THE STABLE TRACE FORMULA FOR SHIMURA VARIETIES

OF ABELIAN TYPE

MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

ABSTRACT. We express the Frobenius-Hecke traces on the compactly sup-
ported cohomology of a Shimura variety of abelian type in terms of elliptic
parts of stable Arthur—Selberg trace formulas for the endoscopic groups. This
confirms predictions of Langlands and Kottwitz at primes where the level is
hyperspecial.
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INTRODUCTION

0.1. The main results. Shimura varieties have provided a testing ground for many
conjectures in the Langlands Program, and have been indispensable in the (partial)
solutions of some of these conjectures. Motivated by the work of Eichler, Shimura,
Kuga, Sato, and Thara, Langlands formulated the problem of expressing the Hasse—
WEeil zeta function of a Shimura variety in terms of automorphic L-functions. This
question is itself a special case of Langlands’ conjecture that all motivic L-functions
are automorphic.

In a series of papers [Lan73| Lan76l Lan77, Lan79al Lan79b], Langlands devel-
oped the idea of systematically using trace formulas to attack this problem. In
his initial investigations, he encountered the phenomenon of L-indistinguishability,
which motivated the theory of endoscopy. Based on the latter, Langlands predicted
that one should be able to compare a Lefschetz-type trace formula for the Shimura
variety with trace formulas arising in the theory of automorphic representations
after stabilizing both types of the formulas. This prediction was formulated as a
precise conjecture in Kottwitz’s paper [Kot90].

The main result of the present paper is a verification of this conjecture for
Shimura varieties of abelian type: We prove an identity between a Grothendieck—
Lefschetz—Verdier trace formula on the Shimura variety and elliptic parts of stable
Arthur-Selberg trace formulas for the endoscopic groups.

To state our main result more precisely, we fix some notation. Let (G, X) be
a Shimura datum with reflex field F. Fix a prime ¢, and let £ be an algebraic
representation of G over Q. Let

HL(Sh, €) := lim . (Sh (G, X) 5, Z),
K

where K runs through all sufficiently small compact open subgroups of G(Ay), and
for each K we denote by Shx (G, X) the Shimura variety at level K, and by .%; the
automorphic f-adic sheaf attached to £. (We need a technical assumption on £ so
that Z¢ is well defined, but we omit this here. In the introduction the reader can
assume ¢ is trivial and % = @,.) Then H(Sh,¢) admits commuting actions by
Gal(E/E) and G(Ay).

Let p # £ be a prime, and let ® € Gal(E/FE) be a geometric Frobenius element
at a place p of E above p. Let f be an element of the Hecke algebra of G(Af). We
always assume that f is of the form 15, f?, where f? is in the Hecke algebra of G(A’})
and 1g, is the characteristic function of a hyperspecial subgroup K, C G(Qy).
(When f is fixed, this condition is satisfied for almost all primes p.) For m an
integer we define

T(m, f) = (=1)'r (f x @™ | HL(Sh,)).

K2

Note that if f is the characteristic function of some compact open subgroup K C
G(Ay) and € is trivial, then T'(m, f) is directly related to the Euler factor at p of
the Hasse—Weil zeta function of Shy (G, X), when p is sufficiently large.
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Theorem 1 (see Theorem [8.3.11). Assume that (G, X) is of abelian type. For all
sufficiently large m we have

(0.1.1) T(m, f) =Y u(&)STay,, (f),
4
where ¢ runs through the elliptic endoscopic data for G up to isomorphism, 1(¢) € Q

is a constant depending only on ¢, and STel;‘?XH1 is an elliptic stable distribution

associated with ¢ (defined on a z-extension Hy of the endoscopic group in ¢).

If the derived subgroup Gger of G is simply connected and the center Zg of G is
cuspidal (i.e., having equal Q-rank and R-rank), then ST, elﬁ,lx;fl is the elliptic part
of the stable trace formula for e. Without these assumptions, the definition involves
z-extensions and fixed central characters. The functions fH* will be explained after
we state Theorem [3]below. The requirement that m is sufficiently large is needed to
ensure that the local terms in the Grothendieck—Lefschetz—Verdier trace formula can
be calculated naively; this is a special case of Deligne’s conjecture, which has been
proved in general by Fujiwara [Fuj97] and Varshavsky [Var05]. For applications
this restriction turns out to be harmless. Note that by contrast, knowing
only for all sufficiently divisible m would be insufficient for most applications.

Kottwitz [Kot90, §3, §7] conjectured the equality in Theorem [I| for general
Shimura varieties, and proved it in the case of PEL type A or C in [Kot92bl §19]
and [Kot90, Thm. 7.2]. By results of Matsushima [Mat67] and Franke [Fra9g]|, the
G(Ay)-action on H(Sh,¢) can be understood in terms of automorphic representa-
tions of G. It is expected that the equality in Theorem [I] should lead to a descrip-
tion of Hi(Sh, £), or a variant when the Shimura varieties are non-compact, as a
Gal(E/E) x G(Ay)-module. This description should involve the global Langlands
correspondence between automorphic representations and Galois representations,
as well as Arthur’s conjectures on automorphic multiplicities. This would lead to
an expression of the Hasse—Weil zeta function in terms of automorphic L-functions.
See [Kot90, Part II] for an explanation of this circle of ideas. In the non-compact
case one expects that replacing HY(Sh, £) by the intersection cohomology of the
Baily—-Borel compactification will lead to a description similar to the compact case.
We do not prove this variant of Theorem [I] for intersection cohomology in the
present paper, but Theorem [I]and the point counting formula in Theorem [2| below
are expected to play a crucial role in the proof of such a result; see for instance
[Mor10, Morl11l, [Zhul§].

The proof of Theorem [I| consists of two steps. The first step is to prove a “point
counting formula”, expressing T'(m, f) in terms of orbital integrals and twisted
orbital integrals on G in a way resembling the geometric side of the Arthur—Selberg
trace formula. The second step is stabilization, which relates the (twisted) orbital
integrals on G with the terms constituting STeﬁ,lel (fHY).

When Ggye, is simply connected and Zg is cuspidal, the point counting formula
was already conjectured by Kottwitz [Kot90, §3]. Let ¢ = p” be the cardinality of
the residue field of p. For m sufficiently large, the conjecture states that

(0.1.2) T(m,f) =

C1 ('YOa Vs 6)02 (’YO)OW(fp)Toﬁ(@nr)tr 5(70)-

(70,7,0) ERB 1o (™) /~,
a(y0,7,6)=0
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Here A9, (¢™) consists of triples (yo,7,9d) € G(Q) x G(A’}) x G(Qgm) such that
vo is R-elliptic, stably conjugate to v, and stably conjugate to the degree ms norm
of §. There is also a technical assumption on ¢ which we omit here. (The notation
AP, stands for “classical Kottwitz parameters”) The equivalence relation ~ is
given by stable conjugacy on the first factor, conjugacy on the second factor, and
o-conjugacy on the third factor. Kottwitz defines a Galois cohomological invariant
a(70,7,6) for each (v9,7,0) € BB, (¢™), and in the summation is subject
to the condition a(vp,7,0) = 0. In each summand, we have an orbital integral
O,(f?) on G(A%), a twisted orbital integral TOs(¢m,) on G(Qgm) (where ¢y, is
an explicit function on G(Qgm)), the character tr¢ of £ evaluated at g, a volume
term ¢1(Y0,7,9), and a term ca(7o) defined via Galois cohomology.

In the conjectural formula , the assumption that Gge, is simply connected
is quite serious. Without it, Kottwitz’s construction of the invariant «(yo,~,d) for
(70,7, 9) € BPB1.(¢™) no longer works, and also the volume term ¢ (7,7, d) is not
well defined. These problems are caused by the possible disconnectedness of G,
for a semi-simple 79 € G(Q). In the following theorem, the point counting formula
we prove is a generalization of without any assumptions on Gge, and Zg.

Theorem 2 (see Theorem [6.3.6)). If (G, X) is of abelian type, then for all suffi-

ciently large m we have

(0.1.3) T(m,f)
=3 Y (G /G e1(€)e2(10)Oc(FP)TO(Gumr ) tr E(0),

Y0EX c€RP (70,9™)
a(c)=0

where the terms c1(c), c2(70), Oc(fP), TO(dmr) are defined analogously as the terms

The most significant new feature of (0.1.3) is that the summation index set
AP (¢"™)/~ in (0.1.2)) has been replaced by a more refined set

IT &8¢0, 4™

YoEX

which admits a map to the former. Here ¥ is a certain subset of the set of R-
elliptic elements of G(Q), and for each vy € ¥ the definition of &P(70,q™) is
Galois cohomological in nature. (We also allow Zg to be non-cuspidal, in which
case Y. depends on the choice of a compact open subgroup K? C G(A]JZ) such that
fP is KP-bi-invariant.) For each ¢ € RB(y0,¢™), we define an invariant «(c) lying
in an abelian group that depends only on Ggo and G. This definition specializes
to Kottwitz’s invariant a(vg,7,d) when Gge is simply connected. In the
condition a(c) = 0 is imposed, similarly as in (0.1.2).

Once Theorem [2] is proved, in order to prove Theorem [I] we need to stabilize
the right hand side of . We prove this stabilization in general as in the next
theorem, without assuming that (G, X) is of abelian type.

Theorem 3 (see Theorem [8.3.10). The right hand side of is equal to
Y U)STa,, (F1).

4
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Theorem [I]is immediate from Theorems[2]and[3] The proof of Theorem [3]follows
the outline of [Kot90, §7]. Namely, after applying a Fourier transform on the finite
abelian group of which «(c) is a character, we can turn the right hand side of
into the sum of x-orbital integrals (twisted at p) over adelic conjugacy classes. To
rewrite the sum in terms of stable distributions on endoscopic groups, the key input
is the transfer of orbital integrals via the Kottwitz—Langlands—Shelstad transfer and
the fundamental lemma. More precisely, fH1 away from {p, co} is obtained from f?
via the usual untwisted transfer, whereas f* at p is a twisted transfer of ¢, and
fHr at oo is constructed explicitly as a finite linear combination of certain stably
cuspidal functions.

We carry out the stabilization without the simplifying hypotheses in [Kot90, §7]
that Gger is simply connected and that Zg is cuspidal, by working systematically
with z-extensions and fixed central characters. Here a useful fact is that once a
z-extension G of G is fixed, it induces z-extensions H; of endoscopic groups H for
G. To transfer functions with fixed central characters (thus the functions are not
compactly supported in general), the main point is that the transfer factors enjoy
an equivariance property with respect to the translation by central elements. It is
also worth mentioning the improvement that, unlike [Kot90, Thm. 7.2], Theorem
has no (G, H)-regularity condition imposed in the stable distributions. The reason
is that there is no contribution coming from the non-(G, H)-regular semisimple

terms, as shown by Morel (§8.2.5|and Lemma below).

0.2. Applications. Theorem [} or its proof (Theorem , has already been used
to obtain the following results.

e With Kret, one of us (Shin) has constructed the automorphic to Galois di-
rection of the Langlands correspondence for GSp,,, and (a form of) GSOa,,
over totally real fields, under a technical local hypothesis [KS16], [KS20].
This involves constructing Galois representations into GSpin groups, cf.
[FC90l p. 268].

e One of us (Zhu) has given a description of the Hasse-Weil zeta func-
tion and the Hecke—Galois action on the intersection cohomology of the
Baily—Borel compactification of Shimura varieties for some global forms of
SO(N, 2) in terms of automorphic representations [Zhul8]. This completes
the Langlands—Kottwitz program for these varieties at almost all primes.

e Youcis [You] has extended Scholze’s version [Schl3|] of the Langlands—
Kottwitz method for Shimura varieties with bad reduction from the case
of PEL type to the case of abelian type.

o Mack-Crane [MC2I] has obtained a trace formula for Igusa varieties of
Hodge type which is analogous to Theorem [2] in the case of Hodge type.
This generalizes [Shi09]. A generalization to the case of abelian type, as
well as a stabilization analogous to Theorem (1] is expected, cf. [Shil0].)

We stress that the Shimura data appearing in concrete applications, as in the
first two items, are typically of abelian type but not of Hodge type. The same is
true with the three applications below. As we will explain in §0.3 below, the proof
of Theorem [I] in the case of Hodge type is substantially easier, but this does not
suffice for many applications.
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In general, Theoremis the key to determining the fundamental virtual G(A ) x
Gal(E/E)-module [H,(Sh,£)] := 3, (—1)" H.(Sh, &) in terms of automorphic rep-
resentations. A notable corollary is then to express the Hasse—Weil zeta function
of Shi as an alternating product of automorphic L-functions for sufficiently small
compact open subgroups K C G(Ay), possibly up to Euler factors at finitely many
primes. We intend to work out the details in a sequel and obtain unconditional
results in various special cases, which will provide important ingredients for some

remarkable arithmetic results:

e The Beilinson—Bloch—Kato conjecture for Rankin—Selberg motives using
Shimura varieties of unitary groups [LTX™19],

e Higher dimensional Gross—Zagier formula (i.e., arithmetic inner product
formula) using Shimura varieties of unitary groups [LL20].

e Euler systems arising from Shimura varieties of SO(2n — 1,2) [Corl8].

Related to the applications in [LTX™" 19} [LL20], it is worth pointing out that when
one passes between a Shimura datum of abelian type and an “isogenous” Shimura
datum of Hodge type, the reflex field is often not preserved. Thus even if one is just
interested in constructing representations of Gal(E/E) using the cohomology of a
Shimura variety of a unitary group with reflex field £ (which is of abelian type but
not of Hodge type), one cannot pass to a Shimura variety of Hodge type without
having to enlarge E in general.

To understand the structure of [H.(Sh,&)] in the general case of abelian type,
there are two main obstacles to proving an unconditional theorem. Let us briefly
address them, leaving the details to §9.2) below.

When G is anisotropic modulo center over @, or equivalently when the finite-level
Shimura varieties Shx (G, X) are projective, the first problem is to show that

ST, (1) = ST (£11)
in the summand of Theorem [3] namely that the non-elliptic terms in the stable
distribution cancel each other out. The resolution of this problem is within reach
at least in various special cases that are of interest for applications, and this will
be treated in the sequel. The second problem is that the endoscopic classification
for automorphic representations is not available for general reductive groups.

If G is isotropic modulo center, the second problem remains the same. In place
of the first problem, however, it is desirable to promote Theorem [I| by proving

an equality where the compactly supported cohomology and STS{}XHl are replaced

with the intersection cohomology of the Baily—Borel compactification and ST )fIHll,
respectively. As mentioned above, such an upgrade is obtained for SO(N,2) in
[Zhulg]. Some results were previously known for Shimura varieties of PEL type A
and C [LR92, Mor08, Mor10, Mor1i].

Another application of our work would be the analogues of Theorems [T and [2| for
Shimura varieties of parahoric level at p, in light of recent advances on the Haines—
Kottwitz test function conjecture [HR21, [HR20] and the Langlands—Rapoport con-
jecture in the parahoric case [Zho20| van20]. The latter takes as an input the hy-
perspecial case through the earlier work [Kis17]; a strengthening should be possible
by appealing to our improvement (Theorem [5)) instead.

0.3. Variants of the Langlands—Rapoport Conjecture. We now discuss the
proof of Theorem To simplify the exposition we assume that & is trivial (so



8 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

that % = Q,), and that fP = 1 for a sufficiently small compact open subgroup
KP C G(A’}). We continue to assume that K, is hyperspecial. If Shg k» is proper
over E/, then one expects that there exists a proper smooth integral model, Sk, i,
of Shx, kr over (’)E7(p). In this case we have

(0.3.1) T(m, f) = #S K, kv (Fgm).

If Shg, k» is not proper, one still conjectures that there exists a canonical smooth
integral model .“f k» satisfying (among other conditions). Hence in all
cases we seek for a formula for #.7k k»(Fgm), thus the name “point counting
formula”.

For Shimura varieties of Hodge type, it is possible to establish a point counting
formula by generalizing the considerations of Kottwitz [Kot92b] in the PEL-type
setting, with the aid of the results from [KisI7]. In this approach one attaches
group-theoretic invariants to isogeny classes over a fixed finite field F,m; see [Leel§].
It does not seem to be possible to deduce Theorem [2] for general Shimura varieties
of abelian type from such results in the case of Hodge type. In the current paper,
we take the point of view of Langlands-Rapoport [LR87], which relates F,-isogeny
classes and certain Galois gerbs. Although the statements we prove in the case
of Hodge type require more effort, they have the merit that one can then infer
similar statements in the case of abelian type, and hence deduce the point counting
formula.

Write Sk, for l&n v Kk, k». The Langlands-Rapoport Conjecture states that

there is a G(A%}) x Gal(F,/F,)-equivariant bijection

S, ([Fg) = [ [ lim 14 (Q\X (¢)/ KP.

o K¥

Here ¢ runs through conjugacy classes of admissible morphisms from a pro-(Galois
gerb) Q over Q, called the quasi-motivic gerb, to the neutral gerb associated with
G. For each admissible morphism ¢, we have a reductive group I, over Q, and a
set X (¢) equipped with commuting actions by Is(A), Gal(F,/F,), and G(AY).

Currently, the Langlands—Rapoport Conjecture is open even for the Siegel mod-
ular varieties. (For some quaternionic Shimura varieties the conjecture has been
proved by Reimann [Rei97].) In [Kis17], a weaker version of the conjecture is proved
for the canonical integral models of Shimura varieties of abelian type, which are
constructed in [Kis10] for p > 2 and in [KMP16] for p = 2, and are shown to satisfy
in [LS18]. (The assumption that p > 2 in [Kisl7] can be dropped; see the
proof of Theorem ) In this weaker version, the set

lim 15 (@)\X (¢)/ K*

is replaced by
lim 15(Q)-(p)\ X (0)/ K7,

KpP

where 7(¢) is an unspecified element of Igd(Af), and I4(Q)r(4) is the image of
I4(Q) under

Int(7(4))
I15(Q) = Iy(Ap) ——— Is(Ay).
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It turns out that in order to deduce from such a weaker statement, one must
have better control of the elements 7(¢). We formulate the desiderata in what we
call the “Langlands—Rapoport—r Conjecture”.

We introduce some definitions in order to state the conjecture. For each admis-
sible morphism ¢, we have the algebraic part ¢* of ¢, which is a Q-homomorphism
from a pro-torus Q2 to Gg. The double quotient set

H(9) = Ls(Ap)\I (Ag) / 134(Q)

is an abelian group, and up to canonical isomorphism it depends only on the G(Q)-
conjugacy class of . For each maximal torus 7" in I, write H(¢)r for the cokernel
of the localization map

ker (HY(Q,T) —» H'(R,T) @ H},,(Q,G)) — H'(Af,T).
There is a natural homomorphism

H(p) — H(P)T,
see Definition 2.6.19]

Conjecture 1 (“Langlands—Rapoport—7"; see Conjecture [2.7.3). There is a bijec-
tion
P60 Fg) = []n 1@\ X (9)/ K7,
¢ p
which is G(A%) x Gal(F,/F,)-equivariant, with respect to elements 7(¢) € I39(Ay)
satisfying the following conditions.
(i) The image of T(¢) in H(®) depends only on the G(Q)-conjugacy class of
o=,
(it) For each maximal torus T in Iy, the image of T(¢) in H(P) lies in the
kernel of H(¢) — H(P)r-

Note that the original Langlands-Rapoport Conjecture implies Conjecture [I] as
we can take all 7(¢) to be 1. Also Conjecture [I| is stronger than the version of
Langlands—Rapoport proved in [Kisl7], as two non-trivial conditions on 7(¢) are
imposed.

Theorem 4 (see Theorem 2.7.4). Conjecture 1] implies (0.1.5).

The proof of Theorem [4] is group theoretic in nature (and works without the
abelian type assumption). Some of the key ingredients come from [Kot84a] and
[LR87, §5]. If one assumes the original Langlands—Rapoport Conjecture, that
Gger is simply connected, and that every admissible morphism factors through
the pseudo-motivic gerb, then the proof of is essentially given in loc. cit.,
as explained in [Mil92]. However, our proof of Theorem [4] does not logically follow
from [LR&7] or [Mil92], as we have the following new features:

e We need to show that the possibly non-trivial elements 7(¢) do not affect
the desired “point counting” on [, Hm I4(Q) ;)\ X (¢)/KP, as long as
they satisfy the two conditions in Conjecture

e We use the corrected construction of the quasi-motivic gerb £ given by
Reimann [Rei97], and do not assume that Gge, is simply connected. As a
result several definitions and arguments in [LR8T7, §5] need to be modified.
(In the general case of abelian type, it is not enough to work with the

pseudo-motivic gerb as is done in [Mil92].)
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e We need to work with the more refined set ]_[V0 ex AP (70, ¢™) as opposed
to BB 1a(¢™)/~, for the reasons explained below Theorem
The logical relations between the various conjectures are depicted in the following
diagram. All the implications are valid without the abelian type assumption.

‘weak LR Conj. as in [Kis1T] ‘

[LR Conj. | =——|LR-7 Conj. (Con;.[I)|

Thm. @
‘point counting formula (0.1.3) ‘
Thm. 3]

‘ stable trace formula ‘

Theorem 5 (see Theorem [6.3.5)). If (G, X) is of abelian type, then Conjecture
holds with respect to the canonical integral models.

Theorem Pl follows from Theorems [ and Bl In the rest of the introduction we
discuss the proof of Theorem

0.4. The conjecture in the case of Hodge type. Questions about Shimura vari-
eties of abelian type can often be reduced to the same questions for Shimura varieties
of Hodge type, plus some additional information on connected components. For in-
stance, this is what is done in [Kis17] for the weak form of the Langlands—Rapoport
conjecture. In Conjecture [T we have imposed the minimal set of conditions that
allow one to deduce the point counting formula from the conjecture (see
Theorem , regardless of the type of the Shimura datum. However, one may
strengthen the conjecture by requiring certain compatibility conditions with con-
nected components. It is this stronger version of Conjecture [I| which we prove in
the case of Hodge type. We then use this to prove Conjecture [I] in the general case
of abelian type.

We now discuss some key ideas in the proof of Conjecturefor a (G, X) of Hodge
type, and indicate the kind of strengthening we obtain. We postpone to the
explanation of how our results in the case of Hodge type imply Conjecture [1]in the
general case of abelian type.

By the theory of integral models in [Kis10], after fixing a suitable embedding of
(G, X) into a Siegel Shimura datum, for each 2 € Sk, (F;) we obtain an abelian
variety A, (up to prime-to-p isogeny) over the residue field of z, together with
tensors over the A?—Tate module and over the (integral) Dieudonné module of A,.
Recall that these tensors arise by specializing Hodge cycles on abelian varieties
over points in the generic fiber of .#f . The set .k, (Fq) is partitioned into isogeny
classes, where two points z,z’ are called isogenous if there exists a quasi-isogeny
Az — Ay preserving the tensors.

Let G be the reductive group scheme over Z, corresponding to K,. For z €
YKP (?q), the relative Frobenius on the A’;-Tate module and the absolute Frobenius
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on the Dieudonné module of A, give rise to an element of
G~ = <h£ G(A’})) x {G(Zy")-0-conjugacy classes in G(Q}")},

where the direct limit is over positive integers n ordered by divisibility and with
respect to the transition maps v — ’y”,/" for n|n’.

As we have already indicated, in the current case of Hodge type, we would like to
keep track of some information about connected components. For technical reasons
we work with a set 7*(G, X) that is equipped with a map from (but is not equal
to) the set of connected components of prﬁq' We then have a natural map

YKP(Fq) — G~ x 1" (G, X).
Analogously, for each admissible morphism ¢, we have a natural map
X(¢p) — G~ x 7" (G, X).

Definition 1. By an amicable pair, we mean a pair (¢, .#) consisting of an admis-
sible morphism ¢ and an isogeny class .# C .k, (IF,) such that the images of X (¢)
and .# in G~ x (G, X) have non-empty intersection.

Proposition 1 (see Theorem . Let T be the set of isogeny classes, and let
J be the set of admissible morphisms up to conjugacyﬂ There exists a bijection
P ] = 1 such that for each ¢ € J the pair (¢, B($)) is amicable, and such that
B is equivariant with respect to Galois cohomological twistings.

We explain the last requirement on . The Galois cohomological twisting on
I is defined by twisting a Q-isogeny class of abelian varieties (with the additional
tensors) in its Q-isogeny class, and the Galois cohomological twisting on J is defined
by replacing an admissible morphism ¢ with another admissible morphism ¢’ such
that ¢® = ¢"». For an arbitrary amicable pair (¢, .#), the set of Galois cohomology
classes that can be used to twist ¢ is canonically identified with the corresponding
set for . Since (¢, B(¢)) is required to be amicable, it makes sense to require
that £ is equivariant with respect to the two twisting operations.

We now explain the proof of Proposition [Ij We make use of the following dia-
gram:

(0.4.1) {special point data}
!

!
Y
{amicable pairs}

L T,

Here a special point datum refers to a triple (T4, h), where (T, h) is a Shimura
datum on a torus, and ¢ is an embedding of Shimura data (T,h) — (G, X) such
that 4(T) is a maximal torus in G. Given (7)1, h), we obtain a special point Z(r ; 5)
in the generic fiber of ., which specializes to a point z(r; ») € Sk, (Fp). Define
SF(T,i,h) to be the isogeny class of x(r ;). Similarly, (T,4,h) gives rise to an

n the rest of the introduction we shall deliberately conflate an admissible morphism with its
conjugacy class to simplify the exposition.
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admissible morphism ¢(7T,i,h). We thus have maps from the set of special point
data to I and J. The following proposition asserts that we can fill in the dashed
arrow in the above diagram.

Proposition 2 (see Corollary [5.11.9)). Let (T,i,h) be a special point datum. Then
the pair (¢(T,i,h), I (T,i,h)) is amicable.

The key arithmetic input to the proof of Proposition [2| is the construction of
certain integral special points and the computation of their images in G~ x7*(G, X).
We first sketch the construction. Attached to the special point Z(r; ) we have a

CM abelian variety A defined over some number field, together with a canonical
G-representation on the dual p-adic Tate module

A :=T,(A)".

Let 7° be the connected Néron model of Ty, over Z,. Then Ty, acts on A[l/p]
via i : Tp, — Gq,, and we fix a T°-stable Zy-lattice A’ in A[1/p]. The lattice
A’ corresponds to a Q,-isogeny ¢ : A — A’ between CM abelian varieties. We can
choose a finite extension F'/Q, such that both A and A’ are defined over F and have
good reduction, and such that ¢ is also defined over F'. Let M and M’ be the base
changes to Zy" of the contravariant Dieudonné modules of the reductions of A and

A , respectively. The reduction of ¢ induces a Frobenius-equivariant isomorphism
o M'[1/p] — M[1/p).

Using some integral p-adic Hodge theory to be discussed in §0.5] below, we con-
struct a Z'-linear isomorphism

(0.4.2) n: M = N ®g, 7,

which is canonical up to automorphisms of the right hand side induced by elements
of T°(Zy"). Let M" be the image of the composite map

-1 *
A @z, Ty — Az, QF = A @z, Q) T— M'[1/p] > M[1/p].

Then M" is a Zj -lattice in M[1/p]. Moreover, we have a Gzu-representation on
M (canonical up to G(Z2")-conjugation), and M"” C M|[1/p] is a translate of M by
an element g € G(Q}").

We would like to define a point of #(T,4,h) corresponding to M”, but this is
not possible in general, as g € G(Q,") may not satisfy the defining condition of an
affine Deligne-Lusztig set, so that g - M may not be the Dieudonné module of an
abelian variety. To remedy this, for each isogeny class .# we introduce a canonical
enlargement .#* O .#, and extend the map .4 — G~ x 7*(G, X) to #*. In the
current situation, every G(Qp')-translate of M defines an element of .#(T,4,h)*,
and in particular we view M" as an element of .# (T, i, h)*, called an integral special
point.

We then need to compute the image of M" € #(T,i,h)* in G~ x7*(G, X). This
is based on the following result, whose proof will be discussed in below.

Proposition 3. Write I'y, o for the inertia subgroup of Gal(@p/(@p). Then we have

2By contrast, since A’ is not required to be a G(Qp)-translate of A, there is no reason to expect
that the image of M’ under :* is a G(Qp")-translate of M.
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(i) The Frobenius on M'[1/p] corresponds via n to do, with § € T(Q,") C
GL(A ®z, QpF) such that the image of 6 in X«(T)r, , under the Kottwitz
homomorphism is equal to the natural image of up, the Hodge cocharacter
of h:S — Tk.

(i) M" is a Gaer(Qp¥)-translate of M inside M[1/p].

Using part (i) of the proposition and the Shimura—Taniyama reciprocity law, we
obtain an explicit description of the image of M in G™~. Using part (ii), we prove
that the image of M" in 7*(G, X) is equal to that of x(p; ) € S (T4, h).

For Galois gerbs there is parallel construction of integral special points. By
comparing the images of integral special points in G~ x7* (G, X) in the two contexts,
we obtain Proposition

Given Proposition [2] Proposition [1} is proved in two stages. In the first stage,
we construct subsets J' C J and I’ C I and a bijection & : J' =5 I’ such that for
each ¢ € J' there exists a special point datum which induces both ¢ and %(¢). By
Proposition [2| we know that (¢, Z(¢)) is amicable for such ¢. In the second stage,
we use Galois cohomological twisting on both sides to extend Z to a bijection
J = 1. For this, we need to show that if (¢,.#) is an amicable pair then, after we
twist ¢ and . by a common Galois cohomology class, we again obtain an amicable
pair. To show this we again utilize integral special points. More precisely, we use
the fact that for each amicable pair (¢, .#) and each maximal torus T C Iy, there
exist two special point data of the form (T4, h) and (7,4, h) such that

(0.4.3) = 7(T,i,h) and ¢ =¢(T,i',h).

(Here the second equality is up to conjugacy.) This fact follows from the special
point lifting theorem in [Kis17] and a similar result for Galois gerbs, and it allows
us to understand arbitrary Galois cohomological twistings by studying the twisting
of integral special points.

Note that Proposition |1| does not yet give a bijection J = I compatible with
the diagram . It remains an interesting open problem to show the existence
of such a compatible bijection (which is necessarily unique). We expect that the
solution would lead to better understanding of the Langlands—Rapoport Conjecture.

Having shown Proposition [I, we proceed to prove Conjecture [1| in the case of
Hodge type as follows: Fix a bijection % as in Proposition For each ¢ € J,
using that (¢, B(¢)) is amicable, we can find an element 7(¢) € Igd(Af) and a

G(A%) x Gal(F,/Fy)-equivariant bijection

fo: B(6) <> im [,(Q)r(s)\ X (¢)/K”
Kp

which commutes with the natural maps from the two sides to G~ x 7*(G, X). We
also require that the map X(¢) — Z(¢) induced by Iy ! satisfies some natural
equivariance conditions. Here neither 7(¢) nor f, is unique, but essentially our
requirements on f, restrict the ambiguity of 7(¢) such that the image of 7(¢) in
H(¢) depends only on the pair (¢, Z(¢)) and thus only on ¢ if we keep A fixed.
We then need to show that these canonical elements of H(¢) for all ¢ satisfy the
two conditions in Conjecture

Condition (i) follows from the fact that 2 is compatible with Galois cohomo-
logical twistings. It is proved as a byproduct of the second stage of the proof of
Proposition [2}
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Condition (ii) follows from the fact that (¢, B(¢)) is amicable for all ¢, and
that for each amicable pair (¢,.#) and each maximal torus T in Iy we can arrange
10.4.3).

We now discuss the strengthening of Conjecture [1] that we obtain in the case of
Hodge type. We have already mentioned that the requirements on fy restrict the
ambiguity of 7(¢) € I gd (Ay) such that it has a well-defined image in H(¢). In fact

we can do better. Let Zi be the intersection of the center of Iy with Gger, which
is a Q-subgroup of I,. We define $(¢) to be the quotient of

coker(ker(Hl(@,Z;) — H'(R, Z)) ® H},(Q,Gar)) — Hl(Af,Z;)>

by the image of a certain map G**(Z,) — Hl(Af7 Z;r)); see Using especially
the fact that fy is compatible with the maps to 7*(G, X), we know that the image
of 7(¢) in H(¢) is also well defined, i.e., it depends only on the pair (¢, Z(¢)). We
prove a strengthened version of condition (i) in Conjecture where H(¢) is replaced
by $(¢) ® H(¢). Similarly, for each maximal torus 7" in I, writing 7' := T N Gger
we define $(¢)7 to be the quotient of

coker(ker(Hl(@,TT) - H'R,T") ® H.,(Q,Gaer)) — Hl(Af,TT)>

by the image of a certain map G**(Z,) — H' (Ay,TT); see In analogy
with the natural map H(¢) — H(¢)r we have a natural map H(¢) — H(¢)r. We
prove a strengthened version of condition (ii) in Conjecture [1| where the kernel of
H(p) — H(¢p)r is replaced by the kernel of H(¢) ® H(p) — H(P)r ® H(P)r.

0.5. Integral p-adic Hodge theory. We now explain the ingredients from p-adic
Hodge theory that go into the construction and study of the integral special points
in

Let P be a parahoric group scheme over Z,. Write RepP for the category of
P-representations on finite free Z,-modules. Let F//Q, be a finite extension with
residue field k. Write W = W(k) and Fy = W(k)[1/p]. Consider a crystalline
representation p : Gal(F/F) — P(Z,). Then for each A € RepP, we can view A
as a Gal(F/F)-stable lattice in the crystalline representation A[1/p]. Using the
functor M in [Kis06] we obtain from A a pair

(Mcris (A) ) 90) ’

where Meris(A) := IM(A) Qg W is a finite free W-module and ¢ is a o-linear
automorphism of Me.is(A)[1/p], called the Frobenius. This yields a ®-functor T,
from RepP to the category of pairs as above. Using a purity result proved recently
by Anschiitz [AnslS]H we show that the ®-functor A — Mis(A) (where we forget
the Frobenius) is isomorphic to A — A ®z, W. We denote by Y (T,)° the P(W)-
torsor of isomorphisms between the two ®-functors.

Remark 1. For our purposes it is important to know that the formation of Me,is(A)
for a crystalline Gal(F'/F)-lattice A is compatible with replacing F' by an arbitrary
finite extension of F. This has been proved by T. Liu [Liul8].

3The special cases for connected reductive group schemes and parahoric group schemes with
tamely ramified generic fibers were previously shown in [Kis10| and [KP18] respectively.
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If we fix an element of Y'(Y,)°, then the Frobenius structure on Y, is given by
an element § € P(Fp). We prove the following result about 4.

Proposition 4 (see Proposition [4.4.7). The image of § under the Kottwitz homo-
morphism P(Qp") — m1(Pg,)r,, is equal to the image of the Hodge-Tate cochar-
acter for p.

p,0

Before discussing the proof of Proposition[d] we explain how the above local the-
ory is applied in the global situation of namely for the construction of
and the proof of Proposition |3} We use the notation as in the paragraph preceding
. Up to enlarging F', the natural action of Gal(F/F) on A’ is induced by
a crystalline representation pr : Gal(F/F) — T°(Z,). We apply the local theory
to pr and the group scheme 7°. On choosing an element of the 7°(W)-torsor
Y (Y,.)°, we obtain an isomorphism Mcis(A’) = A’ @z, W. On the other hand,
we have a canonical integral comparison isomorphism Meis(A") @w Z* = M. See
§5.2.2] for references. We define 7 to be the composition of the two isomorphisms.
Now part (i) of Propositionfollows from Proposition For part (ii) of Proposition
we use that the Gal(F'/F)-action on A is induced by a crystalline representation
p: Gal(F/F) — G(Z,), and apply the local theory to p and the group scheme G.
There is no direct map between the 7°(W)-torsor Y (Y ,,.)° and the G(W)-torsor
Y (T,)° since there is (in general) no Z,-homomorphism 7° — G. Nevertheless, we
have natural Z,-homomorphisms G — G# and 7° — G, and p and pr induce
the same crystalline representation p* : Gal(F/F) — G*(Z,). We can apply the
local theory for the third time, to p®® and the group scheme G**. Comparing each
of Y/(Y,)° and Y (Y,,)° with the G*(W)-torsor Y (Y ), we obtain part (ii). See
Proposition and Remark for details of this argument.

We now explain the proof of Proposition 4] As usual we write Op as W[u]/E,
where E is an Eisenstein polynomial in Wu]. Write & for W[u]. We construct a
homomorphism

(0.5.1) P(Frac6) — m (P)Gal(@p/Ko),

which can be viewed as an F-adic variant of the Kottwitz homomorphism. The
proof of Proposition [4 has the following two steps.

(i) We show that § comes from an element dg € P(S[1/E]) under the spe-
cialization v — 0, and that the image of dg under is equal to the
image of the Hodge—Tate cocharacter for p.

(ii) We show that if an element g € P(S[1/E]) C P(FracS) specializes to
go € P(Kp) under u +— 0, then the image of g under is equal to the
image of go under the p-adic (i.e., classical) Kottwitz homomorphism.

In step (i), we use properties of the functor 9 in [Kis06]. In both steps we make use

of the following result about “Kottwitz homomorphisms in families”, which may be
of independent interest.

Proposition 5 (see . Let F be a field of characteristic 0, R an F-algebra,
and v a discrete valuation on R. Then for each reductive group P over F there is
a natural map

K% : P(R) — 771(P)Gal(f/F),
generalizing the Kottwitz homomorphism, which is given by v : R* — Z when
P = G,,. Moreover we have
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(i) Suppose that Spec R has trivial Picard group. For discrete valuations
V1, ,U, on R and integers ay,--- ,a, such that Zi a,v; vanishes on
R*, we have

> an(P(R)) =0

for all reductive groups P over F.

(i) Suppose that R = F, and let v be a discrete valuation on F with valuation
ring Op. For any reductive group P over F and any smooth affine group
scheme P over Op with connected fibers extending P, we have

K5 (P(Or)) = 0.

0.6. From Hodge type to abelian type. We now explain how our proof of
Conjecture [I] in the case of Hodge type, together with the strengthening discussed
at the end of implies the conjecture in the case of abelian type. For this we
follow the reduction method in [Kis17], which takes as input a construction of the
elements 7(¢) in the case of Hodge type, and outputs a construction of them in the
case of abelian type. Thus we only need to transport the properties of 7(¢) proved
in the case of Hodge type to the case of abelian type. Specifically, for a Shimura
datum (Ga, X3) of abelian type that is of interest, we pick an auxiliary Shimura
datum (G, X) of Hodge type satisfying some standard compatibility conditions with
(G2, X5). We show that the strengthened version of Conjecture |1, which we have
proved for (G, X), implies the original Conjecture [l for (G2, X2), provided that
(G, X) satisfies the following technical hypothesis:

e The Gal(Q/Q)-module X,(G?P) is generated by the image of a Hodge
cocharacter.

That for any (G2, X2) we can indeed find such (G, X)) follows from a construction
of Deligne.

For a fixed (G2, X5), the auxiliary (G, X) that we find does not, in general, have
connected center, which violates an assumption in the reduction method in [KisI7).
For this reason, we need a generalization of [KisI7, Lem. 1.2.18] from reductive
group schemes to (certain) parahoric group schemes; see Corollary The
proof again uses the local theory exposed in as well as Proposition

Organization of the paper. In after some group theoretic preparation, we
state the conjectural point counting formula as in (0.1.3)) for a general Shimura
datum (with hyperspecial level at p; see Conjecture Of note is in which
we generalize the Kottwitz homomorphism to families, as discussed in Proposition
above.

In we first recall the formalism of Galois gerbs and the Langlands—Rapoport
Conjecture, and then state the Langlands—Rapoport—7 Conjecture (see Conjecture
. For the formulation of the conjecture we need a general twisting construction
for admissible morphisms. We study this in §2.6]

In §3] we show that the Langlands—-Rapoport—r Conjecture implies the desired
point counting formula. The key step is the assignment of a Kottwitz parameter
(i.e., a summation index in the point counting formula) to a gg LR pair (an object
within the realm of Galois gerbs and the Langlands—Rapoport Conjecture). We
study this construction in in the presence of general twisting elements 7(¢).
In §3.6, we study the special case when the elements 7(¢) are controlled as in
the Langlands—Rapoport—r Conjecture. Roughly speaking, we show that the set
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of Kottwitz parameters that can arise from this construction is unaffected by the
presence of these twisting elements.

In §4] we develop the input from integral p-adic Hodge theory. We define integral
F-isocrystals with G-structure in §4.2] and attach them to G-valued crystalline
representations in (for G a Z,-group scheme satisfying “property KL”). Most
of the content of this section is of a local nature, with the exception of the later
parts of §1.3] where global abelian Galois representations related to the Shimura—
Taniyama reciprocity law are considered.

In §5] and §6] we prove the Langlands—Rapoport—7 Conjecture for Shimura va-
rieties of abelian type. In and we prove intermediate results for
Shimura varieties of Hodge type. These results constitute the strengthened ver-
sion of Langlands—Rapoport—r mentioned above. As we have already explained,
the crucial innovations needed for proving these results are the construction and
study of integral special points. These are carried out in and in the
geometric context and the Galois gerb context respectively. In we combine
the results proved in the case of Hodge type with the reduction method in [Kis17]
and a construction of Deligne to prove the Langlands—Rapoport—r Conjecture in
the case of abelian type.

We devote §§7Hg| to stabilization. In §7] we have preparatory discussions on
central character data in §7.1} endoscopic data and z-extensions in Galois
cohomology invariants in §7.3] and the Langlands—Shelstad—Kottwitz transfer in
§7-4 By implementing central characters and z-extensions, we make it unnecessary
to assume any undesirable technical hypothesis such as cuspidality of Zg or simple
connectedness of Gger.

In we present the stabilization in three steps following Kottwitz. We rewrite
the point counting formula in terms of adelic k-orbital integrals (, transfer
k-orbital integrals to stable orbital integrals on z-extensions of endoscopic groups
(7 and then finish by reorganizing the terms into the sum of stable distributions
intrinsic to the endoscopic groups and their z-extensions (

Finally, in §9] after some recollection of the general stable trace formula, we
indicate what extra information and steps are needed, in addition to our main
results, for understanding the cohomology of Shimura varieties unconditionally.

Acknowledgments. We thank T. Haines and R. Zhou for answering our questions
on parahoric group schemes. We thank M. Rapoport for intriguing conversations on
the Langlands—Rapoport Conjecture and useful suggestions. We thank M. Harris
for his long-term interest in this project and encouragement.

M. K. is partially supported by NSF grant DMS-1902158. S. W. S. is partially
supported by NSF grant DMS-1802039,/2101688, NSF RTG grant DMS-1646385,
and a Miller Professorship. Y. Z. is partially supported by NSF grant DMS-1802292,
and by a startup grant at University of Maryland.

Conventions.

e When G is a group acting on a set X on the left, we denote the action
map G X X — X by (p,z) — Px, or (p,x) — p(x). We shall not use the
notation z”.

e If g, h are elements of a group, we define Int(g)h to be ghg~'.

e Given a field F', we denote by I a fixed algebraic closure. Throughout we
fix field embeddings Q — Q, for all places v of Q. The Galois groups will
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sometimes be abbreviated as follows:

I' =g = Gal(@/Q), T, =Tq, = Gal@,/Q.).
Using the field embeddings fixed above, we view I';, as a subgroup of T
When v is non-archimedean, we write I';, ¢ for the inertia subgroup of I',,.
If L is a subfield of Q and v is a place of Q, we denote by L, the completion
of L inside Q,, with respect to the fixed embedding Q — Q,,.
For a prime p, we denote by Q" the maximal unramified extension of Q, in

Q,. We write Q,» for the degree n unramified extension of Q, in Q}", and
write Zpn» for its ring of integers. We write Z," for the strict henselization
of Zy, ie., Zy' = U, Zpn. } )

For a prime p, we denote by Q, the completion of Qp", and denote by Z,
its ring of integers. We fix an embedding @p — Qp, and thereby identify
Ly, = Gal(Qp /Q,) with the inertia subgroup T, ¢ of I'y. We denote by o

the arithmetic p-Frobenius in Aut(Q,).

We denote by A, A f,A? respectively the adeles over Q, the finite adeles
over Q, and the finite adeles away from p. We also denote by A} the
product A} x Qp", when p is clear in the context.

For a perfect field k, we write W (k) for the ring of Witt vectors over k.
When k =F,» we identify W (k) with Z,n.

By a reductive group over a field, we always mean a connected reductive
group.

For a connected reductive group I over a field, we write ey, Isc, I ad for the
derived subgroup, the simply connected cover of the derived subgroup, and
the adjoint group respectively. We define I?P to be I /Ider, the maximal
torus quotient of 1.

For a reductive group I over R, we write I(R)™ for the identity connected
component of the real Lie group I(R), and write I(R)4 for the preimage
of I*(R)* under I(R) — I*4(R). If I is defined over Q, we write I(Q)*
for I(Q) N I(R)™, and write I(Q)4 for I(Q) N I(R),.

All group cohomology classes or cocycles for profinite groups (e.g. Galois
groups) are understood in the continuous sense. We shall denote a 1-
cochain by (g,),, or p + g,, or simply g,. A l-cocycle g, satisfies g, =
9p" 9o

Let I be a linear algebraic group over a field F' of characteristic zero.
Let F'/F be a Galois extension. We denote by Z'(F’/F,1(F")) the set
of continuous 1-cocycles Gal(F’/F) — I(F'). Denote by H'(F'/F, I(F"))
the corresponding cohomology set. When F’ = F is an algebraic closure of
F, we write Z'(F, I) and H'(F, I). When I is reductive, for 7 € I*d(F), its
image in Hl(F, Zp) is understood to be the class of the cocycle p +— 717,
where 7 € I(F) is an (arbitrary) lift of 7.

When [ is a connected reductive group over F, we denote by I(F)ss the
set of semi-simple elements of I(F').

We denote by S the Deligne torus Resc/r G-
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Part 1. Axiomatic point counting
1. THE POINT COUNTING FORMULA
1.1. Abelianized Galois cohomology.

1.1.1. Let F be a field of characteristic zero, F an algebraic closure, and T' =
Gal(F/F). Let I-Mod (resp. I-Mody) be the abelian category of discrete Z[I']-
modules that are finitely generated (resp. finite free) over Z. Let Mult(F') be the
abelian category of algebraic groups of multiplicative type over F, and Tori(F) C
Mult(F) the full subcategory of tori. Each of the above four categories is naturally
an exact category, and we have the corresponding bounded and unbounded derived
categories; see for instance [Kel96].

We have an exact anti-equivalence of abelian categories

X* : Mult(F) — I'Mod,
sending each multiplicative group to its group of characters. We set
X, = Homy(-,Z) o X* : Mult(F) — I'-Mod,
sending each multiplicative group to its group of cocharacters.

Proposition 1.1.2. We have a commutative diagram (that is, commuting up to
natural isomorphisms) of equivalences of triangulated categories

D(Tori(F)) —— D*(I'-Mod)

.,
Db (Mult(F)) —— D*(I'-Mod)

where the top functor is induced by X, and the bottom functor realizes the derived
functor RX, of X, : Mult(F) — I'-Mod.

Proof. The vertical functors are induced by the inclusions I'-Mod; C I'-Mod and
Tori(F) C Mult(F). Note that every M € I-Mod; is a Z[I'/U]-module for some
open normal subgroup U C I'. Using this one checks that the fully exact subcate-
gory I-Mod; C I'-Mod satisfies the dual versions of conditions C1 and C2 in [Kel96,
§12]. By [Kel96, Theorem 12.1], the canonical functor D~ (I'-Mody) — D~ (I'-Mod)
is an equivalence. This implies that the vertical functor on the right is an equiv-
alence, in view of the observation that the acyclicity of a complex in I-Mody at
a given degree (in the sense of [Kel96, §11]) is equivalent to the vanishing of the
cohomology at the same degree computed in I'-Mod. Now that the vertical functor
on the left is an equivalence follows by applying the exact anti-equivalence X*, or
more precisely its quasi-inverse given by Homg .. p(_, Gm).

Since X, : Tori(F) — I'"Mod; is an exact equivalence, the functor on the top
is an equivalence. Now we can fill in the equivalence in the bottom row. The
exactness also implies that X, : Tori(F') — I'"Mod preserves acyclicity of bounded
complexes, which implies that the bottom row realizes the derived functor of X,
by [Har66, §I, Thm. 5.1]. O

Definition 1.1.3. Let G be a connected reductive group over F. Let Zg, Zg,, be
the centers of G, Gy respectively. Let Z¢ be the complex Z¢,. — Zg in Mult(F),
at degrees —1,0.



20 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

Proposition 1.1.4. There is a canonical isomorphism RX.(Z¢) = m1(Q) inside
DY (T-Mod).

Proof. Let T be a maximal torus in G, and let T be its inverse image in Ggc.

Recall that 7(G) is defined to be the I-module X, (T)/X,(T). If S is another
maximal torus in G, with preimage S in Gy, and g is any element of G(F)
such that Int(g)(T%) = S, then g induces an isomorphism of I'-modules ¢ s :
X.(T)/X.(T) = X.(S)/X.(S), which is independent of g. Thus 7, (G) does not
depend on T.

Now the natural map Zg — (f — T) is a quasi-isomorphism, as the cone of
this map is easily seen to be acyclic (here we regard T —T as being in degrees —1
and 0). Thus

RX.(Z5) 2 RX, (T - T) = X.(T)/X.(T) = m(G).
O

1.1.5. We now review the theory of abelianized Galois cohomology, developed by
Borovoi [Bor98| and Labesse [Lab99].

For the rest of this subsection F will be a local or global field of characteristic
zero. We introduce a symbol 7 as follows. When F' is local, ? denotes F. When
F is global, ? denotes one of F', Ar/F, or Af;, where S is a finite set of places of
F, and A% is the ring of adeles away from S. Let I' = Gal(F/F), and define the
discrete I'-module

7 if?=F,
D, = { (A%)X, if 7 = AS,
(Ap)*/F™, if?=Ap/F.

Here A% denotes I @p A%.
For any bounded complex C* in Mult(F'), we define the abelian groups
. . L
H'(?,C*) := H'(I,RX,(C*) &, D7), i€Z,

cf. [Lab99l p. 22, p. 26]. Here the term on the right denotes the continuous group
cohomology of the profinite group I’

1.1.6. Let G be a connected reductive group over F'. We define
(2,6 = H (2, 2),
cf. [Lab99l §1.6]. When ? is not Ap/F, we have the usual Galois/adelic cohomology
H'(?,G), i=0,1,

defined to be the continuous cohomology of T' acting on G(F') or G(A%) according
as 7is F or A% This is a group for ¢« = 0 and a pointed set for ¢ = 1. We have
natural “abelianization” maps

abl : H'(?2,G) - H. (2,G), i=0,1,
which is a group homomorphism for ¢ = 0 and a map of pointed sets for i = 1.
By [Lab99, Prop. 1.6.7], the map aby : H'(F,G) — H.,(F,G) is surjective, and
is bijective when F' is local non-archimedean. In particular, when F' is local non-
archimedean, HI(F ,G) has a canonical structure of an abelian group.
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When F is global, we have

(1.1.6.1) H'(A%,G) = ﬂ H!'(F,,G),

places v of F,
vgS

where the restricted product is with respect to the trivial elements; see for instance
[PR94, p. 298, Cor. 1]. Analogously we have

(1.1.6.2) H,,(A3.G)2 @ HL(E,G).

places v of F,

vgS
The decompositions (]1.1.6.1[) and (]1.1.6.2[) are compatible with ab}%}z and ab}yv. If
S contains all archimedean places of F', then abgg cHY(AZ,G) — HL (A7, G) is

bijective, giving Hl(A}g7 G3) a canonical structure of an abelian group.

1.1.7. Let f : I — G be an F-homomorphism between connected reductive groups
over F'. Let Z7_, be the mapping cone of the map of complexes 27 — Z¢ induced
by f. We set (cf. [Lab99, §1.8])

H., (2,1 - G)=H(?,21.q).
Assume ? is not Ar/F. We follow [Lab99)] in writing:
D(I,G;?) :=ker (H'(?,1) - H'(?,G)),
€(I,G;?) = ker (Hy, (?2,1) — Hy, (2, G)) .

Thus D (I, G;?) is a pointed set, and (I, G;?) is an abelian group. We have a map
of pointed sets

D(I,G;7) — €(,G;7)
induced by abj. This map is bijective in the following two cases:

e [ is local non-archimedean and 7 = F'.
e Fis global, ? = A%, and S contains all the archimedean places of F.

1.1.8. Let I' = Gal(F/F), and M € I-Mod. When F is global or local non-
archimedean, we set Ap(M) = Mp ors, the torsion subgroup of the coinvariants

1
Mr. When F is local archimedean, we set Ap(M) =H (T', M). Note that in both
cases, there is a canonical embedding Ap (M) < Mr yors for each M € I'-Mod.

Now suppose F'is global. For each place v of F' we fix an embedding F — F,,and
thereby view I'y, = Gal(F',/F,) as a subgroup of I' = Gal(F/F). For M € I'-Mod,
set

Be(M):= B  Ar (M),
places v of F
and define the map Z (M) : Bp(M) — Ap(M) to be the direct sum over v of the
maps
AFU (M) — MFmtors i> MRtors = AF(M),

where } is induced by the identity on M. Then & is a natural transformation
Br — Ap between functors from I'-Mod to finite abelian groups.
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More generally, if S is a finite set of places of F', we set

BEOM) = D Ar(M).
places v of F,

vgS
Proposition 1.1.9. Let F be local or global, and let I — G be a homomorphism

of connected reductive groups over F. Assume that the induced map 71 (I) — w1 (G)
is surjective, and denote its kernel by K.

(i) Let 7 = F when F is local, and let 7 = Ap/F when F is global. Then the
exact sequence
HY, (7,1 — G) — HL (7, 1) = HL (?,G)
is canonically isomorphic to the natural sequence
Ap(K) = Ap(mi (D)) — Ap(m (G)).

If F is global and ? = A% for a finite set S of places of F, then the above
statement still holds with Ap replaced by B3.
(i) When F' is global, the commutative diagram with exact rows

Hgb(AFvl - G) Hib(AFa I)——— Héb(AFv G)

i i |

H,(Ap/F, 1 = G) —= My, (Ap/F, 1) —= Hy, (Ar/F,G)
s canonically identified with the natural commutative diagram
Br(K) —— Br(m1(I)) —= Br(m1(G))
lg"(K) iﬁ’(m(f)) iﬁ’(m(G))
Ap(K) — Ap(m(I)) — Ar(m(G)).

Proof. This follows from the results of [Bor98, §4], Proposition applied to I
and G, and the analogous fact that RX,(Z7_¢) is represented by the complex
K[1] (which uses the surjectivity of m1 (1) = 71 (G)). O

1.2. Inner twistings and local triviality conditions.

Definition 1.2.1. Let F be a field, and let F' be an algebraic closure. Let H, H;
be algebraic groups over F'.

(i) By an dnner twisting from H to H;, we mean an F-group isomorphism
Y Hi = H, % such that for each p € T' the automorphism (°¢)~14 of
H is inner.

(ii) Two inner twistings from H to Hj are called equivalent, if they differ by

an inner automorphism of H.

Definition 1.2.2. Let F be a field, and let H be an algebraic group over F. By
an inner form of H, we mean a pair (Hi,[¢]), where Hy is an algebraic group
over F' and [¢] is an equivalence class of inner twistings from H to H;. By an
isomorphism between two inner forms (Hi,[¢)]) and (H, [¢]) of H, we mean an
F-group isomorphism H; — H} under which [¢] is identified with [¢/']. By abuse
of notation, we often denote an inner form (Hy, [¢]) simply by Hj, if no confusion
can arise.
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Remark 1.2.3. In the setting of Definition [[.2.2] there is a bijection from the set
of isomorphism classes of inner forms of H to H'(F, H*!), sending (Hy, [¢]) to
the class of the cocycle p — ¢~! o P9, Note that the natural map H'(F, H*d) —
H'(Gal(F/F), Aut(H7)) is in general not injective. The image of this map classifies
the F-isomorphism classes of algebraic groups H; over F' which can be extended
to an inner form (Hy, [¢]) of H.

Definition 1.2.4. Let I and G be connected reductive groups over a field F'. By
an inner transfer datum from I to G, we mean a pair (f,W), where f is an injective
F-homomorphism Iz — G, and W is a non-empty subset of G(F), satisfying the
following conditions:
(i) For each g € W, there is an F-subgroup Z, C G, such that Int(g)(im f) =
(Z4)F, and such that the F-isomorphism 1, := Int(g) o f : Iz = (Z,)F is
an inner twisting between the F-groups I and Z,.
(ii) For all g1, g2 € W, the F-isomorphism v, 4, := Int(gag; ) : (Zy, g —
(Zy, )7 is an inner twisting between the F-groups Z,, and Zg,.

1.2.5. Let F be a local or global field of characteristic zero, and let the symbol 7
be as in Let I, G be connected reductive groups over F', and let (f, W) be
an inner transfer datum from I to G (Definition [I.2.4). Choose an element g € W,
and let Z,, 1, be as in Definition [[.2.4} Since v, is an inner twisting, it induces
an isomorphism 27 — 27, between complexes in Mult(F), and in particular an
isomorphism v, . : H, (?,1) = H., (?,Z,),Vi € Z. Since inner automorphisms of
G act as the identity on Zg, the composite homomorphism

;b(?a I)
is independent of the choice of g, and we say that it is induced by (f, W).
Now assume that F' is global, and let S be a (finite or infinite) set of places of
F' containing all the archimedean places. We let
IS (F, I) := ker(H'(F, I) — [[ H'(F., 1)),
veS
M5, (F, 1) = ker(Hg, (F, 1) — [ [ Hay (K, 1)).
veS

wg,* 7 i
ab(?aIg) - Hab(?a G)

By [Bor98| Thm. 5.12 (i)], we have a canonical isomorphism
(1.2.5.1) LIS (F, 1) = 115 (F, 1)

induced by ab};. In the sequel we shall often make this identification implicitly.
The homomorphism Hy (F,I) — H., (F,G) induced by (f,W) restricts to a
homomorphism
L3, (F, I) — I3, (F, G).
We denote the kernel of this homomorphism by
II2,(F, I).

Via (1.2.5.1)) we also view IIIZ,(F, I) as a subset of H'(F, I).
More generally, for any Q-subgroup I’ C I, we denote by 1112,(F, I’) the kernel
of the composite

I3, (F, ') — IS (F, I) — 5, (F, G).
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If S is the set of all places we omit S from the notation, and write III(F,I),
g (F,I), etc.

Lemma 1.2.6. Let G be a connected reductive group over Q. Let T be a connected
reductive subgroup of G defined over Q. Let T be the inverse image of T in Ggc.
Assume that T contains a maximal torus in G defined over Q, and assume that 7 is
connected reductive. Then the natural map U (Q,7) — I¥(Q,Z) is surjective.
(Here I (Q,Z) is defined using the trivial inner transfer datum (f,W), where f
is the inclusion and W contains 1. Similarly, 1LY (Q,Z) is defined using the trivial
inner transfer datum.)

Proof. In the current situation I (Q,Z) is nothing but the kernel of the natural
map H'(Q,Z) — H'(R,Z) ® H'(Q,G), whose second component is induced by
the inclusion Z < G. The similar remark holds for I (Q,Z). Now let 5 €

I (Q,Z). Then there exists g € G(Q) such that § is represented by the cocycle
I'>7w g 79 € Z(Q).

Note that we may replace g by any other element of G(Q)gZ(Q), without changing
the class 3. Since f is trivial at co, we have g € G(R)Z(C). By real approximation,
we can left-multiply g by an element of G(Q) to arrange that

g € G(R)TZ(C).

Let 7 denote the projection G(R) — G2P(R). Since 7(G(R)*) C G*P(R)* =
m(T(R)T), we have G(R)T C Gaer(R)T(R)" C Gaer(R)Z(R). Thus we have

g€ Gder(R)I((c)'
Again by real approximation, we may further left-multiply g by an element of
Gier (Q) to arrange that

g € Gaer(R)TZ(C).
Now since G(Q) = G4er(Q)T(Q), we may right-multiply g by an element of T'(Q)

to arrange that -
g€ Gder(@) N Gder (R)+I(C)

Now we pick a lift § € G4.(Q) of g € Gaer(Q). Since Gy (R) (which is connected
by Cartan’s theorem) maps onto Gaer(R)", we have g € Gs.(R)Z(C). The cocycle

70§ 17()

is then valued in Z(Q) (since g~'7g € Z(Q)), and represents a class in I (Q,7)
lifting . O

Remark 1.2.7. In the setting of the above lemma, we in fact have g (Q,f) =
II35,(Q. Z), because Hyy, (Q, Gse) = 0.

1.2.8. Let I, G be connected reductive groups over Q, and let (f,)V) be an inner
transfer datum from [ to G. Assume that I and G have the same absolute rank. For
each g € W, we know that Z, contains a maximal torus in G defined over Q, and
in particular Z, contains Z¢. Let Z be a Q-subgroup of Zg. Note that f~(2) is a
Q-subgroup of I, and f induces a Q-isomorphism f~1(Z) = Z. Let [ :=I/f~(Z)
and G := G/Z. Then (f, W) induces an inner transfer datum (f, W) from I to G.
We use (f, W) to define I (Q, I), and use (f, W) to define I_H"(—;((@j)
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Corollary 1.2.9. In the setting of the natural map I (Q, I) — IH%?(Q, I)
18 surjective.

Proof. By picking an arbitrary element g € VW and replacing I by Z,, we reduce to
the following situation:

e [ is a Q-subgroup of G containing a maximal torus in G,

e f is the inclusion,

e W contains 1.

Since Gsc = (G)sc, and since the inverse image of I in Gy is equal to the inverse

image of I in (G)gc, the corollary immediately follows from Lemma m O

Lemma 1.2.10. Let F be a field of characteristic zero. Let I — S be a surjective
homomorphism from a connected reductive group I to a torus S over F. Let I' be
the kernel.

(i) We have ZrN1I' = Zy/, and we have short exact sequences
1= Zp I -1 51

and
12y —-2Z;—S— 1.
(i) The maps
fi I(F) = 19(F) 25 BY(F, )
and
o I(F) = S(F) & HY(F, Z;)
differ by a sign. Here the maps 6',6° are the boundary maps induced by
the short exact sequences in (i). In particular, every element of the image
of f1 or fy has trivial image in H'(F,I') and trivial image in H'(F, Z;).
Proof. Part (i) follows from the fact that I’ contains Iqe,. For part (ii), let i € I(F)
and write ¢ = igiy = i1ig with ig € I'(F) and ¢; € Z;(F). Then fo(¢) is represented
by the cocycle (iy'41), in Z'(F, Zp). Since i = i, this cocycle equals (ig”ig*),,
which represents — f1 (7). O

Corollary 1.2.11. In Lemma [1.2.10, take ' = Q, and take I — S to be the
natural map I — I*°, so that I' = Ie:. Then the image of 1(Q)4 in H'(Q, Z;1,..),
under either of the maps fi or fa, is contained in 117 (Q, Z1,,,)-

Proof. Using the notation of Lemma|l.2.10, the image of 7*4(R)* under the bound-
ary map o' : I*4(R) — H'(R, Z;, ) is trivial, because the image of Iger(R) —
I*4(R) contains I*4(R)*. The corollary then follows from Lemma [1.2.10 O

1.3. The Kottwitz homomorphism.

1.3.1. Let F be a field of characteristic 0, F an algebraic closure, and I'p =
Gal(F/F). Let G be a reductive group over F. Recall that, when F is complete,
discretely valued, with algebraically closed residue field, the Kottwitz homomor-
phism is a homomorphism G(F) — 71(G)r, which is functorial in G, and for
G = G, is the valuation map F* — Z. The original construction in [Kot97, §7]
relies on Steinberg’s theorem for F.

Here we generalize the construction of the Kottwitz homomorphism. We shall
obtain a homomorphism /ig’” : G(R) — m(G)r,, where R is any F-algebra (with
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F arbitrary) equipped with a discrete valuation v. This will allow us to show that
the Kottwitz homomorphism is constant in certain families.

1.3.2. Let S be the big fpqc site of Spec F'. Let AbShv(S) be the category of abelian
sheaves on S. We shall view Mult(F') and Tori(F) (see §1.1.1)) as full subcategories
of AbShwv(S). Let D(S) be the derived category of AbShu(S), and let DI=10(S) be
the full subcategory of D(S) consisting of those L € D¥(S) such that H (L) = 0
unless i € {—1,0}.

We shall need the formalism of Picard stacksﬂ on S, as in [AGT73| Exposé XVIII,
§1.4]. Following loc. cit., let Ch’(S) be the category whose objects are the small
Picard stacks on S, and whose morphisms are the isomorphism classes of additive
functors between Picard stacks. By [AGT3, Exposé XVIII, Prop. 1.4.15], we have
an equivalence of categories

ch : DELY(S) — cRP(S).
For a complex C* = (C~! — C°) in Mult(F) (at degrees —1,0), ch(C*®) is given
by the quotient stack [C~1\CY].
1.3.3. As in Proposition we have an equivalence of categories
RX, : D*(Mult(F)) — D*(I'-Mod).

We fix once and for all a quasi-inverse ) of RX,, and natural isomorphisms € :
RX,o0)Y —idand n:id — Y o RX,.

Let G be a reductive group over F. Let 2 be as in Definition [I.1.3] By Propo-
sition we have a canonical isomorphism RX,(2%) = 7 (G) in D°(T'r-Mod).
Let pr : m(G) — m(G)r, be the canonical map, viewed as a morphism in
Db(T'p-Mod). Let

2L = Y(m(G)r,) € D°(Mult(F)),
and let
Ko : Zo — fg

be given by the composite

2o YRX(25)) 2P Y(m (G)ry) = ZF.

Thus we have a canonical isomorphism
e : RX.(Z28) = m(G)r,..
Lemma 1.3.4. In D*(Mult(F)), 2% is isomorphic to a complex of the form
T — 719,

where T~ and T° are split tori over F' and located at degrees —1 and 0. In partic-
ular, the image of 2% in D(S) lies in DI710(S).

Proof. This follows from the fact that 71 (G)r,. is isomorphic to a complex L= —
LY in D*(T'p-Mod), where L~ and L° are finite free Z-modules with the trivial
I'-action. g

4We omit the adjective “strictly commutative”, as that will always be understood.
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1.3.5. We write #Z" for ch(2Z) € Ch*(S), and call it the Kottwitz stack of G
over F'. The inclusions induce a canonical equivalence between quotient stacks
[Zc..\Za] — [Gsc\G]. Thus we obtain a functor between stacks on S:

A, w2 = Al

KE" : G — [Gse\G] — [Za.\Zc] = ch(25)
which is canonical up to isomorphism.

For any small Picard category P (strictly commutative, as always), we denote
by mo(P) the set of isomorphism classes of P, which is naturally an abelian group.
Then £@&" induces a morphism

mo(kg") : G — mo (g ()
of presheaves in groupg’]on S.

1.3.6. Now choose T* = (T~! — T°) as in Lemma and choose an isomor-
phism f: T* = ZZ in D°(Mult(F)). If R is any F-algebra with Pic(Spec R) =
{1}, then we have canonical isomorphisms of abelian groups

(1.3.6.1) mo(ch(T*)(R)) 2 T°(R)/T *(R)

= (X.(T)/X(T71)) @z R* 2 H(RX.(T")) @z R*,
since T~! is a split torus. In this case, consider the composite isomorphism:

-1
i : 7o(HE (R)) L mo(ch(T*)(R)) = HO(RX.(T*)) ® R*
LH®RX(ZF) @ R* S m(G)r, ® R

Then vg is independent of the choice of (T, f), by the functoriality of (1.3.6.1)) in
Te.

1.3.7. If R is a commutative ring, by a discrete valuation on R, we mean a
function v : R — Z U {oo} satisfying v(0) = oo, v(1) = 0, v(ab) = v(a) + v(b), and
v(a +b) > min(v(a),v(d)), for all a,b € R. (Here co > n,Vn € Z, and we do not
require v(a) = oo = a = 0.)

Now consider an F-algebra R satisfying Pic(Spec R) = {1}, and a discrete valu-
ation v on R. Composing the canonical map mo(£E") in §1.3.5| with the canonical
map g in §1.3.6] we obtain the canonical map

kB GR) U, (A F (R) 25 1 (G, ® R,

which is a group homomorphism. On composing the above with v : R* — Z, we
obtain the group homomorphism

R
(1.3.7.1) Hg’v : G(R) K—G> Wl(G)FF ® R* 2 7T1(G)[‘F.
We now extend the definition of Rg’v, dropping the hypothesis Pic(Spec R) = {1}.

Definition 1.3.8. Let R be an arbitrary F-algebra, and let v be a discrete valuation
on R. The elements r € R with v(r) = oo form a prime ideal p, and v factors as
R — Frac (R/p) 2 Z U {o0}. We define k2" to be the composition

jFrac (R/p),"

G(R) — G(Frac (R/p)) —~———— m(G)r

Fe

5We caution the reader that the right hand side is not a sheaf.
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We call Rg’” the Kottwitz homomorphism. We often simply write ¢, for ng’”.

1.3.9. In Definition [[.3.8] if R satisfies Pic(Spec R) = {1}, one checks that the
(1.3.7.1)

definition of Hg’” agrees with the previous definition . Moreover, the gen-
erally defined ng’” (without the hypothesis Pic(Spec R) = {1}) is functorial in
the pair (R,v) in the following sense. Let R’ be another F-algebra equipped
with a discrete valuation v’. Suppose there is an F-algebra map h : R — R’
such that v is the pull-back of v’ along h. Then Kg’v equals the composition

R
G(R) UN G(R)) MCAN 71 (G)r,. For fixed (R,v), the homomorphism /{2’” is also
functorial in the reductive group G over F), i.e., it is a natural transformation be-
tween the functors G — G(R) and G — 71 (G)r,. Using this, one easily checks that
/{g’” agrees with Kottwitz’s original construction in [Kot97, §7], in the special case
when (F,v) is a complete discretely valued field with algebraically closed residue

field.

Proposition 1.3.10. Let R be an F-algebra, and let vy, ..., v, be a collection of
discrete valuations on R. Let aq,...,a, € Z. Suppose that

(i) Yor, aivi(u) =0 for allu € R*, and

(ii) the group Pic(Spec R) is trivial.
Then Y1, aikgi(h) =0 for all h € G(R).

Proof. By condition (ii), each k¢ factors as in (1.3.7.1)). Thus the map ), a;ki
factors through the map id® Y a;v; : m1(G)r, ® R* — 71 (G)r,, which is zero by
(). O

Proposition 1.3.11. Let R D F be a domain, and vy, ..., v, a collection of discrete
valuations on R. Let ai, ..., a, € Z. Suppose that R = R°[1/ f;]7",, where R° C R
is a subring and f; € R° are non-zero prime elements, satisfying the following
conditions.

(i) The ring R° is a noetherian locally factorial domain.
(i) Fori=1,...,n, we have v;(R°) C Z>o U {o0}.
(iii) >, a;vi(fj) =0 for each j=1,...,m.
Then Y i aikgi(h) =0 for all h € G(R).

Proof. Let R be the ring obtained from R° by inverting all elements f such that
v;(f) = 0 for all i. The conditions of the proposition continue to hold if we replace
R? (resp. R) by R* (resp. R”'[1/f;]72,), and omit from the list of f; those elements
such that v;(f;) = 0 for all ¢ (as they become units in R*'). By the functoriality
of the Kottwitz map as discussed in we reduce to the case where R° = R°.
Then R° is semi-local, as each proper ideal is contained in one of the prime ideals
p,={z € R°|vi(x)>0},i=1,...,n.

Since R° is noetherian and locally factorial, the restriction map Pic(Spec R°) —
Pic(Spec R) is surjective (see [Gro67, Cor. 21.6.11]). Since R° is semi-local, we have
Pic(Spec R°) = Pic(Spec R) = {1}.

Now since the f; are prime in R°, any unit in R has the form u = wf[*
where w € R°*,e; € Z. Since v;(w) = 0 for all ¢, we have

€m
o Jm

CLZ"Ui(fj) =0.
1

Z a;v;(u) = Z €;
1 =

i= j=1 i
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The proposition now follows from Proposition [I.3.10] O

Corollary 1.3.12. Suppose that F' is equipped with a discrete valuation vp : F —
ZU{oo} with ring of integers O, and that G is a smooth affine group scheme over
Or exatending G. Assume that G has connected fibers. Then k(i : G(F) — m1(G)r,
maps G(Op) C G(F) to {0}.

Proof. Let R° be the affine ring of G. Let g € Op be a uniformizer. Our conditions
imply that 7 is a prime element of the noetherian domain R°, and hence R?ﬂp) is
a DVR. Let vg be the pull-back to R° of the canonical discrete valuation on RE’WF).
Let g € G(Or). We also consider the valuation v, given by R°® % Op 25 ZU{c0}.
In the following we show that ¢ (g) = 0.

Let R = R°[1/nF]. Note that vo(mr) = vy(mr) = 1. In particular, vy and v,
extend to R. Since R° and vy, v, satisfy conditions (i) (ii) in Proposition
and since vo(mp) — vg(mp) = 0, we may apply that proposition to conclude that
k@ (h) — kg (h) = 0 for all h € G(R). Applying this to h = g,, where g, is the
universal point in G(R°) C G(R), we get

Hg? (gu) = ch)iq (gu) - Hg‘F (g)a
where the second equality follows from functoriality (§1.3.9). This shows that

k¢t (g) does not depend on g € G(R). Hence it must be 0, its value on the identity.
O

Remark 1.3.13. In Corollary [1.3.12] if G is a parahoric group scheme ([HRO08]), and
if the discretely valued field (F,vp) is strictly henselian, then the conclusion follows
from [HROS8| Prop. 3.

1.3.14. Keep the setting and notation of Corollary [1.3.12] Assume that G is
reductive, and F' is complete. Let mg € F be a uniformizer. Let S C G be a
maximal split torus. Then we have the Cartan—Iwahori-Matsumoto decomposition

G(F) = U G(OF)u(rr)G(OF).
HEX(S)

(The union is not disjoint.) The decomposition in this generality is proved in
[AHHI9, Thm. 1.3, Rmk. 3.5].

Corollary 1.3.15. Keep the setting of §1.3.14} If g € G(F) belongs to the double
coset indexed by pn € X.(S), then k¥ (g) = [u], where [u] is the image of p under
the natural map X.(S) = m(Sr) = m(G) = m1(G)ry.

Proof. By Corollary [1.3.12] it suffices to show that xf (u(7p)) = [u]. But this
follows from the functoriality of the Kottwitz map in the group G. O

1.4. Decent elements and twisting. Throughout this subsection, we fix a prime
p, and denote by o the arithmetic p-Frobenius in Aut(Q,).

1.4.1. Let G be a connected reductive group over Q,. For b € G(@p), we write
v, for the Newton cocharacter of b, which is a fractional cocharacter of G@p; see

[Kot85, §4] and [RZ96l §1.7]. Following [RZ96], Def. 1.8], we say that b is decent, if
there exists n € Z>; such that ny, is a cocharacter of G 3, and such that

(1.4.1.1) bo(b)---o" 1 (b) = (np)(p).
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In this case, we also say that b is n-decent.

For any n-decent b € G(Q,), it is shown in [RZ96, Cor. 1.9] that b € G(Qpn),
and that v, is defined over Q,». In particular, if b is n-decent, then it is also
n'-decent for n|n’. Clearly the condition that an element of G(Qpn) is n-decent
is invariant under o-conjugation by G(Qpn). Conversely, if b,b" are n-decent and
if ¥ = gbo(g)~! for some g € G(Qp)7 then necessarily g € G(Qpn); see [RZ96,
Cor. 1.10].

1.4.2. We denote by B(G) the set of o-conjugacy classes in G(Q,). For b €
G(Q,), we denote its class in B(G) by [b]. We recall Kottwitz’s classification of
elements of B(G). Let N(G) denote the set of o-stable G(@p)—conjugacy classes
of fractional cocharacters of GQp' The association b — v}, descends to the Newton
map v : B(G) = N(G). As in §1.3] we have the Kottwitz homomorphism wg :
G(Q,) = m (G)r,,, associated with the p-adic valuation on Q,. By [Kot97, §7],
wg is surjective, and descends to a map kg : B(G) — 71(G)r,,, called the Kottwitz
map. By [Kot97, §4.13], the map

(D,Kg) : B(G) — N(G) X 7T1(G)F

P
is injective.

It is proved by Kottwitz [Kot85, §4.3] (cf. [RZ96), §1.11]) that every o-conjugacy
class in G(Q,) is represented by a decent element. Thus B(G) is in natural bijection
with the set of G(Q}")-orbits in the set of decent elements of G(Q,"), where G(Q}")
acts by o-conjugation.

1.4.3. Let b e G(@p). The functor sending any Q,-algebra R to the group

J(R) == {g € G(Reg, Q)| gb=1bolg) |

is represented by a reductive group J, over Q,. We shall also write JbG for Jp,
to make the presence of G' explicit. If b is decent (so b € G(Q})), then by
[RZ96, Cor. 1.14], there is a canonical Q}-isomorphism from Jo,qur to the cen-
tralizer Gouru, of v, in Gour. (In this case, for any Q)"-algebra R we have J,(R) C
G(R ®q, Q)'), and the embedding Jp gu — Ggur is induced by the natural map
R ®q, Q)" — R.) In this case the action of o on Ggur ., (Q)") with respect to the
Q,-form J, is given by g — bo(g)b~!, where o(-) is defined with respect to the

Qp-form G.
If b is decent and if
(1.4.3.1) W= {c € G(QW) | crpc™" is defined over Q,} # 0,

then the canonical embedding Jo,que — GQ;r and W form an inner transfer datum
from J, to G (Definition [1.2.4]). We thus obtain a canonical map

(1'4'3'2) H1<Qp7 Jb) = H;b(@m Jb) - H;b((@p’ G)
Note that for b decent, holds in the following two cases:
(i) G is quasi-split over Q.
(ii) b is basic in G, i.e., v} is central.
Indeed, the G(Q}")-conjugacy class of v, is always stable under Gal(Q,"/Q,). In

case (i), this conjugacy class must contain a fractional cocharacter defined over Q,.
In case (ii), vy itself is already defined over Q,.
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We remark that in case (ii), the canonical inner transfer datum from J, to G
equips J;, with the structure of an inner form of G. The isomorphism class of this
inner form of G (see Definition[I.2.2)) depends only on [b] € B(G), not on the decent
representative b.

1.4.4. Let G be a connected reductive group over Q,. Let b € G(@p) be a
decent element, and fix an element 8 € H'(Q,, ;). By Steinberg’s theorem, f3
is represented by a cocycle (a,), € Z'(Qy"/Qp, J5(Qy")). Under the canonical
isomorphism J, gur = Gaur vy, We view a, € Jp(Q)7) as an element of G(Q}F),
and define b := a,b € G(QpF). It is easy to see that the o-conjugacy class of b
in G(Qp") depends only on b, 3, not on (a,),. We shall say that (the o-conjugacy
class of) b’ is the twist of b by 5.

Proposition 1.4.5. In the setting of we have vy = vy, and b’ is decent.
Moreover, if (1.4.3.1) holds for b (e.g., if G is quasi-split), then kg([V']) — ka([b])

is equal to the image of B under
Hl(QP7 Jb) — H;b(@pv G) L) 1 (G)I‘p,torm

where the first map is , and the second isomorphism is as in Proposition
7.9

Proof. Choose n € Z>; to be divisible enough such that
(@0)p € Z'(Qpn /Qps J(Qpn)),

and such that b is n-decent. Using that (a,), is a cocycle, one shows by induction
that

agi =b'a() - ()BT (b
for each i € Z>;. Since a,~» = 1, we have
Vo) o™ 1) =ba(b)---a" (D).

Since b is n-decent, the right hand side is equal to p™*. By the characterization of
vy (see [Kot85 §4]), we conclude that vy = v, and that b’ is n-decent.

We now prove the statement about xg([b']) — kg ([b]). Since holds, we
can replace b by a o-conjugate in G(Qp") and assume that v} is defined over Q.
Then we can replace G by G,, and reduce to the case where 14 is central. To
finish the proof we only need to show that the image of 8 under the composite
isomorphism Hl(Qp,Jb) = H;b((@p,Jb) = m1(Jy)r, tors i equal to k., (as). This
follows from [Kot85, Rmk. 5.7] applied to J;, (cf. [RV14, Rmk. 2.2 (iv)]). O

1.5. Shimura varieties and their cohomology.

Definition 1.5.1. Let H be a locally profinite group admitting a countable neigh-
borhood basis of the identity. Let B be a locally noetherian scheme. Let S be
a B-scheme equipped with a right H-action via B-automorphisms. We say that
the action is admissible if there exists a class £ of compact open subgroups of H
satisfying the following conditions.

(i) The class £ contains all sufficiently small compact open subgroups of H
(i-e., all open subgroups of a fixed compact open subgroup).

(ii) For K € J#, the categorical quotient S/K in the category of B-schemes
exists, and is smooth, separated, and of finite type over B.
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(iii) For Ky, Ko € ¢ of H such that Ky C Ky, the natural map S/K; — S/K»
is finite étale.
(iv) The maps S — S/K identify S with fm, S/K.

1.5.2. Let H, B, S and ¢ be as in Definition For K € %, we write Sk
for S/K. Let £ be a prime number invertible on B. The construction in [HTO1]
§II1.3] can be generalized to define ¢-adic sheaves on Sk and the Hecke action on
the cohomology. We explain this in the following.

Let K,U € 2, with U normal in K. The group K/U acts on Sy via Sk-
automorphisms. Since Sx = Sy/K and since the map Sy — Sk is finite étale, we
know that Sy — Sk is a Galois étale cover, and moreover Gal(Sy/Sk) is identified
with the maximal quotient of K /U that acts faithfully on Sy, cf. [Gro03, Exposé
V, Prop. 3.1].

For each K € J#, we define the profinite group
(1.5.2.1) Gal(S/SK) = 1&1 Gal(SU/SK).

U<K open
Since there exists neighborhood basis of 1 in H consisting of countably many open
normal subgroups U; of K with

--.cU;,cU;_,C---U; CK,
we have a presentation

(1.5.2.2) Gal(S/Sx) = 1im Gal(S, /Sk).

Thus we are in a special case of the general setting at the beginning of [HT0I]
§II1.2], with our Sk playing the role of X, and our Gal(S/Sk) playing the role of
I'. By the construction in loc. cit., every continuous Gal(S/Sk )-representation p
on a finite-dimensional Q,-vector space gives rise to a lisse Q-sheaf %, on Sk.
Note that for each K € ¢, the natural homomorphism K — Gal(S/Sk) is
surjective, which can be seen from and the similar presentation K =
i K /U; (using that the indexing set is countable). Now let £ be a continuous

representation of H on a finite-dimensional Q,-vector space W. We make the
following assumption on &:

e For all sufficiently small K € ., the restriction &|x factors through
Given such a &, we may and shall shrink J# and assume that the above condition
holds for all K € 2#. Then for each K € J# we apply the previous construction to
the representation of Gal(S/Sk) on W induced by &, and obtain a lisse Q,-sheaf
on Sk, denoted by Z% k.

