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1. Lecture 1

1.1. Overview. By class field theory, for F a global field we have the artin map
F×\A×

F → Γab
F , identifying Γab

F with the maximal totally disconnected quotient of

F×\A×
F = GL1(F )\GL1(AF ). This suggests that one-dimensional representations

of ΓF are closely related to GL1(F )\GL1(AF ). The Langlands conjectures suggest
that n-dimensional representations of ΓF are closely related to GLn(F )\GLn(AF ).
Similarly, generalizing local class field theory, n-dimensional representations of WF

(or rather Weil–Deligne representations) are closely related to GLn(F ).
To make these ideas precise, we need the notion of automorphic representations

of G in the global case. Here G is a reductive group over a global field F . We
will define a space A(G) of automorphic forms on G, which are certain functions on
G(F )\G(AF ). Roughly speaking, an automorphic representation is an irreducible
subquotient representation of the G(AF )-representation on A(G) given by right
translation. In the local case, the role of automorphic representations is played by
all irreducible (smooth) representations of G(F ), for F a local field. The global and
local theories are related, in a way similar to how global and local class field theories
are related.

The Langlands program concerns, in both the global and local case, how these
representations are related to the Galois side, and how these representations for
different reductive groups G are related with each other. In the global case, these
two questions are referred to as “reciprocity” and “functoriality”.

The following two cases are the neatest to state and have been proven:

Theorem 1.1.1 (Local Langlands Correspondence for GLn. Laumon–Rapoport–S-
tuhler for positive characteristic, Henniart, Harris–Taylor, and Scholze for character-
istic zero). Let F be a local field. There is a canonical bijection between isomorphism
classes of irreducible smooth representations of GLn(F ) and isomorphism classes of
n-dimensional Frobenius semi-simple Weil–Deligne representations.

Theorem 1.1.2 (Global Langlands Correspondence for GLn over a function field.
Drinfeld for n = 2, L. Lafforgue for general n). Let F be a global function field.
Let ℓ be a prime unequal to char(F ). There is a canonical bijection between isomor-
phism classes of cuspidal automorphic representations of GLn(AF ) and isomorphism
classes of n-dimensional irreducible Qℓ-representations of ΓF .

The situation becomes much more complicated when F is a number field, or when
G is a more general reductive group.

• For F local and G general, one only expects a finite-to-one map from the set
of irreducibleG(F )-representations to the set of certain Galois-theoretic data
called L-parameters. When G is a classical group and char(F ) = 0, there
have been various classical approaches (including global methods). Recently,
such a map has been constructed unconditionally for all G, by Genestier–
V. Lafforgue for positive characteristic local fields and by Fargues–Scholze
for all local fields (but the latter work only constructs a weakened version,
namely L-parameters are replaced by their semi-simplifications).
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• For F a global function field and G general, the “automorphic-to-Galois”
direction has been established by V. Lafforgue.

• The remaining case of a number field is perhaps the most profound part of
the Langlands program!

The goal of the course is to discuss the fundamental concepts related
to automorphic representations, state the main conjectures in the Lang-
lands program, and survey the current status of these conjectures, mostly
focusing on characteristic zero local and global fields. We will only consider
the so-called arithmetic or classical Langlands program. The following topics are
important in current research but will not be discussed:

• geometric Langlands in various settings (including the Fargues–Scholze set-
ting, over the Fargues–Fontaine curve).

• mod p or p-adic local Langlands.

The main reference for the course is [1]. Another useful source is [3].

1.2. Linear algebraic groups. We formally develop the theory only over charac-
teristic zero, and occasionally comment on some subtleties over positive character-
istic.

Let k be a field of characteristic zero. A linear algebraic group over k is an affine
k-variety G (i.e. an affine scheme of finite type over k which is geometrically reduced)
equipped with morphisms m : G ×k G → G, e : Spec k → G, i : G → G satisfying
the usual axioms for the multiplication, identity, and inversion in a group. For any
k-algebra R, the set G(R) is a group under these operations, and this defines a
functor from k-algebras to groups.

Remark 1.2.1. In fact, over k of characteristic zero, every affine scheme of finite
type equipped with a group structure is automatically geometrically reduced, thus a
linear algebraic group. It is also automatically smooth. Over arbitrary k, geometric
reducedness is an important axiom in the theory of linear algebraic groups, and it
implies smoothness.

Example 1.2.2. G = GLn = {(gij , t) ∈ An2+1 | det(gij) · t = 1}. We write Gm for
GL1, so Gm(R) = (R×,×).

Example 1.2.3. G = Ga = A1, G(R) = (R,+).

Example 1.2.4. If l/k is a finite extension and G is a linear algebraic group over
l, then there is a linear algebraic group Resl/kG over l, called the Weil restriction
of scalars of G, characterized by (Resl/kG)(R) ∼= G(R⊗k l) for any k-algebra R.

In the sequel, by a subgroup we always mean a closed subvariety (re-
quired to be geometrically reduced) which is also a subgroup.

By a finite dimensional linear representation of G (or simply a representation of
G), we mean a homomorphism ϕ : G → GL(V ) = GLn for some finite dimensional
k-vector space V . It is called faithful if ϕ is a closed immersion.

Fact 1.2.5. Any linear algebraic group G admits a faithful representation, i.e., it
can be realized as a subgroup of GLn for some n.
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The tangent space of G at the neutral element e has the structure of a Lie algebra
over k of dimension equal to dimG. Denote it by LieG. The construction G 7→ LieG
is functorial. Moreover, it induces an injection (but not bijection) from the set of
connected subgroups of G to the set of Lie subalgebras of LieG. See [2] §II.3,
especially Prop. 3.22, for a discussion.

There is a natural adjoint representation G→ GL(LieG).
Let ϕ : G → H be a homomorphism of linear algebraic groups. Then there

is a normal subgroup K = ker(ϕ) of G such that K(R) is the kernel of ϕ(R) :
G(R) → H(R) for any k-algebra R. However, even if ϕ is surjective (equivalently
ϕ(k̄) : G(k̄) → H(k̄) is surjective), it does not follow that ϕ(k) : G(k) → H(k) is
surjective.

For any normal subgroup N of G (where normal means that N(R) is normal
in G(R) for all k-algebras R), one can form the quotient group G/N such that
G→ G/N is surjective with kernel N . For instance, the center ZG of G is a normal
subgroup, characterized as the unique subgroup such that ZG(k̄) is the center of
G(k̄). The quotient G/ZG is denoted by Gad, called the adjoint group. For another
example, the neutral connected component G0 is always a normal subgroup, and
G/G0 is denoted by π0(G).

1.3. Solvable and unipotent groups.

Definition 1.3.1. Let G be a linear algebraic group. The derived subgroup Gder is
the intersection of the kernels of all homomorphisms from G to commutative linear
algebraic groups. (In fact G/Gder is a commutative linear algebraic group.) We say
G is solvable, if taking successive derived subgroups of G leads to the trivial group
after finitely many steps.

Let G be a linear algebraic group and g ∈ G(k̄). There is a canonical de-
composition g = su = us with s, u ∈ G(k̄) such that under every representation
ϕ : Gk̄ → GLn (defined over k̄), ϕ(s) is semi-simple and ϕ(u) is unipotent (meaning
that ϕ(u) − In is a nilpotent matrix). This is called the Jordan decomposition. If
g = s then we call g semi-simple, and if g = u then we call g unipotent.

Definition 1.3.2. A linear algebraic group G is called unipotent if every element
of G(k̄) is unipotent.

Fact 1.3.3. Let Un be the subgroup of GLn consisting of upper triangular matrices
with 1’s on the diagonal. Then a linear algebraic group is unipotent if and only if it
is isomorphic (over k or over k̄) to a subgroup of Un for some n. Note that Un is
solvable, so every unipotent group is solvable.

1.4. Reductive groups. Let G be a connected linear algebraic group. Suppose P
is a property of subgroups of G, such as being normal in G or being solvable. Then
by dimension considerations we know that every subgroup satisfying P is contained
in a maximal subgroup satisfying P, and contains a minimal subgroup satisfying
P.

Definition-Proposition 1.4.1. There is a unique maximal subgroup of G which is
normal, connected, and solvable (resp. unipotent), called the radical (resp. unipotent
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radical), denoted by R(G) (resp. Ru(G)). We call G semi-simple (resp. reductive)
if R(G) = 1 (resp. Ru(G) = 1).

We have Ru(G) ⊂ R(G), so semi-simple implies reductive. We have Ru(G)k̄ =
Ru(Gk̄) (which is not true for non-perfect k), so G is reductive if and only if Gk̄ is
reductive. (Over positive characteristic, Ru(G)k̄ can be smaller than Ru(Gk̄). One
defines G to be reductive if and only if Ru(Gk̄) = 1.)

Fact 1.4.2. If G is reductive, then R(G) = Z(G)0.

Theorem 1.4.3. Let G be a connected linear algebraic group. Then G is reductive
if and only if every (equivalently, one faithful) finite dimensional representation of
G is semi-simple. (Warning: not true over positive characteristic.)

Theorem 1.4.4 (See [2, II.4.1, 4.2]). Let G be a connected linear algebraic group.
Then G is semi-simple if and only if LieG is a semi-simple Lie algebra. (Not true
for “semi-simple” replaced by “reductive”.)

Example 1.4.5. Examples of reductive groups: GLn, SLn,PGLn = GLad
n ,Sp(V, ψ) =

Sp2g for a symplectic space (V, ψ) over k, SO(V, ψ) for a quadratic space (V, ψ) over
k, U(V, ψ) for a hermitian space (V, ψ) over a quadratic extension l/k.

For any (finite dimensional) simple algebra D over k, we also have a reductive
group G such that G(R) = (D ⊗k R)

×. One often denotes G by D×. Note that if
l is the center of D (thus l is a finite degree field extension of k) and dimlD = n2,
then

D ⊗k k̄ ∼=
∏

σ∈Homk(l,k̄)

D ⊗l,σ k̄ ∼=
∏
σ

Mn(k̄),

and so Gk̄
∼=

∏
σ GLn.

Example 1.4.6. The Weil restriction of scalars of a reductive group is again reduc-
tive.

Example 1.4.7. Let Bn be the subgroup of GLn consisting of upper triangular
matrices. Then Ru(Bn) = Ru(Un) = Un, and so Bn and Un are not reductive if
n > 1.

1.5. Tori.

Definition 1.5.1. A linear algebraic group T is called a torus, if Tk̄
∼= Gn

m,k̄
for

some n. If we have T ∼= Gn
m for some n, then we say T is a split torus.

Example 1.5.2. Every torus is reductive.

Definition 1.5.3. For a linear algebraic group G, define the sets

X∗(G) = Hom(G,Gm), X∗(G) = Hom(Gm, G).

