplicity. But
even in the bad reduction case, we can still look at the p-divisible group G attached to the connected
Néron model of A over O¢. In this situation G still has its own Hodge-Tate exact sequence. The
Hodge—Tate filtration for A is determined by that for G by the following fact: There is a canonical
injection T, (G) ®z, C — T,(A) ®z, C, because the p™-torsion points of G are exactly those p™-torsion
points of A which have “good reduction”, i.e., extend along the connected Néron model. Under this
injection, the nontrivial piece Fil* C T,(G) ®z, C is mapped isomorphically to Fil' ¢ Tp(A) ®z, C.

Second comments. The Hodge—Tate exact sequence for abelian varieties recalled above was established
by Tate, and it was later generalized to arbitrary smooth proper algebraic varieties by Faltings. For
our purposes, we will take the point of view that the Hodge—Tate exact sequence and Hodge—Tate
filtration come from the Hodge—Tate spectral sequence, which was established by Scholze in a purely
p-adic analytic setting (as opposed to the setting of algebraic varieties).

Let X be any smooth proper rigid analytic variety (equivalently, an adic space of finite type which
is smooth and proper) over C. We have the Hodge-Tate spectral sequence:

By = H'(X, % o) (—j) = H (X, Z,) @z, C.

Moreover, we also have the following.

Fact 3.14.3. The HodgeTate spectral sequence above degenerates if
e cither X comes from an algebraic variety via analytification,
e or X is defined over L C C.

3.15. The topological Hodge—Tate period map. For the construction of the perfectoid space
Xff(poo), we begin with some preparations. First define the topological space

|X1:k(p°°)| = @ |Xl:k(p"”)

Similarly, take
| XD (pocy | = Lim [Xp(pm) .

Also define the boundary at level I'(p™) as

X ad
Zr) = A pm) \Xppm gore

together with its limiting topological space
| Zr(poe)| = Lm [ Zpgpm)|-
m

Recall that Xpm) is the good reduction locus. Thus, note that Xpm) is an open subspace of

Xli((lpm)@;yd but they are not equal. In particular, |A}

Definition 3.15.1. A non-discrete affinoid field is a Huber pair (L, LT), where L is a non-archimedean
field whose topology is not discrete, and L™ is assumed to be a valuation subring of L (i.e. LT is an

(=) \|Zr(p=) | is actually larger than |Xr(e)|.

arbitrary open bounded valuation subring of L).
Fact 3.15.2. Let (R, RT) be a Tate Huber pair. Then there exists a bijection of sets
| Spa(R, R)| «— {(L, L, ¢)}/ =,

where on RHS, for each triple (L, L™, p),

e (L,L") is a non-discrete affinoid field, and
e ©: (R,R") — (L,L") is a map of Huber pairs such that ¢(R) is dense in L.
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We point out a subtlety in Fact 3.15.2. The set | Spa(L, L")] is not always a singleton. In fact, it is
in bijection with the set of all valuation subrings U C L such that LT c U c L°. Moreover, if U, U’
are two such valuation subrings corresponding to v,y € |Spa(L, L™)|, then we have U C U’ if and

only if y is a specialization of ¢/, i.e., y € {y’'}. Also observe that for any non-discrete affinoid field
(L, LT), there is always a natural map Spa(L,Or) — Spa(L, L™). The left hand side is a singleton,
and the image of this map is the unique generic point. Compare the discussion in Example 2.4.7.

If z € |Spa(R, R")| corresponds to the map ¢: Spa(L,L*) — Spa(R, RT) through the bijection
in Fact 3.15.2, then ¢ sends the unique closed point of | Spa(L, L™)| (corresponding to the valuation
subring U = LT) to x, and sends the unique generic point of |Spa(L, L")| (corresponding to the
valuation subring U = Op) to the unique maximal generalization of z. Conversely, starting with z,
one gets the corresponding (L, L", ) by taking L to be the completion of the residue field k(z) of z,
and taking L' to be the completion of k(z)™ (cf. the discussion around Fact 2.5.6).

Construction 3.15.3 (Flag variety). Let G = GSp,,, the similitude symplectic group as before.
Consider

Fl=G/P,
where P is the parabolic subgroup of G consisting of block upper-triangular (3 I) € G with size-
g blocks. Then FI is a projective smooth algebraic variety over QQ, which classifies all Lagrangian
subspaces of a 2¢g-dimensional standard vector space. More precisely, we have the following moduli
interpretation of it. For any Q-algebra R,

{R—submodules L C R?9 which is a locally direct summand of rank g}

FI(R) = . L . 0 I
and isotropic with respect to the symplectic form (_ I, 0 )

This is an analogue of the Grassmannian Gr(2g, g) for GSp,,. Let
Fl = (FLg, )*.

This is an adic space over Q.

Construction 3.15.4. We construct a map

[mar ] [T ooy [\ 2T oy | —> [FL].