Consider K1, Ky € # and g € H such that g7'K;g C K,. The action of g on
S induces a map g : Sk, — Sk,. As on p. 96 of [HT01], the actions of g on S and
on W together define a morphism

99 Lok, — Lo,
between Q,-sheaves on Sk,. For any geometric point z of B, this induces a map
[g]K2>K1 : HZ(SKzﬂiﬁgf’Kz) — Hi(SKl’w’gngl)'
Define

HZ(Sa:ag) = h_n; HZ(SK@’X&,K)7
Kex
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where the transition maps are given by [1]x, , for K1 C K. The maps [¢]k,, x, for
varying g, K1, K5 give rise to a left H-action on Hf:(S;,c7 £), called the Hecke action.
As on p. 97 of [HT01], H’(S,, &) is an admissible H-module over @,. Indeed, using
the Hochschild—Serre spectral sequence and the fact that the cohomology of a finite
group acting on a Q,-vector space vanishes in positive degrees, we see that for each
K € % the natural map HE(SK@,, Le k) — H'(S,,£) is injective, and its image is
the subspace of K-invariants. Since H(Sk ., % k) is finite-dimensional, we know
that H’(S,,&) is an admissible H-module.

1.5.3. Let (G, X) be a Shimura datum with reflex field F = E(G,X) Cc C. By
the theory of canonical models due to Shimura [Shi63] [Shi64l [Shi65], [Shi66, [Shi67al,
Shi67bl [Shi70al, [Shi70b], Deligne [Del71l Del79], Milne [Mil83] (cf. [Mil90a]), and
Borovoi [Bor84], we have a canonical E-scheme Sh = Sh(G, X) equipped with a
right G(A y)-action that is admissible in the sense of Definition The class Z
as in Definition[T.5.1] can be taken to be the class of neat compact open subgroups of
G(Ay) (as defined in [Pin90] §0.6]). For each K € %, we denote Sh /K by Shx =
Shk (G, X). This is a smooth, quasi-projective E-scheme, whose analytification over
C is identified with the hermitian locally symmetric variety G(Q)\X x G(Ay)/K.

If G =T is a torus, then X consists of a single R-homomorphism A : S — T,
and Shk (E) is identified with the finite set Shx (C) = T(Q)\T(A)/K. The action
of Gal(E/E) on this finite set is given by the reciprocity law, which we now recall
in order to fix the sign convention. Let p = uhﬂ which is a cocharacter of T" defined
over E. Consider the composite homomorphism of Q-algebraic groups

R NE/o
()8 Resg/q G ek, Resg/oT =T

This induces a group homomorphism
mo(E"\AR) — mo(T(QN\T'(A)).

Now the left hand side is identified with Gal(E2P/E) under the global Artin map
(normalized geometrically, i.e., uniformizers correspond to geometric Frobenius el-
ements at the finite places), while the right hand side admits a natural map to
T(Q)\T(Ay)/K (cf. [Del79, §2.2.3]). We thus obtain a group homomorphism

r: Gal(E*/E) — T(Q)\T(Af)/K.
For o € Gal(E/FE) and z € Shi(E) 2 T(Q)\T(Ay)/K, we have the reciprocity law
o(x)=r(o)-x.

This uniquely determines the FE-scheme structure of Shyx. Note that the above
reciprocity law differs from [Del79] in the sign of p. Thus the E-scheme which
we call the canonical model for (T,{h}) would be called the canonical model for
(T, { h_l}) according to loc. cit. Our sign convention is the same as that used by
Pink [Pin90} [Pin92a] and Morel [Mor10].

For general Shimura data, the canonical models are uniquely characterized by
functoriality and the case of tori. According to our sign convention, the Siegel
modular varieties classifying polarized abelian varieties are canonical models for
the Siegel Shimura data as specified in [Kis10, §2.1.5]. (This is proved in [Del71]

6The convention used here is the same as in [Del79]. If T = Gm.g and h is given by h(z) =
2zPz4, then pp, is given by up(z) = z7P.
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Thm. 4.21].) The discrepancy between this fact and Deligne’s sign conventions in
[Del79] was observed in [Mil90b].

Definition 1.5.4. Let T be a Q-torus. We denote by T, be the maximal Q-
anisotropic subtorus of T (see [Spr98, Prop. 13.2.4]). We denote by T,. the smallest
@Q-subgroup of T, whose base change to R contains the maximal R-split subtorus
of Ty r. (Clearly Ty, exists and is a torus.) We call T, the anti-cuspidal part of T'.
We say that T is cuspidal, if T has equal Q-split rank and R-split rank (cf. [MorI0l
Def. 3.1.1]).

Lemma 1.5.5. Let T be a Q-torus. The following statements are equivalent.
(i) T is cuspidal.
(i) T is isogenous over Q to the product of a split Q-torus and a Q-torus that
is anisotropic over R.
(iii) T, is R-anisotropic.
(iv) Tye is trivial.
(v) T(Q) is discrete in T'(Ay).

(vi) All arithmetic subgroups of T(Q) are finite.

(vii) T satisfies the following Serre condition (cf. [Kis17) §3.5.6]). Fiz a complex
conjugation © € Gal(Q/Q). For all 7 € Gal(Q/Q) and all p € X.(T), we
have

(T=D+Dp=(+1)(T-1u=0.
In general, T,. is the smallest Q-subgroup S of T such that T/S is cuspidal.

Proof. The equivalence of (i), (ii), (iii), and (iv) follows from [Spr98| Prop. 13.2.4].
The equivalence of (i), (v), and (vi) is shown in [Gro99, Prop. 1.4]. We now show
that (vii) is equivalent to the other conditions. Note that (vii) is invariant under
isogeny over QQ, and is satisfied when T is is either split over Q or anisotropic over
R. Hence (ii) implies (vii). Conversely, if (vii) holds, then every u € X.(T)"=! is
fixed by Gal(Q/Q), since (¢ + 1)u = 2y is fixed by Gal(Q/Q). This implies (i).
The last assertion in the lemma is clear since (i) and (iii) are equivalent. O

1.5.6. Let (G, X) be a Shimura datum with reflex field E. Write Z for Zg,
and write Z,. for (Z°),.. For each compact open subgroup K C G(Ay), we write
Z(Q)k for Z(Q) N K, and write Zx for Z(Ay) N K. Here both intersections are
inside G(Ay).

Lemma 1.5.7. Let K C G(Ay) be a neat compact open subgroup. Then Z(Q)g is
contained in Z,.(Q).

Proof. By Lemma Z°/Zye, all congruence subgroups of (2°/Z,.)(Q) are fi-
nite. Thus the same is true for all congruence subgroups of (Z/Z,.)(Q). It follows
that the image of Z(Q)k in (Z/Z,.)(Q) is finite. But this image is also neat inside
(Z]Zac)(Ay), so it is trivial. O

1.5.8. Fix a prime number ¢. Let £ be an irreducible algebraic representation
of G over Q,. We set G¢ := G/Z,., and assume that ¢ factors through GC In
the following we construct Q,-sheaves on Shx associated with &, for all sufficiently
small K, by applying the general formalism in This construction is well

" In [MiI90a), §1T1], G€ is defined to be G/Zs, where Zs is the maximal Q-subtorus of Z° that
is Q-anisotropic and R-split. Note that it is assumed in [Mil90al, §11, (2.1.4)] that ZO splits over
a CM field. Under this assumption, Zs is equal to Zsc. In general, the two can be different.
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known. See for instance [Kot92bl §6], [Pin92al §5], [HTO01) §3.2], and [LS18|, §3],
which give this construction at different levels of generality. Note that in all but
the last reference, the Shimura varieties being considered satisfy G = G°.

Let K and U be neat compact open subgroups of G(Ay), with U normal in K.
Since each neat congruence subgroup A of G(Q) acts on X with kernel A N Z(Q),
we have

(1.5.8.1) Gal(Shy / Shx) = K/(Z(Q)xU).

Write Z(Q)~ for the closure of Z(Q) in Z(Ay), and write Z(Q) for the intersection
Z(Q)” N K inside G(Ay). Note that Z(Q)y is also the closure of Z(Q)x inside
K, since K is open and closed in G(Ay). Define Gal(Sh /Shg) as in (1.5.2.1). By

(1.5.8.1f), we have

(1.5.8.2) Gal(Sh/Shk) 2 K/Z(Q)%,
(cf. [Del79, §2.1.9]). By Lemmam the natural map K — G°(Ay) factors through
Gal(Sh /Shx) [

Via the projection G(Ay) — G(Q¢), we obtain a continuous representation of
G(Ay) on a finite-dimensional Q,-vector space induced by &. This continuous rep-
resentation satisfies the assumption in §1.5.2] namely its restriction to K factors
through Gal(Sh /Shg) for all sufficiently small (in fact, all neat) K. By the con-
struction in §1.5.2) we obtain a lisse Q-sheaf .%; x on Shy for all neat K, and
obtain the admissible G(A f)-module

H(Shy, &) := lim Hy (Shy 7, Ze i)
K

We have a natural continuous Gal(E/E)-action on H.(Shz, &) that commutes
with the G(Aj)-action. Our main interest is to understand the virtual G(Ay) x
Gal(E/E)-module

> (—1)'H(Shg, ).
1.6. Kottwitz parameters.

1.6.1. Let (G, X) be a Shimura datum, and let p be a prime number. In this
subsection we define Kottwitz parameters with respect to (G, X) and p, generalizing
the considerations in [Kot90, §2] where Gge, is assumed to be simply connected.

Let E C C be the reflex field of (G, X). From the fixed embeddings Q <+ C and
Q— @p, we obtain a prime p of E over p. Let p” be the cardinality of the residue
field of p. Fix a positive multiple n of r.

The Hodge cocharacters attached to h € X all have the same image in 71(G),
which we denote by [u]x € m1(G).

We say that an element 9 € G(Q) is semi-simple and R-elliptic, if e € T(R)
for some elliptic maximal torus T in Gg. Since G is part of a Shimura datum,
G3 admits a Cartan involution. Therefore Gg contains elliptic maximal tori, and
our definition of R-elliptic elements agrees with the more general definition in the
literature, cf. [Kot86l §9.1].

8In fact, the induced map Gal(Sh/Shg) = K/Z(Q)x — G°(Ay) is never injective, if
Zac is non-trivial. This follows from the fact that Zac(Q)(K N Zac(Ay)) has finite index in
Zac(Ay) ([Bor63, Thm. 5.1]), and the fact that Za,.(Q)~ has infinite index in Zac(Af) ([PR94,
Prop. 7.13(2)]). In [Mil90a), §III, Rmk. 6.1] it is incorrectly stated that Gal(Sh / Shg ) is isomorphic
to the image of K in G°(Ay), cf. §3 of the updated online version of [L.S18] and its erratum.
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Definition 1.6.2. A classical Kottwitz parameter of degree n (with respect to
(G, X) and p) is a triple

(10,7 = (M)izp: 0) € G(Q) x G(AF) x G(Qpr),
satisfying the following conditions.

CKP1: The element 79 € G(Q) is semi-simple and R-elliptic.
CKP2: For each prime [ # p, -; is stably conjugate to 7y as elements of

G(Q).
CKP3: The image of v in G(Q,) is a degree n norm of § (see [Kot82] §5]).
CKP4: The image of § under the Kottwitz map xg : B(Gg,) — m1(G)r, is
equal to the image of —[u]x.

We denote by &, (p™) the set of classical Kottwitz parameters of degree n.

1.6.3. We define an equivalence relation ~ on G(Q) xG (AIJi) x G(Qpn) by declaring
(70,7, 96) ~ (v',7,d") if the following conditions are satisfied:

e The elements v and v’ are stably conjugate in G(Q).

e The elements v and 7/ are conjugate in G(A?).

e The elements ¢ and ¢’ are o-conjugate in G(Qpn ).

The subset 8P, (p") C G(Q) x G(A%) x G(Qpn) is stable under ~

Definition 1.6.4. A Kottwitz parameter (with respect to (G, X) and p) is a tuple
(70, a, [b]), consisting of:

e a semi-simple and R-elliptic element vy € G(Q),
e an element a € D(GY , G; AY),

e a o-conjugacy class [b] in G (@Q,) (ie., [b] € B(GY,. @)
satisfying the following condition.

KPO: Let [b]g be the image of [b] in B(Gg,). Then the element xg([b]c) €

71(G)r, is equal to the image of —[u]x.

We denote by &P the set of all Kottwitz parameters. For ¢ = (vg, a, [b]) € KB, we
write Io(c) for G9 . When c¢ is fixed in the context we also simply write Iy for Io(c).

Definition 1.6.5. We say that (o, a, [b]) € & is p™-admissible, if it satisfies the
following condition.
KP1: Let b e I,(Q,) be a representative of [b]. There exists ¢ € G(Q,) such
that, letting 0 := ¢ bo(c) € G(Q,), we have

(1.6.5.1) ctyoe=0-a(0)--0"(6).

(Clearly this condition is independent of the representative b of [b].) We denote by
AP, (p") the set of p"-admissible Kottwitz parameters.

1.6.6. Next we deduce some consequences of the condition KP1. We shall work in
a local setting as follows. Let 79 € G(Qy)ss and let Iy := (Gg, )3, Let [b] € B(lo),
and assume that KP1 holds for [b] and 7p.

Lemma 1.6.7. Keep the setting of §1.6.6, Choose b and ¢ as in KP1 with respect
to [b] and ~o. Let § = ¢ 'bo(c). Then we have § € G(Qpn). The o-conjugacy
class of 6 in G(Qpn) depends only on [b] € B(Iy), not on the choices of b and c.
Moreover, vy € G(Qp) is a degree n norm of § € G(Qpn).
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Proof. By we have (§x0)" = ¢ tygexo™. Since b and 1x 0 both commute
with 79, we know that § x 0 = ¢~1(b x 0)c commutes with ¢ 1ygc. Hence 6 x o
commutes with ¢”, which means that § € G(Qpn).

To prove the second statement, we first note that when b is fixed, any choice of
¢ has to satisfy the equation

yoc = ba(b)--- o™ 1 (b)o"(c).

Hence two choices of ¢ give rise to the same coset ¢G(Qpn). It follows that the
o-conjugacy class of ¢ in G(Q,n) is independent of the choice of c¢. Now suppose
we choose another representative b’ € Io(Q,) of [b] € B(I). Then b/ = dbo(d)~*
for some d € Iy(Q,). Letting ¢ := de, we have ¢~ 0o (') = 4, and

dod = clyge = 60(8) - - -0 (9).

Hence ¥’ still determines the same 6 € G(Q,n) up to o-conjugacy.

Finally, we show that gy is a degree n norm of §. If Gge, is simply connected,
then the statement follows from and the definition of norm. In general,
take a z-extension 1 — Z — H — Gg, — 1 over Q,. Let ¢ € H(Q,) be a lift of
¢ € G(Q,), and let 6 € H(Q,n) be a lift of § € G(Q,n). Define 55 € H(Q,) by the
equation

(1.6.7.1) 59 = 60(0) - - o™ 1(6).

Then 7y is a lift of 9. We claim that 79 € H(Q,). Once the claim is proved, we
know that 7y is a degree n norm of 5 by , and it follows that ~yq is a degree
n norm of § (see [Kot82, §5]).

It remains to prove the claim. Let b = ¢oo(¢)~! € H(Q,). By we have
(6 x 0)" = ¢ 15,¢ x o™. Since § x o commutes with 0" (i.e., § € H(Qpn)), it

must commute with & '3o¢. Hence bx o = ¢(6 x )¢

commutes with 7y. On the
other hand since b is a lift of b € Iy, we know that b commutes with 7y by [Kot82,

Lem. 3.1 (1)]. Therefore o commutes with 7o, which proves the claim. O

Lemma 1.6.8. Let H be a smooth affine group scheme over Z, with connected
fibers. Then every element of H(@p)/H(ZP) is fized by some power of o. The
natural map H(Qp")/H(Zy") — H(Q,)/H(Zy) is a bijection.

Proof. By [Brol3l, Lem. 3.2], there exists a closed embedding of Z,-groups H —
GL,,. Hence the first statement in the lemma reduces to the case where H = GL,,,
and it follows from the fact that GL, (Qp") is dense in CL,(Q,) under the p-adic
topology. The second statement (for general #) follows from the first statement
and Greenberg’s theorem [Gre63, Prop. 3] asserting the surjectivity of the map
H(Zy) — H(Zy), g — g-0"(g)~" for arbitrary n € Zs;. O

Lemma 1.6.9. Keep the setting of . Letb € Io(@p) be a decent representative
of [b] € B(Io) (see §1.4.9). Then there eists t € Z>y such that b is t-decent, and
such that

(1.6.9.1) v = p"k,

where k lies in a bounded subgroup of G(Qp) (in the sense of [Tit79l §2.2]).
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Proof. Assume b is tp-decent. Let ¢ be as in KP1. Let G be a parahoric model of
Gq, over Z,, and write ¢ for the image of ¢ in € G(Q,)/G(Z,). By , we
have 7o - ¢ = (b x o)™ - €. Since vy commutes with b and 1 x o, for any multiple ¢ of
to we have

vWee=bxo)" c= ("™ xo™)- ¢
By Lemma when t is sufficiently divisible we have o"'¢ = ¢. Then k :=
p~ "t lies in ¢G(Z,)e™ ", which is a bounded subgroup of G(Q,). O

One can view (1.6.9.1)) as a “polar decomposition” of v§. Such a decomposition
satisfies a very strong sense of uniqueness, as specified in the following lemma.

Lemma 1.6.10. Let F be a complete discretely valued field. Let H be a linear
algebraic group over F, and let € be a semi-simple element of H(F). Then there
exists at most one cocharacter v of H, defined over F such that for some uniformizer
7w € FX, e tn¥ lies in a H(F)-conjugate of a bounded subgroup of H(F).

Proof. Let p : H — GLy be a faithful representation of H over F. If k is an
element of a bounded subgroup of H(F), then p(k) lies in a GLx (F)-conjugate of
GLN(OF) (cf. the proof of [Kis10, Lem. 2.3.1]), and hence all eigenvalues of p(k)
have valuation zero. (Here and below, by eigenvalues we always mean eigenvalues in

F'.) To prove the lemma it suffices to prove that for each semi-simple ¢ € GLy (F),
there exists at most one cocharacter v of GL,; & such that for some uniformizer

7 € F all eigenvalues of e~ '7¥ have valuation zero.
Without loss of generality we may assume that e = diag(AIn,, -, A\ In,) with

distinct A\q,--- , A\, € . Then GLy ¢ is naturally identified with GLy, X -+ X

GLy,.. Note that if a semi-simple element k € GLy ((F') is such that all its eigenval-
ues have valuation zero, then the projection of k in each GLy, (F) satisfies the anal-
ogous condition. We have thus reduced to the case where € is central in GLy (F'). In

this case, if v is a cocharacter of GL , 7 such that for some uniformizer 7 all eigen-

values of e 17" have valuation zero, then v must be given by z — diag(z™,--- ,2™)
where m is the valuation of the unique eigenvalue of €. This proves the uniqueness
of v. O

Corollary 1.6.11. Keep the setting of §1.6.6 Then [b] is basic in B(Io). If [b'] €
B(1ly) is another class satisfying KP1 with respect to 7o, then v, = vy .

Proof. Let b be a decent representative of [b]. By Lemma and Lemma
(the latter applied to F' = Q,, m = p, H = G@p’ € = 70), any element of G(Q,)
that centralizes ¢ has to centralize 1. Therefore v, factors through the center
of Iy, and [b] is basic in B(Ip). The second statement also follows from these two
lemmas. (]

Corollary 1.6.12. Let ¢ = (v0,a,[b]) € &B(p"). Then [b] is basic in B(Io(c)q,)-
If (y0,0d',[V']) is another element of RP(p™), then vy = vy .

Proof. This follows from Corollary [[.6.11] O

1.6.13. Our next goal is to define the notion of an isomorphism between Kottwitz
parameters. We first consider a general construction. Let 79 € G(Q)ss, and let
Iy := GY, . Let u € G(Q) be an element satisfying

7o = uyou~t € G(Q)
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and

utru €Iy, VpeTl = Gal(Q/Q).
Let If) := G(y)g)' We have a bijection
(1.6.13.1) u, 1 D(Io, G; Af) — D(I, G5 AY),

sending the class of a cocycle (a,), € Zl(F,IO(A?)) to the class of (ua,’u™"),.
Next note that the cocycle (u™'7u), € Z'(Qy, Ip) becomes trivial in H'(Q,, Iy) by
Steinberg’s theorem. Hence there exists d € Ip(Q,) such that
utPu=dd, VpeTl,p.

Then ug := ud~! lies in G(Q,). We have

upYoluy ' = 70
and

ug g € Io(@p).
By the previous two properties of ug, we have a bijection
(1.6.13.2) w. : B(log,) = B(lhg,)
[b] — [uobo (uo) 1],

which depends only on u, not on the choice of d.

Definition 1.6.14. Let ¢ = (0, a,[b]), ¢ = (75, d', [V']) € &B. By an isomorphism
from ¢ to ¢/, we mean an element u € G(Q), satisfying the following conditions.
(i) We have Int(u)vo = 7§, and u=1Pu € Io(c) for all p € T

(i) The bijection u, : ®(Io(c), G; A}) = D(Ip(c’), G; A}) as in (1.6.13.1)) sends

atoa.
(iii) The bijection u, : B(Io(¢)g,) — B(lo(¢')g,) as in (1.6.13.2) sends [b] to
[v].

In such a situation we write u : ¢ — ¢’.

1.6.15. If u : ¢ = ¢ and v : ¢ = ¢" are two isomorphisms between Kottwitz
parameters, then vu € G(Q) is an isomorphism ¢ — ¢”, and u=! € G(Q) is the
isomorphism ¢ = ¢ inverse to u. Moreover, one checks that p"-admissibility of
Kottwitz parameters (Definition is preserved under isomorphisms.

We denote by R93/2 the set of isomorphism classes of Kottwitz parameters, and
by &9, (p™)/= the set of isomorphism classes of p-admissible Kottwitz parameters.

1.6.16. We define a natural map

(1.6.16.1) AR (") — 8P (p")/~

as follows. Let ¢ = (70, a, [0]) € &P,(p"). The element a € D(Io(c), G; AY) deter-
mines a conjugacy class in G(A’J"p) which is stably conjugate to vy. Take v to be
an arbitrary element of this conjugacy class. By Lemma m [b] determines a o-
conjugacy class in G(Qyn ), of which -y is a degree n norm. Take 0 to be an arbitrary
element of this o-conjugacy class. Then (7p,7,d) is an element of &, (p"), and
its equivalence class depends only on ¢. We define the map by sending ¢
to the equivalence class of (7,7, 9).
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One checks that the map factors through &, (p")/=. Moreover, when
Gger is simply connected, the induced map £B,(p")/= — KP.(p")/~ is a
bijection. We will not need this fact in the paper, but we outline here how to
recover [b] € B(/o(c)g,) from &, which is perhaps the only non-obvious part of the
argument. Since G e, is simply connected, Iy(c) = G,,. Since o is a degree n norm
of § and since Hl(Qp, Iy) is trivial by Steinberg’s theorem, there exists ¢ € G(@p)
such that holds. Define b := cdo(c) € G(Q,). Since (§x0)" = ¢ ypex o™
and since § X o commutes with ¢”, we know that § x ¢ commutes with ¢~ !yyc, or
equivalently that b x ¢ commutes with ~q. Since ~y is o-invariant, we know that b
commutes with g, i.e., b € Ip(c)(Q,). In this way we have recovered [b] € B(lo(c)g,)
from §.

1.7. The Kottwitz invariant.

1.7.1. In this subsection we define an invariant attached to each Kottwitz param-
eter. We first construct the abelian group where the invariant lies in. We start
with a general setting.

Let G be a reductive group over QQ, and let I be a reductive subgroup of G. We
have an infinite commutative diagram with exact rows and columns

- Hiib<@7 1) — H;b&@ G) — H;b<@,if - G) — H;tl(@,i I)— -
- Ii;bm, I)— H;bi&, G) — H;b(Aﬁ —G) — H:;tl(A%) -
- Hz‘i(A/@, I~ H;b(zj/@, G) »\szm/«i, I—G)— H;?(A/cé, I)— -
o H%tl(@, I) — H;tlé@, G) —H{! (@if - G)— H;#(@,t I)— -

We define €(I,G; A/Q) to be the cokernel of the map

H,, (A, G) — H,(A/Q,1 — G)
given by the dashed arrow in the above diagram for ¢ = 0. We have a natural
map &(I,G;A) — E(I,G;A/Q) defined by first lifting an element of &(I,G;A)
to HY, (A, I — G), and then mapping the lift to HY, (A/Q,I — G) and then to
&(I,G;A/Q). We know that the sequence
(1.7.1.1) ¢(I,G;Q) —» ¢(I,G;A) = ¢(I,G;A/Q)

is exact; see [Lab99, Prop. 1.8.4].
We write K for the kernel of m1(I) — m1(G). Recall that the functor Ag is
introduced in §1.1.8] As usual we write I' for Gal(Q/Q).

Lemma 1.7.2. The natural inclusions

ker (AQ(K) — AQ(m(I))> — ker (K]_“)tors — Wl([)r’tors) — ker (K]_" — 7T1(I)F)
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are equalities.

Proof. As in the proof of [Mil92, Prop. B.4], there exists a finite Galois extension
E/Q such that the actions of I" on K, 71 (I), and 71 (G) all factor through Gal(E/Q)
and such that

Ag(K) = B (Gal(E/Q), K),
Ag(m (1)) =H(Gal(E/Q), m (D).
Thus the first group in the lemma is equal to the kernel of
B (Gal(E/Q),K) — H (Gal(E/Q), m (1)

From this, it is clear that the first and third groups in the lemma are both canoni-
cally identified with the cokernel of

H *(Gal(E/Q),m(I) — H (Gal(E/Q),m(G)).
The lemma follows. (I

Proposition 1.7.3. Assume that I contains a maximal torus in G. Then the
abelian group E(I,G;A/Q) is canonically identified with

KF,tors

D, ker(Kr, tors = m1(I)r,) '

Here v runs through all the places of Q, and the quotient is with respect to the
natural maps Kr, tors = Kr tors- In particular, €(I,G;A/Q) is finite.

Proof. Under our assumption, the map m(I) — m(G) is surjective. Applying
Proposition [1.1.9] (ii), we know that &(I, G; A/Q) is canonically identified with the
cokernel of

gZ(K) : ker (BQ(K) — BQ(?Tl (I))) — .AQ(K)
By Lemma [I.7.2] we have

ker (B (K) — By(mi (1)) = @ ker(Kr, tors = m1(Dr,).

The corollary follows. O

For any Hausdorff locally compact abelian group H, we denote by H” the Pon-
tryagin dual. The following result is well known to experts, cf. [Lab99, p. 43,
Remarque].

Corollary 1.7.4. Under the assumption in Proposition the abelian group
¢(I,G;A/Q) is canonically identified with K(I/Q)P, where K(I/Q) is defined in
[Kot86, §4.6].

Proof. We shall freely use the definitions and results in [Kot86]. Recall that £(1/Q)
is defined as the subgroup of o ([Z(I)/Z(G)]T) consisting of those elements whose
images in H'(F, Z(G)) are locally trivial.

Since X*(Z(1)) = m (I) and X*(Z(G)) = m,(G), we have X*(Z(1)/Z(G))
Hence

I

K.

x* <WO<[Z(f>/Z<é>F>> ~ Kt ronn.
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Also, for each place v, we have

X* <7To (Z(T)F” )) =m (I)F,U,tors
and

X (ol 20/ 2@ ) = Krgon

By the exact sequence
mo(Z(D)"™) = mo([2(1)/2(G)™) — HY(F,, Z(G)),
we can identify &(7/Q) with the set of x € (Kr’tors)D such that for each place v the

composite map z,, : K1, tors = KT tors I % equals the composite map Kt tors —
T1 (D), tors ELN C*, for some y, € (m1 (I)pmtors)D. By the exact sequence

D
(1 (D) rrore)® = (K tons)? = (kermru,tom S m(f)rv,m)) ,

the last condition on z,, is equivalent to requiring that z kills the image of

ker(KFv,tors — M (I>Fv,t0rs)

in KT tors. Comparing this description of £(1/Q) and Proposition[1.7.3] we see that
R(I/F) = ¢(I,G;Ap/F)P. O

1.7.5. We now keep the setting of §1.6.1} Let ¢ = (7o, a,[b]) € &, and write Iy
for Io(c) = GY,. We now construct an element

a(c) € €(1y, G5 A/Q),

called the Kottwitz invariant of ¢. This generalizes the construction in [Kot90, §2].
We write 3°°(c) for the element a € D(Io, G;A%). As discussed in §1.1.6]

the abelianization map induces an isomorphism D (I, G;A}) = €(Iy, G;A}) C
H;b(A’}, Iy). By Proposition m (i), we have a canonical isomorphism

Hflxb(Alf)WIO)g @ 7T-1(‘[0)1—‘1,,1;0rs~

v#p,00

Hence we also view P°°(c) as an element of

@ 1 (IO)F,, ,tors-

V#P,00
For each place v ¢ {p,o0}, we write B,(¢) € m1(Ip)r, tors for the component of
BP>°(c) at v. We pick a lift B, (c) € 1 (Io) of B,(c) that maps to zero in 71 (G). Such
a lift exists, since (3, (¢) maps to zero in 71 (G)r, and since the map 71 (Ip) = 71 (G)
is surjective. Since f,(c) = 0 for almost all v, we may and shall assume that
Bo(c) = 0 for almost all v.

Let Bp(c) := k1, ([b]) € m1({o)r,. We pick a lift 5,(c) € 71 (lo) of B,(c) that maps
to —[u]x € m1(G). Such a lift exists by condition KPO in Definition and by
the surjectivity of the map m;(Iy) — m1(G).

Now we take an elliptic maximal torus T in Ggr such that 79 € T(R). Then
T C Ipr. Since T is elliptic, there exists h € X that factors through T'. Let S0 (c)
be the image of up € X, (T) in m(lo)r... By [Kot90, Lem. 5.1], we know that
the image of pup in X.(T)r_, is independent of the choice of h. Moreover, since
all elliptic maximal tori in Ior are conjugate under Io(R), the element So(c) is
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independent of the choice of (T, h) as above. (For more details see [Kot90, p. 167].)
We pick a lift Boo(c) € m1(Io) of Bo(c) that maps to [u]x € m1(G). Such a lift
exists, since the image of Soo(c¢) under m (Io)r., — m1(G)r,. equals the image of
[#]x, and since the map w1 (Iy) — 71 (G) is surjective.

Write K for ker(m1(Ip) — 71 (G)). By the above construction, we have an element
Bo(c) € K for each place v ¢ {p, 00}, as well as an element Bp(c) + Boo(c) € K. We
define

Be) == Bulc) EK.

Here the summation is over all places v of QQ, and only finitely many terms are
NON-Zero.

Note that Kr_ is torsion. Indeed, if we take an R-elliptic maximal torus 7' in
Ipr and let T and S be the inverse images of T'in G r and I sc r Tespectively, then
K = X, (T)/X.(S). Since T is anisotropic over R, we know that X, (T)r__ is torsion.
It follows that Kr__ is torsion. In particular, K is torsion. Hence B(c) gives rise
to an element a(c) € (I, G; A/Q), by Proposition [1.7.3] Note that the ambiguity
in 3(c) caused by the choices of B3, (c) always comes from D, ker(K — w1 (Io)r,)-
Hence «a(c) is well defined.

1.7.6. It is convenient to have the definition of local components of Kottwitz
invariants when 7y is not Q-rational for the stabilization of the trace formula.

Suppose vy is a semi-simple element of G(A’}). We have Iy = Ggo over A?, and

we define the pointed set D (I, G; A’}) to be the restricted product H; DIy, G;Qy)
with respect to the trivial elements. (The cohomology of T' acting on IO(A?) no
longer makes sense.) If we are given an element a € @(IO,G;A];), we will also
write SP'*° (v, a) for a, generalizing the notation 57:°°(c) in Similarly, given
Y0 € G(Qyp)ss and given [b] € B((Gg,)Y,) satisfying KPO in Definition we
have 8,(70,[b]) and By (70, [0]) (the latter involving an extra choice), generalizing
Bp(c) and Ep(c) in Finally, starting from a semi-simple R-elliptic element
Y0 € G(R), we can define .. (7o) and Boo(70) (the latter involving an extra choice)
in the same way as in generalizing Boo(c) and Bog (c).

1.7.7. Let us check that our definition of Kottwitz invariants coincides with Kot-
twitz’s definition in [Kot90l §2], when Gge, is simply connected. This verification
allows us to freely import results from [Kot90] during the stabilization process.

~

Under the identification m (G) = X*(Z(G)), we view [u]x € m1(G) as a charac-
ter on Z(G). Under the current assumption on Gger, recall that Kottwitz attaches
an invariant «(8) € K(Io/Q)? to a classical Kottwitz parameter € = (yg,7,d) of

degree n. The outline is as follows. Let Iy := G, which is connected by the
assumption on Gaer. Kottwitz first defines a,(8) € m (Io)r, = X*(Z(Ip)'*) at
every place v. Then the character o, (£) on Z(Io)T* can be extended to a character
' (8) on Z(Iy)' Z(G), uniquely by the requirement that B.,(8) is either trivial or

v
equal to —[u] or [u] on Z(G), according as v ¢ {p,00} or v = p or v = oo, respec-

tively. || Thereby one obtains a character §(¢) := [], 3, (¢) on ), Z(Io)™ Z(@).

~

Since (&) is trivial on Z(G) by construction, it gives rise to a character a(t) on

~

IWe write B’ for Kottwitz’s B to avoid conflict with our own notation.
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(ﬂv Z(E)Hz(é)) /Z(@) The last group is canonically isomorphic to &(Ip/Q) if
Yo is elliptic in G(Q), which is true since g is R-elliptic. We note that the canonical
map from K = ker(m(Ip) — 71(G)) to the character group of N,Z(Ip)'* Z(G) is
compatible with the canonical map from K to &(Iy, G, A/Q) via the isomorphisms

Sk A\ P
&(lh, G: A/Q) = R(Io/Q)P = (W)

as can be seen from the proof of Corollary
When Gge, is simply connected, we remarked in §1.6.16|that we have a bijection

BP.(pM)/= — &P (p™)/~. Suppose ¢ = (y0,a,[b]) € KP,(p") corresponds to
t = (70,7,0) € AP (p"). We defined B,(c) and S, (c) in for each place v.
For v € {p,0}, note that Ev(c) is a character on Z(IAO), extending the character
By (c) on Z(fo)rv. Inspecting the definition we see that

Bu(c) = ay(B), Vo,

and

v ~ ~ = ! t 5 Y.
Bo®) i iy = PO W
Therefore the product [], Bo(c) gives the element a(c) € R(Io/Q)P. Comparing
with the definition of a(c) in §1.7.5 we conclude that
a(c) = alt).

From now on we return to the general setting, i.e., we do not assume that Gger
is simply connected.

Proposition 1.7.8. Let ¢ = (y0,a,[b]), ¢ = (y0,d',[b]) € &B. Write Iy for the
group Io(c) = Io(c'). The difference a(c) — a(d) € €(Iy,G;A/Q) is equal to the
image of a —a' € D(Iy, G;A?) under the composite map

(1.7.8.1) D(Io, G; A}) = €(1o, G1 AY) — €(Iy, G1 A) — €(1h, G; A/Q).
Proof. Write K for ker(m1(Io) — m1(G)). By Proposition [[.1.9] (ii), the diagram
H) (A, Iy — G)

|

HY,(A/Q, Iy — G)

H' (A, I)

is canonically isomorphic to the diagram

(1.7.8.2)

~—1 ~—1
H (oo, K)®@Dyro0 K1y tors —=H (Do, m1(Lo)) & B,zo0 m1(Lo)r, tors

|

KF,tors

For each place v ¢ {p, o0}, we choose fB,(c) and B,(¢') in K as in §1.7.5, The
I',-action on 71 (G) factors through some finite quotient I} of T',, and we have an
exact sequence Hy (I, m(G)) — Kr, — m1(Ip)r,. Since the image of Bo(c) in
71 (Io)r, is the torsion element j3,(c), and since H; (I',, 71 (G)) is torsion, the image
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of Bv(c)_ in Kr, is torsion. We denote this image by £,(c) € KT, tors- Similarly we
define 3,(¢') € Kt tors- Let

A= (ﬁv(c) - Bv(c/))vip,oo S @ KFv,tor&
v#p,00
Then A is sent to a—a’ by the horizontal map in (1.7.8.2). By the above discussion,
the image of @ — @’ under (1.7.8.1) is equal to the image of A under the composite
map
@ KFv,tors — KF,tors — 6(107 G; A/Q),

V#P,00
where the last map is the quotient map as in Proposition On the other hand,
by the construction of the Kottwitz invariant, the image of A in &(Ip, G;A/Q) is

a(c) — a(c’). Hence the image of a — o’ under (1.7.8.1)) is a(c) — a(c’). O

1.7.9. Let u : ¢ = ¢/ be an isomorphism between Kottwitz parameters. Then
the isomorphism Int(u) : Io(¢)g = Io(c)g is an inner twisting, and in particular it
induces an isomorphism of abelian groups

(17.9.1) €(Io(c), G; A/Q) < €(Io(¢), G A/Q)
The following result justifies that the Kottwitz invariant is indeed an “invariant”.
Proposition 1.7.10. The isomorphism (1.7.9.1]) takes a(c) to a(c’).

Proof. We write Iy and I, for Iy(c) and Iy(c'). Let K = ker(m (lo) = m1(G)) and
K" = ker(mi(y) — m1(G)). The inner twisting Int(u) : I, 5 = I(’)’@ induces a I'-
equivariant isomorphism 7 (Iy) — 1 (I}), which we denote by f. Then f restricts
to an isomorphism K — K’. Moreover, if we identify the two sides of ((1.7.9.1)) with
quotients of K tors and KJ. ;. respectively as in Proposition [1.7.3} then (1.7.9.1)
is induced by f: K = K'.

Let w € D(ly, G; Q) be the class of the cocycle (u™'Pu),er. For each place v of
Q, we denote by f3,(w) the image of w under the composite map

tors

ab}w
HY(Q, Io) — H'(Qu, Io) — Hy,(Q, Lo).
Using the isomorphism H}, (Q,,, Iy) = Ag, (71 (I0))71(Io)r, tors in Proposition
we also view (,(w) as an element of 71 (Ip)r, tors- We claim that for each place v,

the image of 3,(c) + B,(w) under the isomorphism my(I)r, — m1(I))r, induced

by f equals S3,(c').
Our claim for v ¢ {p, oo} follows from the following commutative diagram, which
is a special case of [Bor98, Lem. 3.15.1]

:D(IOan Qv) Q(IéyGaQ’U)

abll: abli:

¢(Iy, G; Q,) —— €(Iy, G; Q,) —2> (1)), G; Q,)

Here u, is the component at v of the bijection ([1.6.13.1f), ¢ is the translation map
x — x — By(w), and d is the group isomorphism induced by the inner twisting

Int(u) : Iy — I(’)@.
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Similarly, the bijection u, : B(log,) — B(Ijg,) as in (1.6.13.2) fits in the

commutative diagram

B(ly,g,) B(l}5,)

- |
f

T (lo)r, —— m1(lo)r, —=> m1(I))r,

where c is the translation map x — « — 8,(w). To see this, we use the fact that if
we choose ug as in then the image of ual"uo € IO(QP) in 71 (lo)r, under
K1, equals f,(w); see [Kot85, Rmk. 5.7] and [RVI4] Rmk. 2.2 (iv)]. Our claim for
v = p follows from the above commutative diagram.

Now we prove the claim for v = co. As in we choose (T, h) to define
Boo(c) and choose (T7,h') to define Buo(c¢’). Without loss of generality we may
assume that 77 = Int(k)(T) and h = Int(k) o h for some k € G(R). Since elliptic
maximal tori transfer between inner forms, there exists j € Ip(C) such that the map
Int(uj) : Tec — I{LC is defined over R and has image T”. We have a commutative
diagram

X.(T) ERLUC NG X.(T"),

~

| i

f
m(lo) ———=——m(l)

where the vertical maps are the natural quotient maps. Let n := (uj)~'k € G(C).
Then n is in the normalizer of T in G, and Int(uj) ™! (up) = Int(n)(us). Let A
be the image of Int(n)(up) — pp under X.(T) — w1 (lo)r... Then by the above
discussion we know that the image of 84 (¢c) + Ay under f: m (Io)r,, — m1(I))r.
equals Boo(c’). On the other hand, by [Kot90, Lem. 5.1}, we have Ay = foo(w).
Our claim for v = oo follows.

We have proved the claim. Now for each place v, since 8,(w) maps to zero in
m(Q)r,, there exists f,(w) € K lifting B,(w). By the claim, we may choose the
lifts 3, (c) and B,(¢) as in in such a way that §,(c) + 8,(w) maps to G,(c’)
under f : m1(ly) — w1 (I})). To complete the proof, it remains to show that the
element

Q=) Bw)eK

is sent to zero under K — Kr = Kt 1ors — €(Ip, G5 A/Q).

In fact, we show that there is a way to choose 3, (w) such that the image of Q in
Ky is already zero. Pick an element ' € HY, (Q, Iy — G) whose image along the
surjection HY (Q, Iy — G) — €(Iy, G; Q) = D(Iy, G;Q) is w. Write (), for the
image of ' under the composite map (see Proposition |1.1.9))

(1.7.10.1)  H(Q, 1o — G) — HY (A, Iy — G) = @ Ag, (K) € P K, tors-

Then for each v, Q) € Kr, tors is a lift of 8,(w) € m1(Lo)r,. Thus we may and

shall choose the lift 3,(w) € K of B,(w) such that B,(w) is a lift of €2,. In this
case, to show that  is sent to zero in Kr, it suffices to note that the composition
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of (1.7.10.1) with the natural map @, K1, tors — Krtors is zero. Indeed, by
Proposition [[.1.9] this composition is identified with the composition

Hgb((@»IO - G) — Hgb(A7 I — G)— Hgb(A/QaIO - G),

which is zero as desired. U

1.7.11. Let ¢ = (0, a,[b]) € &, and write Iy for Io(c). Assume that [b] € B(loq,)

is basic. This is the case, for example, when ¢ is p"”-admissible, by Corollary [1.6.12]
Recall that the notion of inner forms and isomorphisms between inner forms are
given in Definition The image of a in HI(A’}, I39) determines an inner form
I, of Iy over Q, up to isomorphism for each place v # p,00. The basic element
[b] € B(lo,g,) determines an inner form I, of Iy over Q, up to isomorphism, namely
I, := JJ° for a decent representative b of [b] (see . Finally, let (T, h) be as
in Then Int(h(:)) induces a Cartan involution on (Iy/Zg)gr, from which
we obtain an inner form I, of Iy over R that is anisotropic modulo Zg . The
isomorphism class of this inner form I, depends only on c.

Proposition 1.7.12. In the situation of assume that the Kottwitz invari-
ant a(c) is zero. Then there exists an inner form I = I(c) of Iy over Q, unique up to
isomorphism between inner forms, such that its localization over Q, is isomorphic
to I,, as inner forms of Iy g, for each place v .

Proof. The uniqueness follows from the Hasse principle for I39. To prove the exis-

tence, for each place v we denote by 7, the cohomology class in H'(Q,,, 134 corre-
sponding to the inner form I, (cf. Remark|1.2.3]). By [Kot86l, Prop. 2.6] (cf. [Bor98,
Thm. 5.16]) we have an exact sequence of pointed sets

H'(Q ;") - @ H (Qu, i) ™ 1 (I3 tors-
Here m is defined as follows. For each place v, let m, be the composite

ab! ~ a
H' (Qu, [§9) == H,(Qu, I59) 2 Ag, (11(I5) = m1(I5)r, torss

(note that these maps are all isomorphisms for v finite) and let 4, be the natural
map 71 (13N r, tors = T1 (1)1 tors- Then m =Y i, 0 my.
We only need to prove that

Ziv omy(ny) = 0.

For each v, we claim that m,(n,) equals the image of §,(¢) under m (lo)r, —
71 (13N, = 71 (181, tors- Indeed, this statement is non-trivial only for v € {p, 0o}.
For v = p, there is a canonical bijection between Hl((@p7 13%) and the set of basic
elements of B(Igf@p). If we identify H'(Q,, I39) with (I3Yr, = T3, tors,
then this bijection is a section of the Kottwitz map B(Ig,((b,,) —m (Igd)pp. Moreover,
this bijection sends 7, to the image of [b] in B(Igf@p). For more details see the end of
[RV14, §2.1]. The claim for v = p follows. For v = oo, let (T', h) be as in §1.7.5, and
let T :=T/Zg . Let h (resp. fi,) be the composition of b : S — T (resp. uy, : Gy, —
_ _ ~ 1 _ _
Tc) with T — T. Since T is anisotropic, we have H (T, X.(T)) = X.(T)r..,
~—1 _ _
and the Tate-Nakayama isomorphism H ~(I's, X,.(T)) = H*(R, T) is induced by
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the map
X.(T) — ZY(R,T)
A— (1= 1,7 — A(-1)),

where 7 denotes the complex conjugation. By definition, 7., is represented by the
cocycle (1 = 1,7 ~ h(i)), whereas B (c) is represented by uj, € X.(T). Thus
to verify our claim it suffices to check that h(i) = jin,(—1). This follows from the
equality h(i) = pn(—1)wp(2), where wy, is the weight cocharacter of h and factors
through Zg g.

Write K for ker(mi(Ip) — m1(G)). By the above claim, ), i, 0 m,(n,) is equal
to the image of a(c¢) under the composite map

KI‘ tors
E(ly,G5A/Q) = :
o G 4/0) D, ker(Kr, tors = m1(lo)r, )
where the first isomorphism is as in Proposition|1.7.3], and the second map is induced
by the inclusion K < m;(Iy). Since a(c) = 0, we have ) i, 0 my(n,) = 0, as
desired. 0

— T1 (IO)F,tors — 1 (Igd)l“,tors’

1.8. Stating the point counting formula.

1.8.1. Let (G, X) be a Shimura datum, and let p be a prime number. We assume
that G is unramified over Q,,, and fix a reductive model G of G@p over Z,. In the
sequel we shall call such a quadruple (G, X,p,G) an unramified Shimura datum.
Let E be the reflex field of (G, X), and let p and ¢ = p” be as in §1.6.1] In the
current case Fj, is unramified over Q,, so we identify |, with Q,-. We write K,
for the hyperspecial subgroup G(Z,) C G(Q,).

We fix notations for Hecke algebras. For each compact open subgroup K? C
G(A%), let H(G(A})/KP) be the Hecke algebra of C-valued smooth compactly
supported KP-bi-invariant distributions on G(A%). Let H(G(A%)/KP)q be the Q-
subalgebra of H(G (A’;) J/ KP) consisting of distributions that are rational on charac-
teristic functions of compact open subgroups of G(A%). Elements of H(G(A%)/ K?)
can be represented as fPdgP, where fP is a C-valued smooth compactly supported
KP-bi-invariant function on G(A%), and dg? is a Haar measure on G(A”) assigning
rational volumes to compact open subgroups. Elements of #(G(A})/K?)q can
similarly be represented as fPdgP

Fix an irreducible algebraic representation ¢ of G over Q that factors through G¢.
Fix a prime number ¢ # p, and view £ as a representation over Q,. As explained
in we have the Gal(E/E) x G(Af)-module

which is admissible as an G(Ay)-module. For each compact open subgroup K? C

G(A%), we have the induced action of #(G(A}) / K?)g on the admissible G (A%)-

module H.(Shz, &)%». Fix a decomposition subgroup D, C Gal(E/E) at p, and
fix an element ®, € D, that lifts the geometric g-Frobenius.
For m € Z>; and fPdg? € H(G(A})/KP)q, we define

T frdg?) = SO 1) (0 x (Pdg?) | LS ) € T

i



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 49

Our goal in the rest of this subsection is to state a conjectural formula for the above
quantity. In what follows we keep fPdgP fixed.

1.8.2. Let m € Z>; and let n = mr. Fix ¢ = (y0,q, [b]) € 8B,(p"), satisfying
a(c) = 0. As in §1.6.16] ¢ gives rise to a classical Kottwitz parameter (yo,7,0) €
BB (p™) of degree n, well defined up to equivalence. Let I(c) be the global inner
form of Io(c) as in Proposition [1.7.12} Let R := Resg,. /g, G, and we view J as
an element of R(Q,). Let 6 be the Qp,-automorphism of R corresponding to the
arithmetic p-Frobenius o € Gal(Q,»/Qy). Let Rsxg denote the fixed subgroup of
R under the automorphism Int(J) o 6.

Note that the A?—group G?Y is isomorphic to I(C)A?, and the Q,-group RY,,

is isomorphic to I(c)g,. Moreover, these isomorphisms are canonical up to inner
automorphisms defined over A’; and Q, respectively. Choose Haar measures di?
on I(A%) and di, on I(Q,). They can be transported to G9(A%) and Ry, ,(Qp)
respectively in an unambiguous way. We denote the resulting Haar measures on
GY(A%) and Ry, ,(Qp) still by di” and di,.

Since r|n, and since G is quasi-split over Q,, (as it is unramified), the Hodge
cocharacters pp, of h € X determine a G(Qpn»)-conjugacy class of cocharacters of
Gq,., cf. [Kot84al §1.3]. The negative of this conjugacy class of cocharacters (i.e.,
with all members replaced by their inverses) further determines a G(Z,n)-double
coset in G(Qpn) via the Cartan decomposition, and we denote the characteristic
function of this double coset by ¢, : G(Qpn) — {0,1} (cf. [Kot84al §2.1]). We
define

O(¢,m, fPdg?, dipdi®) := O,(fPdg”)TOs(¢n) € C,
where O, (fPdgP) is the orbital integral

dg?
P! -7
9™ 9 50
GS(ANG(AR)
and T'Os(¢y) is the twisted orbital integral
dry

(bn(r*l&@(r))
RY . 0(Qp)\R(Qp)

-
di,

with dr, the Haar measure on R(Q,) = G(Qp») giving volume 1 to G(Z,n).

Remark 1.8.3. As the notation suggests, the dependence of O(c, m, fPdg?, di,di?)
on the two Haar measures di, and di” is only via the product measure di,di?
on I(c)(Af). Moreover, if di,di? is rational on compact open subgroups, then
O(c,m, fPdg?, dipdi?) lies in Q. To see this, we may assume that f? = 1gpx» for
a compact open subgroup K? C G(A’}) and some a € G(Afc), and that each of
dg?, dip, di? is rational on compact open subgroups. We then know that O, (fPdg?)
lies in Q by adapting [Kot05, (3.4.1)] from the local setting to the adelic settingm
Similarly, we have TOs(¢,,) € Q by a formula similar to [Kot05, (3.4.1)], cf. the
proof of [ZZ20], Lem. 4.2.3].

100ur definition of the orbital integral equals (G (AF) - GQ(A’;)} times the adelic integral
analogous to [Kot05) (3.4.1)].
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Remark 1.8.4. Up to normalizations of the Haar measures on G9 (A}) and R, (Q),
the dependence of O(c,m, fPdgP, di,di?) on ¢ is only via (v, d). However for later
purposes it is important to normalize these Haar measures by choosing a Haar mea-
sure on I(c)(As). Note that the classical Kottwitz parameter (7yo,,d) alone does
not determine the global inner form I(c) of GY (unless Gyer is simply connected),
so this way of normalization only makes sense with the presence of .

Lemma 1.8.5. Let I be a connected reductive group over Q, and let Z be a Q-
subgroup of Zr. Assume that I/Z is anisotropic over R. Then for any open subgroup
UC Z(Ay), I(Q)U is a closed subgroup of I(Ay).

Proof. We write I for I/Z. Since I is anisotropic over R, and since I(Q) is discrete
in I(A), we know that I(Q) is a discrete (and hence closed) subgroup of I(Af). Let
f denote the map I(Ay) — I(Af). Let V := f~1(I(Q)). Then Z(As) = f~1({1})
is open in V', and V is closed in I(Ay). Since U is open in Z(Ay), it is open in V.
Hence I(Q)U is an open subgroup of V, and therefore closed in V. We have seen
that V is closed in I(Ay), so I(Q)U is closed in I(Af). O

1.8.6. Keep the setting of §1.82 As in §I.5.6] for each compact open sub-
group K? C G(Ay) we write Zx x» for Zg(Ay) N K, K?, and write Z(Q)x,x» for
Z¢(Q) N K,KP. Since Z := Zg and I := I(c) satisfy the assumptions in Lemma
1.8.5) we know that I(c)(Q)Zk,k» is a closed subgroup of I(c)(Af). Recall from
Bor63, Thm. 5.1] that I(c)(Q)\I(c)(Ay)/U is finite for every compact open sub-
group U C I(Ay). It follows that I(c)(Q)Zxk,x»\I(c)(Ay) is compact Hausdorff.
We equip I(c)(Ay) with the Haar measure di,di?, and equip I(¢)(Q)Zk,x» with
the Haar measure that gives volume 1 to its open subgroup I(c)(Q)Zk,x». Then
I(c)(Q)Zk,x»\I(c)(Af) has finite volume under the quotient measure, and we de-
note this volume by

c1(c, KP, dipdiP).
We also define
ca(e) = e2(0) = [Me(Q, G7,)| -
Note that the product

ci(e, KP, dip,di?)O(c, m, fPdgP, dipdiP)

is independent of di,di’. Combined with Remark this implies that the above
product lies in Q. In the sequel, we shall denote this product simply by

Cl(C, Kp)O(C, m, fpdgp) € Q

1.8.7. Let Xg_o1(G) be the set of stable conjugacy classes of semi-simple, R-elliptic
elements of G(Q). (This is well defined, since R-elliptic maximal tori transfer
between inner forms of reductive groups over R.) We fix a compact open subgroup
K? C G(A%) such that K, K” is neat and such that f? is KP-bi-invariant. We fix
a subset Xg» of G(Q) such that each Z(Q)x, xr-translation-orbit in g en(G) is
represented by exactly one element of Xx».

For each vy € X g», we write KB(7o) for the set of ¢ € &3 whose first component
is 7.

For any reductive group H over Q and any € € H(Q)ss, we know that (H./H?)(Q)
is isomorphic to a subgroup of the abelian group 1 (Hqer) by [Ste75lL Cor. 2.16 (a)].
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It follows that H./H? is a finite commutative algebraic group over Q. We define
va(€) = [H(Q) : H(Q)],
i (e) = | (H/HO)(@)]

Conjecture 1.8.8. For all sufficiently large integers m (in a way depending on
fPdgP), we have

(1.8.8.1) T(®T, fPdg?)
= > o) tea(r0)tré(r) > ci(e, K)O(c, m, fPdg?).

YoEX kP c€RP(v0)NAP,(P™)
a(c)=0
Remark 1.8.9. On the right hand side of , each summand indexed by 7y is
of the form tr&(v) (which lies in Q) times a rational number, by the discussion at
the end of Hence the right hand side of in fact lies in the smallest
number field containing {tr&(yo) | 70 € Xk}

Remark 1.8.10. When Gy, is simply connected and Z¢ is cuspidal, the right hand
side of recovers the formula conjectured by Kottwitz in [Kot90, §3]. We
have formulated the conjecture only for m sufficiently large, in anticipation of the
fact that the local terms in the Grothendieck—Lefschetz—Verdier formula are equal
to the naive local terms (i.e., Deligne’s conjecture) only for m sufficiently large. For
applications, it is important (and usually sufficient) to know that holds
for all sufficiently large m, not just all sufficiently divisible m.

2. VARIANTS OF THE LANGLANDS-RAPOPORT CONJECTURE

2.1. The formalism of Galois gerbs. The Langlands—Rapoport Conjecture, in
its original form in [LR8T], is formulated using Galois gerbs. In this subsection
we recall the basic definitions in the formalism of Galois gerbs. We mainly follow
[Kis17, §3.1], while we make some corrections (see especially Remark and
provide some complementary explanations.

In the following, let k'/k be a Galois extension of fields of characteristic zero.

Definition 2.1.1. By a k'/k-Galois gerb, we mean a pair (G, ®), where G is
a connected linear algebraic group over k', and & is an extension of topological
groups
1 — (G(k),discrete topology) — & — Gal(k'/k) — 1
satisfying the following conditions.
(i) For each g € &, there is a k’-group isomorphism ¢® : 7*G — G, where
7 is the image of g in Gal(k’/k), such that the conjugation action of g on

al,
G(K') is given by G(k') = (7*G) (k') EiaR G(K).
(ii) There exists a continuous group theoretic section of & — Gal(k’/k) defined
on an open subgroup of Gal(k'/k).
We often write & for a k'/k-Galois gerb (G, ®), and write &2 for G, called the
kernel of &. A morphism between two k’/k-Galois gerbs &1 and &5 is a pair (¢2, ¢)
consisting of a k’-homomorphism ¢ : &2 — &2 and a continuous homomorphism
¢ : B1 — By satisfying the following conditions.
(a) ¢ commutes with the maps &; — Gal(k'/k).
(b) The restriction of ¢ to & (k') is given by ¢A.
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We write Gro(k'/k) for the category of k’/k-Galois gerbs.

Remark 2.1.2. The assumption in Definition [2.1.1] that G is connected is missing in
[Kis17, §3.1], and should be added. This assumption implies that G(k’) is Zariski
dense in G (see [Bor91l, Cor. 18.3]). In particular, each g € & uniquely determines
the isomorphism ¢, which is vital for various constructions. Another consequence
is that for a morphism (¢2, ¢) : &1 — &, between k' /k-Galois gerbs, ¢* is uniquely
determined by ¢. For this reason we can view ¢ alone as a morphism &; — .

Remark 2.1.3. Let & € Gro(k'/k). Then all continuous group theoretic sections
of & — Gal(k’/k) defined on open subgroups of Gal(k’/k) belong to the same
germ. Moreover, this germ can be extended to a continuous set theoretic section of
® — Gal(k'/k) defined on the whole Gal(k'/k).

Definition 2.1.4. Let G be a connected linear algebraic group over k. Let &g
be the split extension G (k') x Gal(k’/k), where Gal(k’/k) acts naturally on G(k').
Then (Gy/, B¢g) € Grb(k'/k), and it is called the neutral k' /k-Galois gerb associated
with G.

Definition 2.1.5. Let & € Grb(k'/k). For each g € &*(k'), conjugation by g
induces an automorphism Int(g) of &. Let ¢,% : $§ — & be two morphisms in
Grb(k'/k). We say that ¢ and 9 are conjugate (or & (k')-conjugate, for clarity), if
there exists g € &2 (k') such that ¢ = Int(g) o 1.

2.1.6. Let ¢ : 5 — & be a morphism in Grb(k'/k). A k-algebraic group I, is
defined in [Kis17, §3.1.1, Lem. 3.1.2]|E We have a canonical identification between
Iy and the centralizer QSﬁA of im(¢?) in &2, Under this identification, I4(k)
is the group of g € &2 (k') such that Int(g) o ¢ = ¢. Moreover, if we choose a
continuous set theoretic section Gal(k'/k) — $,7 — ¢, of H — Gal(k'/k), then
the action of 7 € Gal(k'/k) on I4(k') = QﬁﬁA(k’) with respect to the k-form I is
induced by conjugation by ¢(g,) inside .

In fact, the axioms for k’/k-Galois-gerbs guarantee that the above description of
the Gal(k'/k)-action on (’5§A (k') can be naturally upgraded to a k' /k-Galois descent
datum that gives the k-form I, of the k’-group QSﬁA. We refer the reader to the
proof of [Kis17, Lem. 3.1.2] for more details. Here we only remark that the cocycle
condition for the descent datum amounts to the fact that for all 7,p € Gal(k'/k),
d(qrqpq;5,) ) lies in (im #*)(k'), and hence lies in the center of ®$A.

If¢:R— $Hand ¢: H— & are two morphisms in Grb(k’/k), then the inclusion
(’5§A — B2 induces an injective k-homomorphism

(¢o0)2
(2161) I¢ — I¢o<.
If ¢ : H — B¢ is a morphism in Grb(k’/k) with G a connected linear algebraic
group over k, then Iy contains Zg as a k-subgroup.

Remark 2.1.7. Let & € Grb(k'/k), and let ¢ be the identity & — &. Then I, is a
canonical k-form of QjﬁA = Zga. In particular, if > is a torus, then we have a

canonical k-form of &2.

HThe assumption in [Kis17 Lem. 3.1.2] that the target of ¢ is a neutral gerb is not needed.
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2.1.8. Let ¢ : § — & be a morphism in Grb(k'/k), where the target is a neutral
gerb associated with a reductive group G over k. We assume that $* is a torus.
In this situation we define k-groups Iqu and I, that are closely related to I,.

Let M := Gy g4a. Then M is a k’-subgroup of Gy whose base change to an
algebraic closure of k' becomes a Levi subgroup. Let M f.=Mn Ger, i, and let
M be the inverse image of M1 in Gekr- Then M, MT, and M are reductive groups
over k', and the natural maps M — Mt — M induce isomorphisms between the
respective adjoint groups.

The usual conjugation action of G(k") on G (k') together with the natural action
of Gal(k'/k) on Gs.(k') gives rise to an action of &g = G(k') x Gal(k'/k) on
Gs.(k'), which we denote by Intg“. Choose a continuous set theoretic section
Gal(k'/k) — 9,7 — ¢. of H — Gal(k’'/k). We define fd) to be the k-form of M
corresponding to the following Gal(k’/k)-action on M(k'): Each 7 € Gal(k'/k)
acts by Intg“ (¢(g-)). More precisely, just as the definition of I; via Galois descent
discussed in this Galois action can be naturally upgraded to a k’/k-Galois
descent datum on M. The cocycle condition in the current context amounts to the
requirement that for all 7,p € Gal(k'/k), Intg“(qb(qquqT_pl)) acts trivially on M.
This is indeed true, because ¢(q-q,q;, pl) lies in Zjs, and any element of Zj; acts
trivially on M via Intg“. Using the same principle, one sees that the Galois descent
datum does not depend on the choice of 7 — ¢,. Thus we obtain the k-group I~¢
canonically.

In the same way we define a k-form I;; of M. The natural k’-homomorphism

M — M' < M induce k-homomorphisms I, 6 — IJ; — Iy between reductive groups.
Note that the composite k’-homomorphism I, 5 < Gy — G2 is defined over k,
and its kernel is naturally identified with IL.

2.1.9. Let I/l be another Galois extension of fields of characteristic zero, equipped
with compatible embeddings k < [ and k' < I’. In this situation we have the pull-
back functor

(2.1.9.1) PB: Grb(k'/k) — Grb(l'/1).

We explain its definition.
We first define PB of an object. Let & € Grb(k'/k), with kernel G. We have a
short exact sequence

1= G(K) = &), — Gal(l'/l) — 1,

where 6?,” is the fiber product & X qai(x/k) Gal(l’/1) in the category of topological
groups. The above short exact sequence is in fact an extension of topological groups,
which follows easily from Remark

Given any g € 6?’/l with image 7 € Gal(l’/l), the conjugation action of g on
G(K') is induced by a k’-isomorphism (7|/)*G = G uniquely determined by g (i.e.,
the isomorphism h*8  where h is the image of g in &). The last k’-isomorphism
induces an /’-isomorphism u, : 7*(Gy/) = Gy, and in particular an automorphism
of G(I") given by

G =G () S (G () 22 Gu () = G(1).

In this way we obtain an action of 05?, /1 on G(') via group automorphisms.
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Let &/, be the quotient group (G(I') x &), )/ {z @ a~" | x € G(K')}. We shall
denote elements of &, ; by [z, (u, )], for z € G(I'), (u,T) € Qﬁ?,/l. We have a short
exact sequence

z—[z,(1,1)] [z, (u,7)]—T

(2.1.9.2) 1 G(U') Gal(l' /1) — 1.

6[//[

We equip &/, with the quotient topology of the product topology on G(I") x
&9, I (As always, G(I') has the discrete topology.) Then &, is a topological group,
and is an extension of topological groups. One checks that (G, &) €
Grbo(I'/1). We define PB(®) to be (Gr, &y ).

We now define PB of a morphism. Given any morphism ¢ : & — § in Grb(k'/k),
we define PB(¢) to be (¢2, ¢y ;) : PB(6) — PB($)), where ¢, is given by

Gu s Gy — Ny
[z, (u, 7)] — [6°(2), (p(u), 7)), =€ Q') (u,7) € B .

This concludes the definition of the functor PB.
Note that for & € Grb(k’/k), there is a canonical group homomorphism

<@ Cal(l'JIK) — Gy, T [1,(1,7)],
which is a section of &, — Gal(l'/I).

Lemma 2.1.10. Keep the setting of and assume in addition that | = k.
Let &, € Grb(k'/k). A morphism ¢ : PB(®) — PB($) is of the form PB(¢) for
some morphism ¢ : & — $ if and only if ¥ o <O = 2 . Moreover, when this is
the case, ¢ is unique.

Proof. The “only if” part is trivial. We show the “if” part.

From the hypothesis on 1), it follows that ¥* is the base change to I’ of a k/-
homomorphism ¢» : &2 — $2, and that ¥[1, (u,7)] is of the form [1, (¢(u),7)]
for some function ¢ : & — $. We now check that (¢*,¢) is a morphism in
Gro(k'/k). In fact, only the continuity of ¢ is non-obvious. For this, we observe
that the map ﬁ?’/l — H2(1') % .6?,/[, (u,7) — (1,u,7) is continuous and open,
since H2(I') is discrete. Hence the induced injective map fj?,/l — $yy is also
continuous and open, i.e., a homeomorphism onto its image. It follows that the
map &), — 9}, (u,7) = ($(u),7) is continuous. The continuity of ¢ then
follows from the openness of the map Gal(l’/l) — Gal(k'/k).

Given that (¢®,¢) is a morphism, it is clear that 1) = PB(¢).

Finally, we show that if ¥» = PB(¢) then ¢ is unique. Suppose ¢; also satisfies
the condition. Then

l/}[la (ua T)] - [1a (¢(u)7 T)] - [la (¢1(u)a T)]a
and in particular ¢(u) = ¢1(u), for all (u,7) € Qi?,/l. Since the projection Qﬁ?/ﬂ —
&, (u, 7) — u is surjective, we have ¢ = ¢1. O
Definition 2.1.11. Let pro-Grb(k’/k) be the category whose objects are projective

systems (&;);ecr in Grb(k'/k) indexed by directed sets (I, <) and whose morphisms
are given by

Hompyro-gror /) ((Bi)ier, (9))jer) = lim 1igHomgrb(k'/k)(@z‘, ;).
jeJiel
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Objects of pro-Grb(k' /k) are called pro-k’/k-Galois gerbs. We view Grb(k'/k) natu-
rally as a full subcategory of pro-Grb(k’/k). When we are in the situation of
the pull-back functor naturally extends to a functor pro-Grb(k'/k) —
pro-Grb(l’ /1), which we still call pull-back.

2.1.12. Let & = (8,);c1 € pro-Grb(k'/k). Then we can take the projective limit
B2 = yili B2 in the category of affine k’-group schemes, and take the projective
limit &P = @1 &, in the category of topological groups. If ¢ : & — £ is a
morphism in pro-Grb(k'/k), then ¢ naturally induces a homomorphism of affine
k’-group schemes ¢* : &* — $2, and a continuous homomorphism ¢'°P : BtP —

$HtoP, In the sequel, if d is an element of &*°P, we shall simply write d € &. Also,
we shall simply write ¢(d) € $ for ¢*°P(d) € HP.

The following definition generalizes Definition [2.1.5]

Definition 2.1.13. Let $ = (9;)icr € pro-Grb(k'/k),& € Grb(k'/k), and let
o, H — & be two morphisms in pro-Grb(k'/k). We say that ¢ and ¢ are
conjugate (or &> (k')-conjugate) if there exists g € &= (k') such that ¢ = Int(g) o ¢
as morphisms in pro-Gro(k'/k).

2.1.14. Let $ = (9;)ier € pro-Gro(k'/k), & € Gro(k'/k), and let ¢ : $H — & be a
morphism in pro-Grb(k’/k). We now define I, generalizing the definition in §2.1.6
Choose ig € I such that ¢ is induced by a morphism ¢;, : $;, — ®. For each

© € I with ¢ > ig, let ¢; be the composition H; — $;, ¢—°> &. For j > i > i,

there is a natural k-homomorphism Iy, — Iy, as in (2.1.6.1]), whose base change

to k' is identified with the inclusion map ®$A — ®$A. For sufficiently large i, the
i j

decreasing subgroups im(¢2) of 4 stabilize, since &2 is noetherian. Hence (’5(?&

and Iy, also stabilize. We can thus define '

im(¢?) = im(¢p),

Qf'ﬁA = QﬁﬁA,
I¢, = I¢w

for ¢ € I sufficiently large. Clearly these definitions are independent of the initial
choices of g and ¢;,,.

By construction, I ;s is canonically identified with ®§A. It is also easy to see
that I,(k) precisely consists of those g € &2 (k') such that Int(g) o ¢ = ¢ (as
morphisms in pro-Grb(k'/k)).

If & = B¢ for some reductive group G over k, and if fJiA are tori for all 2 € I,
then we also extend the definitions of I; and E, in to the present case, in the

obvious way. In this case, each of Iy, I];, f¢ is a reductive group. The group I4 has
the same absolute rank as GG, and contains Zg as a Q-subgroup.

2.1.15. Let $, &, ¢ be as at the beginning of Given a continuous 1-cocycle
a = (a,) € Z'(K'/k,1,(k")), there is a morphism a¢ : $ — & defined as follows.
Choose i € I such that ¢ is induced by some ¢; : ; — & and such that I, = Iy,.
Denote by 7 the structural map $; — Gal(k’'/k). We define

adi 1 Hi — G, gr— ar(g)Pi(9).
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Here, we view ar(y € I4(k') as an element of 2(k') C & via the canonical
embedding I, 5 < ®2. Then a¢; is a morphism in Grb(k'/k), and we define a¢
to be the morphism induced by a¢;. This definition is independent of choices.

Lemma 2.1.16. In the setting of the map a + a¢ is a bijection from
ZY(K' [k, 14(K")) to the set of morphisms ¢ : § — & such that ¢"> = ¢>. Moreover,
for a,a’ € ZY(K' [k, 1,(K')), we have a¢ is conjugate to a'¢ if and only if a is
cohomologous to a'.

Proof. Since &* is finitely presented over &/, the natural map

@Homk/(ﬁf, Gr) — Homy (92, Gy)

is a bijection. Here Homy: denotes the set of homomorphisms of &’-group schemes.
The lemma then reduces to the case where ) is in Grb(k'/k). In this case the proof
is exactly the same as the proof of part (2) of [Kis17, Lem. 3.1.2]. O

Definition 2.1.17. For a and ¢ as in we call a¢ the twist of ¢ by a.
Similarly, for a class 3 € H* (k' /k, I4(k")), we define the twist of ¢ by B, denoted by
#%, to be the conjugacy class of a¢p where a is any cocycle representing 3. This is
well defined by Lemma We shall sometimes also write ¢ for an unspecified
member of this conjugacy class.

2.1.18. We explain how to obtain Galois gerbs from Reimann’s explicit cocycle
construction in [Rei97, App. B]. We first sketch the idea behind the construction
informally. Let & € Grb(k'/k). Suppose that there is a continuous set theoretic
section ¢ : Gal(k'/k) — & of & — Gal(k’/k) such that <(p)s(7)s(pr)~! lies in
Zga (k') for all p,7 € Gal(k’/k). Then the isomorphisms (¢(7))*8 : 7* &2 = ¢4
for 7 € Gal(k'/k) form a k'/k-Galois descent datum. Let G be the corresponding
k-form of &2. Then the isomorphism class of & can be recovered from G and the
map Gal(k'/k) x Gal(k'/k) — Za(K"), (p,7) + <(p)s(7)s(pT) L, which is in fact a
continuous 2-cocycle.

We now give the formal construction. First we define a category R(k’/k). The
objects are pairs (G, z), where G is a connected linear algebraic group over k, and
z = (2p,7) is a continuous 2-cocycle Gal(k'/k) x Gal(k'/k) — Zg(k') satisfying
211 = 1. A morphism (G, 2') — (G, z) is a pair (¢?, f), where ¢* : G}, — Gy is
a homomorphism of k’-groups, and f = (f,) is a continuous 1-cochain Gal(k'/k) —
G(k') satisfying

2 fol frfor = 0% (2),),
Int(f,) 0 p*(6%) = 6%,
for all p,7 € Gal(k’/k). (In particular, f; = 1.) The composition of morphisms is
given by
(¢Aa f)e (wA, h) = (¢A o™, (¢A(hp)fp)p)~
We define a fully faithful functor

(2.1.18.1) £ R(K k) —> Grb(K' /k).

12Since we define ¢? to be the whole conjugacy class, its members are not necessarily of the
form a¢ for any a € Z1 (k' /k, I5(k")).
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Let (G, z) € R(k'/k). To define £(G, z), we let & := G(k') x Gal(k'/k), equipped
with the product topology. Define a binary operation on & by

(9,p) - (h,7) == (9p(h)zp,7, PT)-

Then (&, -) is a topological group, and the maps G(k') — &, g — (g,1) and & —
Gal(k'/k), (g, p) — p make & a topological group extension of Gal(k’/k) by G(k').
Then (Gy,®) € Grb(k'/k). (To check condition (ii) in Definition use that
2p,r = 1 for all p, T sufficiently close to 1.) We define £(G, z) to be (G, ®).

For a morphism (¢2, f) : (G, 2') — (G, z) in R(Kk'/k), we define

S, F): E(G,2) = G'(K') x Gal(K' [k) — E(G,z) = G(K') x Gal(k'/k)
(d'.p) — (82(9") for ).

This completes the definition of the functor £. We omit the proof that & is fully
faithful, since this fact will not be used.

Analogous to Definition we consider the category pro-R(k'/k) of pro-
objects in R(k’'/k) indexed by directed sets. The functor naturally ex-
tends to a functor

(2.1.18.2) & : pro-R(k'/k) — pro-Grb(k' /k)

which is also fully faithful.

In [Rei97, App. B], various affine groupoids are defined, which are needed for
the correct formulation of the Langlands—Rapoport Conjecture. There is a functor
from pro-R(k'/k) to the category of affine k'/k-groupoids, and Reimann obtains
the desired groupoids by constructing explicit objects in pro-R(k’/k) (for suitable
k'/k). In the present paper, we shall not need affine groupoids, but we shall im-
port Reimann’s explicit constructions and obtain pro-Galois gerbs via the functor
(2.1.18.2). This is the same as the point of view taken in [Kisl7].

2.2. The Dieudonné gerb and the quasi-motivic gerb.

2.2.1. Fix a prime p. We recall the definition of the Dieudonné gerb in terms
of the functor (2.1.18.2), cf. [Rei97, pp. 109-110]. For each n € Z>1, let &y, :

Gal(Qy'/Qp) x Gal(Q,"/Qp) — Z be the unique continuous function satisfying
kn(0',0%) = [i/n] + i/n] = [(i+5)/n], ¥i,j€ L.
Here o denotes the arithmetic p-Frobenius as usual. Let D, be the object in
R(Q}7/Qp) given by (G, (pin(P7)), ;). For n,n’ € Zsy with nn’, let A\, :
Gal(Q,'/Qp) — Z be the unique continuous function satisfying
Munr(0) = i/n' |0/ /n — |i/n], Vi€ Z.
Let 0y : Dyy — Dy, be the morphism in ’R(Q;r/(@p) given by

(z — ™ /. (p/\n,m(p))p).

Then (Dn)nez21 equipped with the transition morphisms §,, is an object in
pro-R(QV/Q, ).

Applying the functor (2.1.18.2) to (D,,),, we obtain an object ® = (D,), =
((Dn))n in pro-Grbo(Q}7/Qy). This is called the Dieudonné gerb.
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We denote by D the pro-torus ]gl . Gy, over SpecZ, where for n|n’ the
Nn€l>1

transition map from the n’-th G,, to the n-th G,, is z — 2"'/". We have

Let n € Z>1. By construction, the set underlying ®,, is G,,(Q,") x Gal(Q}"/Qy).
Using this we define a canonical element

o = (p~ /" o) € D,
and a canonical map
Sn - Gal(@;r/(@p”) — z)na pr— (Lp)a

which is a continuous section of ®,, — Gal(Qy'/Q,). Clearly ky(0%,07) = 0 when
i, j are divisible by n, so k,, vanishes on Gal(Q}"/Qp» ) x Gal(Q}"/Qpn ) by continuity.
It follows that ¢, is a group homomorphism. For future use, we compute:

n—1

2211)  dr, =@ W[ 0" = (7o) = p (o), Y
=1

(22.1.2)  E@Bnn) (o) = (p~ /"0 @) 5y = (p~ /) 5y = d,,,,, Vnln'.

(2.2.1.3)
E@nn) (5w (p)) = (PP, p) = (1,p) = sulp),  Vnln',¥p € Gal(Qy'/Q,u).
By (2.2.1.2), the system (dy ), defines an element d, € D%P.

Definition 2.2.2. Let 6, € pro-grb(@p/(@p) be the pull back of ©. For each
n € Z>1, let &, € pro-Grb(Q,/Q,) be the pull back of @n Thus &, = (&, n)n.

Definition 2.2.3. Let G be a connected linear algebraic group over Q,. Let
®g € Grb(Q,/Q,) and &Y € Grb(Qy/Q,) be the associated neutral gerbs. A
morphism 6 : &, — &¢ in pro-Grb(Q,/Q,) is called unramified, if it is the pull-back
of a morphism 6" : ® — & in pro-Grb(Q,'/Q,). By the obvious generalization
of Lemma 6" is uniquely determined by 6. For general 0, we write UR(6)
for the set of g € G(Q,) such that Int(g~") o § is unramified.

Lemma 2.2.4. Keep the notation of Definition |2.2.5. The following statements
hold.

(i) For any morphism 0 : &, — &g, the set UR(0) is a G(Q,")-torsor, where
G(Qp") multiplies on the right.

(i) Let ¢ : © — BY be a morphism. For sufficiently divisible n, we have
(do)" = ¢2(p71) x o™ € BE, where ¢y, is a morphism D, — G induc-
ng ¢.

Proof. By the discussion in @, the fact that &, is the pull-back of © gives rise
to a canonical homomorphism ¢ : ', o = Gal(Q,/Qu") — &°P, which is a section
of (’5;,"9 — T',. By (the obvious generalization of) Lemma a morphism
0 : &, — B¢ is unramified if and only if (s(7)) =1 x 7 forall 7 € ', .

For part (i), we write 8(s(7)) = ar X 7 € &¢, for 7 € I', 9. Then (a,), €

Zl(@p/Q;r,G(@p)). By the previous paragraph, an element g € G(Q,) lies in

B3In [Kis17, §3.1.6], our &y, 4, is denoted by gg"n.
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UR(0) if and only if g~ta,7(g9) =1 for all 7 € I', 9. By Steinberg’s theorem, such
a g exists since G is connected. It is then clear that UR(0) is a G(Q}")-torsor.
We now show part (ii). First pick n such that ¢ is induced by a morphism
on * Dy — B, Since ¢, is continuous, there exists an open subgroup U of
Gal(Qp'/Qpn) such that ¢n(su(p)) = 1 x p for all p € U. We may assume that

U = Gal(Qy"'/Q,.) for some n’ divisible by n. Using (2.2.1.3), we may replace n
by n’ and assume that n = n’. We then have

H(do)" = $n(dy ) = du(p~ sn(0™)) = o (p™1) X 0™,
where the second equality is by (2.2.1.1]). O

Definition 2.2.5. Let G be a connected linear algebraic group over Q,. For
any unramified morphism 6 : &, — &g, we define by € G(Q}") by the formula
0" (dy) = by X 0.

Proposition 2.2.6. Let G be a reductive group over Qp, and let 0 : &, — &g be
an unramified morphism. The following statements hold.

(i) Viewing 0" Doy — Gy as a fractional cocharacter of Gou:, we have
0 A = —uy,, . Moreover by is decent (see §1.4.1)).
(i) There are natural Qp-isomorphisms Jp, = Igur = Iy.
(iii) Let B € Hl(@p,la). Then there is a member @' of the conjugacy class 6°

(see Definition satisfying the following conditions:
(a) The morphism 0" : &, — B¢ is unramified.

(b) By part (i), we view B as an element of H'(Qy, Jy,). Then the o-
conjugacy class of bg: in G(Q;r) is given by the twist of by by [, as

Proof. (i) Choose n € Z>; such that 6" is induced by a morphism 6,, : ©, — &g
Let v, = 0%. Then v,, is a cocharacter of GQ;r, and "2 = n='y,. Up to
enlarging n, we may assume that v, is defined over Qpn.
By Lemma m (iii), up to enlarging n we have
bya(bg) -~ 0" (by) = va(p~') € G(Q}).
1

We conclude that v, = —n""v, = —g"A and that by is n-decent.
(ii) As in [RZ9G, Cor. 1.14], the fact that by is decent implies that

Jon(B) = {9 € Gayran, (ROq, Q") | gbo = boo(g) |

for any Q-algebra R. In view of Gur,iy,, = Ggur gur.a, the above description of Jy,
agrees with the explicit description of Iguw as in The natural isomorphism
Tgur = Iy arises from the fact that they are the same Q,-form of GQ;Y’QM,A.

(iii) By Steinberg’s theorem, § is represented by a cocycle
a=(a,) € ZHQy"/Qp, Jo(Q}))-

Viewing a as in Z1(Q,, Ip), we define ' := af), which is in the conjugacy class 6°.
Then 6’ is unramified, and we have bgr = a,b, which implies condition (b). a

2.2.7. Let G be a reductive group scheme over Z,, with generic fiber G. Let
r € Z>1, and let p be a cocharacter of QZPT.
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For each morphism 6 : &, — &¢ in pro-Grb(Q,/Q,), we recall the definition
of a set X,,(f) and a bijection ® : X,(0) — X, (6) as in [Kisl7, §3.3.3]. For each
g € UR(0), we write by for bry(g-1y09 € G(Q}"). Define

Y, (0) := {g e UR(D) | by € G(Z)")p"G(Zy") C G(Q))} .
The group G(Z,") acts on Y}, (0) via right multiplication, and we define
Xu(0) :=Yu(0)/G(Z).
By the Cartan decomposition, the subset G(Z,")p'G(Z,") C G(Q,") depends on
p only via the G(Z,r)-conjugacy class of u, and so the same holds for Y, () and
X,.(0).
Consider the map
d: UR(0) — UR(H)
g+ gbga(by)---a" 1 (by).

For g € UR(0) we have b?{?(g) = 0" (bg). It follows that ® restricts to a map Y, (0) =
Y,.(0). If we fix an element go € UR(F) and use it to identify the G(Q,")-torsor
UR(O) with G(Q}T), then the map ® becomes the map G(Q)") — G(Qy),g9 —
bgo0(bgy) - -+ 0" (bg,)o" (g). This shows that ® restricts to a G(Z1")-equivariant

bijection Y, (0) — Y, (#). Hence & induces a bijection
D X,(0) = X,(0),

which we call the p"-Frobenius.