(Here the base field k is implicit, and we only consider k-homomorphisms.) The
first is always a Z-module, and the second is a Z-module if G is commutative.

Note that X∗(Gk̄) is a discrete Z[Γk]-module, and X∗(Gk̄)
Γk = X∗(G).
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Fact 1.5.4. The functor T 7→ X∗(Tk̄) is an anti-equivalence from the category of
tori over k to the category of discrete Z[Γk]-modules which are finite free over Z.
The dimension of T is equal to the Z-rank of X∗(Tk̄). We have T is split if and
only if the Γk-action on X∗(Tk̄) is trivial.

By the last assertion, we see that every torus over k splits over a finite extension
of k.

Example 1.5.5. Let l/k be a finite extension. Then T = l× is a reductive group,

since Tk̄
∼= G[l:k]

m (see Example 1.4.5). The Γk-module X∗(Tk̄) is identified with

IndΓk

{1} Z.

Fact 1.5.6. All maximal split tori in a connected linear algebraic group G are con-
jugate by elements of G(F ).

In particular, they are all isomorphic to Gr
m for a common r. We call r the rank

of G.

Fact 1.5.7. For each maximal torus T in a connected linear algebraic group G, Tk̄
is a maximal torus in Gk̄.

In other words, the maximal tori in G are exactly those maximal tori in Gk̄ which
are “defined over k”. In particular, they all have the same dimension equal to the
rank of Gk̄ (called the absolute rank of G). However, the maximal tori in G need
not be isomorphic to each other, as shown by the following example.

Example 1.5.8. In GLn, the diagonal subgroup is a maximal torus and it is split.
For any degree n field extension l/k, we have a torus l× (see Example 1.5.5) and a
faithful representation ϕ : l× → GLn by considering the multiplication action of l×

on l ∼= kn. The image T of ϕ is also a maximal torus in GLn since it has dimension
n equal to the rank of GLn, but it is not split.

2. Lecture 2

2.1. The Weyl group.

Definition 2.1.1. Let G be a reductive group over k and T ⊂ G a torus. Define
the Weyl group W (G,T ) = NG(T )/CG(T ). Here NG(T ) and CG(T ) are the nor-
malizer and centralizer of T in G, characterized as the unique subgroups of G such
that NG(T )(k̄) and CG(T )(k̄) are the normalizer and centralizer of T (k̄) in G(k̄)
respectively.

Fact 2.1.2. A torus T ⊂ G is maximal if and only if CG(T ) = T . (Clearly we
always have T ⊂ T ′ ⊂ CG(T ) for any maximal torus T ′ containing T .)

Remark 2.1.3. The above fact crucially depends on that G is reductive. For
instance, G = Gm × Ga is not reductive, as its unipotent radical is 1 × Ga. Then
T = Gm × 1 is the unique maximal torus in G, but CG(T ) = G.



AN INTRODUCTION TO THE LANGLANDS PROGRAM PKU 2024 SUMMER SCHOOL 7

Fact 2.1.4. The group W (G,T ) is finite étale. If T is a maximal split torus, then
W (G,T ) is constant, in the sense that there exists an abstract group Γ such that
for any k-algebra R we have W (G,T )(R) = the group of locally constant func-
tions SpecR → Γ (with the group structure given by Γ). Thus Γ = W (G,T )(k) =
W (G,T )(k̄). Moreover, in this case we have W (G,T )(k) = NG(T )(k)/CG(T )(k).
(In general, the surjection NG(T ) → W (G,T ) may not induce a surjection on k-
points.) In this case we identify W (G,T ) with the abstract group W (G,T )(k).

For T a maximal split torus, we have a natural action of W (G,T )(k) on T ,
i.e. a homomorphism of abstract groups W (G,T )(k) → Autk(T ). In particular,
W (G,T )(k) also acts on X∗(T ) and X∗(T ).

2.2. Root data, split case.

Definition 2.2.1. A reductive group G over k is called split, if it contains a maximal
torus which is split (equivalently, every maximal split torus is a maximal torus, and
equivalently, there exists a split maximal torus).

Example 2.2.2. The groups GLn, SLn,PGLn,Sp2g are split. For a simple k-algebra

D, the group D× is split if and only if D ∼=Mn(k), in which case D× ∼= GLn.

Let G be a split reductive group over k, and let T be a maximal split torus. Thus
T is a split maximal torus. Since T ∼= Gn

m, any representation of T decomposes
into a direct sum of one-dimensional representations, i.e., a direct sum of characters
in X∗(T ) = Hom(T,Gm). Consider the adjoint representation G → GL(LieG)
restricted to T .

Definition 2.2.3. The non-trivial characters inX∗(T ) that appear in the T -representation
LieG are called roots. The set of them is denoted by Φ = Φ(G,T ) ⊂ X∗(T )− {0}.

Note that the trivial character 0 ∈ X∗(T ), namely T → Gm, z 7→ 1, also appears,
since T acts trivially on LieT ⊂ LieG. In fact, LieT is precisely the eigenspace for
the trivial character. Thus we have

g = LieG = LieT ⊕
⊕
α∈Φ

gα,

where gα is the eigenspace corresponding to α, on which T acts via α : T → Gm. It
turns out that each gα has dimension 1, i.e., every non-trivial character of T appears
in g with multiplicity at most 1.

The pair (V = X∗(T ) ⊗Z R,Φ ⊂ V ) is a root system. Recall that this means,
among other things, that there exists a Euclidean space structure ⟨·, ·⟩ on V such
that for each α ∈ Φ, the reflection along α

sα : V → V, x 7→ x− 2
⟨x, α⟩
⟨α, α⟩

α

(which is the unique linear map sending α to −α and fixing the orthogonal com-
plement of α) stabilizes the set Φ. The Euclidean structure is not canonical, but
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there is a canonical way to define sα : V → V as follows. It even comes from an
automorphism sα : X∗(T ) → X∗(T ). Let

Gα = CG(ker(α)
0).

This is a reductive subgroup of G containing T , and T is a maximal torus in Gα (so
Gα is split). We have W (Gα, T ) ∼= Z/2Z, and the action of the non-trivial element
on X∗(T ) is our desired sα. Clearly s

2
α = 1.

Fact 2.2.4. The action map W (G,T ) → Aut(T ) ∼= Aut(X∗(T )) is injective, and
its image is generated by sα, α ∈ Φ.

Since T is split, there is perfect pairing ⟨, ⟩ : X∗(T )×X∗(T ) → Z, sending (λ, µ)
to the integer n such that the homomorphism λ ◦ µ : Gm → Gm is z 7→ zn.

Definition-Proposition 2.2.5. For each α ∈ Φ, there exists a unique element
α∨ ∈ X∗(T )− {0} such that

sα(x) = x− ⟨x, α∨⟩α, ∀x ∈ X∗(T ).

This is called the coroot corresponding to α. The set of coroots is denoted by
Φ∨ = Φ∨(G,T ), and the map α 7→ α∨ is a bijection Φ

∼−→ Φ∨.

Fact 2.2.6. The quadruple (X,Φ, Y,Φ∨) = (X∗(T ),Φ(G,T ), X∗(T ),Φ
∨(G,T )), to-

gether with the perfect pairing X × Y → Z and the bijection Φ
∼−→ Φ∨, α 7→ α∨, is

a root datum, characterized by the following axioms:

• For each α ∈ Φ, we have ⟨α, α∨⟩ = 2.
• For each α ∈ Φ, define sα : X → X,x 7→ x − ⟨x, α∨⟩α, and sα∨ : Y →
Y, y 7→ y − ⟨α, y⟩α∨. Then

sα(Φ) ⊂ Φ, sα∨(Φ∨) ⊂ Φ∨.

(Note that sα and sα∨ are involutions, so we have equalities.)

Moreover, this root datum is reduced, in the sense that for each α ∈ Φ the only
multiples of α in Φ are ±α. (Note that −α = sα(α) ∈ Φ.)

We write Ψ(G,T ) for the root datum arising from (G,T ). Since W (G,T ) is
identified with the subgroup of Aut(X∗(T )) generated by the sα’s, it is completely
determined by Ψ(G,T ) in a combinatorial way. For fixed G, the different choices of
T are conjugate by G(k), and so the isomorphism class of Ψ(G,T ) depends only on
G.

Theorem 2.2.7 (Chevalley, Demazur). We have a bijection from the set of isomor-
phism classes of split reductive groups over k to the set of isomorphism classes of
reduced root data. (Note that the latter set does not depend on k.)

Remark 2.2.8. One can ask whether there is an equivalence of categories from
pairs (G,T ) to reduced root data. This cannot be done a naive way. Firstly, the
natural map Aut(G,T ) → Aut(Ψ(G,T ))op is not an isomorphism. It is surjective,
and the kernel consists of those automorphisms of G induced by conjugation by
elements of (T/ZG)(k). Secondly, it is not easy to capture all homomorphisms



AN INTRODUCTION TO THE LANGLANDS PROGRAM PKU 2024 SUMMER SCHOOL 9

(G,T ) → (G′, T ′) by the root data, although one can (partially) capture central
isogenies (G,T ) → (G′, T ′), i.e., surjective homomorphisms with finite kernels, by
certain morphisms between root data.

Example 2.2.9. Consider G = GLn. It is split, and a maximal split torus is given

by the diagonal subgroup T = {(. . .)}. We have X∗(T ) ∼= Zn =
⊕n

i=1 Zei, where

ei : T −→ Gm,

t1 . . .

tn

 7−→ ti.

Also X∗(T ) ∼= Zn =
⊕n

i=1 Ze∨i , where

e∨i : Gm −→ T, z 7→


1

. . .

z (i-th)
. . .

1

 .

The pairing ⟨·, ·⟩ : X∗(T ) × X∗(T ) → Z is given by ⟨ei, e∨j ⟩ = δij . We have g =

LieG = Mn(k), and the adjoint action of G on g is given by the usual conjugation
action. (More generally, for any linear algebraic group G, the adjoint representation
of G on LieG can be deduced from this case by embedding G into some GLn.) The
roots are

Φ(G,T ) = {ei − ej | i ̸= j}.
The coroot corresponding to α = ei−ej is α∨ = e∨i −e∨j . The reflection sα permutes

the ek’s by the transposition (ij) ∈ Sn. The Weyl group is identified with Sn.

2.3. Borel subgroups and quasi-splitness. Let G be a non-trivial reductive
group over k.

Definition 2.3.1. A maximal connected solvable subgroup of Gk̄ is called a Borel
subgroup. A subgroup of G is called Borel, if its base change to k̄ is a Borel subgroup
of Gk̄.

For dimension reasons, Gk̄ always contains a Borel subgroup B, and B ⊊ Gk̄

since B = RuB is not reductive. In fact, we also always have B ̸= 1. However, a
Borel subgroup of Gk̄ may not be defined over k, so G may not contain any Borel
subgroup.

