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Abstract. We express the Frobenius–Hecke traces on the compactly sup-
ported cohomology of a Shimura variety of abelian type in terms of elliptic
parts of stable Arthur–Selberg trace formulas for the endoscopic groups. This
confirms predictions of Langlands and Kottwitz at primes where the level is
hyperspecial.
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Introduction

0.1. The main results. Shimura varieties have provided a testing ground for many
conjectures in the Langlands Program, and have been indispensable in the (partial)
solutions of some of these conjectures. Motivated by the work of Eichler, Shimura,
Kuga, Sato, and Ihara, Langlands formulated the problem of expressing the Hasse–
Weil zeta function of a Shimura variety in terms of automorphic L-functions. This
question is itself a special case of Langlands’ conjecture that all motivic L-functions
are automorphic.

In a series of papers [Lan73, Lan76, Lan77, Lan79a, Lan79b], Langlands devel-
oped the idea of systematically using trace formulas to attack this problem. In
his initial investigations, he encountered the phenomenon of L-indistinguishability,
which motivated the theory of endoscopy. Based on the latter, Langlands predicted
that one should be able to compare a Lefschetz-type trace formula for the Shimura
variety with trace formulas arising in the theory of automorphic representations
after stabilizing both types of the formulas. This prediction was formulated as a
precise conjecture in Kottwitz’s paper [Kot90].

The main result of the present paper is a verification of this conjecture for
Shimura varieties of abelian type: We prove an identity between a Grothendieck–
Lefschetz–Verdier trace formula on the Shimura variety and elliptic parts of stable
Arthur–Selberg trace formulas for the endoscopic groups.

To state our main result more precisely, we fix some notation. Let (G,X) be
a Shimura datum with reflex field E. Fix a prime `, and let ξ be an algebraic
representation of G over Q`. Let

Hi
c(Sh, ξ) := lim−→

K

Hi
c(ShK(G,X)E ,Lξ),

where K runs through all sufficiently small compact open subgroups of G(Af ), and
for each K we denote by ShK(G,X) the Shimura variety at level K, and by Lξ the
automorphic `-adic sheaf attached to ξ. (We need a technical assumption on ξ so
that Lξ is well defined, but we omit this here. In the introduction the reader can
assume ξ is trivial and Lξ = Q`.) Then Hi

c(Sh, ξ) admits commuting actions by
Gal(E/E) and G(Af ).

Let p 6= ` be a prime, and let Φ ∈ Gal(E/E) be a geometric Frobenius element
at a place p of E above p. Let f be an element of the Hecke algebra of G(Af ). We
always assume that f is of the form 1Kpfp, where fp is in the Hecke algebra ofG(Apf )
and 1Kp is the characteristic function of a hyperspecial subgroup Kp ⊂ G(Qp).
(When f is fixed, this condition is satisfied for almost all primes p.) For m an
integer we define

T (m, f) :=
∑
i

(−1)itr (f × Φm | Hi
c(Sh, ξ)).

Note that if f is the characteristic function of some compact open subgroup K ⊂
G(Af ) and ξ is trivial, then T (m, f) is directly related to the Euler factor at p of
the Hasse–Weil zeta function of ShK(G,X), when p is sufficiently large.
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Theorem 1 (see Theorem 8.3.11). Assume that (G,X) is of abelian type. For all
sufficiently large m we have

T (m, f) =
∑
e

ι(e)STH1
ell,χH1

(fH1),(0.1.1)

where e runs through the elliptic endoscopic data for G up to isomorphism, ι(e) ∈ Q
is a constant depending only on e, and STH1

ell,χH1
is an elliptic stable distribution

associated with e (defined on a z-extension H1 of the endoscopic group in e).

If the derived subgroup Gder of G is simply connected and the center ZG of G is
cuspidal (i.e., having equal Q-rank and R-rank), then STH1

ell,χH1
is the elliptic part

of the stable trace formula for e. Without these assumptions, the definition involves
z-extensions and fixed central characters. The functions fH1 will be explained after
we state Theorem 3 below. The requirement that m is sufficiently large is needed to
ensure that the local terms in the Grothendieck–Lefschetz–Verdier trace formula can
be calculated naively; this is a special case of Deligne’s conjecture, which has been
proved in general by Fujiwara [Fuj97] and Varshavsky [Var05]. For applications
this restriction turns out to be harmless. Note that by contrast, knowing (0.1.1)
only for all sufficiently divisible m would be insufficient for most applications.

Kottwitz [Kot90, §3, §7] conjectured the equality in Theorem 1 for general
Shimura varieties, and proved it in the case of PEL type A or C in [Kot92b, §19]
and [Kot90, Thm. 7.2]. By results of Matsushima [Mat67] and Franke [Fra98], the
G(Af )-action on Hi

c(Sh, ξ) can be understood in terms of automorphic representa-
tions of G. It is expected that the equality in Theorem 1 should lead to a descrip-
tion of Hi

c(Sh, ξ), or a variant when the Shimura varieties are non-compact, as a
Gal(E/E) × G(Af )-module. This description should involve the global Langlands
correspondence between automorphic representations and Galois representations,
as well as Arthur’s conjectures on automorphic multiplicities. This would lead to
an expression of the Hasse–Weil zeta function in terms of automorphic L-functions.
See [Kot90, Part II] for an explanation of this circle of ideas. In the non-compact
case one expects that replacing Hi

c(Sh, ξ) by the intersection cohomology of the
Baily–Borel compactification will lead to a description similar to the compact case.
We do not prove this variant of Theorem 1 for intersection cohomology in the
present paper, but Theorem 1 and the point counting formula in Theorem 2 below
are expected to play a crucial role in the proof of such a result; see for instance
[Mor10, Mor11, Zhu18].

The proof of Theorem 1 consists of two steps. The first step is to prove a “point
counting formula”, expressing T (m, f) in terms of orbital integrals and twisted
orbital integrals on G in a way resembling the geometric side of the Arthur–Selberg
trace formula. The second step is stabilization, which relates the (twisted) orbital
integrals on G with the terms constituting STH1

ell,χH1
(fH1).

When Gder is simply connected and ZG is cuspidal, the point counting formula
was already conjectured by Kottwitz [Kot90, §3]. Let q = pr be the cardinality of
the residue field of p. For m sufficiently large, the conjecture states that

(0.1.2) T (m, f) = ∑
(γ0,γ,δ)∈KPcla(qm)/∼,

α(γ0,γ,δ)=0

c1(γ0, γ, δ)c2(γ0)Oγ(fp)TOδ(φmr)tr ξ(γ0).
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Here KPcla(qm) consists of triples (γ0, γ, δ) ∈ G(Q) × G(Apf ) × G(Qqm) such that
γ0 is R-elliptic, stably conjugate to γ, and stably conjugate to the degree mr norm
of δ. There is also a technical assumption on δ which we omit here. (The notation
KPcla stands for “classical Kottwitz parameters”.) The equivalence relation ∼ is
given by stable conjugacy on the first factor, conjugacy on the second factor, and
σ-conjugacy on the third factor. Kottwitz defines a Galois cohomological invariant
α(γ0, γ, δ) for each (γ0, γ, δ) ∈ KPcla(qm), and in (0.1.2) the summation is subject
to the condition α(γ0, γ, δ) = 0. In each summand, we have an orbital integral
Oγ(fp) on G(Apf ), a twisted orbital integral TOδ(φmr) on G(Qqm) (where φmr is
an explicit function on G(Qqm)), the character tr ξ of ξ evaluated at γ0, a volume
term c1(γ0, γ, δ), and a term c2(γ0) defined via Galois cohomology.

In the conjectural formula (0.1.2), the assumption that Gder is simply connected
is quite serious. Without it, Kottwitz’s construction of the invariant α(γ0, γ, δ) for
(γ0, γ, δ) ∈ KPcla(qm) no longer works, and also the volume term c1(γ0, γ, δ) is not
well defined. These problems are caused by the possible disconnectedness of Gγ0

for a semi-simple γ0 ∈ G(Q). In the following theorem, the point counting formula
we prove is a generalization of (0.1.2) without any assumptions on Gder and ZG.

Theorem 2 (see Theorem 6.3.6). If (G,X) is of abelian type, then for all suffi-
ciently large m we have

(0.1.3) T (m, f)

=
∑
γ0∈Σ

∑
c∈KP(γ0,q

m)
α(c)=0

∣∣(Gγ0/G
0
γ0

)(Q)
∣∣−1

c1(c)c2(γ0)Oc(fp)TOc(φmr)tr ξ(γ0),

where the terms c1(c), c2(γ0), Oc(fp), TOc(φmr) are defined analogously as the terms
in (0.1.2).

The most significant new feature of (0.1.3) is that the summation index set
KPcla(qm)/∼ in (0.1.2) has been replaced by a more refined set∐

γ0∈Σ
KP(γ0, q

m)

which admits a map to the former. Here Σ is a certain subset of the set of R-
elliptic elements of G(Q), and for each γ0 ∈ Σ the definition of KP(γ0, q

m) is
Galois cohomological in nature. (We also allow ZG to be non-cuspidal, in which
case Σ depends on the choice of a compact open subgroup Kp ⊂ G(Apf ) such that
fp is Kp-bi-invariant.) For each c ∈ KP(γ0, q

m), we define an invariant α(c) lying
in an abelian group that depends only on G0

γ0
and G. This definition specializes

to Kottwitz’s invariant α(γ0, γ, δ) when Gder is simply connected. In (0.1.3) the
condition α(c) = 0 is imposed, similarly as in (0.1.2).

Once Theorem 2 is proved, in order to prove Theorem 1 we need to stabilize
the right hand side of (0.1.3). We prove this stabilization in general as in the next
theorem, without assuming that (G,X) is of abelian type.