Let @ € [ X7 o)\ 27 (oo |- Let @m € |A7 m)
. . . . . . * _ ad
tion carried by w,, is equivalent to a morphism ¢,,: Spa(L,, L) — Xr(p”L)\ZF(pvn) = Xr(pm)@;ycl’
where (L,,, L) is a non-discrete affinoid field and L,, is taken to be the completion of the residue

\[Zf(,m)| be the image of z. By Fact 3.15.2, the informa-

field of x,,. We observe that L,,t1/Ly, is finite, and thus there exists a minimal non-discrete affinoid
field (L,L") that contains (J,,(Lm,L;};). It follows from minimality that (L,L") is unique up to
isomorphism. We note that by the minimality requirement, we do not have the freedom of enlarging
L7, and in particular it may not be equal to Of.

The ¢,, we obtained before induces a morphism

. + ad
Pm - Spa(L7L ) — Xp(pm)’Q;ycl

that factors through Spa(L,, L;},). Consider

@m: Spa(La OL) — Spa(L7L+) SO_m) Xad my geyels
L(p™),Qp
i.e., the restriction of ¢, to the unique generic point of Spa(L,L™"). By the universal property of
ad
T(pm),Qp "
Spa(L,0p) — Xr(pm) Qe where the source is the underlying locally ringed topological space of
PP VL) Q5

a map from Spa(L,Oy,) to it is equivalent to a map of locally ringed topological spaces

Spa(L,Opr). But Spa(L,Or) = Spec L, so this datum exactly determines an L-point of the scheme
X
r

(Pm), Q!
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From the moduli interpretation, this gives rise to a principally polarized abelian variety (A4, A, n?, 1)
over L of dimension g, together with its level structure n,: A[p™|(L) — (Z/p™)?9 at p. We have such
a structure compatibly for all m, and hence have a trivialization 7, : T,(Az) — Z29. Let C be the
completion of L. We obtain from the Hodge-Tate exact sequence for A that

0 —— LieAc — Tp(Ac) @z, C —2 C%.

Thus, we obtain a g-dimensional C-vector subspace of C29, which can be checked to be isotropic. It
is a fact that this subspace comes from L via base change (since A is defined over L). We thus get an
L-point of F1 by the moduli interpretation of Fl, and similarly as before an L-point of F1 is equivalent
to an (L, O )-point of #¢. Since FL is proper, we have the partial properness of .%#¢, which implies that
any map Spa(L,Or) — F{ extends uniquely to Spa(L, L") — Z¢, with the following commutative
diagram.

Spa(L,Or,) — FH

l T3

Spa(L, L™)

In conclusion, we started with z and arrived at a morphism Spa(L, L") — .Z¢. We define |rut|(z) €
|Z€| to be the image of the unique closed point of Spa(L, L™) under the morphism Spa(L, L™) — F#¢
constructed above. We thus obtain a map

|mhr|: |XF(poc)|\|ZF(pec)| — [ FL|.
The following theorem is deep.
Theorem 3.15.5. The map |ryr| is continuous.

The proof of Theorem 3.15.5 uses relative p-adic Hodge theory a la Scholze. We will discuss this in
§3.18 later.

3.16. The G(Qp)-action. For G = GSp,,, note that [} )| carries a canonical G(Qp)-action. An
element g € G(Qp) acts on the tower (X7 ) o)m in the following sense. For m,n > 1 such that
gl(p™)g=! C T'(p™) as subgroups of G(Q,), we have a map g: Xfi(pm)Q — le(pn)@. These maps are
compatible with the multiplication in G(Q,). Then by functoriality we have a G(Q,)-action on the
tower of topological spaces (|X}(,m)|)m in the similar sense. This structure induces the G(Qp)-action
on | A o) = Hm | XE .

In fact, the G(Qp)-action on the tower (Xf,m)g)m (Which is equivalent to a G(Q,)-action on the
projective limit @m Xl’i(pm)@ in the category of schemes, where the limit exists because the transition
maps are finite) is uniquely determined by a natural G(Qj)-action on (Xp(m)g)m. (In particular, the
G(Qp)-action on [A7 ) stabilizes | X7 ) [\[Zr(p=)|.) To explain the latter action, it is convenient to
use a different version of the moduli problem for Xp,m) .

Instead of looking at principally polarized abelian schemes up to isomorphisms, we look at polarized
abelian schemes up to isogenies. Since this process identifies two isogenous abelian schemes as one
point of the moduli space, it requires a new meaning of KP-level structures (otherwise we would lose
much more information about the moduli) together with a new meaning of T'(p™)-level structures. Let
S be a test scheme and A a polarized abelian scheme up to isogeny over S. (An “abelian scheme up to
isogeny” is by definition an object in the isogeny category of abelian schemes, i.e., the category whose
objects are abelian schemes and whose Hom groups are given by Hom(A, B) ®z Q. There is also a
suitable notion of polarization for an abelian scheme up to isogeny.) For simplicity we assume S is
connected and choose a geometric point s. Recall that T'(p™) denotes a compact open subgroup of