Definition 2.3.2. If a Borel subgroup of G exists, then we call G quasi-split.

Over k̄, or more generally in the split case, Borel subgroups are classified as
follows.

Fact 2.3.3. If G is split then it is quasi-split. In this case every Borel subgroup
contains a maximal split torus in G, and conversely for every maximal split torus
T in G, the set of Borel subgroups B of G containing T is non-empty and a torsor
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under W (G,T ). This set is in bijection with the set of choices of positive roots in
Φ(G,T ). (A choice of positive roots is a subset Φ+ ⊂ Φ such that Φ = Φ+ ⊔ −Φ+

and such that ∀α, β ∈ Φ+, α + β ∈ Φ ⇒ α + β ∈ Φ+.) The bijection {B} ↔ {Φ+}
is characterized by

LieB = LieT ⊕
⊕
α∈Φ+

gα.

Fact 2.3.4. The reductive group G is quasi-split if and only if for one (hence any)
maximal split torus S, CG(S) is a maximal torus (or equivalently, a torus). Assume
this is the case. We call CG(S) a Cartan torus. Every Borel subgroup of G contains a
Cartan torus. Conversely, given a Cartan torus T = CG(S), a Borel subgroup of Gk̄

containing Tk̄ is defined over k if and only if the corresponding set of positive roots
Φ+ ⊂ Φ(Gk̄, Tk̄) is stable under the Γk-action on X∗(Tk̄). This condition is always
satisfied by some Φ+. Thus the (non-empty) set of Borel subgroups of G containing
T is in bijection with the set of ΓF -stable sets of positive roots in Φ(Gk̄, Tk̄).

Example 2.3.5. If G is split, then every maximal split torus S is a maximal torus,
and hence CG(S) = S. Therefore G is quasi-split. In general, a maximal split torus
S is always contained in a maximal torus T , and hence CG(S) ⊃ T . Thus asking
CG(S) is a maximal torus amounts to asking that “S is not too small”.

Example 2.3.6. Let G = GLn and T be the diagonal torus. Then T is a split
maximal torus. The Γk-action on X∗(Tk̄) is trivial, so the Borel subgroups con-
taining T correspond to choices of positive roots in Φ(G,T ). One such choice is
Φ+ = {ei − ej | i < j}. The corresponding Borel subgroup is the upper triangular
subgroup Bn.

By a based root datum, we mean a root datum together with a choice of positive
roots. By a Γk-action on a based root datum, we mean a continuous action on the
root datum stabilizing the set of positive roots.

Theorem 2.3.7. The isomorphism classes of quasi-split reductive groups over k are
in bijection with the isomorphism classes of reduced based root data with Γk-action.

Quasi-split reductive groups play a special role in the classification of all reductive
groups, by the following fact.

Fact 2.3.8. For any reductive group G over k, there is a quasi-split reductive group
G∗ over k which is an inner form of G, i.e., there is an isomorphism ϕ : Gk̄

∼−→ G∗
k̄

such that for each σ ∈ Γk, the automorphism σ(ϕ−1)◦ϕ : Gk̄ → Gk̄ is inner, that is,
of the form Int(g) : x 7→ gxg−1 for some g ∈ G(k̄). For fixed G∗, the pairs (G,ϕ) as
above modulo a suitable equivalence relation are classified by the Galois cohomology
set H1(k, (H∗)ad).

Example 2.3.9. Let D be a central simple algebra over k of dimension n2. Then
the reductive group D× over k is an inner form of GLn.
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3. Lecture 3

3.1. Parabolic subgroups. Let G be a reductive group over k.

Fact 3.1.1 (Relative root datum). Let S be a maximal split torus in G and let
M0 := CG(S). (Caution: M0 may not be a torus.) Let Φ(G,S) be the non-trivial
characters of S appearing in the S-representation g = LieG. Then we have

g = LieM0 ⊕
⊕

α∈Φ(G,S)

gα,

where gα is the α-eigenspace (whose dimension may be > 1). The triple (X∗(S),Φ(G,S), X∗(S))
canonically extends to a (possibly non-reduced) root datum (X∗(S),Φ(G,S), X∗(S),Φ

∨(G,S)).

The root datum (X∗(S),Φ(G,S), X∗(S),Φ
∨(G,S)) can be constructed from Ψ(Gk̄, Tk̄)

where T is a maximal torus in G containing S, essentially by considering the re-
striction from T to S. Thus it is sometimes called the restricted root datum, or the
relative root datum, for (G,S).

Definition 3.1.2. A subgroup P of G is called parabolic, if Pk̄ contains a Borel
subgroup of Gk̄.

Clearly G is a parabolic subgroup of G, but there may not exist a proper parabolic
subgroup. Since G is noetherian, there exist minimal parabolic subgroups, and every
parabolic subgroup contains a minimal one.

Fact 3.1.3. The minimal parabolic subgroups in G are all conjugate by G(k). Each
of them contains CG(S) for some maximal split torus S in G. For a fixed S, the
set of minimal parabolic subgroups P0 containing M0 = CG(S) is in bijection with
the set of choices of positive roots Φ+ ⊂ Φ(G,S). The bijection is characterized by:
P0 ↔ Φ+ if and only if

LieP0 = LieM0 ⊕
⊕
α∈Φ+

gα.

From now on we fix P0 ⊃ M0 = CG(S) as above. We call parabolic subgroups
containing P0 standard. It follows that every parabolic subgroup is conjugate under
G(k) to a standard one.

Let ∆ be the set of non-decomposable elements of Φ+ (called simple roots). Then
∆ is a root basis for Φ(G,S), i.e., it is linearly independent in X∗(S) and every
element of Φ(G,S) is either a Z≥0-linear or Z≤0-linear combination of ∆. In fact,
choosing a set of positive roots is equivalent to choosing a root basis.

Theorem 3.1.4. There is an inclusion-preserving bijection J 7→ PJ between the set
of subsets of ∆ and the set of standard parabolic subgroups, characterized as follows.
Let Φ(J) = Φ(G,S) ∩ SpanZJ . Then

LiePJ = LieM0 ⊕
⊕

α∈Φ+∪Φ(J)

gα.

Example 3.1.5. P∅ = P0, P∆ = G.
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Remark 3.1.6. We have ∆ = ∅ if and only if Φ(G,S) = ∅ if and only if S is central.
In this case, M0 = P0 = G, and G does not have proper parabolic subgroups. We
say that G is anisotropic-mod-center.

Definition 3.1.7. Let H be a connected linear algebraic group over k (of char-
acteristic zero). By a Levi component of H, we mean a subgroup L such that
H = L⋉RuH. In particular, L is reductive.

Theorem 3.1.8 (Levi decomposition). The group PJ admits a Levi component
MJ satisfying LieMJ = LieM0 ⊕

⊕
α∈Φ(J) gα. Moreover, MJ is the unique Levi

component of PJ which contains M0.
Write NJ for RuPJ . We have

LieNJ =
⊕

α∈Φ+,α/∈Φ(J)

gα.

Example 3.1.9. In G = GLn, choose P0 = Bn and M0 = T = the diagonal torus.
Then

∆ = {α1 = e1 − e2, α2 = e2 − e3, · · · , αn−1 = en−1 − en}.
A subset J ⊂ ∆ corresponds to an ordered partition λ = (λ1, · · · , λk) of n (i.e., an
ordered tuple such that

∑
λi = n) by the relation

J = {αi | i /∈ {λ1, λ1 + λ2, · · · , λ1 + · · ·+ λk}}.
For example the partition (2, 1, 2, 3) of n = 8 corresponds to J = {α1, α4, α6, α7}.
Then PJ consists of the invertible block upper triangular matrices where the diagonal
block sizes are λ1, · · · , λk. The group MJ consists of the invertible block diagonal
matrices and so MJ

∼= GLλ1 × · · · × GLλk
, and NJ consists of the block upper

triangular matrices with identity matrices on the block diagonal.

3.2. The analytic topology. Let F be a local or global field (of characteristic
zero). Let R be an F -algebra which is a Hausdorff locally compact topological ring.
In applications, in the local case we take R = F , and in the global case we take
R = AS

F (the adeles away from S) for a finite set S of places of F .

Fact 3.2.1. Let X be an affine variety over F . Equip X(R) with the coarsest
topology such that for every morphism ϕ from X to the affine line (i.e. element
ϕ ∈ OX(X)), the resulting map ϕ(R) : X(R) → R is continuous. Then X(R)
is Hausdorff and locally compact. If X → Y is any morphism of varieties, then
X(R) → Y (R) is continuous. If X → Y is a closed immersion, then X(R) → Y (R)
is a closed embedding (i.e. homeomorphism onto the image and the image is closed).
If G is a linear algebraic group over F , then G(R) is a Hausdorff locally compact
topological group.

Example 3.2.2. For a linear algebraic group G over F , we can choose closed immer-

sions G ↪→ GLn ↪→ An2+1
F (the (n2 + 1)-dimensional affine space over F ), where the

second map is g 7→ (gij , det g
−1). Then G(R) has the subspace topology inherited

from Rn2+1

Example 3.2.3. If F = R or C, then G(F ) is a Lie group over R or C.
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Example 3.2.4. Let E/F be a finite extension of local fields. Let G be a linear
algebraic group over E, and let H = ResE/F G. Then the natural isomorphism
H(F ) ∼= G(E) is also a topological isomorphism. Similarly, in the global case,
H(AF ) ∼= G(AE) is a topological isomorphism.

Definition 3.2.5. A locally profinite group is a Hausdorff and locally compact
topological group such that the compact open subgroups form a neighborhood basis
of 1.

Remark 3.2.6. In a Hausdorff space, every compact set is closed. Hence every
compact open set is a union of connected components. If G is a locally profinite
group, then for every g ∈ G the set {g} is a connected component. (However G may
not have the discrete topology, and {g} may not be open.) This property is called
totally disconnected.

Proposition 3.2.7. Let F be a local non-archimedean field, and let G be a linear
algebraic group over F . Then G(F ) is locally profinite.

Proof. Note that any closed subgroup of a locally profinite topological group is
locally profinite. Hence we may assume that G = GLn. Let π ∈ F be a uniformizer.
Then for each positive integer k, the subset In + πkMn(OF ) is a compact open
subgroup of GLn(F ) (called the k-th principal congruence subgroup), and for all k
they form a neighborhood basis. □

Let F be global and G a linear algebraic group over F . Fix a faithful rep-
resentation ϕ : G → GLn. For each non-archimedean place v of F , let Kv =
G(Fv) ∩ ϕ−1(GLn(OFv)). This is a compact open subgroup of G(Fv). If we change
ϕ, then Kv will change for only finitely many v.