Theorem 3 (see Theorem 8.3.10). The right hand side of (0.1.3) is equal to∑
e

ι(e)STH1
ell,χH1

(fH1).
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Theorem 1 is immediate from Theorems 2 and 3. The proof of Theorem 3 follows
the outline of [Kot90, §7]. Namely, after applying a Fourier transform on the finite
abelian group of which α(c) is a character, we can turn the right hand side of (0.1.3)
into the sum of κ-orbital integrals (twisted at p) over adelic conjugacy classes. To
rewrite the sum in terms of stable distributions on endoscopic groups, the key input
is the transfer of orbital integrals via the Kottwitz–Langlands–Shelstad transfer and
the fundamental lemma. More precisely, fH1 away from {p,∞} is obtained from fp

via the usual untwisted transfer, whereas fH1 at p is a twisted transfer of φmr, and
fH1 at ∞ is constructed explicitly as a finite linear combination of certain stably
cuspidal functions.

We carry out the stabilization without the simplifying hypotheses in [Kot90, §7]
that Gder is simply connected and that ZG is cuspidal, by working systematically
with z-extensions and fixed central characters. Here a useful fact is that once a
z-extension G1 of G is fixed, it induces z-extensions H1 of endoscopic groups H for
G. To transfer functions with fixed central characters (thus the functions are not
compactly supported in general), the main point is that the transfer factors enjoy
an equivariance property with respect to the translation by central elements. It is
also worth mentioning the improvement that, unlike [Kot90, Thm. 7.2], Theorem 1
has no (G,H)-regularity condition imposed in the stable distributions. The reason
is that there is no contribution coming from the non-(G,H)-regular semisimple
terms, as shown by Morel (§8.2.5 and Lemma 8.2.8 below).

0.2. Applications. Theorem 1, or its proof (Theorem 5), has already been used
to obtain the following results.

• With Kret, one of us (Shin) has constructed the automorphic to Galois di-
rection of the Langlands correspondence for GSp2n and (a form of) GSO2n
over totally real fields, under a technical local hypothesis [KS16, KS20].
This involves constructing Galois representations into GSpin groups, cf.
[FC90, p. 268].

• One of us (Zhu) has given a description of the Hasse–Weil zeta func-
tion and the Hecke–Galois action on the intersection cohomology of the
Baily–Borel compactification of Shimura varieties for some global forms of
SO(N, 2) in terms of automorphic representations [Zhu18]. This completes
the Langlands–Kottwitz program for these varieties at almost all primes.

• Youcis [You] has extended Scholze’s version [Sch13] of the Langlands–
Kottwitz method for Shimura varieties with bad reduction from the case
of PEL type to the case of abelian type.

• Mack-Crane [MC21] has obtained a trace formula for Igusa varieties of
Hodge type which is analogous to Theorem 2 in the case of Hodge type.
This generalizes [Shi09]. A generalization to the case of abelian type, as
well as a stabilization analogous to Theorem 1 is expected, cf. [Shi10].)

We stress that the Shimura data appearing in concrete applications, as in the
first two items, are typically of abelian type but not of Hodge type. The same is
true with the three applications below. As we will explain in §0.3 below, the proof
of Theorem 1 in the case of Hodge type is substantially easier, but this does not
suffice for many applications.
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In general, Theorem 1 is the key to determining the fundamental virtual G(Af )×
Gal(E/E)-module [Hc(Sh, ξ)] :=

∑
i(−1)i Hi

c(Sh, ξ) in terms of automorphic rep-
resentations. A notable corollary is then to express the Hasse–Weil zeta function
of ShK as an alternating product of automorphic L-functions for sufficiently small
compact open subgroups K ⊂ G(Af ), possibly up to Euler factors at finitely many
primes. We intend to work out the details in a sequel and obtain unconditional
results in various special cases, which will provide important ingredients for some
remarkable arithmetic results:

• The Beilinson–Bloch–Kato conjecture for Rankin–Selberg motives using
Shimura varieties of unitary groups [LTX+19],
• Higher dimensional Gross–Zagier formula (i.e., arithmetic inner product
formula) using Shimura varieties of unitary groups [LL20].
• Euler systems arising from Shimura varieties of SO(2n− 1, 2) [Cor18].

Related to the applications in [LTX+19, LL20], it is worth pointing out that when
one passes between a Shimura datum of abelian type and an “isogenous” Shimura
datum of Hodge type, the reflex field is often not preserved. Thus even if one is just
interested in constructing representations of Gal(E/E) using the cohomology of a
Shimura variety of a unitary group with reflex field E (which is of abelian type but
not of Hodge type), one cannot pass to a Shimura variety of Hodge type without
having to enlarge E in general.

To understand the structure of [Hc(Sh, ξ)] in the general case of abelian type,
there are two main obstacles to proving an unconditional theorem. Let us briefly
address them, leaving the details to §9.2 below.

When G is anisotropic modulo center over Q, or equivalently when the finite-level
Shimura varieties ShK(G,X) are projective, the first problem is to show that

STH1
ell,χH1

(fH1) = STH1
χH1

(fH1)

in the summand of Theorem 3, namely that the non-elliptic terms in the stable
distribution cancel each other out. The resolution of this problem is within reach
at least in various special cases that are of interest for applications, and this will
be treated in the sequel. The second problem is that the endoscopic classification
for automorphic representations is not available for general reductive groups.

If G is isotropic modulo center, the second problem remains the same. In place
of the first problem, however, it is desirable to promote Theorem 1 by proving
an equality where the compactly supported cohomology and STH1

ell,χH1
are replaced

with the intersection cohomology of the Baily–Borel compactification and STH1
χH1

,
respectively. As mentioned above, such an upgrade is obtained for SO(N, 2) in
[Zhu18]. Some results were previously known for Shimura varieties of PEL type A
and C [LR92, Mor08, Mor10, Mor11].

Another application of our work would be the analogues of Theorems 1 and 2 for
Shimura varieties of parahoric level at p, in light of recent advances on the Haines–
Kottwitz test function conjecture [HR21, HR20] and the Langlands–Rapoport con-
jecture in the parahoric case [Zho20, van20]. The latter takes as an input the hy-
perspecial case through the earlier work [Kis17]; a strengthening should be possible
by appealing to our improvement (Theorem 5) instead.

0.3. Variants of the Langlands–Rapoport Conjecture. We now discuss the
proof of Theorem 2. To simplify the exposition we assume that ξ is trivial (so
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that Lξ = Q`), and that fp = 1Kp for a sufficiently small compact open subgroup
Kp ⊂ G(Apf ). We continue to assume that Kp is hyperspecial. If ShKpKp is proper
over E, then one expects that there exists a proper smooth integral model, SKpKp ,
of ShKpKp over OE,(p). In this case we have

T (m, f) = #SKpKp(Fqm).(0.3.1)

If ShKpKp is not proper, one still conjectures that there exists a canonical smooth
integral model SKpKp satisfying (0.3.1) (among other conditions). Hence in all
cases we seek for a formula for #SKpKp(Fqm), thus the name “point counting
formula”.

For Shimura varieties of Hodge type, it is possible to establish a point counting
formula by generalizing the considerations of Kottwitz [Kot92b] in the PEL-type
setting, with the aid of the results from [Kis17]. In this approach one attaches
group-theoretic invariants to isogeny classes over a fixed finite field Fqm ; see [Lee18].
It does not seem to be possible to deduce Theorem 2 for general Shimura varieties
of abelian type from such results in the case of Hodge type. In the current paper,
we take the point of view of Langlands–Rapoport [LR87], which relates Fq-isogeny
classes and certain Galois gerbs. Although the statements we prove in the case
of Hodge type require more effort, they have the merit that one can then infer
similar statements in the case of abelian type, and hence deduce the point counting
formula.

Write SKp for lim←−Kp
SKpKp . The Langlands–Rapoport Conjecture states that

there is a G(Apf )×Gal(Fq/Fq)-equivariant bijection

SKp(Fq)
∼−→
∐
φ

lim←−
Kp

Iφ(Q)\X(φ)/Kp.

Here φ runs through conjugacy classes of admissible morphisms from a pro-(Galois
gerb) Q over Q, called the quasi-motivic gerb, to the neutral gerb associated with
G. For each admissible morphism φ, we have a reductive group Iφ over Q, and a
set X(φ) equipped with commuting actions by Iφ(Af ), Gal(Fq/Fq), and G(Apf ).

Currently, the Langlands–Rapoport Conjecture is open even for the Siegel mod-
ular varieties. (For some quaternionic Shimura varieties the conjecture has been
proved by Reimann [Rei97].) In [Kis17], a weaker version of the conjecture is proved
for the canonical integral models of Shimura varieties of abelian type, which are
constructed in [Kis10] for p > 2 and in [KMP16] for p = 2, and are shown to satisfy
(0.3.1) in [LS18]. (The assumption that p > 2 in [Kis17] can be dropped; see the
proof of Theorem 6.2.4.) In this weaker version, the set

lim←−
Kp

Iφ(Q)\X(φ)/Kp

is replaced by
lim←−
Kp

Iφ(Q)τ(φ)\X(φ)/Kp,

where τ(φ) is an unspecified element of Iad
φ (Af ), and Iφ(Q)τ(φ) is the image of

Iφ(Q) under

Iφ(Q) ↪→ Iφ(Af ) Int(τ(φ))−−−−−−→ Iφ(Af ).
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It turns out that in order to deduce (0.1.3) from such a weaker statement, one must
have better control of the elements τ(φ). We formulate the desiderata in what we
call the “Langlands–Rapoport–τ Conjecture”.

We introduce some definitions in order to state the conjecture. For each admis-
sible morphism φ, we have the algebraic part φ∆ of φ, which is a Q-homomorphism
from a pro-torus Q∆ to GQ. The double quotient set

H(φ) := Iφ(Af )\Iad
φ (Af )/Iad

φ (Q)

is an abelian group, and up to canonical isomorphism it depends only on the G(Q)-
conjugacy class of φ∆. For each maximal torus T in Iφ, writeH(φ)T for the cokernel
of the localization map

ker
(

H1(Q, T )→ H1(R, T )⊕H1
ab(Q, G)

)
−→ H1(Af , T ).