The isomorphism class of the ®%-set X (0) depends on # only through the con-
jugacy class of §. Moreover, after fixing an element gy € YR (0), from the previous
paragraph we know that the map G(Q,) — G(Q,),g — g5 'g induces a bijection
from X, (0) to the affine Deligne-Lusztig set

X,u(bge) == {9 € G(Q))/G(Z") | 9 "bge0(9) € G(ZYIP"G(Zy7) }
(2.2.7.1) =5 {9 € G(Q,)/9(Z,) | 97 b0 (9) € G(L)P'G(Z,)}

on which ® acts by g — bg,0(bg,) - 0" (bg,)o"(g). The second line is the usual
definition of an affine Deligne-Lusztig set found in the literature, and we have

a natural map (2.2.7.1) induced by the inclusion G(Q}") — G(@p). That this
map is a bijection follows from Lemma and the functoriality of the Cartan

decomposition.

2.2.8. We keep fixing a prime p. For each finite prime v # p, let

&, =1, € Grb(Q,/Q,).
Let
& € Grb(C/R)
be the Weil group of R, and let
&, € pro—grb(@p/@p)

be as in Definition 2.2.2]

Consider the pro-torus Res@ /0 G, = yLnL Resr o Gm _over Q, where L runs
through the set of finite Galois extensions of Q contained in @, ordered by inclusion,

and the transition maps are the norm maps. The neutral gerbs Gres, /0Gm € Grbg

m
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for different L form a projective system, i.e., an object in pro-Grb(Q/Q). We denote
this object by GiRes@/Q G,,-

For each object & (resp. morphism ¢) in pro-Grb(Q/Q), we denote its pull-back
in pro-Grb(Q,,/Q,) by &(v) (resp. ¢(v)), for each place v of Q. Here the pull-back
functor is defined with respect to our fixed embedding Q — Q,. Reimann [Rei97,
§B.2] has constructed a quasi-motivic Galois gerb, which is an object

0 € pro-Grb(Q/Q),

equipped with a morphism ¢, : &, — Q(v) in pro-Grb(Q, /Q,) for each place v of Q,
and a morphism ¢ : Q — GResg G 1D pro-Grb(Q/Q). More precisely, Reimann
constructs in the proof of [Rei97, Thm. B.2.8] versions of Q, (,, and ¥ in the
categories pro-R(Q/Q) and pro-R(Q, /Q,). We transport his constructions via the
functors (2-1.18.2)). The unique characterization of the tuple (2, (¢,), ¥) is delicate
to state. We omit this and refer the reader to loc. cit. and [Kisl7, Thm. 3.1.9].

By construction, 9 is given by a projective system (QF);, in Grbg, indexed by
the set of finite Galois extensions L/Q contained in @, ordered by inclusion. For
each L, we have QL2 = Qé, where Q¥ is a Q-torus explicitly described in [Rei97,
§B.2]. (Here QT agrees with the canonical Q-form of Q% as in Remark )
If L ¢ L' C Q, then the transition morphism QY — QF is surjective, and its
kernel Q% — Q% is defined over Q. We write @) for the pro-torus (1&1 I Q) over
Q. Since the projective system (QF)7 is indexed by a countable set and since the
transition morphisms are surjective, we conclude that the projections QP — QF
are surjective. (See for the notation QP.)

For v € {p, <}, we denote the group scheme homomorphism ¢2 : &2 — Q(v)
(see by v(v). By construction, v(v) is defined over Q,. Thus we have
v(p): Do, — Qq, and v(oo) : Gy r = Qr.

2.2.9. Let T be a torus over Q, and let y € X.(T). Let L/Q be a finite Galois
extension contained in Q such that p is defined over L. Then p induces a Q-
homomorphism

Res N
s Resp o G Pr/eh, Resr T Il

We obtain a morphism W7, : Q — &7 in pro-Grb(Q/Q) via the composition

P Hox
Q — ®RCS6/Q G —7 6RCSL/Q Gm ®T'

This is independent of the choice of L.

Lemma 2.2.10. Let 8 = ¥p ,(p) 0 (p : &, = &p(p). Choose g € UR(Y), and let
[b] € B(Ty,) be the o-conjugacy class of biue(g-1)00 € T(QpT) in T(Qp) (which is
well defined, by Lemma (i)). Then rr([b]) € X.(T)r, is equal to the image
of —p € X.(T).

Proof. The proof reduces to the “universal case”, where T' = Resp g G, and the
map fix : Resy g Gy, — T is the identity. In this case, X.(T)r, is torsion free, and
therefore the homomorphism ¢ : X, (T)r, — X.(T) ® Q induced by taking averages
of I'p-orbits in X, (T) is injective. For each [0'] € B(Tg, ), we have (k7 ([b'])) = vy
by [Kot85l §2.8]. Hence to prove the lemma it suffices to prove that ¢(u) = —v. By
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Proposition [2.2.6] (i), we have —v, = (Int(g~") 0 §)"* = 2. By [KisI7, (3.1.11)],
62 is indeed equal to t(u), as desired (]

2.3. Strictly monoidal categories.

2.3.1. Let G, H be two strictly monoidal categories (which we always assume to
be small). By a strictly monoidal functor G — H, we mean a functor that strictly
respects the monoidal structures. By a monoidal isomorphism between two strictly
monoidal functors ¢, : G — H, we mean an isomorphism of functors A : ¢ — 1
such that for any two objects g1, g2 € G the following diagram commutes:

A(91®92)
(91 ® g2) % P(g1 ® g2)

#(91) @ ¢(g2) 1) ® ¥(g2)

Every group can be naturally viewed as a strictly monoidal category, where the
only morphisms are the identities. For two groups G and H, the set of strictly
monoidal functors G — H is the same as the set of group homomorphisms G — H.
More generally, each crossed module (IAi: — H) also determines a strictly monoidal
category denoted by H/PNI, see [Kis17, §3.2.1]. When (ﬁ — H) is a crossed module,
each element h € H induces via conjugation a strictly monoidal functor Int(h) :
H/H — H/H.

A(gl)®«4(gz)
—>

2.3.2. Now let G be a group and (H % H) be a crossed module. We denote
the structural action of H on H by Int. Consider two strictly monoidal functors
o, G — H/PNI If A:¢ =1 is an isomorphism of functors, then for each ¢ € G
the isomorphism A(q) : ¢(q) = 1(q) corresponds to an element A(q) € H. Thus we
may view A as a function G — H. In this way, there is a one-to-one correspondence
between monoidal isomorphisms A : ¢ — v and functions A : G — H satisfying

A(gr) = A(q) - Tnt(¢(q)) (A(r)),
o(A(q)) - #(q) = ¥(q), Vq,r€G.

When G is equipped with a topology, we shall call a monoidal isomorphism A :
¢ =5 9 continuous, if the corresponding function A : G — H is continuous with
respect to the given topology on G and the discrete topology on H.

2.3.3. Let k be a field of characteristic zero, and let k be a fixed algebraic closure.

Let G be a reductive group over k, and let &5 be the associated neutral gerb in
Grb(k/k). As in [Kis17, §3.2.2], we have a crossed module Gse(k k) — B¢, and we
denote the corresponding strictly monoidal category &g /Gy (k) by &g c... We
have a canonical strictly monoidal functor &¢ — &¢/q,. -

Lemma 2.3.4. Keep the setting and notation of . Let $ = (9;)ier be an
object in pro-Gro(k/k) such that the projections H'°P — §; are surjective and such
that H2 are tori for alli € I. Let ¢ : $ — &g be a morphism in pro-Grb(k/k). Let

147 similar argument is made in the proof of [KisI7, Lem. 3.4.2] in order to determine g ([b])
for T = Resp jg Gm. There T is unramified over Qp, so the cited result [RR96, Thm. 4.2 (ii)] is

valid. Our present argument does not need this unramifiedness assumption.
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a € Z'(k,1;) and let ¢' = ag (see 4 . Let ¢~ (resp. ¢’~B) be the composite

strictly monoidal functor

top /,top
§top % e — Bg/a...-

Then there exist g € G(k) and a continuous monoidal isomorphism o3 = Int(g) o
¢’7), if and only if the class of a in H'(k,I4) lies in the image of Hl(k,zp) —
H'(k, ). Here f¢ is defined in §2.1.8 and §2.1.14)

Proof. By the assumption that §°P — 6, are surjective, the lemma reduces to
the case where $ € Grb(k/k), which we now assume. Write M for Gy ,a. Let o

denote the natural map Gy, — G, and let M := o Y (M) C Gy - Write 7 for the
structural map $ — Gal(k/k). For each ¢ € $, we write ¢(q) = g, x 7(q), with

9q € G(k). B
Assume there exist g € G(k) and a continuous monoidal isomorphism A : ¢~ =
Int(g) o ¢’~b . As discussed in * A can be viewed as a continuous function
a

$ — Gy (k) satisfying
(2.3.4.1) A(gr) = A(q) - Int(é(q)) (A(r)),
(2.3.4.2) o(A(q)) - #(q) = Int(g)[arg)¢(q)], Va,7 € H.

Decompose g as g = ¢'z, with ¢’ € Gaer(k), 2z € Zg(k). Fix a lift § € Gy.(k) of ¢,

and define a continuous map B : ) — Gg.(k) by
B(g) =g " Alq) - Int(¢(q))(9) € Gse(k), Vg € .
Then by , we have
(2.3.4.3) Blgr) = Blg) - nt(6(@)) (B()), Ve, € 5.
By , we have
o(B(@) = (¢) 7+ [o(AW) 6@ '0(0)

= 2a:()0(0)g " - 9 D(Q) ™" = 2an(q)9qm(@)2 " 7 (q) g,
ie.,
(2.3.4.4) 0o(B(q)) = z”(q)z_laﬂ(q), Vg € 9.
From (2.3.4.4), we see that
(2.3.4.5) B(q) € M(k), Vq € ;
(2.3.4.6) B(q) € Za..(k), Vg € 52 (k).

Using (2.3.4.3) and (2.3.4.5), we see that the map Blga g : 92 (k) = Zg, (k) is

a group homomorphism. Since $H2 (k) is a divisible abelian group and Zg__ (k) is
finite, we have B|5A(;;) = 1. Combining the last fact with 1) we see that B(q)
depends only on 7(q), i.e., B= Bor for a continuous map B : Gal(k/k) — M (k).
Now by the definition of the k-form f¢ of M , the relation precisely means
that B € Z'(k,1). Note that the inclusion of k-groups Zgr = M induces an
inclusion of k-groups Zg — Is. Hence implies that the class of a in
H'(k, 1) equals the image of the class of B in H'(k, f(z,)
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Conversely, assume the class of a in H'(k, I;) lies in the image of Hl(k,fd)).
Then there exist g € I4(k) and B € Z'(k, 1) such that

a; = g-0(B(7)) -Int(g-)("g™"), V7 € Gal(k/k).

Decompose g as g = 0(g)z~!, with g € M(fc) and z € Zg (k). Then we can absorb
g into B by replacing each B(7) with gB(7)Int(g,)("g~!). Hence we may assume

that g = 271, Let B:= Bom : $ — M(k). Then B is continuous and satisfies
(2.3.4.3) and (2.3.4.4). Note that the relation (2.3.4.4]) can also be written as

(2.3.4.7) o(B(q)) - #(q) = Int(2)[ar(g)¢(q)]
(since ™D, = Int(é(q))(2)). By (I2.3.4.3I) and (12.3.4.7|)7 B is a continuous monoidal
isomorphism ¢~ = Int(z) o d)::b. |

Remark 2.3.5. By the discussion in §2.2.8] the assumptions on $ in Lemma [2.3.4]
are satisfied by the quasi-motivic Galois gerb 9 € pro-Grb(Q/Q).

2.4. Admissible morphisms for an unramified Shimura datum.

2.4.1. Let (G, X,p,G) be an unramified Shimura datum as in Let E be the
reflex field, and let p and ¢ = p” be as in §1.6.1] We will use the following notation
throughout the paper. For each field extension F/E such that Gp is quasi-split,
the Hodge cocharacters uj; attached to h € X determine a G(F)-conjugacy class
of cocharacters of Gr. We denote this conjugacy class by px(F). Now inside
Mx (Qpr), there is a canonical G(Z,r)-conjugacy class consisting of those cochar-
acters in px(Qpr) that extend to cocharacters of Gz .. We denote this G(Z,:)-
conjugacy class by m%.
A choice of z € X gives rise to a morphism
o 1 B — Qﬁg(oo)

in Grb(C/R), whose conjugacy class depends only on X. See [KisIT, §3.3.5] for the
explicit construction. For a finite prime v unequal to p, let

&; : 61} - Fv — QjG(U) = G(Qv) X FU
be the natural section. Then &, is a morphism in grb(@v/(@v).
Let ¢ : Q — B¢ be a morphism in pro-Grb(Q/Q). (Here Q is defined with
respect to the fixed p.) For each place v of Q except p, we define
Xo(9) = {9 € G@,) | Int(g) 0 & = ¢(v) 0 (v } -
We define
Xp(¢) = X_p(é(p) 0 ¢p)
for yu € p¢.. Here the right hand side is as in §2.2.7, and it is independent of the
choice of . We have the p"-Frobenius ® : X, (¢) = X,(¢).
Definition 2.4.2 (cf. [Kisl7, §3.3.6]). Keep the setting of A morphism

¢ : Q — B¢ in pro-Grb(Q/Q) is called admissible, if the following conditions are
satisfied.

(i) Let p € px(Q). Let ¥~ : Q — G/, be the associated strictly
ab
monoidal functor, defined in [Kis17, §3.3.1]. Let ¢~ be the composite
strictly monoidal functor Q 2, &g — Bg/q..- We require that there exist
g € G(Q) and a continuous monoidal isomorphism A : Int(g)ot),~ — o5
ab a
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(ii) For each place v of Q, X, (¢) # 0.

Remark 2.4.3. Condition (i) in Definition is a correction of condition (1) in
[Kis17, §3.3.6] in that we add the requirement that A4 should be continuous. The
results on admissible morphisms in [Kis17, §3.4], especially the statement and proof
of [Kis17, Prop. 3.4.11], are only correct with the present definition.

Remark 2.4.4. Given a morphism Q — &g in pro-Grb(Q/Q), whether it is ad-
missible depends only on its conjugacy class. We may thus speak of admissible
conjugacy classes of morphisms Q — &¢.

Remark 2.4.5. As is pointed out by Reimann [Rei97, App. B], the original con-
struction of the quasi-motivic gerb Q in [LR&T7] is incorrect. As such, the defi-
nitions and results in [LR87, §5] about “admissible morphisms” do not directly
apply to the objects defined in Definition Nevertheless, most of the content
of loc. cit. can be modified to suit the corrected definition of . In the sequel, we
shall cite loc. cit. only for those technical results that are essentially independent
of the actual construction of Q.

2.4.6. Let ¢ : Q — B¢ be an arbitrary morphism in pro-Grb(Q/Q). By condition
(ii) in [Rei97, Def. B2.7], there exists a continuous cocycle ('™ : T' — G(A}) that
induces the morphisms ¢(l) o ¢; for all finite primes ! 7 p, in the following sense.
We have a canonical mapﬁA” = A’ ®g Q — Q; given by the projection A% — Q
and the fixed embedding Q — Q;. Denote the composition

e _
I =T = G(A}) = G(Q)
by (g,;. Then for each 7 € &; =I'; we have

(@(1) 0 Q)(7) = Cou(T) x 7€ G(Q) x Iy,

If we choose an arbitrary Z-structure on G, then for almost all primes [ # p the
set X;(¢) contains integral points in G(Q;) (and is a fortiori non-empty). Indeed,
for almost all I, the chosen Z-structure on G has connected smooth reduction at [,
and (y is induced by a continuous unramified cocycle Gal(Q}" /Q;) — G(Z;}"™). It is
a standard result (see for instance [PR94l p. 294, Thm. 6.8’]) that any such cocycle
is a coboundary, and this precisely means that X;(¢) contains integral points.

2.4.7. Let ¢ : Q — B¢ be an admissible morphism. On choosing a Z-structure
on GG, we form the restricted product

!/
xXr(e):= [ Xi(9)
1¢{p,00}
with respect to the subsets of integral elements of the X;(¢) (cf. §2.4.6). Clearly
X7?(¢) is independent of the choice of Z-structure, and is a G(A%)-torsor under
right multiplication. (It is non-empty since ¢ is admissible.) Equivalently, with the
notation in & X7?(¢) is the right G(A%)-torsor consisting of z € G(A%};) such
that
et B(r) T =1, Vrel.
We now define

X(9) = Xp(9) x XP(¢),
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which is equipped with the action of ®* x G(A%). We still call ® the g-Frobenius
on X(¢).

By definition, X (¢) is a subset of G(Q,)/G(Z1") x G(Ap) Under the canonical
embedding I, 5 < Gg, we let the group J4(Ay) act on G(Q,)/G(Zxr) x G(Ap)
via left multlphcatlon This induces a left action of I4(As) on X (¢). For each
T e I3Y(Ay), we set

y_ 1,(Q ¢)/K?,

where K? runs through the compact open subgroups of G (N}), and I4(Q), denotes

the image of
Int(7)
15(Q) = Iy(Ay) —— Io(Ag).
Then S, (¢) inherits the action of ®% x G(A}). When 7 = 1, we write S(¢) for

S7(9).
2.5. Integral models and the Langlands—Rapoport Conjecture.

2.5.1. Keep the setting and notation of §2.4.1, Let K, = G(Z,), and let Shg, =
Shg, (G, X) be the inverse limit
%SthKp(G,X),
where KP runs through compact open subgroups of G(Aljﬁ). This inverse limit
exists as an E-scheme, since the transition maps are finite. The right G(A’;)-action
on Shg, induced by the G(Ay)-action on Sh(G, X) is admissible in the sense of
Definition [L511

Definition 2.5.2. By a smooth integral model of Shx,, we mean a scheme Sk, over
Og,p) extending Shg , equipped with an admissible right G (A’})—action extending
the G(A?)—action on thpm When 7, is given, we write Sk r» for pr/Kp
for all sufficiently small compact open subgroups K? C G (A’;).

The following theorem is proved in [Kis10] for p > 2, and in [KMP16] for p = 2.

Theorem 2.5.3 ([Kisl0, [KMP16]). If (G,X) is of abelian type, then there ex-
ists a smooth integral model of Shy,. This model is uniquely characterized by the
extension property as detailed in [Kis10, §2.3.7].

Remark 2.5.4. In [Kis10] and [KMP16], it is not explicitly verified that the G (A%)-
action on the integral model satisfies the separatedness in condition (i) and con-
dition (iii) in Definition [[.5.]] The former follows from the facts that the Siegel
modular schemes at finite levels are separated over Z,, that normalization maps
and closed immersions are separated, and that taking finite free quotients preserve
separatedness. For the latter, see [LSI8] §3] for an explanation.

2.5.5. Now fix a prime ¢ # p and ﬁx an irreducible Q-representation ¢ of G
that factors through G¢ = G/Zac, as in Suppose a smooth integral model
Sk, 1s given. As explained in §1.5.2} for sufﬁaently small compact open subgroups
UP C KP C G(A’})7 the map YKpUp — 7k, kv is finite étale Galois and the Galois

15T he adjective “smooth” refers to the smoothness requirement in condition (ii) in Definition
for the admissible G (A’;)—action on Zk,. The scheme Yk, is typically not locally of finite

presentation over O, (p).
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group is identified with the maximal quotient of K?/U? that acts faithfully on
Sk,ur. Since Shg, yr is dense in Sk ,u»r, we see that the last group is identified

with Gal(Shg,u» / Shi,k»). Thus by (1.5.8.1), we have
Gal(Sx,vv | T, xv) = KPJUPZ(Q) 2B,

where Z(Q)]_(’p(f()p is the image of Z(Q)y x, under the projection G(Ay) — G(A%}).
Hence Gal(“k, /-7, k») as defined in (1.5.2.1)) is the quotient of K* by the closure
of Z((@);(fp(fgp in G(A%}). (Actually Z(Q);{;f@ is already closed in G(A%), because
Z(Q)k, k» is compact.) By Lemma (the closure of) Z(Q);(fp(f{)p is contained
in Zac(ASZ) when KP? is sufficiently small. We now view £ as a continuous represen-
tation of G(A?) via the projection G(A’}) — G(Qg). Then for all sufficiently small
K?, the restriction {|x» factors through Gal(-#k, /K, x») by the above discussion.
Thus as in for each sufficiently small KP we obtain a lisse Qy-sheaf % k»

on Sk, kv, and for each geometric point x of Spec O (,) we have the admissible
G(A%)-module

H(Sr, 00 €) = M Ho (S, 10 s Lo ier)-
Kp

When = = Spec E, the above is identified with Hi(ShE, £)X». Moreover, we have a
canonical adjunction morphism

(2551) HL (7,5, 6) — HU(S, 5:6) = HL(Shg, ',

which is Gal(E,/Ey) x G(A%)-equivariant. Here Gal(Ey/E,) acts on the left via
the quotient Gal(F,/F,), and acts on the right via the embedding into Gal(E/E).

Definition 2.5.6. We say that ./, has well-behaved H, if (2.5.5.1)) is an isomor-
phism for all choices of ¢ # p, £, and 3.

Theorem 2.5.7 ([LS18| Cor. 4.6]). The canonical smooth integral model in Theo-
rem has well-behaved H.

Recall that for each admissible morphism ¢ :  — &g, we have defined in
a set S(¢) equipped with an action of G(A?) and a ¢-Frobenius ®, where ¢ is the
residue cardinality of p.

Conjecture 2.5.8 (Langlands—Rapoport). There exists a smooth integral model
Yk, of Shi, over Og () which has well-behaved H, and for which there is a
bijection

Sk, ([Fq) = [[S(0)
[

compatible with the actions of G(A?) and the q-Frobenius ®. Here ¢ runs through a
set of representatives for the conjugacy classes of admissible morphisms Q — B¢.

In the rest of this section, we formulate a variant of the above conjecture, which
we call “the Langlands—Rapoport—r Conjecture”.

2.6. Preparations for the Langlands—Rapoport—r Conjecture. In this sub-
section we develop the prerequisites for our formulation of the Langlands—Rapoport—
7 Conjecture.
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2.6.1. Using that the projections Q%P — QF are surjective (see §2.2.8), for each
7 € I we can choose a lift ¢, € Q%P of 7. We fix such a choice in the sequel. We
first study a “well-positioned” condition for morphisms from £ to neutral gerbs.
Let G be an arbitrary reductive group over Q. Recall from that 9 has the
canonical Q-structure Q.

Definition 2.6.2. A morphism ¢ : Q — &g in pro-Grb(Q/Q) is called giinstig
gelegen (to be abbreviated as ggm if o2 : Q” — G@ is defined over Q.

Lemma 2.6.3. Let ¢ : Q — &g be a morphism in pro-Grb(Q/Q). For each
Tel = Gal(@/@),ﬁwm’te #(q.) = g- X 7, with g, € G(Q). Then ¢ is g9 if and only

if g lies in G@ $A (Q) for each T € T. If ¢ is gg, then the canonical Q-isomorphism
I¢@ = Gd:A g is an inner twistings between the underlying Q-groups.

Proof. Assume that ¢ is induced by a morphism ¢g : QF — & in Grb(Q/Q). Let
y € QF(Q) = QF2(Q) and 7 € T be arbitrary. We denote the image of ¢, € QP
in QF still by ¢,. Then

(2.6.3.1) 65 ("y) = do(arya; ") = (g x )5 (y)(gr x 7) 7 = g:7[65 ()97 -

Now ¢2 is defined over Q if and only if ¢35 is defined over Q (since the transition
maps in the pro-torus Q = l&n L QL are all surjective). By , this is equiva-
lent to the condition that each g, centralizes im(¢3'). Since im(¢5') = im(¢*), the
last condition is equivalent to the condition that each g; lies in Gz ;44 (Q).

Now if ¢ is gg, then for each 7 € T the Q-isomorphism IQ@ = G¢A7@ differs
from its 7-twist by composition with Int(g,). Since g, € G4a(Q), this means that
the Q-isomorphism is an inner twisting. O

Definition 2.6.4. Let ¢ : Q — ®¢ be a morphism in pro-Grb(Q/Q). By a G-

rational maximal torus in Iy, we mean a maximal torus T C Iy (defined over Q)
such that the composite embedding T@ — I¢ g = G@ ga G@ is defined over Q.

Remark 2.6.5. In Definition [2.6.4] T is necessarily a maximal torus in G. This is
because Q2 is a pro-torus, and as a result I is a reductive group having the same

absolute rank as G, cf. §2.1.14
Lemma 2.6.6. Let ¢ : Q — S be a morphism in pro-Grb(Q/Q) such that I,
contains a G-rational mazimal torus T'. Then ¢ is gg. Moreover, let f denote the

Q-embedding underlying T@ — IQ@ = G@1¢A — G@. Then ¢ factors as Q oz,
6r 5 6.
Proof. For each 7 € T, define g, € G(Q) as in Lemmam For t € T(Q), we have

) =g [F(®)]g7 1,
by the definition of the Q-structure of Iy; see §2.1.6{and §2.1.8] Since f is defined

over Q, we have f("t) = 7[f(t)]. Hence g, commutes with f(7'(Q)). Since f(T') is a

maximal torus in G (see Remark [2.6.5), we have g, € f(T)(Q). We conclude that
¢ is gg by Lemma Moreover, since Zy, C T' and since @™ factors through the

16 his terminology comes from Langlands—Rapoport [LR87, §5]. However, the definition of
giinstig gelegen morphisms given by Langlands—Rapoport uses the elements d,, which do not
directly make sense with the corrected definition of 9.
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center of Gya, we know that ¢* factors through f(T) C G. We have already seen

that each g, lies in f(7)(Q). It follows that ¢ factors through f: &p — 5. O

Lemma 2.6.7. Let ¢ : Q — &g be an admissible morphism. Then the R-group
Ty(s0)oc.. 18 an inner form of Gr. Moreover, the R-groups (Iy/Za)r = Iy /Za R
and Iy(so)oco. /Zar are both anisotropic.

Proof. As in we have an R-embedding ) & Ip(c0)oc..- Since ¢ is
admissible, ¢(00) o (s is conjugate to . Hence there is an R-isomorphism
Is(soyoc.. — Ie.. induced by Int(g) for some g € G(C). As discussed in [Kis17,
§3.3.5], I¢. is the inner form of Gr with anisotropic adjoint group. The lemma
follows. 0

2.6.8. We now return to the setting of §2.4.1] Thus we have an unramified Shimura
datum (G, X, p,G) and the notion of admissible morphisms Q — B¢.

Proposition 2.6.9. Let ¢ : Q — &g be an admissible morphism. For each maz-

imal torus T C Iy defined over Q, there exists g € G(Q) such that Int(g)(T) is a
G-rational maximal torus in Itng(g)oq-

Proof. This is essentially proved by Langlands—Rapoport, when they prove [LR87,
Lem. 5.23]. We sketch the argument, as the precise statement of the proposition is
not explicit in [LR87HE|

Let ¥ : G@ = GT@ be an inner twisting from G to a fixed quasi-split reductive

group G* over Q. Then the G*(Q)-conjugacy class of the composite embedding

LTy = Gg 2, G?‘@ is stable under T'. By [Kot82, Cor. 2.2], we can modify ¢ by

an inner automorphism to arrange that ¢ is defined over Q.

Let T* = «(T). Then T* is a maximal torus in G* defined over Q, and we
have a Q-isomorphism ¢ : T =+ T*. We now check that T* transfers to G locally
at all places v, or equivalently, that some G(Q,)-conjugate of T is a Q,-torus in
Gq,. For v = p, this follows from the assumption that G is unramified, and hence
quasi-split, over Q,. For v = oo, this follows from the fact that T*/Zg- = T/Zg
is anisotropic over R (Lemma [2.6.7). For v ¢ {co,p}, pick u, € G(Q,) such that
Int(u, ') o ¢(v) o ¢, = &,, which exists since ¢ is admissible. Then the canonical
embedding 17, 104003, < Gg, is defined over Q,, and hence Int(uy)(Ty,) is a
Q,-maximal torus in Gg,, as desired.

Since T™ transfers to G locally and is elliptic over R, it transfers globally to
G by [LR87, Lem. 5.6). This means there exists g € G(Q) such that Int(g)(T)
is a Q-maximal torus in G and such that the isomorphism Int(g) o =% : T* —
Int(g)(T) is defined over Q. It follows that Int(g)(7") is a G-rational maximal torus

in IInt(g)o¢~ O

Corollary 2.6.10. Every admissible morphism ¢ : Q — Bg is conjugate to a gg
morphism.

Proof. By Proposition [2.6.9) ¢ is conjugate to a morphism ¢’ : Q — &4 such that
14 contains a G-rational maximal torus. By Lemma ¢ is gg. O

T The only information about £ used in this argument is the fact that Q2 is a pro-torus
with surjective transition maps. Hence the validity of this argument is unaffected by Reimann’s
correction of the definition of Q.
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2.6.11. Let ¢ : Q — & be an admissible morphism. By Corollary 2.6.10] the set
W = {g€GQ)|Intgo¢is gg} is non-empty. Using Lemma checks
that the canonical embedding I, 5 — G@ and W together form an inner transfer
datum from Iy to G (Deﬁnition. We thus obtain a canonical map

(2.6.11.1) H,(Q, 1) — Ha(Q, G),
and we define ¥ (Q, Iy) ¢ H'(Q, ;) as in §1.2.5

Proposition 2.6.12. Let ¢ : Q — B¢ be an admissible morphism, and B €

Hl(@, I4). Then #? (see Definition is admissible if and only if B belongs to

Proof. The “if” part is proved in [Kis17, Lem. 4.5.6], under the assumption that
Z2 is cuspidal. Below we give complete proofs of both directions of the implica-
tion, taking into account the correction of the definition of admissible morphisms
mentioned in Remark 2.4.3] Since the admissibility condition is invariant under
conjugacy, we use Corollary to reduce to the case where ¢ is gg. We now
assume that ¢ is gg and fix a cocycle a € Z1(Q, Is) representing 3.

Step 1. We show that 8 has zero image under the composite

©6.11.1)
ST

(2.6.12.1) H'(Q,1,) ﬁ H,,(Q, I,) H,,(Q,G)

if and only if there exist h € G(Q) and a continuous monoidal isomorphism Int(h) o
(O = (a¢)5,- (See Definition 2.4.2for the notation.) By Lemma and Remark

, the latter condition is equivalent to asking that 5 comes from Hl((@, f¢) We
have a natural exact sequence of pointed sets

H'(Q,Iy) — H'(Q, Iy) —» H'(Q, Iy — Iy),

where H'(Q, f¢ — Iy) is the Galois cohomology of the crossed module (f¢ — 1)
of Q-groups; see [Bor98, §3]. (The crossed module structure is the one inherited

from the crossed module G5 — G.) The natural map (Zg,, — Zg) — (f¢ —
I4) is a quasi-isomorphism of crossed modules, and therefore Hl((@,f¢ — I,) is
naturally isomorphic to H}y (Q,G). The composition H'(Q, Is) — Hl(Q,f(z, —
Iy) 2 HL, (Q,G) is equal to . This proves the desired statement.

Step 2. We show that 3 has trivial image in H' (R, Iy) if and only if ¢(c0) 0 (o

is conjugate to (a¢)(o00) o (. By Lemma [2.1.16] the latter condition is equivalent
to the vanishing of the image of 8 under

Hl(Qa I¢) - Hl(Rv I¢) = Hl(Ra I¢>(OO)) L Hl(Rv I¢(°®)°Co¢))

where 1 is induced by the R-inclusion /(o) <> Ig(o0)oc..- Lhus the desired state-
ment boils down to { having trivial kernel, which follows from Lemma [2.6.7] and
[Kis17, Lem. 4.4.5].

Step 3. We show that if 8 has zero image under (2.6.12.1)), then ¢(I) o ; is
conjugate to (ap)(l) o §; for all finite primes [ # p. For this, it suffices to show that

[ has trivial image under the composite map

(26122) Hl((@,]¢) — Hl((@l, I¢) = Hl(Ql,I¢(l)) — HI(QZ, Iqb(l)ocl)'
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Since ¢ is admissible, ¢(I) o (; is conjugate to &. It follows that the canonical Q;-
embedding 1 s(1)oc,T, G@l is an inner twisting between @Q;-groups. This induces
a canonical isomorphism

(2.6.12.3) H,, (Qu Lsayoq) — Hap(Qu, G).
Now we have a commutative diagram
an}
H'(Q, 1)) ———————— H"(Q, Ly1)oc,) —§l> H,, (Qi; Iyyec;)
\L2.6.12.1 MJ/ 26.12.9)
H;b (Q, G) localization H;b (Ql, G)

which implies the desired statement.

Step 4. We show that if 5 has zero image under , then X, (ag) # 0.
We fix p € p$ as in Let 6 := ¢(p) o {p, and let 6’ := (a¢)(p) o (. By
definition X,(¢) = X_,,(6) and X,(ag) = X_,,(¢).

Fix an arbitrary go € UR(6), and write 6y for Int(gy ')#. Thus y is unramified.
Now Int(ggl) induces a Q,-isomorphism Iy — Iy,. Let By denote the image of 3
under the composite

Int(ggl)
EEm—

HY(Q, 1y) — H' Q. 1y) — H'(Qp, Io) HY(Qp, Iy, )-

Then 0’ belongs to the conjugacy class of 950.

By Proposition (iii), the conjugacy class 95" contains an unramified member
0 such that b’ := by, is obtained from b := by, by twisting by fo. Since G is quasi-
split over Q,, we can apply Proposition [[.4.5] to conclude that v, = v, and that
ka(b') — kg (b) is the image of By in m1(G)r, tors- Our assumption on f implies
that the last image is zero. Hence we have [b] = [b'] in B(Gq,), by Kottwitz’s
classification (see §1.4.2).

Since 0 (resp. () is an unramified member in the conjugacy class of 0 (resp. 0'),
by the discussion in we have X_,(0) = X_,(b), and X_,(¢') = X_, (V).
Since [b] = [b'], we have X_,(b) = X_,(b'). Thus the non-emptiness of X_,(0)
implies the non-emptiness of X_,,(6").

The proof of the proposition is completed by combining the above four steps.
(The “only if” part follows from Steps 1 and 2 alone.) |

2.6.13. Let ¢ : Q — & be an admissible morphism. We define
H(6) = Io(A )\ (A) /T2 (Q),
€(9) = L, (AD\ L2 (AT).

We have a natural map

€ (¢) — H(9),

and it is surjective by weak approximation (see [PR94, Thm. 7.8]) applied to T gd.

The boundary map arising from the short exact sequence 1 — Z;, — I, —
I(";d — 1 induces an isomorphism of pointed sets €”(¢) = D(Z,,Iy; AY). Since
@(ZI¢,I¢;A?) = G(Z1¢,I¢;Afc) is an abelian group, we have a canonical abelian
group structure on EP(¢).
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Lemma 2.6.14. The surjection €P(p) — H(¢) induces an abelian group structure
on H(p). Moreover, we have a commutative diagram

(2.6.14.1) e () &(Z1,,I4; AY)

| |

H(¢) G(Zf(paI¢;Af)/®(zf¢,sc7]¢,sc;(@)
where the rows are isomorphisms. Here the right vertical arrow is induced by the
inclusion L’E(Z[d),lqg;A?) — &(Z1,,14;Af), and the bottom arrow is induced by the
boundary map 0 : I;d(Af) = D(Z1,,14;Ap) = &(Z1,, 143 Ay) arising from the short
exact sequence 1 — ZI¢ — Iy — Igd — 1.

Proof. First note that D(Zy, ., Iy sc; Q) is a subgroup of H'(Q, Z;, ), so the quo-
tient on the lower right corner of the diagram is defined. Now the boundary map 9
induces a bijection Is(Ap)\I3(Ay) = €(Z1,, I; Ay), and maps I39(Q) C I39(Ay)
onto the image of ®(Zy, .., Iy sc; Q) — €(Z1,,14;Af) (since we have a surjective
boundary map I;d(Q) — D(Z1,,.., 1p sc; Q) associated with the short exact sequence
1= Zr,.. = Ipsc — Igd — 1). The lemma follows. O

Lemma 2.6.15. The subset D(Zr, ., 1ps; Q) of H(Q, Z;, ) (which is a sub-
group) is equal to the kernel of the composite map of pointed sets

H'(Q,Z;,.) —»H'(R,Z;, ) = H'(R, Iy ).

Proof. By the Kneser—Harder—Chernousov Theorem (see [Bor98, Thm. 5.0.3]), the
localization map H'(Q, I,.) — Hl(R, I,.) is a bijection. The lemma follows. O

2.6.16. Let AM = AM(G, X,p,G) be the set of all admissible morphisms Q —
B¢. On this set we define an equivalence relation ~ by declaring ¢; ~ ¢ if and
only if ¢ is G(Q)-conjugate to ¢5*. Clearly ~ is weaker than the equivalence
relation defined by conjugacy among admissible morphisms. By Lemma we
know that ¢; ~ ¢ if and only if there exists a (necessarily unique) 8 € H (Q, I)
such that ¢5 belongs to the conjugacy class qﬁ? . Moreover, when this is the case,
we know that § lies in IIZ (Q, Iy, ) by Proposition

As a consequence of Lemma[2.6.14]and Lemma[2:6.15] we know that for ¢ € AM,
the abelian group H(¢) depends only on the groups Zz,, Zr, .., I sk and the maps
between them. The same is true for the abelian group €P(¢) = @(Zjd),ld,;A};).

Now if ¢1,¢2 € AM are such that ¢; ~ ¢9, then for any g € G(Q) such that

Int(g) o ¢7* = ¢5', the Q-isomorphism Int(g) : G a — G 4a induces an inner
»P1 »P3

twisting Comp,, : 1.0 =1 6.0 between Q-groups. Clearly the equivalence class

(Definition [1.2.1]) of the inner twisting Comp, is independent of the choice of g. Tt

follows that Z1,,+21,, . are canonically identified with Z14,+21,, .. Tespectively. If

we let Comp,, . : I¢1,sc,@ = I¢27SC7@ be the inner twisting induced by Comp,, then
the equivalence class of Comp, . is also independent of g. Moreover, Comp,, ., ®@(C
is the composition of an R-isomorphism with an inner automorphism defined over
C. This is because if we let 8 be the element of I (Q, I4,) such that ¢y € ¢f,

then the class of Compg .. in H'(Q, Ig‘f) is the image of /3, and hence has trivial
image in H' (R, Igf). Thus Iy, sc,r is canonically identified with Iy, sc g up to inner
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automorphisms defined over R. From this analysis, we see that there are canonical
abelian group isomorphisms

Compy, 4, H(pr) — H(p2)
Comp§, ;. €P(¢1) — € (o)

which depend only on ¢; and ¢. These maps commute with the natural surjections
EP(¢;) — H(¢;). For any three o1, da, p3 € AM such that ¢1 ~ ¢ & ¢3, we have
the following cocycle relations

Compy, 4, © Compy, 4, = Compy, 4.,  Compy, 4 = idy(s,);
er er er er .
Comp¢2’¢3 o Comp¢h¢2 = Comp¢h¢37 Compqﬁhq51 =idgr(g,) -

We now view AM = AM(G, X,p,G) as a discrete topological space, and define
sheaves of abelian groups &P = QEI()G,X,p,g) and H = Hg,x,pg) on AM whose
stalks at each ¢ € AM are €P(¢) and H(¢) respectively. We have a surjective
homomorphism P — . The above discussion implies that P and H are the
pull-backs of unique (up to unique isomorphism) sheaves of abelian groups €& and
H~ on the quotient space AM/~. The surjective homomorphism €7 — H is the
pull-back of a unique surjective homomorphism €2 — H.

The quotient map AM — AM /=~ factors through AM /conj, the set of conju-
gacy classes of admissible morphisms. We let Hconj (resp. foonj) be the pull-back
of Hx (resp. €) to AM /conj.

Definition 2.6.17. For F € {€P, 1}, we denote by I'(F) the group of global
sections of the sheaf F on AM. For 7 € I'(F), we write 7(¢) € F(¢) for the germ
of 7 at each ¢ € AM. We denote by I'(F)¢ (resp. I'(F)1) the subgroup of I'(F)
consisting of those global sections that descend to global sections of Fr over AM /=
(resp. global sections of Feonj over AM /conj). Thus I'(F)y C I'(F); C T'(F).

2.6.18. Let ¢ € AM. The boundary map I¢(Af)\Igd(Af) — H'(Ay, Z1,) arising
from the short exact sequence 1 — Zy, — Iy — I ;d — 1 induces a map

(26.18.1)  H(¢) = Io(Ap\IF"(Ap)/I3(Q) — H'(Ay, Z1,)/IUF(Q, Z1,).

Indeed, since I gd(R) is compact (by Lemma [2.6.7), it is connected (see [Bor91}
§24.6]). Hence the map I,(R) — I;d(R) is onto, and the boundary map I34(R) —
H'(R, Z1,) is trivial. In particular, the image of Igd((@) in H'(Q, Z1,) lies in
Hl?(‘; (Q, Z1,), and it follows that (2.6.18.1)) is well defined. We have a commutative
diagram:

IR

(2.6.18.2) €r(¢) E(Z1,, 14; AY)

2.6.18.1 \L
o) BSLD | wi(ay, 2017 (Q 21,)

where the left vertical arrow is the natural surjection and the right vertical arrow
is induced by the inclusion Hl(A’}, Zr,) — H'(Ay, Z1,).

Definition 2.6.19. Let 7 € I'(H), and ¢ € I'(€P).
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(i) We say that T is tori-rational, if for each ¢ € AM and for each maximal
torus T' C Iy, the image of 7(¢) is trivial under the composite map

(2.6.18.1
R

(2.6.19.1) H(¢) s HY (Ay, Z1,) /IUF(Q, Z1,) — H (A7, T)/IIF (Q, T).

(ii) We say that g is tori-rational, if for each ¢ € AM and for each maximal
torus T' C Iy, the image of g(¢) is trivial under the composite map

€ (¢) = €(Z1,, Iy; AT) C HY (AR, Z1,) — HY (A}, T) — H' (AL, T)/I0Z7(Q, T).

In the above, IIIZ (Q,T) denotes the kernel of the composite map II>*(Q,T) —
OI*(Q, I) — II*°(Q, G), and similarly for IS (Q, T); see §1.2.5/and §2.6.11{

The next lemma relates the two notions of tori-rationality for elements of T'(H)
and of I'(€P).

Lemma 2.6.20. Let 7 € T'(H). The following statements are equivalent.
(i) T is tori-rational.
(ii) The section T has a lift ¢ € T'(€P) along the natural surjection I'(EP) —
I'(H) such that a is tori-rational.
(iii) Every o € T'(€P) lifting T is tori-rational.

Proof. The implication (ii) = (i) follows from the commutative diagram (2.6.18.2).
Obviously (iii) = (ii). It remains to show (i) = (iii).

Let o € T'(€P) be a lift of 7. For each ¢ € AM, we have a natural surjection
€(Zr,,1p;Ar) — H(¢) as in Lemma @[ Fix an element €4, € &(Zg,,Iy;Ay)
lifting 7(¢). Then the image of 7(¢) under (2.6.18.1)) is represented by €.

By the commutative diagram (2.6.18.2)), the image of o(¢) under Hl(A’}, Z1,) =
H'(Af, Z1,) equals the sum of €4 and the image of some vy € 7 (Q, Z1,). For
each maximal torus T C I, by tori-rationality of 7 there exists an element B4 7 €
1 (Q, T) whose image in H' (Af, T) equals that of e;. Let By r € IIF(Q,T) be
the sum of g r and the image of vy in HI?Z(Q, T) Cc IOI¥(Q,T). Then the image
of o(¢) under

E(Z1,, Iy AY) — €(Z1,, 1y Ap) = H' (Af, T)
equals that of B, ;.. Tt follows that 3, ;- lies in III;"*(Q, T), and that the image of
a(¢) in Hl(AI}, T)/IIE*(Q,T) is trivial, as desired. O

2.7. The Langlands—Rapoport—r Conjecture.

2.7.1. Let (G, X,p,G) be an unramified Shimura datum. Let 7 € I'(*); (Defini-
tion [2.6.17). For each admissible morphism ¢ : Q; — &g, we set

SL(QS) = SE(@ ((b),

where 7(¢) € I3%(Ay) is any lift of 7(¢) € H(¢), and S:(¢)(¢) is defined as in

5 The isomorphism class of the ®Z x G(A%)-set S7(¢) is independent of the
choice of 7(¢). Moreover, from the assumption that 7 € I'(H), it follows that the
isomorphism class of the ®% x G(Aiﬁ)—set Sr(¢) depends on ¢ only via its conjugacy
class.

We write LR(G, X,p, G, 1) for the modification of Conjecture where each
S(¢) is replaced by S-(9).
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Combined with Theorem and Theorem the main result of [KisI7] can
be stated as follows.

Theorem 2.7.2. Let (G, X, p,G) be an unramified Shimura datum such that (G, X)
is of abelian type. Assume p > 2. Then there exists T € T'(H)1 such that the
statement LR(G, X,p,G,T) holds.

We refer the reader to Theorem|[6.2.4] below for a more precise version of the above
theorem. There we will also explain that the assumption p > 2 can be removed. In
the following conjecture, we impose better control of = than the condition that —
belongs to I'(H);.

Conjecture 2.7.3 (Langlands—Rapoport—7). For each unramified Shimura datum
(G, X,p,G), there exists a tori-rational element T € T'(H)o such that the statement
LR(G, X,p,G,T) holds.

Theorem 2.7.4. Conjecture[2.7.5 implies Conjecture[1.8.8

We devote the next section to the proof of Theorem [2:7.4] Note that Conjecture
[2.7.3]is weaker than Conjecture as the latter asserts that 7 can be taken to be
trivial. In view of Theorem [2.7.4] Conjecture 2.7.3]is a viable substitute for Con-
jecture for applications to computing zeta functions and ¢-adic cohomology.

Theorem [2.7.2] is weaker than Conjecture [2.7.3] in that no extra control of T €
T'(H); is provided. In Part [2| we shall improve on Theorem and prove Con-
jecture [2.7.3]in the case of abelian type.

3. LANGLANDS—RAPOPORT—7T IMPLIES POINT COUNTING

Throughout we fix an unramified Shimura datum (G, X, p, G), and keep the
notation E,p,q = p” as in Our goal is to prove Theorem [2.7.4

3.1. Semi-admissible and admissible Langlands—Rapoport pairs.

Definition 3.1.1. By a Langlands—Rapoport pair (LR pair), we mean a pair (¢, €),
where ¢ : Q — &¢ is a morphism in pro-Grbg, and € is an element of 1,(Q). We
call such a pair (¢, €) semi-admissible, if ¢ is admissible. We denote by LRP the
set of all LR pairs, and by LRPg, the subset of semi-admissible LR pairs.

Remark 3.1.2. If (¢, €) € LRPsa, then € is semi-simple. This is because (I5/Z¢)(R)
is anisotropic by Lemma [2.6.7}

3.1.3. The group G(Q) acts on the set LRP by conjugation in the following sense.

If (¢,e) € LRP and g € G(Q), then Int(g)(¢,€) := (Int(g) o ¢, Int(g)e) is also an
element of LRP. We write

(LRP) := LRP/G(Q)-conjugacy.
For (¢,€) € LRP, we denote by
(¢,€) € (LRP)

the G(Q)-conjugacy class of (¢,€). The subset LRPs, C LRP is stable under
G(Q)-conjugacy, and we write

(LRPgy) := LRPs./G(Q)-conjugacy.



76 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

3.1.4. Let (¢,€) € LRPsa. Let 0 = ¢(p) o (p : &, — Bg(p), and choose g €
UR(H) (see Definition and Lemma [2.2.4)). Let by := brny(g-1)09 € G(Q}") (see

Definition [2.2.5), and let ¢, := Int(¢~1)(¢) € G(Q). Since ¢ is semi-simple (Remark

3.1.2)), so is €.
We have €; € Iiy(g)-100(Qp), and hence ¢, € Jp, (Q,) by Proposition Also,
by the same proposition, b, is decent. It then also follows that ¢, € G(Q;r), as

T, (Qp) C G(QyY) (see §L.4.3). We let

clsp(,€) = {(bg, €g) | g € UR(D)} -
Let G(Qp") act on cls,(¢,€) on the left by h - (b,€') := (hbo(h)~", he’h™1). Since
UR(O) is a G(QpF)-torsor, the G(Qp")-action on cls, (¢, €) is transitive.

3.1.5. Fix a positive integer m, and let n = mr. (Recall that ¢ = p” is the
residue cardinality of p.) We will define ¢™-admissible LR pairs, which will serve
to describe Fym-points of the Shimura variety.

Let (¢, €) € LRPsa, and let (b, €’) € clsy(¢, €). Recall from §2.2.7|and §2.4.1| that
the set X,(¢) is identified with the set X_,(b), where u € p%. The action of
on X, (¢) corresponds to the left multiplication by ®; := (b x )" on X_,,(b). The
action of € on X, (¢) corresponds to the left multiplication by € on X_,  (b). Let

Xp(d,6,q™) :={x € Xp(¢) | ex = 2"x}.
Then we have an identification
Xp(0,6,0™) = X_u(b, &™) = {z € X_,(b) | €'z = D'}
This motivates the following definition.

Definition 3.1.6. We say that an element (¢, €) € LRPg, is ¢"-admissible, if for
one (and hence every) element (b, €’) of cls,(¢, €), we have

{0€G@)/9(Zy) | dw = D} 0.
We denote by LRP,(¢™) the set of ¢™-admissible elements of LRPs,. This subset

is stable under G(Q)-conjugacy, and we write
(LRPa(¢™)) = LRPa(¢™)/G(Q)-conjugacy.
Lemma 3.1.7. Let (¢,€) € LRPa(q™), and let (b,€') € clsy(¢p,€). Then there
exists t € Z>1 satisfying the following conditions.
(i) The fractional cocharacter tvy is a cocharacter of G defined over Qp.

(ii) We have €'* = p™**k, for k lying in some conjugate of G(Z,) in G(Q,).

Proof. We have seen in that b is decent. Take ¢ such that b is t-decent. Then
condition (i) is already satisfied. Also by assumption there exists = € G(Q,)/G(Z,)
such that

dr = o) w.
Since €’ commutes with ®, = (b x ¢)", we have

etr = oy

By Lemma we can replace ¢ by a multiple, and assume that o'z = z. Let
s =tn = tmr. Then

s

'tz = My = (bx o)*s=b"b" b---7  ba.
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Therefore
(3.1.7.1) k= (076 b bl € aG(Z,)a

—ntvy G/t

Finally, since b is t-decent we have k = p . This proves condition (ii). ([

Recall from §2.2.8| that we have a homomorphism of Q,-group schemes v(p) :
DQP — QQP'

Proposition 3.1.8. Let (¢1,€1), (2, €62) € LRPL(¢™). Suppose €1 = €3 as ele-
ments of G(Q). Then ¢ ov(p) = ¢5 o v(p) as homomorphisms D — Gg -
P

P
Proof. As in for i = 1,2, we choose g; € UR(¢;i(p) o ¢,), and let (b;,€;) be
the element of cls, (¢, €;) associated with g;. By Lemma we can find t € Z>4
such that
e = prtik,
where k; lies in some G(Q,)-conjugate of G(Z,), for i = 1,2. Since €, commutes
with b; X o, we know that egt commutes with nty,,. Also k; lies in a bounded

subgroup of G(Qp). Applying Lgmma 1.6.10/to F' = Qp, we see that ntvp, is the
unique cocharacter v of G' over QQ, commuting with ¢’ such that €, ~*p” lies in a

G(@p)—conjugate of a bounded subgroup of G((@p). Let g =gy 'g1 € G(@p). Then
we have €, = Int(g)e}. By the above-mentioned uniqueness of ntv,, with respect to

t
", we have

€

(3.1.8.1) vy, = Int(g) o v, .
By Proposition (i) we have
_ A —
(3.1.8.2) —Vp, = (Int(gi 1) o¢;(p) o Cp) = Int(g; 1) o ¢iA o v(p).

Comparing (3.1.8.1)) with (3.1.8.2)), we have ¢ o v(p) = ¢5 o v(p) as desired. O

Recall from §2.2.8|that we have a homomorphism of R-group schemes v, : G,, —
Qr-

Lemma 3.1.9. Let ¢1,¢0 : Q — B¢ be two admissible morphisms. Then ¢f o
v(00) = ¢4 o v(00).

Proof. By condition (ii) in Definition with v = 0o, we know that ¢;(00) o (s
is conjugate to &... Hence (¢;(00) 0 (x)? = @2 o v(c0) is conjugate to £5. By
the definition of ¢, in [Kis17, §3.3.5], ££ is equal to the weight cocharacter for
the Shimura datum (G, X), which is central in G (see [Del79) §2.1.1]). The lemma
follows. O

Corollary 3.1.10. Let (¢1,¢€1), ($2,€2) € LRPL(q™). Fori=1,2, assume that ¢;
is gg (Definition , and that €; lies in G(Q). Then for all g € G(Q) such that
Int(g)(e1) = €2, we have Int(g) o ¢ = ¢5.

Proof. Write H := {g € G(Q) | Int(g)e; = €2}. Let g € H. For all 7 € T, we
have "g € H, since €1, €3 € G(Q). Applying Proposition and Lemma to
(¢27 62) and Int(Tg)(¢1a 61), we get

(3.1.10.1) ¢5 ov(v) =Int(Tg) 0 ¢ o v(v), for v =p,o0.
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Now we apply 7-! to both sides of (3.1.10.1). As ¢f* and ¢5* are defined over Q
(by the gg assumption), we get

(3.1.10.2) 65 0" w(v) =Tnt(g)ogf o™ w(v), forv=p,o0.

By construction, for each finite Galois extension L/Q contained in Q, the Q-
torus QF is split over L, and the Q-vector space X, (QY) ®z Q is generated by the
Gal(L/Q)-conjugates of the fractional cocharacters

v(p) L

]D)@p —_— Q@p — Q@p
and 0

Gum,c — Qc = Q¢
See [Kis17, §3.1] for details. Hence (3.1.10.2) for all 7 implies that ¢5* = Int(g) o
2. O
3.2. The giinstig gelegen condition. As in §2.6.1] for each 7 € I" we choose a
lift ¢, € Q™P. For (¢,¢) € LRP, we write I _ for (I,)?.

Definition 3.2.1. We say that an LR pair (¢,€) € LRP is giinstig gelegen (to be
abbreviated as gg)lﬂ if the following conditions are satisfied:
e The embedding I, 5 — Gg maps € € I,(Q) into G(Q). Moreover, € is
R-elliptic in G, cf. §1.6.1] B
e For each 7 € T', write ¢(¢-) = g x 7, with g, € G(Q). Then g, lies in
(Gg¢2)(Q) = I3 (Q).
We denote by LRP the set of gg LR pairs.

Remark 3.2.2. Let (¢,¢) € LRP, and let ¢(q,) = g- x 7, for 7 € . If one changes
the choice of ¢,, then g, is left multiplied by a Q-point of im(¢*), which is a central
torus in G@’ e Hence the second condition in Definition @ is independent of
the choice of ¢, .

3.2.3. Let (¢,¢) € LRP®. By Lemma ¢ is gg, and the canonical Q-
isomorphism 1 40 = G ag Is an inner twisting between the Q-groups I and
G 4a. Moreover, in the current case this inner twisting restricts to an inner twisting
between the Q-groups Iy . and (G 4a )., and an inner twisting between the Q-groups
Ig’E and (G¢A)2.

In fact, the inner twisting between I 076 and (G 4a)? can be interpreted as follows.
Let Ip = GY C G. Since (¢,€) is gg, ¢ factors as Q — &, — Bg. We write ¢,
for ¢ when we view it as a morphism Q — ®&j,. Then ¢, is itself gg. Hence
by Lemma applied to ¢j,, we obtain an inner twisting between Iy, —and
(I0) (41,2 = (Lo)ga. It is easy to see that as Q-groups we have I, = 19 and
(Io)ga = (Gga)?.

Definition 3.2.4. We write [CRP®8] for the quotient set of LRP® divided by
the equivalence relation of G(@)—conjugacy For (¢,€) € LRPEE, we denote its
image in [LRP?2] by ¢, €]. We denote the natural injection [LRPEE] — (LRP) by
v (standing for vergessen).

18Asin Deﬁnition this terminology comes from [LR87) §5], but our definition is modified
to suit the corrected definition of 9.
9We caution the reader that the subset LRP&E C LRP is not stable under G(Q)-conjugacy.
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Lemma 3.2.5. Let (¢,¢€) € LRP, and let a = (a;), € Z'(Q,1y.). Then (ag,e€) €

LRP (i.e., the element € € G(Q) lies in the image of I,4(Q) — I,4(Q) — G(Q)).
Here a¢ is the twist of ¢ by the cocycle a as in §2.1.15 If in addition we have
(¢, €) € LRP®E and a € Z'(Q, I} ), then (ag,e) € LRP®E.

Proof. First recall that (a¢)® = ¢*, and I ) and I, 40 re equal as Q-subgroups
of Gg. Write ¢(g-) = g x 7 for each 7 € I'. Then we have (a¢)(qr) = argr x 7.
Since € € 1,(Q), we have g,7eg; ' = €. Since € commutes with a,, we have

T _—1_ -1 __
a‘l‘g‘l’ qu— a’T =6

which means that € € I,4(Q). Thus we have shown that (a¢,€) € LRP.
To show the second statement, we need to check that a,g, € 12(1)76(@) for all 7.

But both g, and a, lie in Ig)s(@), and we have ngs,e(@) = Ig’e(@). The desired
statement follows. ]

Lemma 3.2.6. Let (¢,¢) € LRP. Let a,b € Z1(Q,14.). Then a,b are cohomolo-
gous in Iy . if and only if {ap,€) = (b, €).

Proof. Write ¢(q,) = g- x 7, for each 7 € I". If a,b are cohomologous in Iy, then

there exists u € I (Q) such that

(3.2.6.1) a; =u tbrg,ug=t, Vrel.

Here "u denotes the action of 7 on u viewed as in G(Q). Then

(a¢)(q7) =a7;gr XT = u_legTTu AT = Int(u_l) o (b(b)(QT)'

Hence we have Int(u=!) o (b¢) = a¢ as they already agree on the kernel. Also
Int(u~1)e = €. Therefore (agp, €) = Int(u=1)(bg, €), and so (adp, e) = (b, €).

Conversely, assume that (a¢, ) = (bp, €). Then there exists u € G(Q) such that
(ag,€) = Int(u=1)(bp,€). Since (ag)® = (bp)?, we have u € I, .(Q). Now the
relation Int(u=1) o (b¢) = a¢ is equivalent to , which shows that a and b
are cohomologous. (I

3.2.7. Let (¢,0) € LRP and (¢,€) € LRP®. In view of Lemma[3.2.5 and Lemma
[3:2:6] we have well-defined maps

ZNQ, Iy 5) = LRP, aw (ay),d)
and
ZI(Q,Ig,e) — LRPE,  ar (ag,e),
which induce maps
vps  HY(Q, Iys) — (LRP)
and
Moe : HY(Q, 19,.) — [CRP#]
respectively. Moreover, by Lemma the map vy s is injective.

Lemma 3.2.8. Let (¢,€) € LRPSE. The subset im(ngs.) of [LCRPSE] depends only
on [p, €] € [LRPEE].
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Proof. Suppose we have (¢, ¢') € LRP®® such that [¢,e] = [¢,€']. Then (¢',€') =
Int(g)(¢,€) for some g € G(Q). We have an isomorphism Int(g) : I3, — I .
defined over Q. This induces a bijection

g« - HY(Q,IJ,) » H (Q, I} ),

and we have 14 = ¢/, © G- g

Definition 3.2.9. For x = [¢, €] € [CRP?®], we define the subset
Cy :=im(ny.) C [LRPEE].
This is well defined by Lemma [3.2.8

Lemma 3.2.10. Let z,y € [LRP®E]. Then y € Cy if and only if x € Cy. In
particular, subsets of the form C, form a partition of [LRP®E].

Proof. Let x = [¢,¢] € [LRP®®]. Assume that y € C,. Then there exists a =
(ar)r € ZY(Q, I3 ) such that y = [a¢, €]. We identify I4(Q) with I,4(Q). For each
7 € T, let 7(-) (resp. 7(-)) denote the action of 7 on I,(Q) with respect to the
Q-structure I (resp. I,4). We have

) = a7 (a;

For each 7, let b, := a;! € I,4(Q). Then for 0,7 € I' we have
bor = (a,0(ar)) " = (6(ar)as) ™" = bod(br),

showing that (b;), € Z'(Q, I,e). Clearly we have ¢ = b(a¢), and so x € C,,. O

Lemma 3.2.11. Let (¢1,€1), (P2, €2) € LRPE be elements having the same image

in [LCRPEE], and let g € G(Q) be such that Int(g)(¢p1,€1) = (P2, €2) (which exists by

the first assumption). Then we have g Tg~* € G2 (Q) for all T € T. In particular,
€1,€2 € G(Q) are stably conjugate.
Proof. For i = 1,2, we write ¢;(¢;) = gi,r X 7. Then

92r=991-"9 ' =991:97'9g 79",

and hence

979" =(991-97") " g2r-
Since (¢1,€1), (p2,€2) € LRPEE, we have g1, € GSI (Q) and g2, € G82 Q). It
follows that gg1 ,¢~' € G2 (Q). Hence g "g~" € G (Q), as desired. O

Definition 3.2.12. Asin §1.8.7 let ¥g_o11(G) be the set of stable conjugacy classes
of semi-simple, R-elliptic elements of G(Q). We define the stable conjugacy class
map

scc: [LRPEE] — Trean(G),

sending [¢, €] to the stable conjugacy class of e. This is well defined by Lemma
B21T

Definition 3.2.13. Fix m as in We set
LRPEE .= LRPE N LRP,., LRPE(G™) = LRPE N LRPA(q™),
[LRPE] == v ((LRPw)), [LRPEE(¢™)] == 0 ((LRPa(q™)))-
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3.2.14. Let (¢,€) € LRPEE(¢™). Then ¢ is gg (see §3.2.3), and ¢ € G(Q).
Hence by Corollary [3.1.10 the Q-inclusion I 60 = G@ induces a Q-isomorphism

Iy .5 = Ge@. By this fact and by the discussion in 5 we obtain canonical

inner twistings
(Is,e)g — (Go)g-
Lemma 3.2.15. Let (¢,€) € LRP. Assume that I, contains a G-rational mazimal

torus T (see Definition such that € € T(Q) and such that T/Zq is anisotropic
over R. Then (¢,¢€) € LRPEE.

Proof. The assumptions imply that € is a semi-simple R-elliptic element of g(@)
By the proof of Lemma 2.6.6L if we write ¢(q,) = g- % 7, then g, lies in T(Q) for
cach 7 € T'. Note that T C I3 . Hence g, lies in I3 (Q) as desired. O

Lemma 3.2.16. Let (¢p,¢) € LRPsy. Then there exists g € G(Q) such that
(¢/,€') = Int(g)(¢,e) € LRPs satisfies the following condition: The group I
contains a G-rational mazimal torus T' such that € € T'(Q) and such that T' | Zg
is anisotropic over R. Moreover, in this case we have (¢',¢') € LRPEL.

Proof. Choose a maximal torus T' C I, defined over Q such that € € T(Q). (This is
possible since € is semi-simple; see Remark ) Since ¢ is admissible, Proposition
implies that there exists g € G(Q) such that Int(g)(T') is a G-rational maximal
torus in Iiy(g)0p. We write (¢', ¢’) for Int(g)(¢, €), and write T” for Int(g)(7). Then
T’ is a G-rational maximal torus in Iy, and € € T"(Q). Since ¢’ is admissible,
we know that T"/Zq is anisotropic over R by Lemma m Finally, we have

(¢/,€') € LRPES by Lemma O

Corollary 3.2.17. The injection v : [CRP®] — (LRP) restricts to bijections
[LRPEE] =5 (LRPsa) and [LRPEE(q™)] = (LRPa(q™)).

Proof. By Lemma every G(Q)-conjugacy class in LRPg, contains an ele-
ment of LRPE. Hence b restricts to a bijection [LRP2E] = (LRP,). Since
[LRPEE(g™)] is by definition 0! ((LRP.(¢™))), we see that v also restricts to a
bijection [LRPEE(¢™)] = (LRP.(q™)). O

3.2.18. Let (¢,¢) € LRPEE. As IOVE is a Q-subgroup of I, we use the canonical
inner transfer datum from I, to G as in §2.6.11| to define IIF(Q, 12’6); see §1.2.5

Proposition 3.2.19. Let (¢,¢) € LRPE. Then n, ([LRP]) = IIF(Q, 1] ,).

€

and only if the image of 3 in H'(Q, I) lies in IIIX(Q, Is). Thus we only need to
check that the map H'(R, 19,) — H'(R, ;) has trivial kernel. Note that (I9 )r

and (I)r are both reductive groups over R, and their centers both contain Zg .
The desired statement then follows from Lemma and [Kis17, Lem. 4.4.5]. O

Proof. By Proposition [2.6.12 an element 8 € Hl((@,lowe) lies in n;’l([L’RPEE]) if

Proposition 3.2.20. Let x € [LCRPE(¢™)], and let e = sce(z) € Eg.en(G). Then
Co N [LRPEE(g™)] = scc™ (e) N [LRPEE(¢™))].
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Proof. We only need to show the containment scc=!(e) N [LRPEE(¢™)] C C.. Let
y € sccl(e) N [LRPEE(g™)] be arbitrary. Write x = [¢o, €0], ¥ = [b1, €1], for some
(i, €;) € LRPEE(¢™), i = 0,1. Since scc(z) = sce(y), there exists g € G(Q) such
that

(3.2.20.1) Int(g)er = €o,
(3.2.20.2) 979 €G(Q), VreTl.

Let ¢/ = Int(g) o ¢1. By (3.2.20.1)), we have (¢',e9) € LRP, and (¢, €p) is
1-

G(Q)-conjugate to (¢1,¢€1). By Corollary [3.1.10{ applied to the relation ([3.2.20.1)),
we have ¢ = ¢2. By Lemma [2.1.16| we have ¢’ = ag¢g for some a € Z1(Q, I,).

For i = 0,1, we write ¢;(¢;) = gTi X 7. Then

(3.2.20.3) ¢ (¢r) = argl® x 7.

By the definition of ¢’ we have

(32.20.4) ¢'(ar) = Int( )o </>1(q7) =g(gM x7)g7 = ggM g x .
Comparing and , we have

(3.2.20.5) a; = gg$1>Tg—1( O)=1 = Int(g)(¢D) - (79 1) - (¢0)

Since (¢, €;) is gg, we have g e G? (Q). Hence Int(g)(gg)) and (950)),1 both
lie in GY (Q). Thus by (3.2.20.2) and d 2.20.5), we have a, € G2 (Q). By the
discussion in §3.2.14|, we have (GSO)@ = (I3,.c,)g since (do,€0) € LRPEE(q™).
Hence a = (a,) is a cocycle in Z}(Q, 130760). It follows from Lemma m that the
pair (¢',€0) = (ago, €0) is gg. Since this pair is G(Q)-conjugate to (¢1, €1), we have
y = [¢, €] = [ado, €0] € im(1gq,e)) = Ca- O

3.3. Admissible morphisms and maximal tori. We first explain a result which
considerably strengthens Corollary [2.6.10]

Definition 3.3.1. By a special point datum for (G, X ), we mean a triple (7,4, h),
where T is a torus over Q, i : T'— G is an injective Q-homomorphism whose image
is a maximal torus in G, and h : S — Tg is an R-homomorphism such that ioh € X.
We denote the set of special point data by SPD(G, X).

Definition 3.3.2. Let (T,i,h) € SPD(G,X). Let pp € X.(T) be the Hodge
cocharacter associated with h. We denote by ¢(T, i, h) the composite morphism

‘IIT,Hh, 7
QD —5 6r = Bg
in pro-Gro(Q/Q). (See for U -

Theorem 3.3.3 (|[Kisl7, Lem. 3.5.8, Thm. 3.5.11]). A morphism ¢ : Q — B¢ is
admissible if and only if there exists (T,i,h) € SPD(G, X) such that ¢ is conjugate
o ¢(T,i,h).

Remark 3.3.4. Let (T,i,h) € SPD(G,X), and let ¢ = &(T,i,h). Then i(Tg)
is contained in I 5 (when they are both viewed as subgroups of G@), and the
inclusion T — I s0 8 defined over Q. In other words, T is naturally a G-rational

maximal torus in Iy. By Lemma[2.6.6} ¢ is gg. With this observation, we see that

Theorem [3.3.3] strengthens Corollary [2.6.10]
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3.3.5. Our next goal is to prove a more precise version of the “only if” direction
in Theorem [3.3.3] We introduce some general notation. For a Q,-torus 7' and a
cocharacter A € X, (T), we write AT, or simply A, for

L:Q)" ) reX.(DeQ
reGal(L/Qp)
where L/Q, is any finite Galois extension over which ) is defined. For an unramified
reductive group M over Q,, we write
wyr : M(Qp) — m(M)r, , = m(M)
for the Kottwitz homomorphism associated with the p-adic valuation on @p, as in

and §1.4.2] (Here I', o acts trivially on 71 (M) since M is unramified over Q,,.)
We fix p € p; as in §2.4.1l For each b € G(Q,), we define X_,,(b) as in

Lemma 3.3.6. Let T' C Gq, be a maximal torus over Q,. Let b € T((@p) C G(@p)

be such that X _,,(b) is non-empty. Then there exists ur € X.(T) which is G(Q,
conjugate to p and such that vy is equal to —fir" as elements of X.(T) ® Q.

Proof. This is proved by Langlands—Rapoport, when they prove [LR87, Lem. 5.11].
We recall the argument with the suitable changes in notation.

First note that v, is a fractional cocharacter of T' defined over Q,, (as this holds
for arbitrary b € T(Q,)). Let M be the centralizer in Gq, of the maximal Q,-split
subtorus of T'. Then M is a Q,-Levi subgroup of Gg, containing 7', and v, factors
through the center of M. Up to conjugating T' and b by an element of G(Q,), we
may assume that M contains a maximal torus 7" that is the centralizer of (the
generic fiber of) a maximal Z,-split torus in G. In particular, there is a reductive
model M of M over Z, such that the embedding M — Gg, extends to M — G.
Without loss of generality, we may also assume that p is a cocharacter of T” defined
over B, = Qpr.

Let Q (resp. 25s) denote the absolute Weyl group of G (resp. M). The Cartan
decompositions give rise to maps

cg : G(Qy) — G(Z,)\G(Qy)/G(Zy) > N\X(T),
eam s M(Qp) — M(Z,)\M(Qp)/M(Zy) = Qu\ X (T").
These maps lift the Kottwitz homomorphisms wg and wy; respectively, cf. Corollary

.o 1o
Now by the assumption that X_,(b) # 0, there exists € G(Q,) such that

cg(e (@) = 9+ (—).
From this, it is shown on p. 178 of [LR87] that there exists m € M(Q,) such that
(3.3.6.1) em(m™tbo(m)) = Qs - (—p).

(The argument uses the Iwasawa decomposition and the fact that p is minuscule,
cf. also the proof of [Kisl7, Lem. 2.2.2].)

We take the desired ur to be any element of X, (T) that is conjugate to u €
X.(T") by M(Q,). It remains to check that v, = —fiz”. Note that fiz" factors
through the maximal QQ,-split subtorus of 7', and is therefore central in M. We have
seen that v, is also central in M. Hence in order to check v, = —fiz?, it suffices
to check that v, and —fi7! have equal image in w1 (M )q := m (M) ®z Q. Without
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loss of generality, we may replace b by a o-conjugate in T(Qp), and assume that b
is decent in T(Q,) (see ﬁi Then for sufficiently divisible n we have

bo(b)---o" "1 (b) = p™.
For each A € X.(T") ® Q, we denote its image in m (M)g by [A]. We compute

] = war (07 = war (bo (B) - 0" (1))
— wag(m) = war (o™ (m)) — [+ o (1) + -+ 0" ()],

where the last equality follows from (3.3.6.1). (Note that the action of o on X, (T")
is indeed well defined as 7" is unramified.) We can choose n divisible enough such
that the coset mM(Z,) € M(Q,)/M(Z,) is fixed by o™ (see Lemma [1.6.8), and
such that T” splits over Q,». Then the above relation becomes
] = — (™).

Finally, [z”7'] is equal to the image of ip” in m;(M)g. This is because p and up
have the same image in 71 (M), and the Galois actions on both X, (T) and X, (T")
are compatible with that on 7y (M). Thus we conclude that v, and —fiz? have the
same image in m (M)g, as desired. O

Lemma 3.3.7. Let T C G be a mazimal torus over Q such that Tk is elliptic in
Gr. Let i denote the inclusion T — G. Let ur € X« (T) be such that i o pur lies in

ux(Q). Then there exist u € G(Q) and an R-homomorphism h : S — Tk, satisfying
the following conditions.

(i) i == 1Int(u) o i : Ty — Gy is defined over Q.

(i) pr = pn.
(iii) i' o h € X.

Proof. This is proved by Langlands—Rapoport, when they prove [LR8T7, Lem. 5.12].
In fact, in that lemma p7 is assumed to be of the form wyy,,, where w is an element
of the absolute Weyl group of (G, T), and hg is an R-homomorphism S — Tk such
that ¢ o hg € X. We explain why our hypothesis implies that setting. Since Tk
is elliptic in Gg, there indeed exists an R-homomorphism hg : S — Tg such that
iohg € X. Then 7o pup, and i o up are conjugate by G(C), and it follows that
1= wip, for some w in the absolute Weyl group. (I

3.3.8. Let ¢ : Q — &g be an admissible morphism. Let T' C I, be a maximal
torus over Q. Since (¢(p) o ()2 is a central fractional cocharacter of I 6.3, it can
be viewed as an element of X, (T) ® Q. We say that a cocharacter ur € X, (T') is
¢-admissible, if the composition Gm,@ £, T@ — I¢,@ — G@ is a cocharacter in

bx(Q), and if 7 % = (p(p) 0 ()™ as elements of X,.(T) ® Q.

Theorem 3.3.9. Let ¢ : Q — &g be an admissible morphism, and let T C I, be
a mazimal torus over Q. The following statements hold.
(i) There exists pr € X.(T) that is ¢-admissible in the sense of §3.5.8
(ii) Let ur € X.(T) be as in (i). Then there exists a special point datum of
the form (T,i,h) € SPD(G, X), satisfying the following conditions:
(a) We have pp = up,.
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(b) There exists g € G(Q) such that Int(g) o ¢ = ¢(T,i,h), and such that
the embedding i : T — G equals the composition

Int(g)
To=log — 7 loama = G
(Here the first two maps are defined over Q, and the second map is

an isomorphism.)

Proof. This essentially follows from the proof of [LR87, Satz 5.3]. We reproduce
the argument for the convenience of the reader, and we remove the assumption in
loc. cit. that Gge is simply connected.

(i) By Proposition we may assume that 7' is a G-rational maximal torus
in I;. By Lemma ¢ factors through &7 C &g. Hence the G(Q})-torsor
UR(¢(p) o () contains elements of T(Q,). We choose t € UR(¢(p) o () NT(Q,),
and let b = brn(t-1)0p(p)oc, € G(Q}F) (see Definition . Then b € T(Qur).
Since ¢ is admissible, we have X_,(b) # 0 for u € p$. Hence by Lemma we
find i € X, (T) such that fi7'% = —u;,. Finally, by Proposition m (i), we have
—vp, = (Int(t) "L 0 ¢(p) 0 ()2, which equals (¢(p) 0 (). Hence ur is ¢-admissible.

(ii) Again by Proposition we may assume that 7" is a G-rational maximal
torus in Iy. We denote by i the inclusion T@ — I 63 G@ which is defined
over Q. By Lemma [2.6.7) io(Tg) is an elliptic maximal torus in Gg. Applying
Lemma [3.3.7, we find « € G(Q) and an R-homomorphism h : § — T such that
Int(u) oig : T — G is still defined over Q, such that ur = up, and such that
Int(u) oigoh € X.

We may replace ¢ and i by Int(u) o ¢ and Int(u) o ig respectively, and assume
that uw = 1. This does not change the property that T is G-rational, and we now
have (T, ig,h) € SPD(G, X) such that ur = pp.

By Lemma, we may factorize ¢ uniquely as ¢ = ig o ¢, where ¢r is a
morphism 9 — &7. Analogously, ¢(T, iy, h) factors as ig o U ., by its definition.
We claim that ¢5 = U2 or equivalently ¢ = ¢(T,ig,h)>. In fact, the ¢-

T7HT’
admissibility of pp implies that
(3.3.9.1) (é7(p) 0 )™ = (Trpur () © )2

(see [KisI7, (3.1.11)]). Also, since ¢ and ¢(T', g, h) are both admissible (the former
by assumption and the latter by the “if” direction in Theorem [3.3.3), we have

(3.3.9.2) (¢7(00) 0 o)™ = (T4, (00) 0 (o0)?

by Lemma Since ¢5 and \I/%, up are both homomorphisms 04 — Tt defined
over Q (for instance by Lemma , the above relations (3.3.9.1) and (3.3.9.2)
imply that ¢2 = \I!% e 2 desired (cf. the discussion on the tori Q¥ in the proof of

Corollary |3.1.10)).

By the claim above and by Lemma [2.1.16), we have ¢ = a¥r,,, for some
clement a € ZY(Q, Iy, ) = Z'(Q,T). By the admissibility of ¢ and ¢(T, i, h)
and by Proposition m the image of a under

Z1Q. 1) » HY(Q.T) = H'(Q Ly(r.io.)

lies in IIF(Q, Iy(r,ip,n)). By Lemma and Lem. 4.4.5], the map
H'(R,T) — Hl(R,I¢(T7iU7h)) has trivial kernel. Thus the class of ¢ in H'(Q, T)
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lies in the kernel of the map III*°(Q,T) — II*°(Q, G) induced by io : T — G. It

follows that there exists g € G(Q), satisfying:

(3.3.9.3) iolar) =g g, VreT;

(3.3.9.4) g€ GMR)-ix(T(C)) Cc G(C).

For each 7 € I, we write ¢(T', 40, h)(gr) = g- x 7, and ¢(¢-) = g; ¥ 7. (Here g, € Q

is a lift of 7, as always). Because ig(a,) and g, both lie in io(7(Q)) and commute
with each other, we have g. = ig(a,)g, = grio(ar) = g-g~'7g. Then we have

(3.3.9.5) (Int(g) © ¢)(ar) = 99;79~ " ¥ 7 = 99,9~ .

Now let ¢ := Int(g) o ip. By , i is a Q-embedding 7' — G. By ,
ioh € X. In particular, (T,i,h) € SPD(G,X). By , we have (Int(g) o
#)(q-) = ¢(T,i,h)(q;). Since we also have (Int(g) o $)> = ¢(T,i,h)® (because
¢ = 92 ,.), we have Int(g) o ¢ = ¢(T,i,h). Thus (T,i,h) and g are the desired
elements. O

3.4. Admissible stable conjugacy classes. The goal of this subsection is to
construct certain elements of the image of [CRPEE(¢")] C [LRPE8] under the map
scc: [LRP®8] — Sg.on(G) in Definition For M a reductive group over Q,,
we write wyy : M(Qp) — m(M)r,, for the Kottwitz homomorphism, as in

For each k € Z>1, we denote by B (M) the set of o*-conjugacy classes in M(Qp).

Lemma 3.4.1. Let M be an unramified reductive group over Q. Let x € M(@p)
be in the kernel of wyr. For all k € Z>1, the class of x in B(k)(M) is in the image
of the natural map B® (M) — B® (M).

Proof. Write 7 := o*. We first assume that Mge, = M.. Consider M*® = M /Mg,
which is an unramified torus over Q,. The image  of = in M*>(Q,) is in the kernel
of wysen, and this kernel is the unique parahoric subgroup of M?"(Q,) (which
is hyperspecial in this case). By Greenberg’s theorem [Gre63, Prop. 3], we have
T =¢-7¢ ! for some ¢ € M*P(Q,). Let ¢ € M(Q,) be a lift of ¢, which exists
because Hl(Qp, Myey) is trivial by Steinberg’s theorem. Then ¢~t27c € Mder((@p),
which means that the class of  in B*)(M) comes from B® (Mye:) = B® (M,.).

In the general case, as in [Kot84al, §3] we take a z-extension
l1—272—H —M—1

over Q,, where H is an unramified reductive group with simply connected derived
subgroup, and Z is an unramified induced torus contained in the center of H. Then
we have a commutative diagram with exact rows:

1 Z(Qp) H(Q,) — M(Q,)) —1
LR
1 m(Z) ™ (H) m (M) 1

By [Kot97, §7], the vertical arrows in the above diagram are surjective. Since
wa(z) = 0, there exists h € ker(wy) C H(Q)) that maps to x € M(Q,). Applying
the first part of the proof to H, we know that the class of A in B(k)(H ) comes

from B®) (Hg.). But the composite map Hy. — H — M factors through M.. The
lemma follows. O
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Lemma 3.4.2. Let M be an unramified reductive group over Q,. Let T C M be
an elliptic mazimal torus. Let x € T(Qp) be such that wy(x) =0 € mi(M). Then
some integer power of x lies in a compact subgroup of T(Q,).

Proof. Let T° be the connected Néron model of T" over Z,. Then the kernel of
wr : T(Qp) — X (T)r,, is T°(Zy); see [Rap05, Rmk. 2.2 (iii)]. If wr(z¥) = 0
for some integer k, then z* lies in T°(Zp) NT(Q,) = T°(Z,), which is a compact
subgroup of T(Q,). Hence it remains to show that wr(z*) = 0 for some k. We
know that wr maps T(Q,) C T(Q,) into the group of o-invariants (X, (T)r,.,)°-
It remains to show that the natural map

(Xu(D)r,0)” = Xu(Tr, o = m(M)r, , = m (M)

has torsion kernel. For this, let A be the maximal Q,-split subtorus of Zys. Since
T is elliptic in M, A is also the maximal Qp,-split subtorus of 7. In particular
X, (A) is identified with X, (7). The inclusion map X, (A) = X,(T)'» — X.(T)
induces an isomorphism

X, (4A)®Q = (X.(T)r,,)” ®Q.

(The inverse map is induced by taking average over I'y, p-orbits in X, (T).) Thus we
reduce to showing that the natural map X,(A4) ® Q — (M) ® Q is injective, but
this is clear. 0

»,0

Definition 3.4.3. For ¢ € G(Qy)ss, we let M (¢) be the Levi subgroup of Gg, that is
the centralizer of the maximal Q,-split subtorus of the center of G?. (Equivalently,
M (e) is the smallest Levi subgroup of Gg, containing Gopﬁe.)

Definition 3.4.4. Let e € G(Q,)ss, and let M := M (e). Let n = mr as in §3.1.5
We say that e is p™-admissible, if there exists a cocharacter pys of Mg, satisfying
the following conditions.

o i € px(Qpr). (Here px(Qpn) is well defined since Ep, = Qpr C Qpn )
e We have

(34.4.1) war(9) = = 3" o' luai] € m(20),
=0

where [uar]™ denotes the image of pps in 7 (M).

The following lemma generalizes [LR87, Lem. 5.17] to the case where Gge, is not
necessarily simply connected.

Lemma 3.4.5. The set of p"-admissible elements in G(Qp)ss is invariant under
stable conjugacy over Qp.