G(Zy)-
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e The new meaning of a I'(p™)-level structure for A is a 7¢*(.S, s)-stable T'(p™)-orbit of isomor-
phisms
Tp(AS) ®Zp Qp % @12;9
that preserve symplectic forms up to scalar. The condition of 7{t(S, s)-stability makes the
structure independent of the choice of s. (Note that we do not require any single isomorphism
to be m$*(S, s)-equivariant.) Here I'(p™) acts on Q29 via the natural action of G(Q,), and
(S, s) acts on T),(As).
e The new meaning of a KP-level structure is defined similarly, which is a 7$t(S, s)-stable KP-orbit
of isomorphisms
TP(A,) 27 Q > (AD)9,
that preserves symplectic forms up to scalar. For more details, see [GN06, §2.6]. (In this
reference the authors only consider the passage to the prime-to-p-isogeny category and the
corresponding change of meaning of a KP-level structure, but the spirit is the same.)

Now G(Q,) acts on the tower (Xp(,m)q)m by the above moduli interpretation and the natural
G(Qp)-action on Qf,g , which is used to change the level structure at p. We caution the reader that
this action is not defined for a single level I'(p™). Indeed, if {n} is a I'(p")-orbit of isomorphisms
Ty(As) ®z, @y — Q27 then for a general g € G(Q,), the set {gon} is not a I'(p™)-orbit of such
isomorphisms, but rather a gI'(p™)g~!-orbit. In the case where gT'(p™)g~! C T'(p"), we indeed get a
new I'(p")-level structure, and thus a morphism g : Xpm) o = Xr@pn),o-

On the flag variety Flg, we also have a G(Qp)-action. This action has the following moduli inter-

pretation. Recall that for any Q,-algebra S,
S-submodules L C §%9 which is a locally direct summand of rank g}

F]Qp (S) = . . . : 0 I
and isotropic with respect to the symplectic form (_ 1, g )
The G(Qy)-action on the above set is via the natural G(Q,)-action on S%¢ = Q2% ®q, S (via the first
factor), which indeed permutes isotropic locally direct summands.
The following is easy to see:

Proposition 3.16.1. The map |mur| is G(Q,)-equivariant.

3.17. Outline of the proof of the main theorem. We now roughly describe the whole argument
that shows the existence of the perfectoid space
T(pee) ~ 0 A ).

Now we have already constructed the underlying topological space |Xli‘(pw) |.

Definition 3.17.1. An open subset U C |X1f(poo)\ is called affinoid perfectoid if there exists some

m > 1 such that U is the inverse image of an open in |X1f(pm) coming from an affinoid open subspace

Spa(Rp,, R} C Xy (pm), and moreover if we write the inverse image of Spa(R,, R}) in A for

(™)
m’ > m as Spa(R,,, R},) (this is necessarily affinoid), then the completed direct limit (R, R%) of

the pairs (R, R, ,) is such that R is a perfectoid Q;yd—algebra and Ry, = R [1/p].
Definition 3.17.2. A union of affinoid perfectoid open subsets in \Xli‘(poo)| is called perfectoid.

Our goal now is to show that |Af Oc)| is perfectoid. Once this is achieved, the argument would

(p
be done because we can equip the topological space |le(poo)| with the structure of a perfectoid space

Xff(poo) coming from “charts” provided by the affinoid perfectoid open subsets that cover it, and

moreover it directly follows that Xll"(poo) ~ @nm Xl’f(pm).

By our previous work, we already know that

e The open subset [} ) (€)a| C [Af ] is (affinoid) perfectoid (for 0 < e < 1/2).

(p>)
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The main idea is to use the G(Q))-action to “spread out” this open. We will show that there exist
finitely many elements of G(Q,,) such that the translates under these elements of |le(px)(€)a\ cover
|Xli‘(poo)|. See Propositions 3.19.1 and 3.19.3 below. The proof will use the topology of |ryr| in an
essential way.

Conclusion. The topological space \Xl’f( poo)| is equipped with the structure of perfectoid space Xli‘(poo)
and Xli‘(poo) ~ l'ngli‘(pm). After this, some more work shows that |mpT| can be promoted to a map of
adic spaces

THT : le(pm) — F.

3.18. Relative Hodge—Tate filtration. In order to prove Theorem 3.15.5, we need the relative
version of the Hodge—Tate filtration. For our purpose, we only need the first step of the filtration for
ot

To set up the theory, let X be a locally noetherian adic space over @, namely X has local charts
of form Spa(R, RT) with R either being strongly noetherian (i.e. R(Xj,...,X,) is noetherian for all
n > 1) or containing a noetherian ring of definition. In [Sch13] and its erratum, Scholze defines the
pro-étale site Xproe, of X. The objects of X 06 are certain cofiltered projective systems (U;);er in X,
where X is the category of adic spaces U equipped with an étale map to X. Only those projective
systems which are pro-étale over X are objects of X4, and we omit the formal definition of this
notion.

o A typical object of Xpro¢t is given by a cofiltered projective system (U;)ier in Xe¢ such that the
transition maps are eventually finite étale surjective. However, Xpr04¢ has more objects than
these “typical” ones.

e The morphisms in X;,0¢ are the usual morphisms between projective systems, namely,

Hom((Ui)ier, (Vj)jes) = limlim Hom(U;, V).
i
o The covers in Xp.o¢ are quite technical to define, and we refer to the erratum of [Sch13].