There is a natural homomorphism
H(φ) −→ H(φ)T ,

see Definition 2.6.19.

Conjecture 1 (“Langlands–Rapoport–τ”; see Conjecture 2.7.3). There is a bijec-
tion

SKp(Fq)
∼−→
∐
φ

lim←−
Kp

Iφ(Q)τ(φ)\X(φ)/Kp,

which is G(Apf )×Gal(Fq/Fq)-equivariant, with respect to elements τ(φ) ∈ Iad
φ (Af )

satisfying the following conditions.
(i) The image of τ(φ) in H(φ) depends only on the G(Q)-conjugacy class of

φ∆.
(ii) For each maximal torus T in Iφ, the image of τ(φ) in H(φ) lies in the

kernel of H(φ)→ H(φ)T .

Note that the original Langlands–Rapoport Conjecture implies Conjecture 1, as
we can take all τ(φ) to be 1. Also Conjecture 1 is stronger than the version of
Langlands–Rapoport proved in [Kis17], as two non-trivial conditions on τ(φ) are
imposed.

Theorem 4 (see Theorem 2.7.4). Conjecture 1 implies (0.1.3).

The proof of Theorem 4 is group theoretic in nature (and works without the
abelian type assumption). Some of the key ingredients come from [Kot84a] and
[LR87, §5]. If one assumes the original Langlands–Rapoport Conjecture, that
Gder is simply connected, and that every admissible morphism factors through
the pseudo-motivic gerb, then the proof of (0.1.3) is essentially given in loc. cit.,
as explained in [Mil92]. However, our proof of Theorem 4 does not logically follow
from [LR87] or [Mil92], as we have the following new features:

• We need to show that the possibly non-trivial elements τ(φ) do not affect
the desired “point counting” on

∐
φ lim←−Kp

Iφ(Q)τ(φ)\X(φ)/Kp, as long as
they satisfy the two conditions in Conjecture 1.

• We use the corrected construction of the quasi-motivic gerb Q given by
Reimann [Rei97], and do not assume that Gder is simply connected. As a
result several definitions and arguments in [LR87, §5] need to be modified.
(In the general case of abelian type, it is not enough to work with the
pseudo-motivic gerb as is done in [Mil92].)
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• We need to work with the more refined set
∐
γ0∈Σ KP(γ0, q

m) as opposed
to KPcla(qm)/∼, for the reasons explained below Theorem 2.

The logical relations between the various conjectures are depicted in the following
diagram. All the implications are valid without the abelian type assumption.

weak LR Conj. as in [Kis17]

LR Conj. +3 LR–τ Conj. (Conj. 1)

KS

Thm. 4
��

point counting formula (0.1.3)

Thm. 3
��

stable trace formula (0.1.1)

Theorem 5 (see Theorem 6.3.5). If (G,X) is of abelian type, then Conjecture 1
holds with respect to the canonical integral models.

Theorem 2 follows from Theorems 4 and 5. In the rest of the introduction we
discuss the proof of Theorem 5.

0.4. The conjecture in the case of Hodge type. Questions about Shimura vari-
eties of abelian type can often be reduced to the same questions for Shimura varieties
of Hodge type, plus some additional information on connected components. For in-
stance, this is what is done in [Kis17] for the weak form of the Langlands–Rapoport
conjecture. In Conjecture 1, we have imposed the minimal set of conditions that
allow one to deduce the point counting formula (0.1.3) from the conjecture (see
Theorem 4), regardless of the type of the Shimura datum. However, one may
strengthen the conjecture by requiring certain compatibility conditions with con-
nected components. It is this stronger version of Conjecture 1 which we prove in
the case of Hodge type. We then use this to prove Conjecture 1 in the general case
of abelian type.

We now discuss some key ideas in the proof of Conjecture 1 for a (G,X) of Hodge
type, and indicate the kind of strengthening we obtain. We postpone to §0.6 the
explanation of how our results in the case of Hodge type imply Conjecture 1 in the
general case of abelian type.

By the theory of integral models in [Kis10], after fixing a suitable embedding of
(G,X) into a Siegel Shimura datum, for each x ∈ SKp(Fq) we obtain an abelian
variety Ax (up to prime-to-p isogeny) over the residue field of x, together with
tensors over the Apf -Tate module and over the (integral) Dieudonné module of Ax.
Recall that these tensors arise by specializing Hodge cycles on abelian varieties
over points in the generic fiber of SKp . The set SKp(Fq) is partitioned into isogeny
classes, where two points x, x′ are called isogenous if there exists a quasi-isogeny
Ax → Ax′ preserving the tensors.

Let G be the reductive group scheme over Zp corresponding to Kp. For x ∈
SKp(Fq), the relative Frobenius on the Apf -Tate module and the absolute Frobenius
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on the Dieudonné module of Ax give rise to an element of

G∼ :=
(

lim−→
n

G(Apf )
)
×
{
G(Zur

p )-σ-conjugacy classes in G(Qur
p )
}
,

where the direct limit is over positive integers n ordered by divisibility and with
respect to the transition maps γ 7→ γn

′/n for n|n′.
As we have already indicated, in the current case of Hodge type, we would like to

keep track of some information about connected components. For technical reasons
we work with a set π∗(G,X) that is equipped with a map from (but is not equal
to) the set of connected components of SKp,Fq . We then have a natural map

SKp(Fq) −→ G∼ × π∗(G,X).
Analogously, for each admissible morphism φ, we have a natural map

X(φ) −→ G∼ × π∗(G,X).
Definition 1. By an amicable pair, we mean a pair (φ,I ) consisting of an admis-
sible morphism φ and an isogeny class I ⊂ SKp(Fq) such that the images of X(φ)
and I in G∼ × π∗(G,X) have non-empty intersection.
Proposition 1 (see Theorem 5.13.9). Let I be the set of isogeny classes, and let
J be the set of admissible morphisms up to conjugacy.1 There exists a bijection
B : J ∼−→ I such that for each φ ∈ J the pair (φ,B(φ)) is amicable, and such that
B is equivariant with respect to Galois cohomological twistings.

We explain the last requirement on B. The Galois cohomological twisting on
I is defined by twisting a Q-isogeny class of abelian varieties (with the additional
tensors) in its Q-isogeny class, and the Galois cohomological twisting on J is defined
by replacing an admissible morphism φ with another admissible morphism φ′ such
that φ∆ = φ′,∆. For an arbitrary amicable pair (φ,I ), the set of Galois cohomology
classes that can be used to twist φ is canonically identified with the corresponding
set for I . Since (φ,B(φ)) is required to be amicable, it makes sense to require
that B is equivariant with respect to the two twisting operations.

We now explain the proof of Proposition 1. We make use of the following dia-
gram:

{special point data}

�� ��

��
{amicable pairs}

uu ))J I

(0.4.1)

Here a special point datum refers to a triple (T, i, h), where (T, h) is a Shimura
datum on a torus, and i is an embedding of Shimura data (T, h) → (G,X) such
that i(T ) is a maximal torus in G. Given (T, i, h), we obtain a special point x̃(T,i,h)
in the generic fiber of SKp , which specializes to a point x(T,i,h) ∈ SKp(Fp). Define
I (T, i, h) to be the isogeny class of x(T,i,h). Similarly, (T, i, h) gives rise to an

1In the rest of the introduction we shall deliberately conflate an admissible morphism with its
conjugacy class to simplify the exposition.



12 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

admissible morphism φ(T, i, h). We thus have maps from the set of special point
data to I and J. The following proposition asserts that we can fill in the dashed
arrow in the above diagram.

Proposition 2 (see Corollary 5.11.9). Let (T, i, h) be a special point datum. Then
the pair (φ(T, i, h),I (T, i, h)) is amicable.

The key arithmetic input to the proof of Proposition 2 is the construction of
certain integral special points and the computation of their images in G∼×π∗(G,X).
We first sketch the construction. Attached to the special point x̃(T,i,h) we have a
CM abelian variety Ã defined over some number field, together with a canonical
G-representation on the dual p-adic Tate module

Λ := Tp(Ã)∨.

Let T ◦ be the connected Néron model of TQp over Zp. Then TQp acts on Λ[1/p]
via i : TQp → GQp , and we fix a T ◦-stable Zp-lattice Λ′ in Λ[1/p]. The lattice
Λ′ corresponds to a Qp-isogeny ι : Ã → Ã′ between CM abelian varieties. We can
choose a finite extension F/Qp such that both Ã and Ã′ are defined over F and have
good reduction, and such that ι is also defined over F . Let M and M ′ be the base
changes to Zur

p of the contravariant Dieudonné modules of the reductions of Ã and
Ã′, respectively. The reduction of ι induces a Frobenius-equivariant isomorphism
ι∗ : M ′[1/p] ∼−→M [1/p].

Using some integral p-adic Hodge theory to be discussed in §0.5 below, we con-
struct a Zur

p -linear isomorphism

η : M ′ ∼−→ Λ′ ⊗Zp Zur
p ,(0.4.2)

which is canonical up to automorphisms of the right hand side induced by elements
of T ◦(Zur

p ). Let M ′′ be the image of the composite map

Λ⊗Zp Zur
p ↪→ Λ⊗Zp Qur

p
∼= Λ′ ⊗Zp Qur

p
η−1

−−→M ′[1/p] ι∗−→M [1/p].

Then M ′′ is a Zur
p -lattice in M [1/p]. Moreover, we have a GZur

p
-representation on

M (canonical up to G(Zur
p )-conjugation), and M ′′ ⊂M [1/p] is a translate of M by

an element g ∈ G(Qur
p ). 2

We would like to define a point of I (T, i, h) corresponding to M ′′, but this is
not possible in general, as g ∈ G(Qur

p ) may not satisfy the defining condition of an
affine Deligne–Lusztig set, so that g ·M may not be the Dieudonné module of an
abelian variety. To remedy this, for each isogeny class I we introduce a canonical
enlargement I ∗ ⊃ I , and extend the map I → G∼ × π∗(G,X) to I ∗. In the
current situation, every G(Qur

p )-translate of M defines an element of I (T, i, h)∗,
and in particular we viewM ′′ as an element of I (T, i, h)∗, called an integral special
point.