Proof. Evidently this set is invariant under G(Qp)-conjugacy. Now let ¢,¢ €
G(Qp)ss be stably conjugate and suppose that € is p™-admissible. We show that
¢ is p"-admissible. Let M = M (e). Since M is a Levi subgroup of Gg,, the in-
clusion M C (g, induces an injection H'(Q,, M) — H'(Q,, ), cf. [Hai09, §4.1].
Also note that G? = M?. Hence we have a natural bijection D(M?, M;Q,) —
D(G?, G;Q,). It follows that we have a natural surjection from the set of M(Q,)-
conjugacy classes in the stable conjugacy class of € in M onto the set of G(Q,)-
conjugacy classes in the stable conjugacy class of € in GQPE Conjugating ¢’ by an

20Recall that these two sets are mapped onto by D(M?, M;Qp) and D(G?, G; Qp) respectively.
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element of G(Q,) if necessary, we may assume that ¢ lies in M(Q,), and that € is
stably conjugate to € inside M. Under these assumptions, we have M = M (¢'). To
check that € is p™-admissible, it suffices to show that wps(€) = wps(€’). For this,
note that since ¢ and € are stably conjugate in M, they are conjugate in M (@p)
by Steinberg’s theorem. The desired statement follows from the fact that wy; is a
group homomorphism from M (Qp) to an abelian group. O

By Lemma we have a well-defined notion of p™-admissibility for stable con-
jugacy classes in G(Q,)ss. The following result is a generalization of one direction
in [LR&7, Satz 5.21].

Theorem 3.4.6. Let ¢ € G(Q)ss represent a stable conjugacy class in Er_en(G)
whose localization over Q, is p"-admissible. Then the stable conjugacy class of €
lies in the image of [CRPSE(¢q™)] under the map scc : [CRP®8] — Ep_en(G). (Here
n=mr and p" = q¢™.)

Proof. By assumption there exists an R-elliptic maximal torus in (G?)g. By a
theorem of Kneser [Kne65], there exists a Qp-elliptic maximal torus in (G?)g,. It
then follows from [LR87, Lem. 5.10] that there exists a maximal torus 7" in G? such
that T, is elliptic in (GY)g, for v = co and p.

Let M = M(e) (which is defined over Q) be as in Definition and let pps
be as in Definition Then Tj, is a maximal torus in M. Let ur € X.(T') be
a conjugate of yp under M(Q,). By Lemma we find v € G(Q) such that
Int(u) : T — G is defined over Q, and such that Int(u) o upr = py for some h € X.
Note that € is stably conjugate to Int(u)(e), because v~ 1"u € T(Q) C G°(Q)
for all 7 € T'. Hence we may replace €, T, M by Int(u)(e), Int(u)(T), Int(u)(M)
respectively, and assume that ur = pj for some h € X (which necessarily factors
through Tg).

We denote the inclusion T'— G by i. Then we have (T,i,h) € SPD(G, X). Let
¢ = ¢(T,i,h) (Definition 3.3.2). Then € € T(Q) C I4(Q), and we have (¢,€) €
LRPs, by Theorem Moreover, by Remark we have (¢,¢€) € LRPEE. Tt
remains to show that (¢, €) € LRPEE(¢™).

Since M is an unramified reductive group over Q,, it contains an unramified and
elliptic maximal torus 7" (see [LR87, p. 171] or [DeB06, §2.4]). Let 1/ € X,.(T") be
a conjugate of pr and gy under M(Q,). Let b’ = p/(p7") € T'(Qp"). Then one
immediately checks the following properties:

(i) The element ¥ is decent in T"(Q,).
(ii) We have wp/ (V') = —p’ € X.(T”). In particular, we have

(3.4.6.1) wa (V) = —[pu)™ € m (M),

Since ¢ = ¢(T,i,h) =i o Vr ,,., the G(Qy")-torsor UR(¢(p) o (,) contains the
T(Qpr)-torsor UR(Yr, .. (p) 0 Cp)- Let (bo, €0) € clsy(¢,€) be the element associated
with some g € UR(¥r ... (p) 0 (p) (see . Then ey = ¢, and by € T(Q}").
Moreover, by Lemma the element rr(bp) € X.(T)r, equals the image of
—HT-

Since Tg, and T are both elliptic in M, we know that by € T' (Qp) and b €
T'(Q,) are both basic in M(Q,). By what we have seen about wr+ (b') and sr(bo),
we have kpr(V) = kar(bo) € mi(M)r,. It follows that b and by represent the
same (basic) class in B(M) (see [Kot85, Prop. 5.6]). Since by and b’ are decent,
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there exists s € M(Qp") such that b’ = sbyo(s)™"' (see §1.4.1). We then have
(', ses™1) € clsy (o, €).

We write € for ses~!, which is an element of M (QpF). It remains to show that
€11/ x )" has a fixed point in G(Q,)/G(Z,). For each k € Z>, let

U = (€)™ 0o (B) -0 () € (@),

so that
(3.4.6.2) (YRW x o) = U, x ot
Since ¢ is M(Q}")-conjugate to €, we have wyr(e') = war(e). Hence wy(Ug) = 0
by (3.4.4.1) and (3.4.6.1). By Lemma the class of Uy in B™ (M) comes from
B(™(M,.). We claim that the class of U; in B™ (M) is basic with trivial Newton
point. Given the claim, we use the fact that the only basic class in B™ (Msc) is the
trivial class (JKot85, Prop. 5.4]) to deduce that U; = co™(¢™!) for some ¢ € M(Q,).
It follows that €~ (b' x )" = U; x ¢™ has a fixed point in G(Q,)/G(Z,), namely
CQ(ZP). The proof of the theorem will then be finished.

To prove the claim, it suffices to find t € Z>; and e € M(@p) such that

(3.4.6.3) Uy -o™(Uy) - o?™(Uy) - o) = e- o™ (e7}).

Since ¢ commutes with b’ x o, it easily follows from that the left hand side
of is equal to U;. Fix an arbitrary reductive model M of M over Z,. By
Greenberg’s theorem [Gre63, Prop. 3] (cf. [Kot84al, Lem. 1.4.9]), in order to find
t,e such that U; = e - o' (e™!) it suffices to find ¢ such that U, € M(Z,).

Now for each k € Z>; we have

(3.4.6.4) Uy = () Fp,
where
kn—1 )
Ap 1= — Z al(i).
=0

Since T" is unramified, for sufficiently divisible k& we have o*" (1) = p/. In this case
Ai is defined over Q,, and in particular it is central in M by the ellipticity of T”.

Hence for sufficiently divisible & we have
s Us = e Fp* € T(Q,).

Since war (s~ Ugs) = war(Ux) = 0, and since Ty, is elliptic in M, we apply Lemma
to conclude that some power of s~'Uys lies in a compact subgroup of T(Q,).
In particular, for any given neighborhood N of 1 in T'(Q,), all sufficiently divisible
powers of s 1Uys lie in . Now observe that when ), is defined over Qp, we have
At =1- Xy for all | € Z>,, and therefore

s WUs = (s_lUks)l7 Vi€ Z>.

We conclude that for A" as above, we have s~'Ugs € N for all sufficiently divisible
k. If we take N to be (s ' M(Z,)s) N T(Q,), then we see that Uy, € M(Z,) for all
sufficiently divisible k, as desired. O

For a quasi-split reductive group M over Q,, recall that the degree n norm is a
map from the set of o-conjugacy classes in M(Qpn) to the set of stable conjugacy
classes in M(Q,); see [Kot82, §5].
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Lemma 3.4.7. Let € € G(Qp)ss, and let M = M(e). Assume that there exists

a cocharacter pn of Mg, satisfying the first condition in Definition and
such that € is a degree n norm with respect to M of some 6 € M(Qpn) satisfying
war(8) = —[um]™. Then e is p"-admissible.

Proof. 1t suffices to check (3.4.4.1), for the given pps. First assume that Mge, is
simply connected. Then we have 71 (M) = 71 (M?3P). Let € and 6 be the images of ¢

and § in M?"(Q,) and M?>P(Q,n ) respectively. Then we have € = §a(5) - -- o™ 1(§).
It follows that

n—1 n—1

(3.4.7.1) wpr(€) = wpan (€) = Z o' (wpan (0)) = Zai(wM((S)),
i=0 =0

which gives the desired (3.4.4.1)).

In the general case, we take an uniamiﬁed z-extension 1 - Z2 - H - M — 1
as in the proof of Lemma Let § € H(Q,») be a lift of §, and let € € H(Q))

be a degree n norm of 5. By the identity (3.4.7.1)) applied to H,€,d, we have
(3.4.7.2) wir(®) =Y o' (wr(3)).

Now the image of € in M (Q,) is stably conjugate to € over Q,, and therefore M(Qp)-
conjugate to €. Hence the image of wy(€) € m (H) under 7 (H) — 71 (M) equals
wy(€). Obviously the image of wy (8) € w1 (H) under 7 (H) — m (M) equals
wpr(0). Hence from we get

[

n—

wpr(€) = Zai(wM@)),

1=0
which gives the desired (3.4.4.1)). ([l

In the next proposition, let the function ¢, : G(Qpn) — {0,1} be as in §1.8.2
Thus ¢, is the characteristic function of the double coset G(Zpn)p™#G(Zpn) for
arbitrary p € p%., in the notation of §2.4.1]

Proposition 3.4.8. Let € € G(Q)ss represent a stable conjugacy class in Yg_on(G).
Assume that e € G(Qp) is a degree n norm of some § € G(Qpn) whose o-conjugacy
class in G(Qpn) intersects non-trivially with the support of ¢,,. Then the stable
conjugacy class of € is in the image of [LRPEE(q™)] under scc.

Proof. Let ¢ be a G(Q,)-conjugate of € such that M (¢’) contains the generic fiber
of a maximal Z,-split torus A in G. By Theorem we only need to check that
€' is p™-admissible.

Write M for M(e'). Since M D Ag,, we have a reductive model M of M over
Z, such that the embedding M — Ggq, extends to M — G. Let S be a maximal
Zyn-split torus in QZP,,L such that S contains Azpw In particular, S := S@pn is
a maximal Qpn-split torus in Gg,., and it is contained in Mg,,. There exists
1’ € X.(S) that is G(Z,n)-conjugate to some pu € pg. We fix such a p/. Note that
¢n is the characteristic function of G(Zyn)p™* G(Zyn).

Denote by sa(¢y) the function in the unramified Hecke algebra of M (Qpn) with
respect to M(Zyn ), obtained from ¢,, via the partial Satake transform (a.k.a. nor-
malized constant term). Now [Hai09, Lem. 4.2.1] implies that there exists dy; €
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M (Qpn) which is o-conjugate to ¢ in G(Qpn ) and whose degree n norm with respect
to M is the stable conjugacy class of € in M(Q,). By the descent formula [Hai09,
(4.4.4)], the o-conjugacy class of dps in M(Qp») intersects non-trivially with the
support of sp7(¢,). On the other hand, one deduces from the computation of Satake
transform on p. 297 of [Kot84a] that sp(¢,) is a non-negative linear combination
of the characteristic functions of the double cosets M (Zyn )p~** M(Zyn), where u
runs over the Q,n-rational Weyl group of M in G (acting on S). Hence we may
assume that a7 lies in M (Zyn )p~ " M(Zyn), for some u as above. Let s = up'.
Then pp satisfies the first condition in Definition and wy (0n7) = —[par]M.
Since the stable conjugacy class of € in M(Q,) is the degree n norm of dy; with
respect to M, we apply Lemma to conclude that € is p™-admissible. [

3.5. Constructing Kottwitz parameters.

sa

goal is to assign to the triple (¢, €, 7) a Kottwitz parameter (see Definition |1.6.4))
t(o,€6,7) € RP.

Let 79 := ¢, and Iy := Ggo. The Kottwitz parameter t(¢,€,7) shall be of the

form (79, a, [b]). Note that by the first condition in Definition 7o is indeed a

semi-simple and R-elliptic element of G(Q), meeting the requirement in Definition

64
We construct a € D(Iy, G; AL). Fix a lift 7 € I¢(A§Z) of 7, and let ()™ : T —

G(A’}) be the cocycle as in §2.4.6l Since (¢, €) is gg, ¢} takes values in IO(A’;).

For each p € ', let t, := 7" -7 € Z, (A’;). (Here 7 is defined with respect to
tﬁe Q-structure of I4.) Then (t,), is a continuous cocycle I' — Zp, (A?). Consider
the map

3.5.1. Let (¢,€) € LRPES, and let T € I;d(A’;) be an arbitrary element. Our first

A:T — G(AZ;)
p— (5> (p).
Using the fact that the natural map Z;, — G is defined over Q and factors through
Iy, we know that A is a continuous cocycle T' — Ip(A%). We claim that A has
trivial image in H'(T, G(AZ})). In fact, if we denote by 7¢ the image of 7 under the
canonical embedding I4(Af) — G(Ay), then

to=7g" g (p) "7 g (p) T
(Here P7¢ is defined with respect to the Q-structure of G.) Hence
(3.5.1.1) Alp) =75" - ¢ (p) - "7a, VpeT.
Since ¢ is admissible, the cocycle (5> has trivial image in H(T, G(&’;)). It follows

from (3.5.1.1) that A also has trivial image in Hl(F,G(A?)). Now from (3.5.1.1])

it is clear that the class of A in Hl(A’}, Iy) is independent of the choice of 7. We
define the desired element a € D (I, G; Azf)) to be the class of A.

Next we construct [b] € B(log,). By we may view ¢ as a morphism
¢r, + Q — &, We choose g € UR(dr1,(p) 0 (p) and let b = brny(g-1)0py, (p)oc, €
Io(Qy"); see Definition m By Lemma m (i), the class [b] of b in B(lpq,) is
independent of choices. We now check condition KPO in Definition for [b]. By
the admissibility of ¢, we have X,(¢) # (. Comparing and §2.4.1) we have
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X, (6) = X_,,(b) for p € p%, and so X_,,(b) # 0. It immediately follows that b and
—p have the same image in 71 (G)r, (cf. Corollary [1.3.15). Thus KPO is satisfied
by [b]. This finishes the construction of t(¢,e,7) € RP.

Proposition 3.5.2. Let (¢,¢) € LRPEE, and let T € Igd(A’;). Let

(707 a, [b]) = t((bu €, 1)7
(70,0, [b']) = t(¢, €, 7).
Then ['] = [b]. The difference
a' —a € DIy, G;A}) = €Iy, G; AF)
is equal to the image of T under the composite map
(3.5.2.1) I3Y(AR) = D(Z1,, 1; A}) — €(Z1,, 1y; AY) = €(Io, G; A).

In particular, the dependence of t(¢,€,7) on T is only through the image of T in
&(1y, G;A’;).

Proof. The first statement follows from the definition of [b] and [b’]. For the second
statement, using the notation in we know that a is represented by the cocycle
p C¢’°°(p) whereas a’ is represented by the cocycle p — tpC¢’°°(p), where t, is
determined by a choice of 7 lifting 7. The difference @’ — a in H;b(A?, Iy) is then
given by the image of the class of (¢,), under Hl(A?,ZI¢) = H;b(A’},ZI¢) —
Hib(AIJi, Iy). The desired statement follows. O

Proposition 3.5.3. Let (¢,¢),(¢',€') € LRPEE such that [¢,e] = [¢,€]. Let
u € G(Q) be an element such that Int(u)(¢,e) = (¢',€'). Let T € I;d(A?), and
let 7' € I;?(A’;) be the image of T under the Q-isomorphism I;d = If;fi induced
by the Q-isomorphism Int(u) : I, = Iy. Then u is an isomorphism t(¢,€,7) —

t(¢', €, 7') in the sense of Definition|1.6.14)

Proof. We write t(¢,€,7) = (v0,a,[b]) and t(¢', €, 7") = (7}, a’, [V']). By definition,
v = € and v, = €. We check that u satisfies the three conditions in Definition

1.6.14] Condition (i) follows from Lemma [3.2.11
To check condition (ii), we define ¢, as in §3.5.1} with respect to (¢, €, 7). Then

the counterpart ¢/, with respect to (¢, €’,7’) can be chosen to be ut,u~!. Now a is
represented by the cocycle A : p — tpgg*“(p), and a’ is represented by the cocycle
A" p e 11,007 (p) = ut,u™ (5™ (p). Note that (5% (p) = u - C§(p) - Pu™", since
¢’ = Int(u) o ¢. Hence

A'(p) =uA(p)u™", Vpel.

This proved condition (ii).
To check condition (iii), we write Iy for G? and write I, for G%. We choose d €

Io(Q,) such that ug := ud™" lies in G(Qp), as in §1.6.13] Choose g € UR(¢1,(p) 0

() C 1o(Q,), and ¢" € UR( /Ié(p) o(p) C I3(Q,). We may assume that b =
bInt(g—l)o¢IO (p)olp and b = bInt(g’_l)oqb’I, (p)oCp- Then we have
0

(3.5.3.1) g lulg € G(QY),
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since this element conjugates the unramified morphism Int(g'~!) o ¢/(p) o, : &, —
B¢ (p) to the unramified morphism Int(g=*) o p(p) o, : &, — B (p). For the same
reason we have

(3.5.3.2) b= (g 'u"gWalg lu"g) "

The bijection u. : B(lo,g,) = B([jg,) as in (1.6.13.2) sends [0] to [uobo(uo)~ ],
and by (3.5.3.2)) the latter element equals [wb'o(w)~"], where

w=upg ‘uly € G(Qp)

To finish the proof it suffices to show that w € I{)(Qp). Since d~', ¢! € I (Qp)
have ugg~'u~! = Int(u)(d~tg™') € I(’)((@p). Also ¢’ € I;(Q,), so w € IO(Q ). By
the fact that ugp € G(Qp) and by (3.5.3.1)), we have w € G(@p). Hence w € I}(Q b))
as desired.

IZI

3.5.4. Let (¢,e) € LRPE. Let Iy := G?. Recall that the group IIF(Q,I9,) is
defined in 5 8 Using the canonical inner twisting between I9 . and (G4a)? C Iy
as in §3.2.3] we have a natural homomorphism IHOO(Q, ) — €(Ip,G;Q). Let

e = (ep)p € Zl((@,I%) be a cocycle representing a class in HIOGO(Q,I%E). By
Proposition [3.2.19] we obtain (e, €) € LRPES.

Proposition 3.5.5. Let (e,a,[b]) := t(d,€,1), and (e,d,[V]) := t(ed,e,1). Then
the difference o' —a € €(Iy, G, AZJZ) is equal to the natural image of e. The elements
[v'],[b] € B(lo,q,) have conjugate Newton cocharacters. Moreover, if vy is central
in Iy, then k1, (V') — k1, (b) € m(Io)r, is equal to the image of e in HL,(Qyp, Io),
which is identified with 7, (Io)r, tors as in Proposition .

Proof. By construction, a and a’ are represented by the cocycles ¢ ¢’°° and
respectively. Clearly

(3.55.1) P2 () = e, (p), WpeT

The statement about a’ — a follows from this and [Bor98, Lem. 3.15.1].

We now prove the statement about [b] and [b']. As in we may view ¢
as a morphism Q — ®j,, which we denote by ¢;,. We may also view e as a
cocycle in Z1(Q, Is,,). Then e¢ is induced by edy, : Q — &y,. By construction, b
(resp. V') is associated with the choice of an element g in UR(¢1, (p) o (p) (resp. ¢’
in UR((e1,)(p) © p)). Let 6 := Int(g)~' o ¢y, (p) o ¢p and let ' := Int(g')~' o
(e¢1,)(p) o (p, and we view both as unramified morphisms &, — &y, (p). Thus
b = by and b’ = by. Now Int(g') induces a Q,-map Iy, 0, — Lo We let eg
denote the image of e under

Int(g~?!
Zl(Q7I¢IO) — Zl(@p7I¢10) M ZI(QP’I9)'

By Propositionm (ii), we have a canonical isomorphism Iy = Jblo. (See 5 for
the notation .J;°.) We write e;, for eg when we view it as an element of Z'(Q,, J.°).
Now ¢’ is in the conjugacy class of egf (as morphisms &, — &, (p)). By Proposition

2.2.6((iii), the o-conjugacy class of b’ in Io(Q}") is the twist of b by ;. In particular,
[0] and [b'] have conjugate Newton cocharacters by Proposition [I.4.5]
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If v, is central, then we can apply Proposition [1.4.5] (to the group Iy g,), and
conclude that kp, (b)) — £1,(b) is equal to the image of e, under

H'(Qp, J)°) = HL,(Qp, J}°) — H(Qp, To) — 1 (To)r, tors-

Here the second isomorphism is induced by the canonical inner twisting ¢ between
the Q,-groups Jbl‘J and Iy q,, as in case (ii) of We are left to check that the
above image of e} in m; (Io)rp,tors is equal to the image of e in Wl(Io)Fp’tors as in the
proposition. This boils down to the commutativity of the following diagram up to
inner automorphisms:

Here the top arrow is given by the canonical inner twisting between Iy, —and
(Io)ga C Ip. The bottom arrow is the canonical isomorphism in Proposition m

(ii). It suffices to check that the composition I, 5 = (Jblo)@ 5 Iy 5 1s equal
7P P 7P

to the canonical embedding Ie,@p — on@p attached to 0 : &, — &y, (p). This is

straightforward by the proof of Proposition (ii). O

Proposition 3.5.6. Let (¢,¢) € LRPEE, and let ¢ = t(p,e,1) € BB. Then the
Kottwitz invariant o(c) is trivial.

Proof. By Proposition and Proposition we may replace (¢, ¢€) by any
other element (¢',€') € LRPES such that [¢, €] = [¢, ¢/], in the course of the proof.
Choose a maximal torus T' C I s defined over Q such that e € T(Q). (This is possible
since € is semi-simple.) By Theorem there exists (T,4,h) € SPD(G, X) and
g € G(Q) such that Int(g) o ¢ = ¢(T, i, h), and such that Int(g)(e) = i(e) € G(Q).
Using Lemma one checks that (Int(g) o ¢, Int(g)(e)) € LRPEE. Hence up to
replacing (¢, €) by (Int(g) o ¢,Int(g)(e)), we may assume that ¢ = ¢(T, i, h), that
¢ € T(Q), and that the embedding T5 < I, 5 < G coincides with 4.

Write ¢ = (79 = €, a, [b]). By definition (see §2.2.9/and Definition [3.3.2)), ¢ factors
as Q — ORes;, /oG, — GG, where L/Q be a finite Galois extension contained

in Q splitting 7', and ORes;, /oG, — O¢ is induced by a Q-homomorphism f :
Resr, /9 Gy — G. In particular, ('™ is induced by cocycle I' — (Res, g G )(A%)
and f. By Shapiro’s lemma and Hilbert 90, the class a is trivial.

Recall that b = by, where § = Int(g~') o ¢(p) o ¢, for some g € UR(p(p) o
Cp) N Ip(Q,). Since ¢ factors through i : &7 — &g, we may take g to be inside
i(T)(Q,). Then 6 factors through i : &1 (p) — G¢(p), and b € i(T)(Qp"). Write
b =i(br). By Lemma the element £r(br) € X.(T)r, is equal to the image
of —up € X, (T). Therefore, keeping the notation in 5, we may choose ﬁp(c)
to be the image of —pup, € X, (T) in m (Io(c)) (with respect to i : T — Iy(c)). Also,
we may choose B (c) to be the image of p, € X, (T) in m1(Ip(c)). We have seen
that a is trivial, so we may choose f3;(¢) to be zero for all [ ¢ {p,c0}. Then we have
afc) = 0. O
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Corollary 3.5.7. Let (¢,€) € LRPEE and let T € I;d(A?). Let ¢ = t(g,¢,7) € RP.
Then «(c) is equal to the image of T under

134(a7) €(Lo(c). G5 AB) = €(Io(c), G &) — €(Io(c), G: A/Q).

Proof. This follows from Proposition[3.5.6] Proposition[3.5.2] and Proposition|[I.7.8
|

As in §3.1.5] let n be a positive multiple of r.

Proposition 3.5.8. Let (¢,¢) € LRPEE and T € I;d(A?). Then (¢,€) is p"-
admissible if and only if t(¢, e, 7) is p™-admissible.

Proof. Write t(¢,¢,7) = (€,a,[b]) and write Iy for GY. By construction, [b] €
B(Io,g,) has a representative b € Io(Qp") such that b = by, where § = Int(g~") o
é(p) o (p for some g € UR(P(p) 0 (p) N1p(Q,,). Since g commutes with €, we see that
(b, €) € cls,(¢,€). By [Kot84a, Lem. 1.4.9], t(¢,€,7) is p"-admissible if and only if
¢~ 1(bx o)™ has a fixed point in G(Q,)/G(Z,). The latter condition is precisely the

definition that (¢, €) is p™-admissible. O

Proposition 3.5.9. Let ¢ = (0,4, [b]) € KB, (p") with a(c) = 0. Assume that
there exists an element of LRPEE(p™) of the form (do,v0). Then there exists an
element of LRPEE(p™) of the form (¢,70) such that ¢ = t(p, 0, 1).

Proof. Let Iy := pro' Write t(¢o,70,1) = co = (70, ao, [bo]) € &B. By Proposition
we have ¢g € 8, (p"). Hence by Corollarywe know that v, is central
in Iy and that v, = vy,. In particular, sz, (b) and sy, (bo) both lie in 71 (Io)r, tors-
Consider the element

€ = (a - CLO) & (Hlo (b) — K1, (bo))
€ H;b(AZ;w[O) 2 Wl(IO)Fp,tors = H;b(Af,Io).

By KPO in Definition m the element xy,(b) — k1, (by) goes to zero in 71 (G)r
Therefore ey € €(ly, G; Ay).

Note that the image of eg in €(Iy, G; A/Q) is just a(c) —a(c). We have a(c) =0
by hypothesis, and a(c¢g) = 0 by Propositionm By the exact sequence ,

there exists a lift e; € IIX(Q, Ip) of eg. Let I := Igoﬁo. Then we have a canon-

ical inner twisting I@ = Io,@ as in §3.2.14 and hence a canonical isomorphism
My (Q,I) = HIFX(Q,Iy). Let ex € IIF(Q,I) be the element corresponding to
el € I_HOGO(Q7I())

By Proposition we obtain an element (eagq,v0) € LRPEE. We claim that
t(eaddo,v0) = ¢. Write t(eaddo,v0) = (70,4, [V']). By Proposition we have
a —ag =a—ag, and so ' = a. As v, is central in Iy, we can Proposition m
to conclude that vy = vy, and that ky, (V') — k1, (bo) = K1,(b) — K1,(bo). Thus we
have [b] = [b'] by the classification of B(Ipq,) (see . Having checked that
t(e200,70) = ¢, we deduce that (eado,v0) € LRPEE(p"™) by Proposition O

3.6. The effect of a controlled twist. Recall that Conjecture [2.7.3] predicts the
existence of a tori-rational element 7 € T'(H)o such that LR(G, X, p,G,7) holds.
In this subsection we fix such a 7. By Lemma [2.6.20] there exists a tori-rational
g € T'(€P), lifting 7. By the last assertion in Proposition we have a well-
defined Kottwitz parameter t(¢, €, o(4)) assigned to each (¢, €) € LRPEE. We shall

P




96 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

write t, (¢, €) for t(¢, e, a(¢)). We establish analogues of the results in for the
function t, : LRPES — KP.
As in §3.T.5] let n be a positive multiple of r.

Proposition 3.6.1. Let (¢,¢) and (¢',€') be elements of LRPLY such that [¢, €] =
[¢',€']. Let u € G(Q) be an element such that Int(u)(p,€) = (¢',€'). Then u is an
isomorphism t,(p,€) = t5(¢',€'). In particular, the isomorphism class of t, (¢, €)

depends on (¢, €) only through [¢,€] € [LCRPES].

Proof. Since g € T'(€P)y, we may find a lift 7 € Igd(AI;) of o(¢) and a lift 7/ €
I;?i(A’}) such that 7 maps to 7/ under the isomorphism [ ;d =T ;9 induced by
Int(u) : I, = Iy . The proposition then follows from Proposition m O

Proposition 3.6.2. Keep the setting and notation of §3.5.4, and assume in addi-
tion that (¢,€) € LRPEE(p™). Let (€,a,[b]) :=ts(d,€), and (¢,d’, [V']) := ty(ed,€).
The following statements hold.
(i) The difference o’ —a € €(lo, G; AY) is equal to the natural image of e.
(i) The elements [V'],[b] € B(log,) are basic and have equal Newton cochar-
acter. The difference ki, (b') — k1, (b) € m1(lo)r, s equal to the image of e
in 71 (lo)r, tors @S in Proposition .
(iii) Let e’ € Zl(Q,Ig,e) be another cocycle representing the same cohomology
class as e. Then we have t,(ep,€) = ty(e'p,€). (These two Kottwitz
parameters are equal, not just isomorphic.)

Proof. For (i), in view of Proposition and the statement about @’ — a in
Proposition it suffices to check that ¢(¢) and g(e¢) have the same image in
€(Io, G; A). But this follows easily from the fact that o € T'(€P)o.

By Proposition the components [b] and [b'] are unaffected by o. Hence
to prove (ii) we may assume that ¢ is trivial. By Proposition and Corollary
we know that [b] is basic in B(lp). The remaining statements in (ii) follow
from Proposition [3.5.5

Part (iii) follows from the previous two parts, and Kottwitz’s classification of
B(loq,) (see . O

For each ¢ € &, recall that we have defined the Kottwitz invariant a(c) in
§L.7.9)

Proposition 3.6.3. For each (¢,€) € LRPES, we have oty (¢, €)) = 0.

Proof. Choose a maximal torus T' C I, defined over Q such that ¢ € T(Q). (This is

possible since € is semi-simple.) By Corollary and the exact sequence ([1.7.1.1)),
it suffices to show that the image of a(¢) in H' (A", T) comes from 5" (Q,T).

This follows from the fact that o is tori-rational. O

Let n be a positive multiple of r.

Lemma 3.6.4. Let (¢1,€1) € LRPEE(p"). Let g € G(Q) be an element that stably
conjugates €1 to some ez € G(Q), i.e., Int(g)(€1) = €2, and g g~ € G¥ (Q) for all
T €T. Define ¢o :=Int(g) o ¢p1. Then (¢a2,¢e2) € LRPEE(p™).

Proof. We only need to show that (¢2,e2) € LRP®E. Since e2 € G(Q) is stably
conjugate to €y, it is R-elliptic in G as €; is (cf. §1.8.7). Now write ¢;(qr-) = gi.r X T,
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for i = 1,2. It remains to show that go, € I} _ (Q), for each 7 € I'. As in the

2,62
proof of Lemma [3.2.11] we have

979" = 991,971 92,7
The left hand side lies in G82 (Q) by hypothesis, and the term gg; ,g~! lies in G82 (Q)

since g1, € G2, (@);Hence we have g2 ; € G2 (Q). By §3.2.14] the last group is in
fact equal to 122)62 (Q). O

Proposition 3.6.5. Let ¢ = (y0,a,[b]) € KB, (p"). Let (70,7,9) € BPa(p™) be
the classical Kottwitz parameter of degree n (up to equivalence) assigned to ¢ as in
. Assume that the o-conjugacy class of § in G(Qpn) intersects non-trivially
with the support of ¢n. (Here ¢, is as in ) Assume that a(c) = 0. Then
there exists an element of LRPEE(q™) of the form (¢, 7o) such that t,(¢p,v0) = c.

Proof. Let Iy := GY . Since 79 € G(Qp) is a degree n norm of § € G(Qpn),
by Proposition and Lemma there exists an element of LRPEE(p") of
the form (¢o,v0). By Proposition [3.5.9] we find (¢1,70) € LRPE(p™) such that

t(¢13707 1) =¢c
Consider the Kottwitz parameter
(3.6.5.1) (0, a1, [b1]) = to(¢1,70)-

By Proposition we know that [b;] = [b], and that a; — a is equal to the image
of a(¢1) in €(Io, G; A%). Fix a maximal torus T' C I, such that 79 € T(Q). Then
by tori-rationality of o, the image of o(¢1) in Hl(A?,T) is equal to the image of
some 3 € IIS"P(Q,T).

Under T < I _ = the class —f determines a class in II3"(Q, I3 _ ). Fix a

1,770
cocycle e € Z'(Q, I3, ., ) representing the latter class. By Proposition [3.2.19, we
obtain (ed1,v9) € LRPES. Write ¢ for e¢q, and let

(3652) (’Yoaa/7 [b,D = tg(¢a70)'

Comparing (3.6.5.1) and (3.6.5.2)), we see from Proposition that @’ —a; equals
the image of —f in €(Io, G; A%), and that [b'] = [b1] (since —f is trivial at p). Thus
we have [a'] = [a] and [b'] = [b]. Hence t,(¢,70) = ¢. O

3.7. Proof of Theorem 2.7.4]

3.7.1. Throughout we fix a tori-rational element 7 € T'(H)o such that the state-
ment LR(G, X,p,G,7) holds. Namely, we have a smooth integral model %, of
Shg, over Og (p) which has well-behaved H, and we have a bijection

(3.7.1.1) Fri,Fy) =[] 5-(4)
)

compatible with the actions of G(A%}) and the g-Frobenius ®.

Our goal is to prove for all sufficiently large m. First observe that in the
proof we may arbitrarily replace K by an open subgroup. In particular, we may
and shall assume that K7 is neat (see [Lanl3l Def. 1.4.1.8, Rmk. 1.4.1.9]), and that
Sk,ur is defined for each open subgroup U? C K?. It follows from the neatness
of K? that K = K,KP is neat in the sense of Pink [Pin90, §0.6]. In the sequel we
write Z(Q)x for Z¢(Q) N K and write Zx for Zg(Ay) N K, as in
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By linearity, we may assume that f? = 1xp,-1x» for some g € G(A’;)7 and that
dgP assigns volume 1 to KP.

By Lemma [2.6.20] we fix a tori-rational o € I'(€P), lifting 7. For each admissible
morphism ¢, we fix a lift 7, € I3%(A%) of a(¢) € €(¢) = I4(AF)\IZ!(A%). We let
X7?(¢)" be the I,(A%)-set whose underlying set is X?(¢), but the I,(A%)-action is
given by the natural action pre-composed with conjugation by 74. Thus S;(¢) is
isomorphic to

lim 75 (@)\(Xp () x XP(¢)/UP).

Up
Lemma 3.7.2. For each admissible morphism ¢, the following statements hold.

(i) Let € be an element of 145(As) which is conjugate under I;d(Af) to some
€ € 14(Q). If there exist y? € XP(¢)/ K} and y, € Xp(¢) such that

yPg=€yPg mod KP, and €y, =y,,

then € € Z(Q)k.
(it) We have I5(Q)aer N Z(Q)x = {1}.

Proof. (i) The proof follows the same idea as [Mil92] Lem. 5.5]. We view € as an
element of G(Q) and let € be its image in G*4(Q). By Lemma € is semi-simple,
and € lies in the R-points of a compact form of G&4. By the existence of y?, the image
of € under G(Q) — G(A%) has a conjugate u that lies in K C G(A}) C G(A%}).
By the existence of y,, the image of € under G(Q) — G(Q,) has a conjugate v that
lies in G(Zy"). It follows that € is torsion. Now let @ be the image of u in G*4 (A%).
Then € is conjugate to « inside Gad(A?), and so u is torsion. But u lies in the image
of K? under G(A%) — Gad(A];), which is neat. Hence at least one local component

of @ is trivial. It follows that € = 1. We have thus shown that ¢ € Z(Q), and in
particular € = €.

Since the natural embedding Z — I is defined over Q and since € € I4(Q),
we have € € Z(Q). Now using the existence of y? and y, it is easy to see that

€ c Z(Q)K
(ii) Clearly I5(Q)daerNZ(Q)x is contained in the Q-points of the center of Iy der,
and is hence finite. Since K is neat, Z(Q)x is torsion free, and so I4(Q)ger N

Z(Q)k ={1}. U

Lemma 3.7.3. We keep the assumptions on fP and dgP in §3.7.1. When m is
sufficiently large (in a way depending on KP and fP), we have

(3.7.3.1) T(®By', fPdg?) =Y Y #0(¢,€,m,g) - tr&(e),
¢ €
where

e the first summation is over a set of representatives for the conjugacy classes
of admissible morphisms ¢.

o for each ¢ the second summation is over a subset of I,(Q) such that each
conjugacy class in 1,(Q)/Z(Q)k is represented exactly once.

e the set O(¢,e,m,q) is defined as the quotient of

Xp(9,6,4™) x {y" € XP(¢)'/K} | y" = ey’g mod KT}
by the diagonal left action of I ((Q). Here X,(¢,€,q™) is defined in ,
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Proof. Since (2.5.5.1) is an isomorphism by assumption, T'(®}", fPdg?) is equal to

(3.7.3.2) > (-1t (@gb x (fPdgP) | Hi(pr,Fq,f))
i

Let KP := K? NgKg~'. We have two maps g, m : prKg — Yk, induced by the

actions of g € G(A’}) and 1 € G(A’;) on Yk, , respectively. By our specific choices

of f? and dg”, the endomorphism ®J* x (fPdg?) of Hz(YK Fq,.fg;g;»)iS induced by

the correspondence

(3.7.3.3) K, K" F,
P
SKF, SKF,
and the cohomological correspondence
. v aTH— . o (e
(3.7.3.4) ngg’[{p e X&K!I; e ngg’[(p =T (F ) fg’[{p.

(See for 7* and ?*) Here F' is the absolute p-Frobenius endomorphism, and
the last isomorphism in is induced by the canonical isomorphism between
any étale sheaf and its pull-back under F.

We now apply the Grothendieck—Lefschetz—Verdier trace formula together with
Deligne’s conjecture to compute (3.7.3.2]). The latter has been proved by Fujiwara
[Fuj97] and Varshavsky [Var05] (cf. also [Pin92h]), and states that the local terms
in the trace formula can be replaced by the naive local terms, under the assumption
that m is sufficiently large (while fixing K? and g).

Let FZX be the set of F,-valued fixed points of the correspondence (3.7.3.3).
Using the bijection 7 we obtain a description of FZX as follows. For each
admissible morphism ¢, by Lemma we know that the data

Y = X,(¢) x XP(6)'/ K,

X = Xp(¢) x XP(¢)'/KP,

1=1,(Q),

C=2Z(Qx,

a:Y =X, (Yp,y?) = (yp,y’g mod KP),
b:Y = X, (yp,y") — (D™y,,y? mod KP).

satisfy the hypotheses of [Mil92, Lem. 5.3]. By loc. cit., (3.7.1.1)) induces a bijection
(3.7.3.6) Frx =[J[ o €.m.q),
¢ €

(3.7.3.5)

where ¢ and € run through the same ranges as in .

It remains to calculate the naive local term at each point in FZX. We need
to show that if z € FZX corresponds to a point in &(¢,e, m,g) under (3.7.3.6),
then the naive local term at z is equal to tr£(e). Note that x only determines the
conjugacy class of € in I4(Q)/Z(Q)x. By our assumption that & factors through
G°¢ and by Lemma we know that tr& is invariant under Z(Q)g since K is

neat. Hence tr ¢ defines a class function on G(Q) that is translation-invariant under
Z(Q)k, and our desideratum makes sense.
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Now let Z be a lift of = in Sk, (F,). Since x € FZX, there exists k~ € K? such
that
O"r = rgks.
Let k; € G(Qg) be the component of i~ at ¢, and let g, € G(Qy) be the component
of g € G(A’}) at £. By the same argument as [Kot92b| p. 433], the naive local term
at x is given by
tré(k; g, ).

If = corresponds to an element of O(¢,e,m,g) under (3.7.3.6), then k[lgzl is
conjugate to € in G(Q,). Thus the naive local term at x is tr£(e), as desired. O

Lemma 3.7.4. Let (¢,e) € LRPES, and let ¢ = t,(¢,€). The set O(¢p,€e,m,q)
defined in Lemma is empty unless (¢,€) € LRPEE(¢™). In the latter case, we
have ¢ € 8B,(p") by Proposition [3.5.8, and we define c1(c, KP)O(c,m, fPdgP) as

in §1.8.9 and §1.8.6. We have
#O(¢7 €,m, g) = LIqs (6)_161(C, KP)O(C, m, fpdgp)

Proof. We write ¢ = (0,7, [b]), where v = ¢, and let (y0,7,9) € &P, (p") be
the classical Kottwitz parameter associated with ¢ (which is well defined up to
equivalence). By construction, (b,¢) € cls,(¢,¢€), so X,(¢,€,¢™) is identified with
X_x (b€, q™); see If O(¢,€,m, g) # 0, then X, (¢,¢,¢™) # 0, and it follows
that (¢, €) is ¢™-admissible.

Now assume that (¢, €) is ¢"*-admissible. The computation of #O(¢, €, m,g) is
essentially the same as the computation by Kottwitz in [Kot84al §1.4, §1.5]. We
explain how to make the transition from our setting to the setting of loc. cit. We
write Y7 for the set {y* € XP(¢)'/K? | y? = eyPg mod KP}, and write Y}, for the
set Xp(é,€,¢™). Thus O(¢,¢,m,g) = I (Q)\(Y, x YP). Note that #O(,¢,m, g)
is equal to the cardinality of I (Q)\(Y, x Y?) multiplied by ¢s,(¢)~". This is
because, if an element u € I4 (Q) has a fixed point in Y, x Y?, then by Lemma
(applied to g = 1), we must have u € Z(Q)x C I3 (Q). Thus it remains to
show that

(3.7.4.1) #(Ig’E(Q)\(Yp X Yp)> = ¢1(c)O(c, m, fPdg").

As explained in §2.4.7, we identify X?(¢)" = XP(¢) with a right G(A%)-coset
inside G(A?). Fix yb € XP(¢) C G(AI;). Inspecting definitions, we see that
v € G(A}) is conjugate to (Int(yg) " o Int(4))(e) € G(AY) inside G(AF). We may
assume that they are equal. Now if we use the “base point” y¥ to identify X?(¢)’
with G(A%), then we have a bijection

YP S WP = {yp € G(A})/K] | yP =~y"g mod Kp}.

Under this bijection, the action of Ig’e((@) on YP corresponds to the action of
I3 (Q) on WP given by the composition of the Af-isomorphism Int(yf)~tolnt(7y) :
(Ig,e)A‘f’ — (Gg)N; (see §3.2.14) followed by left multiplication of GY(A%) on W?.
Let € [p%. We have already seen that Y}, can be identified with X_, (b, €, ¢™) as
in * More precisely, write Iy for G, and suppose that b = Dint(g-1)od 1, (p)oCs
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for g € UR(¢(p) 0 () N Io(@p). (Here we follow the notation in ) Then
Yp — g~ 'y, induces a bijection

Yy = X_u(be,q™),

see 7| and § Moreover, under this bijection the action of I3 (Q) on Y,
corresponds to the action of Ig,e(Q) on X_,(be,q™) given by the composition
of the Qp-isomorphism Int(g~") : (19 .)g, =+ J;° followed by left multiplication
of J[°(Q,) on X_,(b,e,q™). Here, to see that Int(g~?!) : (19 )a, — Jl° is an
isomorphism, use the identification IY . 2 I, as in §3.2.3/and §3 2.14} and use the
fact that b is basic in Iy by Corollary

If we fix c € G(Qp) such that § = ¢ 1ba( ) and such that holds, then

the map = — ¢~ 'z induces a bijection
X_ﬂ(b,e,qm) — Wy = {yp € G(Qp")/g( ") | Yp 150(%) € g( n)p jbg(Zp")}-

Under this bijection, the action of J (Qp) on the left corresponds to the following
actlon on Wp: We have an 1nJect1ve Qp-homomorphism J, fo RMU induced by
Int(c™t). (See for RY..) This homomorphism is in fact an isomorphism,
because both groups are connected, and their dimensions are equal to that of I.
We thus identify JbIO (Qp) with R, ,(Q,), and let the latter group act on W, by
left multiplication.

In conclusion, we have bijections
(3.7.4.2)

I3 QN x YP) == I (QN(X-pu(bye,4™) x WP) = 19 (Q)\(W}, x WP),
where 12,6(@) acts on X_,(b,e,¢™), WP, and W, in the way described above. By
abuse of notation, we still write 12,6(@) for the image of IY) (Q) inside J(Qy) x
GY(A%) = R}, »(Q,) x G5(A%), under the embeddings described above. We also
identify the last two product groups with I(¢)(Ay), canonically up to conjugation
by I(c)*d(As). We assume for a moment that I3 (Q)Zk is closed and has finite
co-volume inside I(c)(Af). Then the computation in [Kot84al, §1.5]E| shows that
the cardinality of the third set in is given by

vol(Ig ((Q)Zk\I(¢)(Ay)) - O(c,m, fPdgP).
Here, Ig’E(Q)ZK is equipped with the Haar measure giving volume 1 to its open
subgroup Zx = Zg(Ay) N K.

To complete the proof, we need to verify our assumption on 1276((@)2 K, and we
need to identify Vol(Ig)ﬁ(Q)ZK\IC(Af)) with ¢1(¢). For both purposes, it suffices
to prove the following claim: The image of I3 (Q) inside I(c)(Af) is I(c)*d(Ay)-
conjugate to I(c)(Q). (Note that the Haar measure on I(c)(Ay) is invariant under
conjugation by I(c)*d(Ay).)

To prove the claim, note that we have a canonical inner twisting between the
Q-groups I _ and I, as in We have described an A% —isornorphiern 19,

GO, and a Qp-lsomorphlsm Iy 9 be = Jp o One checks that these 1sornorphlsrns are
1somorphlsms between inner forms of Iy (in the sense of Definition _ Also,

211 Joc. cit., it is assumed that Gger is simply connected, so that G-, and Ry, (which is
denoted by Gg) are connected. To transport the computation to the current situation, one simply
replaces all appearances of G and Rsy, by their identity components.
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12,6 /Z¢ is anisotropic over R, and up to isomorphism there is at most one inner
form of Iy over R which is anisotropic modulo Zg. The claim then follows from the
unique characterization of I(c) as an inner form of Iy over Q (up to isomorphism),
in Lemma, O

3.7.5. We have a natural action
Z(Q)x x [LCRPEE(q™)] — [LRPEE(q™)]
(z,[¢s€]) > [¢, 2€].

We fix a set of representatives for the Z(Q)g-orbits in [LRP8(¢™)] and by abuse
of notation denote this subset of [LRPE(¢™)] by

[LRPZE(d™))/ Z(Q)k-

By the first statement in Lemma and by Corollary we may replace the
two summations in (3.7.3.1) by the summation over [LRPEE(¢™)]/Z(Q) k. Apply-
ing Lemma [3.7.4] to the summands, we obtain

(3751) T(‘I);n, fpdgp)
= Z an (6)_161(t£(¢, 6)) O(tg(qb,e),m,fpdgp)trg(e),

[6,e]€[LRPEE(a™)]/Z(Q) x
for all sufficiently large m. Here, for (¢,€) € LRPE(¢™), we know that the iso-
morphism class of t,(¢,€) depends only on [¢, €], by Proposition Moreover,
the value of
C1 (tg((b? 6)) : O(t£(¢a 6)7 m, fpdgp)
depends on t, (¢, €) only via its isomorphism class, which can be checked using the

definitions.
Let Y kr be as in §1.8.7] and for each vy € Zx» we write RP(70,¢™)q for the set

of ¢ € AP (7o) N AP, (¢™) satisfying a(c) = 0. (See for the notation £B(7o).)
By Proposition [1.7.10} (70, ¢™)« is stable under isomorphisms between Kottwitz

parameters. Using Proposition we rewrite (3.7.5.1) as
(3.7.52) T(Q, frdg’) = > tré(vo) > 1(¢)O(¢c,m, fPdgP) (c),

YoEX kP CERP(70,9™) o /2
where
(3.7.5.3) A (c) := Z L, (e)7h.
[¢,e]E[LRPEE(a™)]
to (¢,6)=c

Lemma 3.7.6. Letyy € Xk» and let ¢ € BB(Y0,¢™)o- Assume that O(c, m, fPdgP)
is non-zero. Let k be the number of elements of BB (Y0,q™)a that are isomorphic
to ¢c. Then we have

(¢) =k-ic(y) ™" - c2(0)-
Here the notation is as in §1.8.6 and {1.8.7

Proof. First note that k is finite, since it is at most |G70 / Ggo . From the non-
vanishing O(c,m, fPdg?) (or rather just the non-vanishing of the twisted orbital
integral at p), it follows that ¢ satisfies the assumptions of Proposition (for
n = mr). By that proposition, there exists an element of LRPEE(¢™) of the form

(¢0,70) such that t,(¢o,70) = ¢. By Proposition [3.2.20] all [¢, €] appearing in the
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summation in (3.7.5.3|) necessarily lie inside Cjy, ,,)- On the other hand, for each
[0, €] € Clpg,ne) NLERPES], if to (0, €) = ¢, then [¢, €] is automatically ¢™-admissible,

by Proposition Hence we can rewrite (3.7.5.3) as
(3.7.6.1) o (¢) = > e, ()"

[#.€1€C 140, o) NILRPES]
to (p,e)=c

Let T12(Q I .,) denote the inverse image of I (Q, I .

By Definition @ and Proposition [3.2.19] we have a surjection
HIOGO(Qv Igoﬁo) — C[¢07’Yo] N [ERPEE]

e — [edo, Y0

) in ZI(Q,I((;O’WO).

which factors through a surjection
oo : TF (Q, 19 1) — Clgn,ne] N [LRPE].
Define D to be the subset of ITIE?(Q, I(Obom) consisting of elements e such that
to(edo,70) = ¢.
Now let ¢1, ¢o, - - - , ¢ be all the distinct elements of 8B(70, ¢™ ) that are isomorphic

to ¢. For each e € D, we have to(edo,70) = ¢; for a unique i € {1,--- ,k}. We thus
obtain a partition

k
b
i=1

By Proposition m (iii), for each 1 < i < k, the set D; is the inverse image of a
subset D; of HIOGO(Q,IgO’,m). We can thus rewrite (3.7.6.1)) as

k
1
(37.6.2) OEDIDY (0) - #LE (oo (B))

i=1 geD; “eso

where e is a cocycle representing 5. (We will soon see that the fibers of 74, -, are
indeed finite.

By §3.2.14] the Q-embedding (Igoﬂo)@ — (Ggg)@ is an isomorphism and is an
inner twisting between the Q-groups Igom and Ggo. Using this observation and
Proposition [3.6.2] it is easy to see that for each 1 < ¢ < k, the set D; is either

empty, or a coset of III(Q, Igoﬁo) inside I (Q, Igoﬁo). We claim that it is never
empty. Let u; € G(Q) be an isomorphism ¢ — ¢;. Then u; € G,,(Q), and
w;"u; " € GY,(Q),¥r € T. By Lemmal3.6.4] we have (Int(u;)odo, ) € LRPE (™).
By Proposition we have t,(Int(u;) © ¢o,7) = ¢;. It remains to check that
Int(u;) o ¢ is of the form egy for some e € ZI(Q,I};O%). For this, we fix a lift
gr € Q of each 7 € T, and write ¢o(q,) = g- % 7. Define e, := uigTTuflg;l. Then
e = (er)r is a cocycle in Z1(Q, I, ), and Int(u;) o ¢9 = edp. It remains to check
that e, € I3 _ (Q) for each 7. Let mp := (G, /GY,)(Q), which is an abelian group
as explained in We have seen that w; and "u; map to the same element
of my. Since (¢o,70) is gg, g maps to the identity in my. Hence e, maps to the

identity in 7o, i.e., e, € GJ (Q) = Igo,vo (Q), as desired.

We have proved the claim. Hence for each 1 <1 < k, we have
|Di| = [I1(Q, 1§, )] -
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. 0
Since [ bor70

To complete the proof of the lemma, it suffices to check that each summand in

(3.7.6.2) is equal to zg(v9)~!. Recall from §3.2.7| that the composition of 7, ~,

with the natural injection v : [LRP®®] — (LRP) factors as
HY(Q,19, ) = HY(Q, Iy o) 2% (LRP).

is an inner form of Ggo over Q, this number is equal to ca(vy) =

The map v, ~, is injective. Hence for each 8 € H'(Q, Igo,’m)’ the set

Moo (M0.30 (B))

is equal to the fiber of the map H'(Q, Igom)) — HY(Q, I4.~,) containing B. This
fiber can be identified with the kernel of H*(Q, Ig%’,m) — HY(Q, Ico o), Where e
is a cocycle representing 5. By [Lab04) Cor. II1.1.3], the cardinality of this kernel
is
ZI&qSO (70) : (Llcd)o (70))_1'

From this, we see that if a summand in (3.7.6.2)) is indexed by 3, then this summand
is equal to tp,, (70) ™! for any cocycle e representing 3. Since 3 € D; for some i and
since ¢; is ¢™-admissible (as ¢ is), we have (e¢o,v0) € LRPE(¢™) by Proposition
Thus by §3.2.14} we have canonical inner twistings (leg v )5 = (G
and (I, .. )g — (GY))g- In particular, we have an inner twisting between the
commutative groups Ieg, /10 -, and G, /GY (see §1.8.7), which must be an

isomorphism over Q. It follows that 7., (70) = tG(70). The proof is complete. [

The proof of (|1.8.8.1)) is completed by combining (3.7.5.2) and Lemma
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Part 2. Shimura varieties of abelian type
4. RESULTS ON CRYSTALLINE REPRESENTATIONS
Throughout this section we fix a prime number p.
4.1. Generalities on fiber functors.

4.1.1. Let G be a flat, finite-type, affine group scheme over Z,, and RepZPG the
category of representations of G on finite free Zy,-modules. For any commutative
ring S, we write Modgj for the category of finite projective S-modules. Now let R
be a faithfully flat Z,-algebra. By a fiber functor over R, we mean a faithful exact
®-functor w : RepZPG — Modgg. We denote by 15 : ReprG — Mod%3 the functor
which takes L to L® R. Then 1y is a fiber functor, called the standard fiber functor.

If w: ReprG — Modgs is a ®-functor and S is an R-algebra, we write wg for
the composition of ®-functors

Repy, G < Mody 2% Mod,

called the base change or pull-back of w over S.

For two ®-functors wi,ws : Rep, G — Modﬁf{, we write Isom® (wy,ws) for the
R-scheme of ®-isomorphisms from wy to wa; see [Del90, §1.11]. Thus for any R-
algebra S, Isom® (w1, wsy)(S) is the set of ®-isomorphisms wi,s = wa g Ifwy = wo,
we write Aut®(w;) for Isom® (wy, w1 ).

The reconstruction theorem, which is well known over a field, is valid in our
current setting, since Z, is a Dedekind domain and G is affine flat. This theorem
says that the natural morphism G — M(g(]lzp) is an isomorphism of Z,-group
schemes; see for instance [Mil12l X, Thm. 1.2, Rmk. 1.6], or [Wed04, Thm. 5.17].

Let Repg, G be the category of G-representations on finite-dimensional Q,-vector
spaces. By [SerG8| §1.5], every representation in ReprG contains a G-stable Z,-
lattice (since Z, is noetherian and G is affine flat). Using this fact, for each fiber
functor w : Repy G — Modﬁg we can define a ®-functor

w[1/p] : Repgy G — Modg%l/p}
as follows: If V is in ReprG, then we write V' = 1i 1_VZ- as a direct limit of G-
stable Z,-lattices. We set w[1/p](V) = lim, w(V;), which is naturally isomorphic to
w(V;) ® g R[1/p] for any i. Note that w[1/p] is again a fiber functor, i.e., a faithful
exact ®-functor.

Given the above construction, it is easy to see that the category of fiber functors
RepZPG — Modgg is equivalent to the category of fiber-wise faithful exact functors
between fibered categories Rep G — Bungpecp (fibered over the small Zariski
site of SpecZ,), as considered in [Brol3]. Thus we shall freely import results
from loc. cit. for the fiber functors in our sense. Also cf. the last remark in the
introduction of loc. cit.

Let w : Repy G — Mod% be a fiber functor. Then Isom®(1p,w) has a right
G r-action via the natural homomorphism Gz — Aut® (1g) (which we have seen is
an isomorphism). By [Brol3, Thm. 4.8], Isom® (1 g,w) is in fact a right G p-torsor
over R (for the fppf topology). This result could be viewed as a generalization of
the reconstruction theorem recalled above. In the sequel, we denote the G'z-torsor
Eﬂ@(ﬂRaw) by P,.
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4.1.2. Let G and R be as in §4.1.1] We introduce a short-hand notation. Let
w : Repy G — Mod;p be a fiber functor, and let S be a R[1/p]-algebra. Then the

base change wg : ReprG — Modgp of w over S factors as

. w ‘®R[1/p)S
RepZPG % RepQPG M> Modg’[l/p] M) Modg’.

We denote the composite functor
(- @R/ S) 0 w[1/p] : Repg, G — Mod{
again by wg.

Definition 4.1.3. For any finite free module M over any commutative ring S,
we denote by M® the direct sum of all the S-modules which can be formed from
M wusing the operations of taking duals, tensor products, symmetric powers, and
exterior powers. Elements of M® are called tensors over M.

4.1.4. Let G and R be as in Let w : Repy G — Modg’ be a fiber functor.
Then w is compatible with the operations considered in Definition by [Brol3,
Thm. 4.8, Rmk. 4.2]. (The compatibility with taking duals follows from rigidity;
see [DM82 Prop. 1.9].) In this case, for each L in Rep, G and each G-invariant
element s € L®, we may think of s as a morphism 1 — L® (where 1 is the unit
object) and apply w to it. We then get a morphism w(s) : 1 — w(L?®) = w(L)®,
or equivalently an element w(s) € w(L)®. Here, it is understood that w has been
extended to infinite direct sums of objects, when we apply it to L®.

Definition 4.1.5. Let G be a flat, finite-type, affine group scheme over Z,. We
say that G is definable by tensors, if there exists L in Repy G, and a subset
(Sa)aca C L%, such that the Z,-homomorphism G — GL(L) is a closed embedding
whose image is the point-wise stabilizer of (s4)aco. When this is the case we call
(L, (8a)aca) & defining datum for G.

Remark 4.1.6. If G is a flat, finite-type, affine group scheme over Z, such that G,
is reductive, then G is definable by tensors, by combining [BroI3l Lem. 3.2] and
[Kis10l Prop. 1.3.2].

4.1.7. Let G be a flat, finite-type, affine group scheme over Z, that is definable
by tensors. Fix a defining datum (L, (S4)aca) for G. Let R be a faithfully flat
Z,-algebra. It will be useful to give a description of more explicit data giving rise
to a fiber functor over R.

Let D be a finite free R-module equipped with a collection of tensors (sq.0)aca C
D® indexed by the set o, and suppose that there exists an R-module isomorphism
L ®z, R =+ D taking each s, to s4,0. (Obviously such D and (84.0)aca always
exist.)

Lemma 4.1.8. Keep the setting of §4.1.74 There exists a fiber functor

w: Repy G — Modi‘z)
equipped with an isomorphism 1 : w(L) = D such that 1 maps w(s,) € w(L)® to
Sa,0 for each a € . The pair (w, 1) is unique up to unique isomorphism in the fol-

lowing sense. Given two such pairs (w,), (W', '), there is a unique ®-isomorphism
w — w' which takes v to /.
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Proof. To show the existence of w, we set w(Q) = Q@®z, R for Q in Rep;, G, and we
take ¢ to be any isomorphism L®z, R = D taking s, to Sa,0- (Such an isomorphism
is assumed to exist in §4.1.7])

For the uniqueness, consider two such pairs (w,¢), (w’',¢). We may assume that
(w,t) is as constructed above, so in particular w = 1. Consider the R-scheme
Isom, ) (w(L),w(L")) whose points valued in any R-algebra S classify S-linear iso-
morphisms w(L) ®r S — w'(L) ®r S taking w(s,) to w'(s,) for each a. Using
the existence of ¢ and ¢/, one sees that Isom, )(w(L),w(L’)) is a trivial G p-torsor.
(Here G acts on w(L) = L ®z, R.) There is a natural G gr-equivariant map
(

P, = Isom® (L, w') — Isom (w(L),w(L')),

which is necessarily an isomorphism since P, is a Gg-torsor. It follows that P, is
a trivial G z-torsor, and there exists an isomorphism of ®-functors w — w’ which
is unique up to multiplication by elements of G(R). In particular, there is a unique
choice of such an isomorphism which takes ¢ to ¢/ O

Remark 4.1.9. The proof of Lemma also shows that if (w,:) is a pair as in
that lemma, then w is ®-isomorphic to 1.

Lemma 4.1.10. Keep the setting of and let (w,t) be a pair as in Lemma
. Let w' be a fiber functor RepQPG — Modg%l/p], and let i/ be an isomorphism
W'(L[1/p]) = DI[1/p] taking w'(sa) € w'(L[1/p])® to sao € D[1/p]® for each
a € a. Then there is a unique ®-isomorphism w[l/p] = W' which takes v to 1.

Proof. By Remark we may assume that w = 1y without loss of generality.
The proof of the lemma is then completely analogous to the proof of the uniqueness
in Lemma T8 O

Lemma 4.1.11. Let G be a smooth affine group scheme over Z, with connected
fibers. (We do not need to assume that G is definable by tensors.) Let R be the ring
of integers in either a finite unramified extension of Q, or Q' Let w : ReprG —

Modg’ be a fiber functor. Then P, is a trivial Gg-torsor. In particular, the set
P,(R) is a G(R)-torsor.

Proof. Our assumptions, together with Lang’s theorem, imply that any G g-torsor
over R, such as P,, is necessarily trivial. (I

4.1.12. We continue to consider G and R as in §4.1.1 For each fiber functor
w: Repy G — Modg’ we set

Y (w) := P, (R[1/p]) = {®-isomorphisms 1g[1/p — Wrp/p}-

This is either empty or a right G(R[1/p])-torsor (i.e., for n € Y(w) and g €
G(R[1/p]), we define - g := nog). When P, (R) is non-empty and thus a (right)
G(R)-torsor, there is a canonical isomorphism

Y (@) = Pu(R) x4 G(R[1/p)).

In this case we write Y (w)® for P,(R) when we view it as a subset of Y (w). Its
elements are called integral points of Y (w).
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4.2. Integral F-isocrystals with G-structure.

4.2.1. Let Ko be either a finite unramified extension of Qp, or Q). Let o €
Aut(Ky) be the arithmetic p-Frobenius. We will apply the considerations in
to F-isocrystals over K with additional structures.

Recall that an F'-isocrystal over Ky is a finite-dimensional Kjy-vector space V,
equipped with an isomorphism ¢y : 0*V = V called the Frobenius. We denote by
Isock, the category of F-isocrystals over Kj.

Let Isocg, be the category of pairs (M, @nr), where M is a finite free Of,-
module, and (M[1/p], ¢ar) is an F-isocrystal. We shall often write ¢ for ¢ when
no confusion can arise. Morphisms in this category are by definition morphisms
of Ok,-modules that respect the Frobenii (after inverting p). We call an object of
Isock, an integral F-isocrystal over Ky. Note that Isocj, contains the category
of the usual F-crystals, but has the advantage of containing duals of objects. We
write

Tan e fp
v Isocy, — ModOKO

for the forgetful functor, taking each (M, ppr) to M. (Here v stands for “vergessen”,
as in [RZ96, §1].)

Let G' be a flat, finite-type, affine group scheme over Z,. By an integral F'-
isocrystal with G-structure over Ky, we mean a faithful, exact, ®-functor

T : Repy, G — Isock, .

Equivalently, T is a ®@-functor such that the composition voT : Repy G — Mod?SK0
is a fiber functor. Note that we do not require v o T to be equal to 1g,.

Similarly, by an F'-isocrystal with G-structure over K, we mean a faithful, exact,
®-functor

T : Repg, G — Isoc,,.

If T is an integral F-isocrystal with G-structure, then the similar construction
as in yields a natural F-isocrystal with G-structure Y[1/p].

We denote the categories of integral F-isocrystals (resp. F-isocrystals) with G-
structure over Ko by G-Isocg (resp. G-Isock,). In these categories, morphisms are
by definition ®-isomorphisms between ®-functors ReprG — Isoci(0 (resp. between
®-functors.

4.2.2. Let G be a flat, finite-type, affine group scheme over Z,, that is definable by
tensors, and fix a defining datum (L, (Sa)ace) for G (see §4.1.7). Let (D, pp) be
an object in Isoc}}07 equipped with a collection of pp-invariant tensors (Sq,0)aca C
D®, such that there exists an O K,-module isomorphism L ® Ok, =D taking each
Sq 10 Sq,0. (Obviously such a tuple (D, ¢p, (Sa,0)aca) always exists.)

Lemma 4.2.3. Keep the setting of §].2.3 There exists an integral F-isocrystal
with G-structure Y equipped with an isomorphism v : Y(L) = (D, ¢p) in Isock,
such that © maps Y(sy) € Y(L)® to sq0 for each a € a. The pair (Y,1) is unique
up to unique isomorphism in the following sense. Given two such pairs (T,1),
(Y',1"), there is a unique isomorphism Y — Y’ in the category G-Tsocy, which
takes 1 to t'.
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Proof. Fix an O, -module isomorphism ¢ : L ® Ok, ~ D taking each s, to s4,0.
The composite map

L® Ky =+ a"D[1/p] =% D[1/p] = L& K
o*L =

fixes (sa), and hence has the form Jo for some ¢ € G(Ko). For @ in Rep; G we set
T(Q) = Q ® Ok,, and set pg = do : 0*Q[1/p] = Q. This shows the existence of
(T,0).

To show uniqueness, let (Y, ¢), (Y/,¢'), be two pairs as in the lemma. Let w = voT
and w’ = voY’. By Lemmam there is a unique isomorphism 7 : w = w’ of fiber
functors over Of, taking ¢ to /. In particular the isomorphism n(L) : w(L) = w'(L)
is compatible with the Frobenii on w(L)[1/p] and on w’(L)[1/p]. Since for any Q
in ReprG, the Qp-representation Q ® Q,, of G is a subquotient of (L ® Q,)®, this
implies that the isomorphism 7(Q) : w(Q) = w'(Q) is compatible with the Frobenii
on w(Q)[1/p] and on w'(Q)[1/p]. Hence the isomorphism 7 : w — w’ comes from a
(necessarily unique) isomorphism Y = Y’ in G-Isocyk, . O

Lemma 4.2.4. Keep the setting of and let (T,.) be a pair as in Lemma
. Let Y be an F-isocrystal with G-structure, and let ' be an isomorphism
Y'(L[1/p]) = (D[1/p],¢p) in Isock, such that /' maps Y'(so) € Y'(L[1/p])® to
Sa.0 € D[1/p]® for each o € . Then there is a unique isomorphism Y[1/p] = Y’
in the category G-Isocy, which takes v to /.

Proof. Let w =voY[1/p] and w’ = voY'[1/p]. These are fiber functors Repgy G —

Mod‘}?o. By Lemma [4.1.10, there is a unique ®-isomorphism w — w’ which takes
¢t to /. By exactly the same argument as in the proof of Lemma this isomor-
phism comes from a unique isomorphism Y[1/p] = Y’ in G-Isock, . O

4.2.5. Let G be a smooth affine group scheme over Z, with connected fibers. Let
T be an integral F-isocrystal with G-structure over Ky, and write w for vo Y. By
Lemma [{.1.11] P, (Of,) is a non-empty G(Ok,)-torsor. Then we have the G(Kj)-
torsor Y (w), and a canonical G(Og,)-torsor Y (w)° C Y (w), as in In the
sequel, we shall write Y(T) and Y(1)° for Y (w) and Y (w)° respectively.

Now consider an element y € Y(Y). For each L in Repy G, the Ko-linear iso-

morphism L ®z, Ko — YT(L)[1/p] induced by y allows us to view the Frobenius on
T(L)[1/p] as being given by 6, , - o for some d, 1, € GL(L ® Kj). Since every repre-
sentation in Repg G contains a G-stable Z,-lattice (see , the reconstruction
theorem over a field implies that the elements ¢, ; for all L come from a unique
element 0, € G(Kp). Thus we have obtained a map

Y(T) — G(Koy), y+—9,.

It is clear that the set {0, | y € Y(Y)} is a G(Ky)-orbit under o-conjugation, and
the set {0, | y € Y(Y)°} is a G(Ok,)-orbit under o-conjugation. We call the last
G(Ok,)-orbit the invariant of T, and denote it by inv(T).

Lemma 4.2.6. Keep the assumptions in . The construction T — inv(Y)
induces a bijection from the set of isomorphism classes in the category G-Isock., ,
to the set of G(Ok,)-o-conjugacy classes in G(Kjp).

Proof. 1t is easy to check that the map described in the lemma is well defined. The
inverse of the map is induced by the following construction: Given ¢ € G(Ky), we
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define a functor Yy : RepZPG — Isoc%0 by sending L to L ®z, Ok, and equipping
L ®z, Ko with do as the Frobenius. O

Definition 4.2.7. Let G be a reductive group scheme over Zj,, and let v : &, —
Goy, be a homomorphism of O, -group schemes. Let T be an integral F-isocrystal
with G-structure over Ky. With the notation as in we define

Y, (1) := {y € Y(T) [ 8, € G(Ok,)v(p)G(Ox, )} -
This is a subset of Y(T) stable under the G(Og,)-action. We define
Xo(T) i= Yol T)/G(Ox,).

Remark 4.2.8. In the setting of Definition if we fix an element yo € Y(7T)
and use it to identify the G(Kjy)-torsor Y (T) with G(Ky), then X, (Y) is identified
with

{9 € G(K0)/G(Oxy) | §718,00(9) € G(Or, 0(p)G(Ox,)} -
When K, = Q)" the above is the affine Deligne-Lusztig set X, (d,,) introduced in
§2.2.7]

4.3. Crystalline representations with G-structure.

4.3.1. Let G be a connected reductive group over Q,. Let K/Q, be a finite
extension inside @Iﬂ and let K¢ be the maximal unramified extension of Q, inside
KE We denote by RZg(K) the set of pairs (u,d), where p is a K-homomorphism
Gm,xk — Gk, and § € G(Ky). These pairs are considered by Rapoport-Zink in
[RZ96, §1].

Let MF%. be the category of filtered ¢-modules over K. This is a Tannakian
category, equipped with the fiber functor v : MF{, — Modi?o taking each filtered
w-module to its underlying Ky-vector space. There is a bijection

(,U'a 5) — Iu,é

from the set RZg(K) to the set of faithful exact ®-functors Z : Repg G — MFj
such that v o Z is equal to the standard fiber functor

1x, : Repg, G — Mod® .V +— V &g, Ko.

We refer the reader to [RZ96) §1] for details.

We say that two elements (u1,61) and (u2, 02) of RZg(K) are equivalent, if Z,,, 5,
and 7, 5, are ®-isomorphic. We denote this equivalence relation on RZ¢q(K) by
~. We call an element (u, d) of RZg(K) admissible, if Z,, s lands in the subcategory
MF%* of admissible filtered ¢-modules. We call an element (p,68) of RZq(K)
neutral, if kg (0) = [u] € m1(G)r,. Here kg is the Kottwitz map B(G) — m1(G)r,
as in §1.4.20 We denote by RZ%(K) (resp. RZ&(K)) the subset of admissible
(resp. neutral) elements of RZ¢ (K). We also write RZg" (K) for RZg (K )NRZ¢(K).

It is easy to see (cf. [RZ96, Def. 1.23]) that two elements (p1,01), (t2,02) €
RZq(K) are equivalent if and only if there exists g € G(Kp) such that gd1o(g)~! =
d2 and such that Int(g) oy and po define the same filtration (in the sense of [SR72,
IV, §2]) on the fiber functor 1x : Repg G — Mod?z. By [SR72, TV, 2.2.5 (2)], the
last condition on p; and ps implies that p1 and po are conjugate by G(K). From

22The notations K and Ky are standard in p-adic Hodge theory. In the context of Shimura
varieties, we often use K to denote the level. In such a case we will use notations such as F' and
Fp to denote p-adic fields.
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this we see that the subset RZg C RZ¢ is invariant under the equivalence relation
~. It is also clear that the subset RZ;, C RZ¢ is invariant under ~.

When G is a torus, the equivalence relation and the admissibility condition on
RZ¢a(K) can be made more explicit as follows.

Proposition 4.3.2. Let T' be a torus over Q,. The following statements hold.

(i) Two elements (u1,01), (12,02) € RZp(K) are equivalent if and only if

1 = po and 61 is o-conjugate to oo in T(Kp).

(i) We have RZ}(K) = RZ1(K).
Proof. Part (i) follows easily from the discussion in §4.3.1} For part (ii), we fix an
embedding @p — @p as usual, and write K for the compositum of K and @p inside
Qp. The condition of being neutral is equivalent to the second condition in [RZ96,
Prop. 1.21]. Thus by that proposition, an element (u,d) € RZp(K) is neutral if
and only if the ®-functor Repg T' — MF?{ obtained by base changing 7, s lands
in MF"Ii(’a. Since the admissibility of a filtered p-module over K is equivalent to the

admissibility of its base change to K, part (ii) follows. |

4.3.3. Keep the setting of §4.3.1l If K'/K is a finite extension inside Q,, then
there is a natural map RZg(K) — RZg(K'), which sends equivalent elements to
equivalent elements, and preserves neutrality and admissibility. We define

RZg := lim RZq (K),
K

where K runs through finite extensions of Q, inside @p, and the transition maps
are the ones mentioned above. Similarly, we define the three subsets RZ%, RZ¢,
and RZg" of RZ¢ by taking direct limits. We write ~ for the inherited equivalence
relation on RZq . The three subsets of RZ¢g introduced above are all stable under

~,

Corollary 4.3.4. Let T be a torus over Q,. We have RZT = RZy. There is a
natural bijection between RZT/~ and the set

{(1,[0]) | n € X(T),[0] € T(Q")/(1 — o),k ([3]) = [n]} -
Proof. This follows from Proposition (]

4.3.5. Keep the setting of §4.3.1] We say that a homomorphism
p: 'y — G(Qp)

is a G(Qyp)-valued crystalline representation of T'k, if for some faithful represen-
tation V' in Repg G, the homomorphism I'x — GL(V)(Q,) arising from p is a
crystalline representation. This condition is in fact independent of the choice of V.
We denote by Crysq(K) the set of all such p.

We define

Crysg = lim Crysq(K),
K
where K runs through finite extensions of Q, inside @p, and the transition maps

are given by restriction. We have a natural G(Q))-action on Crysg by conjugation.
We denote the resulting equivalence relation on Crysg by ~.



112 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

For p € Cryss(K), we denote the image of p in Cryss by [p]. From p, we obtain
a faithful exact ®-functor Z,, : ReprG — MFY, taking each V' to

Dcris(v) = (Bcris ®Qp V)FK7

where V' is viewed as a crystalline representation of I' via p. (The fact that Z, is
a faithful exact ®-functor follows from the fundamental properties of Ds [Fon79l
§3.4].) We thus obtain a fiber functor voZ, : RepQPG — Modflgo. By Steinberg’s
theorem, the G'¢,-torsor Isom® (1, v0Z,) becomes trivial after a finite unramified
extension of Ky. Hence if we replace K by a suitable finite extension, then we may
assume that this torsor is trivial. In this case, Z, is ®-isomorphic to Z, s for some
(,0) € RZg(K) which is unique up to equivalence; see The image of (u,0)
in RZq/~ is independent of all choices, and it depends on p only via its image in
Crysg /~. Mapping p to (u,0), we have obtained a well-defined map

DS, : Crysg /~ — RZqg/~.
Proposition 4.3.6. The map DS, is injective with image RZE" /~.
Proof. Firstly, it is clear from the definitions that im(DZ,,) C RZ% /~.

cris
cris

we let Repr,’ be the category of

For each finite extension K/Q, inside Q,,

crystalline representations of I'x over Q. Then Dy : Repf«i‘f — MF%aL is a
®-equivalence of ®-categories, with a quasi-inverse given by the functor

‘/;ris D v— FﬂO(Bcris ®K0 D)¢:1

cris

(which is also a ®-functor). Let w : Repr,. — Modg)p be the functor sending a
crystalline representation to its underlying Q,-vector space.

By a result of Wintenberger [Win97], we know that an element (u,d) € RZ%(K)
is neutral if and only if the composite ®-functor

U0 Veris 0Ly 5 : ReprG — Modg?p

is ®-isomorphic to the standard fiber functor ﬂ@pﬂ From this result, it is clear
that im(DS;,) C RZG" /~.

Now we construct a map RZ%"/~ — Crysg /~ inverse to DS,. Let (u,0) €
RZ3"(K). By the result of Wintenberger mentioned above, the ®@-functor F :=
u 0 Veris © Zyy 5 is ®-isomorphic to 1g,. By composing the tautological homo-
morphism 'y — Aut®(u)(Q,) with the natural homomorphism Aut®(u)(Q,) —
Aut®(F)(Q,), we obtain a homomorphism p’ : T'x — Aut®(F)(Q,). By choos-
ing a ®-isomorphism between 1g, and F, we identify the Q,-group Aut®(F) with
G, and identify p’ with a homomorphism p : I'x — G(Q,). Clearly the G(Q,)-
conjugacy class of p is independent of choices. It is straightforward to check that

the construction (i, d) — p gives rise to the desired inverse map of DS .. O

Corollary 4.3.7. Let T be a torus over Q,. The map DL, induces a bijection

Crysy — {(1,0]) | n € X(T),[0] € T(Q") /(1 = o), iz ([3]) = [u] } -

Proof. This follows from Corollary and Proposition[£.3.6] (Note that Crys;, =
Crysp /~.) O

23This was originally a conjecture of Rapoport-Zink; see the paragraph below [RZ96,
Prop. 1.20]. Wintenberger showed in [Win97| that it is a consequence of the Colmez—Fontaine
Theorem [CF00].
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4.3.8. Let T be a cuspidal torus over Q (see Definition [1.5.4). We call an element
& € T(Qpr) motivic, if for some n > 1, the element v = do(9) ... o™~ (0) is in T(Q),
and is a p-unit (i.e., v lies in a compact open subgroup of T'(A%)). We denote
by T(QpF)™* C T(Qp") the subset of motivic elements. Note that T'(Qp")™°" is
stable under o-conjugation by T'(Q}"). We denote by 7° the connected Néron

model of Ty, over Z,. Let < be the equivalence relation on T (Q;r)mot defined by
o-conjugation by 7°(Zy"). As in §E|, we denote by wr : T(Q,) — X, (T)r, .o
the Kottwitz homomorphism, which is surjective. By [Rap05, Rmk. 2.2 (iii)], we
have ker(wr) = TO(ZP). Hence the restriction of wy to T(Q,")™°* factors through

T(@;r)mot/rg.
Lemma 4.3.9. In the setting of the map wr induces a bijection
(4.3.9.1) T(Qu )™/~ = X (T)r, -

Proof. The surjectivity of (4.3.9.1) follows from the second construction in [Kis17,
§4.3.9]. We explain this in more detail. Let u € X, (T), and let L/Q be a finite
Galois extension inside Q splitting 7". Let L, be the completion of L at the place

above p determined by the fixed embedding Q — @p, and let m be a uniformizer
of L,,. Then the same argument as in loc. cit. (with py,, replaced by p) shows that
there exist s € Z>1 and a p-unit v € T(Q) such that Np,_,q, (u(7))*y~" € T°(Zy).
By Greenberg’s theorem [Gre63, Prop. 3], the map 7°(Z,) — T°(Z,), ¢ — co(c)™*
is surjective. Hence we can find ¢ € T°(Z,) such tha

Nz, /g, (u(m) o(e) ™" = 1.
Let
§:=eNp, 1, o(n(m))o(e) ™ € T(Qy),

where L, o is the maximal unramified extension of Q, inside L,. As in loc. cit., we
have 6o (0) - - - ™~ 1(§) = 7, and we have § € T(Qp» ), where n = s[L, o : Q,]. Hence
6 € T(Qy)™*. We now check that wr(d) equals the image of p in X.(T)r,,,
which will prove the surjectivity of . For this, it suffices to show that
wr(Nz, /L, ,(p(m))) equals the image of u, since wr(c) is trivial. Writing F* for
Ly, we have X, (T)r, = X.(T)r,,. Let op = ocF"®l By [Kot&5, §2.5], wr
induces a bijection

Br(T) = {Up—conjugacy classes in T(Qp)} = X.(Drp,

whose inverse is induced by p— Np_,p(u(7)). (Here we use that T' splits over L,
and that L,/F is totally ramified.) This gives what we want.

For the injectivity of 7 let 01,02 € T(Q,")™" be such that wr(d1) =
wr(8y). Let § = 616, . Then § is also motivic, so we can choose n such that
v = d0(8) -+ o™ 1(d) is a p-unit in T(Q). Since wr(§) = 0, we have § € TO(ZP),
and in particular v € T°(Z,). Therefore v lies in a congruence subgroup of T'(Q),
and has finite order by Lemma [1.5.5] Up to enlarging n, we may assume that
v = 1. Again by Greenberg’s theorem, we can write § € T°(Zp) as co(c)t, for
some ¢ € T°(Z,). Since v = 1, we have co™(c)~! =1, i.e., ¢ € T°(Zyn). Hence
81 = 809 = cdyo(c) ™! with ¢ € T°(ZyT), which means &; N ]

2411 the last paragraph of [Kis17), §4.3.9], it is used that such ¢ can be found in T(@p).
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Lemma 4.3.10. In the setting of §4.3.8, the map wr induces a bijection from the
set of T(Qp")-0-conjugacy classes in T(Qp")™° to X.(T)r,.

Proof. The map wr induces a group isomorphism T(Q,)/T°(Z,) = X.(T)r, -
In view of Lemma this induces a group isomorphism T(Qp")/7°(Zy") —
X.(T)r,,, which is equivariant for the natural actions of o on the two sides. The
lemma follows from this fact and Lemma [£.3.91 (]

Definition 4.3.11. Let T be a cuspidal torus over Q. Let Moty be the subset of

Crysp, consisting of those [p] whose image under the bijection in Corollary [4.3.7)is
Qp

of the form (u, [0]) where [d] € T(Q,")/(1 — o) is in the image of T'(Q,")™". Note

that the definition of Moty depends on T" over Q, not just Tg,.

Proposition 4.3.12. In the setting of Definition the p-component of the
T@‘p
cris

induces a bijection
%T : MOtT L) X*(T)
Proof. This follows from Corollary [£:3.7 and Lemma [£.3.10} O

map D

4.3.13. Let T be a cuspidal torus over Q. We now use class field theory to
construct certain T'(Q))-valued global Galois representations, and show that their
localizations at places above p give rise to elements of Moty

Let pn € X,(T), and let E,, C Q be the field of definition of y. Similar to
we consider the composite homomorphism of Q-algebraic groups

Res o N
7 ()8 Resg, /o Gm S TALN Resgp, ;o T AN

We have an induced homomorphism between topological groups

(4.3.13.1) Ex \AfJH — T(Q)\T(A).

By Lemma [1.5.5] T(Q) is discrete in T(Ay), and so we have
T@QN\T(Af) = kiFmT(@)\T(Af)/U,

where U runs through compact open subgroups of T'(A). For each such U, we
have a natural map mo(T(Q)\T'(A)) — T(Q)\T'(A)/U, cf. In the limit we
obtain a map

(4.3.13.2) To(T(Q\T(A)) — T(QN\T(Ay).

The composition

(4.3.13.3)

EX\AY TQ\T(A) — mo(T(Q\T(A)) T(Q\T(Ay)

factors through the global Artin map EJ\AL — mo(E;\Ag ) = Gal(E}/E,).
(Recall from §1.5.3| that we take the geometric normalization of the global Artin
map.) We thus obtain a map

r(p) : Gal(E;P/E,) — T(Q\T(Ay).