We have a natural morphism of sites
v Xproét — Xét

sending U € Xg; to the trivial projective system (U);e .y
It turns out that X.0¢; has a nice basis (as a site) consisting of affinoid perfectoid objects (at least
when we assume X is over a perfectoid field), defined as follows.

Definition 3.18.1. Assume that X is over a perfectoid field K containing Q,. A cofiltered projective
system U = (U;);er in Xg is called affinoid perfectoid if

e transition maps are eventually finite étale surjective,

e we have U; = Spa(R;, R;") for all i € I, and

e denoting by R the p-adic completion of hﬂz R, the K-algebra R := R*[1/p] is perfectoid.

An affinoid perfectoid U = (U;);er is an object of X106, A basis of the site Xproe is formed by
all objects of this form. In the situation of Definition 3.18.1, U := Spa(R, R") is an affinoid perfectoid
space. Moreover, one can see that

U~ L U;

7

in the usual sense.
With the morphism v: Xp0¢c — Xet, We consider some sheaves on Xpro4t as follows.
e Ox =1v*0Ox,, and O = v*O% . (Here (’)g;;z: U+ OI(JH(U).)
. (5}, the p-adic completion of OF (the completion is taken at the level of sheaves, and @}L((U )
may not be the same as lim O (U)/p"), and Ox = O%[1/p].
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° Zp = @TL Z/p™, where the limit is taken in the category of sheaves on Xproes.

Fact 3.18.2. Let g: X — Y be a proper smooth morphism between smooth locally noetherian adic
spaces X and Y over Q.

(1) We have an isomorphism in the category of sheaves on Yproes:
(ng*zp) ®/Z\p @Y = ng*@\X-
(2) The natural map

(R'g.0x) ®0, Oy — R'g,0x (% (ng*zp) ®3 Oy

relativizes the Hodge-Tate filtration H'(X,0x) < H} (X, Z;) ®z, C on H' in the absolute
case (i.e. Y = Spa(C, O¢) with C an algebraically closed complete extension of Q).
(3) If U = (U;);er is an affinoid perfectoid object in Y064, then

Oy(U)=R, Oy (U)=R",
where (R, RT) is as in Definition 3.18.1 with affinoid perfectoid space U= Spa(R, RT).
Parts (1) and (3) of Fact 3.18.2 ultimately come from the following theorem of Scholze in his thesis:
Theorem 3.18.3 (Scholze, [Sch12]). For any affinoid perfectoid space W, we have
HL,(W,08*) =0, Vi>0.

Remark 3.18.4. To get the complete Hodge-Tate filtration in arbitrary degrees of cohomology (in
contrast to H! exclusively), a better point of view is the relative comparison theorem between p-adic
étale and de Rham cohomologies (see [CS17]).

Proof of Theorem 3.15.5. We are to prove the continuity of
[mar ] [T ooy [\ 2T oy | —> [FE].

At T'(1)-level we take S = X*\Z = Xa‘fycl. Let Ag be the universal abelian variety over S with the
proper morphism g: Ag — S. One can gpply Fact 3.18.2 about relative Hodge—Tate filtration to g to
deduce the map

(3.18.1) (ng*(’)AS) oy @5 — ng*ip ®’Z\p @S

between sheaves over Sprosc. Under the usual topology, S is covered by affinoid opens Uy such that Uy
is the bottom level of an affinoid perfectoid object U = (U;)ier in Sproet such that all transition maps
in U are finite étale surjective.

For each integer m > 1 let ﬁm be the base change of U from S to Xff(pm)\Zp(pm). Since ﬁm is finite

étale over U which is perfectoid, the almost purity result from the proof of Corollary 3.9.27 implies
that U,, is an affinoid perfectoid space. As usual, we can construct an affinoid perfectoid space

ﬁoo ~ lim ﬁm,
=
by taking the complete direct limit of Huber pairs. Note that (700 is the affinoid perfectoid space
associated to an affinoid perfectoid object in Sprost, namely
V = (Ui xs X (pm)\Zrpm) )ier,m>1-
We then evaluate (3.18.1) at V. This leads to a map

(Lie As) ®0y R — R
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where Lie Ag is the relative Lie algebra, as a vector bundle on S, and R = O (ﬁoo) with ﬁoo =
Spa(R, RT). It follows that there is a map of adic spaces

Uso 2 7,
constructed by first getting an R-point of F1 and then extending it to (700 = Spa(R, R") — Z{ using
partial properness (cf. Construction 3.15.4). We have the commutative diagram