We then need to compute the image ofM ′′ ∈ I (T, i, h)∗ in G∼×π∗(G,X). This
is based on the following result, whose proof will be discussed in §0.5 below.

Proposition 3. Write Γp,0 for the inertia subgroup of Gal(Qp/Qp). Then we have

2By contrast, since Λ′ is not required to be a G(Qp)-translate of Λ, there is no reason to expect
that the image of M ′ under ι∗ is a G(Qur

p )-translate of M .
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(i) The Frobenius on M ′[1/p] corresponds via η to δσ, with δ ∈ T (Qur
p ) ⊂

GL(Λ′ ⊗Zp Qur
p ) such that the image of δ in X∗(T )Γp,0 under the Kottwitz

homomorphism is equal to the natural image of µh, the Hodge cocharacter
of h : S→ TR.

(ii) M ′′ is a Gder(Qur
p )-translate of M inside M [1/p].

Using part (i) of the proposition and the Shimura–Taniyama reciprocity law, we
obtain an explicit description of the image of M ′′ in G∼. Using part (ii), we prove
that the image of M ′′ in π∗(G,X) is equal to that of x(T,i,h) ∈ I (T, i, h).

For Galois gerbs there is parallel construction of integral special points. By
comparing the images of integral special points inG∼×π∗(G,X) in the two contexts,
we obtain Proposition 2.

Given Proposition 2, Proposition 1 is proved in two stages. In the first stage,
we construct subsets J′ ⊂ J and I′ ⊂ I and a bijection B : J′ ∼−→ I′ such that for
each φ ∈ J′ there exists a special point datum which induces both φ and B(φ). By
Proposition 2 we know that (φ,B(φ)) is amicable for such φ. In the second stage,
we use Galois cohomological twisting on both sides to extend B to a bijection
J ∼−→ I. For this, we need to show that if (φ,I ) is an amicable pair then, after we
twist φ and I by a common Galois cohomology class, we again obtain an amicable
pair. To show this we again utilize integral special points. More precisely, we use
the fact that for each amicable pair (φ,I ) and each maximal torus T ⊂ Iφ, there
exist two special point data of the form (T, i, h) and (T, i′, h) such that

I = I (T, i, h) and φ = φ(T, i′, h).(0.4.3)

(Here the second equality is up to conjugacy.) This fact follows from the special
point lifting theorem in [Kis17] and a similar result for Galois gerbs, and it allows
us to understand arbitrary Galois cohomological twistings by studying the twisting
of integral special points.

Note that Proposition 1 does not yet give a bijection J ∼−→ I compatible with
the diagram (0.4.1). It remains an interesting open problem to show the existence
of such a compatible bijection (which is necessarily unique). We expect that the
solution would lead to better understanding of the Langlands–Rapoport Conjecture.

Having shown Proposition 1, we proceed to prove Conjecture 1 in the case of
Hodge type as follows: Fix a bijection B as in Proposition 1. For each φ ∈ J,
using that (φ,B(φ)) is amicable, we can find an element τ(φ) ∈ Iad

φ (Af ) and a
G(Apf )×Gal(Fq/Fq)-equivariant bijection

fφ : B(φ) ∼−→ lim←−
Kp

Iφ(Q)τ(φ)\X(φ)/Kp

which commutes with the natural maps from the two sides to G∼ × π∗(G,X). We
also require that the map X(φ) → B(φ) induced by f−1

φ satisfies some natural
equivariance conditions. Here neither τ(φ) nor fφ is unique, but essentially our
requirements on fφ restrict the ambiguity of τ(φ) such that the image of τ(φ) in
H(φ) depends only on the pair (φ,B(φ)) and thus only on φ if we keep B fixed.
We then need to show that these canonical elements of H(φ) for all φ satisfy the
two conditions in Conjecture 1.

Condition (i) follows from the fact that B is compatible with Galois cohomo-
logical twistings. It is proved as a byproduct of the second stage of the proof of
Proposition 2.
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Condition (ii) follows from the fact that (φ,B(φ)) is amicable for all φ, and
that for each amicable pair (φ,I ) and each maximal torus T in Iφ we can arrange
(0.4.3).

We now discuss the strengthening of Conjecture 1 that we obtain in the case of
Hodge type. We have already mentioned that the requirements on fφ restrict the
ambiguity of τ(φ) ∈ Iad

φ (Af ) such that it has a well-defined image in H(φ). In fact
we can do better. Let Z†φ be the intersection of the center of Iφ with Gder, which
is a Q-subgroup of Iφ. We define H(φ) to be the quotient of

coker
(

ker
(

H1(Q, Z†φ) → H1(R, Z†φ) ⊕ H1
ab(Q, Gder)

)
−→ H1(Af , Z†φ)

)
by the image of a certain map Gab(Zp)→ H1(Af , Z†φ); see §5.10.5. Using especially
the fact that fφ is compatible with the maps to π∗(G,X), we know that the image
of τ(φ) in H(φ) is also well defined, i.e., it depends only on the pair (φ,B(φ)). We
prove a strengthened version of condition (i) in Conjecture 1, whereH(φ) is replaced
by H(φ)⊕H(φ). Similarly, for each maximal torus T in Iφ, writing T † := T ∩Gder
we define H(φ)T to be the quotient of

coker
(

ker
(

H1(Q, T †) → H1(R, T †) ⊕ H1
ab(Q, Gder)

)
−→ H1(Af , T †)

)
by the image of a certain map Gab(Zp) → H1(Af , T †); see §5.12.1. In analogy
with the natural map H(φ) → H(φ)T we have a natural map H(φ) → H(φ)T . We
prove a strengthened version of condition (ii) in Conjecture 1 where the kernel of
H(φ)→ H(φ)T is replaced by the kernel of H(φ)⊕H(φ)→ H(φ)T ⊕H(φ)T .

0.5. Integral p-adic Hodge theory. We now explain the ingredients from p-adic
Hodge theory that go into the construction and study of the integral special points
in §0.4.

Let P be a parahoric group scheme over Zp. Write RepP for the category of
P-representations on finite free Zp-modules. Let F/Qp be a finite extension with
residue field k. Write W = W (k) and F0 = W (k)[1/p]. Consider a crystalline
representation ρ : Gal(F/F ) → P(Zp). Then for each Λ ∈ RepP, we can view Λ
as a Gal(F/F )-stable lattice in the crystalline representation Λ[1/p]. Using the
functor M in [Kis06] we obtain from Λ a pair

(Mcris(Λ), ϕ),
where Mcris(Λ) := M(Λ) ⊗W [[u]] W is a finite free W -module and ϕ is a σ-linear
automorphism of Mcris(Λ)[1/p], called the Frobenius. This yields a ⊗-functor Υρ

from RepP to the category of pairs as above. Using a purity result proved recently
by Anschütz [Ans18]3 we show that the ⊗-functor Λ 7→ Mcris(Λ) (where we forget
the Frobenius) is isomorphic to Λ 7→ Λ ⊗Zp W . We denote by Y (Υρ)◦ the P(W )-
torsor of isomorphisms between the two ⊗-functors.

Remark 1. For our purposes it is important to know that the formation ofMcris(Λ)
for a crystalline Gal(F/F )-lattice Λ is compatible with replacing F by an arbitrary
finite extension of F . This has been proved by T. Liu [Liu18].

3The special cases for connected reductive group schemes and parahoric group schemes with
tamely ramified generic fibers were previously shown in [Kis10] and [KP18] respectively.
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If we fix an element of Y (Υρ)◦, then the Frobenius structure on Υρ is given by
an element δ ∈ P(F0). We prove the following result about δ.

Proposition 4 (see Proposition 4.4.7). The image of δ under the Kottwitz homo-
morphism P(Qur

p ) → π1(PQp)Γp,0 is equal to the image of the Hodge–Tate cochar-
acter for ρ.

Before discussing the proof of Proposition 4, we explain how the above local the-
ory is applied in the global situation of §0.4, namely for the construction of (0.4.2)
and the proof of Proposition 3. We use the notation as in the paragraph preceding
(0.4.2). Up to enlarging F , the natural action of Gal(F/F ) on Λ′ is induced by
a crystalline representation ρT : Gal(F/F ) → T ◦(Zp). We apply the local theory
to ρT and the group scheme T ◦. On choosing an element of the T ◦(W )-torsor
Y (ΥρT )◦, we obtain an isomorphism Mcris(Λ′)

∼−→ Λ′ ⊗Zp W . On the other hand,
we have a canonical integral comparison isomorphism Mcris(Λ′)⊗W Zur

p
∼−→M ′. See

§5.2.2 for references. We define η to be the composition of the two isomorphisms.
Now part (i) of Proposition 3 follows from Proposition 4. For part (ii) of Proposition
3, we use that the Gal(F/F )-action on Λ is induced by a crystalline representation
ρ : Gal(F/F ) → G(Zur

p ), and apply the local theory to ρ and the group scheme G.
There is no direct map between the T ◦(W )-torsor Y (ΥρT )◦ and the G(W )-torsor
Y (Υρ)◦ since there is (in general) no Zp-homomorphism T ◦ → G. Nevertheless, we
have natural Zp-homomorphisms G → Gab and T ◦ → Gab, and ρ and ρT induce
the same crystalline representation ρab : Gal(F/F ) → Gab(Zp). We can apply the
local theory for the third time, to ρab and the group scheme Gab. Comparing each
of Y (Υρ)◦ and Y (ΥρT )◦ with the Gab(W )-torsor Y (Υρab), we obtain part (ii). See
Proposition 4.5.2 and Remark 4.5.3 for details of this argument.

We now explain the proof of Proposition 4. As usual we write OF as W [[u]]/E,
where E is an Eisenstein polynomial in W [u]. Write S for W [[u]]. We construct a
homomorphism

P(FracS) −→ π1(P )Gal(Qp/K0),(0.5.1)

which can be viewed as an E-adic variant of the Kottwitz homomorphism. The
proof of Proposition 4 has the following two steps.