Let U C T(Ayf) be a neat compact open subgroup. Since T'(Q) is discrete in
T(Ay), we have T(Q) NU = {1} (cf. the proof of Lemma [1.5.7)). The kernel of the
projection

m(U) : T@N\T(Af) = T(@N\T(Af)/U
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is T(Q)\T(Q)U, which we identify with U, using that T(Q)NU = {1}. Let £, ¢y /E,,
be the finite extension inside Efjb/EM such that Gal(EZb/EmU) is the kernel of
7y o (). Then r(u) induces a homomorphism

r(pwu : Gal(EZb/E%U) — kermy = UL
We denote by r(p)y,p the composite homomorphism

projection

Gal(E2"/ B, u) % U < T(A) 7(Q,).

The fixed embeddings E, v < Q < Q,, give rise to a place v of E,, y above p.
Let K =FE, . C @p. We denote by 7(1)u,p10c the composite map

Ty = Gal(@,/K) — Gal(E2/E, 1) ~V2, 7(Q,).

Proposition 4.3.14. In the setting of assume in addition that U is of
the form UPU,, where UP is a neat compact open subgroup of T(Afc) and U, is
a compact open subgroup of T(Qp). Then r(w)upioc : ' — T(Qp) is a T(Qp)-
valued crystalline representation. The element [r(1)u,p ioc) € Crysy, ~lies in Motr.
Moreover, the image of [r(1)u,pioc) under the bijection .#r in Proposition
18 —[h.
Proof. Let f be the composite map of topological groups

Art a a r(p)

K* 225 TR — Gal(E2° /B, u) —— U,

where Artg is the local Artin map (normalized geometrically). Let F be the com-

pletion of F, inside K = E, y,. Let fi be the composite map of Q,-algebraic
groups

N r(p)?'s
Resk/q, Gm LA Resr/q, Gm — (Resg, jo Gm) ®o Qp 71" F@aly, Ty,

Then f; induces a map

K* = (ReSK/QP Gm)(@p) f_1> T(Qp) — T(Af)7

which we again denote by fi.

We claim that f and f; induce the same map O — T(Ay). In fact, by the
definition of r(u)y and the compatibility of the local and global Artin maps, we
have

(4.3.14.1) fi(z) € f(#)T(Q) C T(Ay), VYxeK*.

Take © € O, and let v € T(Q) be such that fi(z) = f(z)y. Note that fi(x)
lies inside the maximal compact subgroup U, max of T(Q,), by the compactness of
O%. Hence 7 lies in UPU,, mmax, which is a neat compact open subgroup of T'(Ay)
by the neatness of UP. Since T'(Q) is discrete in T'(Af), we have v = 1. The claim
is proved.

Now to check that 7(u)y p1oc is crystalline, we take an arbitrary representation V'

of Ty, and check that T'x MAQLEIUN T(Qp) — GL(V)(Qp) is crystalline. For this,

it suffices to check that the composition K* Lu- T(Qp) — GL(V)(Q,) agrees
with a @Qp-algebraic group homomorphism Resk/q, G — GL(V) on Oy, by a
well-known criterion in p-adic Hodge theory (see for instance [Conlll Prop. B.4 (i)]
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and the remark following it). But this follows immediately from our claim proved
above.
We now check that [r(1)u,p,10c] € Crysg, lies in Moty. Let [0] € T(Qp")/(1—0)

be the element attached to [r(u)u pioc] as in Corollary and let & € T(Qpn)
be a representative of [0]. By taking a faithful representation of Ty, and applying
[Conlll Prop. B.4 (ii)], we know that up to enlarging n the element

o = 00(8) 0" (8) € T(Qy)

is equal toﬁ

[f(m), t fi(m)) e e T(Qy).
Here 7 is a uniformizer of K, nk is the residue degree of K, and f(r), denotes the
component at p of f(r) € U. It remains to show that f(m),f1(7)~! is a p-unit in
T(Q). By there exists v € T(Q) such that fi(7) = f(7)y € T(Af). Then
f(m),  fi(m) equals the image of v in T(Q,). In addition, v and f(m)~! have the
same image in T'(A%), which shows that v € UP. Hence 7 is a p-unit.

Finally, we check that .7 ([r(1)v,p10c]) = —p. Let Cp, be the completion of Q,,.
For each faithful representation V' of T, , the I'x-representation on V' induced by
7(1)Up,loc is Hodge-Tate, and we have the cocharacter hy : Gy, c, — GL(V)c,
as in [Ser79, §1.4]. We know that hy factors through T¢, (see loc. cit.), and the
resulting Hodge—Tate cocharacter pur € X.(T) is independent of the choice of V
by the functoriality of the construction. Since the filtration on Dgr(Qp(1)) jumps
at —1, it is easy to see that .7 ([r(1)uploc]) = —pur. We are left to check that
HHT = M-

Let 7" = Resk/q, G- We identify Té with HTeHom@p( K3,) Gm’@p, and de-

fine ¢/ € X,.(T") by p/(2) = (2,1,---,1), :;vhere the first spot corresponds to the
canonical embedding K — @p. Let 7’ : T'xo — Oj be the Lubin-Tate character
(cf. [Ser79, §2.1]). Then 1’ is a T"(Qp)-valued crystalline representation. Since
Artg o7’ is the inclusion I' o < I'x (thanks to the geometric normalization of

Artg), we know that the restriction of r(u)u, to I'i o equals the composition

Tro 1 0% LU T(Q,).

Moreover, by our previous claim that f and f; induce the same map O — T(Ay),
we know that the above composition is equal to the composition of v’ with f; :
K* — T(Qp). Therefore if we let pyp € X.(T”) be the Hodge-Tate cocharacter
of 7/, then pgr equals fi o piyp. (Recall that fi is an algebraic homomorphism
T — Ty,.) By the last paragraph of [Ser79, §2.1], we have pg = p'. Therefore
paT = f1 o 1/, which is easily seen to be equal to . [

4.4. Crystalline lattices with G-structure.

4.4.1. Let K be a finite extension of Q, inside @p, with residue field k. Let Ky
be the maximal unramified extension of Q,, inside Ky, and let o € Aut(Kj) be the
arithmetic p-Frobenius.

We write W for W (k) = Og,. Fix a uniformizer = of K, and let E = E(u) be its
Eisenstein polynomial over Ky. We set & = W[u], and let ¢ be the endomorphism

25Note that in [Con1l] the arithmetic normalization of the local Artin map is used, which is
opposite to our normalization. This results in the sign difference in the exponent in the expression
below.
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of & that restricts to 0 on W and sends u to uP. We have a W-algebra isomorphism
& /(E) = Ok, which sends v mod (E) to m. Thus we have specialization maps
6 — Ok and & — W, sending u to m and 0 respectively. Using these two maps
we view K and K as G-algebras respectively. (These G-algebra structures are not
compatible with the inclusion Ky — K.)

For any height 1 prime ideal p C &, the localization G, is a DVR, and we write
@p for its completion.

We denote by Modf6 the category of pairs (90, pon), where 90 is a finite free
S-module, and gy is a &-module isomorphism ¢*M[1/E] = 9M[1/E]. For such
a pair (M, on), the G-module p*IM carries a filtration, given by Fil'(p*9) =
o (E9N) N ™M C *M[1/E] for i € Z.

Let ch%rjfo be the category of I'g-stable Z,-lattices in crystalline representa-
tions of I'x over Q. Recall from [KisI0, §1.2] that there is a faithful ®@-functor

M : Repf™° — Mod‘f6 .

cris o

For each L in Repr’°, the following statements hold (see loc. cit.).

(i) There is a canonical isomorphism
m(L) ®G KO = Dcris(L & @p)

of isocrystals over Ky. The Frobenius on the left is induced by @an(r)-
This isomorphism is functorial in L and compatible with tensor products.
(ii) There is a canonical isomorphism

(4.4.1.1) ©*M(L) ®s K = Dar(L © Qp)

of filtered K-vector spaces. The filtration on the left is induced by the
filtration on ¢*M(L). This isomorphism is functorial in L and compatible
with tensor products.

(iii) There is a faithfully flat and formally étale @(p)—algebra @gur, and a canon-

ical @gur—linear isomorphism
65ur Rz, L= 65ur Rs W(L)
This isomorphism is functorial in L and compatible with tensor products.

We set Me,is(L) := M(L) g W. Thus M is a ®-functor

cris o

Repp)® — Isock, .
By (i) above, Mis(L) is a W-lattice in the Ko-vector space Deis(L ® Q,). The
following property is proved by Tong Liu in [LiulS8, §4].

(iv) Inside Dgis(L @ Qp), the W-lattice Meyis(L) is independent of the choice
of a uniformizer in ' (which is needed to define the functor 9t). Moreover,
if K'/K is a finite extension in Q, and L' € Rep%r;(so denotes L equipped

’

with the inherited I'/-action, then we have a canonical identification
Meris(L') = Meris (L) @y W(K').
This is compatible with the usual identification
Deyis(L") & Deyis(L) ® K, K-
Here k' denotes the residue field of K’, and K|, denotes W (k')[1/p].
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The filtered isomorphism (4.4.1.1)) is induced by another canonical filtered iso-
morphism, which we now recall. Note that &gy is a complete DVR with residue

field K, which has characteristic zero. Hence &gy is canonically a K-algebra,
and the K-algebra structure is compatible with the natural W-algebra structure.
The following statements follow from the proof of [Kis10, Thm. 1.2.1], and [Kis06l,
Lem. 1.2.12 (4)]. For each L in Rep{™*°, there is a canonical filtered isomorphism

(4.4.1.2) ¢*M(L) ® &) —= Dar(L © Q) ®x & (p).

Here the filtration on the right is the tensor product filtration, coming from the
filtration on D4r(L ® Q,) and the E-adic filtration on é(E). The filtration on
the left is the one induced by the filtration on @*9(L) (which is also the same as
the tensor product filtration coming from the filtration on ¢*9M(L) and the E-adic
filtration on é( g)). Now is induced by by passing to the residue
field K of &(g).

4.4.2. Let G be a flat, finite-type, affine group scheme over Z,. We say that a
homomorphism
p: Tk — G(Zp)

is a G(Zyp)-valued crystalline representation, if the composition of p with the inclu-
sion G(Z,) C G(Qp) is a G(Qp)-valued crystalline representation as in

Given a G(Z,)-valued crystalline representation p, we obtain a tautological func-
tor

pl:Repy G — Repl‘lr[ifo,

sending each L to the I'g-stable lattice L in the crystalline representation L ® Q.

We shall need a generalization of ,1. Let I'x act on the left on G(Q,)/G(Z,)
by

1(9G(Zy)) = p(V)9G(Zp), Vv €Tk, g € G(Qp).

Since p(I'x) C G(Z,), the coset of 1 in G(Q,)/G(Z,) is fixed by I',. Now let
A € G(Qp)/G(Zy) be a point fixed by I'. Let

o1 Repy G — Repr,;

be the functor sending each L to the I'x-stable lattice A - L inside L ® Q,,.
We define ®-functors
Mo ]l)\
w) : Rep;, G —r Mod7g — Mod®, L M\ L)

and
A
Meriso p]]- I . ° fp
socy, — Modyy,, L+ Meis(A-L).
Here the last arrows in both cases are the natural forgetful functors. Clearly

2,0 = (W;\)W-

w;‘p :Repy G

w
We also write T;‘ for the ®-functor
Meyis © pll)‘ : RepZPG — Isoc%o.

When A is the coset of 1, we omit it from the superscripts. Note that the
definition of w;\ depends on the choice of a uniformizer in F', but the definitions of
'I'Z‘ and w;\o are independent of such a choice (up to canonical ®-isomorphism), by

property (iv) in §I4.1]
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Asin 5 we denote by F,x the &-scheme Isom®(]l(5,w/);). Since Aut®(1g) =
G by the reconstruction theorem, we know that P, is a pseudo-torsor under Gg
(i.e., for each G-scheme S, the set ng (S) is either empty or a principal homoge-

neous space under G(S5)). However, in general w;‘ may not be a fiber functor (as it
may not be exact), and ng may not be a G-torsor.

Lemma 4.4.3. Let G,p, X be as in §4.4.9. Let U be the complement of the closed
point in Spec S. Then ng |u is a Gy-torsor over U.

Proof. We write w for w). By [KPI8, Thm. 3.3.2], the functor wy : L — w(L)|y
is an exact faithful ®-functor from ReprG to the category of vector bundles on
U. As in §£1.1] we may also regard wy as a fiber-wise faithful exact functor
between the fibered categories Rep G and Buny, where the fibers of Buny over
SpecZ, and SpecQ, are respectively the categories of vector bundles on U and
on U Xspecz, SpecQp. Since P, |y is identified with P,,,, we know that it is a
Gy-torsor by [Brol3, Thm. 4.8]. O

4.4.4. Let G be a smooth affine group scheme over Z, with connected fibers.
Let U be the complement of the closed point in Spec &. We say that G satisfies
property KL, if every G-torsor over U extends to Spec GE (Here “KL” stands for
“Key Lemma”.) Since G is smooth with connected fibers and since the residue field
of the closed point in Spec & is the finite field k, by Lang’s theorem we know that
all G-torsors on Spec & are trivial. Thus property KL is equivalent to the property
that all G-torsors on U are trivial.

It has been proved by Anschiitz [Ansl8 Cor. 1.2] that all parahoric group
schemes G over Z, satisfy property KL, generalizing earlier results in [CTS79]
and [KP18]. We will make use of this result mainly when G is either a reductive
group scheme over Z,, or the connected Néron model of a torus. (In the former
case this result already follows from [CTS79], as explained in Step 5 in the proof
of [Kis10, Prop. 1.3.4].) In Corollary below we will also apply the result of
Anschiitz to some other parahoric group schemes.

Lemma 4.4.5. Let G be a smooth affine group scheme over Z, with connected
fibers, satisfying property KL. Let p : T'x — G(Z,) be a G(Zy)-valued crystalline
representation, and let X € G(Q,)/G(Zy) be a point fized by Tr. Then w) :

Rep; G — ModfGp defined in is ®-isomorphic to 1l (non-canonically). In
particular, w;‘ and W;\,o are fiber functors, and ’I"f; is an object in G-Isocy, .

Proof. We write w for w;\. By Lemmaand by the discussion in we know
that P,|y is a trivial Gy-torsor. Fix a section of it over U. Then for each L in
Repy, G, we obtain an isomorphism ¢1, : 1e(L)|u = w(L) | between vector bundles
on U, which is functorial in L and compatible with tensor products. Since & is a
noetherian normal domain and since the closed point in it has codimension 2, the
isomorphism ¢z, extends uniquely to an isomorphism 7z, : 1g(L) = w(L) between
finite projective G-modules. By the uniqueness, we know that vz, is functorial in L

26By descent, G satisfies property KL if and only if all G-torsors on the complement of
the closed point of Spec W (Fp)[u] extend to Spec W (Fp)[u], cf. Step 4 in the proof of [KP18|
Prop. 1.4.3]. Thus property KL is intrinsic to the group G, and is independent of the finite
extension k/F, appearing in the definition & = W (k)[u].
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and compatible with tensor products. Thus we have constructed a ®-isomorphism
1lg = w between ®-functors.

Since w? is ®-isomorphic to 1g, it is a fiber functor. Since w,i:o % (w;‘)w, it is
also a fiber functor. It follows that T;)\ is in G-Isoc, . O

4.4.6. Keep the setting of Lemma [4.4.5] and take A to be trivial. Fix a ®-
isomorphism 71 : 1g — w, as in Lemma Then for L in ReprG7 the isomor-

phism L ®z, 6 = w,(L) induced by 7 carries the Frobenius on w,(L)[1/E] to a
¢-semi-linear endomorphism on L ®z, &[1/E], which is of the form g 1 ® ¢ for
some 0g,;, € GL(L)(S[1/E]). By the reconstruction theorem, the elements dg, 1,
for all L come from a common, unique element dg € G(S[1/E]) (cf. the similar
argument in . If we change the choice of 7, then ds gets p-conjugated by an
element of G(&).

Let § € G(Kj) be the image of d¢ under the specialization u — 0. Then the
G(Ok,)-o-conjugacy class of § is independent of the choice of 1, and it coincides
with inv(Y, o) defined in More precisely, n naturally induces a point y €
Y (Y,0)° and we have § = d,, where 4, is defined in

Let [p] € CrysGQP be the element represented by p. We can apply the map
DS, in §4.3.5[ to [p] and obtain an element of RZ¢g /~. In particular, we obtain

a cocharacter p of Gg , well defined up to G(Q,)-conjugacy (cf. the discussion on

the equivalence relation ~ in §4.3.1).
For brevity, we write 71(G) for m1(Gg,). As in Definition [1.3.8) we have the
Kottwitz homomorphism

HZ?KU : G(Ko) — 7T1(G)[‘KO

associated with the p-adic valuation on Ky. We write [u] for the image of u in
71(G)r, » which depends only on [p].

Proposition 4.4.7. With the notation in we have HZ?KO (6) = [u].

For the proof of the proposition we need the following result which will be used
again later.

Lemma 4.4.8. Let f be a non-zero irreducible element of & with f(0) € W having
p-adic valuation 1. Let vy be the f-adic valuation on Frac &, and let

vafKo 1 G(Frac6) — m(G)ry,

be the associated Kottwitz homomorphism as in Definition[1.5.8 Let g € G(S[1/f])
and let gy be the image of g in G(Ky) via the specialization u — 0. Then we have
“GfKO (9) = Kk, (90) in T1(G)ry, -

Proof. Let v, v, be the discrete valuations on &[1/fp] attached to the primes
(f), (p). Let vy be the discrete valuation on &[1/fp] given by

u—0

S[1/fp] L= Ko 22 Z U {oo}.

Since f,p € & are prime elements, any unit w € &[1/fp]* has the form w = fip’y
with 4,7 € Z, and y € &*. Hence we have vy(w) + vp(w) = vo(w) = i+ j. By
Proposition [1.3.10} for any g € G(&[1/fp]) we have

kil () + K (9) = K, (9) = K (90).
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Now if g € G(&[1/f]), then g € G(&p)), and we have
Fiche, (9) =0,
by Corollary [[.3:12] The lemma follows. O

Proof of Proposition[{.4.7. We write w for w,. For each L € Rep, G and V €
ReprG, we understand that 'k acts on L and V via p.

Let o' : RepZPG — Modg’ be the base change of w along ¢ : & — &, that is,
W'(L) := @*M(L). As in §4.1.2] we have a functor

wi : Repg, G — Mod'P

induced by w’. By (ii) in the functor wk is canonically identified with the
functor V +— Dgr (V). Note that Dgr(V) is an admissible filtered p-module for
each V ¢ ReprG. Now the filtrations on Dgr(V) for all V give rise to a ®-
filtration on wf. Since w is exact, and since exact sequences of admissible filtered
p-modules are automatically strict with respect to the filtrations, the ®-filtration
on wh is exact in the sense of [SR72, IV, §2.1] (cf. [Ziel5l §4.2]). Now since Q,
and K are fields of characteristic zero and since Gq, is of finite type, a theorem
of Deligne (see [SRT72, IV, §2.4]) implies that the filtration on w} is induced by a
cocharacter pqr : Gp, x — M@’(w}(). The ®-isomorphism 7 : 1lg — w fixed in
induces a ®-isomorphism 7’ : 1g — w’ via pull-back along ¢. (Note that
we have a canonical identification ¢*(1g) = 1g.) We use 7’ to identify Aut®(wh)
with Gk, and thereby identify uqr with a cocharacter p’ of Gg.

We claim that p' lies in the G(Q,)-conjugacy class of p, and in articular [p'] =
(1] € m1(G)ry, - In fact, by the definition of , there exists a finite extension F'/K
and an element of RZg(F) of the form (u,7) such that the ®-functor

Repg, G — {finite-dimensional filtered F-vector spaces}, V +— Dgr(V)
is ®-isomorphic with
(4.4.8.1)

Repg, G Ten MFY, ¢

Now lifts 1, and gives an (exact) ®-filtration on 1. This ®-filtration
is (tautologically) induced by the cocharacter p of Aut® (1) = Gg. The claim
immediately follows.

Now consider an object L in Rep, G. We write M for w(L) = 9M(L), and

write Lp for L ®z, R, for any Z,-algebra R. We write Bt for @(E), which is a
S|[1/p]-algebra, and write B for B*[1/E] = Frac BT. Then 7’ induces a B-linear
isomorphism

V®Fy F

{finite-dimensional filtered F-vector spaces} .

& :Lp = (p*m®6 B.
We equip Lp = Lx ®k B with the tensor product filtration of the filtration on Ly
defined by p’ and the E-adic filtration on B. We equip ©*9M ®g B with the tensor
product filtration of the filtration on ¢*9 and the E-adic filtration on B. Since

the isomorphism (4.4.1.1f) is induced by the filtered isomorphism (4.4.1.2)), we know

that .Z is a filtered isomorphism. In particular, we have
(4.4.8.2) FW(E)™ - Lg+) = Z(Fil'Lp) = Fil’(¢*"M @s B).
Here p/(E) € G(B) acts on Lp.
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By the definition of dg, we have a commutative diagram

Lei/p) —=> ¢*M[1/E]

lée lm

Le1/g — > M[1/E]

Base changing from G[1/E] to B, we obtain the commutative diagram

Lp %@*DR@@ B

Lp— ~Mes B

o~

It is easy to see that in the above diagram @gy maps Fil’(p*9 ®e B) into M Qe
BT C M ®es B. Hence by (4.4.8.2]) we have

s -,u/(E)_l -Lp+ C Lp+.

Since L is arbitrary, by the reconstruction theorem we know that the element
S - W (E)~t € G(B) lies in G(BT). Applying Corollary [1.3.15| to F = B and

Or = BT, we obtain that Iivcie (bs) = [i'] in m(G)ry,, where Iivcio is as in
Lemma By Lemma we have mg’Ko (6) = [1/]. But we have seen that
[¢'] = [p]. This finishes the proof. O

4.4.9. Let K/Q, be a finite extension (inside @,). Consider G, p, and X as
in Lemma There is a natural base change functor Isocg, — Isocqur, D

D ®0y, Zy". This induces a base change functor G-Isocg, — G—Isoc%_);r. We set

p,ur

A o
T € G—Isoc@;r
to be the base change of T;)\ € G-Tsocy,, namely, T,);‘,ur is the composite ®-functor

A (V0 g 2

T
Rep;, G — Isoci, Isocqu:

If K'/K is a finite extension inside @p and if p’ is the restriction of p to Ik,
then the same construction gives rise to
T)\

p’,ur

€ G-Tsocur .
P

is canonically ®-isomorphic with
YA . Therefore up to canonical isomorphism in G—Isocf@;r, the definition of Y2 €

By property (iv) in 5 we know that Y

p’ur

p,ur* p,ur
G’—Isoc@;r depends on p only via its germ at 1 € T',,

Now suppose we are given a general element [p] € CrysG@p (see 1‘) Let
p € Crysg, (K) be a representative of [p], where K/Q, is a finite extension inside
Q,. Since the homomorphism p : I'x — G(Q,) is continuous, there is a finite
extension K'/K in Q, for which p(T'x:) C G(Zj,). Moreover, if A € G(Q,)/G(Zy)
is an arbitrarily given element, we can further enlarge K’ if necessary to arrange
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that A is fixed by p(T'x/) C G(Z,). (This can be achieved because the stabilizer of
A in G(Z,) is the open subgroup G(Z,) N AG(Z,)A\~*.) We then define

A A o
T[p] = TpHK/ ur € G—ISOCQ;r.

This definition depends only on [p] € Crysg,, and A € G(Q,)/G(Zy), up to canon-
ical isomorphism.
As usual, if A is trivial, we write T, for Tf\p].

4.4.10. Let G be a smooth affine group scheme over Z, with connected fibers,
satisfying property KL. We fix [p] € Crysg, , and obtain Y(,) € G-Isocgu as in
D D

§4.4.91 In §4.2.5 we defined the G(Z,")-o-conjugacy class inv(Y[,) attached to
Y. Let dur € G(Q}) be a representative of inv(Y,). Let p be as in §4.4.6)

(which depends only on [p] € Crysg, ). As usual, write wg : G(Q,) — 71 (G)r, ..
for the Kottwitz homomorphism associated with the p-adic valuation on Qp. Then

wg is trivial on G(Z}") (by Corollary [1.3.12), and so wg(dy,) depends only on Y
and not on the choice of ;.

Corollary 4.4.11. In the setting of §4.4.10, the element wg(du) € T1(G)r,, 45
equal to the image of p.

Proof. As explained in we can pick a G(Z,)-valued crystalline representation
p: I'x — G(Z,) that represents [p]. Up to replacing K by a finite (unramified)
extension, we may assume that 71(G)r, , = m(G)r,,. We may also assume that
dur = 0, where 4 is as in (defined with respect to p). The corollary then
follows from Proposition [£.4.7] (|

Corollary 4.4.12. Let T be a cuspidal torus over Q, and let [pr] be an element of
Moty C Crysg, (see Deﬁm’ti. Let p = Ar([pr]) € X.(T), where Mt
is the bijection in Proposition|4.3.19. Let T° be the connected Néron model of T
over Zy, and let T, be the object in To—Isoc(a;r associated with [pr] as in §4.4.9

Let 67 € T(Qy") be a representative of inv(Y(,,]) (see , Then ot lies in
T(Qp)™*, and wr, (61) € X«(T)r, , is equal to the image of p.

p,0

Proof. Since [pr] lies in Mot(T), we have é7 € T(Qp")™°". The claim about
wry, (67) follows from Corollary |4.4.11| applied to G = T°. Here we have used
that 7° satisfies KL; see O

Remark 4.4.13. By Lemma the two properties satisfied by dr claimed in
Corollary [4.4.12| uniquely characterize the 7°(Z,")-orbit of § under o-conjugation.

4.4.14. Keep the setting of §4.4.10] Let A € G(Q,,)/G(Z,) be an arbitrary element.
We then obtain T, = T, and T7,. Asin q4.2.5 associated with 17, € G-Isocgu:

we have the G(Qj")-torsor Y(Tf‘p]), together with a G/(Z,")-torsor

A \o A
Y (1) < Y(Tg,).

Thus we can canonically identify Y(Tf\p]) [G(Zyr) with G(QpF)/G(ZyT). Similarly,
we identify Y (Y(,))/G(Zy") with G(Qp')/G(Zy").

There is a tautological ®-isomorphism Tf\p][l/p] = Ti,[1/p], induced by the
tautological isomorphism L ® Q, = (X-L)®Q, in Repg G for each L in Rep; G.
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This induces a tautological isomorphism Y(Tf\p ) = Y(Y|,). Thus we have an
induced map

Y(Y,)/G(Zy) — Y (X1, /G(Zy),
which we identify as a map
G(Q)")/G(Zy) = G(Q))/G(Zy)).

Let Ao € G(Q})/G(Z}") be the image of 1 under the last map. Since the Kottwitz

homomorphism wg : G(Q,) — 1 (G)r,,, is trivial on G(Z,") (by Corollary |1.3.12)),
we obtain well-defined elements wg (), wg(Ao) € m1(G)r

p,0°

Proposition 4.4.15. In the setting of §4.4.14}, we have wg(\) = wa(No).

Proof. As explained in we may pick a G(Z,)-valued crystalline representa-
tion p : I'x — G(Z,) representing [p], where K/Q, is a finite extension inside @p,
such that the I'k-action on G(Q,)/G(Z,) induced by p fixes A. For later purposes
we shall also suitably enlarge K to assume that m(G)r,, = 71(G)r,,. (As always,
Ky denotes the maximal unramified extension of Q,, inside K.)

As in we have ®-functors w, and w;‘ : Repy G — Modﬁg (defined with
respect to K and a chosen uniformizer.) For brevity we denote them by w and
w? respectively. By Lemma m P,(6) and P,»(6) are non-empty. In partic-
ular, Y(w)/G(&) and Y (w?)/G(&) admit canonical base points, and can both be
identified with G(&[1/p])/G(S) canonically (see §4.1.12)). The tautological isomor-
phism w*[1/p] =+ w[1/p] induces a map Y (w*)/G(&) — Y(w)/G(&), which we
identify as a map G(S[1/p])/G(6) — G(6[1/p])/G(S). Denote the image of 1
under the last map by As. It is clear that Ag is equal to the image of Ag un-
der G(8[1/p])/G(6) = G(Ko)/G(OK,) — G(Qp")/G(Zy"), where the first map is
induced by the specialization u +— 0.

Now write C' for Oguw. By (iii) in §4.4.1 the base change wd of wt to C s
canonically ®-isomorphic to the functor

p,0°

12 : Repy G — Mod®, L (M- L)®g, C.

Similarly, we is canonically ®-isomorphic to 1o. Moreover, the canonical ®-
isomorphisms ]l?; = wé and 1o = we are compatible with the tautological iso-
morphisms 12[1/p] = 1¢[1/p] and w)[1/p] = we[l/p]. Tt follows that the image
of Ag under G(8[1/p])/G(6) — G(C[1/p])/G(C) is equal to the image of A under
G(Q,)/G(Z,) — G(C[1/p))/G(C). Since the map Gr — G(C[1/p])/G(C) is in-
jective, we conclude that the image of Ag in G(é(p)[l/p})/G(é(p)) is equal to the
image of A.
Consider the Kottwitz homomorphism
“UGPKO : G(Frac ) — m(G)ry, = m(G)r

p,0

associated with the p-adic valuation v, on Frac&. By Lemma [1.3.12f and by
the functoriality of the Kottwitz homomorphism, HUGPKO factors through a map

G(é(p)[l/p])/G(éi(p)) — m1(G)r, o, whose restriction to G(Q,)/G(Z,) is equal to
wg. Since A\g and A have the same image in

G(& ) [1/p)/G(E ),
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we conclude that /cg;”KO (As) = wa()). Now by Lemma we have /@UGPKO \s) =
wea(Ag) since Ao is the image of Ag under the specialization v +— 0. Therefore
wa(A) = wa(No) as desired. O

Corollary 4.4.16. Let F/Q, be a finite extension. Let G be a parahoric group
scheme over OF, and let G = Reso,.z, Go. Then G satisfies KL, and in particular
the conclusion of Proposition[{.4.15 holds for G.

Proof. Tt suffices to show that G is parahoric and apply the result of Anschiitz
[Ansi8] (recalled in §4.4.4). The fact that G is parahoric is well known; see for
instance [HR20l Prop. 4.7]. O

4.5. Crystalline representations factoring through a maximal torus.

4.5.1. Let G be a parahoric group scheme over Z,, and write G' for Gg,. (Note
the change of notations from §4.4]) We fix [p] € Crysg. Let T C G be a maximal
torus. We assume that [p] is equal to the image of an element [pr] € Crysy
under the natural injection Crys; — Cryss. Let [p*?] be the image of [pr] under
Crysg — Crysgab.

Let 7° (resp. G*®) be the connected Néron model of T (resp. G*P) over Z,.
As recalled in the Z,-group schemes G, T°, G satisfy KL. As in we

obtain
T, € g—Isoc(a;r,
Yipr) € T°-Isocqu:,
Yy € Qab-Isoc(agr.
As in We obtain the G(Q}")-torsor Y (Y(,)), the T(Qp")-torsor Y (Y,,)), and
the G**(Qyr)-torsor Y (Y ,em)). For x € {T(,, T, Y(,eb) ), We have the set of

integral points Y (x)° C Y (x).
By definition, Y'(Y(,) depends only on the fiber functor

(voT,))[1/p] : Repy, G — Mod(fQ}?Br.

pr]s

Similarly, Y'(Y(,,]) depends only on the fiber functor
f
(vo T )[1/p] : Repg, T — Modé’;r.

Observe that (v o Y, )[1/p] is canonically isomorphic to the composition

(voX (o) [1/p] Modg’.,r,
P
as they are both identified with the functor V — De.is(V) ®k, ', where we view
V as a Gal(Q,/K)-representation via [p] (for a sufficiently large finite extension
K/Qy). Hence we obtain a canonical map Y (Y(,,]) = Y (Y(,)), which is equivariant
for the T'(Qp")-action on the two sides. In particular this map is injective.
Similarly, we obtain a natural map Y (Y(,,)) — Y (Y[pa»)) which is equivariant
with respect to T(Qp) — G**(Q}"), and a natural map Y (Y(,) = Y (Y[,a»)) which
is equivariant with respect to G(Qp") — G*P(QY).
Since the inclusion T' < G does not necessarily extend to a map 7° — G over
Zyp, one cannot expect that the map Y (Y(,,1) — Y (Y[,) sends integral points to
integral points. Nevertheless, we have the following compatibility result.

Repg, G~ Repg, T

ol
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Proposition 4.5.2. The natural maps
Y(T[pT]) — Y(T[pzb])

and
Y(T[p]) — Y(T[pab])

send integral points to integral points. If we assume that G is a reductive group
scheme, then the image of Y (Y (,..))° in Y (Y ,)) is contained in Y (Y(,))° Gaer(Qy")-

Proof. The first statement follows immediately from the functoriality of the con-
structions, and the fact that the Q,-homomorphisms 7" — G* and G — G?P extend
to Zyp-homomorphisms 7° — G*b and G — Gab respectively. The second statement
follows from the first statement once we know that the map Y (Y(,)° — Y (Y[,a01)°
(provided by the first statement) is surjective. For the last fact, it suffices to ob-
serve that the map G(Z1") — G*P(Z1") is surjective when G is a reductive group
scheme. In fact, in this case we even know that G(Zyn) — G*P(Z,n) is surjective
for all n € Z>1, by Lang’s theorem applied to Gger,z,» Which is smooth over Zn
and has connected fibers. O

Remark 4.5.3. Let K/Q, be a large enough finite extension such that [pr] is in-
duced by T°(Z,)-valued crystalline representation pr : Gal(K/K) — T°(Z,) which
factors through 7°(Z,) N G(Z,). Let p (resp. p*) be the induced G(Z,)-valued
(resp. G*P(Z,)-valued) crystalline representation. Let Ky be the maximal unram-
ified extension of @, inside K. Then we have the variant of Proposition
where Y (T,.1), Y(Y(5), Y(Tper)), and Gaer (Qy") are replaced by the T'(Ko)-torsor
Y(Y,,), the G(Ky)-torsor Y (T,), the G**(Ko)-torsor Y (Y jun), and Gaer(Ko) Te-
spectively.

5. SHIMURA VARIETIES OF HODGE TYPE

5.1. Abelian schemes and related structures on the Shimura variety.

5.1.1. Throughout this section we keep the following setting. Let (G, X, p,G) be
an unramified Shimura datum as in and assume that (G, X) is of Hodge
type. Let E C C be the reflex field of (G, X), viewed as a subfield of Q via our
fixed embedding Q < C. Let p be the prime of E determined by the embedding
E < Q < Q,. We write K, for G(Z,).

Since G is smooth over Zy, its Hopf algebra Og(G) injects into Og,, (Gg,). The
intersection Og(g) N O¢(G) inside Og,, (Gg,) has the natural structure of a Hopf
algebra over Z,, and defines a Z,)-group scheme G/,). Thus G(,) is the unique
(up to unique isomorphism) reductive group scheme over Z,) whose generic fiber
is identified with G and whose base change to Z, is identified with G.

We fix an embedding of Shimura data (G, X) < (GSp(Vg), S*), where Vg is a
symplectic space over Q, and (GSp(Vp), ST) is the corresponding Siegel Shimura
datum. As in [Kis17, §1.3.3], we may choose the symplectic space Vg and the
embedding G — GSp(Vgp) suitably such that the latter is induced by a closed
embedding of Z,)-group schemes G ,) — (}L(\/Z(p))7 for some self-dual Z,)-lattice
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Vz,, in VQH We fix such choices of Vg, G < GSp(Vg), and Vz, . For any Z,)-
algebra R we write Vg for Vz , @z, R. We write GSp for the Q-algebraic group
GSp(Vy), and write K, for the compact open subgroup GSp(Vz,,)(Z,) of GSp(Qy).
Thus the embedding G(Q,) — GSp(Q,) maps K, into K,.

Asin [Kis17, §1.3.6], we fix once and for all a collection of tensors (84 )aca C VZ%)
such that the image of G(,) < GL(Vz,,) is the scheme-theoretic stabilizer of these
tensors. In the sequel, we shall assume that the collection (s )aea i maximal, i.e.,
it consists of all elements of Vz®p that are stabilized by G,).

Let Vz*p be the Z,-linear dual of Vz,. We shall view it as a representation of G
over Zy, i.e., the contragredient of V7. Similarly, we view the Q-linear dual V{j of
Vo as a representation of G over Q. We view (s4)aca also as tensors over VZ*p or
Vg-

Lemma 5.1.2. For any Shimura datum (G, X) of Hodge type, the following state-
ments hold.
(i) The Q-tori Z% and G*" are cuspidal (see Definition .
(ii) The anti-cuspidal part (Z2)ee of Z& (see Definition|1.5.4) is trivial.
(iii) Let (T,i,h) be a special point datum for (G,X) (see Definition .
Then T is cuspidal, and i(Tr) is an elliptic mazimal torus in Gg.

Proof. Let w be the weight cocharacter of (G, X). Since (G, X) is of Hodge type, we
know that w is defined over Q, and that Int(h(y/—1)) induces a Cartan involution
on Gr/w(G,r) for each h € X (by directly checking the similar properties for
the Siegel Shimura datum). Recall from [Del79, §2.1.1] that w is central. Thus
(Z2)r/w(Gp r) is anisotropic. Since w(Gy,g) is defined and split over Q, we see
that Zg is cuspidal. Since G2 is isogenous to Zg over Q, it is also cuspidal. This
proves (i). Statement (ii) follows from (i) in view of Lemma[I.5.5] For (iii), we have
ioh € X, and the Cartan involution Int((i o h)(v/—1)) on Ggr/w(G,, r) restricts
to the identity on i(Tr)/w(Gy, ). Hence i(1Ir)/w(Gy r) is anisotropic, and the
desired statements follow. O

5.1.3. For each compact open subgroup K C G(Ay) (resp. K C GSp(Ay)), we
write Shy (resp. Shg) for the Shimura variety Shx (G, X) (resp. Shg(GSp, S*)).
Below we recall the construction of the canonical smooth integral model .k, of
Shg, = T&nmj Shg, r» in Theorem

Fix once and for all a neat compact open subgroup K} ¢ G (A?) whose image in
GSp(A?) is a neat compact open subgroup KY. We write #? for the set of open
subgroups of K?. Clearly all members of #? are neat. Let K? € 7. By [Kis10,
Lem. 2.1.2], there exists an open subgroup K? C K¥ such that the image of K? in
GSp(A%) is contained in K” and such that the natural map

SthKp — SthKp XQE

is a closed embedding of F-schemes.
Now SthKp has a canonical model YKPH@ over Zp), which represents the usual
Siegel moduli problem. We define ., k» to be the normalization of the closure

27This uses [Kis10, Lem. 2.3.1] and Zarhin’s trick. In the former result, there is an extra
assumption on G when p = 2. However this extra assumption can be removed, as explained in
the proof of [KMP16l Lem. 4.7].
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of Shg, kv inside Sk xr X Z(p) O, (p)- (It is shown in [Xu20] that taking the nor-
malization is redundant.) By the main results of [Kis10] and [KMP16], .7k, k» is
smooth over O (y), and the inverse limit S, = 1£[1 Keex» Sk, kv is the canonical
smooth integral model of Shg,. For each K? € #P, we have Yk kr = Sk, /K?,
so the notation here is consistent with that in Definition
In the sequel, we write
K, = K,K?.

Over .Yk, we have an abelian scheme up to prime-to-p isogeny A that is the pull-
back of the universal abelian scheme up to prime-to-p isogeny over y}KPK? For any
Og,(p)-scheme Y and any O, (p)-morphism x : Y — Yk, , we denote by A, the pull-
back of A along z. For any Y as above and any O, (,)-morphism x : Y — “k, we

again write A, for the pull-back of A along the composite map Y = Ik, = LK, -
5.1.4. For a scheme Y and a prime number [, we write Lissez, (Y') (resp. Lisseg, (Y))
for the ®-category of lisse Z;-sheaves (resp. lisse Q;-sheaves) on Y. We define the
category of lisse A?—sheaves LisseA? (Y) to be the Q-isogeny category associated
with the product category of Lissez, (Y') for all primes I # p. Thus LisseAz; (Y) is
an A’}-linear ®-category, with unit object given by the product of the unit objects
in Lissez, (Y'). For R € {Z;,Qy, AIJi}, we denote the unit objects in Lisseg(Y) by R.

More generally, given any finite free R-module W we still write W for the “constant
sheaf” in Lisseg(Y") represented by W.

By Lemma (1.5.8.2)), and Lemma (ii), we have
Gal(Sh /Shg,) ¥ K;.
For each W € Repng, we can view W as a continuous Z,-representation of

Cal(Sh /Shg,) via Gal(Sh /Shg,) = K1 2% K, = G(Z,). By the Z,-linear vari-
ant of the construction in [HTO0L, §IIL.3] (the Q,-lincar version was used in g@,
we can attach to the Gal(Sh /Shg, )-representation W a lisse Z,-sheaf L,(W) on
Shp,. This construction defines a faithful exact ®-functor

(5.1.4.1) L, : Rep; G — Lissez, (Sh, ).
Similarly, by Lemma and Lemma (ii), we have
Gal(Sk, [/ Tk,) = KT,
and we obtain a faithful exact ®-functor
(5.1.4.2) P : RepnG — LisseA? (Zky)

by viewing W ®g A’} as a continuous A’;-representation of Gal(-“k, /7, ) for each
W € RepgG.

The functors L, and IL.? have complex analytic analogues defined using the com-
plex uniformization. For each W' € Repy G, define a subspace £ (W) c Wo, x X x
G(Ay) by

EW) = {(w,h. (9)0) | w € g, W € Wo, ).
We let G(Q) act on E(W) on the left by

g (w,h, (gv>v) = (gw,gh, (ggv)v);
and let K act on £(W) on the right by

(w’ hv (gv)v) k= (wa h, (gv)'u ’ k)



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 129

Let £,(W) be the sheaf on the complex manifold Shg, (C) consisting of local sec-
tions of

G(Q)\g(W)/Kl — ShKl ((C) = G(Q)\X X G(Af)/Klv [(U}, hv (gv)v)] = [h” (gv)v]'

Similarly, for each W € RepgG, let Lo(W) be the sheaf on Shg, (C) consisting of
local sections of

GQ\W x X x G(Af)/Ky = Shg, (C),  [(w,h,(g0)0)] = [P (gu)o];

where on the left hand side G(Q) acts diagonally on the three factors and K acts
by right multiplication on G(A ). We obtain faithful exact ®-functors

Ly, : Repy G — {Zy-local systems on Shp, (C)},
Lg : RepgG — {Q-local systems on Shg, (C)} .

For each W € Repy G, there is a natural isomorphism between £,(W) and the
analytification L, (W)*" of L, (W) which is compatible with tensor products. Sim-
ilarly, for each W € RepgpG, there is a natural isomorphism between Lo (W) ®q A?
and the analytification LP(W)*" of LP(W) which is compatible with tensor prod-
ucts. These observations go back to Langlands [Lan73|, §3], cf. for instance [Mor05,
§2.1.4].

5.1.5. Denote the structure morphism A — ., by h, and denote the structure
morphism Alsyn,, — Shg, by hy.

Over the complex manifold Shg, (C), we have a Z,-local system Vg, (resp. a Q-
local system Vg @) given by the first relative Betti cohomology of the analytification
of h,, with coefficients in Z,, (resp. Q). By the moduli interpretation of the complex
uniformization of the Siegel Shimura variety, we have canonical identifications

(5.1.5.1) Ve = Lp(V,), Veao = Lo(Vg),

cf. [Kis17, §1.4.11Hf| For each a € o, we can view s, as a morphism Z, — (VZ*,,)®
between G-representations. By the identifications in ([5.1.5.1)) we obtain a tensor

Sa,B,p = Lp(sa) over Vg, and a tensor sq g = Lg(s) over Vg g.
Let

Vp 1= R'hy ¢4 7, € Lissez, (Shi, ),
and

VP = thét7*A? € Lisseyr (S, )-
Analogous to (5.1.5.1)), we have canonical identifications
(5.1.5.2) Vo =Ly(Vg,), VP=LP(Vg),

arising from the fact that the tower of Siegel Shimura varieties relatively represents
the moduli of level structures.

By , for each @ € a, we obtain a tensor s, p := Ly(sq) over V,, and a
tensor sq 47 = LP(s,) over VP.

28In |KisI7, §1.4.11], the line “H1(A(C), Z(p) =g Vi, C Vg” should be corrected to
“H1(A(C),Zp) = gp - Vz, C Vo,™
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Remark 5.1.6. The natural isomorphism L, (V7 )*" = L,(V7 ) at the end of §5.1.4
coincides with the comparison isomorphism Vi* = Vp ;,, if we identify the two sides
with V)™ and Vg ) respectively. Since the analytification functor is faithful, we see
that s, is uniquely characterized by the fact that under the comparison isomor-
phism V" = Vg, it corresponds to sq,p,p. In a similar way, Sa,aD 18 characterized
by Sa.B,@. This shows that the current definitions of s, , and Sa,a7 agree with

those in [Kisl'7, §1.3.6]. |§|

5.1.7. Let k be a subfield of C containing F, and let & be the algebraic closure
of k in C. For z € Shg, (k), we write V,(z) for the stalk of V, at z viewed as a k-
point. Thus V,(z) is a finite free Z,-module equipped with a continuous Gal(&/k)-
action, and it is identified with H, (A, z,Z,). For each a € «, write s, . for
the tensor over V,(z) induced by so,. Then sqp . is invariant under Gal(k/k).
We write G, for the closed subgroup scheme of the Z,-group scheme GL(V,(z))
fixing sqp,. for all & € a. Thus we have a natural continuous homomorphism
p(2) : Gal(k/k) = G.(Zy).

Lemma 5.1.8. In the setting of there exists a (non-canonical) Z,-module
isomorphism Vz*p = Vp(2z) taking each sq to Sap... In particular, there is an
isomorphism of Z,-group schemes G = G, canonical up to conjugation by G(Z,).
Proof. Let z¢ € Shg, (C) be the point induced by z. By Remark|[5.1.6} it suffices to

show the existence of a Zp-module isomorphism f from V;' to the stalk Vg p(zc) of

Vp,p at z¢ such that f takes each s, to the tensor on Vg ,(zc) induced by sq.5,p.
This follows from [KisI7, §1.4.11]. O

Lemma 5.1.9. On Sk, there is a canonical isomorphism between the pull-back
of VP and the constant lisse Al}-sheaf Viv. This isomorphism takes s, AT to Sq
» ;

(viewed as a tensor on the constant sheaf V5 ) for each o € c.
s

Proof. The composition of L” : RepgG — LisseA? (Sk, ) with the pull-back functor
LisseA? (Sk,) — LisseAz; (“k,) is canonically identified with the functor sending
each W € RepgG to the constant sheaf W ®g A’. The lemma follows from this
fact and the second identification in . O

5.2. Crystalline tensors.
5.2.1. Let A be an abelian variety up to prime-to-p isogeny over Fp. We define
Vo(A) 1= Heye (Ao/W (k) @w iy Ly

where A is a model of A over some finite field k C F,,. Then Vy(A) has the natural
structure of an integral F-isocrystal over Q" (see , and it is independent of
the choices of k and Ay up to canonical isomorphism. We denote the Frobenius on
Vo(A)[1/p] simply by ¢. B

For x € Sk, (IFp), we write Vo (x) for Vo(A,). For x € i, kr(F,) with KP € 2P
or z € Ik, (F,), we define Vo(z) to be Vo(y), where y € S, (F,) is the image of
x.

291 [Kis17, §1.3.6], only the l-adic components of VP and s, ,» are considered.
U
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5.2.2. Let z be a closed point of the special fiber of Sk, , with residue field k(z).
We then obtain the abelian variety A4, up to prime-to-p isogeny over k(z). As a
key construction in [Kis10] and [KisI7], for each « € @ we have a tensor s, o,, Over
the W (k(z))-module H.  (A,/W (k(x))), which is furthermore p-invariant (after
inverting p). Below we recall the construction of s4,0, given in [Kisl7, §1.3], and
explain why the assumption p > 2 in loc. cit. can be removed.

Let F be a finite extension of Ey, in Q, whose residue field k contains k(z). Let
T € Shg, (F) be a point that extends (necessarily uniquely) to a point in .k, (OF)
which specializes to x. (Clearly such a pair (F,T) exists for any prescribed z
and finite extension k/k(z); one can moreover take F to be W(k(z))[1/p].) Since
Az k= Az Xj(2) k and A; are the special and generic fibers of an abelian scheme
over Op, we know that the Gal(Q, /F)-representation V,()[1/p] = H}, (As5.-Qp)
is crystalline. Moreover, by the integral comparison isomorphism we have a canon-
ical isomorphism of integral F-isocrystals

(52-2-1) Mcris(vp(g)) = Mcris(Hét(-A~ ZP)) — Hl (A937k/W(k))7

m7@p7 cris
which refines the crystalline comparison isomorphism
DcriS( Hét (A;@p> Qp)) — Hiris(Az,k/W(k))[l/p]'

Here the functor Mcs is defined in §4.4.1} and recall that Meyis(L) is a W (k)-lattice
in the W (k)[1/p]-vector space Deyis(L ® Q,), for any L € Repy,°. This integral
comparison isomorphism is proved in [Kisl(0, Thm. 1.4.2] (cf. [Kis17, Thm. 1.1.6]
for a correction in the normalization) for p > 2, and proved in [Kim12| Prop. 4.2]
for p= 2. An independent proof valid for all p is given by Lau [Laul4l LaulQ”ﬂ
Now since s o is Gal(Q,/F)-invariant, we have the ¢, W (;))—invariant ten-
sor Mms(sap;) over Meis(V,(Z)) by the functoriality of M. Under (5.2.2.1)),
Meris(s,, , ) corresponds to a ¢-invariant tensor s, ~ over H o (A /W (K)).
Note that H. (A, /W (k)) is canonically identified with
Heyio (Ao /W (k(2))) ®w 1i(ay) W (k)
It is shown in the proof of [Kisl10, Prop. 2.3.5] (cf. [Kis17, Prop. 1.3.9]) that s
in fact comes from a tensor s, on He . (As/W (k(z))) that depends only on

and not on the choices of F' and 7.
For any 71 € .Yk, (F,) we have a canonical identification (see
Vo(z1) = Hyi (Ao /W (E(2))) @w k(o)) DLy,
where z is the closed point of .7k, given by the image of z;. The tensor sq,0,, on
H.,.(A./W(k(x))) thus induces a tensor s,..,, on Vo(z1), for each o € . For
any y € Sk, (F,) mapping to 21 € Sk, (F,), we have Vo(y) = Vo(z1) by definition.
In this case we also write 54,0, for the tensor sq,0,2, on Vo(y).

a,0,z

Lemma 5.2.3. For each 1 € Yk, (F,), there exists a Z,"-module isomorphism
VZ*p ®z, Ly* = Vo(m1) which takes sq t0 Sa.0., for each a € a.

30T all these references, the integral comparison isomorphism is proved more generally for
p-divisible groups over Op. See the proof of [KMP16, Thm. 2.12] for a historical account of
the different proofs. The integral comparison is now known for arbitrary proper smooth formal
schemes (under a certain torsion-free assumption) by the work of Bhatt—Morrow—Scholze [BMS18|,
Thm. 14.6.3 (iii)].
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Proof. This is proved in [Kisl0, Cor. 1.3.4]. Below we recast the proof using the
formalism in Let = be the closed point of ¥k, induced by zi, and let
Z € Shg, (F) be a lift of  to some finite extension F/Q, as in §5.2.2] Fix an
isomorphism V7" = V,(Z) as in Lemma and use this isomorphism to view
Vg, as a Gal(@p /F)-representation. This Galois representation is crystalline, and
V7, is a Galois-stable lattice. Moreover, each tensor s, on V7 is Gal(Q,/F)-
invarijmt, since each s~ is invariant under p(Z) (see §-1.7). The action map
Gal(Q,/F) — GL(V7 )(Zp) thus factors through a G(Z,)-valued crystalline rep-

resentation p : Gal(Q,/F) — G(Z,). Let k be the residue field of F. By the
construction of s, 0, recalled in §5.2.2[and by Lemma we only need to find
a Zy'-module isomorphism

Mcris(VZ*p) ®W(k) Z;r s VZ*EY

which takes each M is(sa) to sq. For this, it suffices to find a W (k)-module
isomorphism

o.)pﬁo(VZ*p) L> V‘;[k/(k)
which takes each w, o(5q) t0 Sq. (See §4.4.2| for w,o.) For this it suffices to know
that w, ¢ is ®-isomorphic with Ly ;). This is indeed the case by the fact that G

satisfies KL (§4.4.4) and by Lemma [4.4.5] O

Lemma 5.2.4. For each v € Yk, (F,), there is an integral F-isocrystal with G-
structure

T, : Repy G — Isocqur,
P

together with an isomorphism vy : To(V7 ) = Vo(x) in Isocqu which takes Yo (sq)
P

t0 Sa,0,z for each o € a. Moreover, the pair (Yo, ) is unique up to unique iso-

morphism, in the same sense as in Lemma |4.2.5.

Proof. By Lemma, the object (D, pp) := Vo(x) in Isocur, together with the
tensors sq,0, on it, satisfies the hypotheses in with respect to the defining
datum (V7 , (sa)aca) for G. The lemma then follows from Lemma m O

Definition 5.2.5. For each z € 7k, (F,), we fix the choice of a pair (Y, ;) as in
Lemma once and for all. If y € Sk, (F,) maps to z, we also write (T, ¢,) for
(Yo, tg).

5.3. Kottwitz triples.

Definition 5.3.1. Let n € Z>;. Define T5 to be the set of triples (79,7, 9),
where 79 € G(Q), v = (M)ip € G(A}), and 0 € G(Qyn), satisfying the following
conditions:
(i) 7o is conjugate to v in G(A’}).
(ii) 7o is conjugate to do(d)--- o™ (0) in G(Q,).
(iii) the image of 7o in G(R) is elliptic over R.
5.3.2. Note that for n,t € Z>1, there is a natural map

T;tr — ‘Iittrv (’707 s 5) = (787 th, 5)
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We set
‘Istr

n

::gstr —

n

SE

1

where Z>; is a directed set under divisibility.
Let € = (0,7,0) € T5* for some n € Z>1. Recall from [KisIT, §4.3] that € gives
rise to the following objects:

e a Q-subgroup I of GG, defined to be the centralizer in G of a sufficiently
divisible power of ~q.

e a (Q;-subgroup I; of G for each finite places [ # p, defined to be the
centralizer in G of a sufficiently divisible power of ~;.

e a (Q,-algebraic group I, defined by

I,(R) = {g € G(Q} @q, R) | g~'d0(9) = 0}

for any Q,-algebra R. We shall view I, as a subfunctor of the functor
Resqur /g, (G) which sends every Qp-algebra R to the group G(Qp" ®q, R).
When t € Z>; is sufficiently divisible, we have

(5.3.2.1) I(R) = {g € G(Qpn ®q, R) | g~ 'd0(g) =6}
for any Q,-algebra.

For each finite place v, there is a natural equivalence class (see Definition
of inner twistings n, : Io g, ~ I,; see [Kisl7, §4.3.1]. The datum (Io, (Ly)v, (7v)v)
depends on & only through the image of £ in 5. In other words, we can attach
(Io, (I)vs (nv)wv) to any element of T

Definition 5.3.3. Let £ € T with associated datum (o, (1), (7y)v) as in §5.3.2)
A refinement of € is a tuple (I, g,¢ = (Ly)v), Where

e [ is a Q-group and ¢ is an inner twisting /, o I@.

e For each finite place v, ¢, is a Q,-isomorphism Ig, — I, such that ¢, o ¢

as an inner twisting between Q,-groups lies in the equivalence class 7, .
e (I/u(Zg))(R) is compact.

We denote by R the subset of T consisting of elements which admit refine-
ments. Elements of 8T° are called strict Kottwitz triples.

Definition 5.3.4. Two strict Kottwitz triples €, € KT are called equivalent
(resp. congruent), written as ¢ ~ ¥ (resp. £ = ¥), if there exist n € Z>; and
respective representatives (vo,7,9), (74,7, 0’) € T5 of &, ¥, satisfying the following
conditions.

e 7o and 7}, are conjugate in G(Q).
e 7y and 7' are conjugate in G(A%) (resp. v =7').
e § and ¢ are o-conjugate in G(Qpn) (resp. 6 = §').

5.3.5. Recall that A%} := A} x Q). Let g = (g7, 95) € G(A}) = G(AY) x G(Q}").
For each n € Z>1, we have a bijection

T — T (90,7:0) = (0, (97) 19", 9, 60 (gp))-

~

These maps for all n induce a bijection AT =5 AT, In this way we obtain a
right action of G(A}) on AT which descends to an action on AT /=.
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Definition 5.3.6. We denote the orbit space (RT*"/=)/G (Z,7) by RT. Elements
of RT are called Kottwitz triples. (This terminology agrees with [Kisl17].) The
equivalence relation ~ on AT descends to an equivalence relation on &%, still
denoted by ~.

Remark 5.3.7. The natural map £T°"/~ — &T/~ is a bijection.

5.3.8. We summarize the various definitions in the following diagram:

str __ 13 str str *
T B hgnn T" subset of refinable elts Rj; :> G(A‘f)
AT/~ ATV /= o))
J{l:l i

AT/~ 44— RT = (AT /=) /G(ZY7)

5.3.9. As in Definition we denote by SPD(G, X) the set of special point
data for (G, X). Let s = (T,4,h) be an element of SPD(G, X). By Lemma
(iii), T is a cuspidal torus.

Let pp, € X.(T') be the Hodge cocharacter of h. By Lemma we obtain from
the image of —uy, in X.(T)r, , a canonical R-equivalence class in T(Qpr)™°*. Let
O be an element of this equivalence class. Then for n sufficiently divisible, the
element

Yo.1.n = 670 (67) - 0" H(dr)

lies in T'(Q). Note that the triple

(5.3.9.1) (t(v0,7,n)s (((Y0,7,m) )1ps 3 (67))

is an element of . In fact, condition (iii) in Definition is satisfied since Tk is
elliptic in G, and the other two conditions are trivial. For n sufficiently divisible,
the image of (5.3.9.1)) under T8 — T is an element

t(s,07) = &(T, 4, h, 67) € T

which depends only on s and 7, not on n. By [Kisl7, Lem. 4.3.11], (s, o) lies in
AT C 3ot

Note that the ~-equivalence class of d7 is determined by s. If we o-conjugate dr
by an element of 7°(Z,") (or even T'(Q,")), the element vy, 7, remains unchanged
as long as n is sufficiently divisible. It follows that the image of £(s, d7) in KT/~ is
a well-defined invariant of s € SPD(G, X )ﬂ We denote this element of K%/~ by

£(s).

Definition 5.3.10. An equivalence class of Kottwitz triples in K%/~ is called
special, if it is of the form €(s) for some s € SPD.

3INote that the same cannot be said for the image of &(s, 67) in 8T = (AT /=) /G(Z3r). This
is because two elements of G(Qp") that are o-conjugate by an element of 7°(Zp") need not be
o-conjugate by an element of G(Z").
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5.4. Isogeny classes.

5.4.1. For each z € Sk, (F,), we write VP(z) for the stalk at z of (the pull-back
to Sk, of) VP. This is a finite free A?—module. For each a € o, we write S,47
for the tensor on VP(z) induced by the tensor Sa,h% ON VP,

Let z,2" € Sk, (Fp). Let R be a Q-algebra, and let
f € Hom(A,, Ay) QZp) R

be an R-isogeny. Then f induces an AIJ’C ®q R-linear isomorphism
fyvr : VP(2') ®g R — VP(z) ®q R,

since the two sides are identified with Hét(Amf,A?) ®g R and H}, (A, A%) @g R
respectively. Similarly, f induces a Q" ®q R-linear isomorphism
fVo . Vo (CL'/) ®Z;r Q;r ®Q R L) Vo(x) ®Z;r Q;r ®Q R.

We say that f preserves G-structures, if fy» takes Sa,AP o/ to Sa,A7 and fy, takes
Sa,0z' t0 Sa0. for each a € a. We denote by I, ,/(R) the set of all such f
preserving G-structures. The functor R — I, ,-(R) is represented by a Q-scheme
I, .. If © =2/, then we write I, for I, ., which is a Q-algebraic group. Two
points xz,x’ € pr(Fp) are said to be isogenous, if I, ,+(Q) # 0. This defines
an equivalence relation on ¥, (Fp), and the equivalence classes are called isogeny
classes.

Remark 5.4.2. We explain that the above definition of isogeny classes is equiva-
lent to the definition in [Kis17]. The perfect symplectic form on Vz  induces an

isomorphism ¢ : Vz = VZ*(p)7 from which we obtain an element
. —1 * * X
spol ==t ®@ ¢ € Hom(Vz,, V7 ) @ Hom(Vz Vg, ) C Vi,

Note that the scheme-theoretic stabilizer of s,o1 in the Zy-group scheme GL(VZ(p))
is precisely GSp(Vz,). By our maximality assumption on (s4)aca in Spol
is one of the s,. On A we have a canonical weak polarization (i.e., a Z(Xp)—orbit of
Z(p)-isogenies A — A" which can be represented by a polarization) arising from
the moduli interpretation of prK’l" See [Kisl7, §1.3.4] for details. This weak
polarization induces an isomorphism j : VP =5 (VP)*, which is well defined up to
(Afc) X, We can then form the tensor 7®7~! on VP, which is well defined on the nose.
Recall that s, AT is defined to be LP(sp01) via the identification 1) Since
the level structure on the tower of Siegel Shimura varieties yLnKp ’k,Kr respects
weak polarizations, we have Spola? = ] ® 57t Tt follows that each f € I, . (Q)
necessarily respects the canonical weak polarizations on A, and A,,. Thus x and
a2’ are isogenous in our sense if and only if they satisfy the conditions in [KisI7,
Prop. 1.4.15]. By that proposition, our definition of isogeny classes is equivalent to
the definition in [Kis17, §1.4.14]. In particular, each isogeny class is stable under
the G(A%})-action on Z, (Fp).

5.5. Connected components.

5.5.1. Recall that G(Q);+ denotes G(Q) N G(R)4, where G(R) is the preimage
of G*(R)* in G(R). As in [KisI7, Lem. 3.6.2], we set

m(G) = GQ)F\G(Af)/Kp,
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where G(Q)} denotes the closure of G(Q)4 in G(Ay). Since K, is compact, the
projection G(Ay) — G(Ay)/K, is a closed map. Hence the image of G(Q)7 in
G(Ay)/Kp is closed. It easily follows that we have canonical isomorphisms

(5:511)  w(G) = lm GQT\G(A)/K,K? = lim G(Q)+\G(Af) /K, K,
Kr Kp

where KP runs through compact open subgroups of G’(A’]’p).

Lemma 5.5.2. The set w(G) has the natural structure of an abelian group. The
natural map G(AI;) — w(Q) is a surjective group homomorphism.

Proof. By strong approximation (see [Del79, §2.5.1]), G(Q)7 contains the image of
Gsc(Af) — G(Ay). Since this image is a normal subgroup of G(Ay) with abelian
quotient (see [Del79, §2.0.2]), we see that 7(G) is naturally an abelian group. The
second statement follows from [Kis10, Lem. 2.2.6] (which uses that K, is hyperspe-
cial). O

Lemma 5.5.3. The subgroup G(Q)y of G(Ay) is generated by G(Q)4 and the
image of Gsc(Ay) = G(Ay).

Proof. Write @ for the image of Gs.(Af) — G(Af). We first show that G(Q)Q
is closed in G(As). The proof is similar to the argument in [Del79, §2.0.15]. By
Lemma G is a cuspidal torus. By Lemma G**(Q) is discrete in
G*P(Ay). Tt follows that Gae(Q)Q is an open subgroup of G(Q)Q. On the other
hand, by [Del79, Cor. 2.0.8], Gaer(Q)Q is closed in Gaer(Af). Hence G(Q)Q is
indeed closed in G(Ay) (as it is locally closed).

Consequently, G(Q); C G(Q)Q. Now by strong approximation applied to G
and by the connectedness of G (R) (Cartan’s theorem), we know that Q@ C G(Q)7 .
Thus we have reduced the proof of the lemma to showing that

GQNGQ5 CcGQ)y

Let ¢ € G(Q) N G(Q)]. By [Del79, Cor. 2.0.7], there exists an open subgroup
U of G(Ay) such that U N G(Q) C G(R)". Since g € G(Q)7, there exists ¢’ €
gUNG(Q)y. Then g7l¢’ € UNG(Q) C G(R)T, and so g € ¢G(R)T. Since
g € G(Q) and ¢’ € G(Q) 4, we conclude that g € G(Q) as desired. O

5.5.4. Now consider the set (cf. [Del79, §2.1.3])
#(G, X) 1= lim mo(Shi, i (C)) = lim GQ)\ (mol(X) x G(Ay)/K7E,),
Kp

Kp
where K? runs through compact open subgroups of G(A’}). There is a natural map
mo(X) — 7(G, X), induced by

m0(X) — mo(X) x G(Af), Cr— (C,1).
This allows us to speak of the image of an element of X or m(X) inside 7(G

, X
By .5.5.1.1 we see that 7(G, X) is a 7w(G)-torsor. We have a natural G(A?
equivariant map

).
)_

pr (FP) — 7T(GV7 X>7

defined as the inverse limit of the natural maps

prK:D(Fp) — FO(prKPﬁp) = Wo(SthKp ((C))



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 137

In particular, for each isogeny class .# in .k, (Fp) (see *) we have a natural
G(A%)-equivariant map

¢y I — (G, X).
By the G(A%)-equivariance and Lemma the above map is surjective.

In the following definition, recall that A% := A? x Q"

Definition 5.5.5. We set 7*(G) := G(Q)+\G(A})/G(Z)")Gaer(A}). This is nat-
urally an abelian group, and is a quotient group of the subgroup G(A}) / Gder(A})
of G (A%).

5.5.6. By Lemma [5.5.3 the natural inclusion map G(Ay) — G(A}) induces a
group homomorphism 7(G) — 7*(G). We define the 7*(G)-torsor 7*(G, X) to be
the push-out of the 7(G)-torsor 7(G, X) along 7(G) — #*(G). Thus we have a
canonical map 7(G,X) — 7*(G,X), and we shall use this map to speak of the
image of an element of X or my(X) inside 7*(G, X).

5.6. Uniformization on the geometric side.

Definition 5.6.1. Let .# be a small connected groupoid category, i.e., a small cat-
egory where all morphisms are isomorphisms and all objects are isomorphic. Let H
be a group. By a right H-torsor over ., we mean a functor from .# to the category
of right H-torsors. Let Y be such a functor, and let # be an object in .. Then
Aut(x) naturally acts (on the left) on Y (x) via H-equivariant automorphisms, and
the right H-set Aut(z)\Y (z) is independent of z up to canonical H-isomorphism.
We denote this right H-set by Y (.#).

5.6.2. For z € Yk, (F)), let
Y(z) :=Yp(z) x YP(x),
where Y}, () is the right G(Q,")-torsor Y (T,), and Y?(x) is the right G(Afc)—torsor
consisting of A?—module isomorphisms V5 =5 VP(z) taking s, to Sa,47.z for each
s
a € a. Thus Y(z) is a right G(A})-torsor. In fact, by Lemma|5.1.9) Y?(z) has a
canonical trivialization.

The set Y,(z) can be interpreted without reference to Y, as follows. Recall
from Definition that we have a canonical isomorphism ¢, : T4 (V7 ) = Vo(z)
taking Y, (sq) t0 Sa,0,-- Now each element of Y(T,) gives rise to an isomorphism
V@f};r = T2 [1/p)(V7)) taking sq to To(sa). Composing this with ¢,[1/p], we obtain
an isomorphism V.. = Vo(x)[1/p] taking s, to S40.- In this way, Y(T,) is in
canonical bijection with the set of Qp'-linear isomorphisms V.. = Vo(x)[1/p) tak-

P
ing s, t0 S4,0,2- The G(Qp")-action on the latter set is given by the G(Q}")-action
on Vgu. Note that under this bijection, the subset Y (Y;)° C Y(Y,) corresponds
to those isomorphisms V.. =5 Vo(x)[1/p] that take s, t0 Su0. and map Vi to
Vo (x)

Now let y = (yp, y?) € Y(z). Let n € Z>1 be sufficiently divisible such that the
image of x in .k, (F,,) comes from a Fpn-rational point z,, (and Fpn D Op ,/p). We
then have the p"-Frobenius acting on VP(z) = H} (A & , A%), which fixes Sa, A%z

for all @ € a. Via y? : V5, = VP(z), this automorphism of VP(z) corresponds
s
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to an automorphism of V5, fixing all s,, namely an element v, € G(A?). On
¥

the other hand, attached to the element y, € Y,(z) = Y (Y,) we have the element

by, € G(Qy') as in 5 More concretely, y, gives rise to an isomorphism Vd‘gr =

Vo(z)[1/p] as in the above paragraph, and the Frobenius acting on the right hand

side corresponds to d,,0 acting on the left hand side.

It is shown in [Kis17) §2.3] that up to replacing n by a multiple, the pair (v,,d)
extends to an element (Yo.,,Vn,0) € T3 whose image in T lies in AT, The
image of (Y01, Vn,d) in K™ /= depends only on y and not on the choices of n and
Yo0,n. Thus we have obtained a map

(5.6.2.1) Y(r) — AT /=,y E(y).

This map is easily seen to be G/(A%)-equivariant. (See §5.3.5|for the right G(A%})-
action on AT /=.)

5.6.3. Now let . C .7k, (IF,) be an isogeny class. We view .# as a small groupoid,
where the set of morphisms between = and 2’ € .# is given by I, ,(Q) defined in
§5.4] Then .# is a connected groupoid category. For each f € I, ,(Q), we have

isomorphisms fy» : VP(z') = VP(x) and fy, : Vo(2')[1/p] = Vo(z)[1/p] as in
By definition, fy» takes Sa,h7 a! to Sa,A7 and so it induces a G(A’;)—equivariant
bijection

YP(f): YP(x) = YP(2).
Similarly, fy, takes 4,04 t0 Sq.0.2, and so it induces an isomorphism Y. [1/p] =
Y./[1/p] by Lemma By functoriality, this then induces a G(Q")-equivariant
bijection

Y, (f) : Yp(z) = Yy,(2').
We define Y'(f) to be the bijection

(Yo (), YP(f)) : Y(2) — Y ().

The associations .# > z — Y (z) and I, ,»(Q) > f — Y (f) define a functor from .&
to the category of right G(A})—torsors. In other words, we have obtained a right
G(A})-torsor Y over .# in the sense of Definition As in that definition, we

obtain a right G(A})-set Y (.#), together with canonical isomorphisms
(5.6.3.1) L(Q)\Y(z) = Y ()

forall z € 7.

For z,2' € % and f € I,.,(Q), we claim that the bijection Y (f) : Y(z) =
Y (z') commutes with the maps Y (z) — A% /= and Y(2/) — AT /= as in
. In fact, since Y,(f) : Y(T;) — Y (Y,) is induced by an isomorphism
T.[1/p] = Yo [1/p], it commutes with the maps Y,(z) — G(Qy),y — §, and
Yy (2') = G(QpF),y + dy in For sufficiently divisible n, the isogeny f is
defined over Fyn, and so the element v, € G(A%}) attached to any y € Y?(x) is

equal to its counterpart attached to Y?(f)(y) € YP(2'). Our claim follows.
It follows that for each x € .#, the map Y (z) — A% /= descends to a map

L(Q)\Y(z) — 8T /=,



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 139

which is independent of x if we identify the left hand side with Y (.#) as in (5.6.3.1)).
Hence we have obtained a canonical map
(5.6.3.2) Y(I) — BT /=, 5 E(y).

For z € .4 and y € Y (), the left I,(Q)-action on the right G((A})-torsor Y (z)
gives rise to a homomorphism
(5.6.3.3) by 1:(Q) — G(A})
defined by

Jy=y-wl), Viel(Q).

Thus we have a map ¢y, : I;(Q) - G(Q,) for each prime v # p, and a map ¢, :
I,(Q) — G(Qp"). These maps have the following extra structures, by the results in

[Kisi7, §2.3]. Let £(y) € AT be a representative of the image of £(y) € KT /=.
Let (1o, (Iy)vs (My)s) be the datum attached to € as in §5.3.20 For each prime v # p,

the map ¢y, comes from an isomorphism of Q,-groups I; g, = I,, which we
still denote by ¢y ,. Also, the map ¢y, comes from an isomorphism of Q,-groups
I, — I, which we still denote by ¢, ,. (Here recall that 1,(Q,) C G(Q,) for

v # pand I,(Q,) C G(Q)).) In particular, the map (5.6.3.3) is injective. Moreover,

the isomorphisms ¢, , for all primes v can be extended to a refinement of E(y) of the
form (I, 0, (ty,w)v). (See Definition for the notion of a refinement.) This in
particular implies that I, is a reductive group over Q such that I, r is anisotropic
mod center.

5.6.4. Let .¥ C .7k, (IF,) be an isogeny class. Set
T =Y(I)/G(Z).

Then we have a natural right G(A]J’c)—action on #*. Tt is immediate that the map
(5.6.3.2) induces a map

(5.6.4.1) IT— BT = (ﬁ‘IS“/E)/Q(ZEr).

For each x € .7, inside
Y(2)/G(Z,)") = (Y(Ya2)/G(Zy7)) x G(AR)

we have a canonical base point, whose first coordinate is given by the image of
the G(Zy")-torsor Y(Y,;)° C Y(Y;), and whose second coordinate is 1 € G(A}).
This base point determines an element z* of . = [, (Q)\Y (2)/G(Z}") (where the
canonical isomorphism is induced by (5.6.3.1))). Sending = to x*, we have obtained

a map

(5.6.4.2) I — I,

By [Kis17, Prop. 2.1.3], the map (5.6.4.2)) is injective and G(A?)—equivariant. The

image of (5.6.4.2)) is described as follows. As in §2.4.1] we choose pux € px(Ey)
such that px extends to a cocharacter of Go, , over Op . Let

v =o0(-px)
Let z € .#. Recall from Definition that inside Y' () we have the G(Z,")-stable
subset Y,,(Y;), and that we denote the quotient Y, (Y.)/G(Z)") by X, (T.). The
subset G(Z,")p*G(Z,") C G(Q}") depends on v only via its G(Z,")-conjugacy class,
and the latter is independent of the choice of px. Hence Y, (T;) and X, (Y,) are
independent of the choice of px (cf. the independence of px in . Moreover,
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if #' is another element of # and if f € I, ,/(Q), we have seen in that
the isomorphism Y,(f) : Y(Y,) = Y(Y,/) commutes with the maps Y (Y,) —
G(Qp),y = 6y and Y(Yur) — G(Q}),y + 6,. It follows that Y,(f) induces a
bijection Y, (Y,) = Y, (Y, ). Therefore inside Y (.#) we have a canonical subset
of the form

V() 2 L(Q\Yo(T2) x Y7(x),

which is independent of the choice of x.

Proposition 5.6.5. The image of is equal to the image of Y (#)% under
the projection Y (%) — 7*.

Proof. By [KislT7, §1.4.1], we have
(5.6.5.1) Y(T,)° CY,(T,), Voxes.

It follows that the image of (5.6.4.2)) is contained in Y (.#)%. The reverse contain-
ment follows from the definition of isogeny classes in [Kis17, §1.4.14], which we have
seen is equivalent to our definition (see §5.4)). O

Remark 5.6.6. Keep the setting of §5.6.4] From Proposition [5.6.5] we see that the
choice of an element = € .# gives rise to a bijection

L(Q\X,(Y,) x YP(2) = 7.
As explained in Remark if we choose y € Y,,(T,), then X, (Y,) is identified
with the affine Deligne-Lusztig set X,,(d,). The natural action of I,(Q) on X, (Y,)
corresponds to the natural action of ¢, ;,(1;(Q)) on X, (). (Recall from §5.6.3|that
typ(1z(Qp)) is the o-centralizer of §, in G(Q}"). This group acts on X,,(d) by left
multiplication). Similarly, under the canonical identification Y”(z) = G(A%), the

natural action of I,(Q) on X, (T,) x YP(z) corresponds to the left-multiplication
action of ¢, (I, (Q)) on X,(d,) x G(A%). Thus we obtain a bijection

(5.6.6.1) L (LQN\X,(5,) x G(AR) 5 7

associated with the choices of z and y. This bijection is the same as the map [Kis17,
(2.1.4)].

5.6.7. We summarize the various constructions in the following commutative di-
agram.

L(Q\Yy(2) x YP(2) ——— L(Q)\Y ()

Vee s | = Vxe# | 22,(5.6.3.1)
Y ()i V(r) B2 gasu )
quot. by G(Z) auot. by G(Z) auot. by G(Z)
o Foi2) s EoiD) e
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5.6.8. It follows from the Cartan decomposition that the Kottwitz homomorphism
wg : G(Qp) — m1(G) induces a bijection

G(Q)/Gse(@)G(Zy7) — m(G)
and an injection

G(Qp)/Gse(Qp)G(Zp) — m (G)Fp =m(G)7.
By [Kot97, §7.7] (cf. [Kis17, Lem. 1.2.3]), the above injection is also a bijection. It
follows that the natural map

G(Qp)/Gse(Qp)G(Zp) — G(Q)")/Gse(QT)G(Zy")
is injective, and that its image is precisely the preimage of 71 (G)? in
G(Q)")/Gse(QN)G(Z").-

From this observation, we see that each element r, € G(Q}") satisfying wg(rp) €
71(G)7 uniquely determines an element 7, € G(Qp)/Gsc(Qp)G(Zy).

Lemma 5.6.9. Let . C Y, (F,) be an isogeny class. Lety € Y (). Let r =
(rP,rp) € G(Aj) = G(A}) x G(Qy), and let y' = yr € Y (F). Assume that both y
and y' lie in Y (F)8. Then the following statements hold.

(i) The element r, € G(Q}T) satisfies wa(ry) € m(G)7. In particular,

determines an element r, € G(Qp)/Gsc(Qp)G(Zy) as in , By Lemma
the image of (rP,r)) in w(Q) is well defined. We denote this image

Tp
by ’I"ﬂ.(G) .
(i) The images of y and y' under the composite map
Y () — 7 25 1(G, X)

differ by the element rr(q) € 7(G) in part (i). More precisely, c4(y') =

cr(y) - Tr(G)-
Proof. Since (5.6.4.2) is G(Afc)—equivariant, so is the map Y (.£)% — .#. The map
cs is also G(A})-equivariant. The proof is thus reduced to the case r¥ = 1. In the

following we assume r? = 1, and write r for r,.
Let x € .# be the image of y. Then under the identification

Y (5) = L(Q\Y,(2) x YP(2) = L(Q\Y (Ts) x G(A}),

the element y is represented by (y,1) € Y/(Y;) x G(A%) with y, € Y/(Y;)°. The
element y’ is represented by (y,r, 1).

Let § = d,, € G(Q}F). Let v be as in §5.6.4 By (5.6.5.1), we have y, € Y,,(T4).
Since y' € ‘Y(ﬂ)h, we also have y,r € Y, (Y;) by the discussion in As
in Remark @ we have an identification X, (Y,) = Y,(T4)/G(Zy") = X, (6),
under which the image of y, (resp. y,7) in X, (Y;) corresponds to the element
G(Zy) (resp. rG(ZyT)) of G(QpF)/G(ZyT). Clearly all elements of X, (d) have the

same image under the composite map
G(Q™)/G(ZE) 2S5 m1(G) 5 m(G).

Since G(Z,") and rG(Z,") both lie in X, (), statement (i) follows.
Let C' denote the composite map

L(Q\X,(T,) x G(A}) = 7 =5 7(G, X).

z>(z,1)

Xo(0) 2 X, (Ts)
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We are left to show that C(r) and C(1) differ by rr(q).
We follow [Kis17, §§1.2-1.4] closely. Let ¢ be the p-divisible group A, [p] over
F,. By [Kisl17, §1.2.16, Lem. 1.2.18], for any finite extension K/Qp and any gZp-

adapted lifting G of 9 to Ok, there is an associated map (which is denoted by
g~ go in loc. cit.)

f§3 G(Qp)/G(Zp) — Xu(9).
In fact, in the language of the choice of & gives rise to an element [p(g] €
Crysg, and the map f by definition sends each A € G(Q,)/G(Z,) to the element
Ao € G(Q})/G(Zy") associated with [p] and A as in §4.4.14
By [KislT, Prop. 1.2.23], we can choose & such that the composite map

G(Q)/6(Zy) 5 X, (5) — m0(X0(0)

is surjective. Here mo(X,(9)) is the set of connected components of the affine
Deligne-Lusztig set X, (0), defined in [CKV15| (cf. [Kisl7, §1.2]). We fix such
a choice of ¢, and choose g € G(Qp) such that f(g) lies in the same connected
component of X,,(6) as r. In what follows we write go for f(g) € X, ().

By [KislT, Cor. 1.4.12], we have

C(g0) = C(1) - g.

Here on the right hand side we again write ¢ for the natural image of g € G(Q,) in
7*(G). Thus we are left to show that

C(r)=Clg0) - 9" "Tr(c)-
Since r and go lie in the same connected component of X, (8), we have C(r) =
C(go)lﬂ Hence it suffices to show that the image of g in 7(G) is equal to ry(q).
For this, it suffices to show that wg(g) = we(r).
The fact that r and go lie in the same connected component of X, () implies
that wa(r) = wa(go), in view of [CKV15, Lem. 2.3.6]. By [Kisl7, Lem. 1.2.18] or
Proposition [{.4.15] we have we(go) = we(g). Hence we(g) = we(r) as desired. O

Proposition 5.6.10. Let % C Lk, (F,) be an isogeny class. There is a unique
map

¢y I — 1" (G, X)
such that the diagram

O xS

(G, X) — 7*(G, X)

commutes, and such that the composite

V(7)) = 7 52 14(G, X)

321 fact, if one modifies the setting of [Kis17, §1.4.10] by replacing the integral model of the
Shimura variety with a connected component of the geometric special fiber, then exactly the same
argument there shows that the map X, (6) & X, (Ts) — Iz (Q)\Xov(Ts) X G(A’;) =~ 7 sends each

connected component of X, (§) into one fiber of ¢ g.
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is G(A})-equivariant. Here G(A}) acts on (G, X) via the natural homomorphism
G(A}) — 7(G).