[ i B

a Jin

U] X151 (A oy | o) ) 5 [ oo [\ Zrpe |

Here 4 is the natural map (in view of the fact that the |Us| is the limit of |U; x g Xy \Zr(pm)|
over (i, m). We know that ¢ is continuous, open, and surjective. Thus the restriction of |ryr| to the
open embedding at the bottom of the diagram is continuous. On the other hand, different choices of
Uy altogether cover S, so we get the continuity of |7y O

3.19. Using G(Q,)-action to spread out perfectoidness. Fix 0 < ¢ < 1/2. For our ultimate
purpose (i.e. the existence of perfectoid space Xli‘(poo) ~ lglm Xli‘(pm)) it remains to spread out the
perfectoidness via G(Q))-action by proving the following two propositions.

Proposition 3.19.1. We have

G(Zyp) - ‘Xf:(p“’)(g)a| = |Xr*(poo)(5)|~
Here the right side space is defined as the inverse image in |X1i‘(poo)\ of the affinoid open X*(g) C X*
(see Notation 3.10.3). More precisely, there are finitely many v1, ..., € G(Zy) such that
k

U Vi + [ ooy (€)al = | X (pecy (E)]-

i=1
Proof Sketch. We give a non-rigorous proof pretending that we can use the “moduli interpretation”.
A point of le(pm)(s) is a triple (A, \,n) where n: T,(A) — Z29 (cf. Construction 3.15.4). Assume A
has good reduction for simplicity. The existence of anti-canonical subgroup C; C A[p] is equivalent to
the condition that the isomorphism

(n mod p): Alp] = Fig

sends C to a subgroup of Ff,g that is disjoint from the standard subgroup Fj C Fgg (embedding via the
first ¢ coordinates). But one can always achieve this up to moving (n mod p) by an element of G(F,),
because the image of C7 under ( mod p) is a Lagrangian subspace in IF?,Q and G(F),) acts transitively
on the set of all Lagrangian subspaces (so there is an element of G(IF,)) moving any Lagrangian subspace
to the last g coordinates). Note that G(IF,) is finite and mapped onto by G(Z,). We may take 7;’s to
be lifts of all elements of G(F,). O

Corollary 3.19.2. \Xli‘(poo)(sﬂ is quasi-compact.
Proof. We know that Xf‘(pm)(a)a is quasi-compact. O
Proposition 3.19.3. We have

G(Qp) - |le(p°°)(€)| = |ka(poc)|~

More precisely, there are finitely many v1, ..., € G(Qp) such that
k

U Vi |le(p°°)(€)| = ‘X]_f(poo)l'

=1
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The proof of Proposition 3.19.3 essentially uses the geometry of |mgr|. The key arithmetic input is
Lemma 3.19.4 below. Before stating it, we write for simplicity that

Voo 1= | X pee) \|Zr(pe) |

and then write
= |mur|: Yoo — |FL|.
With 0 < e < 1 fixed, we define
Voo(€) = [ AT ooy ()\[Zrp=) ()]

Lemma 3.19.4. The preimage of F1(Q,) = FL(Q,) C |FL| along m: Voo — | F¥| is the closure of
Voo (0) in Voo

Proof. We input two observations at work:

o Inside | FY|, FL(Qy) is stable under generalization and specialization, i.e. for any xz,y € ||
such that z ~ y (i.e. y € {z}), y € FU(Q,) if and only if z € F(Q,).
e The closure of V., (0) in YV consists precisely of all specializations of points of Vs (0), or
equivalently all points * € Y such that the (unique) maximal generalization Z of x lies in
Y (0).
Given these two observations, we reduce to proving that for any maximally general point x € Vo, we
have x € V5 (0) if and only if 7(x) € .Z¢(Q,). For this, in fact, we can consider z: Spa(C,Oc) — Voo
with C' a complete algebraically closed non-archimedean field over Q,, which corresponds by moduli
problem to the triple (A4, \,7n) over C, where (A4, \) is a principally polarized abelian variety and
n: Tp(A) — Z29 is the (infinite) level structure.

We first deal with the case of good reduction, in which A extends to an abelian scheme A over
Oc¢. Let H := A[p™] be the p-divisible group over O¢ associated to A. It is known from Corollary
3.6.6 that © € Vs (0) if and only if H is ordinary (in which case the Hasse invariant is invertible),
or equivalently H = Hy = (Q,/Z,)? X pye. So it suffices to show the equivalence between this and
m(z) € FL(Q,). This is done in the following.

o Suppose H is ordinary. Then m(x), regarded as the Hodge-Tate filtration, measures the
position of the canonical subgroups Cy, under 5. In particular, this proves w(z) € FL(Qp).