(i) We show that δ comes from an element δS ∈ P(S[1/E]) under the spe-
cialization u 7→ 0, and that the image of δS under (0.5.1) is equal to the
image of the Hodge–Tate cocharacter for ρ.

(ii) We show that if an element g ∈ P(S[1/E]) ⊂ P(FracS) specializes to
g0 ∈ P(K0) under u 7→ 0, then the image of g under (0.5.1) is equal to the
image of g0 under the p-adic (i.e., classical) Kottwitz homomorphism.

In step (i), we use properties of the functor M in [Kis06]. In both steps we make use
of the following result about “Kottwitz homomorphisms in families”, which may be
of independent interest.

Proposition 5 (see §1.3). Let F be a field of characteristic 0, R an F -algebra,
and v a discrete valuation on R. Then for each reductive group P over F there is
a natural map

κvP : P (R)→ π1(P )Gal(F/F ),

generalizing the Kottwitz homomorphism, which is given by v : R× → Z when
P = Gm. Moreover we have
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(i) Suppose that SpecR has trivial Picard group. For discrete valuations
v1, · · · , vn on R and integers a1, · · · , an such that

∑
i avvi vanishes on

R×, we have ∑
i

aiκ
vi
P (P (R)) = 0

for all reductive groups P over F .
(ii) Suppose that R = F , and let v be a discrete valuation on F with valuation

ring OF . For any reductive group P over F and any smooth affine group
scheme P over OF with connected fibers extending P , we have

κvP (P(OF )) = 0.

0.6. From Hodge type to abelian type. We now explain how our proof of
Conjecture 1 in the case of Hodge type, together with the strengthening discussed
at the end of §0.4, implies the conjecture in the case of abelian type. For this we
follow the reduction method in [Kis17], which takes as input a construction of the
elements τ(φ) in the case of Hodge type, and outputs a construction of them in the
case of abelian type. Thus we only need to transport the properties of τ(φ) proved
in the case of Hodge type to the case of abelian type. Specifically, for a Shimura
datum (G2, X2) of abelian type that is of interest, we pick an auxiliary Shimura
datum (G,X) of Hodge type satisfying some standard compatibility conditions with
(G2, X2). We show that the strengthened version of Conjecture 1, which we have
proved for (G,X), implies the original Conjecture 1 for (G2, X2), provided that
(G,X) satisfies the following technical hypothesis:

• The Gal(Q/Q)-module X∗(Gab) is generated by the image of a Hodge
cocharacter.

That for any (G2, X2) we can indeed find such (G,X) follows from a construction
of Deligne.

For a fixed (G2, X2), the auxiliary (G,X) that we find does not, in general, have
connected center, which violates an assumption in the reduction method in [Kis17].
For this reason, we need a generalization of [Kis17, Lem. 1.2.18] from reductive
group schemes to (certain) parahoric group schemes; see Corollary 4.4.16. The
proof again uses the local theory exposed in §0.5, as well as Proposition 5.

Organization of the paper. In §1, after some group theoretic preparation, we
state the conjectural point counting formula as in (0.1.3) for a general Shimura
datum (with hyperspecial level at p; see Conjecture 1.8.8). Of note is §1.3, in which
we generalize the Kottwitz homomorphism to families, as discussed in Proposition
5 above.

In §2, we first recall the formalism of Galois gerbs and the Langlands–Rapoport
Conjecture, and then state the Langlands–Rapoport–τ Conjecture (see Conjecture
2.7.3). For the formulation of the conjecture we need a general twisting construction
for admissible morphisms. We study this in §2.6.

In §3, we show that the Langlands–Rapoport–τ Conjecture implies the desired
point counting formula. The key step is the assignment of a Kottwitz parameter
(i.e., a summation index in the point counting formula) to a gg LR pair (an object
within the realm of Galois gerbs and the Langlands–Rapoport Conjecture). We
study this construction in §3.5 in the presence of general twisting elements τ(φ).
In §3.6, we study the special case when the elements τ(φ) are controlled as in
the Langlands–Rapoport–τ Conjecture. Roughly speaking, we show that the set
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of Kottwitz parameters that can arise from this construction is unaffected by the
presence of these twisting elements.

In §4, we develop the input from integral p-adic Hodge theory. We define integral
F -isocrystals with G-structure in §4.2, and attach them to G-valued crystalline
representations in §4.4 (for G a Zp-group scheme satisfying “property KL”). Most
of the content of this section is of a local nature, with the exception of the later
parts of §4.3, where global abelian Galois representations related to the Shimura–
Taniyama reciprocity law are considered.

In §5 and §6, we prove the Langlands–Rapoport–τ Conjecture for Shimura va-
rieties of abelian type. In §5.12 and §5.13, we prove intermediate results for
Shimura varieties of Hodge type. These results constitute the strengthened ver-
sion of Langlands–Rapoport–τ mentioned above. As we have already explained,
the crucial innovations needed for proving these results are the construction and
study of integral special points. These are carried out in §5.7 and §5.10, in the
geometric context and the Galois gerb context respectively. In §6.3, we combine
the results proved in the case of Hodge type with the reduction method in [Kis17]
and a construction of Deligne to prove the Langlands–Rapoport–τ Conjecture in
the case of abelian type.

We devote §§7–8 to stabilization. In §7, we have preparatory discussions on
central character data in §7.1, endoscopic data and z-extensions in §7.2, Galois
cohomology invariants in §7.3, and the Langlands–Shelstad–Kottwitz transfer in
§7.4. By implementing central characters and z-extensions, we make it unnecessary
to assume any undesirable technical hypothesis such as cuspidality of ZG or simple
connectedness of Gder.

In §8, we present the stabilization in three steps following Kottwitz. We rewrite
the point counting formula in terms of adelic κ-orbital integrals (§8.1), transfer
κ-orbital integrals to stable orbital integrals on z-extensions of endoscopic groups
(§8.2), and then finish by reorganizing the terms into the sum of stable distributions
intrinsic to the endoscopic groups and their z-extensions (§8.3).

Finally, in §9, after some recollection of the general stable trace formula, we
indicate what extra information and steps are needed, in addition to our main
results, for understanding the cohomology of Shimura varieties unconditionally.
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Conventions.
• When G is a group acting on a set X on the left, we denote the action
map G ×X → X by (ρ, x) 7→ ρx, or (ρ, x) 7→ ρ(x). We shall not use the
notation xρ.

• If g, h are elements of a group, we define Int(g)h to be ghg−1.
• Given a field F , we denote by F a fixed algebraic closure. Throughout we
fix field embeddings Q→ Qv for all places v of Q. The Galois groups will
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sometimes be abbreviated as follows:
Γ = ΓQ = Gal(Q/Q), Γv = ΓQv = Gal(Qv/Qv).

Using the field embeddings fixed above, we view Γv as a subgroup of Γ.
When v is non-archimedean, we write Γv,0 for the inertia subgroup of Γv.
• If L is a subfield of Q and v is a place of Q, we denote by Lv the completion
of L inside Qv, with respect to the fixed embedding Q→ Qv.
• For a prime p, we denote by Qur

p the maximal unramified extension of Qp in
Qp. We write Qpn for the degree n unramified extension of Qp in Qur

p , and
write Zpn for its ring of integers. We write Zur

p for the strict henselization
of Zp, i.e., Zur

p =
⋃
n Zpn .

• For a prime p, we denote by Q̆p the completion of Qur
p , and denote by Z̆p

its ring of integers. We fix an embedding Qp ↪→ Q̆p, and thereby identify
ΓQ̆p = Gal(Q̆p/Q̆p) with the inertia subgroup Γp,0 of Γp. We denote by σ
the arithmetic p-Frobenius in Aut(Q̆p).
• We denote by A,Af ,Apf respectively the adeles over Q, the finite adeles
over Q, and the finite adeles away from p. We also denote by A∗f the
product Apf ×Qur

p , when p is clear in the context.
• For a perfect field k, we write W (k) for the ring of Witt vectors over k.
When k = Fpn we identify W (k) with Zpn .
• By a reductive group over a field, we always mean a connected reductive
group.
• For a connected reductive group I over a field, we write Ider, Isc, I

ad for the
derived subgroup, the simply connected cover of the derived subgroup, and
the adjoint group respectively. We define Iab to be I/Ider, the maximal
torus quotient of I.
• For a reductive group I over R, we write I(R)+ for the identity connected
component of the real Lie group I(R), and write I(R)+ for the preimage
of Iad(R)+ under I(R) → Iad(R). If I is defined over Q, we write I(Q)+

for I(Q) ∩ I(R)+, and write I(Q)+ for I(Q) ∩ I(R)+.
• All group cohomology classes or cocycles for profinite groups (e.g. Galois
groups) are understood in the continuous sense. We shall denote a 1-
cochain by (gρ)ρ, or ρ 7→ gρ, or simply gρ. A 1-cocycle gρ satisfies gρσ =
gρ
ρgσ.

• Let I be a linear algebraic group over a field F of characteristic zero.
Let F ′/F be a Galois extension. We denote by Z1(F ′/F, I(F ′)) the set
of continuous 1-cocycles Gal(F ′/F )→ I(F ′). Denote by H1(F ′/F, I(F ′))
the corresponding cohomology set. When F ′ = F is an algebraic closure of
F , we write Z1(F, I) and H1(F, I). When I is reductive, for τ ∈ Iad(F ), its
image in H1(F,ZI) is understood to be the class of the cocycle ρ 7→ τ̃−1ρτ̃ ,
where τ̃ ∈ I(F ) is an (arbitrary) lift of τ .
• When I is a connected reductive group over F , we denote by I(F )ss the
set of semi-simple elements of I(F ).
• We denote by S the Deligne torus ResC/RGm.
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Part 1. Axiomatic point counting

1. The point counting formula

1.1. Abelianized Galois cohomology.

1.1.1. Let F be a field of characteristic zero, F an algebraic closure, and Γ =
Gal(F/F ). Let Γ-Mod (resp. Γ-Modf ) be the abelian category of discrete Z[Γ]-
modules that are finitely generated (resp. finite free) over Z. Let Mult(F ) be the
abelian category of algebraic groups of multiplicative type over F, and Tori(F ) ⊂
Mult(F ) the full subcategory of tori. Each of the above four categories is naturally
an exact category, and we have the corresponding bounded and unbounded derived
categories; see for instance [Kel96].