Fact 3.2.8. Let S be a finite set of places of F . The natural map G(AS
F ) →∏

v/∈S G(Fv), where v runs over all places of F outside S, identifies G(AF ) with
the restricted product with respect to Kv’s

′∏
v/∈S

G(Fv) = {(gv) ∈
∏
v/∈S

G(Fv) | gv ∈ Kv for almost all v}.

Moreover, it is a topological isomorphism, where the restricted product topology is
defined to be generated by open sets of the form

∏
v Uv where each Uv is an open set

in G(Fv) and Uv = Kv for almost all v.

Recall that on any Hausdorff locally compact group H, there exists a left Haar
measure, i.e., a positive Radon measure (= Borel measure which is finite on compact
sets, outer regular, and inner regular for open sets) invariant under left translation.
It is unique up to a positive scalar. Similarly for right Haar measure. If one (and
hence every) left Haar measure is right Haar, then we say the group is unimodular.
In general, there is a canonical homomorphism, called the modulus character

δH : H −→ R>0
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such that for any right Haar measure drh on H, we have

dr(h0h) = δH(h0)dr(h), ∀h0 ∈ H.

Thus H is unimodular if and only if δH is trivial.

Fact 3.2.9. Let G be a reductive group over a local or global field F . Then G(F )
in the local case and G(AS

F ) in the global case is unimodular.

In fact, there is a way of obtaining a Haar measure on G(AS
F ) from Haar measures

on G(Fv), by a certain product process. The unimodularity of G(AS
F ) follows from

that of G(Fv).

3.3. The automorphic quotient. Let F be a number field and G a reductive
group over F .

Fact 3.3.1. The subgroup G(F ) in G(AF ) is discrete and hence closed.

Generalizing the idele class group GL1(F )\GL1(AF ), we would like to consider
the quotient G(F )\G(AF ). Recall that the idele class group is not compact, but

we can shrink it to the unit idele class group F×\A×,1
F , which is compact. Here we

define the idelic norm

| · |A : A×
F −→ R>0, x 7−→

∏
v

|x|v

where each | · |v is the canonically normalized absolute value on Fv (so that d(xy) =
|x|vdy for a Haar measure dy on Fv), and

A×,1
F = {(xv) ∈ A×

F | |x|A = 1}.

Similarly, we need to modify G(F )\G(AF ).

Definition 3.3.2. Let

G(AF )
1 :=

⋂
χ∈X∗(G)

ker

(
G(AF )

χ−→ A×
F

|·|A−−→ R>0

)
.

This is a closed subgroup of G(AF ), and hence is itself a Hausdorff locally compact
group. In general it is not the AF -points of an algebraic group. Note that

G(F ) ⊂ G(AF )
1,

since for any g ∈ G(F ) and χ ∈ X∗(G) we have χ(g) ∈ F× ⊂ A×,1
F .

Lemma 3.3.3. There is a closed central subgroup AG of G(AF ) such that G(AF ) ∼=
AG ×G(AF )

1. The group G(AF )
1 is unimodular.

Proof. The second assertion follows from the first and the unimodularity of G(AF )
and AG (which is abelian). To prove the first assertion, if we set G′ = ResF/QG,

then G′(AQ) = G(AF ) and G
′(AQ)

1 = G(AF )
1. Thus we may assume F = Q. Let

AG be the maximal split torus in Z◦
G (over Q), and let AG be the identity component

(for the analytic topology) of AG(R).
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Note that AG
∼= Gk

m, so AG(R) ∼= (R×)k and so AG
∼= (R>0)

k. To prove that
G(A) = AG × G(A)1, we use the fact that the restriction map X∗(G) → X∗(AG)

induces an isomorphism X∗(G)⊗Z Q ∼−→ X∗(AG)⊗Z Q. Thus for every coordinate
projection χi : AG

∼= (R>0)
k → R>0, there exists an integer ni such that χni

i is
induced by some ϕi ∈ X∗(G). For g ∈ AG∩G(A)1, we have |χni

i (g)|∞ = |ϕi(g)|A = 1,
and it follows that χi(g) = 1 and so g = 1. On the other hand, for any g ∈ G(A),
by the fact we know that g ∈ G(A)1 if and only if |ϕi(g)|A = 1 for each i. For

general g, let x = (|ϕ1(g)|1/n1

A , · · · , |ϕk(g)|
1/nk

A ) ∈ AG. Then x−1g ∈ G(A)1. Hence
G(A) = AG ×G(A)1. □

Definition 3.3.4. Let [G] = G(F )\G(AF )
1 = (G(F )AG)\G(AF ). This is called

the automorphic quotient for G.

4. Lecture 4

4.1. The automorphic spectrum. Fix a Haar measure dg on G(AF )
1, and equip

[G] = G(F )\G(AF )
1 with the quotient measure of dg by the counting measure on

G(F ). This is the unique Radon measure dḡ on [G] characterized by∫
[G]

(
∑

γ∈G(Q)

f(γg))dḡ =

∫
G
f(g)dg

for all compactly supported continuous functions f on G. (The existence depends
on the fact that G(AF )

1 and G(F ) are both unimodular.) Clearly dḡ is invariant
under the right translation action by G(AF )

1.

Fact 4.1.1. The space [G] has finite volume under dḡ. It is compact if and only if
G is anisotropic-mod-center, i.e., G does not contain any proper parabolic subgroup,
or equivalently, every split torus in G is central.

Consider L2([G]), the space of square integrable functions [G] → C defined with
respect to dḡ (and completed with respect to the L2-norm). This is a Hilbert space,
and G(AF )

1 acts on it by right translation:

rg(f)(x) = f(xg), ∀g ∈ G(AF )
1, f ∈ L2([G]), x ∈ [G].

Definition 4.1.2. Let H be a topological group.

(1) By a Hilbert representation ofH, we mean a continuous linear representation
H×V → V on a Hilbert space V (over C, having a countable Hilbert basis).
We often write π for the map H → GL(V ), and denote the representation
by the pair (π, V ).

(2) A Hilbert representation is called unitary, if π(g) is a unitary operator for
each g ∈ H.

(3) A Hilbert representation is called irreducible, if there is no proper closed
H-stable subspace.

(4) Isomorphisms between Hilbert representations are by definition topologi-
cal vector space isomorphisms preserving the H-actions. They are not re-
quired to be isometries. For two unitary representations, we are interested
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in whether we can find an isomorphism between them which is an isometry.
When this is the case we say that they are unitarily equivalent.

(5) Denote by Ĥ the set of unitary equivalence classes of irreducible unitary
representations of H, called the unitary dual of H.

Proposition 4.1.3. The G(AF )
1-action on L2([G]) is a unitary representation.

Proof. Write H for G(AF )
1. Clearly each g ∈ H acts by a unitary operator, so only

the continuity of the action is not obvious. Here, knowing that each group element
acts by a unitary operator, the continuity is equivalent to the following condition

• For each fixed f ∈ L2([G]), the map H → L2([G]), g 7→ rgf is continuous.

By rather general considerations, we know that the space Cc([G]) of compactly
supported functions on [G] is dense in L2([G]). Using this, we reduce to checking
that for each fixed f ∈ Cc([G]), we have ∥rgf − f∥2 → 0 when g → 1 in H. Let U
be a relatively compact open neighborhood of 1 in H. Then there exists a compact
subset W of [G] containing supp(f) · U . For g ∈ U−1, the function rgf − f is
supported inside W , and so

∥rgf − f∥2 ≤ vol(W )1/2max
W

|rgf − f |.

It remains to prove that maxW |rgf − f | → 1 as U−1 ∋ g → 1. Let ϵ > 0. For each
x ∈ W , there exists an open neighborhood Vx of 1 in U−1 such that Vx · Vx ⊂ U−1

and such that the variance of f on x · Vx · Vx is less than ϵ. Extract from the open
covering W ⊂

⋃
x∈W xVx a finite subcovering W ⊂

⋃n
i=1 xiVxi . Let V =

⋂
i Vxi ,

which is an open neighborhood of 1 in U−1. Now let g ∈ V and x ∈W be arbitrary.
We have x ∈ xiVxi for some i. Then x and xg are both in xi · Vxi · Vxi , and hence

|f(xg)− f(x)| < ϵ.

This shows that maxW |rgf − f | < ϵ. □

Definition 4.1.4. By a discrete automorphic representation, we mean an irreducible
unitary representation of G(AF )

1 that is unitarily equivalent to a closed irreducible
sub-representation of L2([G]).

Example 4.1.5. The S1-representation L2(S1) is a Hilbert direct sum of its irre-
ducible sub-representations:

L2(S1) ∼=
⊕̂

n∈Z
χn,

where χn is the one-dimensional unitary representation S1 → S1 ⊂ C×, z 7→ zn.
This isomorphism sends a function on S1 to the coefficients of its Fourier series.

Example 4.1.6. The R-representation L2(R) is not a Hilbert direct sum of its irre-
ducible sub-representations. In fact, it does not have any irreducible sub-representation

other than 0! To see this, note that R̂ = {χt | t ∈ R} ∼= R, where χt : R → S1, x 7→
eitx. One checks that for each t ∈ R, there does not exist f ∈ L2(R) such that
f(x+ y) = χt(x)f(y) for all x, y ∈ R.
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The correct way to decompose L2(R) is to express it as a direct integral of the
χt’s. Let Ct = C be the space of the representation χt. Let dt be the Lebesgue

measure on R̂ ∼= R. Define ∫
t∈R̂

Ctdt

to be the L2-space of L2-functions R̂ → C (with respect to the measure dt). We can
then define a R-action on

∫
tCtdt by “letting it act on each Ct via χt”. Namely, for

g ∈ R and f : R → C inside
∫
tCtdt, define

gf : R −→ C, t 7→ χt(g)f(t) = eitgf(t).

This is easily checked to be a unitary representation of R on
∫
tCtdt. By Fourier

transform, this is unitarily equivalent to the natural R-representation on L2(R).

Example 4.1.7. More generally, let H be a Hausdorff locally compact abelian

group. Then the unitary dual Ĥ is in fact nothing but the Pontryagin dual Homcont(H,S
1).

Thus Ĥ is naturally a Hausdorff locally compact abelian group. Define the H-
representation

∫
χ∈Ĥ Cχdχ in the same way as forH = R, using a Haar measure dχ on

Ĥ. Then the natural H-representation L2(H) is unitarily equivalent to
∫
χ∈Ĥ Cχdχ.

As the above examples show, each Cχ may or may not be isomorphic to an actual
sub-representation of L2(H).

For the so-called type I topological groups, there is a general result on decompos-
ing an arbitrary unitary representation into a direct integral of irreducible unitary
representations. For F local (resp. global) of characteristic zero and G a reductive
group over F , the group G(F ) (resp. G(AF ), G(AF )

1) is of type I.