o Conversely, suppose 7(z) € F¢(Q,). By the classification result (Theorem 3.14.1) for the p-
divisible group H over O¢, it is uniquely characterized by the pair (T, W), where T = T,,(H)
and W =Fil' ¢ T ®z, C is the Hodge-Tate filtration as a C-vector subspace. For a similar
reason, Hy corresponds to a unique pair (Tp, Wy). We identify T" with Zgg using 7, and identify
Ty with Zgg by making an explicit choice. We now note the following:

Fact. G(Z,) acts transitively on F#¢(Q,).
By the assumption that w(z) € F(Q)), we see that W is a Q,-rational (Lagrangian) subspace
of T®z,C = C?9. Also one checks that W is a Q,-rational (Lagrangian) subspace of Ty®z,C =
C?9. BY the above fact, there exists an element v € G(Z,) sending W to Wy. But G(Z,)

stabilizes ZZQ C C%9 50~y sends T to Ty. It follows that (T, W) = (Ty, Wp), and hence H = H
as desired.

Now we deal with the general case (of arbitrary reduction). We know that x lies in Yoo (0) if and
only if the p-divisible group H attached to the Néron model of A over O¢ is ordinary. On the other
hand, the Hodge-Tate filtration on T,,(A) ®z, C is determined by that on T),(H) ®z, C C T,(A) ®z, C.
Then the same argument applies as in the good reduction case. This finishes the proof. O

Lemma 3.19.5. Fiz 0 < e < 1. There is an open subset U C FL containing FL(Q,) such that
7 HU) C Voole).
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Proof. The first step reduces the given statement to a similar one for 7 = 7| . (pooy |7 1€ there exists
an open neighborhood U of .Z4(Q,) in #¢ such that 7= 1(U) C |Xp(pe)(€)]. The idea is that when
A has bad reduction, its Hasse invariant (defined by Hartog’s extension principle) and Hodge-Tate
filtration behave similarly to the case where A’ has good reduction for another abelian variety A’ with
dim A’ < g = dim A. In this case we take care of such points by induction on g.

Next, we are to prove the reduced statement that there exists U such that 771 (U) C [Xpe) ()|
We first make the following claims.

(a) The set F¢(Q)) equals the intersection of all open neighborhoods U of %#¢(Q,) in .F¢.
(b) The quasi-compact open neighborhoods of .#¢(Q,) are cofinal among all open neighborhoods.

To prove (a), we use that F¢(Q)) is stable under generalization. It follows for any { € .#¢— FL(Q,),
we have {¢} C Z¢ — F4(Q,), and hence there is an open neighborhood of .#¢(Q,) which does not
contain £. As for (b), the topology on .Z#¢(Q,) = F1(Q,) inherited from .#¢ is the same as the usual
p-adic topology on Qp-points of any algebraic variety over Q,. In particular, since Flg, is projective,
FU(Qp) itself is quasi-compact. But the topology of .#¢ is generated by quasi-compact open sets, so
every open neighborhood of .Z#¢(Q,) in .#¢ contains an open neighborhood of #¢(Q,,) which is a union
of quasi-compact open sets. We can then extract a finite covering to obtain a quasi-compact open
neighborhood of Z#4(Q,).

By the claims (a) and (b), it follows from Lemma 3.19.4 that

THFQ) = () 7)== (0)] C [ X ()]
UDZ4(Qp)
where the intersection is over quasi-compact open neighborhoods U of #¢(Q,) in |.%¢|, the closure is
taken inside |AXp(,e)|, and the containment is due to € > 0.

Our goal now is to extract a single U D Z4(Q,) such that 771 (U) C |Xp)(e)|. Indeed, 7 is
quasi-compact (this can be proved by using the same reduction to affinoid perfectoid case as in the
proof of continuity of 7, cf. Theorem 3.15.5), so each 771 (U) is quasi-compact and open by continuity.
Also, recall that for any spectral topological space X, the constructible topology Xcons on X is the
coarsest topology on X such that every quasi-compact open subset of X in the original topology is
open and closed. We have the following facts:

e The constructible topology Xcons is more refined than the original topology on X.
e The constructible topology Xcons is Hausdorff and quasi-compact.

Take X = |Xppee)|- In Xeons, 771(U) is closed for each quasi-compact open neighborhood U of
FL(Qy). Also, the complement of |Xp(,e)(e)| in [Xp(peo)| is closed and therefore quasi-compact in
Xeons- Therefore, there is a single such U such that 771 (U) C [Xp,e)(€)| as desired. O

Lemma 3.19.6. For any open subset U C FL such that U(Q,) := U N .FL(Q,) # 0, we have
G(Qp) - U = L.