We have an exact anti-equivalence of abelian categories

X∗ : Mult(F ) −→ Γ-Mod,

sending each multiplicative group to its group of characters. We set

X∗ = HomZ(·,Z) ◦X∗ : Mult(F ) −→ Γ-Modf ,

sending each multiplicative group to its group of cocharacters.

Proposition 1.1.2. We have a commutative diagram (that is, commuting up to
natural isomorphisms) of equivalences of triangulated categories

Db(Tori(F )) ∼ //

∼
��

Db(Γ-Modf )

∼
��

Db(Mult(F )) ∼ // Db(Γ-Mod)

where the top functor is induced by X∗, and the bottom functor realizes the derived
functor RX∗ of X∗ : Mult(F )→ Γ-Mod.

Proof. The vertical functors are induced by the inclusions Γ-Modf ⊂ Γ-Mod and
Tori(F ) ⊂ Mult(F ). Note that every M ∈ Γ-Modf is a Z[Γ/U ]-module for some
open normal subgroup U ⊂ Γ. Using this one checks that the fully exact subcate-
gory Γ-Modf ⊂ Γ-Mod satisfies the dual versions of conditions C1 and C2 in [Kel96,
§12]. By [Kel96, Theorem 12.1], the canonical functor D−(Γ-Modf )→ D−(Γ-Mod)
is an equivalence. This implies that the vertical functor on the right is an equiv-
alence, in view of the observation that the acyclicity of a complex in Γ-Modf at
a given degree (in the sense of [Kel96, §11]) is equivalent to the vanishing of the
cohomology at the same degree computed in Γ-Mod. Now that the vertical functor
on the left is an equivalence follows by applying the exact anti-equivalence X∗, or
more precisely its quasi-inverse given by HomSpecF (_,Gm).

Since X∗ : Tori(F ) → Γ-Modf is an exact equivalence, the functor on the top
is an equivalence. Now we can fill in the equivalence in the bottom row. The
exactness also implies that X∗ : Tori(F )→ Γ-Modf preserves acyclicity of bounded
complexes, which implies that the bottom row realizes the derived functor of X∗,
by [Har66, §I, Thm. 5.1]. �

Definition 1.1.3. Let G be a connected reductive group over F . Let ZG, ZGsc be
the centers of G,Gsc respectively. Let ZG be the complex ZGsc → ZG in Mult(F ),
at degrees −1, 0.
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Proposition 1.1.4. There is a canonical isomorphism RX∗(ZG) ∼= π1(G) inside
Db(Γ-Mod).

Proof. Let T be a maximal torus in G, and let T̃ be its inverse image in Gsc.

Recall that π1(G) is defined to be the Γ-module X∗(T )/X∗(T̃ ). If S is another
maximal torus in G, with preimage S̃ in Gsc, and g is any element of G(F )
such that Int(g)(TF ) = SF , then g induces an isomorphism of Γ-modules ιT,S :
X∗(T )/X∗(T̃ ) ∼−→ X∗(S)/X∗(S̃), which is independent of g. Thus π1(G) does not
depend on T.

Now the natural map ZG → (T̃ → T ) is a quasi-isomorphism, as the cone of
this map is easily seen to be acyclic (here we regard T̃ → T as being in degrees −1
and 0). Thus

RX∗(ZG) ∼= RX∗(T̃ → T ) = X∗(T )/X∗(T̃ ) = π1(G).

�

1.1.5. We now review the theory of abelianized Galois cohomology, developed by
Borovoi [Bor98] and Labesse [Lab99].

For the rest of this subsection F will be a local or global field of characteristic
zero. We introduce a symbol ? as follows. When F is local, ? denotes F . When
F is global, ? denotes one of F , AF /F , or ASF , where S is a finite set of places of
F , and ASF is the ring of adeles away from S. Let Γ = Gal(F/F ), and define the
discrete Γ-module

D? =


F
×
, if ? = F,

(ĀSF )×, if ? = ASF ,
(ĀF )×/F×, if ? = AF /F.

Here ĀSF denotes F ⊗F ASF .
For any bounded complex C• in Mult(F ), we define the abelian groups

Hi(?, C•) := Hi(Γ,RX∗(C•)
L
⊗Z D?), i ∈ Z,

cf. [Lab99, p. 22, p. 26]. Here the term on the right denotes the continuous group
cohomology of the profinite group Γ

1.1.6. Let G be a connected reductive group over F . We define

Hi
ab(?, G) := Hi(?,ZG),

cf. [Lab99, §1.6]. When ? is not AF /F , we have the usual Galois/adelic cohomology

Hi(?, G), i = 0, 1,

defined to be the continuous cohomology of Γ acting on G(F ) or G(ĀSF ) according
as ? is F or ASF . This is a group for i = 0 and a pointed set for i = 1. We have
natural “abelianization” maps

abi? : Hi(?, G)→ Hi
ab(?, G), i = 0, 1,

which is a group homomorphism for i = 0 and a map of pointed sets for i = 1.
By [Lab99, Prop. 1.6.7], the map ab1

F : H1(F,G) → H1
ab(F,G) is surjective, and

is bijective when F is local non-archimedean. In particular, when F is local non-
archimedean, H1(F,G) has a canonical structure of an abelian group.
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When F is global, we have

H1(ASF , G) ∼=
′∏

places v of F ,
v/∈S

H1(Fv, G),(1.1.6.1)

where the restricted product is with respect to the trivial elements; see for instance
[PR94, p. 298, Cor. 1]. Analogously we have

H1
ab(ASF , G) ∼=

⊕
places v of F ,

v/∈S

H1
ab(Fv, G).(1.1.6.2)

The decompositions (1.1.6.1) and (1.1.6.2) are compatible with ab1
AS
F
and ab1

Fv . If
S contains all archimedean places of F , then ab1

AS
F

: H1(ASF , G) → H1
ab(ASF , G) is

bijective, giving H1(ASF , G) a canonical structure of an abelian group.

1.1.7. Let f : I → G be an F -homomorphism between connected reductive groups
over F . Let ZI→G be the mapping cone of the map of complexes ZI → ZG induced
by f . We set (cf. [Lab99, §1.8])

Hi
ab(?, I → G) = Hi(?,ZI→G).

Assume ? is not AF /F . We follow [Lab99] in writing:

D(I,G; ?) := ker
(
H1(?, I)→ H1(?, G)

)
,

E(I,G; ?) := ker
(
H1

ab(?, I)→ H1
ab(?, G)

)
.

Thus D(I,G; ?) is a pointed set, and E(I,G; ?) is an abelian group. We have a map
of pointed sets

D(I,G; ?) −→ E(I,G; ?)
induced by ab1

?. This map is bijective in the following two cases:
• F is local non-archimedean and ? = F .
• F is global, ? = ASF , and S contains all the archimedean places of F .

1.1.8. Let Γ = Gal(F/F ), and M ∈ Γ-Mod. When F is global or local non-
archimedean, we set AF (M) = MΓ,tors, the torsion subgroup of the coinvariants
MΓ.When F is local archimedean, we set AF (M) = Ĥ

−1
(Γ,M). Note that in both

cases, there is a canonical embedding AF (M) ↪→MΓ,tors for each M ∈ Γ-Mod.
Now suppose F is global. For each place v of F we fix an embedding F → F v, and

thereby view Γv = Gal(F v/Fv) as a subgroup of Γ = Gal(F/F ). For M ∈ Γ-Mod,
set

BF (M) :=
⊕

places v of F
AFv (M),

and define the map P(M) : BF (M) → AF (M) to be the direct sum over v of the
maps

AFv (M) ↪→MΓv,tors
†−→MΓ,tors = AF (M),

where † is induced by the identity on M . Then P is a natural transformation
BF → AF between functors from Γ-Mod to finite abelian groups.
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More generally, if S is a finite set of places of F , we set

BSF (M) =
⊕

places v of F ,
v/∈S

AFv (M).

Proposition 1.1.9. Let F be local or global, and let I → G be a homomorphism
of connected reductive groups over F . Assume that the induced map π1(I)→ π1(G)
is surjective, and denote its kernel by K.

(i) Let ? = F when F is local, and let ? = AF /F when F is global. Then the
exact sequence

H0
ab(?, I → G)→ H1

ab(?, I)→ H1
ab(?, G)

is canonically isomorphic to the natural sequence
AF (K)→ AF (π1(I))→ AF (π1(G)).

If F is global and ? = ASF for a finite set S of places of F , then the above
statement still holds with AF replaced by BSF .

(ii) When F is global, the commutative diagram with exact rows

H0
ab(AF , I → G) //

��

H1
ab(AF , I)

��

// H1
ab(AF , G)

��
H0

ab(AF /F, I → G) // H1
ab(AF /F, I) // H1

ab(AF /F,G)

is canonically identified with the natural commutative diagram

BF (K) //

P(K)
��

BF (π1(I))

P(π1(I))
��

// BF (π1(G))

P(π1(G))
��

AF (K) // AF (π1(I)) // AF (π1(G)).

Proof. This follows from the results of [Bor98, §4], Proposition 1.1.4 applied to I
and G, and the analogous fact that RX∗(ZI→G) is represented by the complex
K[1] (which uses the surjectivity of π1(I)→ π1(G)). �

1.2. Inner twistings and local triviality conditions.

Definition 1.2.1. Let F be a field, and let F be an algebraic closure. Let H,H1
be algebraic groups over F .