Theorem 4.1.8. Let H be of type I. There is a canonical topology on the unitary

dual Ĥ, called Fell topology. For every unitary representation V0 of G admitting a

countable Hilbert basis, there exists a Borel measurable function m : Ĥ → Z≥0 and

a positive Borel measure dµ on Ĥ such that V0 is unitarily equivalent to∫
V ∈Ĥ

V ⊕̂m(V )dµ

The theorem can be applied to the G(AF )
1-representation L2([G]). However, this

theorem is an abstract existence theorem and does not give explicit formulas for
computing dµ. There is a much deeper theorem by Langlands, describing the direct
integral decomposition of L2([G]) explicitly in terms of discrete automorphic repre-
sentations of G and those of the Levi components of standard parabolic subgroups
of G.

In the rest of the course, we will only consider the number field Q and
the local fields R and Qp. The other cases are treated by Weil restriction
of scalars.

If V is a discrete automorphic representation of G, then it is also a representation
of G(R) and G(Qp) by restriction. We now discuss basic representation theory of
G(R) and G(Qp).
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4.2. Archimedean representation theory. Let G be a reductive group over R.

Fact 4.2.1. The topological group G(R) is a Lie group with finitely many connected
components. Every compact subgroup is contained in a maximal compact subgroup.
All maximal compact subgroups are conjugate by G(R)0. Every maximal compact
subgroup meets every connected component of G(R).

Lemma 4.2.2. Let K be a compact Hausdorff group. Every irreducible Hilbert
representation of K is finite dimensional. Every Hilbert representation of K is
isomorphic to a unitary representation, and every unitary representation is a Hilbert
direct sum of some of its irreducible sub-representations.

By the lemma and by Schur’s lemma, the unitary dual K̂ is identified with the set
of isomorphism classes of finite dimensional irreducible continuous representations
of K. Here one uses Schur’s lemma to show that on a finite dimensional irreducible
continuous representation of K there is up to scalar a unique Hilbert inner product
invariant under K.

Suppose V is any representation of K (with or without topology). For each

σ ∈ K̂, we have

{v ∈ V | SpanKv ∼= σ} =
∑

W⊂V,W∼=σ

W,

and this is a sub-representation of V . Denote it by V (σ), called the σ-isotypic part
of V .

Definition-Proposition 4.2.3. Let V be any representation of K (with or without
topology). Define Vfin to be the subspace of V given by

Vfin = {v ∈ V | dimSpanKv <∞} =
⊕
σ∈K̂

V (σ).

(Here the direct sum is algebraic direct sum.) This is a K-stable subspace of V ,
called the K-finite part of V .

From now on, we fix a maximal compact open subgroup K of G(R).

Definition 4.2.4. For any Hilbert representation (π, V ) of G(R), define Vfin =⊕
σ∈K̂ V (σ) ⊂ V by restricting the representation to K. We call (π, V ) admissible,

if dimV (σ) <∞ for each σ ∈ K̂.

Theorem 4.2.5 (Harish-Chandra). Every irreducible unitary representation of G(R)
is admissible.

The irreducible admissible representations of G(R) are much easier to study and
classify than irreducible unitary representations. However, the “correct” notion of
equivalence between them turns out to be the so-called infinitesimal equivalence,
which is weaker than the usual notion of isomorphism of Hilbert representations.
We now explain this.

Recall that G(R) is a Lie group. In fact, there is a canonical smooth structure:
For any faithful representation ϕ : G → GLn, we have a closed embedding ϕ(R) :
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G(R) → GLn(R). The image of ϕ(R) is a smooth submanifold of GLn(R) (where

GLn(R) is open in Rn2
and has standard smooth structure). We require that ϕ(R)

is a diffeomorphism onto its image. The Lie algebra of the algebraic group G is
canonically identified with the Lie algebra of the Lie group G(R). Denote it by g.

We have the exponential map exp : g → G(R). For GLn this is the usual expo-
nential of matrices. In general this is defined either by general theory of Lie groups,
or by fixing a faithful representation G→ GLn and inheriting from GLn.

Definition 4.2.6. Let (π, V ) be a Hilbert representation of G(R). For any X ∈ g
and v ∈ V , we define the derivative of v along X to be

π(X)v = Xv :=
d

dt
|t=0π(exp(tX))v = lim

t→0

π(exp(tX))v − v

t
∈ V,

if the limit exists. We say v ∈ V is smooth, if for every sequence X1, · · · , Xk ∈ g, the
successive derivative X1 · · ·Xkv ∈ V exists. Let Vsm be the subspace of V consisting
of smooth vectors.

For v ∈ Vsm, X ∈ g, g ∈ G(R), we have X · (gv) exists and
X · (gv) = g · (Ad(g)(X)) · v.

Similarly, arbitrary successive derivatives of gv exist. Hence Vsm is a G(R)-stable
subspace of V .

Remark 4.2.7. There is a general notion of smooth maps G(R) → V . A vector
v ∈ V is smooth if and only if the map G(R) → V, g 7→ π(g)v is smooth.

Fact 4.2.8. The natural action of g on Vsm is a Lie algebra representation (without
any continuity conditions). (Here g is a Lie algebra over R, and when considering
the g-representation Vsm we think of the C-vector space Vsm as an R-vector space.
Alternatively, one can consider the gC = g⊗R C-action on Vsm.)

Proposition 4.2.9 ([1] Prop. 4.4.7). For any admissible Hilbert representation
(π, V ) of G(R), we have Vfin ⊂ Vsm. Moreover, Vfin is stable under the g-action.

Note that Vfin is not G(R)-stable, but K-stable. Hence it carries two structures:
the K-action and the g-action. The compatibility between the two structures is
captured in the following definition.

Definition 4.2.10. A (g,K)-module is a C-vector space W (with no topology)
together with a linear representation by K and a Lie algebra representation by g
(again, we considerW has an R-vector space in order to talk about g-representation
on W ; alternatively one could consider a gC-representation on W ), satisfying the
following conditions:

(1) As a K-representation, we have W =Wfin.
(2) For any finite dimensional K-stable subspace W1 ⊂ W , the K-action on

W1 is continuous and smooth, in the sense that every vector in W1 is a
smooth vector. (HereW1 is equipped with the canonical topology on a finite
dimensional vector space.) Moreover, the resulting LieK-action on W1 by
differentiating the K-action agrees with the restriction of the g-action onW .
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(3) For all k ∈ K,X ∈ g, w ∈W , we have k ·X · k−1 · w = (Ad(k)(X)) · w.
We say that W is admissible, if W (σ) is finite dimensional for each σ ∈ Ŵ .

Remark 4.2.11. In [1], a condition stronger than (1) is imposed, namely that W
is a countable direct sum of finite dimensional K-stable subspaces. The definition
here seems to be more standard in the literature, see for instance [5] Chapter 2.
For admissible (g,K)-modules, the two definitions agree. In fact, we have W =
Wfin =

⊕
σ∈K̂ W (σ). If W (σ) is finite dimensional for each σ, then this is already

a decomposition of W into a countable direct sum of finite-dimensional K-stable

subspaces; the point is that K̂ is a countable set, which can be proved using the
second countability of K and the Peter–Weyl theorem.

Theorem 4.2.12. For any admissible Hilbert representation (π, V ) of G(R), Vfin
is an admissible (g,K)-module. Moreover, V is irreducible if and only if Vfin is
irreducible as a (g,K)-module.

Theorem 4.2.13 (Harish-Chandra, see [4] Theorem 4.15 or [5] Theorem 2.15).
Every irreducible (g,K)-module is automatically admissible, and it is isomorphic to
the (g,K)-module Vfin for an irreducible admissible Hilbert representation (π, V ) of
G(R).

Definition 4.2.14. We say two admissible Hilbert representations of G(R) are
infinitesimally equivalent, if their associated (g,K)-modules are isomorphic.

Corollary 4.2.15. The set of irreducible admissible Hilbert representations of G(R)
modulo infinitesimal equivalence, is in bijection with the set of irreducible (admis-
sible) (g,K)-modules modulo isomorphism. We call either of these two sets the
admissible dual of G(R).

In general, infinitesimal equivalence is weaker than actual isomorphism. Thus
there exist non-isomorphic irreducible admissible Hilbert representations whose as-
sociated (g,K)-modules are isomorphic. Nevertheless, we have the following:

Theorem 4.2.16. Any two infinitesimally equivalent irreducible unitary represen-
tations of G(R) are unitarily equivalent.

Thus the unitary dual of G(R) injects into the admissible dual of G(R).

Remark 4.2.17 (The problem of globalization). One can consider continuous rep-
resentations of G(R) on more general locally convex topological vector spaces than
Hilbert spaces. From such representations one can similarly produce (g,K)-modules.
A very subtle problem is to find a suitable subcategory of such representations such
that the functor from this category to the category of (g,K)-modules has nice prop-
erties (e.g., an equivalence of categories). For a discussion see [1, §4.4] and [4, §4].

5. Lecture 5

5.1. Non-archimedean representation theory. Let G be a locally profinite
group.



AN INTRODUCTION TO THE LANGLANDS PROGRAM PKU 2024 SUMMER SCHOOL 21

Definition 5.1.1. A smooth representation of G is a linear representation (π, V )
of G (with no topology) such that for v ∈ V , the stabilizer of v in G is an open
subgroup. Equivalently, V =

⋃
K V K , where K runs over compact open subgroups

of G.

Clearly all sub-representations and quotient representations of a smooth repre-
sentation are smooth. The category of smooth representations (where morphisms
are G-linear maps) is abelian.

Definition 5.1.2. Let C∞
c (G) be the C-vector space of compactly supported locally

constant functions G→ C. For each compact open subgroupK of G, let C∞
c (G//K)

be the subspace consisting of functions that are left and right invariant by K.

Lemma 5.1.3 (Easy). We have C∞
c (G) =

⋃
K C∞

c (G//K). For each K, the C-
vector space C∞

c (G//K) has a basis {1KgiK}, where {gi} ⊂ G is a set of represen-
tatives of K\G/K.

Fix a right Haar measure drg on G. For f1, f2 ∈ C∞
c (G), define their convolution

product to be the function f1 ∗ f2 : G→ C given by

g 7−→
∫
G
f1(gh

−1)f2(h)drh.

Using the lemma, it is easily seen that f1 ∗ f2 ∈ C∞
c (G).

Proposition 5.1.4. The convolution product ∗ makes C∞
c (G) an associative C-

algebra (without unit), called the Hecke algebra. For each K, C∞
c (G//K) is a sub-

algebra, and it has its own unit eK = vol(K)−11K . Moreover, we have C∞
c (G//K) =

eK ∗ C∞
c (G) ∗ eK , and eK is an idempotent (i.e., eK ∗ eK = eK).