Proof. In general, one uses Pliicker embedding of .#¢ to some projective space. For simplicity, here
we only illustrate the case where ¢ = 1, .#¢ = P!, and G = GL,. Then each point in .#¢ admits
homogeneous coordinates (x : y). Let V be the affinoid open in .%¢ given by {|z| > 1} (cf. the proof of
Lemma 3.10.7). It is clear that G(Q,)-V = |.#¢|. Hence in order to prove the lemma it suffices to prove
that V' C G(Qy) - U. To prove this, we know that G(Qp) - U contains F#¢(Q,), and in particular the
point t = (1:0) € F4(Q,). Now for v = () we have y* - (z 1 y) =t asn — oo for all (z:y) € V.
Since V is quasi-compact, there is n € N such that 4" -V C U. It follows that V' C G(Q,)U as
desired. g

Proof of Proposition 5.19.5. Take U as in Lemma 3.19.5, so we have 7= 1(U) C V. (¢). By Lemma
3.19.6, G(Qp) - U = Z{ as quasi-compact topological spaces. Then there are v1,...,7; € G(Q,) such
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that
k
=1
Hence
k k k
Voo =1 H(F) = Jn 7 i U) = U n7H(0) € U - Vo)
i=1 i=1 i=1
Then

k
Yoo = |J i V(o)
i=1

Recall that our goal is to show the following:
k
|le(p°°)| = U Vi |Xr*(poo)(€)|~
i=1

For this, denote by V' the right-hand side. Then V is a quasi-compact open in |A} | containing

YVoo. To finish the proof, we show that any quasi-compact open neighborhood V' of yfi i)n |X;‘(poo)| is
the whole space |Xli‘(poo)| itself. Since V' is quasi-compact, there exists m such that V is the preimage
of some V,,, C |X1:k(p"")‘7 where V,, is a quasi-compact open neighborhood of X;(p”L)\ZF(pm). Then it
suffices to show the equality V,,, = |Xli‘(pm) |. If this fails to hold, then with the help of the constructible
topology one can show that there is a nonempty open in Xli‘(pm) disjoint, from le(pm)\Zp(pm), which

is impossible. O

At this point, we have proved Propositions 3.19.1 and 3.19.3. Hence by the discussion
in §3.17, we have obtained the perfectoid space

A ey ~ B0 Appm).

3.20. The Hodge—Tate period map between adic spaces. Now we are ready to upgrade the
Hodge—Tate period map
T = |rur|: |XF(poo)|\|ZF(poc)| — | F|
between topological spaces to a map
THT le(poo) — F

between adic spaces.

For this, the first (and the easiest) step is to construct the map mp: Xl’f(poo)\Zp(poo) — F of adic
spaces upgrading 7. On each affinoid perfectoid open (e.g. X7 (€)a\Zr(pe=)(€)a), We can define mur
using the relative Hodge—-Tate filtration. We omit the details.

The main difficulty lies in extending the map 7wyt : Xli‘(poo)\Zp(poo) — %/ to the whole Xli‘(poc).
o (Uniqueness of extension). In fact, for any affinoid perfectoid open U C &, myr: U\Zppe) —

¥ has at most one extension to U.

o (Existence of extension). Recall that the adic space structure of Xﬁ(poc) is given by covering
| X7 (peey | By G(Qp)-translates of A7 . (€)a for any choice of 0 <& < 1/2. For the existence it
reduces to showing that myr: Xl:k(pm)(f)a\ZF(poo)(E)a — L extends (uniquely) to X*(g), for
some choice of 0 < e < 1/2.

We discuss the existence in details. The main step is to show that
im(X;(poo)(g)a\ZF(poo)(E)a % ﬁé) C D

for some affinoid open D C .Z¢. To explain why this is enough for our purpose, write D = Spa(R, R™)
with R = R*[1/p]; the elements of R* pull back to global sections of O}, on AT (poe) (E)a\Zr(pe=) (€)a,
and the same for those of R up to multiplying by a power of p. In this sense, we can say that myT on

Lect.25, Jan 11
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X;(p‘”)
toidness of AT,

(€)a\Z2r(p>)(€)a is defined by bounded functions on its source. Earlier, when we proved perfec-
(pw)(g)a we went from Xi(poo)(f)a to X7 (poo)(a)a. For this, we needed two ingredients:
o Tate’s normalized trace, and

o Riemann’s Hebbarkeitssatz (removable singularity theorem) for perfectoid spaces of character-

istic p (used for the a priori determination of the tilt of A7\ ) (€)a, among other things).

p>)
There is a byproduct of the second ingredient, that is, Riemann’s Hebbarkeitssatz of characteristic
0, for (X7 e (€)as Zr(pe), Xr(p=)(€)a). This says that the restrictions induce a bijection and two
injections as in the following diagram:

{bounded functions on A (oo (€)a\Zr(pe=) }

~ {bounded functions on &Xp(ye)(€)a}-

{bounded functions on le(px)(e)a} /

Granting this, since Tyt on Xli‘(poc)(e)a\zp(poo)(e)a is defined using bounded functions, it extends to
A (oo (€)a as desired.

We now write down the affinoid D such that mur (A7 ey (€)a\Zr(p)(€)a) C D.

At the level of algebraic varieties over QQ, we have

Fl < Gr(2g, ) — P(¥)=1 = P(AYQ2).