Proof. We have Y (.#)%- G(QW) = Y (.#), from which the uniqueness of c%, follows.
To show the existence, we fix x € #. The choice of = gives an identification
L(Q)\Y(z) =2 Y(#). As discussed in §5.6.3, the left action of I,(Q) on Y (x)
can be reconstructed as the composition of the inversion map I,(Q) — I.(Q),
the embedding ¢y : I;(Q) — G(A}) (see (]m[)), and the right multiplication

of G(A}) on itself. By Lemma 5.6.9L the composed homomorphism I, (Q) %
G(A}) — m*(G) is trivial. By this fact and by Lemma we know that the map

Y(#)F — 7%(G, X), obtained as the composition of the map Y (.#)% — 7(G, X)
considered in Lemma and the natural map 7(G,X) — 7*(G, X), extends
to a G(A})-equivariant map ¢ : Y () — 7*(G,X). Now c necessarily factors
through the projection Y (%) — #* = Y(f)/Q(Z]‘;r), because G(Z,") acts trivially
on (G, X). This finishes the proof. O

5.7. Special points on the geometric side.

5.7.1. Let s = (T,i,h) € SPD(G, X) be a special point datum. From s we can
produce a canonical element
zs € Sk, (Fp)
as follows. For each neat compact open subgroup K C G(Ay), the subgroup
i1 (K) C T(Ay) is neat compact open. We have the Shimura variety Sh;—1(x)(T, h),
which is a zero-dimensional E(T, h)-scheme. We write Shy (7', h) for Sh;-1(g) (T, h),
while we still write Shx for Shi (G, X). We write u for the Hodge cocharacter
pn € X (T) associated with h. The reflex field of the Shimura datum (7', ) is by
definition the field of definition of 1, and we shall denote it by E,, C C in accordance
with the notation in §4.3.13|
We have E C E,. Let K? € J#P. The morphism i : (T, h) — (G, X) between
Shimura data induces an F,-scheme morphism

(5.7.1.1) SthKp(T, h) — SthKp XSpec E SpeCEM.

For each neat compact open subgroup U C T(Aj) we have the finite abelian

extension F, y/E, as defined in §4.3.13] By the explicit description in §1.5.3]
of the Shimura varieties associated with (7', h), we know that all geometric con-

nected components of the E,,-scheme Shg, g» (7', h) have the same field of definition
E,i-1(k,k»)- To simplify notation, we write Es x» for E, -1k, k»). The restric-
tion of (5.7.1.1) to the neutral geometric connected component, namely the one
corresponding to the neutral C-point

1 € Shi, 10 (T, 1) (C) = TQ\T (A ) /i~ (K,K?),
gives rise to an E-scheme morphism
Ts kv 1 Spec Bg gr — Shg kv .
Let F; g» be the topological closure of Eg g» inside @p (with respect to the
fixed embedding Es xr — Q < Q,). We thus have a tower of field extensions

(Fs,xr)Kkrexr, and we let Fy be the union of these fields. Note that for every place
w of E,, above p, the kernel of the map

OF . — EX\AE, TQ\T(As) = TQ\T(Af)/i~ (K, K?)
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is independent of KP, which follows easily from the discreteness of T(Q) in T'(Ay)
(by Lemma and Lemma (iii)) and the neatness of i ~*(KP). This implies
that the transition maps in the tower (Fs x»)krezr are unramified field extensions.
In particular, OF, is a regular local ring.

The morphisms Zs gr are compatible when K? varies in J£P, so they give rise
to a morphism of E,-schemes
(5.7.1.2) Spec Fs = 1&1 Spec Fs kv — Sk, B, -

Krex'p

Since O, is a regular local ring, the extension property of .7, implies that
extends to a unique Og p-morphism Spec O, — k. Passing to the special fiber

we obtain a point B
Tg € pr (]Fp)

5.7.2. Keep the setting and notation of We write K; for K,K! as in
5 Fix s € SPD(G, X). To simplify notation, we write F' for F, kv, and write
Z € Shg, (F') for the point induced by Zs kr. We also simply write z for z5. By
construction, the image of = in .%k, is the specialization of .

We write Vg (%) for the stalk of Vg g at Z, viewed as a point in Shg, (C). Thus
Vp.o(T) & HE(A;((C),Q). For each a € a, we write s, ~ for the tensor over
Vp,0(Z) induced by the tensor s, 5, over Vg g (see §5.1.5)).

Since ¥ comes from the neutral point 1 € Shg, (T, h)(C), there is a canonical
@-linear isomorphism

trivs : Vg — Vp,o(2).
This satisfies the following properties:

(i) trivs takes s, to 545,05 for each a € a.

(if) trive restricts to a Z,)-module isomorphism V; = H}B(A;(C), Zp)).-

(iii) We view Vg (%) as a faithful representation of T' via trivs and the rep-
resentation T % G — GL(Vg). Then the action of the Mumford-Tate
group of A~ on Vp o(7) is via an embedding into 7". The Hodge structure
on Vg o(Z) is given by h : S — Tk.

Using the comparison isomorphisms, we obtain from trivs canonical isomor-
phisms

trivg, : V) =V, (2),
trivsAzf) : Vg;; = VP(xs).
We use these isomorphisms to define a Tg, -representation on V,(z)[1/p] and a
TAi-representation on VP(z). The isomorphism triv, , induces an isomorphism

(5.7.2.1) GG

which lies in the canonical G(Z,,)-conjugacy class of such isomorphisms as in Lemma
5.1.8f (Here G~ is defined as in ) The isomorphism triv,, AP coincides with
the stalk at = of the canonical isomorphism in Lemma [5.1.9

Since the Mumford-Tate group of A~ is contained in 7', we know that A~ has
complex multiplication by some CM field H, and that the action of H* on Vg (%)
induces embeddings of Q-algebraic groups

T — RESH/Q Gm — GL(VB’Q(f))
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In particular, we have a canonical embedding of T into the Q-algebraic group of
self-isogenies of A,. This embedding factors through I, since the action of T' on

Vi o(7) fixes s 05 for all & € a. Thus we have a canonical embedding

(5.7.2.2) T < I,.

5.7.3. Keep the setting and notation of §5.7.1]and §5.7.2]
Analogous to the functor (5.1.4.1)), we have a faithful exact ®-functor

" : Repg, T — Lisseq, (Shx, (T, ).

Analogous to ((5.1.5.2)), we have a canonical isomorphism between the pull-back to
Shi, (T, h)E of V), ®z, Q, and (the pull-back of) L'(Vg ). In particular, we have a

canonical Gal(Q,/F)-equivariant Q,-linear isomorphism
(5.73.1) Vo(@)[1/p] 2 L (V3,)(®),
where the right hand side denotes the stalk of L'(V ) at 2 viewed as a Q,-point of

Shg, (T, h). Using (5.7.3.1)), for each T, -invariant tensor 5 € (V@p)@’, we obtain
(@)[1

a tensor vy~ over Vp |/p] induced by the tensor L'(rs) over L'(Vg,)- 1t is not

hard to see that the isomorphism
trive p[1/p] : Vg, = V,(7)[1/p]
~. It follows that the image of the embedding
Ty, — GL(V,(2)[1/p])

takes each 5 to 7,

coincides with the stabilizer of all spa D particular, the Gal(Q,/F)-action on
Vp(Z)[1/p] is via a homomorphism

P(T,h) - Gal(@p/F) — T(Qp)

We now give an explicit description of p(p ). Let p = pp € X.(T), and let U =
i~1(Ky) C T(A%). As in §4.3.13) we have the field £, v,,, and the homomorphism

(1) U,p,loc Gal(@p/Eu,U,v) — T(Qp).

Note that E, ., C F. The homomorphism pr ) is equal to the restriction of

r(1)Uploc to Gal(Q,/F). This fact is just another way to look at the Shimura—
Taniyama reciprocity law, and it easily follows from the explicit description of the
tower of Shimura varieties attached to (T, h) as in Also cf. [Pin92al, §(5.5)].

Note that the hypothesis on U in Proposition [£.3.14] is satisfied in the current
situation. By that proposition and by the above discussion, we know that p(z ) is

crystalline, and that the element [p(p 1)) € Crysp, is equal to ///T_l(—,uh) € Motyp.
p

5.7.4. Keep the setting and notation of § 5.7.3} From [p(rp)] € CrysTQp, we
obtain an element [i o p(7,] € CrysGQ . Denote by 7° the connected Néron model
P

of Ty, over Z,. Applying §4.5.1{to [p] = [i o p(r,n)] and [pr] = [p(7,n)], We obtain
Yo, € T°—Isoc(am- and T[iOp(T,h)] € Q—Isoc(aur. To simplify notation we denote

them by T (7 ;) and T, respectively. As in we have a natural injection from
the T'(Qp")-torsor Y (Y (7 1)) to the G(Qp")-torsor Y (Ys).

As before we write 2 for the point 2, € Sk, (F,). We have a canonical isomor-
phism Y4 = YT,, which we now explain.
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Letting Gal(Q,/F) act on Vg via

Gal(@,/F) "™ T(Qp) - G(Qp) — GL(VE,),

we have a canonical Gal(Q,/F)-equivariant isomorphism Vg, = Vp(2)[1/p] induced
by trivs . Since this isomorphism takes VZ*,, to Vp(Z), it induces an isomorphism
of integral F-isocrystals

(5.7.4.1) Ts(Vz) = Meis(Vp(T)) Q0 Ly

where Fj denotes the maximal unramified extension of @, in F' as usual. The
isomorphism takes the tensor Y4(s,) over the left hand side to the tensor
Mcris(sa,p,;) over the right hand side, since triv,, takes s, to Sopa Now the
right hand side of (5.7.4.1) is identified with Vy(z) via the integral comparison
isomorphism 1} and under this identification Sops is identified with s4,0.4
by the discussion in §5.2.2 Hence we obtain a canonical isomorphism of integral
F-isocrystals

(5.7.4.2) Ts(Vz) — Vo(),

which takes Ts(sq) t0 Sa,0,5 for all @ € a. It then follows from Lemma that
there is a unique isomorphism

(5.7.4.3) Ty — T,

in g-ISOC(ED;r taking the isomorphism ([5.7.4.2)) to the isomorphism ¢, : Tz(vz*,,) =
Vo(x)

Via (5.7.4.3), we have a canonical isomorphism Y (Ys) & Y(Y,). Composing
this with the canonical injection Y (Y(75)) < Y (Ts), we obtain an injection
(5.7.4.4) Y(T(rn) = Y(Ta).

Recall from §5.6.2| that Y (z) = Y,(z) x Y?(x), where Y,(z) = Y(Y,), and Y?(z)
is canonically identified with G(Afc). We write 1 for the canonical base point of
YP(x).

Recall from §4.2.5that inside the T'(Qp")-torsor Y (Y (z,4)) we have the subset of
integral points Y (Y (7,)°, which is a T°(Z}")-torsor.

Definition 5.7.5. Let s € SPD(G, X), and let x = x, € Sk, (). Let y, € Yy (x)

be an element of the image of Y (Y 5))° under (5.7.4.4)), and let y = (y,,1) € Y (x).
We call y an integral special poz’n@ associated with s.

In the next proposition we prove fundamental properties of integral special
points.

Proposition 5.7.6. Let x = z, and let y = (yp,1) € Y(x) be an integral special
point as in Definition[5.7.5. The following statements hold.

(i) Let 6, be the image of y, under the map Y (Y (rny) — T(QpF), 2 = 4. as

in . Then 6, lies in T(Q;r)mOt, and the ~-equivalence class of dy,

corresponds to the image of —pp, in X.(T)r, ,under the bijection .

33The images of the integral special points under Y (z) — #*, where .7 is the isogeny class of
x, are called “integral special points” in the Introduction.
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(it) By (i), the element §,, satisfies the assumptions on o in . By the
construction in we obtain an element €(s,d, ) € AT, The image
t(y) of y under the map Y (x) — AT /= as in is equal to the
image of £(s, ).

(iii) Let . be the isogeny class of x. The image of y under the composite map

Y (@) > LQ\Y (2)/G(Z2) = 5% 25 7*(G, X)

is equal to the image of ioh € X in n*(G, X). (See Proposition|5.6.10 for
)

Proof. We have seen in that [perp)] = M5 (—pn) € Motp. Statement (i)
follows from this fact and Corollary

For (ii), tracing the definitions we see that the d-component of €(y) is i(d,, ).
By the Shimura—Taniyama reciprocity law, for sufficiently divisible n the geometric
p"-Frobenius in I,(Q) is given by an element of T(Q), if we view T as a Q-subgroup

of I, as in (5.7.2.2)). This element has to be v,r, introduced in §5.3.9] (Recall
that o, depends only on (T, h) and n.) Now the composition

Ty B 1, 4 - GLOT (@) = GL(VE),

where the last isomorphism is induced by triv, A2 Vi = VP(x), is equal to the
¥

base change to AIJZ of i : T'— G. Hence the y-component of ¢(y) is represented by
i(v0,7.n) at level n. Statement (ii) follows.

For (iii), let y,, be an element of Y(T)° C Y/(T;) = Y, (z), and set y' := (y,,, 1) €
Y, (x) xYP(z) = Y (z). Then the image of y' in #* is equal to the image of z under
the canonical injection .# < .#*. See for details. By the construction of
T =g in for each K? € P the image of z in Sk, x» (F}) is the reduction
of a point of Shg, k» whose induced C-point is the image of (ioh,1) € X x G(Ay).
Hence z and i o h € X have the same image in (G, X) (cf. §5.5.4), and a fortiori
they have the same image in 7*(G, X). Therefore we only need find y’ as above
such that y and 3’ have the same image in 7*(G, X). By the second statement in
Proposition we can find y;, such that it lies in the Gae, (Q}")-orbit of y,. But
then y and y" have the same image in 7*(G, X), since the map Y (z) — 7*(G, X)
in question is G(A})-equivariant, and since the G(A})-action on 7*(G, X) restricts
to the trivial action of Gger (A;‘c) O

5.7.7. Let x € Sk, (E,), and let 7" be a maximal torus in the Q-reductive group
I,.. For each pu € X, (T), we define i’% € X,(T) as in (with respect to the
Qp-torus Ty, ).

Let y € Y(x). Then we have a Qp-isomorphism ¢, : I g, — I, where I, C
Resqur /g, G is the reductive group over Q, associated with &(y) € AT, Let 4,
be the §-component of £(y), and let v, be the Newton cocharacter of J, € G(Q}")
Then vs, can be viewed as a central fractional cocharacter of I, g, via ty . In
particular we can view vs, as an element of X, (7T") ® Q. We say that a cocharacter
€ X (T) is x-admissible, if the composition

I3 Ly,p
(5771) Gm,@p — T@p — I¢7@p — Ip’@p — G@p
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lies in px (Q,), and if s = vs, as elements of X, (7T') ® Q. Here the map Iz —
G@p is induced by the map (RGSQ;r /Q G)@P — G@p induced by the inclusion Q" <
@p. It is straightforward to check that the definition of z-admissible cocharacters

is independent of the choice of y. (Note the analogy between this definition and the
definition in §3.3.8]) The following theorem is the geometric analogue of Theorem

Theorem 5.7.8. Let v € Yk, (Fp), and let T be a mazimal torus in I, defined
over Q. The following statements hold.

(i) There exists p € X.(T) that is x-admissible.
(ii) Let u € X.(T) be an x-admissible cocharacter. Then there exists a special
point datum of the form s = (T, i, h) satisfying the following conditions:

(a) = pin.

(b) The points x and x5 lie in the same isogeny class. Moreover, there
exists g € I ., (Q) such that the isomorphism g, : I, — I, induced
by g has the property that the composition

T— I, 251,
is equal to the canonical embedding T — I, as in .
Proof. Part (i) is proved in [Kisl7, Lem. 2.2.2], and part (ii) is proved in [Kisl7|,
Cor. 2.2.5]. O

5.8. Uniformization on the gerb side.
5.8.1. Let ¢ : Q — B¢ be an admissible morphism (see Definition [2.4.2)). Set

Yp(¢) := UR(6(p) © (p),
YP(¢) := XP(0),
Y(9) :=Yp(¢) x Y7 (9).
See Definition and for the notations. Thus Y,(¢) is a right G(Qp)-
torsor, Y?(¢) is a right G(A%)-torsor, and Y'(¢) is a right G((A})-torsor.
The construction in [Kis17, §4.5.1] gives rise to a map

(5.8.1.1) Y(¢) — RT.

In fact, the construction is more precise, as we now explain. Let y = (y,, y?) € Y (¢).
Write ¢(p), for the morphism Int(y,) ™" o ¢(p) : Q(p) — G (p). The Q,-subgroup
im(¢(p)y) C Gy is defined over Q). Let

P

Uy = Uy = im(0(p)y)) Q) NG(ZyY),
where the intersection is inside G(Q}"). The construction in loc. cit. attaches to y
a ,-orbit in AT /=, which we denote by

[E(y)] € AT /=.

(Here %, acts on RT*"" /= by the embedding %, — G(Z2") and the G(Z}")-action
in Definition ) If we just remember the G(Z,")-orbit in AT /= induced by
[¢(y)], then we obtain the map . (However, we caution the reader that there
is no well-defined map Y (¢) — 8%°"" /=, which is unlike the situation in )
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Let ¢ € [¢(y)] and let J, be the J-component of £. Thus §, is canonical up to
o-conjugation by %,. It follows easily from the construction in [KisI17, §4.5.1] that
d, satisfies the following conditions. (Note that both the conditions are invariant
when we o-conjugate 0, by %,.)

(i) Define b, € G(Q}") such that the morphism ® — &¢ underlying ¢(p), o
(p : 6, = Bg(p) sends do to by x o, cf. Definition 2.2.5] Given any
neighborhood & of 1 in im(¢(p)yA)(@p) (for the p-adic topology), there
exists u € %, such that

uyo(u)~t € O -5 b,.
Here the right hand side denotes

{abya(a)fl €G@,) |ac 6"},

where each element of € is viewed as an element of G(@p). In particular,
b, and J, are o-conjugate by an element of Q(Zp) N im((b(p)yA)(Qp).

(ii) The canonical homomorphism I 6(0)0T, G@p is defined over QpF

> and

induces an isomorphism

Ly, (R) = {9 € G(Q} ®q, R) | gd,0(9)"" =4, }
for each Q,-algebra R. (Here we view the left hand side as a subgroup of
Iy(p), (Qp'®q, R), which maps to G(Q,®q, ) via the Q,*-homomorphism
Itﬁ(p)y,(@;r — GQ;r.)
By property (ii) above, we know that although 4, is only well defined up to o-
conjugation by %,, the o-centralizer of §, in G is unambiguous as a subfunctor of
ReSQ;r /0, G-
Let y be as above. Let g € G(A}). Then we have y - g € Y(¢). Recall from
g@l that G(A;}) acts on RT°" /= on the right. By inspecting the construction in
[Kis17l §4.5.1], we see that:

(iif) There exists ¢ € [(y)] such that - g € [¢(y - g)].

5.8.2. Let ¢ be a conjugacy class of admissible morphisms Q — &¢. We make

7 into a small category, where morphisms ¢ — ¢’ are given by elements g € G(Q)
such that ¢/ = Int(g) o ¢. The composition of morphisms ¢ Z» ¢/ LN ¢" is given by
10) LEN ¢". Then ¢ is a connected groupoid category. Each morphism g : ¢ — ¢/
in ¢ induces a G(A})-map Y (g) : Y(¢) — Y (¢') given by the left multiplication
by g. This makes Y a right G(A;‘,)—torsor over _Z in the sense of Definition m

As in that definition, we obtain a right G(A})-set Y(_#), together with canonical
isomorphisms

I(Q\Y(¢) — Y(7)
forallp € 7.

Let ¢ € # and y € Y(¢). It is easy to see that the subgroup %, C G(Z}")
depends only on the image ¢ of y in Y'( F ), not on ¢ and y. We therefore denote
it also by %;. Moreover, the % ,-orbit [£(y)] in RF°" /= attached to y as in
depends only on §. We thus have a canonical %;-orbit in RT°" /= attached to each
y € Y(_#), which we denote by [£()].
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The following discussion is completely analogous to §5.6.3l For ¢ € _# and
Y= (yp,y?) € Y(9), the left I(Q)-action on the right G(A})-torsor Y () gives rise
to a homomorphism

(5.8.2.1) Ly 15(Q) — G(A})
defined by

Jry=y-u(), Vie€ly(Q).
Thus we have a map ¢y, : I4(Q) — G(Q,) for each prime v # p, and a map
by 15(Q) = G(QY). For v # p, clearly 1, is induced by Int(y, '), where
Yo € G(Q,) is the image of y? under G(A?) — G(Q,). Similarly ¢, , is induced
by Int(y,"'). Let t(y) € AT be an arbitrary element whose image in A3 /=
belongs to [E(y)]. Let (Io, (Iy)v, (7s)s) be the datum attached to #(y) as in §5.3.2
For each prime v # p, the map ¢, , comes from an isomorphism of Q,-groups
tyw Iy, — I, which is still induced by Int(y,!). Also, the map ¢, , comes from
an isomorphism of Q,-groups ¢y, : Iy.q, = I,. The isomorphism ¢, is induced
by Int(y, 1), in the sense that the following diagram commutes

Int(y, ")

_ C _ _
(5.8.2.2) Iz Gy, Gy
i‘y,p T
IP7@,;( (RGSQ;r/Qp G)@p

Here the bottom arrow is the base change to Q, of the Q,-embedding I, —
Resqu /g, G, and the vertical arrow on the right is given by the map G(Q,*®q, R) —
G(R) induced by Q)" ®g, R = R,a ® a’ = aa’ for all @p-algebras R, . (This de-
scription of ¢, is just a reformulation of property (ii) in §5.8.1}) Moreover, the
isomorphisms ¢, , for all primes v can be extended to a refinement of {%(y) of the

form (I, to, (ty,v)v)-
With the above notation, note that % , is canonically identified with a subgroup
of Z1,(Qp"). If we change the choice of £(y), then both I, (as a subfunctor of

Resqur /g, G) and the map vy, : Iy, = I, do not change. Thus for every prime

v, the reductive group I, and the map ¢y, : I3, = I, depend only on y, not on
the choice of £(y).

The following lemma holds in our current setting of Hodge type.

Lemma 5.8.3. Let ¢ : Q — &g be an admissible morphism, and let T € Igd(Af).
Let KP C G(A’}) be a neat compact open subgroup. Then the action of I;(Q), :=
Int(7)(14(Q)) C Is(Ay) on X(¢)/KP is free. Moreover, the natural map

is a bijection.

Proof. Suppose v € I,(Q), has a fixed point in X(¢)/K?. By Lemma (i),
we have v € Zg(Q) N K,K?. By Lemma and Lemma (ii), we have
Zc(Q) N K,K? = {1}. Hence v = 1. This proves the first part.
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By the definition of S;(¢) (see §2.4.7), we have a natural surjection
(@ (1 X(6)/K7) — 5,(0).
Kp

By the previous part this surjection is a bijection. Since XP(¢) is a torsor under
the locally profinite group G(A’]ﬁ), the natural map X(¢) — @Kp X(¢)/KP is a
bijection. This proves the second part. (I

5.8.4. Let ¢ be a conjugacy class of admissible morphisms Q — &g. Set
S F) =Y (1)/9(Z)).
For each ¢ € ¢, by Lemma we have

S(¢) = Is(QN\X(9) = I(Q)\Xp () x XP(6).
In the future we shall view this as an equality. Recall from §2.2.7] and §2.4.T] that

Xp(@) = X pux (0(p) 0 Gp) = Yopuxc (8(p) 0 () /G (Z)),

where Y_,,  (¢(p) 0(p) is a subset of UR(p(p) o (p) = Yp(¢). Here pix is as in §2.4.1)
and the subset Y_,  (¢(p) 0 (») C Yp(¢) is independent of the choice of px. We
have a natural injection

(5.8.4.1) S(6) = S*(7).

If g: ¢ — ¢ is a morphism in ¢, then the bijection Y,(g) : Y,(¢) — Y,(¢')
restricts to a bijection Y_, (¢(p) 0 () = Y_, (¢'(p) 0 (p). It follows that inside
Y (_#) we have a canonical subset of the form

Y(7)2= I (Q\Y- ik (6(p) 0 Gp) X YP(9),

which is independent of the choice of ¢ € #. The image of the injection (5.8.4.1)
is equal to the image of Y ()% under the projection Y(_#) — S*(_#), namely
Y( 7)) G(Zy"). In particular, we have a canonical bijection

S(0) =Y (7)/G(Z).

5.8.5. Recall the following constructions in [Kis17, §§3.6-3.7]. Associated with
each admissible morphism ¢ : Q — B¢, we have a 7(G)-torsor 7(G, @), together
with a G (A?)-equivariant map

G X(9) — (G, ).
(Here G(A%) acts on (G, ¢) via the natural surjection G(A}) — 7(G) as in Lemma
) For each 7 € I;d (Ay), the map c; descends to a G(A’;)-equivariant map

copr S (¢) — (G, ¢).

See [Kis17, Cor. 3.6.4, Lem. 3.7.4] for more details. It follows from the G(A%)-
equivariance that the maps ¢4 and cg ; are surjective.

By [KisI7, Prop. 3.6.10], for each admissible morphism ¢ there is a canonical
isomorphism of 7(G)-torsors

(5.8.5.1) Yy : (G, ¢) = (G, X).

In the following we shall use the above identification freely, sometimes omitting it
from the notation.
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Lemma 5.8.6. Let # be a conjugacy class of admissible morphism Q — &q. Let
¢ € 7. The composite map

(5.8.6.1) V(2) = V(2)G(ZT) = S(¢) 25 7(G, ) 25 7(G, X)
depends only on ¢ and not on ¢.

Proof. The proof is just by collecting various facts from [Kis17, §3.6, §3.7]. By
[Kis17, Cor. 3.6.4], the w(G)-torsor 7(G, ¢) depends on ¢ only via the conjugacy

class of ¢ (in fact, only via the conjugacy class of the composite morphism £ 2,
&g — Bgaa), up to canonical isomorphism. Also, by the characterization of U4
in [Kis17, Prop. 3.6.10], ¥, depends on ¢ only via its conjugacy class. By the
definition of ¢, (see [Kisl7, Lem. 3.7.4]), it is functorial in ¢ € _#. Namely, if
g: ¢ — ¢ is a morphism in ¢, then we have a commutative diagram

X(g)

X(9) X(¢)
2 2
m(G,¢) —> n(G.¢)
where the top map is the functorial map induced by g and the bottom map is the

canonical isomorphism mentioned above. The lemma follows from these facts. O

Lemma 5.8.7. Let F be a conjugacy class of admissible morphisms 0 — Bg.
Lety € Y( 7). Letr € G(A}), and let y' = yr € Y(_#), Assume that both y and
y' lie in }7(/)”. Then the images of y and y' under the composite map

7 BB (6, x) - (6 X)
differ by the image of r in w*(G) under the natural map G(A}) — n*(G). Here the
sign is similar to the one in Lemma (ii).
Proof. This follows from the proofs of [Kis17, Lem. 3.6.2, Cor. 3.6.4]. O

Proposition 5.8.8. Let _# be a conjugacy class of admissible morphisms Q — G¢.
There is a unique map

c} 1S ) — (G, X)
such that for each ¢ € 7 the diagram

5(0) B g+ ( )

ic(z),l lc}

(G, X) ——7*(G, X)

commutes, and such that the composite

*

Y(7) = 5 7) -5 7(G, X)

is G(A})-equivariant. Here G(A}) acts on (G, X) via the natural homomorphism
G(A}) = m(G).

Proof. The proof is similar to Proposition[5.6.10] One applies Lemma[5.8.7] instead
of Lemma [(.6.9 O



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 153

5.9. Special points on the gerb side.

5.9.1. Let s = (T,i,h) € SPD(G, X) be a special point datum. From s we
obtain a morphism ¥z, :Q — &7 as in §2.2.9] To simplify notation we write
W p, for ¥p ,, . As in Definition we write ¢(s) = ¢(T, 4, h) for the morphism
ioWry :Q— Gg. This morphism is admissible, as recalled in Theorem [3.3.3]

We make the following definitions which are analogous to §5.8.1]

Yp(Urn) = UR(TT,n(P) © Cp),
Yp(\I/T’h) = Xp(\I/T’h),
Y(\I’T’h) = Yp(\IJT}h) X Yp(\IJTJL).

By Lemma Y, (V1) is a T(QpF)-torsor. The definition of X?(Wry) is as
in §2.4.70 but with G replaced by T. A priori XP(Vr ) is either empty or a
T(A%)-torsor. By [Kis17, Prop. 3.6.7], it is a T'(A%)-torsor.

There is a canonical injection

(5.9.1.1) Y (Urp) < Y((s))

induced by 1.

Each t € Y,(¥r,,) determines an element b € T(Q}") such that the morphism
D — 6% underlying the unramified morphism Int(¢=1) o Wr (p) o ¢, maps d, :
&, — B (p) to bl x o, cf. Deﬁnition Define

Xp(\I}T,h) = {t € Yp(\IJT,h) | WTy, (b?) = [_:uh] € X*(T)Fp,o} :

Here wr, 7(Q,) — X.(T)r,, is the Kottwitz map. By [Kis17, Prop. 3.6.7], the
set Xp(Wrs) is a T(Qp)T°(Zy")-torsor, where 7° is the connected Néron model of
Ty, over ZPE We set

X(\I/T,h) = Xp(\I’TJL) X Xp(‘I/TJL).

Thus X (Wrp) is a T(Ay)T°(Z,")-torsor.

By Lemma and Lemma (iii), T(Q) is discrete in T'(Ay), and hence
closed in T'(Ay). By this fact and by [Kisl7, Prop. 3.6.7], there is a canonical
T'(Ay)-equivariant bijection

T(Q\X(Pr,n)/T°(Zy") — T(QNT(Ay)/T°(Zy)-

We denote by X (¥ p)nen the T(Q)T°(Zy")-orbit in X (VW7 ) corresponding to
the double coset of 1 € T(Ay) in the right hand side. (The subscript stands for
“neutral”.)

Elements of the image of X (Ur j,)nen under play a parallel role as the
integral special points in Definition[5.7.5] In order to avoid complicated terminology
we do not give these elements a name parallel to “integral special points”. The
fundamental properties of these elements are proved in the following proposition.

Proposition 5.9.2. Keep the setting of §5.9.1. Let y € X(¥r p)new- We denote
the image of y in Y (p(s)) under (5.9.1.1)) still by y. The following statements hold.

34n [Kisl7, §3.6.6, Prop. 3.6.7], what is denoted by Xp(Wur) is Xp(¥r.n)/T°(Zyp) in our
notation.



154 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

(i) Write # for the conjugacy class of ¢(s). The image of y under the com-
posite map

*

(5.9.2.1) Y(o(s) = V(7)) = S*(F) L 7*(G, X)

is equal to the image of ioh € X in m*(G, X). (See Propositz'onfor
c's.)

(ii) The U,-orbit [E(y)] C AT /= (see §5.8.1)) has a representative in KT of
the form €(s, d1), for some o7 lying in the ~-equivalence class in T(Qpr)met

determined by —pup. (See fmﬂ b(s,67) € AT )

Proof. As is explained in [Kis17, §3.6.8], there is a natural map f : X(¥ry) —
(G, X). (More precisely, the target is 7(G, ¢(s)), but we identify it with =(G, X)
via ) The composition of f with the natural map n(G, X) — 7*(G, X) is
equal to the composite map

X(Ur) € V() B2, y(g(s) EEED, 7, x).

By [Kis17, Prop. 3.6.10 (2)], f sends y to the image of i o h in 7(G, X). Statement
(i) follows.

We now prove (ii). We view ¢ : T — G as the inclusion and omit it from the
notation. Write ¢ for ¢(s). Define b, € G(Qp") as in property (i) in §5.8.1| (with
respect to ¢). Since y comes from X,(¥r ), we have b, = b] € T(Q)"), where
b, is determined by y € X,(¥r ) as in By the definition of X,(Ur ), we

have wry (by) = [—un] € Xi(T)r, - Keep the notation ¢(p), as in As a
A
y

Let £ be an arbitrary element of [¢(y)] C T°" /=. By the construction in [KisI7,
§4.5.1] (also cf. [Kis17, §4.3.9]), € has a representative in 5 (for suitable n) of the
form (70, (70)1p» O¢), where 8¢ € T(Qpn) and vo = deo () -0 (de) € T(Q) C
T(Q,). Moreover, vy is a p-unit in 7'(Q), so in particular dp € T(Q;r)m‘)t. Note
that d¢ is uniquely determined by €, which justifies our notation.

Now 1 has an open neighborhood

O == im(¢(p)5)(Qy) N T°(Zy)

in im(¢(p)$)(@p). By property (i) in * there exists ¢ € [¢(y)] such that
5 € 0 -, b,. Thus ¢ is o-conjugate to b, by an element of 7°(Z,), and in par-

subgroup of G@ , im(p(p)z') is contained in Ty -

ticular, W, (0p) = W, (by) = [—un]. Therefore d; lies in the R-equivalence class
in T(Q;“)mot determined by —puy. Letting 7 = d¢, we know from the previous
paragraph that the current ¢ € RF°" /= is the image of €(s, o7) € AT, O

Lemma 5.9.3. Let 5,51 be two special point data of the form s = (T,i,h) and
s1 = (T,i1,h). Let y € X(VUr p)neu. We still write y for the image of y in Y (4(s))
under , and we write y1 for the image of y in Y (¢(s1)) under the obvious
analog. Then there exists 61 lying in the ~-equivalence class in
T(Qpr)™met determined by —pup such that €(s,0r) € RT™ is a representative of

(an element of) [t(y)] C AT /= and ¥(s1,0r) € AT is a representative of (an
element of) [¢(y1)] C KT /=.
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Proof. Let bl be the element of T(Qp") determined by y € X,(¥7,;) as in §5.9.1
By the construction in [Kisl7, §4.5.1] (also cf. [Kis17, §4.3.9]), for every neighbor-
hood @r of 1 in T(Q,) contained in i~*(G(Z,)) Ni;*(G(Z,)), there exists o7 lying
in the intersection of T'(Q}") and

Or bg = {abga(a)_1 la€ Or}
satisfying the following conditions.

e For sufficiently divisible n, [¢(y)] has a representative in T of the form
(i(70); (i(30))izp: i(d7)), Where
Yo = dra(dr) -+ o™ 1 (dr) € T(Q) C T(Q,).
Moreover, 7 is a p-unit.
e For sufficiently divisible n, [€(y1)] has a representative in T of the form
(41(70), (21(70))1£p, 11(d7)), where 7 is as above.

In fact, write 05 U for the morphism ® — &% underlying the unramified mor-
phism Int(y 1) oWr 5 (p)o(, : &, — Gr(p). In [KislT, §4.5.1], choose the element ¢/
sufficiently close to ¢ such that §]""(¢'c™!) € €p. Write a for 6™ (c'c™'). We can
then take d7 to be abga(a)*l. Here the key point is that ¢’ is sufficiently close to ¢
with respect to both ¢(s) and ¢(s1) in the sense of loc. cit., since O is contained
in i71(G(Z,)) N iT (G(Zy)).

We now take @r to be sufficiently small such that it is also contained in 7°(Z,),
and choose dr with respect to & as above. As in the proof of Proposition m (ii),
this 07 necessarily lies in the ~-equivalence class in T(Q;;r)’“‘ot determined by —puy,.
The above two conditions imply that (s, d7) represents [¢(y)] and that €(sq,d7)
represents [¢(y1)]. O

Remark 5.9.4. The analogue of Lemma for finitely many special point data
of the form (T,i,h),(T,i1,h), -, (T, ik, h) is also true. The choice of 7 is not
intrinsic to the Shimura datum (7', k) and the point y € X (U7 j,)neu, but depends
on the given finite list of embeddings 7,41, - , i of T into G.

5.10. Markings and amicable pairs.

Definition 5.10.1. Let .# be an isogeny class in .k, (Fp), and let _Z be a conju-
gacy class of admissible morphisms Q — &¢. By a marking of (&, #), we mean
a pair

5:9) eY(F) xY(7)
such that
t(y) € [e(y)-

Here £(y) € AT /= is the image of § under (5.6.3.2), and [¢(')] is the %;/-orbit in
AT /= attached to  as in §5.8.2L We say that the marking (i, i) is 7 -compatible,
if the image of y under

(5.10.1.1) Y(F) — 75 25 174G, X)

equals the image of 3’ under

(5.10.1.2) Y( 7) — S*( ) L5 7 (G, X).

See Proposition [5.6.10| and Proposition for ¢*, and c} respectively.
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We call the pair (&, #) weakly amicable (resp. amicable) if a it admits a marking
(resp. a m*-compatible marking).

Lemma 5.10.2. Let (&, #) be a weakly amicable pair. For every i’ € Y (_ 7),
there exists § € Y (F) such that (y,%') is a marking of (S, 7). Moreover, if
(F, 7) is amicable, then we can choose y such that (y,y’) is a m*-compatible
marking.

Proof. Let (z,Z') be a marking of (#, #). Let u € G(A%) be such that 2’ -u = ¢'.
By assumption, £(z) € [¢(z')]. By property (iii) in there exists £y € [¢(2')]
such that € - u € [¢(y’)]. Since € and £(z) lie in the same % -orbit, and since
Uz C G(Zy'), there exists ug € G(Zp") such that €y = €(2) - ug. Then we have

£(2) - uou € [¢(7))-

Let y = z - upu € }7(]). By the G(A;})—equivariance of the map (5.6.2.1), we
have ¢(y) = €(2) - upu. Thus we have

t(y) € [e@)],
which means that (y,%’) is a marking of (%, #).

If we assume that (#, #) is amicable, then we can choose (z,2’) as above to
be 7*-compatible. It remains to show that the marking (y,y’) produced above is
m*-compatible. But this follows from the G (A})—equivariance of the maps
and (5.10.1.2), and the fact that ug has trivial image in 7*(G) (since ug € G(Z}")).

([l

5.10.3. Let (&, _#) be a weakly amicable pair, and let (y,7’) be a marking of
it. Fix &(7) € AT representing £(y) € K™ /=, and let (Io, (I,)v, (s)v) be the
datum attached to €() as in §5.3.2] Let 2 € % and ¢ € _#. We choose y € Y ()
lifting y, and choose y' € Y (¢) lifting 3. Recall from and that there
exist inner twistings ¢g : Io,@ — Ix@ and ) : Io,@ — Idn,@ of Q-groups such that
the tuples (I, 0, (ty.0)0) and (I, th, (ty.0)v) are both refinements of ¢(y). By the
Hasse principle for adjoint groups and by the fact that I, and I, are both compact
mod center at the place oo, there is an isomorphism of Q-groups
such that for each finite place v the two Q,-maps ¢y, o f~! : I, — I, and
ly' v : 1y, — I, differ by an inner automorphism of I g,. The isomorphism f
is uniquely determined by (z, ¢,y,y’), up to composing with inner automorphisms
defined over Q. (Note that I, and the maps ¢y v, ty, depend only on (z,,y,v’),
not on the choice of the lifting (%) of £(); see the last paragraph of ) In
Remark below, we will see that f is in fact uniquely determined by (z, @)

up to composing with inner automorphisms defined over Q.
Now there is an element

T=(Tp)v € Igd(Af)
such that for each finite place v we have
Ly © ffl =ty o Int(7y) : Iy 0, — Lo.

Clearly 7 is uniquely determined by (x, ¢,y,y’) and f. Moreover, the image of 7
in Igd (Af)/lgd((@) is determined by (x, ¢,y,y’) and independent of the choice of f.
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We denote this element by
Ta, by € fid(Af)/Iid(@)-
The image of 7 4,4, in I¢(Q)\Igd(Af)/Igd(@) is determined by (¢, 9,y’) and in-
dependent of the choices of x,y,3’. We denote this element by
g € Lo(@N\I3(Ap)/T34(Q).
If ¢’ is another element of ¢, then we have a canonical identification

Iy @\ (Ap)/I5N(Q) = 1y (Q\IF (Af)/15(Q)

induced by Int g for any g € G(Q) conjugating ¢ to ¢’. (This identification is indeed
independent of g, since g is unique up to right multiplication by I;(Q).) If we
identify I¢(Q)\Igd (Af)/lgd((@) for all ¢ € # in this way, then 75 5 is independent
of ¢. This justifies our notation.

Let &, be the unique G(A})-equivariant bijection Y () = G(A%) taking y to 1,
and let £,/ be the unique G(A})-equivariant bijection Y (¢) = G(A}) taking y' to
1. Let 6, € G(Qp") be the §-component of £(y) € AT /=, and let b, € G(Qy') be
the element attached to 3’ as in property (i) in By the defining property of
a marking and by property (i) in there exists

S Q(Zp) n im((b(p)ﬁ)((@p) c G(Qp)
such that ed,o(e)~ = by Fix such e. Define
fi: G(Q))/G(Zy") — GQ)/G(Zy), g0 (3, 9).
This is a well-defined bijection because G(Z}") is o-stable. Recall from Lemmal[L.6.§
that G(Q}")/G(Z,") = G(Q,)/G(Z,). Using this, we define

g»—)eg671

£, : G(Q))/G(Zy) = G(Qy)/9(Ly) G(Q)/G(Zy) = G(Q})/9(Zy").
Here the middle map is a well-defined bijection because e € Q(Zp). Let &y 4/ ,e be
the composite bijection
¢ (idG A? s fQOfl) 571
Y(2)/G(Zy") — G(A})/G(Zy)") ————— G(A})/G(Zy") — Y (9)/G(Zy).
Proposition 5.10.4. Keep the setting and notation of §5.10.5 The map & e
descends to a bijection

(5.10.4.1) I LLQAY(6)/G(EY).

Here 1,(Q). is the image of 15(Q) — I,(Ay) Intr, I4(Ayf). Moreover,
restricts to a bijection

(5.10.4.2) I = S:(9),

which is compatible with the actions of G(AZJZ) and the g-Frobenius ® on the two
sides.

Proof. The map &, induces a bijection

& LOQ\Y (@) /G(Z) > 1, (LQ\G(A})/G(ZY).

Similarly, &, induces a bijection

~

&y T(QAY(9)/G(ZE) 5 1, (L(Q)\C(A)/G(Z).
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Here we have used that the image of I4(Q); — I4(Ay) N G(A}) is equal to
ty(1:(Q)) C G(A}). To show that , , descends to (5.10.4.1)) it remains to show
that for ¢ = 1,2 we have

fi(hg) = hfi(9)
for all g € G(Q}7)/G(Zy") and all h € I,(Q,). Now f; satisfies this because I,,(Qp)

is the o-centralizer of J, in G(Q,"). Meanwhile f5 satisfies this because in G((@p),
e commutes with every element in the image of v,/ , : I4(Q,) — G(Qp"), and this
image is equal to I,,(Q,).

We now show that induces .# = S,(¢). The image of . — .#* is
described in Proposition [5.6.5|and Remark[5.6.6] By that description we know that
the image of .# under &, is

(5.10.4.3) ty (Ie QX (6,) X G(N}).

In fact, the bijection from .# onto the above set induced by fy is just the inverse

of (5.6.6.1). By the definition of S.(¢) and by the discussion in the image
of S-(¢) under &, is

(5.10.4.4) by (L (@Q)\X—u(by ) x G(AT),

with g € px. It remains to show that the bijection f o f; : G(Q)")/G(Z)") —
G(Qpr)/G(Zyr) restricts to a bijection

(5.10.4.5) Xo(6y) = X_p(by).

Since v = o(—pu) (see , it is immediate that f; induces X, (8,) — X_,(d;).
Using the presentation of affine Deligne-Lusztig sets as in , we see that fy
induces X_,(6,) = X_,(by).

Finally, we need to show that (5.10.4.2)) is compatible with the actions of G(A?)
and ®. The compatibility with G(A f) is clear. The compatibility with ® boils down
to the following three compatibilities. Firstly, the bijection from .# to ([5.10.4.3)
induced by ¢, is compatible with ® on .# and the operator (J, x o)” on X, (6,)
(with r = [F, : F,]). As we have remarked above, this bijection is just the inverse
of (5.6.6.1), which is the map [KisI7, (2.1.4)]. The compatibility follows from
[Kis17, Prop. 1.4.4], cf. [Kis17, Cor. 1.4.13, Prop. 2.1.3, Prop. 4.4.14]. Secondly,
the bijection ((5.10.4.5)) induced by f;of; is compatible with (4, x¢)" on the left hand
side and (b,s % 0)" on the right hand side. This is immediate from the definitions.
Thirdly, the bijection from S, (¢) to induced by &, is compatible with ®
on S;(¢) and (b, xo)" on X_,,, (b,/). This follows from the discussion in O

5.10.5. Let ¢ : Q — &g be an admissible morphism. Since Q satisfies the
assumption on § in the last paragraph of we have reductive Q-groups
f¢ and I;: associated with ¢. Recall that I is identified with the natural Q-
homomorphism Iy — G*". Note that I, — G*" is surjective, because I, 5 contains

a maximal torus in Gg. We write Z; for the center of I(];. By Lemma [1.2.10| (i)

applied to the map I, — G, we have

(5.10.5.1) Z!

— T
¢—Z[¢ﬂl¢,

and the embedding I(; — I induces an isomorphism between the adjoint groups.
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Recall from72.6.11 that the canonical Q-embedding I 63 Gg and the set
W = {g € G(Q) | Intgogis gg} form an inner transfer datum from Iy to G. It

follows that the canonical Q-embedding I;@ — G der.D and the set W N Gaer (Q)

(which is clearly non-empty, given the non-emptiness of W) form an inner transfer
datum from I L to Gger- We use this inner transfer datum to define the map

(5.10.5.2) M (Q, I}) — T*(Q, Gaer),

as well as to define ]_H"Goder((@, H) for any Q-subgroup H C IT, as in *
Consider the boundary map

(5.10.5.3) I3%(Ap) — HY (A, Z))
arising from the short exact sequence 1 — Z; — I:; — Igd = (Ij;)ad — 1. As we
explained in §2.6.18] Igd(R) is connected, and hence IJ;(R) — Igd (R) is surjective.

Therefore the boundary map I ;d(R) — H! (R,Z;) arising from the same short
exact sequence is zero. It follows that ((5.10.5.3]) descends to a map

(5.10.5.4) 134 (Ap) /I3N(Q) — H' (Af, Z)) /m;ﬁ Q. Z)).

Consider the boundary map 9 : G**(Q,) — HI(QP,ZJ;) arising from the short
exact sequence 1 — Z;; — 21, — G* — 1. We define the abelian group

(5.10.5.5) 9(¢) = coker(G**(Z,) % H'(Ay, Z}) /0%, (Q, Z))).
The map induces a map
(5.10.5.6) I3 (Af) /T34Q) — H(9).

Suppose that ¢ : Q — B¢ is another admissible morphism satisfying ¢ =~ ¢, as
in Then the abelian groups $(¢) and (¢ ) are canonically isomorphic. In-
deed, (o) clearly depends only on the two-term complex Zy, — G*P, and similarly
for $(¢1). Since ¢ ~ ¢1, there is a canonical equivalence class of inner twistings
between I4 and Iy4,, and they all induce the same isomorphism from the complex
Zr, = G?" to the complex Z; o G?". Thus we have a canonical isomorphism

H(¢) = H(g1).

5.10.6. Now let (#, #) be a weakly amicable pair, and let ¢ € #. For any
marking (y,9’) of (#, #), recall that 7 5 is an element of I¢(Q)\Igd(Af)/Igd(Q).
Note that the map factors through Igd(Q)\Igd(Af)/Igd(Q). (In fact,
suppose that g; € I(}: (Q) lifts an element of T gd((@) and go € I;; (A ) lifts an element
of I34(Af). Then for p € T’ we have (g192)~'*(9192) = (9291) ' (g291) since gt

and g5 Lrgy are central in I;g. This shows that g1g2 and g2g1 have the same image

under (5.10.5.6).) We denote by
the image of 7y 5 in $(¢) under the map induced by ([5.10.5.6). Recall from §5.10.3

that the set I¢(Q)\I;d (Af)/I;d(Q) is independent of ¢ up to canonical bijection,
and that the element 75 5 of this set is independent of ¢. In a similar sense, Tig,
depends only on (y,y’) and is independent of ¢. More precisely, if ¢’ is another

~

element of #, then we have a canonical isomorphism of abelian groups $(¢) =
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$H(¢") which is induced by Int g for any g € G(Q) conjugating ¢ to ¢’. (This is a
special case of the canonical isomorphism discussed in as ¢ ~ ¢'.) If we
identify $(¢) for all ¢ € £ in this way, then the element T;g, depends only on
(y,y’) and not on ¢.

Recall from that we defined

H(o) = Lo (AN (Ay) [ I54(Q).
The element 75 5 has a natural image in #(¢), which we denote by
T € H(9).

Again, for different ¢ € ¢, the abelian groups H(¢) are canonically identified
(cf. §2.6.16). Under such identifications the element T;:[g/ is independent of ¢.

Lemma 5.10.7. Let (&, #) be an amicable pair. Let (y;,y;),1 = 1,2, be two
m*-compatible markings of (&, 7). Then
H JEE
Ty = Toesgy
where the two sides are defined in §5.10.6,

Proof. Fix ¢ € ¢ . We view Tg’gi and 7';2’% as elements of $(¢). Pick x € £, and
pick y; € Y () lifting y; for ¢ = 1,2. Also pick y, € Y(¢) lifting g, for i = 1,2.

Let u € G(A%}) be such that y5 =y} - u. As in the proof of Lemma there
exists ug € %y, such that (y1 -uou,y3) is a marking of (., ¢). Using that ug has
trivial image in 7*(G), it is easy to see that (¢ -ugu, g5) is 7*-compatible. For every
finite place v, let I,, denote the reductive group over Q, associated with €(y;) €
AT /=. Since (1, ¥}) is a marking, we know that I, is also the reductive group
over Q, associated with any element of [¢(y;)]. Recall that %,/ is canonically
embedded into the Q)*-points of the center of I, (cf. the last paragraph of .
It follows that ¢y, .uou,0 = Lyy-u,0 8 maps I, g, — I, for every finite place v. From
this, it is easy to see that 74, 51 = Ty, .uou,g,- We have thus reduced the proof of the
lemma to the case where g7 = g4, since we can replace (y1, ;) by (1 - wou, y3) -

We now assume that ¢| = g5, and write g’ for this element. Obviously we
can arrange that yj = y5. For each finite place v, the reductive groups over Q,
associated with €(g1),8(y2) and any element of [¢(y’)] are all the same, and we
denote it by I,,.

Write y1 = y2h for h = (hy), € G(A}). Then hy lies in 1,(Q,) for v # p, and hy,
lies in

U - 1p(Qp) C (le @9 n g(er))Ip(@p)'
Thus we can write h = Int(y') " (s) - t, with s € I4(As) and t € Z;, (Qy") NG(Z}Y).
(Here we view ¢’ and s both as elements of G(A} ®g Q) in writing Int(y")~!(s).
The element Int(y')~'(s) € G(A} ®q Q) in fact lies in G(A}).) Then the elements
Tobyry A Ty g yy o Of I;d (Af)/I;d(Q) differ by left multiplication by s. More
precisely, if fi : I, — I is a Q-isomorphism and 71 = (71,,), is an element of
I ;d(Af) satisfying that

by v © ffl = ly' v © Int(Tlﬂ)> : I¢,Qu — Ly,
then we have

(5.10.7.1) Lypw © f1 =ty w0 Int(s71 ) : Isg, — L.
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It remains to show that the image of s under is zero. Since y1,¥y2,y’
all have the same image in 7*(G, X), the image of h € G(A}) in 7*(G) must be
trivial. Note that ¢ has trivial image in 7*(G) since t € G(Z2"). Hence Int(y') " (s)
has trivial image in 7*(G). The natural map

G(A}) — G(Q)\G™(A})/G*(Zy)

factors through 7*(G). Therefore the image s*® € G2P (A%) of s under Iy — G lies
in [G(Q)4]**G**(Zy"), where [G(Q)]*" denotes the image of G(Q); — G**(Ay).
Since s in fact lies in G®P(Af), we have s,, € [G(Q)+]**G**(Z,). By Lemma
applied to Iy — G®P, the composite maps

Iy(Ag) — I3 (Ay) 2 H (A, )

and
ab 52 1 T
Is(Ay) = G™(Ay) — H (Af, Z))

differ by a sign. Here ' is associated with the short exact sequence 1 — Z; —
I;L — Igd — 1, and 62 is associated with 1 — Z;r) — 21, — G* — 1. To prove
our desired statement that the image of s under is zero, it suffices to
prove that the image of [G(Q),]*® under the boundary map G**(Q) — H'(Q, Z;E)
analogous to 8% is contained in IIIF, (Q, Z;)

In fact, a stronger statement is true, namely that the image of [G(Q),]*® under
the boundary map G**(Q) — H'(Q, Zg,,.) associated with 1 — Zg,. — Za —

G® — 1 is contained in I, (Q, Zg,,,)- (This is indeed stronger, as Zg,,, C Z;r))
This statement follows from Corollary [[.2.11] applied to I = G. O

Lemma 5.10.8. Let (&, ) be a weakly amicable pair. Let (y;,7;),i = 1,2 be two
markings of (%, 7). Then
H H

Ty = T2

where the two sides are defined in §5.10.6,

Proof. Fix ¢ € #. We view Tyﬁ 7 and Tf S, 88 elements of H(¢). Pick z € .#. By
the same argument as in the proof of Lemma [.10.7) we reduce to the case where
¥y = y5 = y'. In this case, pick y; € Y () lifting y; for i = 1,2, and pick ¥’ € Y(¢)
lifting 4. Then by the same argument we know that the elements 7, 4 ., ,+ and
Tz, ¢y’ OF I;d(Af)/I;d(Q) differ by left multiplication by an element of I,(Ay).
But this immediately implies what we want. O

Definition 5.10.9. Let (.#, #) be an amicable pair. Let ¢ € #. We define

(S, ) € (o)
to be Tfl, (see ~i for any 7*-compatible marking (y,y’) of (&, 7).
Lemma this is well defined. Similarly, we define

TS, F) € H9)
to be TZ;H—/ see ~i for any marking (y,y’). This is well defined by Lemma

- If we identify (@) (resp. H(¢)) for all ¢ € # as discussed in §5.10.6] then
™ (5, ) (vesp. 7(SF, 7)) is independent of ¢.
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Remark 5.10.10. The proofs of Lemma [5.10.7] and Lemma [5.10.8| also show that
the isomorphism f : I, = I, in eed depends only on (x,¢), up to
composing with inner automorphisms defined over Q. In fact, suppose we have
two pairs (1, ) and (ys, ) in ¥ () x Y (), whose images (1, 5) and (72, 73) in
Y (F) x Y(_#) are markings of (.#, #). For i = 1,2, the tuple (z,¢,y;,y.) gives
rise to an isomorphism f; : I, — I, which is well defined up to composing with
inner automorphisms defined over Q. In order to show that f; and fs differ only
by an inner automorphism, we argue in the same way as in the proof of Lemma

and Lemma [5.10.8| to reduce to the case where yj = 5. In this case, clearly
replacing (y1,v1) by (y1,v5) does not change fi, so we further reduce to the case

where y] = yb. Then as we showed in the proof of Lemma (see especially
(5.10.7.1))), we can choose fy to be equal to fi.

5.11. Gauges.

Definition 5.11.1. By a special fork, we mean an ordered pair (s,s’) consisting of
two special point data 5,5 € SPD(G, X) of the form s = (T,4,h) and s’ = (T4, h),
satisfying the following conditions:

(i) The points i o h and i’ o h lie in the same connected component of X.

(ii) The maps i: T — G and 7/ : T — G are conjugate by G*4(Q).
When we want to make explicit the ingredients, we also write (T', h, i, 4’) for a special
fork.

5.11.2. Given a special fork (T, h,i,i'), the two composite maps T - G — GP

and T i> G — G?P are equal. We denote the kernel by TT. The two maps
I°°(Q, T1) — MI*®(Q, Gger) induced by i and i’ are equal (since [T (Q, Gger) =
122 (Q, Gaer) and since 4,4’ are conjugate by G4(Q)), and we denote the kernel
by I, (Q, TT). Similarly, we define IIIZ (Q, T)) to be the kernel of I1I°*°(Q, T) —
1°°(Q, G) induced by either i or i’

Clearly there exists g € Gqer(Q) such that Int(g) oi = i’. Write T” for i'(T) € G
write 7’1 for T/ N Gy = 4 (TT). Since T" is self-centralizing in G, the cocycle
(9”9~ ") per defines an element a; » € H'(Q, T'") which is independent of the choice
of g.

Lemma 5.11.3. The element o ;s lies in 1Y, (Q,T'").

Proof. The only non-trivial condition to check is that «;; has trivial image in
H'(R,T'"). The argument is similar to the proof of [Kis17, Prop. 4.4.13]. Let K’ _
be the R-algebraic group that is the stabilizer of i’ o h in Gger,r. Since ¢ o h and
i’ o h lie in the same connected component of X, they are conjugate by an element
of Gaer(R) (or even Gy (R)). Tt follows that ;- has trivial image in H' (R, K.).
By [KisI7, Lem. 4.4.5] applied to H' = T'T and H = K’_, the only element of
H'(R,7T'") having trivial image in H'(R, K’ ) is the trivial element. Hence ;i
must have trivial image in H*(R,7""), as desired. O

In the sequel, given any torus T" over QQ, we write 7° for the connected Néron
model of Ty, over Z,.
Definition 5.11.4. Let g be a tuple (T, h, 4,4, y,y’), where

e (T, h,i,i) is a special fork.
e y is an element of the 7°(Z,")-torsor Y (T (1 5))° (see §5.7.4).
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o ' is an element of X (P71 )neu (see §5.9.1).

We define the following objects associated with g.
e Let x4 be the point x(7;p) € YKP(E,) (see , and let .#; be the
isogeny class of .
o Let ¢y be the admissible morphism ¢(T,7', k) : Q — B¢ (see Definition
and Theorem , and let _# be the conjugacy class of ¢g.
e Let 4 be the image of y under Y (Y (7.))° = Y, (zq) = Y(z4) = Y(Sy),
where the first map is as in , and the second map sends ¥, to
(Yp, 1) where 1 is the canonical base point of Y?(x4) = G(Ag’c).
e Let y; be the image of y' under X(¥Ur p)new — Y (dg) — Y(jg), where
the first map is as in .
e Let dq be the element of T(Q}p")™°* attached to y as in Proposition m
(i).
We say that g is a quasi-gauge, if the following condition is satisfied:
e The element ¢(7,i’,h,d,) € AT™" defined as in represents an el-
ement of [E(7})] C KT /=, where [£(y})] is the Ug,-orbit in AT /=
associated with g as in §5.8.2L (Note that €(T,4’, h, dq) is indeed defined,

. . . o . . ur\mot
since d4 lies in the ~-equivalence class in T'(Q}")

by Proposition i).)

Lemma 5.11.5. Let (T, h,i') and (T, h,i}) be two elements of SPD(G,X). Let
Y € X(¥r,n)neu- Then there exists y € Y (Y (pp))° satisfying the following condi-
tions.
(i) For every special fork of the form (T, h,i,i'), the tuple (T, h,i,i,y,y") is
a quasi-gauge.
(ii) For every special fork of the form (T, h,i1,4}), the tuple (T, h,i1,4,v,y")
18 a quasi-gauge.

corresponding to —up

Proof. We still write y' for the image of 3’ under the map
X(Y7n)nen — Y($(T,i', b))

as in . We write y; for the image of ¥’ under the analogous map
X(¥r,p)neu = Y (0(T, i1, h)).

By Lemmathere exists 07 in the ~-equivalence class in T(Qpr)™°* determined
by —pup such that &(T,4', h, 67) € AT represents [¢(y')] and (T, i}, h, é7) € KT
represents [¢(y})]. By Propositionm (i), the image of Y'(Y (7 p))° under the map
Y(Y(rn)) = T(QpF),z + 0. is precisely the R-equivalence of dr in T(Qpr)met.
Thus we can find y € Y(Y(75))° such that 6, = d7. This y is our desired element.

O

Definition 5.11.6. Let g be a quasi-gauge. By a rectification of g, we mean an
element u € ker(G(A}) — 7*(G)) satistying the following conditions:
(i) The pair (g - u, yg) is a marking of (S, 7).
(ii) Let u, be the component of u in G(Qp"). We have
i’ (8g) = uy, "i(6g) 0 (up).

We call g a gauge, if it admits a rectification.
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Lemma 5.11.7. A quasi-gauge g is a gauge if and only if (g, Z4) is an amicable
pair.

Proof. Suppose g has a rectification u. Write g = (T, h,4,4,y,y"). To show that
(Fg, Fy) is amicable, we only need to check that the marking (3, - u, ) is -
compatible. By Proposition (iii) and by the fact that u € ker(G(A}) —
7*(G)), the image of §g - u in 7*(G, X) equals that of i o h. By Proposition [5.9.2]
(i), the image of g in 7*(G, X) equals that of i’ o h. But i o h and ¢’ o h lie in the
same connected component of X by assumption, so they have the same image in
(G, X). Thus (yg - u,yg) is indeed 7*-compatible.

Conversely, suppose that (.#;, #g) is an amicable pair. By Lemma there
is a 7*-compatible marking of (%, Z4) of the form (Z,7y) for some z € Y (.%).
Find w € G(A}) such that z = y, - w. Again by Proposition m (iii), Proposition
5.9.2|(i), and the assumption that ioh and i’oh lie in the same connected component
of X, we know that 4 and gy have the same image in 7*(G, X). Since (¥ - w, yg)
is 7*-compatible, we must have w € ker(G(A}) — 7(G)).

By the defining property of a quasi-gauge, [£(y5)] C AT /= contains the image
of ¢(T,i',h,d5) € RT™™. Since (z,7,) is a marking of (7, #;), we know that
[€(yg)] also contains €(z), which is equal to €(y,) - w. By Proposition [5.7.6| (ii), the
d-component of £(ygy) is i(dy). By definition, the d-component of £(7,4', h,dy) is
i'(dg). Thus there exists wo € %, such that

(wywo) ~"i(dg)o (wywo) = 7' (dg),
where w), denotes the component of w in G(Q}").
Let u = wwy € G(A}). Since w € ker(G(A}) — 7°(G)) and wo € G(Z}"), we
have u € ker(G(A}) — 7*(G)). 1t is straightforward to check that u is a rectification
of g. (]

Definition 5.11.8. Let s = (7,4,h) € SPD(G, X). We write Z; for the isogeny
class of s € Yk, (Fp), and write ¢, for the conjugacy class of the admissible
morphism ¢(s) : Q — &¢.

Corollary 5.11.9. Let s € SPD(G, X). Then (Zs, Zs) is an amicable pair.

Proof. By Lemma we can extend the special fork (s,s) to a quasi-gauge of
the form g = (T, h,4,4,y,y’). By the defining property of a quasi-gauge, the fact
that the two embeddings in g are both ¢, and Proposition (ii), we know that
(g Ug) is a marking of (S, #;). It follows that u = 1 is a rectification of g, and

therefore (5, 7s) = (S, #4) is amicable by Lemma |5.11.7] O

Definition 5.11.10. Let g = (T, h,4,i,y,3’) be a gauge. We have a natural Q-
embedding 7' < Iy whose composition with I¢g g < G@ is ¢/, and a natural
Q-embedding T' — I, asin (5.7.2.2)). We say that a Q-isomorphism f : I, = Iy,
is g-adapted, if it satisfies the following conditions.

(i) By Lemma |5.11.7, (%, Z4) is (weakly) amicable, so there is canonical
Igi(@)—conjugacy class of isomorphisms I, = Iy, as in §5.10.3( (cf. Re-
mark [5.10.10). We require that f lies in this conjugacy class.

(ii) f commutes with the natural Q-embeddings 7" < I and T < I_.
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5.11.11. Let g = (T, h,i,7',y,y’) be a gauge. By Lemmal|5.11.7] the pair (.7, Z5)
is amicable. Therefore by Definition [5.10.9] we have a well-defined element

T Igs fo) € N(6) = coker(GV(2,) — HY (A, Z))/IU3, (@, Z])).

Define 7T and H_Ig?der(@,TT) as in §5.11.28 Then we have ZJr cThc IJr as
subgroups of I,. Thus we have a natural map from (&) to

(5.11.11.1) coker (gab(zp) — H' (A, TT)/IIE, (Q, TT)>.

Here the map in the definition of the cokernel is the restriction of the boundary
map G**(Q,) — H'(Q,, TT) arising from the short exact sequence 1 — Tt — T —
G* — 1.

Proposition 5.11.12. Let g = (T, h,4,,y,y’) be a gauge, and assume that there
exists a g-adapted isomorphism f : I, = Iy . Then the image of (I, Fy) in

5.11.11.1), as explained in §5.11.11} is trivial.

Proof. (I) Finding a representative of 77(.7,, 7,).

In this part, we find an element 7 € Igd (Ay) representing 79 (.7, #,). Write ¢
and z for ¢4 and z4. We denote the image of y in Y () still by y, and denote the
image of ¥ in Y (¢) still by y/. Fix a rectification u of g. Let z :=y-u € Y(x), and
let z be the image of z in f’(fg). For each finite place v, let I,, be the Q,-group
associated with €(y), and let I/, be the Q,-group associated with (any element of)
[€(y")]. Then I}, is also the Q,-group associated with £(z) since (Z, 7) is a marking.
Fix a g-adapted isomorphism f : I, = Iy, which exists by our assumption. Then
there exists 7 = (7,), € I3%(Ay) such that

(5.11.12.1) Lwo [T =1y polnt(r,) : Iyg, — I,

As we showed in the proof of the “only if” direction in Lemma the marking
(2,y,) is m*-compatible. Hence 7°(.%;, ) is the image of 7. In the rest of the

proof we show that the image of 7 in (5.11.11.1)) is trivial.

(IT) Constructing an element ¢, € T(Q,).
Choose g € Gger(Q) such that

(5.11.12.2) Int(g) 0i = 7'.

Denote the natural embeddings T' < Iy and T < I, (cf. Definition [5.11.10) by j
and j respectively. Then ¢, 07 = i and ¢y, 07 = i/. Let v be a finite place,
and let ¢ € T(Q,) be a test element. Write u, for the component of u in G(Q,)
(resp. G(Q,")) at v # p (resp. v = p). When v # p, we have the following equalities

between elements of G(Q,):

(11123) 1y (md (O7) = 120 £ (1) by
=1,,(j(¢)) since f is g-adapted
= Int(u,)”

= Int(u,) " 0i(t).

When v = p, the above computation is still valid if we interpret the equalities as
between elements of G(Q," ®q, Q,), and view u,, as an element thereof via the map

G(Qp) — G(Qy ®g, Q) induced by QpF — Q) ®g, Qp,a > a® 1.

You,.((t) since z =y - u
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Choose 7, € I}(Q,) lifting 7, € I3%(Q,), and write 7, for ¢,y ,(7,) € I,(@,).
Then we have
(5.11.12.4)
Ly o (Tod' ()77 1) = Int (7)) (0,0 (5 (8))) = Int (7,) (¢ () = Int (7,g) (i(t)).
For every finite place v, set
Sp = UyTyg.

Comparing the computations (5.11.12.3)) and (5.11.12.4)), we have

(5.11.12.5) i(t) = Int(s,)(i(t)), VteT(Q,).
When v # p, s, is an element of G(Q,). It follows from (5.11.12.5) that s, €

i(T(Q,)). When v =p, s, is a priori an element of G(Q) ®@q, Q,). Now 7, lies in
I (Q,), and I, is the o-centralizer of i'(dy). In the following computation, we let &
act on G(Qy" ®g, Q,) only via the first factor Qu". We have

spi(ég)a(sp)_l = up?'pgi((Sg)g_lo(Tp)_la(up)_1 because o(g) =g

= upTpi' (3g)a(7p) ~tor(up) ™" by
upi’ (8g)o (uy) ™ because 7, € I)(Q,)

= i(dg) by (ii) in Definition
Comparing this with , we see that s, is in fact o-invariant, i.e., it lies in
G(Q,) (which is embedded into G(Qp* ®q, Q,) via Q, — Q" ®q, Q,,a— 1 ®a).

It then follows from (5.11.12.5) that s, € i(T(Q,)).

We have seen that s, € i(T(Q,)) for every finite place v. Write

Sy =i(ty), t, € T(Q,).

(III) Relationship between ¢, and 7.

In this part, we show that the image of 7 in is represented by (ty).
in a suitable sense.

In the sequel, for every Q-algebra R and every r € G(R), we write 7*" for the
image of r in G**(R). Note that s3° = u3". Since u, € G(Qp") and since s, is o-
invariant, we have ui" € Gab(Qp)ﬁ Thus u® € G*(Ay). Since u € ker(G(A}) —
(@), we can write u = u(Du® | with u(®) € G(Q), and uM) € Gaer(A})G(ZF).
Since u* € G*P(A ), we have u)aP € GaP(Z,).

We view the embeddings j' : T < I, and ¢ : T — G both as inclusions and
omit them from the notations. For each finite place v, the cocycle (7,177, )yer, is
valued in T, and the collection of these cocycles for all v represents the image of 7
in (5.11.11.1)). Let v be a finite place and let p € I'. In the following computation,
if v = p we let p act on G(Q)" ®q, @p) only via the second factor @p. In particular
Uy IS p-invariant even for v = p. We compute

(5.11.12.6) ﬁjlpﬁ, = gs;luv”uglpsv”gfl = gs;lpsvpgf1

1 -1

= gi(t, P t,)g g g =t Pt,g"g

Here for the last equality we used (5.11.12.2)), and in the last term we wrote t,°t, !
for ¢/ (t,Pt; ') as we explained above. By Lemma [5.11.3] the cocycle (¢”g™")per

35This fact also follows directly from condition (i) in Definition [5.11.6
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represents an element of I, (Q,T"). Therefore the cocycle (t,'7t,),er, repre-
sents an element 3, € H'(Q,,T"), and the collection (8,), represents the image of
 in (GILILI)

(IV) Finishing the proof.

To finish the proof it suffices to show that (8,), has trivial image in .
Now f3, is equal to the image of 12> = s3> = 42> € G**(Q, ) under the boundary map
G**(Q,) — H'(Q,,T") associated with the short exact sequence 1 — TT — T —
G — 1. We have u?P = y(1):aby(0).ab By Corollary the image of u(®)2P
in H'(Af, TT) comes from g, (Q, T1). We have also seen that (12> € G**(Z,)

er

(with trivial components away from p). Hence the image of (3,), in (5.11.11.1) is
indeed zero. (]

Proposition 5.11.13. Assume that we have two quasi-gauges of the form

g= (Ta h7i5i17yvy,)a g1 = (T7hai17i,17yay/)'

Let A\, N € Gaer(Q). Assume the following conditions.
(i) We have i1 = Int(\) oé and i} = Int(\') o 7'.
(ii) We have X € Gaer(R)Ti(TT(C)), and N € Gyer(R) T4/ (TT(C)).
(iii) Define T to be the kernel of the common map T — G induced by
i,i',i1,4). There exists a cocycle Bo(-) € ZH(Q,T") such that

(5.11.13.1) i(Bo(p)) = AN, P (Bo(p)) =N PN, VpeTl.

w ere exists a rectification u of g suc at u € Ger . In par-
v) Th st tificati h that Gaer(A})G(Z7). I
ticular, g is a gauge.
v ere exists a g-adapted isomorphism f: I, —» . is notion makes
Th ists a g-adapted i phi I, Iy, (Th t k
sense since ¢ is a gauge.)

Then g1 admits a rectification uy € Gdcr(A*]‘p)g(Z}‘;r), and there exists a gy-adapted
isomorphism fi : IIm = I%l.

Remark 5.11.14. By condition (ii), for each p € I' we have AP € i(TT)(Q) and
N7\ €' (TH)(Q). In view of this, condition (iii) is equivalent to the requirement
that i~L(A71PN) =i/~L(N~1PN) for all p € T.

Proof. (I) Some notations.

We write x and z; for the points vy = (7, 5) and xg, = 2 (74, p) in YKP(FP)
respectively, and write ¢ and ¢; for the admissible morphisms ¢4 = ¢(7',4’, h) and
¢g, = O(T,1,h) respectively. Let j : T < I, j' : T < Iy, j1 : T — I,,, and
ji T < Iy, be the canonical Q-embeddings. We denote the image of y in Y (z)
still by y, and denote the image of y in Y (x1) by y;. Similarly, we denote the image
of ¥ in Y (¢) still by 3/, and denote the image of 3’ in Y (¢1) by v.

By construction 64, = d4. We write dp for this element. To simplify nota-
tion, for @ € {i,i,i1,i;}, we write €(x) for &(T,w, h, 1) € KT (see .
Since g and g; are quasi-gauges, we know that £(i’) (resp. £(i})) represents [£(i/g)]
(vesp. [€(yg,)]). By Proposition (ii), we know that £(i) (resp. £(i1)) represents
(7o) (resp. (7, ).

Let v be a finite place. Let Iv,I{),Iv,l,.Tl’,’1 be the reductive groups over Q,
associated with £(¢), ('), €(41), €(¢}) respectively. Write u, for the component of u
in G(Qy) (resp. G(Q}")) for v # p (resp. v = p). Then we have a Q,-isomorphism
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Int(u,)~!: I, = I!, and we have
(5.11.14.1) Lyw = Int(uy) P oty Ipg, — 1),

cf. the third equality in If I is one of the four groups I,,, I}, Iy 1,1, 1,
there is a canonical Q,-map I — G, and we denote the kernel by I f,

(IT) Commutative diagrams involving u.

As in let 7 = (1) € Igd(Af) be the element associated with (z, ¢,y -
u,y’) and f. Namely, for each finite place v we have

(5.11.14.2) Lyuw © FE =1y o Int(7y) : L0, — 1o,
The diagram
Int(u,) "t
(5.11.14.3) e G A
Ly’UT TLTJ,W
Int(7y)of
i T
I! Iy

consists of Q,-isomorphisms, and it commutes by (5.11.14.1)) and ((5.11.14.2)). Since

Int(7,) induces the identity on Hl(QU,I) = H;b((@v71¢)a and since foj = j (as
f is g-adapted), we obtain from (5.11.14.3)) a commutative diagram

Int(uy) ™

1
H'(Q,, I}) H'(Q,, I7)
Ly,vojT T%ﬂ’voj/
H'(Q,,T") =—=H"(Q,,T")

Since ¢y, 0 j =i and ¢y, 0 j' = i, the above commutative diagram implies that
there exists A, € I1(Q,) such that

(5.11.14.4) uy Vi(Bo(p))uy = Ay i’ (Bo(p)) - PA,Y, VpeT,.
In view of (5.11.13.1)), we can rewrite (5.11.14.4)) as
(5.11.14.5) w AT P Au, = AN TIPNPASL YpeT,.

(ITII) Constructing u;.
We shall construct a rectification u; of g;. Let u; , := Ay Ay N ™1, Then Uty €

G(Q,) for v # pand u; , € G(Q)' ®q, Q,). Here when v = p we view A\, \' € G(Q,)
as inside G(Q)" ®q, Q,) via Q, — Q) ®q, Q,,a — 1® a, and view u, € G(Q}")
as inside G(Q;;r ®q, Q) via Q) — Qf ®g, Qp,a = a® 1. When v = p, we let
I, act on G(Q)" ®q, Q,) only via the second factor Q,. Thus w, is I',-invariant
for every finite place v. It then immediately follows from that u; , is
[',-invariant. Thus we have u;, € G(Q,) for v # p and u;, € G(Qp"). We may
and shall also assume that the elements A, have been chosen such that the element

36As in the proof of Proposition |5.11.12) when v = p we view up, as an element of
(ResQIu)r/@p G)(Qp) = G(Qp). The isomorphism Int(up) : Ip = I, is understood as the iso-
morphism between two subfunctors of Rengr/QP G induced by the inner automorphism Int(up)

of RQSQ;r/Qp G.
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(Q)vzp = (1 (A)ortp € [Ty, IH(@,) comes from I} (Q @g A). We then see
that the element uy = (u1,0)v € [[,, G(Qu) x G(Q)F) lies in G(A}).

For v # p, we have u, € Gger(Qy) by our assumption (i), and 80 w1, € Gaer(Qy).
Again by the assumption (i), the image of u, in G**(QY") lies in gab(zur) Since
up, and uy , have the same image in G**(QR"), we have up € Gaer(Q7)G(Z2Y) by
the surjectivity of G(Z1") — G*P(Zy") (which follows from Lang’s theorem applied
to Gger; see the proof of Proposition . We have thus constructed an element
up € Gder(Af)g(Z;r).

(IV) Proof that u, is a rectification of g;.

Clearly uy € ker(G(A}) — 7*(G)). For a sufficiently divisible n € Zx, let
Yor.n = 0ro(67)---a""(57) € T(Q) (see §5.3.9). Then &(w) € KT is repre-
sented by

(w(’yO,T,n)v (w(’VO,T,n))v;ﬁpa ’ZD((;T)) € T"B::}rv

for w € {i,4',i1,11}. Clearly w(vo,r,n) for all four choices of w are conjugate in
G(Q). For a finite place v # p, we have

(5.11.14.6) Int(u1,,) ™" (i1(Yo,7,0)) = Int (N AL uy "A7) (61 (Yo,7,0))
= Int (NA uy M) (i(yo,m,n))
= Int ( ) (vo.1.n))

= Int (X' )( (v0,7,n))

= i1(Y0,1,n)-

Here the second equality is because i; = Int()\) o 4, the third equality is because
8(i) - u € ¥(i") - Uy, , the fourth equality is because A, € I}, centralizes 7'(vo,r,n), and
the fifth equality is because i} = Int(\") o i’. For a,b € G(Q)" ®q, Q,), we write
Int, (a)(b) for abo(a)™!, where o acts on G(QY ®q, Q,) only via the first factor
Q). Analogously as in the above computation, we have

(5.11.14.7) Int, (u1 )" (i1(07)) = Inty (N A_lu_lx\_l)(il(éT))
= Int, (N'A, )(z or))
= Int, (N'A, ) 7))
= Int, (X)
= 11(67).

Here the second equality is because i1 = Int(\) 04 = Int,(\) o 4, the third equality
is by condition (ii) in Definition the fourth equality is because ¢’ (d7) is
o-centralized by A, € I, and the fifth equality is because 77 = Int(\') o i’ =
Int, (') od’. The fact that i1(yo7.,) and i (y0,7,,) are conjugate in G(Q), together
with and , implies that u; is a rectification of g;.

(V) Constructing f7.
We have a Q-isomorphism 1 : I, = 6 = I, 5 induced by Int(\'). Write ¢(q,) =

gy p and 61(4,) = gup # p. Thon g, € #(T)(Q) and g1, = Tnt(N)(g,). We
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compute

P9(-) = g1,pp[t(N) (910~ (g, 5)]g1,,
= Int(Ng, A"~ PA"Pg,-1) (")
= Int(N g, AN g ) (),

where in the last step we use that g,”g,-1 is central in 1,(Q). By (5.11.13.1) and
the fact that g, € ¢'(T), we have 1 (-) = Int(°A’). Thus ¢ is an inner twisting

satisfying
(5.11.14.8) G~ o Py =Tnt(5'(Bo(p))) € Aut(l, ), VpeT.

We now construct an inner twisting x : [, 5 = I3 analogous to ¥. As in
§0.7.2L we let T = Z(p ;) x» and T1 = (14, n), k7. These are points of Shy, (F) for
some finite extension F//E),. Under the canonical isomorphisms triv(z; p) : 12 =

Vi ,o(T) and trivir;, n) : Vg = Vpo(Z) asin 5, the element A € G(Q) induces
an isomorphism of Q-Hodge structures Vi o(7)®0Q — Vp o(Z1) ®@@Which sends

the tensors s 5 o ~to s, p o~ . Thus A induces an element 6 € I, .+(Q), satisfying

(5.11.14.9) 60p(0~") = (Bo(p)) € L(@), Vpel.

Define x : IZ@ = I, g to be the isomorphism induced by 6. From ({5.11.14.9)) it

immediately follows that X is an inner twisting satisfying
(5.11.14.10) X~ tofx =Int(j(Bolp))) € Aut(l,5), VpeT.

We define f; by the commutative diagram

I¢1 Q

By (5.11.14.8)), (5.11.14.10), and the fact that f oj = j' (as f is g-adapted), we
know that f; is a Q-isomorphism. Moreover, x and ¥ commute with the canonical
embeddings of T. Hence f; o j; = ji.

(VI) Constructing 7.

Let v be a finite place. From the constructions of ¥ and , we have the commu-
tative diagrams

Ly’,v
(5.11.14.11) I —>(I)g.

iw llnt()\')
Ly/ v

Iy,g,—Ug

v
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and

(5.11.14.12) I, — (L)g,

\LX lln‘c(}\)

Lyy,v
Iﬂcl,@u (Ivvl)@

As in part (IIT), let Q, =1, 1U(AU) € I:;(@U) Let 7, € IL(@U) be a lift of 7,. Let
Lo = 9(QF) € I, (@),
Using ¢y, 0j =i and ty , 0 j' =4', we can rewrite as
It (u,) 0 1,0 (G(Bo(0)) = Ay -1y o5 (Bo(p)) - PA; Y, Vp €T,
By (5.11.14.1)) and (5.11.14.2)), we deduce from the above equality that
ty o 0 Int(70) 0 f(§(Bo(p))) = Au - 1y ,0(3'(Bo(p))) - AT, Vp € T
Using f o j = j’ and the definition of §2,, we get
(5.11.14.13) Int(7,) (5" (Bo(p))) = (5" (Bo(p))* %", Vp €T
Write 8, for j'(Bo(p)). We compute
(5.11.14.14) 7 2 T = (7, ') - (P) (P9, 1°7,)

= (7, Q) -0 (B,P T8, ) by
= (7, 0B, T8,

= (8,7, 7B, ) by (ILI413)
= (7, 17 because 7, 17, € Z];.

Since v is an inner twisting, it follows from that the image of 79,
in I g‘f(@v) lies in I;‘f(@v). We denote this element by 7 ,. Recall from part
(ITT) that (£2y)yp comes from an element of I;: (Q ®q A%). Tt easily follows that
71 = (T1,0)0 €[], Ig‘li((@v) is in fact an element of Igf(Af).

(VII) Proof that 7, is associated with (z1,¢1,y1 - u1,v;) and fi.

We compute

byl w = Int(N) 01y, 01
=Tnt(NA; 1) 01y 0 Int(Q,) 0 9p™?
=Int(NA, 1) O tlyuwo frolnt(T, Q) 0!
=Tnt(NA, tug M) ouy o fHoInt(7, Q) o™t
= Int(uy ,A) 0 ty,0 o f Int(7, Q) op!
= Int(uy, Doy voxoftont(7,'Q,) o™t
= Int(uy, DNouy,vofitoyont(7,1Q,) oyt
= Int(u;, Doty wo fitolnt(r )

= ly;ugv © ffl o Int(7y,,).

Here the first equality is by (5.11.14.11]), the second by the definition of €, the third
by (5.11.14.2)), the fourth by (5.11.14.1)), the fifth by the definition of u, ,, the sixth
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by (5.11.14.12)), the seventh by the definition of f;, and the ninth by the analogue
5.11.14.1)

of { . This shows that f; : [, — I, is the canonical isomorphism (up to
I(";?(Q)—conjugation) as in §5.10.3} and that 7 is the element of Ig?(Af) associated
with (21, ¢1,y1 - u1,y]) and f1. We have already seen in part (V) that f1 o j; = ji.
We conclude that f; is g;-adapted. O

5.11.15. Keep the assumptions of Proposition [5.11.13] Then g and g’ both admit
rectifications, and so the pairs (%, #4) and (&, , #,,) are amicable by Lemma
[EIT7 Thus we have the elements

(5.11.15.1) (T2(Fg, Fa): T (Fas Fo)) € 5(9) ® H(9)
and
(5'11'15'2) (Tﬁ(‘ﬂgw /91)77_7{('%917 jgl)) € 5(¢1) D H(¢1)

as in Definition [5.10.9] Note that we have ¢ = ¢y, where = is defined in §2.6.16]

Thus the abelian groups H(¢) and H(¢1) are canonically identified by §2.6.16} and
similarly the abelian groups $(¢) and $(¢1) are canonically identified by §5.10.5

Proposition 5.11.16. The canonical identification $(¢) ® H(p) = H(¢1) ® H(d1)
sends (5.11.15.1]) to (5.11.15.3).