Let (π, V ) be a smooth representation of G. For f ∈ C∞
c (G) and v ∈ V , define

π(f)v :=

∫
G
f(g)π(g)vdrg.

Here the integrand is a compactly supported locally constant function G→ V (since
v is fixed by an open subgroup), and the integral is a finite linear combination of
elements in the G-orbit of v. More concretely, let K ⊂ G be an open compact
subgroup fixing v and such that f is right K-invariant. Then f =

∑n
i=1 ai1giK for

gi ∈ G, ai ∈ C. We have

π(f)v =
∑
i

ai vol(giK)π(gi)v.

Note that if G is unimodular, the above formula simplifies as vol(giK) = vol(K).
This action of C∞

c (G) on V is an algebra representation, i.e., it makes V a (left)
module over C∞

c (G). For each compact open subgroup K of G, one checks that

V K = π(eK)V.

Thus we have V = C∞
c (G) · V since V =

⋃
K V K . In general, we call a C∞

c (G)-
module V non-degenerate if V = C∞

c (G)V .
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Proposition 5.1.5. We have an equivalence of categories between smooth G-representations
and non-degenerate C∞

c (G)-modules.

Since V K = π(eK)V and since eK is idempotent, V K is a module over C∞
c (G//K) =

eK ∗ C∞
c (G) ∗ eK . Moreover, it is a unital module in the sense that the unit

eK ∈ C∞
c (G//K) acts on V K as the identity. We say that (π, V ) is K-unramified if

V K ̸= 0.

Theorem 5.1.6. A smooth G-representation V is irreducible if and only if for each
compact open subgroup K of G, V K is either zero or a simple unital C∞

c (G//K)-
module. For a non-zero irreducible V , let K be such that V K ̸= 0. Then the isomor-
phism class of V is determined by the isomorphism class of the C∞

c (G//K)-module
V K . More precisely, we have a bijection from isomorphism classes of irreducible
G(F )-representations which are K-unramified to isomorphism classes of non-zero
simple unital C∞

c (G//K)-modules.

Analogous to the archimedean case, we need a notion of admissibility.

Definition 5.1.7. A smooth representation (π, V ) of G is called admissible, if V K

is finite dimensional for each compact open subgroup K of G.

This condition is closely related to a notion of duality for smooth representations.
For any smooth representation (π, V ), let V ∗ = HomC(V,C). Then V ∗ is a linear
representation of G by

(gϕ)(v) = ϕ(g−1v), ∀g ∈ G,ϕ ∈ V ∗, v ∈ V.

This representation may not be smooth, but if we let V ∨ be the subspace of V ∗

consisting of smooth vectors (i.e., those vectors whose stabilizers inG are open), then
V ∨ is a smooth representation. The natural map V → (V ∗)∗ induces a morphism
of smooth G-representations V → (V ∨)∨.

Proposition 5.1.8. A smooth representation V of G is admissible if and only if
the map V → (V ∨)∨ is an isomorphism. In this case, V ∨ is also admissible.

The proof boils down to the following fact: For a C-vector space W , the natural
map W → (W ∗)∗ is an isomorphism if and only if dimW <∞.

Recall that for a reductive group G over R, the irreducible unitary Hilbert repre-
sentations of G(R) are admissible, and their unitary equivalence classes are deter-
mined by the isomorphism classes of the associated (g,K)-modules.

We now change notation and let G be a reductive group over a non-archimedean
local field F . For a Hilbert representation V of G(F ), we can take the smooth
vectors Vsm = {v ∈ V | v has open stabilizer in G(F )}. Then Vsm is a smooth
representation of G(F ). The functor V 7→ Vsm is analogous to taking the associated
(g,K)-module in the archimedean case.

Theorem 5.1.9. Let G be a reductive group over a non-archimedean local field F ,
and let V be an unitary Hilbert representation of G(F ). Then V is irreducible if and
only if the smooth G(F )-representation Vsm is irreducible. When this is the case,
Vsm is admissible. Moreover, the unitary equivalence class of V is determined by the
isomorphism class of the smooth G(F )-representation Vsm.
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The implication “irreducible ⇒ admissible” is true for an arbitrary smooth rep-
resentation of G(F ), just as for (g,K)-modules.

Theorem 5.1.10. Every irreducible smooth representation of G(F ) is admissible.

Here the structure theory of reductive groups is crucial, as the proof relies on
parabolic induction.

Definition 5.1.11. A reductive group G over F is unramified, if it is quasi-split
and there exists a finite unramified extension F ′/F such that GF ′ is split.

When G is unramified, there is an especially important class of compact open sub-
groups of G(F ), called hyperspecial subgroups. They naturally arise from Bruhat–
Tits theory, but can also be abstractly characterized as follows.

Definition-Proposition 5.1.12. A reductive group G over F is unramified if and
only if there exists a smooth affine group scheme G over OF whose generic fiber
is G and special fiber is a reductive group over the residue field of F . (We call
G a reductive model of G.) When this is the case, for any choice of G, the group
G(OF ) is a maximal compact open subgroup of G(F ), and we call it a hyperspecial
subgroup.

Remark 5.1.13. A reductive group G over F is unramified if and only if there
exist hyperspecial points in the Bruhat–Tits building of G(F ). In this case, the
reductive models G are precisely the Bruhat–Tits group schemes associated with
the hyperspecial points, and the hyperspecial subgroups of G(F ) are precisely the
stabilizers of the hyperspecial points.

Fact 5.1.14. When G is unramified, all hyperspecial subgroups of G(F ) are conju-
gate by Gad(F ) (but not necessarily by G(F )). They all have the same volume, and
are precisely the compact subgroups of G(F ) having maximal volume.

Example 5.1.15. The subgroup GLn(OF ) of GLn(F ) is hyperspecial, and all hy-
perspecial subgroups of GLn(F ) are GLn(F )-conjugate to this one. (Note that
GLn(F ) surjects onto PGLn(F ) = GLad

n (F ).)

Let G over F be unramified, and fix a hyperspecial subgroup K.

Fact 5.1.16 (Consequence of Satake isomorphism). The convolution algebra C∞
c (G//K)

is commutative.

In particular, every non-zero simple unital C∞
c (G//K)-module is one-dimensional.

Corollary 5.1.17. For every irreducible K-unramified smooth representation (π, V )
of G(F ), the space V K is one-dimensional. The isomorphism classes of such repre-
sentations are classified by characters (i.e., algebra homomorphisms preserving the
unit) C∞

c (G//K) → C.

5.2. Restricted tensor product. Let G be a reductive group over a global field
F . Let VF be the set of places of F , and let S ⊂ VF be a finite subset containing
all archimedean places. Let ϕ : G → GLn be a faithful representation over F . For
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each non-archimedean place v, let Kv = ϕ−1GLn(OFv), a compact open subgroup
of G(Fv). Recall that

G(AS
F )

∼=
′∏

v∈VF−S

G(Fv)

where the restricted direct product is taken with respect to the Kv’s.

Fact 5.2.1. For almost all v, Kv is a hyperspecial subgroup of G(Fv).

Definition 5.2.2. Suppose for each v ∈ VF − S we have a C-vector space Vv.
Suppose for almost all v we fix an element hv ∈ Vv. Let T ⊂ T ′ be two finite subsets
of VF − S such that hv is defined for all v /∈ T . Define the transition map⊗

v∈T
Vv −→

⊗
v∈T ′

Vv, ⊗v∈T fv 7−→ (⊗v∈T fv)⊗ (⊗v∈T ′−Thv).

Define the restricted tensor product
′⊗

v∈VF−S

Vv := lim−→
T⊂VF−S

finite

⊗
v∈T

Vv.

The isomorphism class of this depends only on the lines Chv ⊂ Vv for almost all v.

Since G(Fv) is locally profinite for each v ∈ VF − S, the group G(AS
F ) is clearly

locally profinite. On each G(Fv) we fix a Haar measure normalized in such a way
that the volume of Kv is 1 for almost all v. We then normalize the Haar measure
on G(AS

F ) by requiring that

vol(K) =
∏

v∈VF−S

vol(Kv),

for K =
∏

v∈VF−SKv (which is a compact open subgroup of G(AS
F )). We use these

Haar measures to define the convolution product on C∞
c (G(AS

F )) and C
∞
c (G(Fv)).

Lemma 5.2.3. We have a natural vector space isomorphism

C∞
c (G(AS

F ))
∼=

′⊗
v∈VF−S

C∞
c (G(Fv)),

where the restricted tensor product is with respect to the elements

eKv = vol(Kv)
−11Kv ∈ C∞

c (G(Fv)).

Moreover, the direct limit defining the right hand side is a direct limit of (non-unital)
C-algebras, and the above isomorphism is an isomorphism of C-algebras.

Suppose for each v ∈ VF − S we have a smooth admissible representation Vv
of G(Fv). Suppose Vv is Kv-unramified for almost all v, and for such v choose
hv ∈ V Kv

v . Define the restricted product

V =
′⊗

v∈VF−S

Vv
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with respect to the hv’s. By Lemma 5.2.3, the C∞
c (G(Fv))-module structures on Vv

for all v give rise to a C∞
c (G(AS

F ))-module structure on V , since for almost all v the
element eKv ∈ C∞

c (G(Fv)) acts as identity on hv. Thus V is a smooth representation
of G(AS

F ). The isomorphism class of V is independent of the choices of hv’s since
V Kv
v is one-dimensional for almost all v by Corollary 5.1.17 and Fact 5.2.1.

Theorem 5.2.4 (Flach). The G(AS
F ) representation V is admissible. It is irre-

ducible if and only if Vv is irreducible as a G(Fv)-representation, for each v ∈ VF−S.
In this case the isomorphism classes of all Vv’s are uniquely determined by the iso-
morphism class of V . Every irreducible admissible representation of G(AS

F ) arises
in this way.

The upshot is that giving an irreducible admissible representation of G(AS
F ) is

equivalent to giving an irreducible admissible (or equivalently, irreducible) represen-
tation of G(Fv) for each v ∈ VF − S which is Kv-unramified for almost all v.

6. Lecture 6

6.1. Automorphic representations. Let G be a reductive group over Q. Write
Af for A∞.

Definition 6.1.1. Let C∞(G(A)) = C∞(G(R)) ⊗C C
∞(G(Af )) where the first

factor consists of the usual smooth functions on the Lie group G(R) and the second
factor consists of locally constant functions.

Note that for ϕ ∈ C∞(G(A)), we can differentiate the archimedean component
with respect to any X ∈ g = LieGR, and obtain Xϕ ∈ C∞(G(A)). Thus C∞(G(A))
is a g-module. Let U(g) be the universal enveloping algebra of LieGR, and let Z(g)
be the center of U(g). Then C∞(G(A)) is a U(g)-module.