(i) By an inner twisting from H to H1, we mean an F -group isomorphism
ψ : HF

∼−→ H1,F such that for each ρ ∈ Γ the automorphism (ρψ)−1ψ of
HF is inner.

(ii) Two inner twistings from H to H1 are called equivalent, if they differ by
an inner automorphism of HF .

Definition 1.2.2. Let F be a field, and let H be an algebraic group over F . By
an inner form of H, we mean a pair (H1, [ψ]), where H1 is an algebraic group
over F and [ψ] is an equivalence class of inner twistings from H to H1. By an
isomorphism between two inner forms (H1, [ψ]) and (H ′1, [ψ′]) of H, we mean an
F -group isomorphism H1

∼−→ H ′1 under which [ψ] is identified with [ψ′]. By abuse
of notation, we often denote an inner form (H1, [ψ]) simply by H1, if no confusion
can arise.
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Remark 1.2.3. In the setting of Definition 1.2.2, there is a bijection from the set
of isomorphism classes of inner forms of H to H1(F,Had), sending (H1, [ψ]) to
the class of the cocycle ρ 7→ ψ−1 ◦ ρψ. Note that the natural map H1(F,Had) →
H1(Gal(F/F ),Aut(HF )) is in general not injective. The image of this map classifies
the F -isomorphism classes of algebraic groups H1 over F which can be extended
to an inner form (H1, [ψ]) of H.

Definition 1.2.4. Let I and G be connected reductive groups over a field F . By
an inner transfer datum from I to G, we mean a pair (f,W), where f is an injective
F -homomorphism IF → GF , and W is a non-empty subset of G(F ), satisfying the
following conditions:

(i) For each g ∈ W, there is an F -subgroup Ig ⊂ G, such that Int(g)(im f) =
(Ig)F , and such that the F -isomorphism ψg := Int(g) ◦ f : IF

∼−→ (Ig)F is
an inner twisting between the F -groups I and Ig.

(ii) For all g1, g2 ∈ W, the F -isomorphism ψg1,g2 := Int(g2g
−1
1 ) : (Ig1)F

∼−→
(Ig2)F is an inner twisting between the F -groups Ig1 and Ig2 .

1.2.5. Let F be a local or global field of characteristic zero, and let the symbol ?
be as in §1.1.5. Let I,G be connected reductive groups over F , and let (f,W) be
an inner transfer datum from I to G (Definition 1.2.4). Choose an element g ∈ W,
and let Ig, ψg be as in Definition 1.2.4. Since ψg is an inner twisting, it induces
an isomorphism ZI → ZIg between complexes in Mult(F ), and in particular an
isomorphism ψg,∗ : Hi

ab(?, I) ∼−→ Hi
ab(?, Ig),∀i ∈ Z. Since inner automorphisms of

GF act as the identity on ZG, the composite homomorphism

Hi
ab(?, I) ψg,∗−−−→ Hi

ab(?, Ig)→ Hi
ab(?, G)

is independent of the choice of g, and we say that it is induced by (f,W).
Now assume that F is global, and let S be a (finite or infinite) set of places of

F containing all the archimedean places. We let

XS(F, I) := ker(H1(F, I)→
∏
v∈S

H1(Fv, I)),

XS
ab(F, I) := ker(H1

ab(F, I)→
∏
v∈S

H1
ab(Fv, I)).

By [Bor98, Thm. 5.12 (i)], we have a canonical isomorphism

XS(F, I) ∼= XS
ab(F, I)(1.2.5.1)

induced by ab1
F . In the sequel we shall often make this identification implicitly.

The homomorphism H1
ab(F, I) → H1

ab(F,G) induced by (f,W) restricts to a
homomorphism

XS
ab(F, I) −→XS

ab(F,G).
We denote the kernel of this homomorphism by

XS
G(F, I).

Via (1.2.5.1) we also view XS
G(F, I) as a subset of H1(F, I).

More generally, for any Q-subgroup I ′ ⊂ I, we denote by XS
G(F, I ′) the kernel

of the composite
XS

ab(F, I ′)→XS
ab(F, I)→XS

ab(F,G).
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If S is the set of all places we omit S from the notation, and write X(F, I),
XG(F, I), etc.

Lemma 1.2.6. Let G be a connected reductive group over Q. Let I be a connected
reductive subgroup of G defined over Q. Let Ĩ be the inverse image of I in Gsc.
Assume that I contains a maximal torus in G defined over Q, and assume that Ĩ is
connected reductive. Then the natural map X∞

Gsc
(Q, Ĩ)→X∞

G (Q, I) is surjective.
(Here X∞

Gsc
(Q, Ĩ) is defined using the trivial inner transfer datum (f,W), where f

is the inclusion and W contains 1. Similarly, X∞
G (Q, I) is defined using the trivial

inner transfer datum.)

Proof. In the current situation X∞
G (Q, I) is nothing but the kernel of the natural

map H1(Q, I) → H1(R, I) ⊕ H1(Q, G), whose second component is induced by
the inclusion I ↪→ G. The similar remark holds for X∞

Gsc
(Q, Ĩ). Now let β ∈

X∞
G (Q, I). Then there exists g ∈ G(Q) such that β is represented by the cocycle

Γ 3 τ 7→ g−1τg ∈ I(Q).

Note that we may replace g by any other element of G(Q)gI(Q), without changing
the class β. Since β is trivial at∞, we have g ∈ G(R)I(C). By real approximation,
we can left-multiply g by an element of G(Q) to arrange that

g ∈ G(R)+I(C).
Let π denote the projection G(R) → Gab(R). Since π(G(R)+) ⊂ Gab(R)+ =
π(T (R)+), we have G(R)+ ⊂ Gder(R)T (R)+ ⊂ Gder(R)I(R). Thus we have

g ∈ Gder(R)I(C).
Again by real approximation, we may further left-multiply g by an element of
Gder(Q) to arrange that

g ∈ Gder(R)+I(C).
Now since G(Q) = Gder(Q)T (Q), we may right-multiply g by an element of T (Q)
to arrange that

g ∈ Gder(Q) ∩Gder(R)+I(C).
Now we pick a lift g̃ ∈ Gsc(Q) of g ∈ Gder(Q). Since Gsc(R) (which is connected
by Cartan’s theorem) maps onto Gder(R)+, we have g̃ ∈ Gsc(R)Ĩ(C). The cocycle

Γ 3 τ 7→ g̃−1τ (g̃)

is then valued in Ĩ(Q) (since g−1τg ∈ I(Q)), and represents a class in X∞
Gsc

(Q, Ĩ)
lifting β. �

Remark 1.2.7. In the setting of the above lemma, we in fact have X∞
Gsc

(Q, Ĩ) =
X∞

ab(Q, Ĩ), because H1
ab(Q, Gsc) = 0.

1.2.8. Let I,G be connected reductive groups over Q, and let (f,W) be an inner
transfer datum from I to G. Assume that I and G have the same absolute rank. For
each g ∈ W, we know that Ig contains a maximal torus in G defined over Q, and
in particular Ig contains ZG. Let Z be a Q-subgroup of ZG. Note that f−1(Z) is a
Q-subgroup of I, and f induces a Q-isomorphism f−1(Z) ∼−→ Z. Let Ī := I/f−1(Z)
and Ḡ := G/Z. Then (f,W) induces an inner transfer datum (f̄ ,W) from Ī to Ḡ.
We use (f,W) to define X∞

G (Q, I), and use (f̄ ,W) to define X∞
Ḡ

(Q, Ī)
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Corollary 1.2.9. In the setting of §1.2.8, the natural map X∞
G (Q, I)→X∞

Ḡ
(Q, Ī)

is surjective.

Proof. By picking an arbitrary element g ∈ W and replacing I by Ig, we reduce to
the following situation:

• I is a Q-subgroup of G containing a maximal torus in G,
• f is the inclusion,
• W contains 1.

Since Gsc = (Ḡ)sc, and since the inverse image of I in Gsc is equal to the inverse
image of Ī in (Ḡ)sc, the corollary immediately follows from Lemma 1.2.6. �

Lemma 1.2.10. Let F be a field of characteristic zero. Let I → S be a surjective
homomorphism from a connected reductive group I to a torus S over F . Let I ′ be
the kernel.

(i) We have ZI ∩ I ′ = ZI′ , and we have short exact sequences
1→ ZI′ → I ′ → Iad → 1

and
1→ ZI′ → ZI → S → 1.

(ii) The maps
f1 : I(F )→ Iad(F ) δ1

−→ H1(F,ZI′)
and

f2 : I(F )→ S(F ) δ2

−→ H1(F,ZI′)
differ by a sign. Here the maps δ1, δ2 are the boundary maps induced by
the short exact sequences in (i). In particular, every element of the image
of f1 or f2 has trivial image in H1(F, I ′) and trivial image in H1(F,ZI).

Proof. Part (i) follows from the fact that I ′ contains Ider. For part (ii), let i ∈ I(F )
and write i = i0i1 = i1i0 with i0 ∈ I ′(F ) and i1 ∈ ZI(F ). Then f2(i) is represented
by the cocycle (i−1

1
ρi1)ρ in Z1(F,ZI′). Since ρi = i, this cocycle equals (i0ρi−1

0 )ρ,
which represents −f1(i). �

Corollary 1.2.11. In Lemma 1.2.10, take F = Q, and take I → S to be the
natural map I → Iab, so that I ′ = Ider. Then the image of I(Q)+ in H1(Q, ZIder),
under either of the maps f1 or f2, is contained in X∞

Ider
(Q, ZIder).

Proof. Using the notation of Lemma 1.2.10, the image of Iad(R)+ under the bound-
ary map δ1 : Iad(R) → H1(R, ZIder) is trivial, because the image of Ider(R) →
Iad(R) contains Iad(R)+. The corollary then follows from Lemma 1.2.10. �

1.3. The Kottwitz homomorphism.

1.3.1. Let F be a field of characteristic 0, F an algebraic closure, and ΓF =
Gal(F/F ). Let G be a reductive group over F. Recall that, when F is complete,
discretely valued, with algebraically closed residue field, the Kottwitz homomor-
phism is a homomorphism G(F ) → π1(G)ΓF which is functorial in G, and for
G = Gm is the valuation map F× → Z. The original construction in [Kot97, §7]
relies on Steinberg’s theorem for F .