Proof. Let T and 7 be as in the proof of Proposition [5.11.13] As we showed in
the proof of Lemma the marking (yq - u, ) of (S, #,) and the mark-
ing (¥g, - u1,7y,) of (Fg,, Zq,) are in fact m*-compatible. Hence 77(.%, #4)
and 77(7,, #,) are the images of 7 in $(¢) and in H(¢) respectively, while
™(Igrs Fg,) and 77 ( Iy, _F4,) are the images of 71 in $(¢1) and in H(¢;) respec-
tively. It remains to show that the natural image of 7 in $(¢) @ H(¢) corresponds

to the natural image of 71 in $(¢p1) ® H(¢1). This follows from (5.11.14.14)). O

5.12. Galois cohomological properties of amicable pairs.

5.12.1. Let (.#, _#) be an amicable pair. Let ¢ € #. For any maximal torus
T C Iy, we write T for TN IJ; = ker(T — G®P), which is a subtorus of T' defined

over Q. As in we define IIEF, (Q,H) for any Q-subgroup H C [ T in
particular for H = T7.

We have a boundary map 9 : G**(Q,) — H'(Q,,T") arising from the short
exact sequence 1 — 7T — T — G?> — 1. Recall from Definition that there
is a canonical element 77 (%, #) € $(¢). There is a natural homomorphism from
(o) to the group

(5.12.1.1) coker (gab(zp) 2 HY (A, TT) /ngdcr(Q,TT))
Theorem 5.12.2. In the setting of the image of T2(F, 7) in
is trivial.

Proof. Let j' : T < I, be the inclusion map. Pick a m*-compatible marking (y,y’)

of (#, 7). Pick z € .. Pick y € Y(x) lifting y, and pick 3y € Y (¢) lifting y'.

Choose an isomorphism f : I, = I4 as in §5.10.3| and Remark [5.10.10} Let j be
-/ —1

the composition T’ L Iy f—> I,.. Via j we view T also as a maximal torus in I.

We claim that a cocharacter p € X, (7T') is ¢-admissible in the sense of §3.3.8
if and only if it is z-admissible in the sense of §5.7.7 In fact, using Theorem
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[3:3:9] Proposition [5.9.2] Theorem [5.7.8 and Proposition [5.7.6} one can show that
the elements (¢(p) o () and vs, of X, (T) ® Q (introduced in §3.3.8 and §5.7.7

respectively) are both equal to the Newton cocharacter of [d7] € B(1g, ), where or

is any element of the ~-equivalence class in T(Qur)met corresponding to —puy. It is
also clear that for p € X,(T) the composition (5.7.7.1) lies in px(Q,) if and only

if 5/ o p lies in px (Q). The claim follows.

By the above claim, Theorem [3:3.9] and Theorem [5.7.8] we find the following

objects:
e Two special point data of the form s = (T,4,h),s = (T,4,h) € SPD(G, X)
such that ¥ = 4, and ¢ = 7.
e An isomorphism w : I, = I, which is induced by some element of
I ., (Q), satisfying that the composition wo j : T — I, is the canon-
ical embedding (i.e., the embedding (5.7.2.2))).
e An isomorphism w’ : Iy = Iy which is induced by some element of
G(Q) conjugating ¢ to ¢(s), satisfying that the composition w’ o j' : T —
I4(s) is the canonical embedding (i.e., the one whose composition with
Id)(s),@ — G@ is ’Lf@)
We claim that we can choose the above objects such that (T, h,4,4") is a special
fork (see Definition [5.11.1). In fact, from the fact that (.#, #) is weakly amicable
it already follows that i and i’ are conjugate by G*4(Q,) for each finite place v.
Then i and i’ are conjugate by G®4(Q), since i(T") and i'(T) are Q-maximal tori
in G and since the absolute Weyl group of i(T") in G is the same when considered
over Q, and when considered over Q. Also note that we can freely replace i’ by
Int(g) o4’ for g € G(Q). By the real approximation theorem, we can choose g such
that Int(g) o ¢’ o h lies in the same connected component of X as i o h. The claim
is proved.

The canonical isomorphism $(¢) — $(¢s) commutes with the natural map
from $(¢) to (5.12.1.1)) induced by j' : T' — I, and the natural map from $(¢ps)
to (5.12.1.1)) induced by the canonical embedding T" — I4(s/). Thus we can reduce
the theorem to the following situation:

e We have a special fork (s,s’) = (T, h,i,4") such that . = , and 7 =
Fs. Moreover, ¢ = ¢(s'), and the inclusion T' — Iy is the canonical
embedding, namely the one whose composition with 60 G@ is 7.

By Lemma [5.11.5| and Lemma [5.11.7, we can extend the special fork (s,s’) to a
gauge g. Moreover, tracing the above reduction steps we see that there exists a

g-adapted isomorphism f : I, = 1, .- (This comes from the initial definition of
j in the first paragraph of the proof.) The theorem then follows from Proposition

o.11.12) (]

5.12.3. Let (&, #) be a weakly amicable pair. Fix z € .# and ¢ € #. Recall
from §5.10.3/and Remarkthat we have an isomorphism f : I, = I; which is
canonical up to ;d (Q)-conjugation. In particular, we have a canonical isomorphism
between the abelian groups HIX(Q, ) and IIF(Q, ;) that is independent of
all choices. Now fix an element § € IIIX(Q, I,), also viewed as an element of

MY (Q,I,). As in Definition [2.1.17| and Proposition [2.6.12] we obtain the twisted
admissible morphism ¢?, which is well defined up to conjugacy. We denote the

conjugacy class of ¢° by B . Note that for different choices of ¢ € Z, the abelian
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groups HI¥ (Q, I4) are canonically identified. Define

LI (7)== lim LI (Q, I,).
1S4

If we view /3 as an element of IIIX(_#), then ## depends only on _# and 3, not
ongpe 7.

Similarly, for different choices of € ., the groups III¥ (Q, I;) are canonically
identified. Similarly as above we define

LI () = lim LI5(Q. L,).
zeS
The canonical isomorphisms I (Q, Iy) = I (Q,I,) for all ¢ € ¢ and z € I
induce a canonical isomorphism

g () =g (7).

We have the twisted isogeny class .#” constructed in [Kis17, §4.4.7, Prop. 4.4.8].
If we view [ as an element of IIIZ (.#), then #8 depends only on .# and B.
By §2.6.16] the abelian groups H(¢) and H(¢”) are canonically identified, since

¢ ~ ¢°. Similarly, by §5.10.5 the abelian groups $(¢) and $(¢?) are canonically
identified.

5.12.4. We take this opportunity to correct a mistake in [Kis10, §3.1], and we
freely use the notation introduced there. Above we used a twisting construction
defined in [Kis10, §3.1]. The statement of Lemma 3.1.5 of loc. cit. should include
the condition that the Z-torsor P, is trivial over R, i.e., that Pg is a trivial Zy-
torsor. The result is not true without this condition, as the Q-isogeny A\ need not
be a weak polarization.

Unfortunately, this error was imported into [Kisl7, §4.1.6] and [KP18, Lemma
4.4.8] via citation. Fortunately, in all instances where this construction is applied to
Shimura varieties in these papers, the condition of triviality at co holds. Moreover,
the result is always applied to give a moduli theoretic description of a construction
defined via complex uniformization. Thus, logically, the fact that A” is a weak
polarization is never used, but rather follows a posteriori in all these cases.

Nevertheless, let us explain why A is a weak polarization if P is trivial. Recall
that for any Q-algebra R, an R-isogeny ¢ : A — A* is an element of Hom (A4, A*)®R
which has an inverse in Hom(A*, A) ® R, cf. [Kot92b, §9]. If R is a subring of R, we
say that ¢ is an R-polarization if it is an R-linear combination of polarizations, with
positive coefficients. We say ¢ is a weak R-polarization if ¢ or —¢ is a polarization.
Thus a weak Q-polarization is the same thing as a weak polarization. Now if
oo : A — A* is a Q-isogeny, then ¢g is a weak polarization if and only if it is a
weak R-polarization when viewed as an R-isogeny. This follows from that fact that
the set of Q-polarizations is a convex cone in Hom(A, A*) ® Q. Similarly ¢q is a
weak polarization if and only if ¢ is a weak R-polarization. Moreover, the set of
weak R-polarizations is stable under multiplication by R*.

We now return to the explanation that A” is a weak polarization if Pg is trivial.
Thus, suppose Py is trivial, and let x € P(R). Specializing the commutative dia-
gram [Kis10, (3.1.6)] by z, we see that f.(z) !\ is a weak R-polarization. Thus,
by what we just saw, A\¥ is a weak R-polarization and hence a weak polarization.
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Theorem 5.12.5. Keep the setting of §5.12.5 Assume that (&, ) is amicable.
Then (97, #8) is again amicable. Moreover, the elements

(TSI, 7) 7T, F) € 9(0) @ H(9)
and
(r2(57, 79), 777, 79)) € 5(¢”) @ H(d’)
(see Definition correspond to each other under the canonical identification
H(0) & H(e) = H(67) & H(e”).

Proof. Let T" be a maximal torus in 4 such that B8 comes from a class Sr in
H'(Q, T). Such a maximal torus always exists by [Bor98, Thm. 5.10]. Let j/ : T <
I be the inclusion map. As in the proof of Theorem [5.12.2] we reduce the theorem
to the following situation.
e There is a special fork (s,s') = (T, h,4,7"). We have ¢ = ¢(s'), and ;' is
the canonical embedding, namely the one whose composition with I Ko
Gg is . We have x5 € .#. Moreover, in the canonical I;d(Q)—orbit of
isomorphisms I,,, — I, we can find an isomorphism f such that f~1oj :
T — I, is the canonical embedding.

Define I (Q, T') and I, (Q, T1) asin with respect to the special fork
(T, h,i,i"). We will still need to modify our choice of 4, but note that I (Q, T") and
g, (Q, TT) are already determined by (7,4’). Also note that I (Q, T) is equal
to the preimage of IIIX(Q, I;) under the map II*°(Q,T) — II*(Q, I,) induced
by j/. By [Kisl7, Lem. 4.4.5], the map of pointed sets H'(R,T) — H'(R, Iy)
induced by j’ has trivial kernel. Hence IIX(Q,T) is equal to the preimage of
1 (Q, I4) under the map H'(Q,T) — H'(Q, Is) induced by j'. We conclude that
Br € HIF(Q,T). Now by Lemma we can find a class 8y € g, (Q,Th
lifting Sr. Fix a cocycle fBo(-) representing .

Choose X € Gye:(Q) such that

(5.12.5.1) ' (Bo(p)) = N""PN, Vpel.

Since Sy is trivial at infinity, we have A’ € Gger (R)i'(TT(C)). Since Ger(Q)Gger(R) T
is equal to Gger(R) (by real approximation), and since A’ is determined by (5.12.5.1))
up to left multiplication by Gge;(Q), we may and shall assume that

(5.12.5.2) N € G (R) T4/ (TT(C)).

We define
iy =Int(\N)oi : T — G.

By (5.12.5.1), ¢} is defined over Q. Choose an arbitrary y' € X(¥7 p)neu, and
choose y € Y/(Y(7,,))° as in Lemma [5.11.5| with respect to (7', h,i’,47,y’). Then
g = (T,h,i,7,y,y) is a quasi-gauge, and (S, Z,4) = (F, #). Since (S, £) is
amicable, g has a rectification u by Lemma Since u € ker(G(A}) = 7°(G)),
we can write v = u(©Ou®) | with v(¥ € G(Q)4 and uV € Gder(A})Q(Zgr). Note
that (T, h,Int(u(®)~1 0 i,i,y,7') is still a gauge, and that u(?) is a rectification
of it. Moreover, writing sy for the special point datum (T, Int(u(?)~" o i, k), we
have z;, € #, and in the canonical Igd((@)—orbit of isomorphisms I, = I,
we can find an isomorphism fy such that f; Loj o T — I, is the canonical
embedding. Therefore after replacing i by Int(u(®)~' o i we can arrange that
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g admits a rectification u € Gaer(A})G(Z)"), and that there exists a g-adapted
isomorphism I = Iy,
By the same argument as before, there exists A € Gqe; (Q) such that

(5.12.5.3) i(Bo(p)) = AN, VpeT,
and

(5.12.5.4) A € Gaer(R)Ti(TT(C)).
We define

i1 :=Int(\)oi: T — G,

which is defined over Q by (5.12.5.3). By (5.12.5.2), (5.12.5.4)), and the fact that
1o h and i’ o h lie in the same connected component of X, we know that all four
points

iyoh, iyoh, ioh, i oh
lie in the same connected component of X. It is also clear that 4; and 4} are
conjugate by G*4(Q). Hence (T, h,i1,7}) is a special fork. It follows that the
tuple g1 = (T, h,i1,4],y,y’) is a quasi-gauge, by our choice of y (see Lemma
5.11.5). The same argument as in the proof of [Kisl7 Cor. 4.6.5] shows that
(I8, 7P) = (Fy,, Zq.)- Now g,g1, )\, \ satisfy all the assumptions in Proposition

[F.I1.13] so the current theorem follows from Lemma [5.11.7, Proposition [5.11.13]

and Proposition [5.11.16 (]
5.13. Construction and properties of a bijection.

5.13.1. In the current setting of Hodge type, it is expected that there should be
a canonical bijection between the set of conjugacy classes of admissible morphisms
Q — & and the set of isogeny classes in .k, (Fp). One candidate for such a
bijection is constructed in [Kis17]. However, even giving a general characterization
of what “canonical” should mean for such a bijection seems to be out of current
reach. In the following, we construct such a bijection in a way that is different from
[Kis17] (cf. Remark below). Throughout this subsection we keep the setting
of

We write I for the set of isogeny classes in %k, (F), and write J for the set of
conjugacy classes of admissible morphisms Q — &4

In §2.6.16] we defined an equivalence relation &~ on the set of admissible mor-
phisms Q — &¢. This descends to an equivalence relation on J, which we still
denote by ~. By Proposition for 71, 7> € I we have ¢, =~ ¢, if
and only if 7 = /26 for some (unique) 8 € IIF(_71). (See §5.12.3| for the
notations HII¥(_#1) and /f) When this is the case, for any ¢; € _#; and
¢2 € _#2 we have a canonical equivalence class of inner twistings between Iy,
and Iy4,. The induced equivalence class of inner twistings between I4, g and Iy, r
is trivial, i.e., it contains an R-isomorphism. Thus we have an induced canon-
ical isomorphism H., (Q,Is,) = H., (Q,I,), which restricts to an isomorphism
MY (Q, 1y, ) = X (Q, I,). If we view the last isomorphism as an isomorphism
My ( 71) = II¥(_#2), then it depends only on #; and _#>, not on any other
choices.

37In §2.6.16| the set J was also denoted by AM /conj. In the current setting of Hodge type we
choose the notation J to reflect the symmetry with the set I of isogeny classes.
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Similarly, we define a binary relation ~ on I by declaring % =~ %5 when there
exists § € 1Y (.#) such that % = .#. (In Corollary below we will see
that = is an equivalence relation on I.) Similarly as before, if % ~ % then for
any r1 € % and zo € % there is a canonical equivalence class of inner twistings
between I, and I,,, and moreover the induced equivalence class of inner twistings
between I;, g and I, g is trivial. In fact, in this case the Q-scheme I, ,, considered
in is an I, -torsor, and its class in H'(Q, I,,, ) is the element 8 € I (.#;) with
Sy = Jlﬁ ; see the proof of [Kisl7, Prop. 4.4.8]. The above-mentioned equivalence
class of inner twistings between I, and I, is induced by elements of I, ,,(Q).
In particular, the element of Hl(Q,Igf) corresponding to this equivalence class
of inner twistings (see Remark is the image of § under the natural map
H'(Q,I.,) — Hl(Q,Ifl). Since § has trivial image in H'(R, I,,,), our assertion
that the induced equivalence class of inner twistings between I, g and I, g is
trivial follows.

From the above discussion, we have a canonical isomorphism IIIX(Q, I,,)
My (Q, I,,). Again, if we view this isomorphism as an isomorphism I (Q, .#1)
X (Q, #), then it depends only on .#; and %.

111

Lemma 5.13.2. Let ¢, ¢> € J. Assume that #3 = /15 for some 8 € IIF(_71).
Let ' € IIF(_71), also viewed as an element of IIIX (_#2) via the canonical iso-

morphism I (_71) = TI¥ (_72). Then f15+/3/ _ /2;3/,

Proof. We first make a reduction step that is very similar to the proof of Theorem
Let ¢ € #1. By [Bor98, Thm. 5.10], there exists a maximal torus T' C
I such that both 8 and 8’ come from elements 8r and 87 of H'(Q,T). By
Theorem we reduce to the case where ¢ = ¢(T,i,h) for some (T,i,h) €
SPD(G, X), and where the inclusion T' < I is the canonical inclusion (namely
the one whose composition with I, 5 < Gg is 7). Define IIIZ¥(Q,T) to be the
kernel of III*(Q,T) — II*°(Q, G) induced by i. By the same argument as in the
proof of Theorem we have fr, 5, € HIF(Q,T). Now fix cocycles fr(-) and

B (+) representing Sr and 87, and find A, A2 € G(Q) such that

AP =i(Br(p), AP =i(Br(p)Br(p)), VpeT.

Define i1 = Int(A1) o ¢ and ix = Int(A2) o4. Then (7,41, k) and (T, iq, h) are special
point data in SPD(G, X). Moreover, it is easy to check that # = (1, ») and
I = Fwinm.

To finish the proof, we need to show that ¢, ») is equal to /fT/ i) By the

same argument as before, we need only show that there exists A € G(Q) satisfying
the following conditions:

(i) We have A™1PX =i1(B85(p)), Vp € T.
(ii) We have iz = Int(\) 0 4;.

Clearly A = )\2)\1_1 satisfies the second condition. To check the first condition, we
compute

ATHN = XA P APAT = M (Br(p) Br(p)) AT
= MAT A (B7(0) AT = PAi(Br(p)) AT
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Since 7 is defined over Q, the above is equal to

(rail @A) = (' Gre) )

But 4; is also defined over Q, so the above is equal to i1(57(p)), as desired. O

Lemma 5.13.3. Let %, % € 1. Assume that o = ﬂlﬁ for some € TIX(H).
Let g’ € I (A1), also viewed as an element of I (F) via the canonical iso-

morphism 11 () = ¥ (H). Then ff”ﬂl = ff/.

Proof. The proof is completely analogous to that of Lemma[5.13.2} Let x € .#;. By
[Bor98, Thm. 5.10], there exists a maximal torus T C I, such that both 8 and 3’
come from elements Sr and G4 of Hl((@, T). By Theorem we reduce to the
case where x = x(p; ) for some (7,4,h) € SPD(G, X), and where the inclusion
T < I, is the canonical inclusion (as in (5.7.2.2)). Define IIF(Q,T) to be the
kernel of the map II1*°(Q, T) — II*°(Q, G) induced by i. As in the proof of Lemma
we have fr, B € IIF (Q,T). Now fix cocycles S (-) and S%(-) representing

Br and B, and find A1, Ay € G(Q) such that

AP =i(Br(p), Ay P2 = i(Br(p)Br(p)), VpeT.

Define i1 = Int(A1) o¢ and i5 = Int(A2) 04. Then (7,41, k) and (T, o, h) are special
point data in SPD(G, X ). Moreover, the same argument as in the proof of [Kis17,
Cor. 4.6.5] shows that %5 = Z(7;, ») and f{“ﬂ = A Tyiz,h)-

To finish the proof, we need to show that (1, ) is equal to j([;“/,il,h)' By the

same argument as before, we need only show that there exists A € G(Q) satisfying
the following conditions:

(i) We have A"\ = i1 (B5(p)), Vp eT.

(ii) We have ig = Int(\) 0 45.
As in the proof of Lemma [5.13.2] the element A = /\2/\1_1 satisfies the above condi-
tions. (]

Corollary 5.13.4. The relation = on I is an equivalence relation.

Proof. To see reflexivity, for each .# € I we have by definition .# = .#7 with
8 =0 e IIP(HF). The transitivity and symmetry follow directly from Lemma
n.13.3 (Il

5.13.5. For .# € I and y € Y (%), the image of £(y) € AT /= under A" /= —
KT/~ depends only on .#. We denote this element by ¢(.#). Thus we have a map
[ — AT /~. Similarly, for ¢ € J and y € Y(_#), the image of [t(y)] C AT /=
under AT /= — AT/~ consists of a unique element, and this element depends
only on _#. We denote this element by £(_#). Thus we have a map J — RT/~.

It follows from Theorem [3:3.9] Theorem [5.7.8] Proposition [5.7.6, and Propo-
sition that the images of I — K%/~ and J — KT/~ are both equal to
{t(s) | s € SPD(G, X)}. (See for £(s).) We denote this set by (RT/~)P.

5.13.6. Let (.#, #) be a weakly amicable pair. For each x € # and ¢ € ¢,
we have an isomorphism I, — Iy that is canonical up to composing with inner
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automorphisms defined over Q; see §5.10.3] and Remark We thus have a
canonical isomorphism of abelian groups

(5.13.6.1) Iy (Q,7) = F(Q, )

that is independent of all choices (also cf. .

As a special case, let s € SPD(G, X) be a special point datum and consider the
pair (S, #s). By Corollary (Hs, 7s) is amicable. Hence we get a canonical
identification

I (S) = TG (Js)-

We denote the identified abelian group by III (s).

More generally, we call a pair (#', #') consisting of #' € I and ¢’ € J an
acquainted pair, if there exists a weakly amicable pair (.#, ¢) such that %' ~ &
and ¢’ ~ . Recall that in this case we have canonical isomorphisms III% (.#) =
I (&) and HIF (¢ ) = Y (_7'). Composing these two with the isomorphisms
(5.13.6.1)) with respect to the weakly amicable pair (.#, #), we obtain a canonical
isomorphism

g (o) = Mg (7)
which depends only on the acquainted pair (&', #7).

Lemma 5.13.7. There exists a (non-canonical) bijection % : J = 1 satisfying the
following conditions.
(i) For each ¢ € I, there exists a special point datum s € SPD(G,X) and
an element f € IIZ (s) such that 7 = /5’8 and B( J) = gL
(i) Whenever 9 = B(_7), the pair (S, 7) is an acquainted pair. In partic-
ular we have a canonical isomorphism HI¥ () = TIX(_7).
(itt) Suppose we have I = HB( 7). For any f € IIF () = HIX(_7), we have
B(J7) = 5.

Remark 5.13.8. A similar bijection J — I is implicitly used in [Kis17]; see the proof
of [Kisl7, Cor. 4.6.5]. However, the bijection in [Kisl7] satisfies a different set of
conditions than those in Lemma [5.13.7 More specifically, the groups I (s) and
HIZ (_#) in conditions (i) and (iii) in Lemma [5.13.7|are replaced by the subgroups
consisting of elements that come from the centers of Iy5) and Iy (for ¢ € 7).

Proof of Lema[5.13.7 As we explained in §5.13.5 the maps J — &%/~ and [ —
AT/~ have the same image (RT/~)? C KT /~. By [Kisl7 Prop. 4.5.7], each fiber
of the map J — (R%/~)% is contained in one equivalence class of ~. By [KislT7,
Prop. 4.4.13], each fiber of the map I — (RT/~)% is contained in one equivalence
class of ~.

By [Kisl7, Lem. 4.4.11, Prop. 4.4.13, Lem. 4.5.6, Prop. 4.5.7], we know that
there is an equivalence relation on (8% /~)%" whose pull-back to J is ~ and whose
pull-back to I is ~. We denote this equivalence relation on (R¥/~)%P also by ~. In
the current proof we do not need an explicit description of this equivalence relation.

EY

38In the notation of [Kisi7, §4], we have & ~ & in (R/~)P if and only if there exists
f € K (Q,I) such that £ = Ef‘ Here I is the reductive group over Q associated with €1, which

is unique up to an isomorphism that is canonical up to composing with inner automorphisms
defined over Q.




180 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

From the above discussion, we have natural bijections J/~ = (R%/~)* /~ and
[/~ = (RT/~)*P/~. We now fix a set of representatives {¢; | j € J} C (RT/~)*P
for the equivalence relation ~ on (R¥/~)*P. For each j € J, we choose a special
point datum s; € SPD(G, X) such that £ = £(s;). We then let ¢; := 7, and
S = ;. Consider the subset B := {_#;|j € J} of J, and the subset A :
{F; | j € J} of I. For each j € J, we have a canonical identification I (.%;)
I ( 7). Asin we denote the identified group by I (s;).

Define the set

[l 1l

D:={(j,8)|j€J.pellly(s;)}.
Then we have amap ¢ : D — J sending (7, ) to /jﬁ, and amap .% : D — [ sending

(4,8) to /jﬁ . Clearly B (resp. A) is a set of representatives for the equivalence
relation /2 on J (resp. on I). It follows that both ¢4 and .% are surjective. Moreover,
by [Kisl7, Prop. 4.4.8, Lem. 4.5.6], both ¥ and .Z# are injective, and so they are
bijections.

We now define the desired bijection % to be .# 0% ~1. Then condition (i) follows
from the construction. Condition (ii) follows from condition (i). We are left to check
condition (iii). Suppose we have #B(_#) = .#. Let (j,8) =94"'(_#). Then 7 =

/jB/ and .J = fjﬁ/. Let 3 be an arbitrary element of I (.#) = IIF¥(_#). By

Lemma [5.13.2) we have 77 = /jﬁJrB’. Henc/e %(/?) = Jjﬁﬂa/ by the definition
of #. But by Lemma [5.13.3, we have ﬂf‘w = (JJ’B )8, and this is equal to #7.
Therefore Z(_#°) = 97, as desired. O

Theorem 5.13.9. There exists a (non-canonical) bijection % : J = 1 satisfying
the following conditions.
(i) Whenever & = %B(_ ¢ ), the pair (S, ) is an amicable pair. In particular
we have a canonical isomorphism IIX (F) = TIX(_ 7).
(ii) Suppose we have S = FB( 7). For any f € HIF(F) = HIF(_7), we have
B(J7) = 57,

Proof. Tt suffices to show that the bijection & as in Lemma [5.13.7] satisfies the
conditions. Condition (i) in the theorem follows from condition (i) in Lemma

Corollary [5.11.9} and Theorem [5.12.5| Condition (ii) in the theorem is just
condition (iii) in Lemma [5.13.7] |

5.13.10. Fix a bijection & as in Theorem [5.13.9} Let # € J and let ¢ € _Z.
Since (#(_#), #) is an amicable pair, we have the elements 7°(%( 7), 7) €

9(¢) and 77(B( ), #) € H(s) as in Definition We also write 7 4(¢) for
TH(B( 7), #). The assignment ¢ — 74(¢) is thus an element of I'(H), in the

notation of Definition [2.6.17} We denote this element by 7. Since 7.4(¢) depends
on ¢ only via its conjugacy class (that is, after we canonically identify all H(¢') for
¢’ in the conjugacy class of ¢), we know that 7, € I'(H);.

Corollary 5.13.11. We have 74 € I'(H)o.

Proof. This follows from the two conditions satisfied by # in Theorem and
Theorem [5.12.5| (I

6. THE LANGLANDS-RAPOPORT—7 CONJECTURE IN CASE OF ABELIAN TYPE

6.1. More sheaves on the set of admissible morphisms.
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6.1.1. Let (G, X,p,G) be an unramified Shimura datum. We let (G*4, Xd) be
the adjoint Shimura datum. Let G2 be the adjoint group of G, which is a reductive
model of Ga over Ziy.

As in we write AM(G, X, p,G) and AM(G?4, X4 p G2d) for the sets
of admissible morphisms with respect to (G, X,p,G) and (G*?, X?4, p, G*) respec-
tively. For simplicity, in the sequel we denote these two sets by AM(G) and
AM(G?4) respectively. Since (G, X) is arbitrary, our discussion below regarding
AM(G) will also be valid for AM(G?4).

Definition 6.1.2. For each ¢ € AM(G), we define the Q-reductive group I;, the
abelian group $(¢), and the map Igd(Af)/Igd(Q) — H(¢) in exactly the same
way as in Taking the direct sum of the map Igd (Af)/lgd (Q) — H(¢) and
the quotient map I34(Af)/I39(Q) — H(¢) = I4(Ap)\I3(Af)/T134(Q), we obtain
a natural map Igd(Af)/Igd(Q) — H(¢) ® H(¢). We denote its image by H1(¢).
We denote by HT(¢) the abelian group QE(Z;, I;;Af). Here ZL denotes the center

of I; as usual.

6.1.3. Let ¢ € AM(G). We have a natural map H'(¢) — $H(¢) induced by the
identity map on H' (A, Z;) We also have a natural map H(¢) — H(¢) induced

by the inclusions ZJ) — Z1, and I; — Iy, in view of the presentation of H(¢) as a
quotient of &(Zy,,I4;Af) as in Lemma [2.6.14, We thus have a natural map

(6.1.3.1) Hi(¢) — H(0) & H(9).

As in (5.10.5.3)), we have the boundary map Igd(Af) — Hl(Af,ZL) arising from
the short exact sequence 1 — Z; — I;E — 1 gd — 1. The image of the map is
D(Z, 10 Ap) = €(Z], 11 Ap) = HI(¢). 1t follows that the image of (6.1.3.1) is
precisely H'(¢). In particular, H*(¢) is a subgroup of the abelian group $(¢) ®

H(¢) since (6.1.3.1)) is a group homomorphism.
As in §2.6.16] we view AM(G) as a discrete topological space. We have already

defined the sheaf of abelian groups H on AM(G), whose stalk at each ¢ € AM(G)
is 7(¢). We now define similarly sheaves of abelian groups $), T, H on AM(G).
In we saw that H descends canonically to a sheaf on AM(G)/~, since we
have a canonical isomorphism H(¢1) = H(¢2) whenever ¢ &~ ¢2, and such canon-
ical isomorphisms satisfy the cocycle relation. Similarly, the sheaves £, H ', H on
AM(G) all descend canonically to sheaves on AM(G)/=.

In the next definition we introduce notations analogous to those in Definition

Z6T7

Definition 6.1.4. For F € {ﬁ,H+,HT}, let T'(F) denote the set of global sec-
tions of the sheaf F on AM(G). Let Fr denote the canonical descent of F over
AM(G) /. Let T'(F)q denote the subset of I'(F) consisting of those global sections
that descend to global sections of Fy.

6.1.5. For each ¢ € AM(G), we have natural maps H'(¢) — HT(¢) — H(¢) ®
H(¢), and the map HT(¢) — HT () is surjective. It follows that we have natural
maps I'(HT) = T(HT) — I'($H) @ I'(H), which restrict to natural maps I'(HT)y —
TF(HY)o — T'(H)o @ T(H)o. Clearly the maps I'(H') — I'(H*) and I'(H")y —
T'(HT)o are surjective.
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Definition 6.1.6. We say that an element 79 € I'(§)) is tori-rational, if for each
¢ € AM(G) and each maximal torus 7" in I, the element 77(¢) € $(¢) has trivial
image in

coker(G*(Z,) & H'(A;, T/, (Q,T1)).
Here the definition of the above group, as well as the definition of the natural map

from $(¢) to the above group, are the same as in §5.12.11 We say that an element
7T € T(HT) is tori-rational, if its image in T'($)) is tori-rational.

Lemma 6.1.7. Let 7 € T(H') be a tori-rational element. Then its image in

H(@) is tori-rational (see Definition .

Proof. Tt suffices to note that for each ¢ € AM(G) and each maximal torus T in
I, the composition G**(Z,) N H'(Af, TT) — H'(Ay,T) is the zero map. This is
indeed the case, since 0 is induced by the boundary map G‘"‘b((@p) — Hl(QWTT)
associated with the short exact sequence 1 — TT — T — G2b — 1. (]

6.1.8. We let HTad #+ad gad g/ad he the sheaves on AM(G?) defined in the
same way as H',HT, 9, H, with (G, X,p,G) replaced by (G4, X4 p Gad). We
shall apply Definition and Definition to these sheaves.

For each ¢ € AM(G), it is easy to see that the composition of ¢ with the natural
morphism &g — Ggaa is an admissible morphism ¢*! : Q — Ggaa in AM(G2Y).
Thus we have a natural map AM(G) — AM(G??), ¢ +— ¢*d. This further induces
a map AM(G)/~ — AM(G*)/~

Lemma 6.1.9. Let ¢y € AM(G?Y). Let U(pg) be the set of conjugacy classes of
¢ € AM(G) such that ¢*% is conjugate to ¢o. Then U(pg) is non-empty and is
acted on transitively by the abelian group IIF (Q, Za), where the action is given by
the usual twisting construction (see Proposition .

Proof. We claim that
1 (Q, Zg) = ™(Q, Zg) Nim(HY(Q, Z¢..) — HY(Q, Za)).
In fact, as in the proof of [Kisl7, Lem. 3.4.8], the group on the right hand side is
the same as
ker(H'(Q, Zg) — H'(R, Z¢) @ HL, (Q, G)),
which is equal to
ker(HI™(Q, Zg) — WIF(Q, G)),

and equal to III¥(Q, Zg). The claim is proved. The lemma now follows from the
claim and [Kis17, Lem. 3.4.8, Prop. 3.4.11]. O

Lemma 6.1.10. Let ¢ € AM(G). The natural map Iy — Iyaa is surjective with
kernel Zg (which is canonically a Q-subgroup of I). In particular, we have a
natural identification I(";d = I;gd, and a natural surjective map

H(9) = Lo (AN (Ag) /15 (Q) — H(6™) = Lgna (Ap)\ TG (Af) /T35 (Q).

39Here we have used the same symbol & for equivalence relations on AM(G) and AM(G>d).
They are defined separately, with respect to the two unramified Shimura data (G, X,p,G) and
(Gad xad D gad)‘
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Proof. As a subgroup of Gg, I, 5 is the centralizer of im(¢*). Note that im(¢>)
is a subtorus of G, since Q = (QF)r and each QF4 = Q% is a torus (see §2.2.8).
Similarly, I 543 is the centralizer of the subtorus im(¢*2) of G%i.

Clearly im(¢2%4) is the image of im(¢®) under the natural map G — G#9. It is
a standard result (see for instance [Bor91), p. 153, Cor. 2]) that if S is a subtorus of
Gg with image S’ in G%i, then the natural map ZG6(S) — Zgaa(S') is surjective
with kernel (Z¢)g. Since we already know that the natural fnap Iy — Igea is
defined over Q and that Zg is contained in the kernel, this finishes the proof. [

Lemma 6.1.11. The natural map AM(G)/~ — AM(G?*)/~ is a bijection.

Proof. The surjectivity follows from Lemma We show injectivity. Let ¢, ¢’ €
AM(G) be such that ¢*d a~ ¢"2d. We need to show that ¢ ~ ¢'.

By assumption, there exists By € II,4(Q, Iyaa) such that ¢ 2d i5 conjugate to
(¢*)P0. By Lemma we have Iy = Iy/Zg. By this fact and by Corollary
(applied to I = I, and Z = Zg, where I indeed has the same absolute rank
as (), the natural map IIF (Q,Iy) — I, (Q, [4ea) is surjective. Thus we can
find 8 € LIF (Q, I,) lifting By. Then (¢?)2d is conjugate to ¢4, (Here ¢ is only
well defined up to conjugacy, but the ambiguity does not affect the conjugacy class
of (¢#)*1.) By the transitivity in Lemma we have ¢ ~ ¢/. But ¢ ~ ¢”, so
o~ 0
Proposition 6.1.12. We have a natural surjection T'(H)y — T(H*),.

Proof. We can identify I'(H)o with the group of global sections of the sheaf H/~
on AM(G) /=, and identify T'(H*d), with the group of global sections of the sheaf

H?d )~ on AM(G?Y)/~. By Lemma[6.1.11} we identify the spaces AM(G)/~ and

AM(G?*1) /. Tt follows from Lemma that we have a natural surjection
H/~ — M/~ between sheaves on the identified space. The proposition follows.
O

6.1.13. Consider two unramified Shimura data (G, X,p,G) and (G2, X2, p,G2)
together with an isomorphism

v (G XM 5 (GRY, X3
between the adjoint Shimura data. Assume that ¢« : G* = G54 lifts to a (unique)
central isogeny ¢ : Gaer — G2.der, and that Lg, : G%‘i = Gg:ﬂ@p extends to
an isomorphism G* = G3d. We still use the symbols HT,Ht, 6, H to denote
the sheaves on AM(G) = AM(G,X,p,G) as in §6.1.3] Their counterparts on
AM(G3) = AM(Ga, Xa,p, G2) will be denoted with a subscript 2. On AM(G?d) =
AM(G24, X24 p G3) we define the sheaves HT-ad H+ad gad qad a5 in §6.1.§

and on AM(G3Y) = AM(G34, X349, p, G54) we have the counterparts denoted with
a subscript 2. Then ¢ induces an isomorphism

AM(L) : AM(G*) =5 AM(GEY)

under which the four sheaves on one space are identified with the four on the other
respectively.
Let p*® € X, (G?P) denote the composite cocharacter

Gm = Gg — G¥,
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where y is any element of px (Q). Clearly 1P is independent of the choice of p.

Let 7+ € T(H )0, and let 7 € T(H)o be the image of 7+. By Proposition [6.1.12]
we have surjections T'(H)o — I'(H2)g and I'(Hz)o — T'(H*d)o. Let 7, be the image
of 7 in T'(H2d),.

Proposition 6.1.14. Keep the setting of §6.1.15. Assume that T+ is tori-rational,
and assume that X,(G®P) is generated by u*® as a Gal(Q/Q)-module. Then there
exists a tori-rational element T, € I'(H2)o mapping to T, under the composite map

(6.1.14.1) [(Ha)o — T(HEY) e =5 D(H),,

where the last isomorphism is induced by AM (1)~

Proof. Consider ¢ € AM(G) and ¢o € AM(G3) such that AM(¢) sends ¢*¢ €
AM(G?) to ¢3¢ € AM(GEY). By Lemma ¢ induces a Q-isomorphism
I ;d =T gg Clearly this isomorphism lifts to a unique central isogeny I(}: — I;EQ,
and the latter is induced by the central isogeny ¢ : Gger = G2,der- In particular,
we have a natural map Hf(¢) — H;(gﬁg) induced by ¢. By this observation, the
same argument as the proof of Proposition shows that there is a natural map
D(H)o — T(H})o induced by ¢.

Recall that the natural map T'(H')g — T'(H 1) is surjective. We fix an element
7t e D(H)o lifting 7+ € T'(H1)o. Let 7} be the image of 77 under the natural map
D(HT)o — F(H;)O in the above paragraph. By construction, 7, is sent to 7, under
the map in the proposition. We are left to check that 7, is tori-rational.

Let 77 and 7, be the images of 7} in ['(H)o and I'(Ha)o respectively. Let
¢2 € AM(G2) and let T5 be a maximal torus in I;,. We need to show that the
image of T,(¢2) in H' (Ay, Ty)/HIE, (Q, Ty) is trivial.

By Lemmawe find ¢ € AM(G) such that AM(1)(¢*?) = ¢3d. To simplify
notation in the rest of the proof we treat ¢ as the identity and omit it from the
notation. Write ¢g for ¢*?, which we identify with ¢3%. Let Ty be the image of T
under Iy, — I4,, and let T" be the preimage of Ty under Iy — I4,. It follows from
Lemmathat Ty (resp. T') is a maximal torus in Iy, (resp. I). As usual, set

Tt i=ker(T — G**) =T NI
T} i=ker(Ty — G3*) = T, NI}, .

Then there is a natural map v : 7T — T;r induced by the central isogeny I;L — I;Ez
discussed at the beginning of the proof.

Define the torus U := (T x1, T2)°. Denote the natural maps U — T and
U — T, by p; and p, respectively. The inclusion map T < T and the composite
map Tt % Tg < T together define a map 7" — U, which we denote by A. Let V
be the quotient torus U/A(TT). Then we have a commutative diagram with exact
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rows in the category of tori over Q:

(6.1.14.2) 1 all T Gab 1
b e

1 Y v 1
L b )

1 Ti Ty GP 1

Here p; and ps are induced by p; and ps respectively.

We claim that the image of the map X, (V) — X.(G?P) induced by p; contains
u®®. To show the claim, let pur be an arbitrary element of px(Q) that factors
through T (which is embedded into Gg via I, 5 < Gg). Similarly, pick pr, €

Mx,(Q) that factors through T, g- The two cocharacters of T, 5 induced by pr and

wr, respectively are conjugate by G*4(Q), and are hence in the same orbit under
the Weyl group of (G%i, T, 5) (cf. [Kot84al Lem. (1.1.3)]). Since the Weyl group of
(G%f, To,@) and that of (GQ@, TQ’@) are canonically isomorphic, we can replace pur,
by a Weyl-conjugate and assume that g7 and pr, induce the same cocharacter of
T, 5- We then obtain from pr and pg, an element of X, (U). The image of this
element under the composite map X, (U) — X, (V) — X.(G?P) is ur, by the upper
right commutative square in . The claim is proved.

By the claim and by our assumption on X, (G?*), we know that X.(V) —
X. (Gab) is surjective. It follows that the kernel of p; : V' — G?P is a torus, which
we denote by VT. Now it is easy to see that the map (p1, p2) : V — G x G&P is an
isogeny between tori over Q. Since G* and G&" are both unramified over Q,, we
deduce that V and VT are both unramified tori over Qp. Let V denote the Z,-torus
extending Vg, . The kernel of V — G?P is a torus over Z,, namely the one extending
the unramified Q,-torus V&p. By Lang’s theorem applied to that kernel (which is
smooth over Z, and has connected fibers), we know that the map V(Z,) — G**(Z,)
is surjective.

Using this surjectivity result and the commutative diagram , we see
that the natural map

H'(As, TN/, (Q,TT) — H'(Af, T))/10F, , (Q,T3)

G2,der

induced by u : TT — TQJr descends to a map
coker (gab(zp) — H'(Ay, TT) /LH?der(Q,TT)) —
coker < 52(Z,) — | (Ay, T3) /10, | (Q,T5 )).

(The point is that the first cokernel does not change if G**(Z,,) is replaced by V(Z,).)
From this, we see that tori-rationality of 7% (which is our assumption) implies tori-
rationality of Ii‘_ . Finally, we apply Lemma to deduce tori-rationality of 7,
from tori-rationality of 73 . O
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Remark 6.1.15. The significance of Proposition [6.1.14]is that it allows the propaga-
tion of the tori-rational condition between the unramified Shimura data (G, X, p,G
and (Gg, Xa,p, Ga), at least when X, (G?P) satisfies the technical condition. In
below we shall apply the lemma to an arbitrary (G2, X2, p, G2) of abelian type and
an auxiliary (G, X, p, G) of Hodge type.

6.2. Reformulation of results from [Kis17]. Throughout this subsection, we fix
a prime p, and fix an unramified Shimura datum (Gs, X2, p, G2) where (Ga, X5) is
of abelian type. For every Shimura datum (G, X), we have an embedding of fields
EG,X) < @p as in We denote the completion of E(G, X) with respect to
this embedding by F(G, X),. (In this was denoted by E(G, X),.)

Definition 6.2.1. By a nice lifting of (G2, X2,p,G2), we mean an unramified
Shimura datum of the form (G, X, p,G) together with an isomorphism of Shimura
data ¢ : (G24, X3d) = (G3d, X39) satisfying the following conditions:
(i) (G, X) is of Hodge type.
(i) We have E(G, X), = E(G*, X2d),,
(iil) ¢ : G* = G§4 lifts to a (unique) central isogeny 7 : Gaer — G2 der-
(iv) wg, : Ga(i = G;fi@p extends to an isomorphism G&d = Gad

Lemma 6.2.2. A nice lifting exists.

Proof. By [Kis17, Lem. 4.6.6]@ there exist a Shimura datum (G, X) and an iso-
morphism ¢ : (G*4, X24) = (Gad, X34) satisfying conditions (i), (ii), (iii) in Defi-
nition The fact that we can extend (G, X) to an unramified Shimura datum
(G, X, p,G) satistying condition (iv) is shown in the proof of [Kis10, Cor. 3.4.14].
(The assumption that p > 2 in loc. cit. is not used for the construction of G.) O

6.2.3. Fix a nice lifting (G, X,p,G,¢) of (G2, Xa,p,G2). We apply the notation
in §6.1.13| to our current (G, X,p,G) and (G, X2,p,G2). Fix a bijection £ as in
.13.9

Theorem [5.13.9} and define the corresponding element 74 € T'(H)o as in Definition

.13.10] an orollary [5.13. et 7, € 2)o be an arbitrary element whose
5.13.10] and Coroll 5.13.11f L 9 I'(H b bi 1 h
(6.1.14.1]

image in T'(H24)y under (6.1.14.1) is equal to that of 7.

Theorem 6.2.4. In the setting of the statement LR(G2, Xa2,p,Ga,T5) (see
§2.7.1) holds.

Proof. The existence of a canonical smooth integral model having well-behaved
H follows from Theorem and Theorem Hence the question is only
about the bijection in the statement LR(G3, Xa,p,G2,7,). We first explain why
this bijection is essentially proved in [Kis17, Prop. 4.6.2, Cor. 4.6.5, Thm. 4.6.7], at
least when Zg is a torus and p > 2. We then explain how to remove the last two
assumptions@

For the first part, there are two points that deserve clarification. The first point is

that by Proposition [5.10.4] the elements 7 4(dg) € H*4(¢y), for ¢pg € AM(G2Y), are

401 [Kis17, Lem. 4.6.6] it is used that every totally real field F' admits a totally imaginary
quadratic extension K/F such that every prime of F' over p splits in K. This fact is an immediate
consequence of Thm. 5 or Thm. 6 in [AT09, §X.2], regardless of the parity of p.

4por the purpose of [Kis17]|, the assumption that Zg is a torus is harmless. This is because by
[Kis17l Lem. 4.6.6], for the fixed (G2, X2, p, G2) one can always choose a nice lifting (G, X, p, G, 1)
such that Zg is a torus. However, in the current paper we will need to consider choices of
(G, X,p,G) which do not necessarily satisfy this condition. See Remark [6.3.4] below.
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indeed the same as the elements denoted by 7 in [Kis17, Prop. 4.6.2] (except that in
loc. cit. T is viewed as in I;Od(Af), instead of H*(¢o) = Iy, (Ap)\I33(Af)/133(Q)).
The second point is that in [Kis17, §4.6] the following property of the bijection %
is assumed (where J is defined as in with respect to (G, X, p,G)):
(*) For every # € I, there exists s € SPD(G, X) such that ¢ = _#; and
B(I) =5

This condition is indeed satisfied by the bijection 4’ : J = I that is implicitly
used in [Kisl?}lfl, but it may not be satisfied by Z in our current discussion. Nev-
ertheless, it is clear from the proof of [Kisl7, Prop. 4.6.2] that the hypothesis in
that proposition can be weakened as follows: Instead of requiring _# and .# to be
associated with one same s € SPD(G, X), we only require that (., #) is amica-
ble. From this variant of [Kis17, Prop. 4.6.2], the conclusion of [Kis17, Cor. 4.6.5]
easily follows. More specifically, in the proof of [Kisl7, Cor. 4.6.5], instead of ap-
plying [Kis17, Prop. 4.6.2] to all pairs (¢, %) with 7 = Zr.s p, I = Ir6 1, We
apply the above-mentioned variant of [Kis17, Prop. 4.6.2] to all pairs (_#,.#) with
arbitrary ¢ € J and .# = %(_#). This is valid because (_#,%(_#)) is indeed
amicable by Theorem [5.13.9]

We now explain how to remove the assumption that Zs is a torus, which is made
in [Kis17, §4.6]. This assumption comes from [Kisl7, Prop. 4.4.17]. As is explained
in the proof of that proposition (see especially footnote 24), this assumption can
be removed once we know that [Kis17, Lem. 1.2.18] can be generalized to Z,-group
schemes of the form G’ = Resp,, /z, 9, where F /Q, is an arbitrary finite extension
and G is a reductive group scheme over Op. (The result [Kis17, Lem. 1.2.18] is only
proved for reductive group schemes over Z,, but G’ is not reductive unless F'/Q,, is
unramified.) This desired generalization is provided by Corollary

Finally, we explain why the assumption p > 2 in [Kisl7] is no longer needed.
In fact, there are two reasons why this assumption is made in [Kis10] and [Kis17].
Firstly, this assumption is made in [Kis10, Lem. 2.3.1]. That this is unnecessary
is explained in the proof of [KMPI6, Lem. 4.7]. (We already mentioned this in
) Secondly, the assumption p > 2 is needed for the integral comparison
isomorphism (5.2.2.1)), which is key to both the papers [Kisl0] and [KisI7]. We
have already explained in why p > 2 is no longer needed for the integral
comparison isomorphism. ([l

6.3. Proof of the Langlands—Rapoport—r Conjecture.

6.3.1. In the following, by a CM field we mean a totally imaginary quadratic
extension of a totally real field contained in our fixed Q. We denote by ¢ the
complex conjugation in Gal(Q/Q), defined with respect to our fixed embedding
Q = C. For any Q-torus T and u € X.(T), we write E, for the field of definition
of p inside Q.

Following [Del82, §A, (a)], we consider the category I of pairs (T, ), where T
is a Q-torus and p € X, (T), satisfying that w := p + ¢(u) is defined over Q and
that (T/w(G,,))r is anisotropic. By definition, a morphism (T, ) — (77, 4') in T
is a Q-homomorphism 7" — T” taking p to u'. For each (T, ) in I, we know that
T is a cuspidal torus since it satisfies condition (ii) in Lemma m By condition
(vii) in that lemma, T" splits over a CM or totally real field, so E,, is either CM or

421 [Kis17] this bijection is not explicitly defined, but it is any bijection as in Remark |5.13.8
That such a bijection satisfies condition (*) is shown in the proof of [KisI7, Cor. 4.6.5].
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totally real. In the latter case we have E, = Q, since p + ¢(u) is defined over Q
and is equal to 2u.

As in [Del82] §A, (a)], for every (T, p) in I, there exists an object in I of the
form (S*, ul) which maps to (T, ). Here L is a CM field with maximal totally
real subfield Ly, and S* is the Q-toruﬁ

RGSL/Q Gm/ker(NLo/Q : RGSLO/@ Gm — Gm)

The cocharacter u* € X, (S*) is the one induced by the cocharacter of Resy, 10 Gm
corresponding to the canonical embedding L — Q. In fact, as discussed above, E,
is either a CM field or Q. We can take L to any CM field containing F,,, and take
the homomorphism S* — T to be the one induced by the composite homomorphism

R N
RG‘SL/Q Gm M—H—) ResL/QT L—/Q> T.
The fact that the above homomorphism factors through S follows easily from the
fact that (T, u) satisfies the defining conditions for objects in I.

Lemma 6.3.2. Keep the setting and notation of §6.2 There exists nice lift-
ing (G,X,p,G,t) of (Ga, Xa,p,G2) such that X.(G*) is generated by y*® as a
Gal(Q/Q)-module. Here pu is as in §6.1.13

Remark 6.3.3. The purpose of this lemma is to ensure that the technical assumption
on X, (G?P) in Proposition [6.1.14| can be met, so that we can apply that proposition
to propagate the tori-rational condition.

Proof. By Lemma/|6.2.2|we can find a nice lifting (G1, X1, p, G1,t1) of (G2, X2,p, G2).
Let 13 € X,(G3P) denote the composite cocharacter G,, Gig — G‘I*%

where p; € px, (Q). Since (G1, X1) is of Hodge type, as in the proof of Lemma
we know that the weight cocharacter w; of X is defined over Q, and that
(2%, /w1(Gp))r is anisotropic. Since G3® is isogenous to Z& and since pi® +
(i) € X, (G3P) is induced by wy € X, (Z2,), we know that the pair (G5, u3®)
is in the category I in As discussed in §6.3.1] the field a0 is either CM
or Q. In the former case, we let L be Eu?b. In the latter case, we let L be an
arbitrary imaginary quadratic field in which p splits. We construct the morphism
(SL, pul) — (G3P, usP) in the category I as in §6.3.1} Since we have an unramified
Shimura datum (G1, X1,p,G1), the torus G5 is unramified over Q,. Hence every
conjugate of the subgroup I', o C Gal(Q/Q) fixes uiP. It follows that the Galois
closure of E, v /Q is unramified over p, and so is the Galois closure of L/Q. Hence
the torus S* is unramified over Q, since it splits over this Galois closure of L/Q.

We now view (S*, u”) as a Shimura datum (S*, {h*}). (Recall that to specify
a Shimura datum for a given torus over QQ is the same as to specify the Hodge
cocharacter, which can be an arbitrary cocharacter over Q.) By the paragraph
preceding [Del82, §A, (a)] and by [Del82, Lem. A.2], we know that S¥ admits a
faithful representation over QQ such that the Hodge structure on that representation
determined by hl is of type {(—1,0), (0, —1)}. By [Del79} Prop. 2.3.2], the last fact
implies that (ST, {hL}) is a Shimura datum of Hodge type.

Let G =Gy X gab SL. Fix an element h; € X;. Note that h; and A% induce the

same map S — G?E’R. Hence we obtain a homomorphism h = (hy, Lh) : S = Gg.

431 [Del82] §A, (a)], the CM field is denoted by K and our ST is denoted by ¥S. We have
avoided the usage of K, and avoided the notation S as this conflicts with the L-group notation.
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Let X be the G(R)-conjugacy class of h. It is clear that X is a Shimura datum for
G’ﬁ Since (G4, X;) and (S%, {hL}) are both of Hodge type, we know that (G, X)
is of Hodge type (by taking the direct sum of the faithful symplectic representations
of the two factors). There is a canonical identification ¢ : G* 22 G39 determined by
t1, under which X2¢ is identified with X#4. Then (G, X) and ¢ satisfy conditions (i)
and (iii) in Definition Note that E,z is contained in L, and the completion
of L with respect to Q < @, is equal to the completion of B, with respect to

Q < Q,, which is a subfield of E(G1, X1),. It follows that E(G, X), = E(G1, X1),.
Since (G1, X1) satisfies condition (ii) in Definition so does (G, X). Since Gy
and ST are both unramified over Q,, so is G. Thus as in the proof of [Kis10,
Cor. 3.4.14] we can extend (G, X) to an unramified Shimura datum (G, X,p,G)
satisfying condition (iv) in Definition

We have thus produced a nice lifting (G, X, p, G, ) of (G2, X2,p,G2). It remains
to show that X,(G®P) is generated by p* as a Gal(Q/Q)-module. Now G?P is
canonically identified with S¥, and ;" is identified with p”. It is clear from the
definition that X, (S¥) is generated by ul as a Gal(Q/Q)-module. O

Remark 6.3.4. In the proof of Lemma [6.2.2] even if Zg, is a torus, it can happen
that Zg is not a torus. This is why in Theorem we needed to remove the
assumption that Zg is a torus which is made in [KisI7| §4.6] .

Theorem 6.3.5. Let (G2, Xa,p,G2) be an unramified Shimura datum such that
(G2, X5) is of abelian type. Then Conjecture holds for (G2, X2, p,G2).

Proof. We choose a nice lifting (G, X,p,G,t) of (G2, X2,p,G2) as in Lemma m
We apply the notation in §6.1.13| to our current (G, X,p,G) and (G2, X2, p, G2).
Fix a bijection £ as in Theorem with respect to (G, X, p,G), and define the
corresponding element 74 € I'(H)o as in Definition and Corollary

In view of Theorem [6.2.4] we only need to show that there exists a tori-rational
element 7, € I'(H2)o whose image in I'(H)y under (6.1.14.1) is equal to that of

T
It is clear that the assignment

AM(G) 5 6> (Tﬁ<%</>,/>,rﬂ<@</>,/>) € 5(6) & H(6)

as in §5.13.10, where ¢ is the conjugacy class of ¢, defines an element 7+ € T(H ™).

By the conditions satisfied by % in Theorem|5.13.9|and by Theorem [5.12.5 we know
that 75 € T(HT)o. Also, by Theorem [5.12.2) we know that 7 is tori-rational.

It is clear that 7 maps to T4 under the natural map T'(H™)o — ['(H)o. Since
7+ is tori-rational and since X, (G?P) is generated by " as a Gal(Q/Q)-module,
the existence of the desired tori-rational 7, € T'(Hz)o follows from Proposition
6.1.14 (]

Theorem 6.3.6 (cf. Theorem [2| in the Introduction). Conjecture holds for
all Shimura varieties of abelian type.

Proof. This follows from Theorems [2.7.4] and [6.3.5} O

4fere X may depend on the choice of hy, but it does not matter for our proof.
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Part 3. Stabilization
7. PRELIMINARIES FOR STABILIZATION
7.1. Central character data and the trace formula.

7.1.1. To stabilize the point counting formula for Shimura varieties in
general, it is necessary to work with fixed central characters. To this end, we are
going to introduce the formalism of central character data following [Art13l Ch. 3.1].
The point counting formula can be understood through the lens of a particular
central character datum, but it is useful to allow flexible central character data to
accommodate z-extensions during the stabilization process.

The rest of §7.1] is devoted to discussing the invariant trace formula with fixed
central character. Though this is not logically needed for the stabilization in it
puts central character data into context, motivates the definition of stable distri-
butions with fixed central characters, and also has an application in §9] below.

Throughout §7.1} let G be a connected reductive group over Q with center Z.
Write Az for the maximal Q-split torus in Z and set Az  := Az(R)°.

Definition 7.1.2. A central character datum for G is a pair (X, x), where X is
a closed subgroup of Z(A) containing Az ., such that Z(Q)X is closed in Z(A),
with a choice of Haar measure on X (often implicit), and x : ¥ — C* a continuous
character which is trivial on Xg := XN Z(Q).

Remark 7.1.3. The two extreme cases where X = Ay o, or X = Z(A) are already
interesting, but it is important to allow intermediate groups for our purpose.

7.1.4. Let T'y;(G) denote the set of elliptic conjugacy classes in G(Q). Given a
central character datum (X, x). Denote by I'x ei1(G) the set of Xg-orbits in T (G)
with respect to the multiplication action. Write Stabx () for the stabilizer subgroup
of X fixing v € T'en(G). It is not hard to see that Stabx(7) is finite, for instance by
reducing to the case of a product of general linear groups via a (possibly reducible)
faithful representation of G.

Fix a maximal compact subgroup K., C G(R). Let v be a place of Q, and
3 a closed subgroup of Z(Q,). For a continuous character w : 3 — C* define
H(G(Q,),w™!) to be the Hecke algebra of smooth functions on G(Q,) which trans-
form under 3 by w™! and have compact support modulo 3; we also require K-
finiteness if v = co. Let m be an admissible representation of G(Q,) which has
central character on 3 equal to w. For f € H(G(Q,),w™") define

() = / fo)n(g)u-dg, wen.
G(Qv)/3

The trace of the trace-class operator 7(f) is denoted by tr (f|mw) or trw(f). The
orbital integrals for f € H(G(Q,),w™?!) are defined by the same formula as for
H(G(Qy)), cf. §1.8.2L These definitions obviously extend to the adelic setting.

7.1.5. We recall the invariant distributions

Igeomggoa Ispec,)(oy Iell,)(oy Idisc,)(oy Tell,xoy Tdisc,xo

in the classical setup where the central character datum consists of X = Az o, and
X0 : Az = C*. First off, Igeom,v, and Ispec,y, are Arthur’s invariant distributions
given in sections 3 and 4 of [Art88|, respectively. Define Iy, to be the M = G
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part of formula (3.3) and Igisc,y, to be formula (4.4), both referenced to loc. cit.
All the four distributions are distributions on H(G(A), xq 1)@
For v € T'eii(G), write I, for the connected centralizer of v in G. We put

Ty (f) = D u(7) Vol(Iy (QNL,(A)/Az,00)05(f),
v€ETen(G)
Taisexo () = 0 (f| Lieno (GQ\G(A))),  fEH(GA),xp")-

In general I, (f) is more complicated than T, (f) for x € {ell,disc}. Arthur’s invari-
ant trace formula is the equality

(7.1.5.1) Tgcom,xo = Lspec,xo-
When G/Z is anisotropic over Q,

(7152) Tell,XO = lell,xo = Igeom,xo = Ispec.,xg = IdiSC,X() = Tdisc,x(y

7.1.6. Next we introduce the trace formula with respect to a fixed character on a
closed central subgroup. This must be well known to experts but for the lack of a
convenient reference we state the formula here [

Let (X,x) be a central character datum for G. Suppose that xo : Az o —
C* is the restriction of x. We will obtain the y-versions of the above invariant
distributions by averaging.

Lemma 7.1.7. Let D be a multiplicative group over Q, Ap its maximal Q-split
subtorus, and Ap ~ = Ap(R)°. Then D(Q)\D(A)/Ap, is compact.

Proof. Replacing D by D°, we may assume that D is a torus. Via a closed em-
bedding, we reduce to the case where D is a finite product of tori of the form
Resp/q Gy, for a finite extension F' over Q. When D = Resp/q Gy, the lemma is
clear since F*\AlL is compact, where AL denotes the group of ideles of norm 1. O

Corollary 7.1.8. The quotient Xg\X/Az o is compact.

Proof. This is clear since the inclusion X C Z(A) induces a closed embedding from

Xo\X/Az o into Z(Q)\Z(A)/Az «. (The image is closed since Z(Q)X is closed in

Z(A).) O
7.1.9. There is a surjection H(G(A),x5"') — H(G(A),x™!) sending f to the

function

g0 Folg) = /x e

where the integral converges because z — f(gz) has compact support in X/Az .
Given a function f on G(A) and z € Z(R), write f, for the translated function
g+ f(gz). For each * € {geom, spec, ell, disc} define

(7.1.9.1)

Lo(f) = !

VOI(:{Q\.%/AZ,OO)

/ X Lno(f)dz, f € HGA), x5,
Xo\X/Az

45Arthur defines them as distributions on a certain space of functions on G(A)! named
H(G(A)'), but this space is isomorphic to H(G(A), Xo_l) via the product decomposition G(A) =
G(A)! x Az oo. We do not mention H(G(A)') again.

46Chapter 3.1 of [Art1i3] discusses such a variant in the discrete part of the trace formula.
Sections 2 and 3 of [Art02| present both the spectral and geometric expansions of the trace
formula with fixed central character on an induced torus. We treat a more general case than
loc. cit. but proceed in a similar spirit.
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as well as Top, and Tgige, in a similar manner. In the special case where G/Z is
anisotropic over Q, it is clear from (|7.1.5.2f) that
Tell,x(f) = ell,x(f) = Igeom,x(f) = Ispec,x(f) = Idisc,x(f) - Tdisc,x(f)~

Write Lﬁisc’X(G (Q)\G(A)) for the discrete spectrum in the L2-space of complex-

valued functions ¢ on G(Q)\G(A) such that

e #(g9z) = x(2)p(g) for every g € G(A) and every z € X,
. fG(Q)\G(A)l/an(A)l |#(9)|?dg < oo (for any Haar measure), where G(A)?
denote the “norm one” subgroup of G(A) as defined in [Art78, p. 917].

Proposition 7.1.10. For f € H(G(A),xg") the following equalities hold.
Tax(f) = D [Stabz(y)™"e(y) " vol(I, (Q\I,(A)/%)0,(F,),

Y€l a1, x (G)

Taisex(f) = tr(f | Lier (GQ\G(A))).
Proof. We compute Ten  (f) as follows:

/:{ Z X(Z)L(’y)_lVOI(I’Y(Q)\I’Y(A)/AZ’OO)Oyz(f)dz

vol

Q\X/Az,00 vElen(G)

/ X (2)e() " VOl(Ly (@I, (A)/X) 0= (f)d
X@\%/AZVOO

v€Ten(G)
vol(1, (Q\ I (A)/X)
L2 Stbe ()

— vol(I, (Q)\ I, (A)/X) B
= VGE;(@ |Stabz (7)|¢(7) /36/,42,06 O04(fy)-

The equality for Tyisc,y(f) follows from the following two observations. First,
given an admissible representation 7 of G(A) with central character y, on X,

/ ()0, (f)d
"JE/AZYoc

[ xemdz =) XN ()
XQ\X/Az,00 XQ\X/Az 00

which equals 0 if x # xr and vol(Xg\X/Az oo )7(f) if x = xx. Second, if x = xr,

«(F,) = /G .0 /x Ty

/ / m(g92) f(gz)dzdg = 7(f).
Gn)/x Jx/Az

O

7.1.11. We record a simplification of the trace formula with fixed central character
when the test function is a stable cuspidal function at the real place.

Given a central character datum (X, x), suppose that X = X*° x X, with
X* C Z(Ay) and Xo C Z(R). (In particular X contains Az ..) Accordingly
we decompose X = X Xoo. We also assume that G(R) contains a maximal torus
which is compact modulo X ..

Let £ be an irreducible algebraic representation of G¢. The inverse of the central
character of £ on Z(R) is denoted by x¢. Let II>(§) denote the set of isomorphism
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classes of (irreducible) discrete series representations of G(R) whose central and
infinitesimal characters are the same as those of the contragredient of £&. Define
fe € 'H(G(R),Xgl) to be the sum of pseudocoeflicients of 7o, as 7, runs over
II5(&), cf. [Art89, Lem. 3.1}, [CDI0].

A stable cuspidal function on G(R) (relative to Xo) is defined to be fi €
C°(G(R), x5') such that for every irreducible tempered representation 7, of G(R)
whose central character restricts to xoo 00 Xoo, we have (i) tr 7o (foo) = 0 unless
Too 18 a discrete series representation, and (ii) tr 7 (foo) has a constant value as
Too runs over each discrete series L-packet, cf. [Art89, §4, p. 266]. An example
is fe in the last paragraph. In general, a stable cuspidal function is a finite linear
combination of character twists of functions of the form f¢ (for different £’s), up to
a function whose orbital integrals are identically zero.

Proposition 7.1.12. If fo is a stable cuspidal function then

Ispec,x(f) = Idisc,x(f) = Tdisc,x(f)'

Proof. This is proved in [Art89] §3] when X, = Az «. The same proof extends. O

Remark 7.1.13. When fo is stable cuspidal, a simple expansion for Iyeom,y, (f) is
obtained in [Art89, Thm. 6.1]. A similar expansion for Iyeom, (f) is given in [Dall9,
6.4, 6.5] for more general central character data.

7.2. Endoscopic data and z-extensions.

7.2.1. From here throughout §7] let G be a connected reductive group over a local
or global field F' of characteristic zero.

Langlands—Shelstad [LS87, §1.2] and Kottwitz—Shelstad [KS99, §2.1] have de-
fined endoscopic data and related notions in the untwisted and twisted settings.
Here we recall the untwisted case as well as a specific kind of local twisted en-
doscopy (generalizing the unramified base change) as studied in [Morl(, App. A].

Definition 7.2.2. Let F, G be as above. An endoscopic datum for G is a quadruple
¢e=(H,H,s,n), where
e H is a quasi-split reductive group over F,
e H is a split extension of Wg by H such that the L-action of Wpg on H
determined by H coincides with the L-action of the L-group “H,
e s is a semi-simple element of é,
e n:H — LG is an L-morphism inducing an isomorphism H Cent(s, @)0
(via 1 we view s also as an element of H),
such that Int(s) o = a-n for a I-cocycle a : Wp — Z(G) which is trivial (resp. lo-
cally trivial) if F' is local (resp. global). In this case H is said to be an endoscopic
group for G.

The datum e is said to be elliptic if n(Z(ﬁ)F)O C Z(@) When F' is non-
archimedean, we say that e is unramified if H and G are unramified groups over
F and if n is inflated from an L-morphism with respect to the Weil group of F'*
over F. An isomorphism from ¢ = (H,H,s,n) to ¢’ = (H’ H s 77) is an element
g € G such that gn(H)g~! = n/(H') in G and gsg~* = ¢’ in G/Z(G).

7.2.3. Automorphisms of an endoscopic datum ¢ induce outer automorphisms of
H as in [KS99, (2.1.8)]. By Outp(e) we mean the image subgroup of the outer
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automorphism group Outp(H) := Autp(H)/Haa(F). Set
A(e) := |Outp(e)| € Z>o.

The set of endoscopic data is denoted by E(G). Write Eqi(G) for the subset of
elliptic endoscopic data. Write £(G) and & (G) for the corresponding sets of
isomorphism classes.

For e = (H,H,s,n) € E(G), there exists a canonical injection over F'

(7.2.3.1) 7o Zi

as we now explain. Since an inner twisting induces a canonical isomorphism of
centers, we may assume that G is quasi-split over F. Choose a maximal torus
Ty of H over F. Then there exist a maximal torus T of G and an isomorphism
Ty = T, both defined over F' [LS87, p. 226] such that the composite embedding
T = Ty C H is canonical up to H(F)-conjugacy. Restricting from Ty = T, we get
the desired map Zg < Zp, which is independent of the choices involved.

7.2.4. If Gger = G then by [Lan79c, Prop. 1], every ¢ € £(G) is represented by
(H,“H,s,n), that is, we can take H = “H. In general there is no guarantee that
this is possible, so we use z-extensions to reduce to this case.

A z-extension of G over F is defined to be a connected reductive group G
equipped with a short exact sequence

(7.2.4.1) 1221 -G —-G—1

such that G1 ger = G1,s¢, £1 C Zg,,and Z; = Hz‘el Resp, /r G, for finite extensions
F; of F over a finite index set I. We also call such a short exact sequence itself a
z-extension of G.

Lemma 7.2.5. If I is non-archimedean and if G is unramified, then there exists
a z-extension Gy of G that is unramified. Similarly, if F is a number field and if
G is unramified at a finite set of finite places S, then there exists a z-extension Gy
of G that is unramified at S.

Proof. The lemma follows from [MS82, Prop. 3.1], possibly except the point, per-
taining to the global case, that there exists a maximal torus 7" of G such that T
splits over an extension of F' unramified at S. Let us verify it.

Since G is unramified over F, for each v € S, so is Gg.. Thus there exists an
unramified maximal torus Tyc , in Gec,p, . Write Ty o (Fy)rs C Tsc,o (Fyy) for the open
subset consisting of regular semi-simple elements. Then the non-empty subset

Yv = U Gv * Tsc,'u(Fv)rs . 9171 C GSC(F’U>
Gou eGsc(Fv)

is open in Gy(Fy,) by Harish-Chandra’s submersion principle [HC80]. By weak
approximation for G, there exists an element v € Gsc(F) N ([[,cg Yo). Let 77
denote the connected centralizer in Gy of 9. Then T’ is unramified at S as it is
conjugate to Ty, at each v € S. The obvious image of T” x Zg in G is then a
maximal torus of G which is unramified at S. ]

Lemma 7.2.6. Fiz a z-extension of G as in (7.2.4.1)). For each e = (H,H,s,n) €
E(G), there exists a central extension 1 — Zy — H; — H — 1 over F, with Hy
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connected reductive, such that the induced short exact sequence 1 — Zy — Zg, —
Zyg — 1 fits in the following row-exact commutative diagram:

1 A Za, Za 1
l 1u
1 Zl ZH1 ZH 1.

Moreover, when F' is non-archimedean, we can choose Hy to be unramified if H and
G1 are unramified. When F is a number field, Hy can be chosen to be unramified
at a finite set of places S if H and Gy are unramified at S.

Remark 7.2.7. We do not claim that H; is a z-extension of H, that is, the derived
subgroup of Hi need not be simply connected.

Proof. Choose maximal tori Ty C H and T C G over I together with an iso-
morphism Ty = T over F as in We pull back the resulting embedding
Zy C Ty 2 T C G via the surjection G; — G to obtain the preimage Zl C G
fitting in the exact sequence

(7.2.7.1) 1= 21— 21— Zg — 1.

Recall from [Del79, §2.0.1] and the notation therein that H = Hy *z(p..) Zu-
Setting Hy := Hg * 7 (Hae) Zl, we have a surjection H; — H induced by Zl — Zy,
whose kernel is identified with Z;. The construction yields Zpg, = Zl and the
commutative diagram of the lemma. (I

7.2.8. Let F be a local or global field of characteristic 0. Fix a z-extension of G
as in (7.2.4.1). Let us explain how each ¢ = (H,H,s,n) € E(G) gives rise to an
endoscopic datum for G;.

Fix inner twistings to quasi-split inner forms Hy = % and G = G*f together
with F-pinnings for H* and G*. Along the central extension H; — H provided
by the preceding lemma, we can lift inner twistings to obtain H 7= Hif and
Glf = G;f as well as F-pinnings for H; and Gi. As explained in [Kot84bl
1.8], we obtain I'-equivariant maps - ﬁl, G — él, ﬁl — 21, and @1 — 21.
We will consider the natural extension of the last three maps to L-morphisms
Ca, ¢ LG -Gy, *Hy —» 7y, and *'G; — 24, respectively. (As for H - f[l, we
have (g, in the lemma below.) The composition H—G— @1 factors through the
embedding H — H, to yield the following commutative diagram.

(7.2.8.1)

Lemma 7.2.9. Maintain the notation of §7.2.8

(i) The embedding H < H, can be extended to an L-morphism Cg, : H —
LH, such that (g, induces a homeomorphism from H onto its image.
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(i) There exists an L-morphism n : LH, —» LGy such that the following is a
commutative diagram extending (7.2.8.1)).

¢
’HL>LH1

l” lm
Lg S, CGq LGl

(i4i) The quadruple ¢ := (Hy,“Hy,s1,m1), with s1 := (g, (s), is an endoscopic
datum for G1. The isomorphism class of ey is independent of the choices
in (i) and (ii).
Proof. To verify (i), consider the split extension of H, by Wg given by H; :=
(Z(H,) x H)/Z(H), where Z(H) embeds in the semi-direct product diagonally.
The ass1gnment h— (1x h mduces an embedding ‘H — H; extending the map
H < H1 As remarked in 4 H, = LH, since G4 sc = G'1 der, SO We obtain the
desired map ¢ H, by comp051t10n Let us verify (ii). Smce Gisc = Gi der, We can
extend H1 — G1 to no : 'Hy — £G4 by [Lan79¢, Prop. 1]. The two L- morphisms
Cgln and no(gr, differ by a 1- cocycle a:Wg — C, where C := Cent(H Gl) Clearly
Z(H,) C C. We also note that Z(Hy) N (CNG) = Z(H,)NG = Z(H). Thus

7y =Z(H))/ZH) c C/CNGc GG = Z,

implying that C = Z(I;Tl). As a is valued in Z(I/{H)7 one can twist 79 by a to obtain
71, which then makes the diagram commute. Lastly (iii) is a routine check. (]

7.2.10. Given a central extension H; of H as above, choose a splitting Wr — H
to consider the composition

Wi —H S Ly Ly,

Write Ay : Z1(F) — C* if F is local, or Ay : Z1(F)\Z1(Ap) — C* if F is global,
for the corresponding continuous character, which is independent of the choice of
splitting. This character naturally shows up in endoscopic transfer.

We show that the assignment ¢ — ¢; admits an inverse map.

Lemma 7.2.11. The map ¢+ ¢y defined by Lemma[7.2.9 induces a bijection from
E(QG) onto E(G).

Proof. The injectivity is easy to see since @1 is generated by G and Z (61)

To prove the surjectivity, let e; = (Hy,“Hy, s1,m1) € E(G1). Replacing ¢; by an
isomorphic datum, we may assume that 7;(Wr) lies in the subgroup “G of £G;.
Indeed, consider the exact sequence of continuous cohomology

H' (Wp,G) » H' (Wp,G,) » H' (Wp, Z)).

The image of 77 under the second map lifts to a 1-cocycle ¢ valued in Z(@l), up to
a 1-coboundary, via the map H'(Wy, Z(G1)) — HY(Wp, Z;), which is surjective
by [Lan79c, Lem. 4]. Then c -1 comes from a 1-cocycle valued in G up to a
1-coboundary.

We define H to be the cokernel of the composite map 7y — Zg, — Zg, — H;.

We can write s; = sz for some s € G and 2 € Z((A?l). By pulling back n; : “H; —
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LGy via G — LGy, we obtain an injection 1 : H — “G and see that H is a split
extension of Wy by H (as H is generated by n;(Wp) and ﬁ)

It is enough to verify that ¢ := (H,H, s,n) is an endoscopic datum for G, since it
would then be obvious that ¢ — ¢; by construction, and we will be done. The main
point to show is that Int(s) o n = an with trivial (resp. locally trivial) 1-cocycle
a:Wp — Z(G) if F is local (resp. global). Let us check this when F is global as the
local case is only simpler. Since ¢; € £(G1) we know that Int(s)on; = Int(sy)on; =
aym with a locally trivial 1-cocycle a; : Wr — Z(él). Since m (Wg) C G we have
that a1 (W) C Z(G1)NG = Z(G) and that Int(s)on = arn. As Gy is a z-extension
of G, the map H'(Wp,, Z(G)) — H' (W, Z(Gh)) is injective at each place v (e.g.,

~

by [Kot84bl Cor. 2.3]). Hence a; is locally trivial as a cocycle valued in Z(G). O

7.2.12. From here until the end of F' is assumed to be non-archimedean.
Write F;,, for the unramified extension of F' of degree m € Z>, in a fixed algebraic
closure F. Denote by o € Gal(F,,/F) the arithmetic Frobenius generator. Fix a
z-extension 1 — Z; — G1 — G — 1. Set R := Resp,,/r G and Ry := Resp,, /r G1.
Write 6 (resp. 61) for the automorphism of R (resp. R1) induced by o. Identify

m—1
ﬁ _ @Hom(Fm,f) — H a

Jj=0

such that the j-th component corresponds to the inclusion F,, C F precomposed
by o7, and similarly for Ry. There are unique embeddings i : “G < R and
i1 : “G1 < TRy such that the maps are diagonal embeddings on the dual groups
and the identity map on the Weil groups.

The following is a variant of Lemma In practice G; and H; over F' will
come from central extensions over Q independently of m. By contrast, the ex-
tensions G} and H; below depend on m and will be considered only in a local
setting.

Lemma 7.2.13. Suppose that G and ¢ = (H,H, s,n) are unramified. Consider z-
extensions 1 - Z1 - G1 -G —1and 1 — Z1 — Hy — H — 1 as constructed in
Lemma (disregarding the last assertion) such that G1 and Hy are unramified.
Let F'/F be a finite unramified extension. Then there exist
(i) a z-extension 1 — Z7 — Gy — G — 1 such that Z] = HjeJResF]{/F Gm
with J a finite index set and F] O F', and
(i) a central extension 1 — Z1 — H{ — H — 1 arising from (i) as in Lemma
[7.2.0
such that Gy and Hy are unramified over F, and such that there is a commutative
diagram with an injective middle vertical arrow

(7.2.13.1) 1 7 Gf G 1,
1 zZ! el G 1

as well as the analogous diagram with H, Hy, H{ in place of G,G1,GY.

Proof. We have Zy = [[;.;Resp,/p Gy, for finite unramified extensions Ej/F'.

Take Z7 := [[.c; Resg, p/r Gy Along the canonical inclusion Z; < Z7, we make

JjeJ
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a pushout diagram from the top row of Lemma [7.2.6| as follows:

1 Z1 ZG1 ZG 1
1 Z 7zl Ze 1

With the bottom row in place of (7.2.7.1)) we construct a z-extension 1 — Z] —
G7 — G — 1such that Zg: = Z(, as in the proof of Lemma By construction,

we have (i) and (7.2.13.1). Applying Lemma to G, we obtain (ii). Since Zp,

and Zp; are preimages of Zg C Gunder G; — G and G| — G, we have Zy, C Zy.
This in turn induces Hy = Hye *z(m..) Zu, C Hi = Hs *7(m..) Zpgy. With this
inclusion as the middle vertical arrow, we see that there is a commutative diagram

analogous to (7.2.13.1)) for H, Hy, Hj. O
7.2.14. Under a temporary assumption on ¢ = (H,H, s,n) € E(G) that
se Z(H)'r

(in general s € Z(H)'rZ(G)), we construct some twisted endoscopic data to
be used in the stabilization (§8). Put 3 := (s,1,...,1) € R, which lies in Z :=
Cent(in(H), R). Define the L-morphism 7 : H — "R to be the twist of in by the
unramified 1-cocycle a : Wr — Z mapping o to 5. Then ¢ = (H,H, 3, 7) is checked
to be a twisted endoscopic datum for (R, 6), cf. [Morl0, A.1.3, A.2.6] or [Kot90, §7].
Replacing ¢ by ¢; (noting that the temporary assumption is still satisfied for ey,
i.e., s1 € Z(Hp)'F) we construct a twisted endoscopic datum ¢; = (Hy, " Hy,51,71)
for (Ry,61). With H{ playing the role of H;, we also construct ¢} and ¢}.

7.3. Cohomological lemmas.

7.3.1. Let F', G, and ¢ be as in §7.2] (The field F is either local or global.) Take a
z-extension G as in Lemma y Hilbert 90 the map G1(F) — G(F) is onto.
Let v € G(F)ss and choose a lift v; € G1(F). We have a commutative diagram of
reductive groups

1 A L, I, 1
1 7 G1 G 1,

which gives rise to a I'-equivariant commutative diagram by [Kot84bl 1.8]:

~

(7.3.1.1) 11— Z(I,) — Z(I

R

]

1l—— Z(é) — Z(@l) — 7 —1
In particular we get a I'-equivariant isomorphism
Z(1,)/Z(G) = Z(1,,) ] Z(G).
Lemma 7.3.2. We have
(i) If F is global or local, there is a canonical isomorphism

(I, /F) = &(L,, /F).
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(i) If F is local non-archimedean, there is a canonical bijection
9(1,,G1; F)=9(1,,G; F).

Y12

Proof. Let us check (i) in the global case. We obtain the following commutative
diagram from [Kot84b, Cor. 2.3] and diagram (7.3.1.1)):

mo((Z(1,)/Z(G))") H'(F, Z(G))

|- |

m0((Z(1,,)/Z(G1))'F) — H(F, Z(G1)).

The left vertical map is an isomorphism. The right vertical map is injective by
[Kot84h| Cor. 2.3] since 2{ " is connected (a product of copies of C*). Further ob-
serve that the injective right vertical map induces an isomorphism kerl(F 7 (@)) x
ker'(F, Z(G1)). To see this, notice that the cokernel is mapped injectively into
ker!(F, Z), which is trivial since Z; is a product of induced tori. Since R(I,/F)
(resp. &(L,, /F)) is the preimage of ker' (F, Z(G)) (resp. ker!(F, Z(@l))) under the
top (resp. bottom) horizontal arrow, the left vertical map induces the desired iso-
morphism of (i). In the case of local fields, the same argument works if we replace
the ker'-groups with the trivial group.