Definition 6.1.2. Fix a faithful representation ι : G → GLn over Q. For g =
(gv)v ∈ G(A) define

∥g∥ :=
∏
v

max(|ι(gv)ij |v, |ι(g−1
v )ij |v).

Here ι(gv), ι(g
−1
v ) ∈ GLn(Qv). A function ϕ : G(A) → C is of moderate growth, if

|ϕ(g)| ≤ c∥g∥r for constants c > 0, r ∈ R. A function ϕ ∈ C∞(G(A)) is of uniform
moderate growth, if there exists r ∈ R and for each X ∈ LieGR there exists cX > 0
such that |(Xϕ)(g)| < cX∥g∥r.

Fix a maximal compact subgroup K∞ of G(R).

Definition 6.1.3. An automorphic form on G (with respect to the choice K∞) is
a function ϕ ∈ C∞(G(A)) satisfying:

(1) ϕ is left G(Q)-invariant.
(2) ϕ is of uniform moderate growth.
(3) For one (hence any) compact open subgroup Kf ⊂ G(Af ), the right K∞ ×

Kf -translates of ϕ span a finite dimensional subspace of C∞(G(A)). (We
say that ϕ is K∞ ×Kf -finite.)
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(4) The Z(g)-module generated by ϕ is a finite dimensional subspace of C∞(G(A)).
Let A(G) be the space of all automorphic forms on G.

Definition 6.1.4. By a (g,K∞)×G(Af )-module, we mean a C-vector space which
is simultaneously a (g,K∞)-module and a smooth G(Af )-representation, satisfying
the obvious compatibility condition. Such a module V is called admissible if for
every compact open subgroup Kf ⊂ G(Af ), the (g,K∞)-module V Kf is admissible.

Lemma 6.1.5. Every irreducible admissible (g,K∞)×G(Af )-module factorizes as
a tensor product of an irreducible admissible (g,K∞)-module and an irreducible ad-
missible G(Af )-representation, and the isomorphism classes of the latter two are
uniquely determined.

Note that A(G) is a (g,K∞)×G(Af )-module.

Definition 6.1.6. An automorphic representation for G is an irreducible admissible
(g,K∞)×G(Af )-module which is isomorphic to a subquotient of A(G).

Theorem 6.1.7 (Harish-Chandra). For each ideal J ⊂ Z(g), let A(G, J) be the sub-
space of A(G) annihilated by J . If dimR Z(g)/J <∞, then A(G, J) is an admissible
(g,K∞)×G(Af )-module.

Proposition 6.1.8. Let (π, V ) ⊂ L2([G]) be an irreducible G(A)1-subrepresentation.
Let Vfin be the subspace of V consisting of f ∈ V (viewed as a function G(Af ) → C)
that are K∞ ×Kf -finite for one (hence any) compact open subgroup Kf ⊂ G(Af ).
Then Vfin ⊂ A(G), and Vfin is an irreducible admissible (g,K∞)×G(Af )-submodule.
Hence Vfin is an automorphic representation. The unitary equivalence class of (π, V )
as a unitary Hilbert representation of G(A)1 is determined by the isomorphism class
of Vfin as a (g,K∞)×G(Af )-module.

Definition 6.1.9. An automorphic form ϕ ∈ A(G) is cuspidal if for every proper
parabolic subgroup P of G with unipotent radical N , we have∫

N(Q)\N(A)
ϕ(ng)dn = 0

for all g ∈ G(A). Let A(G)cusp be the space of cuspidal automorphic forms, which
is a (g,K∞) × G(Af )-submodule of A(G). If an automorphic representation is
isomorphic to a subquotient of A(G)cusp, then we call it cuspidal. Similarly, define
the G(A)1-subrepresentation L2

cusp([G]) ⊂ L2([G]).

Theorem 6.1.10 (Gelfand and Piatetski-Shapiro, see [1] Theorem 9.2). The G(A)1-
representation L2

cusp([G]) decomposes into a Hilbert direct sum of irreducible unitary
representations.

Exercise 6.1.11. Let G = GL2, and K∞ = O(2) ⊂ GL2(R). Let f : H = {z ∈ C |
Im z > 0} → C be a classical cuspidal modular form of weight k, level Γ0(N), and
trivial nebentypus (for simplicity). Then one attaches to f a cuspidal automorphic
form ϕ ∈ Acusp(G). The form f is Hecke-eigen if and only if the (g,K∞)×G(Af )-
submodule π of Acusp(G) generated by ϕ is irreducible and admissible (hence an
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automorphic representation). In this case, when we factorize π = π∞ ⊗
⊗

p πp,

the (g,K∞)-module π∞ is determined by the weight k, and for p ̸ |N the G(Qp)-
representation πp is unramified and determined by the Hecke-eigenvalue of f at p.
More precisely, π∞ is the discrete series of weight k if k ≥ 2 and is the limit discrete
series if k = 1. The Ramanujan conjecture, which gives a bound on the Hecke
eigenvalues, is translated to the assertion that πp is tempered for all p.

Similarly, Maass forms also give rise to automorphic representations for G. This
time π∞ is always a principal series (depending on a continuous parameter, which
is essentially the Laplace-eigenvalue of the Maass form). The famous Selberg 1/4
Conjecture (or Eigenvalue Conjecture) asserts a certain restriction on π∞ (i.e., not
belonging to the complementary series).

6.2. The Satake isomorphism, split case. Let G be a split reductive group over
a local non-archimedean field F .

Definition-Proposition 6.2.1. Let K = G(OF ) be a hyperspecial subgroup of
G(F ), where G is a reductive model of G over OF . There exists a maximal split torus
T in G such that T extends to a closed subgroup scheme of G which is isomorphic
to Gr

m,OF
. We say that T is compatible with K.

Example 6.2.2. G = GLn, T = the diagonal torus, K = GLn(OF ). Then T and
K are compatible.

Remark 6.2.3. The condition that T is compatible with K is equivalent to asking
that the hyperspecial point in the Bruhat–Tits building whose stabilizer is K lies in
the apartment belong to T .

Let K and T be compatible. Then KT := T (F ) ∩K is a hyperspecial subgroup
of T (F ), and it is in fact the unique maximal compact open subgroup of T (F ).
(Note that T (F ) ∼= (F×)n has a unique maximal compact open subgroup (O×

F )
n.)

We normalize Haar measures dg and dt on G(F ) and T (F ) such that voldg(K) = 1
and voldt(KT ) = 1. Let B be a Borel subgroup of G containing T . Let N be the
unipotent radical of B. We have the Levi decomposition B = T ⋉N . Fix the Haar
measure dn on N(F ) such that voldn(N(F ) ∩K) = 1. Define the Satake transform

S : C∞
c (G(F )//K) −→ C∞

c (T (F )//KT )

f 7−→
(
t 7→ δ

1/2
B (t)

∫
N(F )

f(tn)dn
)
.

This map is independent of the choice of B.
TheWeyl groupW (G,T ) =W (G,T )(F̄ ) =W (G,T )(F ) acts on T by F -automorphisms.

Hence it acts on T (F ) by topological automorphisms. Since KT is the unique max-
imal compact open subgroup, it is stabilized by W (G,T ). Hence W (G,T ) acts
on C∞

c (T (F )//KT ). This action preserves the structure of C∞
c (T (F )//KT ) as a

C-algebra (with the convolution product).

Theorem 6.2.4 (Satake). The map S factors through a unital ring isomorphism
(for the convolution products)

C∞
c (G(F )//K)

∼−→ C∞
c (T (F )//KT )

W (G,T ).
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In particular, C∞
c (G(F )//K) is commutative.

Definition 6.2.5. Let Ψ(G,T ) = (X∗(T ),Φ, X∗(T ),Φ
∨) be the root datum asso-

ciated with (G,T ). The Langlands dual group of G is a reductive group Ĝ over C
together with a choice of maximal torus T̂ ⊂ Ĝ and an isomorphism of root data

Ψ(Ĝ, T̂ )
∼−→ Ψ(G,T )∨ := (X∗(T ),Φ

∨, X∗(T ),Φ).

Lemma 6.2.6. The algebra C∞
c (T (F )//KT ) (where multiplication is convolution

product) is naturally isomorphic to the algebra of regular functions on T̂ invariant

under W (Ĝ, T̂ ) (with usual multiplication of functions). The set of characters on
either of them (i.e., unital C-algebra homomorphisms to C) is in natural bijection

with the set of Ĝ(C)-conjugacy classes of semi-simple elements of Ĝ(C), and in

natural bijection with T̂ (C)/W (Ĝ, T̂ ).

To simplify notation, we denote the last two sets by Ĝss/Ĝ and T̂ /W . We also

write W for W (G,T ). (In fact, W (Ĝ, T̂ ) ∼=W (G,T ).)

Example 6.2.7. For G = GLn, we have Ĝ = GLn,C, and the set Ĝss/Ĝ is in
bijection with the set of unordered n-tuples in C×.

Corollary 6.2.8. The set of isomorphism classes of irreducible K-unramified rep-

resentations π of G(F ) is in natural bijection with Ĝss/Ĝ. We call the element of

Ĝss/Ĝ corresponding to π the Satake parameter of π.

7. Lecture 7

7.1. Unramified principal series, split case. We now describe the inverse map

of the bijection in Corollary 6.2.8, sending an element x of Ĝss/Ĝ ∼= T̂ /W to an
irreducible K-unramified G(F )-representation πx.

If we fix an isomorphism T ∼= Gn
m, then we obtain trivializations X∗(T ) ∼= Zn

and X∗(T ) ∼= Zn, and in turn an isomorphism T̂ ∼= Gn
m. The element x is thus

represented by an element (q−x1 , · · · , q−xn) ∈ (C×)n, with (x1, · · · , xn) ∈ Cn. Here
q is the residue cardinality of F . Define

χ : T (F ) ∼= (F×)n −→ C×, (y1, · · · , yn) 7−→ |y1|x1
F · · · |yn|xn

F .

Then χ is a smooth character, in the sense that it has open kernel, or equivalently
that it is a one-dimensional smooth representation of T (F ). One checks that the
W -orbit of χ depends only on x, not on the other choices.

Lemma 7.1.1. The character χ is unramified in the sense that χ ≡ 1 on KT . Up
to the W -action, every unramified character on T (F ) arises in this way.

Remark 7.1.2. If G = T , then x 7→ χ is our desired inverse map, i.e., χ is the
irreducible KT -unramified representation of T (F ) corresponding to x.