Here FI is the moduli of Lagrangian subspaces of the standard 2g-dimensional symplectic space, so
it naturally embeds into Gr(2g,g). The second map is the Pliicker embedding, sending a subspace
L c Q% of dimension ¢ to AYL, which is a line in AYQ?9.

Fix a basis {e1,..., ez} of Q*. Then AYQ? has basis {es};, where each index J is a subset of
{1,...,2g} of size g, and e; == e;, A--- Ae;, when J = {j; <--- < j,}. This induces a homogenous
coordinate system xj on p(¥)-1,

In general, suppose on ng we have homogeneous coordinates (zg : -+ : ). Then for each fixed
0 < j < N we have an affinoid open {|z;| > 1} in PV2d. In fact, this forms the closed unit poly-disk
in Ag;ad where Agp is defined by x; # 0. Then ]P’g;ad is covered by these affinoid opens indexed by

0 < j < N. Thus, (P(Zag)_l)ad is covered affinoid opens indexed by J C {1,...,2g} of size g; the inverse
image of such an open in .#¢ is denoted by .%;, which is an affinoid open in .Z#¢.
From now on, we take J = {g+1,...,2g}. We have the following easy fact.

Fact 3.20.1. Taking a point L € F#¢(Q,), it is a Lagrangian subspace in Zf,g, i.e. it is a totally
isotropic direct summand of rank g. We have L € .%; if and only if (L mod p), as an Fp-vector
subspace in ]FIQJ-‘J, is disjoint from F§ & 09 C Fgg . (Here FJ & 09 denotes the subspace where the last g
coordinates are zero.)

It now remains to show that there exists 0 < e < 1/2 such that mgr: Xr"(pm)(e)a\zp(poo)(e)a — FL

factors through .#;. Using a topological argument, one reduces this to showing the following lemma.

Lemma 3.20.2. The preimage of F;Qp) along mar: le(poo)\Zp(poo) — F{ equals the closure of

X ey 002\ Zr ey (0)a

Proof. Step I. “The good reduction case”. Namely, the preimage of .#;(Q,) in &Xp(p) is the clo-
sure of Ap(pe)(0)a inside Xp(p). To show this, we only need to check that for every (C, O¢)-point
x: Spa(C,0c) — Appe), we have myr(r) € F;3(Q,) if and only if 2 € AXpp=)(0)a. It is already
known from the proof of Lemma 3.19.4 that myr(z) € Z#¢(Q,) if and only if © € Xp(p)(0). Thus,
we only need to translate the condition imposed by J onto the anti-canonical locus. However, 7(z)
measures the position of canonical subgroups of A, over O¢, so we are done by Fact 3.20.1.
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Step IL. Next we show that XF(poc)(O)a\ZF(poo)(O)a is mapped to #;(Q,). Suppose this is not
the case. Then there is a clopen in Z#¢(Q,) disjoint from .%;(Q,) that intersects with the image of
Ay (0)a\Zr(p=)(0)a. It follows that we can take a nonempty clopen in Xy ) (0)a\Zrp<)(0)a
whose image in F(Q,) is disjoint from .#;(Q,). By Riemann’s Hebbarkeitssatz, any clopen of
Xg‘(pm)(O)a\Zp(poo) (0)a is the restriction of a unique clopen of Xf‘(pm)(O)a. (The indicator function of a
clopen is a special kind of bounded functions.) Consequently, le(pm) (0), contains a clopen V such that
T (V\Zr(p)(0)a) C FL(Qp)\-#3(Qp). Again by Riemann’s Hebbarkeitssatz, V N Xppeey(0)a # 0. If
we take z in this set, then mur(x) ¢ Z;(Q,) by the definition of V. This is a contradiction with Step
1.

Step IIL. For any (C,O¢)-point = € Xf:(poo)\zr‘(poo), we want to prove that myr(z) € Z;(Q,) if
and only if 2 € A7) (0)a\Zr(p=)(0)a- This is enough for the lemma, for a similar reason as in the
proof of Lemma 3.19.4. Note that the “if” direction is implied by Step II. We now show the “only
if” direction. By Proposition 3.19.1, we can find v € G(Zy) such that v -z € A%, (0)a\Zr(pe=)(0)a-
Assume that @ ¢ A7) (0)a\Zr(p=)(0)a for the sake of contradiction. Then

YT € XYooy (0)a\7 - AT (pocy (0)a-
Similar to the proof in Step II, it turns out that if Xli‘(poo)(O)a\'y : le(pm)(O)a contains an element y
that is mapped into v - .#;(Qp). Then Ap(pey(0)a\y - Xp(p=)(0)a contains some y’ that is mapped
into v - #3(Qp). Note that such y can be taken as yz. Hence y’' as above exists, and we have
Ny eyt X (p=)(0)a\ A (po) (0)a C Xp(pee)(0)\Xr(p)(0)a, and also v~y is mapped into Z5(Q,).
This contradicts with Step I again. g

Now we have proved that wy: X;(poo)\zp(poo) — F extends (uniquely) to myr : le(p(x,) — FL.
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