For (ii) consider the following commutative diagram of pointed sets (or of abelian
groups by identifying H' with HL,)

1 ——>9(I,,G; F) —=HY(F,I,,) — H'(F,G))

|

1H©(I’Y7G7F) Hl(FaI’Y)HHl(FvG)

H*(F, Z,) —=H?*(F, Z,),

where the middle and right columns come from the exact sequences preceding the
lemma and the fact that H'(F,.) = H. (F,) when F is non-archimedean (see
1.1.6). Assertion (ii) now follows from a diagram chase. O

7.3.3. Let (G, X) be a Shimura datum. We study Kottwitz parameters and their
invariants with respect to a z-extension 1 — Z; — G; — G — 1 over Q. Let
T C GR be an elliptic maximal torus. There exists h € X such that uy, : G,,, = G¢
factors through T¢. In the notation of pn € px (C). Write Ty C Gy g for the
preimage of T'. Then pp, : G,, — T lifts to a cocharacter yy : G,, = 17 ¢, which
we fix henceforth and view also as a cocharacter of G; over C. As noted in [MS82]
3.4], the conjugacy class of p1 comes from a Shimura datum (G;, X7) for a suitable
X1, that is, p1 € px,(C). In particular the discussion of cohomological invariants
(§§1.7.5HL.7.7) applies to (G1,X1) and ;.

Let 70,1 € G1 (A’}) and vy € G(AI;) such that 91 maps to vo. Write Iy 1 and I
for the connected centralizers of 791 and 7o in G and G over AL, respectively.
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Lemma 7.3.4. Suppose that vy € G(Aiﬁ) is the image of an element yo1 €
G1(A%)ss. Then the natural map D (Io1, Gr; A%) — D (1o, G; AY}) is a bijection.

Proof. This follows from (1.1.6.1)) and part (ii) of Lemma [7.3.2 O

7.3.5. Now consider a z-extension 1 — Z; — G; — G — 1 over Q, (which need
not come from Q-groups via base change). Let p: G,, — G@ be a cocharacter
P

over @p. Let 70,1 € G1(Qp)ss, and 9 € G(Q,) the image of vp,1. As usual, [y and
Iy,1 are the connected centralizers of vy and 7,1 in G and G over Q,,, respectively.
Fix a level n € Z~o.

Denote by ©,,(v0, G; Q,) the set of all [b] € B(Ip) satisfying condition KP1 of
Definition with the given 79 and n. (Here we do not require KPO, which will
come into play in Corollary below.) This means that for some (thus every)
representative b € I (Qp) of [b], there exists ¢ € G(@p) such that

cyoe =c7 o (b)--- o™ (b)o™ (c).
Given [b] € D, (70, G;Qp), we will often write dp) € G(Qpn) for the element arising
from [b] (well defined up to o-conjugacy in G(Q,»)) as in Lemma Then 7y is

a degree n norm of dpy).
Likewise we define ©,,(70,1, G1; Qp). The natural map o1 — Iy induces a map

(7.3.5.1) Dn(70,1,G1;Qp) — D0, G; Qp).

Lemma 7.3.6. Let v9,7,1 be as above. Suppose that Z; = HjeJ Resr; /0, Gm
with all F; containing Qpn and J a finite index set. Then the map (7.3.5.1) is a
bijection.

Proof. The map (|7.3.5.1) fits in the following commutative diagram
Dn (0,1, G1; Q) B(lo,1) — B(Ry)

e

Dn('YOa G; Qp)<—> B(IO) - B(R)a

where the vertical maps are induced by the natural maps Ip; — Ip and R; — R.

We may assume that ©, (70, G; Q,) is non-empty since the lemma is vacuously
true otherwise. We claim that ©,(v0,1,G1;Q,) is also non-empty. To see this,
fix [b] € Dn(v0,G;Qp) and pick a lift §) € G1(Qpn) of o). Let 75, € G1(Qp)
be a degree n norm of ¢;. Then the norm of zd] is z”z---”n71z76,1 with z €
Z1(Qpn). The norm map Z1(Qpn) — Z1(Q,) is onto by the hypothesis on Zi, so
we may choose z such that 791 is a norm of §; := zd{. This implies that there
isc € G’l((@p) such that cf170,101 = 01961 - ""n_lél. Setting by := clélacfl, we
see that by € Io1(Q,) (since Gy has simply connected derived subgroup) and that
[b1] € Dn(70,1, G1;Qp), proving the claim.

We fix [b], 01, and [b1] as in the last paragraph. In particular §; maps to § := dp,
and [b1] to [b]. By Corollary [[.6.11] [b1] € B(Io,1) and [b] € B(Io) are basic. Define
D([b1], R1) to be the set of basic elements [b}] € B(Io,1) such that xy, , ([b]]) —
K1y, ([b1]) lies in ker(mi(o1)r, tors — T1(R1)r, t0rs). Define D([b], R) exactly in
the same way with Iy and R in place of Ip; and R;.

We claim that ©,,(v, G; Q) is a subset of ©([b], R). Indeed, consider an element
(V'] € D,(70,G;Qp), which gives rise to 0’ € G(Qpn) as in Lemma Corollary
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1.6.11| implies that g, , ([0}]) — K1, ([b1]) is a torsion element in 7 (/o,1)r, via the
right half of the commutative diagram on [RR96) p. 162]. We know from Lemma
that & and ¢’ have the same norm, implying that § and &’ are stably o-
conjugate by [Kot82, Prop. 5.7]. Therefore [§] and [¢] are equal in B(R). Since b
and b are o-conjugate to & and &' in G(Q,), respectively, it follows that [b] = [0/]
in B(R). Hence rp,([b']) and s, ([b]) have the same image in 71 (R)r,, completing
the proof of the claim.
What we have shown is summarized in the following commutative diagram.

(7361) Qn(’yo,hGl;Qp)(—) @([bl],Rl)
i bij.

D (70, G; Qp) ——D([0], R)

The right vertical map is a bijection by the proof of [Kot82, Lem. 5.6.(2)]. (This
relies on the assumption of the lemma on Z;.) Indeed, the proof there shows a

canonical bijection from

ker(H'(Qp, I,) — H'(Q,, Ry))

to
ker(Hl(Qp, I(S) — Hl(@p7 R))a

but this is exactly the right vertical map above via the functorial bijection between
Hl((@p, H) and 71 (H)r,, tors for an arbitrary connected reductive group H over Q,,
cf. [Lab99, Prop. 1.6.7] and [RR96, Thm. 1.15.(i)].

Now we verify that the top horizontal map in is a bijection. As
we have seen in the last paragraph, ©([b1], R1) is in a canonical bijection with
ker(H'(Q,, I5,) — H'(Q,, R1)), which in turn is canonically bijective onto the set
of o-conjugacy classes in the stable o-conjugacy class of §; in G1(Q,n). Recall that
70,1 is a norm of §;. Therefore each 7 € G1(Q,n) stably o-conjugate to d; gives
rise to an element of ©,,(70,1, G1;Q,) as described in the second paragraph of the
proof of the current lemma (more detailed on p. 167 of [Kot90]). It is routine to
check that this map gives the inverse of the top horizontal map in .

Going back to diagram , it is now clear that the left vertical map (as
well as the lower horizontal map) is a bijection. (]

Corollary 7.3.7. Assume that D, (v, G;Qp) is non-empty. Then the map [b] —
dp) gives a surjection from Dy (Y0, G; Qp) onto the set of o-conjugacy classes in the
stable o-conjugacy class in G(Qpn) whose norm is vyo. If G has simply connected
derived subgroup then this map is a bijection.

Proof. Thanks to Lemma we can choose a z-extension G such that the
condition on Z; in Lemma is satisfied. Then the corollary follows from the
bijectivity of the lower horizontal map of (7.3.6.1), together with the interpretation
of D([b], R) in terms of o-conjugacy classes below (7.3.6.1)). O

7.3.8. Now we turn to the real place. Let (G, X) and (G1,X1) be as in §7.3.3
Following §1.7.5/and §1.7.6| for each elliptic element v € G(R), we have Bos(70) €

m1(Iy) = X*(Z(ly)) mapping to [u] € m(G) for any p € px(Q). The definition
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involves an extra choice, but the restriction of Bos(70) to Z(Io) = Z(G) is indepen-
dent of the choice. Analogously, for each elliptic element vp1 € G1(R), we have

Boo(70,1) € mi(Io1) = X*(Z(Io,1)) mapping to [u1] € m1(G1) with p1 € px, (Q).

Lemma 7.3.9. Assume that v0,1 € G1(R) and vo € G(R) are elliptic elements
such that o1 maps to yo. Then the image of Boo(v01) under the natural map
m1(lo1) — m (o) coincides with Buoo(Y0) on Z(Io)'~Z(G).

Proof. In and (adapted to (G1,X1)), choose any R-elliptic maximal
torus 77 C G and hy € X; factoring through T3 to define 500(70,1)~ Take T C G
and h € X to be the images of T, and hy in the definition of B (7). Then the
lemma is true on the nose. O

7.4. Langlands—Shelstad—Kottwitz transfer.

7.4.1. Let F, G, and ¢ = (H,H,s,n) be as in Definition [7.2.2} Throughout
assume F' to be a local field (of characteristic 0). Let ¢ : G — G be an inner
twisting of F-groups with G* quasi-split over F. We will use the following notation
for G (and likewise for other reductive groups).

T'(G) =T(G(F)) is the set of semi-simple G(F')-conjugacy classes in G(F),
Y(G) = E(G(F)) is the set of stable semi-simple conjugacy classes in G(F'),
H(G) = H(G(F)) and H(G,w™t) = H(G(F),w™ 1) as in §7.1.4]

When F' is non-archimedean and G is unramified, we fix a hyperspecial
subgroup K C G(F) and define H"(G) C H(G) and HY(G,w™?!) C
H(G,w™1) to be the subalgebra consisting of K-bi-invariant functions.

7.4.2. We explain the transfer of conjugacy classes in endoscopy following [Kot86),
§3.1]. See also [LS8T7, §1.3].

Let vy € H(F)ss. Choose a maximal torus Ty of H over F containing .
There exists a canonical G*(F)-conjugacy class of embeddings j : Ty — G* over
F. Fix a choice of j and put T* := j(Tg). Denoting the set of absolute roots of
Ty in H (resp. T* in G*) by R(Ty, H) (resp. R(T*,G*)), we have R(Ty,H) C
R(T*,G*). The element g is said to be (G, H)-regular if a(yg) # 1 for all
a € R(T*,G*)\R(Ty,H). The definition depends only on the H(F)-conjugacy
class of vy and not on the extra choices. The (G, H)-regular subset of H(F)s and
Y(H) will be denoted by H(F ), )-reg and X(H) (G, H)-reg, respectively.

Let v € H(F)(G,H)-reg- The F-embedding ¢ o j : Ty — G is canonical up
to G(F)-conjugacy, so vz determines a semi-simple G(F)-conjugacy class in G(F')
defined over F'. If this conjugacy class contains an element v of G(F'), then we take
the stable conjugacy class of v to be the image of vg. Otherwise the image of vg
is formally denoted by the empty set symbol (. (Such a v always exists by [Kot&2,
Thm. 4.4] if G is quasi-split and has simply connected derived subgroup, but not
in general.) To summarize, we obtain a map

(7421) E(H)(G,H)—reg — E(G) U {@}

We say that vy and v € G(F)s have matching conjugacy classes, or simply that
v is an image of yg. If the centralizer of v in G is connected (e.g., if Gger = Gsc)
then the centralizer of vy in H is also connected by [Kot86, Lem. 3.2].

If Gy and H; are as in (7.2.4.1) and Lemma [7.2.6} then the above construction
can be performed for G; and H; in place of G and H. This is visibly compatible
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with the surjections G; — G and H; — H, leading to the following commutative
diagram (where the symbol () maps to itself under the right vertical map).

E(H1) (G, Hy)reg — 2(G1) U {0}

| |

E(13')((;,H)—reg - Z(G) U {Q]}

By slight abuse of language (as H; is not an endoscopic group of G), v € G(F)gs is
said to be an image of v, € H1(F)(q, H,)-reg if the stable conjugacy class of vy,
maps to that of v in the above diagram.

7.4.3. We introduce k-orbital integrals, of which stable orbital integrals are the
special case. Let us assume that F is local for convenience. The main definitions
here extend to the adelic setting in the obvious manner.

Let v € G(F)s and z € G(F). Suppose that vy, := x~ vz € G(F) and zp(x) "' €
L,(F) for every p € I'p. Then z and the 1-cocycle p — zp(z)~! define an element
of HY(F, I,\G), to be denoted by &. The map z — ~, factors through HO(F, L\G),
namely there is an induced map

HY(F, I\G) — G(F), &+ ;.
Recall that there is a short exact sequence
1 — L(F)\G(F) - H(F,I,\G) —» ®(I,,G; F) — 1,

coming from a long exact sequence. Given Haar measures on I, (F) and G(F) and
the counting measure on (I, G; F), there is a unique way to equip H(F, IL\G)
with a compatible measure. The map & + 7y; induces a map

D(I,,G; F) — I'(G), [T] — Va1,

whose image consists of conjugacy classes in the stable conjugacy class of . If
G, = Cent(v,G) is connected (so that it equals I,) then [z] + 7, is a bijection
onto the image. In general the fiber over the conjugacy class of v € G(F) (stably
conjugate to ) is in bijection with ker(H'(F, I,/) — H'(F,G)). Recall the map
9(1,,G; F) = €(1,,G; F) = &(1,/F) from Thus we have a pairing

(,y: D(I,,G;F) x R(I,/F) — C*.
Given k € R(I,/F) and f € H(G) we define the k-orbital integral of v by

09Iy = [ )R 0L i
HO(F,1\G)

= Z e(I’Y[z] )<[x]v ’{>O$[£]F) (f)-
[x]€D(Iy,G;F)
When & is trivial, one has the stable orbital integral

SO (f) == OFIA(f).

The superscript G(F') will be omitted if there is no danger of confusion. The above
definition of k-orbital integrals works verbatim for f € H(G(F),w™1).
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7.4.4. We recall the Langlands—Shelstad transfer in the local untwisted case. See
§7.4.12 below for the twisted case.

When H = “H in the endoscopic datum (this assumption will be removed via
z-extensions), Langlands—Shelstad [LS8T7, [LS90] define the transfer factor

A('a ) : H(F)(G,H)-reg X G(F)ss — C

which vanishes on (vg, ) unless 7 is an image of vg.

When G is quasi-split, the canonical transfer factor Ay was given by Langlands—
Shelstad depending only on a choice of F-pinning for G. Another natural normal-
ization in the quasi-split case is the Whittaker normalization in [KS99, §5.3]. While
there is no direct analogue of either when G is not quasi-split, the Whittaker nor-
malization can be extended to G given a suitable rigidification of an inner twisting
of G against its quasi-split inner form. See [Kall6l [Kall8] for Kaletha’s notion of
rigid inner forms and a discussion of other rigidifications. In this paper, we do not
attempt to choose a rigidification or a canonical normalization of transfer factor at
every place. However when G is defined over Q, we may and will always choose a
global normalization as in [LS87) §6.4] so that the product formula (Corollary 6.4.B
therein) holds true.

In fact there are more than one sign conventions for (untwisted and twisted)
transfer factors as explained in [KS12]. We work with the factor A’ in loc. cit.,
which coincides with the one in [Kot90] (see p. 178 therein) but differs from the
definition of [LS87] by the map (H,H,s,n) — (H,H,s~',n). The reason for our
choice is that the former is better suited for extension to the twisted setting.

7.4.5. There exists a smooth character \g : Zg(F) — C* such that
(7.4.5.1) A(zym, 2v) = Au (2)A(ve, ), z € Zg(F).
This is [LS90, Lem. 3.5.A]. We can describe Ay explicitly on Z&(F) as follows.

Lemma 7.4.6. When H = LH, the restriction of Ay to Z&(F) corresponds to the
composite Langlands parameter

We— YH 5 LGS L70,
where the first map is the distinguished splitting, and ¢ is dual to the inclusion
Z2 — G.
Proof. Consider vy € H(F), v € G(F), and maximal tori T C G and Ty C H
as in [LS87, §3]. In particular we are given an isomorphism i : T = Ty, inducing
an isomorphism i : LTy = LT. They construct L-morphisms &y, : YTy — LH
and ¢ : T — LG (depending on some additional choices) as well as a 1-cocycle

a: Wp — fH such that nér, = a - & as L-morphisms from “Ty to “G.

Restricting the equality via the splitting Wr — “Tyy, we obtain

(7.4.6.1) n(ér, (w)) = a(w)ér(w) € *G,  we Wp.

The first paragraph of [LS87, p. 253] tells us that Ay| 29,(F) corresponds to a com-

posed with fH ~7 Zg, which is dual to Z% C T = Ty. To prove the lemma, it

is thus enough to verify that the composite map in the lemma is w — ((a(w)) x w.
To this end, write &7, (w) = b(w) X w and &r(w) = ¢(w) X w. From the con-

struction of &r in [LS87, §2.6], it follows that ((c(w)) = 1. Indeed, the two main

points are that the image of every morphism SLy — G maps trivially in Z2 (thus
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also n(wr (o)) therein) and that the coroots of G map trivially in 2% (thus also
rp(w ) therem) Similarly, b(w) maps to 1 € Z , 50 ((b(w)) = 1. Now we apply ¢
to ) to see that ((n(w)) = {(a(w)) x w, as desired. O

7.4.7. We introduce transfer factors in general by reducing to the case Gqer = Gse,

in which case we can always assume that H = “H, cf. and §7.4.4] Let
e = (H,H,s,n) € E(G). Take a z- extension 1—= 71 - Gy — G — 1 and define
¢, = (Hi,"Hy,s1,m) € E(G1) as in Then we have A(yy,,71) € C defined
on g, € Hi(F)(G,,H,)-reg and 71 € Gl( )SS. Langlands—Shelstad define

A(~, ) : HI(F)(Gl,Hl)—reg X G(F)ss — C

as follows. Set A(vy,,v) = 0 unless v is an image of v, (§7.4.2)), that is, unless 7
lifts to v1 € G1(F') which is an image of vy, , in which case A(ygr,, ) == A(vm,, 71)-

By (7.4.5.1),
A(Z’YH13,‘Y) = >‘H1 (Z)A(7H177)v zZ € Z?;l (F)

Notice that Z; C Z%l. Lemma implies that Ap, |z, (r) = A1, where \; was
given in §7.2.10} (This is also checked in [LS87, p. 254].)

7.4.8. Keep on assuming that F is a local field. We state the Langlands—
Shelstad transfer and the fundamental lemma for connected reductive groups G
with G1 der = G1,sc. Let ¢1 = (Hy, L Hy,s1,m) € E(G1). If G1 and ¢; are unrami-
fied, then 7; induces a C-algebra map via the Satake transform:

(7.4.8.1) nEHY(Gy) — HY(Hy).

Proposition 7.4.9. For each f1 € H(G1), there exists le1 € H(H1) enjoying
the following property: If yu, € Hi(F)(G,,Hy)reg has no image in Gi(F)ss then
SOy, (ff)y = 0. If yg, has an image v € G(F)ss then

(7.4.9.1) SOy, (M) = > eIy ) AGH M) O 1) (1)
[x]€D (14, ,G1;F)

Moreover, the fundamental lemma (FL) holds true, i.e., if G1 and e; are unramified
and if fi € H™(G1) then the above holds with fi'* =t f.

Proof. The second assertion (FL) follows from work of Ngb as well as Cluckers-
Loeser, Hales, and Waldspurger [CLI10}, [Hal95, Ng610, [Wal06]. The first assertion
(the transfer conjecture) is implied by FL [Wal97]. O

7.4.10. Let us adapt Proposition [7.4.9] to the setting with fixed central characters.
Let X be a closed subgroup of Z(F) and x : X — C* a continuous character. We
view X also as a closed subgroup of Zy(F) via Z < Zy. Denote by Xp, and X;
the preimages of X under Hy (F) — H(F) and G1(F) — G(F), respectively, so that
Xpm, = X, canonically. Choose compatible Haar measures on Xg, and ¥;. Let x1
denote the character of Xp, or X; pulled back from x : ¥ — C*. Restricting Ag,
as in §7.4.7 we obtain another character

)\H1|%H1 : %Hl — (CX.

By slight abuse of notation, we will often denote the above still by Ay, (as we will
not consider Ay, on a larger domain). In the special case when X = {1}, notice
that X1 = Xp, = Z1(F), x1 = 1, and Ay, = A\q.

If F is non-archimedean, x : X — C* is said to be unramified if the character
is trivial on the maximal compact subgroup of X. The same definition works with
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Xy, in place of X. When G, e, x, and the z-extension G; are unramified, we have
G1 and ¢y also unramified. In this case, the map n} : H"(Gy) — H"(H;) from
(7.4.8.1) is averaged to give a map

(7.4.10.1) HY™ (G, x 1) — HY(Hy, X7 Amy)

as follows. Let f1 € H"™(G1) be any lift of f along the natural surjective map,
where the first arrow is averaging against xi:

Hur(Gl) — Hur(Gl,Xfl) ~ Hur(G7X_l).
For z € Xp,, write f1 . (h) := fi(zh). Define a function f1 on Hy(F) by

Hy — Zle = 12—12’1"12; z
f (h)~—/xH1X1()Tlf,(h)d /lex()Am()nf(h)d

Then fH1 belongs to H" (Hj, Xfl)\Hl) and is independent of the choice of fi. The
resulting map ((7.4.10.1)) is again denoted by n} as there is little danger of confusion.

Proposition 7.4.11. For each x : X — C* and f € H(G,x '), there exists
le € H(HDX;l)‘Hl)
such that for every yu, € Hi(F) (G, H,)-reg, if ¥ € G(F)ss is an image of yu, then

SOy = N eIy, ) A(va, )OSV (f).

[z]€D(15,G;F)

If vu, admits no image in G(F) then SO?;I(F)(le) =0
Moreover when F is non-archimedean, if G1, ¢, and x are unramified, and if
fe H™(G,x7"), then x1,Am, |xy, are unramified and the above holds true with

Fo=ni(f).

Proof. Given f € H(G,x™ '), choose a lifting fi € H(G1) under the surjective
composite map H(G1) — H(G1,x7") = H(G,x"). Let fi"* € H(H,) be a transfer
of f1 as in Proposition Define fH1 € H(Hy, x; " A\m,) by

P ) = o [ O @A (s, € H(F),

so that for vy, € Hy(F)ss,
1

Hiy _ —1 big
Ty 50, (") = o [ NG 20, ()0
If g, has no image in G(F) then it has no image in Gy (F) either, so SO, (f")
vanishes. Otherwise, let v; € G1(F) be an image of «yg,. Then zv; is an image
of zyy, for each z € Xp,. Applying Proposition [7.4.9| to (7.4.11.1), we see that
SO, (fH1) equals

xi(z) A(zvm, Z%,[m])
/levol(%Hl) 2. e(Iﬁm)W 1, (F1)d2

[x]€D(Iy,,G1;F)

where Lemma-gives a bijection ©(I.,,,G1; F) =9(1,,,G1; F) =9(1,,G; F).
(We view [z] also as an element of D(I.,,,G1; F) or D(I,,G; F).) By definition

and (7.4.5.1] m, we have

A(zvH,, 271, [0) = A(2YH V) = A, (2)A(VH, S Vi) z € Xp,.
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By [Kot83, Cor. (2)] e(ly,,) = e(ly,,). All in all, as the sums run over [z] €
9(I,,G; F) below,
1
H, _
SO’YHl (f ) - %]:G(I’Y[I])A(’YHU"/[m]) (vol(%l) Al Xl(z)Oz'yly[m] (fl)dz>

= Z e(I’Y[m] )A(’YHl ’ ’7[$])O’Y[z] (f)
[«]

It remains to prove the last assertion when G, ¢1, and x are unramified. Let z
be an element in the maximal compact subgroup of Xg,. In the notation above,
if f1 is replaced with a translate f; . then ff1 is multiplied by Ay, (z) according
to §7.4.7 On the other hand, f; is unchanged if translated by z since f is in the
unramified Hecke algebra. Combining the two facts, we see that the stable orbital
integrals of fH1 do not change values under multiplication by Mg, (2). Therefore
A, is unramified. The fact that we can take f1 = n7(f) follows from the earlier
part of the current proof, where we can pick f; € H"(G1) and choose lel to be

the image of f; under (|7.4.8.1)). O

7.4.12. Here we work out a small generalization of some results in local twisted
endoscopy by Morel and Kottwitz [Morl0, §9, App. A] to the setting where H in
the endoscopic datum cannot be taken to be an L-group. We put ourselves in the
setting of §7.2.12| with FF = Q,. Let ¢ = (H,H,s,n) € E(G), which gives rise
to e = (Hy,“Hy,81,m) € F(G1) as in Lemma We make an additional
hypothesis that

se Z(H)r.
The group G is assumed quasi-split over Q,, so that [Morl0, App. A] applies. If G
and H are unramified (which we are not assuming) then we may and will choose
G1 and H; to be also unramified.

In twisted endoscopy, the norm map is defined by Kottwitz and Shelstad [KS99]
for strongly regular elements and by Labesse [Lab04] for elliptic elements (which
may not be strongly regular). The norm map in untwisted endoscopy is simply
the transfer of conjugacy classes as in In the special case of base change,
Kottwitz [Kot82] defines the norm map for general elements. (These norm maps
coincide when there are more than one definitions available in a given setting.) For
our purpose, we define the norm map from R;(Q,) to H1(Qp) to be the degree n
base change norm from R;1(Q,) to G1(Q,) followed by the transfer of semi-simple
conjugacy classes (§7.4.2) from G1(Q,) to Hi(Qp). It is an exercise to check that
this is consistent with the norm map by Kottwitz—Shelstad and Labesse.

Let 01 € G1(Qpn) = R1(Qy). It has a degree n norm 791 € G1(Q,). We assume
Y0,1 to be semi-simple. Then §; corresponds to [bi] € D, (70,1, G1; Qp) according
to Corollary So we write 0, for 61 = o). Recall B, (y0,1, [b1]) = K1, ([b1])-
Suppose that vy, € H1(Qp)ss is a norm of §;. Then ~p 1 is an image of vz, .

When vy, is strongly Gi-regular (equivalently when -y, is strongly regular),
Kottwitz [Morl(, Cor. A.2.10] proved that

(7.4.12.1) Ao (Y, 5 Oy)) = Ao(Vay 5 70,1)(Bp (V0,15 [b1]), 51),

where we have taken the sign correction of [KS12, §5.6] into account. To make sense
of the pairing, we view s; € Z(f[l)rp as an element of Z(IA(M)FP via Z(ﬁl)FP -
Z(I,, )'» = Z(Ip1)", cf. [Morl0l A.3.11].

YH,
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When vy, is (G1, Hi)-regular but not strongly G-regular, we take as
the definition of Ag(va,,dp,), cf. [Morl0 (A.3.11.1)].

Let 79 € G(Qp) and [b] € D, (v, G;Qp) be the images of v91 and [bi1], re-
spectively. Then [b] gives rise to dp € G(Qpn) via Corollary and 7o is a
degree n norm of d). If the hypothesis on Z; in Lemma is satisfied, and if
[b1] € Dn(70,1,G1;Qp) and [b] € D, (0, G;Qp) correspond under the bijection of
that lemma, then the o-conjugacy class of d,) maps to that of o). We defined
Bp(70, [0]) to be ki, ([b]), which equals the image of 8,(y0.1,[b1]). Thus we have

(Bp(70,1, [b1]), 1) = (Bp(70, [0]), ).

In case G; and ¢ are unramified, the twisted datum ¢, = (Hy,H1,51,71) of
§7.2.14]is also unramified, and 7; induces C-algebra morphisms

HY(Ry) — H™(H,) and H™(R) — H(Hy, Ay,

as in the untwisted case, cf. §7.4.8] and §7.4.10} By slight abuse of notation we call
both maps 77. The following is a twisted analogue of Proposition [7.4.11

Proposition 7.4.13. Let f € H(R(Q,)). Then there exists fH € H(Hq, Mg, ) such
that the following holds: Let vi, € H1(Qp) (G, Hy)-reg- We have SO, (f7) =0 if
YH, 5 not a norm from R1(Qp). If yu, is a norm of 61 € R1(Qp) = G1(Qpn) then
whenever vy € G(Qy) is an image of yu,, we have

(7.4.13.1)

SO’)’H1 (le) = A0(’)/11’1 ’ 'YO) Z 6(15[5,] )<5§0(707 [b])a 5>T0(5[b] (f)
[b]€Dn (70,G3Qp)

Moreover if G1 and ¢ are unramified, and if f € H"™(R) then the above is true
for f1r =3 (f) € H™ (Hy, Amy)-

Remark 7.4.14. In the essential case when GG; and ¢ are unramified with f in the
unramified Hecke algebra, if vz, is restricted to be a strongly Gi-regular element,
the proposition is a special case of the twisted fundamental lemma (TFL) for the
full unramified Hecke algebra. When the residue characteristic p is large, TFL
for the unit element is true thanks to Ng6, Waldspurger, Cluckers-Loeser, and
others (|[Ng610, Wal08] with [Wal06] or [CL10]). For general elements of unramified
Hecke algebras, including the case of small p, TFL was recently established by
Lemaire, Moeglin, and Waldspurger [LMW18] and [LW17]. Note that TFL states
an orbital integral identity only for strongly regular elements; in fact the twisted
transfer factors are not defined for other elements in general. However we want an
orbital integral identity for (G, H;)-regular semi-simple elements which may not be
strongly regular. The transfer factors for such elements are available in our setting,
and Propositionis proved for such elements in [Mor10, Ch. 9, App. A], under
the hypotheses that Gger = Gsc and that H = “H in the endoscopic datum. So the
point of our proof below is to remove the hypotheses of [Morl0]. The basic idea is
to employ z-extensions, but there is a technical problem: no single z-extension Gy
satisfies the assumption of Lemma for all (sufficiently large) n. We choose an
auxiliary z-extension as in Lemma [7.2.13] to get around the issue.

Proof of Proposition[7.4.13 We present a proof when G; and ¢ are unramified as-
suming that f € H"(R). The general case will be taken care of in the last paragraph
of this proof.
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Put Z; = Resg,. /0, (Z1)g,»- Choose fi1 to be any preimage of f under the
averaging map H" (R1) — H" (R) over ker(R;(Q,) — R(Q,)) = Zl((@p). Suppose
that zyg, is not a norm from R (Q,) for any z € Z1(Q,). Then [Mor10} Prop. 9.5.1,
Prop. A.3.14] tells us that SO, (77 (f1)) = 0. Hence

SOxu, (ﬁi‘(f))=/Z(Q )/\z}f(z)S 2y, (1 (f1))dz

Now assume the existence of z € Z;(Q,) such that v}, := zyg, is a norm
of some element §; € Ri(Q,). Let 701 € G1(Q,) be an image of 7y, . (Such
a 7p,1 exists since G1 is quasi-split and has simply connected derived subgroup,
cf. [Kot82, Thm. 4.4].) Write vy € H(Qp) and v € G(Q,) for the respective
images of vy, and ~1. Take central extensions G} and Hj as in Lemma
and write Z] for the common kernel of the surjections G| — G and H{ — H. Thus
Z1 = ITi—1 Resg, g, G for r € Z>1 and F; D Qpn. Set

7y = Resq, /0, (Z1)a,m H [I Resre,G
i=1Qpn —F;

where the second product runs over the set of Q)-embeddings. Fix an embedding
Qp» — F; for each ¢ and define Y; to be the subtorus of Z{ whose components
outside the set of fixed embeddings are trivial. The Frobenius automorphism o €
Gal(Qp» /Qp) acts on Zvi by permuting the Q,-embeddings.

The norm map N : Z} (Qp) — Z1(Qp) is obviously onto and restricts to an
isomorphism

N :Y1(Qp) = Z1(Qp).
From e, we have ¢] = (H{,LHl,sl,nl) € E(G1) as in Lemma- Since s €
Z(I;T) we have that s} € Z(Hl) One builds a twisted endoscopic datum ¢} for
(R},07) as in §7.2.12|and §7.2.14]
Choose f; € H"(R}) to be a preimage of f under the averaging surjection
HU(R)) — H™(R). We have

() (1) € ™ (HY, ™= ()*(f) € H™(H], Amp)-
The inclusion Hy — Hj induces an isomorphism H"(H1, Ag,) = H™(H{, Any)

since the character Ay, restricts to Ag,. The functions in and fHt correspond
under the isomorphism. Clearly

SO, ( iy = SOy, (f) = SO, (f™).
By [Morl0l Prop. 9.5.1, Prop. A.3.14],
(7.4.14.1) SOy, (M) (1)) =Y _ ells;) AoV, - 61)TOs; (f1),

5

where the sum runs over a set of representatives for the o-conjugacy classes in
G1(Qpn) = R1(Qp) whose norm is vo,1. (Here we view 74 and 79,1 as elements of
H{(Qp) and G1(Qp) via Hy C Hj and Gy C G.) Let 6 € R(Qp) denote the image
of 01, and y € Z{(Q,) an arbitrary element. We collect the following facts.

e the set of representatives 07 in the sum is in bijection with D, (0,1, G7; Qp),

and also with ©,(7, G; Qp) (Lemma and Corollary ,
e ¢(lys) = e(Is) by [Kot83| Cor. (2)],
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N(y)y0,1 (resp. N(y)vy,) is a norm of yd; in G (vesp. Hj),
m holds with N( )70,1 and N (y)vy, in place of yo1 and vy,
Ao (N ()7, > 41) = Aty (N (1)) Ao (v, 87) by [KS99, p. 5317
Ao(Yp,70,1) remains the same whether it is viewed with respect to the
transfer between Hj and G or between H; and Glﬁ

Putting all this together, we deduce that SO, (fH 1) equals
1

| X80, (@) (1)
Z1(Qp) !

/ o )2 el BN W1, v T Oy ()

3
= S eIy Do, ) / TO,5 (f)dy
61 Yl(Q;n
- S ellay )00 200 B0, D). 4T0s,, (1),

[bi]egn(70,17Gi§Qp)

= Do ellsy) Do) (Bp(0, b)), )T Os,, (f).

[b]€D 7 (70,G3Qp)

This finishes the proof in the unramified case.

The general case (when either G or ¢ is ramified) works in the same way. If zyp,
is not a norm from R1(Qp) for any 2z € Z1(Qy) then SO, (fH1) = 0 as before.
Otherwise we assume that v ; 1= 2yp,1 is a norm for some z. Then we repeat the

preceding argument, with the difference occurring in the choice of f#i. Namely
by [Morl0, Prop. A.3.14], there exists f1 € H(H}(Q,)) such that (7.4.14.1)) holds

true with fH1 in place of (7,)*(f]), and such that S0, (fH1) = 0 if ~ is not
1
a norm. Setting f71(h/) := =/, (@) H,( 2) fHL(Z'W)dZ', we see from the above

computation that Proposition holds. The proof is complete.
O

7.4.15. The last part of Proposition [7.4.13] can be slightly generalized, following
[Kot90), p. 181]. Assume that H and G are unramified, thus choose H; and G to be
unramified, but allow e; to be ramified. In that case, one can write 7, = c¢-n} with a
continuous 1-cocycle ¢ : Wg, — Z(Ig'l) such that (Hy,H1, s1,n7) is unramified. (To
see this, apply [Lan79¢, Prop. 1] for an unramified extension to find n{, and observe
that n; and 79 must differ by a continuous 1-cocycle valued in Z (}AI 1).) Via local
class field theory, ¢ determines a smooth character x. : H1(Qp,) — C*. Writing
fHre = 37" (f), we see that fH1 := y. . fH1:° satisfies the desired condition of
Proposition This follows from the fact that Ag(yzr,,70,1) gets multiplied by

47Unlike the formula in loc. cit., we do not put an inverse over A o since we are following the

convention for A’ in [KS12|, which inverts Ajyr in [KS99].

4875 see this, one reduces to the strongly regular case by [LS87, §4.3] and [LS90, §2.4]. The
same a-data and x-data may be chosen in the two cases to compare transfer factors, as the
centralizer of 70,1 determines the same root system in G and G’1 respectively. Then one sees that
each of Ay, Arr, Arrr,, Arrr,, and Apy is the same by inspecting the definition in [LS87, §3].



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 211

Xc(vm,1) when changing from n{ to ;. (This factor comes from Ay in [LS87, §3.5]
as the 1-cocycle a there is replaced with ac.)

Proposition 7.4.16. In the setting of Proposition assume that G is un-
ramified over Q, and f € H"(R(Qy)). If H is ramified over Q, then we can take

fHr =0 (i.e., the right hand side of (7.4.13.1) always vanishes).

Proof. The untwisted analogue of this proposition is proven in [Kot86l, Prop. 7.5].
We adapt this proof, referred to as “loc. cit.” below, to our twisted setting. (A
proof in the twisted case is alluded to on p. 189 of [Kot90]. We are elaborating on
the details.) We write G’ for the group G in loc. cit., as we reserve the symbol G
to stand for a z-extension. Via z-extensions we redllce to the case where Gger = Gec
and H = L'H. Recall we are also assuming s € Z(H)'».

Fix [b] € D,(70,G;Q,) and a representative b € G(Q,) of [b]. Fix ¢ € G(Q,)
as in condition KP1 of Definition so that ¢ lygc = do(d) -+ 0™ 1(5) with
6 = ¢ bo(c) € G(Qpr) (which is also denoted d)). As in the proof of Lemma
the following sets are in natural bijections with each other:

(i) the set of o-conjugacy classes in the stable o-conjugacy class of 4,

(ii) ker(H'(Qp,Is) — H'(Qp, R)), and

(ill) Dn(v0,G;Qp).
To go from (i) to (ii), let &' = x66(x)~" with 2 € R(Q,), where 6 denotes the
automorphism of R induced by o € Gal(Q,»/Q,). Sending ¢’ to the cocycle zs ¢ :
7+ 717z induces the bijection from (i) onto (ii). To go from (i) to (iii), take ¢’ €
G(Q,) such that (¢/) "1y = §a(6") - -- 0™ 1(¢"). Then we send & to [¢d'a ()] €
B(1y), which lies in the set (iii). Moreover we have the following compatibility: it
follows from the bottom commutative diagram in [Kot97, p. 273] (with Is and I
in place of J* and H there, and the cocycle h determined by o ~ cdo(c)~!) that
the image of z5 s+ under the composite map

HI(Q;(”I(S) = 7"'1(15)1“1,,t0rs = 771(10)1",],1;01‘5 — 771(10)1"1,

coincides with the image of [b'] — [b] under the composite map

D,.(70, G; Qp) = B(Io) —% m1 (Io)r, -

Write inv(d,d’) for the image in 7 (Io)r,. With the preparation so far, we follow
loc. cit. to construct an exact sequence of unramified reductive groups over Q,

1-G—-G —=C =1,

where C is a non-trivial unramified torus. Define R’ := Resg,. /0, G’. Via the
dual map G — é, we can pull-back 7 : H — G to define H’ equipped with an
embedding H' < G'. We equip H’' with a T'y-action as in loc. cit.

Write I§ for the connected o-centralizer of § in R’. As in loc. cit. we have an
exact sequence 1 — I; — Ij — C — 1, whose dual exact sequence fits in the
following commutative diagram, where rows are I'p-equivariant and exact:

1—>C——> Z(H')—> Z(H) — 1

L

11— C—— 2(I}) — Z(I;) —=1
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We have s € Z(H)T» ¢ Z(I5)'». Write x, for the image of s in H'(Q,,C) under
the connecting homomorphism arising from the first row. Then y, determines a
smooth character C'(Q,) — C*, still denoted by xs. As in the proof of [Kot86,
Prop. 7.3.5], the character x; is ramified, i.e., non-trivial on C(Z,). (As C is
unramified, it extends uniquely to a Z,-torus.) This is crucial for our proof.

Now consider g; € G'(Q,) and put & := ¢100(g1) "' = g169; " € G(Qpn). We
claim that ¢’ is stably o-conjugate to 0. Indeed, writing ¢; € C'(Q,) for the image of
g1, take a lift go € Ig(@p) of ¢! via the surjection I} — C. Set g := g1g2 € R(Qp).
Then we have ¢’ = g66(g) !, which proves the claim.

Let [b'] denote the image of ¢’ under the bijection from (i) to (iii) above. Then
we assert that

<5P(70a [b/])v S><BP(707 [b])7 S>_1 = (inv(é, 6/)’ 5> = Xs(cl_l)'

The first equality follows from the aforementioned compatibility. The second equal-
ity comes from [Kot86, Lem. 1.6] (applied to I = C and G = Ij), where the image
of ;! in H'(Q,, I5) is represented by the cocycle zs 4. Indeed, after applying the

injection from H'(Q,,I;) into B(I5) = H'(Wg,, I5(Q,)), they are represented by
the same cocycle since g;ngg =g lTgforT e Wa,-

For f € H™(G(Qp)), define fo € H™(G(Qp)) by f(g17g; ") with g1 as above.
(The analogue of f; is denoted by f1 in loc. cit.) Write f and f¥ for their twisted
transfers to H. On the one hand, we have f = fy by the argument of loc. cit.,

so we can take ff = fH. On the other hand, comparing the right hand sides of
(7.4.13.1), we have

S0, (f5") = (Bp (30, [0']), 5)(Bp (Y0, [b]), ) T SO, (1) = xs(e11) SO, (f1)

if v is a norm of some 4 as above, and SO,,, (ff) = 0 if vy is not a norm of any
such 6. In order to verify that the stable orbital integral of f¥ is identically zero,
it is thus enough to exhibit a suitable ¢; such that y,(c;') # 1.

To this end, let T' be a maximally split maximal Q,-torus in G, and take T” to
be the centralizer of T in G’. The resulting exact sequence of unramified tori

1T T -C—1

extends uniquely to an exact sequence of tori over Z,, with 1 — T(Z,) — T"(Z,,) —
C(Z,) — 1 exact. Fix any ¢; € C(Z,) such that xs(c1) # 1 and choose g1 € T'(Z,)
to be a lift of ¢;. Running through the above argument, we conclude that the stable
orbital integral of f¥ vanishes everywhere.

O

~

7.4.17. Finally we drop the assumption that s € Z(H)"» and consider the general
case where s € Z(H)'»Z(G). Write s = s's” with s’ € Z(H)'» and s” € Z(G). As
in (H,H,s',n) € E(G) yields a twisted endoscopic datum (Hy, L Hy,3,,7})
for (R, 0), with s’ playing the role of s.

Consider the setting of where ¢, € H"(R(Qp)) was introduced. If ¢ is
unramified, then take £ .= ;=1 (s")57" (¢n). If H is unramified but ¢; is ramified,
then we take f1 asin §7.4.15| If H (thus also H;) is ramified over Q, then take
fHr .= 0. We check that Proposition extends to this case.

Corollary 7.4.18. Let v, € H1(Qp) (G, Hy)reg- We have SOy, () =0 if v,
is not a norm from R1(Qp). If yu, is a norm of 61 € R1(Qp) then denoting by
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Y0 € G(Qp) an image of v, , we have

SO’YHI (f'r?l) = Z e(Ié[b])AO(PYHla70)<Bp(70a [b])75>T05[b] (¢n)a
[b1€D 7 (70,G3Qp)

where the summand is understood to be zero if TOs, (¢n) = 0. If TOsp, (65) # 0
then [b] satisfies KPO and KP1 in Deﬁnition s0 Ep('yo, [b]) is well defined as
ezplained in §1.7.5

Proof. By definition [b] € D, (70, G;Q,) always satisfies KP1. Let u € p$ as in
If TOs,, (¢n) # 0 for some [b] € D,,(70, G; Qp) then X, () is non-empty
by definition (2.2.7.1)), so [6;y] € B(G, —u) by [RR96]. Since [b] = [0f)] in B(G), we
see that KPO holds true. Thus

<Bp(707 [0]), s) = M_l(sll)<§p(707 [0]), 8/> = M_I(S//)Wp(%a [0]), S/>.
(The second equality holds because s’ € Z(H) > ¢ Z(Iy)'» and Bp(7y0,[b]) is an

element of 7 (Io)r,.) Now the proof follows from Proposition [7.4.13| with ¢,, and
s’ in place of f and s, respectively, as u~1(s”) € C* cancels out. O

8. STABILIZATION

We return to the point counting formula for Shimura varieties. Taking Conjec-
ture for granted, we carry out the stabilization of the formula (1.8.8.1]), with
a view towards a representation-theoretic description of the cohomology.

8.1. Initial steps.

8.1.1. We start by fixing a central character datum, rewrite the coefficients in
(1.8.8.1)), and apply a Fourier transform on the finite abelian group £(1p/Q).

We freely use the setting of §I.8 Throughout stabilization, we fix an unramified
Shimura datum (G, X, p,G), which determines K, = G(Z,), and an open compact
subgroup K? C G(A’}) such that K = K,KP? is a neat subgroup.

8.1.2. Recall that Z is the center of G. We endow Az = Ag,o, which is
isomorphic to a finite product of copies of RZ,, with the standard multiplicative
Haar measure. Fix Haar measures on Z(Ay) and Z(R), thereby also on X :=
(Z(Af)NK)-Z(R) and Xg\X/Az , relative to the counting measure on Xg (which
is discrete and compact in X/Az o). With respect to the set of places of Q, we have
the decomposition X = X7>°X,X.. We put a Haar measure on Z(Q)\Z(A)/X via
the following exact sequence of topological groups

1= Xo\X/Az.00 = Z(Q\Z(A)/Az,00 = Z(Q\Z(A)/X = 1,
where the space in the middle is given the Tamagawa measure.
We promote X to a central character datum (X, x) by defining the finite part
X to be trivial on Z(Ay) N K and the infinite part xoo := wg17 where we is the
central character of £ on Z(R).

For a connected reductive subgroup Gg of G over QQ containing Z such that
Aq, = Az, we use the quotient measure to define

x(Go) := vol(Go(Q)\Go(A)/X)

by viewing the double coset space as the quotient of Go(Q)\Go(A)/Agy,00 by
Xo\X/Az o, where the former is equipped with the Tamagawa measure and the
latter with the measure explained above. For any inner form G, of Gy over Q we
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make sense of 7x(Gj)) by transporting the measure. Since the Tamagawa volumes
are equal for G and G{, by [Kot88|, we have 7x(Go) = mx(G}).

Once and for all, fix a z-extension G of G over Q which is unramified over Q,.
This is possible by Lemma (recalling that G is unramified over Q,). Write
X1 C Zg,(A) for the preimage of X under G; — G. Write x; for the pull-back of
x to X1 (thus the finite part of x; is trivial). Then (X1, x1) is a central character
datum for Gy, and X; = X7"°°¥; , X1 o analogously as the decomposition of X. We
put the unique Haar measure on X;, and thus also on X1 ¢\X1/Aq, « similarly as
above, such that

(8.1.2.1) vol(X1,0\X1/A4¢, 00)/vol(XQ\X/AG,00) = T(G1)/7(G),
so that
(8.1.2.2) %, (G1) = 72(G).

Let ¢ = (y0,a,[b]) € 8B, (p") for some n € Z>;. Recall from §1.7.11] that ¢
determines an inner form I, of I over Q,. Note that I, depends only on 7, and [b]
(not on a). Since I, is always a compact-mod-center inner form of Iy gz we often
write ISP for I.. If the Kottwitz invariant a(c) (defined in §1.7.5) vanishes, then
we have an inner form I of I over Q which localizes to I, at each v (Proposition

1.7.12)). We defined the constants ¢ (¢, K7, di,di?) and ca(70) in
Lemma 8.1.3. If a(c) vanishes, then
c1(e, KP, dipdi?)ca(v0) = 7x(G) - |R(1o/Q)| - vol(Z(R)\ oo (R)) .

Proof. With the choice of measures as above,

c1(e, KP, dipdi?) = vol(I(Q\I(A)/ZxIo(R))
vol(I(Q\I(A)/Zk Z(R)) _ 7z (lo)
vol(Z(R)\Iso (R)) vol(Z(R)\I(R))"

On the other hand one deduces as in [Kot86), p. 395] that

e2(70) = 7(Lo) ' T(G)|R(1o/Q)| = Tx(I0) "' 7x(G)|R(Lo/Q)|-
We conclude by taking product of the two equations. O
8.1.4. Let ¢ = (0, a,[b]) € 8B, (p"). Define e(c) := [], e(Iy) € {£1}, the product

of Kottwitz signs over all places. If a(c) vanishes, then e(c) = 1 since I,’s come
from a Q-group I. Hence

(8.1.4.1) Y ele)(ale) k) :{ |R(Lo/Q)[, if a(c) =0,

0, otherwise.
KER(Io/Q)

Applying Lemma [8.1.3|and (8.1.4.1) to (1.8.8.1]), we have
(8.1.4.2)

T((ﬁgba fpdgp) = T%(G) Z ZG(’YO)il Z Z N(VO? K, a, [b])a

Y0 EX x r-e1l (G) KER(1o/Q) (a,[b])
where the third sum runs over ©(Iy, G; A’]ﬁ) X Dy (70, G; Qp) and

04, (fP)T Osy,y (Pn)tr € (70)
vol(Z(R)\/oo(R))

N(’YO, K, a, [b]) = <a(’707 a, [b]), “i>e(70a a, [b])
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This is straightforward possibly except for the following point. In (1.8.8.1), every
¢ = (70,4a,[b]) is a p"-admissible Kottwitz parameter. In the formula above, since
condition KPO is not imposed on [b] € D, (y0,G;Q,), a priori (7o, a, [b]) may not
be a Kottwitz parameter. The necessary observation is that [b] satisfies KPO as
soon as dpp lies in the support of ¢y,.

8.2. Local transfer of orbital integrals.

8.2.1. Here we prove adelic orbital integral identities for each ¢ = (H,H,s,n) €
Eoi(G). The fixed z-extension Gp (which is unramified over Q) gives rise to a
central extension H, of H via Lemma In particular, if H is unramified over
Q, then so is Hy. As before, Xp, is the preimage of X C Zg(A) C Zy(A) under
Zy, — Zy. We have a continuous character Z¢, (Q)\Zg, (A) — C* corresponding
to the global parameter Wo — “H; ™ LGy — L Z% asin Lemma Restricting
to X1, we obtain a character

(8211) >\H1 : }:17@\%1 — (CX,

which can be viewed as a character of Xy, via X1 = Xp,. According as X; =
XPX1 p X100 we decompose Mg, = Ny "Am, pAH, 0o With the Haar measure on
X, transferred to Xp, via the isomorphism, the analogue of (8.1.2.2)) holds.

Lemma 8.2.2. We have Tx, (Hy) = 7x(H).

Proof. Once we prove that 7(G1)/7(G) = 7(Hy)/7(H), the lemma follows in the

same way as (8.1.2.2) is implied by (8.1.2.1)). By [Kot84bl, (5.2.3), §5.3] (71(+) therein
is 7(+) by [Kot88]), we have

7(G)/7(G ’coker G’ = X, (Zl)F)’,
r(Hy)/r(H ‘coker a)F — X*(Z)F)‘ .

So it is enough to show that the two cokernels are isomorphic. Consider the com-
mutative diagram below, where the rows are coming from the exact sequence of
[Kot84h| Cor. 2.3].

(G1))F —— X.(Z)"
|

(H1)F —— X.(Z)"
i

1— = X, (Z(G) —“—= X, (Z

11— X, (Z(H)" X.(Z

X.(Z(H)/Z(G)" == X.(2(H1)/Z(G1))"
We obtain cokerig =2 cokeriy by diagram chase, and thereby the two cokernels
above are isomorphic. ([l

8.2.3. For the moment we assume that s € Z(ﬁ)FP, and we are going to drop this
assumption in §8.2.6] below. By Proposition there exists a transfer

JHrs € HOHL(AF™), X V)
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of fP> € H(G(A})/KP) with the following property. For each

YH, S Hl(AZ})(Gl,Hl)—rega

if it has no image in G'1(A%)ss then SO, (fH1:Po0) = 0. If there exists an image
Y01 € Gl(AZ})SS of v, , then writing g € G(A?) for the projection of g 1, we have

SO’YHl (le,p,oo) = Ze(al)A(7H1770,1,@1)0’)’0,1,111 (fp’oo)

a1

> e(a) A(ya,,70.0) (87 (Yo.1,a1), 51) O, o, (F7°)

aiy

(8.2.3.1) Z H e(Ly) | A(vmy;70,1){(B" (Y0, a), 8)Ox, , (f7°°),

a  \v#p,00

where the sums for a; and a run over D(Iy,1, G1; A}) and D (Io, G; A%) respectively.
Recall that 8P°°(-,-) was introduced in §1.7.6] The second equality above follows
from a basic property of transfer factors regarding the change of 7y, within its
stable conjugacy class as stated in [Kot86, Conj. 5.5], which can be proved by
arguing as in the proof of [LS87, Lem. 4.1.C ] in the G;-regular case and extended
to the (G, Hy)-regular case by [LS90].

8.2.4. From and Corollary we obtain fI € H(H1(Qp), An, p)
(renaming f1) with the following property. Let vy, € H1(Qp)(cy,Hy)-reg- If Vo, 18
not a norm from an element of 1(Qy) then SO, (fF) = 0. If it is a norm, there
exists 79,1 € G1(Qp) whose conjugacy class matches yg,. Writing 9 € G(Q,) for
the projection of 7y 1, we have
(8.2.4.1)

SO’YHl (fth) = Z 6(15[1;])A0(7H1770,1)<Bp(70a [bD78>TO5[b] (Pn).
[b]egn(VoyG;Qp)
By definition I5, = I, if [b] comes from ¢ = (7o, a,[b]) € &P,(p"). Thanks to
Proposition [7.4.13| we may and will take ffl = 0 if H is ramified over Q,.

8.2.5. Our starting point for real orbital integrals is the argument of [Kot90, §7]
based on Shelstad’s real endoscopy [She82] and the pseudo-coefficients of Clozel-
Delorme [CD90]. We incorporate central characters and z-extensions.

We have the characters xi,00 and Ag, 0o 00 Xp, 0. We will drop oo from the
subscript and write Ag, and x; when the context is clearly local archimedean.
Let & be the irreducible representation of G obtained from £ via the surjection
Gy — G. Asin fix a Shimura datum (G, X;) and u; € px,(Q). For

each elliptic 7091 € G1(R) we have an element Boo(70,1) € m1(fo,1) which maps to
[ul] € 7T1(G1), cf.

We simply set fXi := 0 if elliptic maximal tori of Gg do not come from those
of Hg via transfer (equivalently, if elliptic maximal tori of G1 r do not come from
those of Hy g). In particular fZ1 = 0 if Hg contains no elliptic maximal tori. From
now on, we assume that Hg contains elliptic maximal tori and they transfer to
elliptic maximal tori of Gg. In particular Z%R and Z%R have the same R-rank.

Following Kottwitz, we construct a smooth function fZ1 on H;(R) that is com-
pactly supported modulo center, by taking a suitable finite linear combination of
pseudo-coefficients of discrete series representations (explicitly as on page 186 of
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[Kot90] with our H; and G; playing the roles of his H and G) such that the fol-
lowing hold: if vy, € H1(R)g is elliptic and (G1, Hy)-regular, which by the above
assumption has an elliptic element 791 € G1(R)ss as image, then

e(I§7) (Bso (70,1): 1) Aoo (V11,5 70,1t &1 (70,1)
vol(Zg, R\IGH (R))

(8.2.5.1) SOy, (fi) =

whereas if v, is non-elliptic and (G, Hy)-regular then SO, (f&1) =0. If yg, €
Hy(R)gs is not (G, Hy)-regular, then by [Morl0, Prop. 3.3.4, Rem 3.3.5] adapted
to our setting we have SO, (fH1) = 0. The x7 Ay, -equivariance of fX1 follows
from and the equivariance of transfer factors (§7.4.7)), recalling that the

central character of &; is Xl_l.
We claim that if vy, is elliptic and (Gy, Hy)-regular then (8.2.5.1)) implies that

6(18”)@00 (70), 8) Ao (Y&, » Y0)tr €(70)
vol(Za(R)\IG (R))

(8.2.5.2) SO, (fI) = :
where 7 is the image of 7p,1 in G(R). It is routine to check term-by-term equali-
ties between the right hand sides of (8.2.5.1) and (8.2.5.2). We illustrate the idea
by showing that (300(70,1),80 = (Bso(70), 8), leaving the rest to the reader. Let
us write s for s; since the latter is the image of s under the inclusion G - (A;l.
We have a decomposition s = s's” with s' € Z(H) > and s” € Z(G). By defini-
tion ([Kot90, §2]) the character Boo(Y0) (resp. Bac (70,1)) restricts to a character on
Z(Io)F>= (resp. Z(foyl)rw) and a character on Z(G) (resp. Z(G1)), each of which
is determined by p (resp. p1). They are related via the following commutative
11 1 I

diagrams, from which it is obvious that (Bso(70.1),8's”) = (Beo(70), 8'").

5/ c Z(ﬁ)Foc NG Z(E))F“’ M (CX SH c Z(é) ﬁOO('YU)(CX
i \L %('YO,I) \L %,1)

~

Z(Hy) > —— Z(Ip) > Z(Gh)

8.2.6. So far we have constructed the function f7 .= ff =p’°°ffl fHon Hy(A).
If H is ramified over Q, or if elliptic tori of Gr do not come from those of Hp,
then we have f7 = 0 since ffl =0or fI1 =0 in each case. When neither is the

case, f1 depends only on the image of s modulo Z (@) To see this, suppose that
s is replaced with sz for z € Z(G). Then fH1:P>° as well as the identity (8.2.3.1))

~ ~

remains unchanged as [],_,  Bv(70,a) is trivial on Z(G). The function [ s
multiplied by u(z)~! according to §7.4.17| Since (Em(70)73> is the only term in

(8.2.5.2) to change and it is multiplied by (Beo(Y0), z) = u(z), the function fI1 is
multiplied by x(2) to keep (8.2.5.2) valid. All in all, f#* indeed remains invariant.

8.2.7. Let us summarize the above results in terms of adelic orbital integral iden-
tities. To this end, we slightly extend the definition of N(v,%,a,[b]) in §8.1.4]
from rational to adelic elements. Let ¢ = (H,H,s,n) € En(G). Let v0 € G(A)
and suppose that 7o is an image of vy, € H1(A)(G,,H,)-reg at every place v. De-

~

fine a similar quantity N'(yo,7vm,,S$,a,[b]) for s € Z(H), a € ’D(IO,G;A';), and
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[b] € Dn(70,G;Qp) by

N' (o, vty 5, 0, [B]) = (87> (70, @), 5)(Bp(30+ [B]), 8){Boc (10), ) A (V115 70)
% Oy, (fP)TOs,,) (dn)t1 € (v0) vol(Z(R)\ oo (R)) 7.
To compare with , if vo € G(Q)r-cn then
(8.2.7.1) N'(v0,vH, 5 8, a, [b]) = N (70, s, a, [b])
by definition of a(vo, a, [b]) and the product formula that A (vg,,70) = 1.

Lemma 8.2.8. Let vy, € Hi(A) Gy Hy)veg- If 70 € G(A)gss is R-elliptic and an
image of vm, at every place v then

SO, (le) — Z N'(v0,vH, » 8, a, [D]).

a€®D(Ig,G;AP)
[b]€D n (v0,G;Qp)

If no R-elliptic yo € G(A)ss is an image of yu, then SO, (fA) =0. Ifyg, €
H1(Q)ss is not (G, Hy)-regular then again SO.,, (™) =0.

Proof. If elliptic maximal tori of Gg do not come from those of Hg then no R-
elliptic element of G(R) is an image of an element of H(R). Then fI1 = 0 by
construction, so the lemma holds. If v, o is not (Gp, Hy)-regular then we saw
SOy, o (f) = 0, so in particular SO, (f*) = 0 for non-(Gy, Hy)-regular
elements vy, € H1(Q)gs.

From now on, let vg, € Hi(A)(q, H,)-reg; and assume that elliptic maximal tori
of Gg come from those of Hg. If v, is not R-elliptic (or equivalently if vz, has
no image in G(R)en) then SO, _ (f&') = 0 by [Kot92a, Lem. 3.1] (asserting
that the orbital integrals of pseudocoefficients of discrete series representations are
supported on elliptic elements). Thus the lemma is verified is this case. If vg,
does not have an image in G1(F,)s at some finite place v then SO, (ff*) =0
by §8:2.3] and so the lemma is again true. In the remaining case, there exists
o as in the lemma. Then the desired equality follows from , , and
B252). O

8.3. Final steps.

8.3.1. Resuming from the formula (8.1.4.2)), we apply the adelic transfer of orbital
integrals to finish stabilization. To re-parametrize the sum over (o, ) in (8.1.4.2)),
consider the set of equivalence classes

ERan(G) = {(10,%) [0 € G(Q)en, K € R(10/Q)}/~,

where (y0,%) ~ (75, ') if there exists g € G(Q) such that (i) gyg™" = 75, (ii)

g 17g € IH(Q) for every 7 € T, and (iii) the inner twisting Iys = I%’@ induced by

1

Int(g) carries k to k’. Define another set of equivalence classes
EXa(G) :=={(e,yu) : e = (H,H,5,1) € Ean(G), v € Zen(H) (G, H)-reg )/~

where Yoy (H) (G, #)-reg is the set of stable conjugacy classes of (G, H )-regular semi-
simple elements of H(Q), and (e, yz) ~ (¢/,7}) if there is an isomorphism between
endoscopic data ¢ = (H,H,s,n) and ¢/ = (H',H',s’,n’) such that g is carried to
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Y- (In particular (e, yg) ~ (e, 7}y ) if there is an outer automorphism of ¢ mapping
v to vg.) Define an analogous set with the obvious surjection

N e = (H,H, S,’I]) 65011(G)a
8.3.1.1 EXq(G) ==
( ) a(G) {(2771{) | vu € Yen(H)(G,H)-reg

The outer automorphism group Outg(e) acts transitively on each fiber of the map.
Let us define a map

} — E¥en(G).

¢ EX(G) — Z8a(G) U {0}.

We explained in how (e,vm) determines either a stable conjugacy class of v €
G(Q) or @ (when there is no matching conjugacy class in G(Q)). In the latter case,
set € : (¢e,vy) — 0. In the former, we map (¢,vx) to (70,%), where k € £(I/Q)
is determined by the image of s under the composition Z(ﬁ) — Z(TWH) =~ 7(I,).
Here the canonical isomorphism comes from the fact that Iy is an inner form of
L,,. The ellipticity of vy follows from that of vyg. Letting Z(Q) act on each of
Yan(G) and X (H) by multiplication, we see that Cis Z (Q)-equivariant.

By [Kot86, Lem. 9.7], when Ggor = Gy, the map € factors through a unique

map € : EX5(G) = EXan(G), and the image of € contains LRen(G). When Gge, is

not simply connected, write &; and &; for the analogous maps for the z-extension
G1. We have a commutative diagram (a priori without &)

(8.3.1.2) ES5(Gh) — E8en(G1) —= NRen(G1) U {0}

| l |

EXF(G) —= ESan(G) — ¥ > SR (G) U {0},
- @@

¢

where the vertical maps are induced by G; — G, using € (G1) = Ean(G) (Lemma
7.2.11)) and part (i) of Lemma We add that the right vertical is required to
send § to itself. By the Zg, (Q)-equivariance of €1, there exists a unique Zg(Q)-
equivariant map € making the entire diagram commute. (The image of € does not
contain @ if G is quasi-split over Q, since every vy then has an image in G(Q).)

Lemma 8.3.2. The map € is Z(Q)-equivariant and contains L8R (G) in its image.
Moreover for (7o, k) € ZRen(G) and ¢ € Ean(G),

o) =AY )T

YHEXZ(H) s.t.
€:(e,vg)—(v0,K)

Remark 8.3.3. We remark that, in the strongly regular case the lemma follows from
[KS99, Lem. 7.2.A], which covers twisted endoscopy.

Proof. The Z(Q)-equivariance was observed above. Since the right vertical map is
surjective in by Lemma the containment of 8¢ (G) in the image of
€ reduces to the case for Gy, which is proved in [Kot86, Lem. 9.7] (since G der =
G sc)- Finally the equality asserted in the lemma follows from [Lab04, Cor. IV.3.6].

O

8.3.4. Recall that K? is a neat subgroup and that X = (Z(Ay) N K) - Z(R). In
particular

(8.3.4.1) XNGaex(Q) = {1}.
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Let £X53 x(G) denote the quotient set of EX7(G) by the obvious multiplication of
Xg =XNZ(Q). Likewise, define ¥x(H) and X8 x(G) from X(H) and XK1 (G).
Let

@x : 5251,X(G) — Eﬁell,%(G) U {@}
denote the map & pre-composed with (8.3.1.1) modulo the Xg-action.

Corollary 8.3.5. The image of @35 is equal to LRen x(G) if G is quasi-split and
contains Lhen,x(G) in general. Moreover for fized (7o, k) and e,

()T =0T > T (ym) ™

YHESx (H) s.t.
€x:(e,vp)—=(v0,K)

Proof. The only non-trivial point is to deduce the equality from Lemma [8:3.2}
Let ¢ = (H,H,s,m) € Ea(G), vu,vy € H(Q)(G,H)reg- Suppose that € maps
both (e,vm) and (e,vy) to (70, ). What we need to show is that, if v}, is stably
conjugate to zyy for some z € X, then ~/; is stably conjugate to yg.

By assumption, € maps (e, zyy) to (270, k). Hence z is stably conjugate to
70. In particular gzyog~! = 7o for some g € G(Q). Thanks to the element
z is trivial, so v} is stably conjugate to vg as desired. [

Lemma 8.3.6. Let f* be as in . Assume that €x maps (e,vg) to O. Then
SO, (f7) =0 for every lift v, € Hi(Q) of va.

Proof. Suppose that SO, (fH1) # 0. By Lemma there exists 79,1 € G1(A)
such that 701, is an image of g, , at every place v. To show that (e¢,yg) is not
mapped to () under €, it suffices to show the existence of 75, € G1(Q) which is
stably conjugate to 7p,1 in G1(Q,) for every place v. Indeed, (e1,7vp,) then does
not map to (), thus (¢,vx) does not either, cf. (8.3.1.2). Thus the proof boils down
to the case where G = G7 and H = H; (with Gger = Gsc). Henceforth we will
write vy for 79,1, vi for ym,, and so on.

Let G* denote a quasi-split inner form of G. Write 7§ € G*(Q)ss for the image
of v under (7.4.2.1)). Now recall that Labesse (see [Lab99, §2.6], with L = G, H =
G*) constructs a non-empty subset

obss; (10) € €(L, 6% A/Q) ==L g(1,. /)P,

generalizing the construction of Kottwitz in [Kot86].

As in the second paragraph of [Kot90l p. 188], the Chebotarev density theorem
implies that the natural map £(1x/Qy)” — &(I,x /Q)” is surjective for some finite
place w. In Labesse’s construction, if we twist vy ,, within its stable conjugacy class
by a class ¢ € &(Iy:/Quy)", then obs (7o) gets shifted by the image of ¢ in the
abelian group &(,;/ Q)P. Hence, if we replace 7o ., by a stably conjugate element
and keep the components of vy outside w unchanged, then we may arrange that
0 € obsy: (70) C R(I,; /Q)P. By [Lab99, Thm. 2.6.3], the G(A)-conjugacy class of

Yo contains an element of G(Q), which we can take to be ~;. O
8.3.7. For each ¢ = (H,H,s,n) € Ean(G), set
(8.3.7.1) UG H) = 1(G)r(H)"Ne) ™! = 7(G) 2 (H) " Ae) 1.

Given vy € Xen x(H) we define Stabx(yg) to be the group of z € Xg such that
zyw = yu in Yen x(H). This group is finite by the same argument as in §7.1.4]
showing the finiteness of Stabzx (yr).
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Let us introduce the stable analogue of Ty (see §7.1.6|) for H; with respect to
the central character datum (Xpg,, x#,), where x g, = x1)\1}1. To check that it is
indeed a central character datum, note that both x; and Ag, are trivial on Xg, g

by construction, cf. 5 and (8.2.1.1). For h € H(H; (A),X;I}), set

(8.3.7.2) STHL . (h) =72, (H)) > |Stabz ;, (Y#,)| SOy, (h).

YHq Ezcn,le (H1)

There is no need for the factor (g, )1, which is equal to 1 since H; has simply
connected derived subgroup.

Lemma 8.3.8. For vg, € Hi(Q)(q,,H,)-reg

|Stabx ;. (ve,)| = [Stabx (va)[tm (va)-

Proof. Tt suffices to construct a short exact sequence of groups

1— (HVH/H'(Y)H)(Q) — Stabgng (’YH1> — Stabx(’YH) — 1.

The third arrow from the left is the map induced by the projection Xp, — X and
is clearly surjective. To construct the second arrow, given h € (H.,, /HY )(Q),
choose a lift h € H,, (Q) and a further lift hy € H;(Q). Then z; := hyym, hi 'y,
belongs to Z1(Q), and moreover x1 € Stabx,, (va,) since hivi, hi' = 21y, . The
assignment h — z; is a well-defined homomorphism. To check this map is injective,
suppose hyythfl = 7vm,. Then h; lies in the centralizer of g, in Hp, which is
connected. (To see this, choose a place v such that G g, is quasi-split, so that
YH,» has an image v1,, € G1,g,. Since the centralizer of v, is connected, and
since vy, is (G1, Hy)-regular, the same is true for g, , by [Kot86, Lem. 3.2].) Thus
the image of hy in H,, lies in HgH, implying that h is trivial.

The composition of the two maps above is clearly trivial. Finally suppose that
r1 € Stabx, (ym,) maps trivially into Stabx(yx). Then z; € Z1(Q). To check
that x; comes from (H.,, /HY, )(Q), choose hy € Hi(Q) such that hiym hit =
r17vg, . Its image h in H(Q) clearly centralizes yg. Writing A for the image of h in
(H,,/HY,)(Q), we see that h is Q-rational and maps to 1 by construction. O

Remark 8.3.9. In our situation |Stabx(vg)| = 1. Indeed the stabilizer group is
a finite subgroup of K via Xg C Z(Q)x C K, but K has no non-trivial torsion
elements as K is neat.

Theorem 8.3.10. Assume that Conjecture is true (cf. Remark|1.8.10). With
fH constructed as in §8.3.4) for each ¢ € Eq(G), we have

S (0 < () | SR ) = Y oGS, ()

i el (G)

for all sufficiently large m.
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Proof. We compute the right hand side as follows.

S WG H)STE (7
e€fean (G)

= ,(G) Y M) > [Stabz;, (vir, )|~ SO, (F11)

e€€en(G) Yy €Xen, x gy, (H1)

T, (G) D M) YD W) TS0, (F1)

e€€en(G) Y ESen, x (H)

= 7x(G) > Ae) ' 2(vm) T SOy, (F1)
(Q,WH)ESZ;Lx(G)

= (@) Yo AT m) TS0, (F1)
(70,5)EXRent, x (G) (e 7HIEEEG, 5 (G)
Cx:(e,vg)—>(v0,K)

= TC{(G) Z Z 2(70)_1]\[(’707’{7@3 [b])

(70,8)EXReqy, x (G) aeD(IO,G;A?)
7o Reelliptic e (49,G10p)

In the third, fourth, and fifth lines, v, € H1(Q)ss is an arbitrary lift of vy €
H(Q)ss. Each summand is independent of the choice since f; transforms under the
character X;I}, which is trivial on Z1(Q).

We justify these equalities. The first equality uses Lemma [8.2.2| and ({8.3.7.1)).
The next one is based on Lemma and the bijection Yen %, (H1) = Zenx(H)
induced by the surjection H1(Q) — H(Q). We also used [Stabx(yg)| = 1, and
the vanishing of the summand if vy, is not (G, Hy)-regular by Lemma To
continue, the third equality is justified by Lemmatelling us that only (G, H)-
regular vy contributes to the sum. The fourth equality follows from Lemma [3.3.6]
The last equality is deduced from Lemma[8.2.8 Corollary[8.3.5] and (8.2.7.1), noting
that 70,1 can be taken from G1(Q) whenever SO, (fH1) # 0 as shown in the proof
of Lemma

The proof is complete as the last expression in the displayed formula is exactly
the left hand side of the theorem by O

Theorem 8.3.11 (cf. Theorem [I|in the Introduction). Assume that (G,X) is of
abelian type. With notation as in Theorem we have

S0 (a5 () | B 9% ) = Y G ST, ()
i eGEeu(G)

for all sufficiently large m.
Proof. This follows from Theorems and [8.3.10) (I

9. SPECTRAL INTERPRETATION

In order to read off spectral information from Theorem [8.3.10, we need to turn
the geometric stable distribution into a spectral expansion. After discussing the
stable trace formula in §0.1] when the test function is stable cuspidal at oo, we will
remark on the prospect for unconditional spectral interpretation in §9.2}
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9.1. The stable trace formula.

9.1.1. Let G be a quasi-split connected reductive group over Q with a fixed z-
extension G;. (We do not assume that G is part of a Shimura datum in §9.1})
Let (X,x) be a central character datum such that X D Az .. For each elliptic
endoscopic datum ¢ = (H,H,s,n) € En(G), choose a central extension H; and
define ¢; € E(G1) as well as characters x; and Mg, as at the start of §8.21 We
have a central character datum (Xg,, xp,) with x g, := Xl)‘;{i as in et us
recall relationships between certain stable distributions on G(A).

9.1.2. Set Xg := Az . Define xo : Az,.c — C* to be the restriction of X to X,.
Then (Xo, xo) is a central character datum. Let Sy, = SC denote Arthur’s stable
distribution on H(G(A), xp ') inductively defined in [Art02, §9]. Write Saisc,y, for
the discrete part of S, (see (7.11) in loc. cit.). Define Sy and Sgisc,y in terms of
Sy, and Sgise,y, €xactly as in . The equality defining SSO inductively leads
to the analogous equality (compare with [Art13] (3.2.3)])

(9.1.2.1) SS() =I¢(f) - > (G H)SE (F71),

e=(H,H,s,m)EEL(G)
H#G

Seex OF IS om > which are equal, and f*1 € H(H,(A), X;;i)
denotes a Langlands—Shelstad transfer of f (Proposition . If fo is stable
cuspidal then fX1 is also stable cuspidal (possibly trivial). Indeed, this is reduced
via z-extensions to the case that Gger = Ggc, where this fact follows from work of
Shelstad and Clozel-Delorme by the argument as in [Kot90, pp. 182-186]. (This
argument is also at the basis of constructing fZ! in )

Likewise the analogue of holds true with Sgjsc and Igisc in place of S
and I. What follows is the stable version of Proposition [7.1.12}

Lemma 9.1.3. Let f = f*f, € H(G(A),x ) with fo stable cuspidal. Then
SY(f) = SGeex(F)-
Proof. This follows from Proposition [7.1.12} which implies that

Ispec,x(f) = Idisc,x(f)
via the inductive definition above. 0

where I. S means either IS or IG

9.1.4. We are going to state a stabilization of the geometric side. Let (X, x) be
a central character datum for G. Write Ag, for the maximal R-split torus in Zg,.
(In general Ag, # (Ag)r.) Consider the following hypotheses:

(H1) GRr contains an elliptic maximal torus,

(H2) X = X X X with X C Z(Ay) and Agy 00 C Xoo C Z(R).

The two conditions are satisfied by the groups contributing to the right hand side
of Theorem so (H1) and (H2) are harmless to assume for our purpose.

We adapt the definition of the stable distribution ST} in [Morl0, §5.4] to the
case of fixed central character. Let T,, be an elliptic maximal torus of Grg and
write Tic oo C Gser for the preimage. Write G°Pt for an inner form of G which is
anisotropic modulo Ag,; such a GP* exists by (H1). The Haar measure on GP*(R)
is always chosen to be compatible with that of G(R). Define

k(GR) = |im(H1(R7Tsc,oo) — Hl(R7TOO)>|’
B(Gr) = e(GPHvol(GPH(R)/Ag, (R)°).
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The two numbers depend only on Gg and a Haar measure on G(R).

Let Mg C Ggr be an R-rational Levi subgroup containing an elliptic maximal
torus. (So the torus is anisotropic modulo Ay, .) Let II be a discrete series L-packet
of G(R) with fixed central character o, on X, and write Oy for the associated stable
character (either as a function on regular elements or as a distribution on the space
of test functions). Let D]C\;Ji denote the Weyl discriminant. Write (IJE\;}; (+,On) for the
unique function on the set of elliptic elements in M (R) which extends the function
v = [DSE()Y20n(y) on M(R) N G(R).eq; such an extension exists by [Art89,
Lem. 4.2]. Let fo, € C°(G(R), x3!). For elliptic elements v in M (R), define

; k
S@fj‘;(’y, foo) — (_1)d1mAM[R/AGR ,@(Mﬂgﬁ)—l k((]gﬂ]j)) Z@%(7—17 ‘I)H)@H(foo)y

II

where Mﬂ%,’v is the connected centralizer of v in Mg, and the sum runs over discrete
series L-packets with central character yo.. Set Sq)f/}; (7, foo) = 0 if v € M(R) is
not elliptic.

Turning back to the global setting, assuming (H1) and (H2) for G, let M be a
Q-rational Levi subgroup of GG, which is said to be G-cuspidal if Mg contains an
elliptic maximal torus and if dim Ay /Ag = dim A, /Ag,. This relativizes the
notion of cuspidal reductive groups over Q. Note that M = G is always G-cuspidal
even if G is not cuspidal over Q. Let f = [ f, with f* € H(G(Ay), (x*)™!)
and foo € H(G(R), x5). Denote by f52 € H(M(Ay), (x*°)™') the constant term
of f*° defined by [GKM97, (7.13.2)]. (The same definition works regardless of fixed
central character. As explained therein, it is not f37 itself but its orbital integral
that has well-defined values.) If M is G-cuspidal, put

ST (f) = Tx(M ZLM ) LSO, (f35)SPGE (7, foo)

where the sum runs over the set of stable semi-simple conjugacy classes in M (Q).
(The summand is zero unless  is elliptic in M (R).) Define STACZX to be identically
zero if M is not G—cuspidal. Finally, define

STC(f Z| Ne(M)/M)(Q)|~'ST47 (),

where M runs over the set of G(Q)—conjugacy classes of Q-rational Levi subgroups.

Lemma 9.1.5. Let G be a quasi-split reductive group over Q with central character
datum (X, x). Assume (H1) and (H2) above, and let f = [ fo as above with foo
stable cuspidal. Then

Sy (f) = ST (f)-
Proof. As in (9.1.2.1)), we have
I(f) = > UG, H)SE (7).

e=(H,H,s,n)EE(G)

The assertion is trivial if G is a torus. We induct on the semi-simple rank. Then
Hy (¢H H1 H

SH: (fH) = ST (f)
for all ¢ such that H 2 G. Indeed, if Hy g contains no elliptic maximal torus
or if Ag, C Ap,, then the transfer f1 vanishes so the equality holds trivially.

=
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Otherwise Hy g and X, satisfy the analogue of (H1) and (H2), so the above equality
is true by the induction hypothesis.
To conclude, it is enough to show that

18(f) = >, (G H)STE: (f™)

e=(H,H,s,n)€En(G)

when fo is a stable cuspidal function. This was proven by Peng [Penl9, Thm. 9.2]
without fixed central character. The desired equality follows from it by averaging
with respect to (X, x). (When G is cuspidal over Q with simply connected derived
subgroup, Peng’s result was obtained in an unpublished manuscript by Kottwitz
[Kotl, Thm. 5.1], cf. [Mor10, Thm. 5.4.1].) a

9.2. Speculations.

9.2.1. We return to the setting of Theorem for the compactly supported
cohomology of Shimura varieties, where (H1) and (H2) hold true for G and X as
well as for H; and Xy, contributing non-trivially to the right hand side.

The analogue of Theorem [8:3.10] is expected to be true for the intersection co-
homology of the Baily—Borel compactification. Writing T' IH(@;’L, fPdgP) for the
intersection cohomology analogue of T(@Ql, fPdgP), the conjectural stabilization
should have the form (cf. [Kot90, (10.1)])

(9.2.1.1) @, fPdg) = Y WG H)STE (f7).
ec€en(G)

The point is that the non-elliptic terms in ST)Z;I (coming from proper Levi sub-
groups) should be accounted for exactly by the boundary strata of the Baily—Borel
compactification. For non-proper Shimura varieties, is known for cer-
tain special orthogonal group and unitary similitude groups in addition to general
symplectic groups in [LR92, Mor08|, Mor10, [Mor11l [Zhul8]. On the other hand,
Lemmas and imply that

(9.2.1.2) STt (F™) = Siite e, (S,

Combined with (9.2.1.1)), this yields a trace formula for the intersection cohomol-
ogy in terms of the stable distributions Sgslcval, which are of a spectral nature.
Then one can follow Kottwitz [Kot90, §§9-10] to unravel Sgslc,xyl (fH1) to obtain
a conjectural description of the intersection cohomology (in each degree, by purity)
as a G(Ay) x Gal(E/E)-module, in terms of automorphic representations of G(A)
and their endoscopic classification; see p. 201 therein@ The endoscopic classifi-
cation for classical groups is worked out in [Art13] Mok15, [KMSW14, [Tail9], in
the quasi-split case and some more. However, little is known for groups of higher
rank beyond classical groups, except for partial results on general symplectic and
orthogonal groups in [Xul8| Xu21].

4OWe do not reproduce Kottwitz’s argument or his conjectural description here. We content
ourselves with remarking that the destabilization process in [Kot90| may also be carried out by
applying the conjectural stable multiplicity formula, cf. [Art13} Thm. 4.1.2, (4.8.5)]. Still the key
computation at p and oo of [Kot90} §9] is irreplaceable as it reflects the features of test functions
at p and oo specific to the context of Shimura varieties.
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9.2.2. We return to compactly supported cohomology. In the special case that
G/Z is anisotropic over Q, the Shimura variety Shy is proper over E for each K.
Thus the intersection cohomology coincides with the compactly supported cohomol-
ogy. In particular TIH(<I>;”7 fPdg?) = T(®}y", fPdgP), and the above consideration
suggests that

"

(9.2.2.1) ST;Z;l (ffy = sgl{XHl (fH).

We stress that this equality is not intrinsic to H;. Indeed, a quasi-split inner form
G* of G over QQ shares the same elliptic endoscopic data as G. When G* can
be promoted to a Shimura datum, would be false for f7* constructed in
the context of the Shimura variety for G* (since the latter does have a non-empty
boundary). Once is verified, we obtain (9.2.1.1)), and the preceding para-
graph explains how to extract the spectral information for the compactly supported
cohomology in this case.

If G/Z is isotropic over Q, then the description of the G(Af) x Gal(E/E)-
module structure on the compactly supported cohomology is expected to be very
complicated. Indeed, this is confirmed by Franke’s formula [Fra98] even if the Galois
action is forgotten. See also [Lau97] for the case of GSp,. Moreover, there may be
cancellations between different degrees since the compactly supported cohomology
need not be pure. We think that it is better to study the intersection cohomology

by proving (9.2.1.1]) in this case.

9.2.3. We end by summarizing the prospect of unconditional results on the coho-
mology of Shimura varieties associated with (G, X). In the case of abelian type, our
main result is that the identity in Theorem [8.3.10] holds unconditionally whenever
K, is a hyperspecial subgroup of G(Q,) and m is sufficiently large. When G/Z
is anisotropic over Q, in order to make the conjectural description in the style of
[Kot90, p. 201] unconditional, the two main missing ingredients are the endoscopic
classification of automorphic representations (for G and the groups H;’s contribut-
ing to the stabilization) and the equality (9.2.2.1). When G/Z is isotropic, instead
of , one should attempt to prove (9.2.1.1) by extending the methods of
[Mor10] and [Zhul8|. On top of that, the same endoscopic classification is needed
to arrive at the final description of cohomology.
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