Definition 7.1.3. Let ψ : T (F ) → C× be an arbitrary smooth character. Extend it
to a smooth character on B(F ) = T (F )⋉N(F ) trivially across N(F ), still denoted
by ψ. Let IndGB ψ be the space of functions f : G(F ) → C satisfying

f(bg) = δB(b)
1/2ψ(b)f(g), ∀b ∈ B(F ), g ∈ G(F ),
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and such that f is right invariant under some compact open subgroup of G(F ).
Let G(F ) at on IndGB ψ by right translation. Thus IndGB ψ is a smooth G(F )-
representation, . (It is the smooth part of the usual induction from B(F ) to G(F )

of the character δ
1/2
B · ψ.)

Theorem 7.1.4. The smooth G(F )-representation IndGB χ is of finite length, and
its semi-simplification depends on χ only via the W -orbit of χ. Among the Jordan–
Hölder factors, there is a unique one which is K-unramified. Moreover, this K-
unramified representation is the one whose Satake parameter is x.

7.2. The general unramified case. For an arbitrary reductive group G over a

field k (of characteristic zero), one still defines a reductive group Ĝ over C, and it is
equipped with an action of Galk via C-algebraic group automorphisms. The action
factors through Gal(l/k) whenever l/k is a finite Galois extension such that G splits
over l. We define

LG := Ĝ⋊Galk .

Sometimes it is also convenient to define
LG := Ĝ⋊Gal(l/k).

If G is split, then the Galk-action on Ĝ is trivial, and for all practical purposes one

can replace LG by Ĝ.
Now let G be an unramified reductive group over a non-archimedean local field

F . The GalF -action on Ĝ factors through Gal(F ur/F ). Let

LGur = Ĝ⋊Gal(F ur/F ).

For all practical purposes this serves as LG.

We call an element of Ĝ(C)⋊ Fr semi-simple, if its Ĝ(C)-conjugacy class, i.e. its

orbit under the conjugation action by Ĝ(C), is Zariski closed.

Theorem 7.2.1. Fix a hyperspecial subgroup K ⊂ G(F ). There is a natural bi-
jection between isomorphism classes of irreducible K-unramified representations of

G(F ) and Ĝ(C)-conjugacy classes of semi-simple elements of Ĝ(C)⋊ Fr.

Now let G be a reductive group over Q. Let π = π∞ ⊗
⊗′

p πp be an automorphic
representation for G. If we fix a faithful representation of G, then we obtain a
compact open subgroup Kp of G(Qp) for all primes p. For almost all p, Kp is
hyperspecial, πp is Kp-unramified, and therefore πp gives rise to a Satake parameter

xp, which is a Ĝ(C)-conjugacy class of semi-simple elements of L(GQp)
ur ⋊ Frp. If

we change the faithful representation, then xp changes for only finitely many p.

Conjecture 7.2.2 (Weak form of Langlands functoriality). Let H,G be reductive
groups over Q. Let ϕ : LH → LG be an L-morphism (not defined here). For each
automorphic representation τ for H, there exits an automorphic representation π
for G, such that if (xp)p are the Satake parameters defined by τ (defined only for
almost all p), then the Satake parameters of π are equal to ϕ(xp) for almost all p.

Remark 7.2.3. As stated the conjecture is too rough and may be false.
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7.3. The significance of parabolic induction. Let G be a reductive group over
a non-archimedean local field F .

Definition 7.3.1. For any parabolic subgroup P of G with Levi component M
and unipotent radical N , and any smooth representation (π, V ) of M(F ), we view
(π, V ) as a smooth representation of P (F ) viaM(F ) ∼= P (F )/N . We then define the
smooth G(F )-representation IndGP V consisting of functions f : G(F ) → V which
are right invariant under some open subgroup of G(F ), and satisfying f(pg) =

δP (p)
1/2π(p)f(g) for all p ∈ P (F ), g ∈ G(F ). The action of G(F ) on IndGP V is via

right translation. This representation is called the parabolic induction from P to G
of the representation V .

Definition 7.3.2. Let (σ,W ) be an irreducible representation of G(F ). For each
pair (w,w′) ∈W ×W∨, we obtain the function mw,w′ : G(F ) → C, g 7→ ⟨w′, σ(g)w⟩,
called a matrix coefficient for σ.

Let

G(F )1 :=
⋂

χ∈X∗(G)

ker(G(F )
χ−→ F× |·|−→ R>0).

Definition 7.3.3. We call an irreducible representation of G(F ) square integrable,
resp. essentially square integrable, resp. tempered, if its matrix coefficients lie in
L2(G(F )), resp. restrict to functions in L2(G(F )1), resp. lie in L2+ϵ(G(F )) for all
ϵ > 0.

Theorem 7.3.4. Let (σ,W ) be an irreducible representation of G(F ). Then W
is not isomorphic to any sub-representation of any properly parabolically induced
representation if and only if its matrix coefficients are compactly supported modulo
ZG(F ). When these conditions are satisfied we call (σ,W ) supercuspidal. In general,
there exists a parabolic subgroup P (possibly equal to G), a Levi component M , and
an admissible representation (π, V ) of M(F ) such that W is isomorphic to a sub-
representation of IndGP V .

7.4. Isobaric sum for general linear groups, local case. For G = GLn, every
Levi component of a parabolic subgroup is isomorphic to a product of GLni ’s. There
is an explicit classification, by Bernstein–Zelevinsky, of all irreducible representa-
tions of GLn(F ) in terms of irreducible supercuspidal representations of GLm(F )
(for m ≤ n) and parabolic induction.

For any smooth representation π of GLm(F ) and λ ∈ C, we write π(λ) for the
tensor product of π with the one-dimensional representation GLm(F ) → C×, g 7→
|det g|λF .
Theorem 7.4.1. Let a be a factor of n, and let σ be an irreducible supercuspidal
representation of GLn/a(F ). Consider the representation

σ(a) = σ(−a− 1

2
)⊗ σ(−a− 3

2
) · · · ⊗ σ(

a− 1

2
)

of
M =M(n/a,n/a,··· ,n/a) = GLn/a(F )× · · ·GLn/a(F )
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(with a copies). Let P = P(n/a,··· ,n/a) so P is a standard parabolic of GLn and M is

its standard Levi component. The representation IndGLn
P σ(a) has a unique irreducible

quotient Q(σ(a)). The representation Q(σ(a)) is essentially square integrable, and
every irreducible essentially square integrable representation of GLn(F ) arises in
this way, for a unique pair (a, σ).

Let ϖ ∈ F be a uniformizer and let q be the residue cardinality. For any irre-
ducible representation π of GLm(F ), Schur’s lemma applies and the center acts by
a character. In particular π(ϖIm) ∈ C×. Define λ(π) ∈ C such that

π(ϖIm) = q−mλ(π).

Let n = n1+ · · ·+nk and πi be an irreducible essentially square integrable represen-
tation of GLni(F ). Permute the indexing set to get a new partition n = m1+· · ·+mk

and representations σi of GLmi(F ) such that

ℜ(λ(σ1)) ≥ · · · ≥ ℜ(λ(σk)).

Theorem 7.4.2. The representation IndGLn
Pm

σ1 ⊗ · · · ⊗ σk has a unique irreducible

quotient. This irreducible representation depends only on the unordered k-tuple
((n1, π1), · · · (nk, πk)), not on the choice of permutation. Denote this representa-
tion by

π1 ⊞ · · ·⊞ πk,

called the isobaric sum of π1, · · · , πk. Every irreducible representation of GLn(F )
arises in this way, for a unique k and unique unordered k-tuple ((n1, π1), · · · (nk, πk)).

Remark 7.4.3. There is an archimedean analogue of the theorem. See [1, §10.7]

Definition 7.4.4. Let π = π1⊞ · · ·⊞πk be an irreducible representation of GLr(F ),
and σ = σ1 ⊞ · · · ⊞ σl be an irreducible representation of GLt(F ). Define the
irreducible representation

π ⊞ σ := π1 ⊞ · · ·⊞ πk ⊞ σ1 ⊞ · · ·⊞ σl

of GLr+t(F ).

Finally, isobaric sum is related to unramified representations as follows. Let
T = Gn

m be the diagonal torus, and B be the upper triangular Bore subgroup of
GLn. Recall that for an unramified character χ = χ1⊗· · ·⊗χn : T (F ) → C× (where
each χi : F× → F×/O×

F → C× is an unramified character), the representation

IndGB χ has a unique GLn(OF )-unramified irreducible subquotient. Moreover, every
GLn(OF )-unramified irreducible representation of GLn(F ) arises in this way.

Theorem 7.4.5. The unique GLn(OF )-unramified irreducible subquotient of IndGB χ
is isomorphic to χ1 ⊞ · · ·⊞ χn.
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7.5. Isobaric automorphic representations for general linear groups. Let
G be a reductive group over Q. Recall that a cuspidal automorphic representation
is an irreducible admissible (g,K∞) × G(Af )-module isomorphic to a subquotient
of Acusp(G). Also recall that the G(A)1-representation L2

cusp([G]) decomposes into
a Hilbert direct sum of irreducible closed sub-representations. For each closed ir-
reducible sub-representation V of L2

cusp([G]), we view it as a G(A)-representation
by G(A)1 ∼= G(A)/AG. Then the space of K-finite vectors Vfin is a cuspidal au-
tomorphic representation. We shall call either V or Vfin a cuspidal automorphic
representation of G(A)/AG.

We now discuss the case of G = GLn over Q. The discussion also applies to
ResF/QGLn for a number field F .

Let n = n1+· · ·+nk, and let πi be a cuspidal automorphic representation for GLni ,
for each i. Write πi =

⊗′
v πi,v. For almost all p, the representation π1,p ⊞ · · ·⊞ πk,p

is GLn(OF )-unramified. Thus we can form the (g,K∞)×G(Af )-module

π1 ⊞ · · ·⊞ πk :=
′⊗
v

π1,v ⊞ · · ·⊞ πk,v.

Theorem 7.5.1. The (g,K∞) × G(Af )-module π1 ⊞ · · · ⊞ πk is an automorphic
representation.

We call any automorphic representation of the above form isobaric. We define
the operation ⊞ among isobaric automorphic representations by

(π1 ⊞ · · ·⊞ πk)⊞ (σ1 ⊞ · · ·⊞ σl) := π1 ⊞ · · ·⊞ πk ⊞ σ1 ⊞ · · ·⊞ σl

for all πi, σj cuspidal.
The following theorem is the global analogue of Theorem 7.4.2.

Theorem 7.5.2 (Moeglin–Waldspurger). Every irreducible sub-representation of
L2([GLn]) (i.e. every discrete automorphic representation) is isomorphic to

⊞a
i=1σ(

a+ 1

2
− i)

for a unique pair (a, σ), where a is a factor of n, and σ is a cuspidal automorphic
representation of GLn/a(A)/AGLn/a

. Here we write

σ(λ) :=
′⊗
v

σv ⊗ | det(·)|λv

(suitably interpreted for v = ∞), and this is a cuspidal automorphic representation
for GLn/a.
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