Here we generalize the construction of the Kottwitz homomorphism. We shall
obtain a homomorphism κR,vG : G(R) → π1(G)ΓF , where R is any F -algebra (with
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F arbitrary) equipped with a discrete valuation v. This will allow us to show that
the Kottwitz homomorphism is constant in certain families.

1.3.2. Let S be the big fpqc site of SpecF . LetAbShv(S) be the category of abelian
sheaves on S. We shall view Mult(F ) and Tori(F ) (see §1.1.1) as full subcategories
of AbShv(S). Let D(S) be the derived category of AbShv(S), and let D[−1,0](S) be
the full subcategory of D(S) consisting of those L ∈ Db(S) such that Hi(L) = 0
unless i ∈ {−1, 0}.

We shall need the formalism of Picard stacks4 on S, as in [AG73, Exposé XVIII,
§1.4]. Following loc. cit., let Ch[(S) be the category whose objects are the small
Picard stacks on S, and whose morphisms are the isomorphism classes of additive
functors between Picard stacks. By [AG73, Exposé XVIII, Prop. 1.4.15], we have
an equivalence of categories

ch : D[−1,0](S)→ Ch[(S).

For a complex C• = (C−1 → C0) in Mult(F ) (at degrees −1, 0), ch(C•) is given
by the quotient stack [C−1\C0].

1.3.3. As in Proposition 1.1.2, we have an equivalence of categories

RX∗ : Db(Mult(F ))→ Db(ΓF -Mod).

We fix once and for all a quasi-inverse Y of RX∗, and natural isomorphisms ε :
RX∗ ◦ Y → id and η : id→ Y ◦ RX∗.

Let G be a reductive group over F. Let ZG be as in Definition 1.1.3. By Propo-
sition 1.1.4, we have a canonical isomorphism RX∗(ZG) ∼= π1(G) in Db(ΓF -Mod).
Let pr : π1(G) → π1(G)ΓF be the canonical map, viewed as a morphism in
Db(ΓF -Mod). Let

Z F
G := Y(π1(G)ΓF ) ∈ Db(Mult(F )),

and let
κ0 : ZG −→ Z F

G

be given by the composite

ZG
η−→ Y(RX∗(ZG)) Y(pr)−−−→ Y(π1(G)ΓF ) = Z F

G .

Thus we have a canonical isomorphism

ε : RX∗(Z F
G ) ∼−→ π1(G)ΓF .

Lemma 1.3.4. In Db(Mult(F )), Z F
G is isomorphic to a complex of the form

T−1 −→ T 0,

where T−1 and T 0 are split tori over F and located at degrees −1 and 0. In partic-
ular, the image of Z F

G in D(S) lies in D[−1,0](S).

Proof. This follows from the fact that π1(G)ΓF is isomorphic to a complex L−1 →
L0 in Db(ΓF -Mod), where L−1 and L0 are finite free Z-modules with the trivial
Γ-action. �

4We omit the adjective “strictly commutative”, as that will always be understood.
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1.3.5. We write K F
G for ch(Z F

G ) ∈ Ch[(S), and call it the Kottwitz stack of G
over F . The inclusions induce a canonical equivalence between quotient stacks
[ZGsc\ZG]→ [Gsc\G]. Thus we obtain a functor between stacks on S:

κcan
G : G −→ [Gsc\G] ∼−→ [ZGsc\ZG] ∼= ch(ZG) ch(κ0)−−−−→ ch(Z F

G ) = K F
G ,

which is canonical up to isomorphism.
For any small Picard category P (strictly commutative, as always), we denote

by π0(P ) the set of isomorphism classes of P , which is naturally an abelian group.
Then κcan

G induces a morphism

π0(κcan
G ) : G −→ π0(K F

G (·))
of presheaves in groups5 on S.

1.3.6. Now choose T • = (T−1 → T 0) as in Lemma 1.3.4, and choose an isomor-
phism f : T • ∼−→ Z F

G in Db(Mult(F )). If R is any F -algebra with Pic(SpecR) =
{1}, then we have canonical isomorphisms of abelian groups

(1.3.6.1) π0
(

ch(T •)(R)
) ∼= T 0(R)/T−1(R)
∼= (X∗(T 0)/X∗(T−1))⊗Z R

× ∼= H0(RX∗(T •))⊗Z R
×,

since T−1 is a split torus. In this case, consider the composite isomorphism:

γR : π0(K F
G (R)) f−1

−−→ π0
(

ch(T •)(R)
) ∼= H0(RX∗(T •))⊗R×

f−→ H0(RX∗(Z F
G ))⊗R× ε−→ π1(G)ΓF ⊗R×.

Then γR is independent of the choice of (T •, f), by the functoriality of (1.3.6.1) in
T •.

1.3.7. If R is a commutative ring, by a discrete valuation on R, we mean a
function v : R → Z ∪ {∞} satisfying v(0) =∞, v(1) = 0, v(ab) = v(a) + v(b), and
v(a + b) ≥ min(v(a), v(b)), for all a, b ∈ R. (Here ∞ > n, ∀n ∈ Z, and we do not
require v(a) =∞⇒ a = 0.)

Now consider an F -algebra R satisfying Pic(SpecR) = {1}, and a discrete valu-
ation v on R. Composing the canonical map π0(κcan

G ) in §1.3.5 with the canonical
map γR in §1.3.6, we obtain the canonical map

κRG : G(R) π0(κcan
G )−−−−−→ π0(K F

G (R)) γR−−→ π1(G)ΓF ⊗R×,
which is a group homomorphism. On composing the above with v : R× → Z, we
obtain the group homomorphism

κR,vG : G(R) κRG−−→ π1(G)ΓF ⊗R×
v−→ π1(G)ΓF .(1.3.7.1)

We now extend the definition of κR,vG , dropping the hypothesis Pic(SpecR) = {1}.

Definition 1.3.8. LetR be an arbitrary F -algebra, and let v be a discrete valuation
on R. The elements r ∈ R with v(r) = ∞ form a prime ideal p, and v factors as
R→ Frac (R/p) v̄−→ Z ∪ {∞}. We define κR,vG to be the composition

G(R) −→ G(Frac (R/p))
κ

Frac (R/p),v̄
G−−−−−−−−→ π1(G)ΓF .

5We caution the reader that the right hand side is not a sheaf.
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We call κR,vG the Kottwitz homomorphism. We often simply write κvG for κR,vG .

1.3.9. In Definition 1.3.8, if R satisfies Pic(SpecR) = {1}, one checks that the
definition of κR,vG agrees with the previous definition (1.3.7.1). Moreover, the gen-
erally defined κR,vG (without the hypothesis Pic(SpecR) = {1}) is functorial in
the pair (R, v) in the following sense. Let R′ be another F -algebra equipped
with a discrete valuation v′. Suppose there is an F -algebra map h : R → R′

such that v is the pull-back of v′ along h. Then κR,vG equals the composition

G(R) h−→ G(R′)
κR
′,v′

G−−−−→ π1(G)ΓF . For fixed (R, v), the homomorphism κR,vG is also
functorial in the reductive group G over F , i.e., it is a natural transformation be-
tween the functors G 7→ G(R) and G 7→ π1(G)ΓF . Using this, one easily checks that
κF,vG agrees with Kottwitz’s original construction in [Kot97, §7], in the special case
when (F, v) is a complete discretely valued field with algebraically closed residue
field.

Proposition 1.3.10. Let R be an F -algebra, and let v1, . . . , vn be a collection of
discrete valuations on R. Let a1, . . . , an ∈ Z. Suppose that

(i)
∑n
i=1 aivi(u) = 0 for all u ∈ R×, and

(ii) the group Pic(SpecR) is trivial.
Then

∑n
i=1 aiκ

vi
G (h) = 0 for all h ∈ G(R).

Proof. By condition (ii), each κviG factors as in (1.3.7.1). Thus the map
∑
i aiκ

vi
G

factors through the map id⊗
∑
aivi : π1(G)ΓF ⊗R× → π1(G)ΓF , which is zero by

(i). �

Proposition 1.3.11. Let R ⊃ F be a domain, and v1, . . . , vn a collection of discrete
valuations on R. Let a1, . . . , an ∈ Z. Suppose that R = R◦[1/fj ]mj=1, where R◦ ⊂ R
is a subring and fj ∈ R◦ are non-zero prime elements, satisfying the following
conditions.

(i) The ring R◦ is a noetherian locally factorial domain.
(ii) For i = 1, . . . , n, we have vi(R◦) ⊂ Z≥0 ∪ {∞}.
(iii)

∑n
i=1 aivi(fj) = 0 for each j = 1, . . . ,m.

Then
∑n
i=1 aiκ

vi
G (h) = 0 for all h ∈ G(R).

Proof. Let R◦′ be the ring obtained from R◦ by inverting all elements f such that
vi(f) = 0 for all i. The conditions of the proposition continue to hold if we replace
R◦ (resp. R) by R◦′ (resp. R◦′[1/fj ]mj=1), and omit from the list of fj those elements
such that vi(fj) = 0 for all i (as they become units in R◦′). By the functoriality
of the Kottwitz map as discussed in §1.3.9, we reduce to the case where R◦ = R◦′.
Then R◦ is semi-local, as each proper ideal is contained in one of the prime ideals
pi = {x ∈ R◦ | vi(x) > 0} , i = 1, . . . , n.

Since R◦ is noetherian and locally factorial, the restriction map Pic(SpecR◦)→
Pic(SpecR) is surjective (see [Gro67, Cor. 21.6.11]). Since R◦ is semi-local, we have
Pic(SpecR◦) = Pic(SpecR) = {1}.

Now since the fj are prime in R◦, any unit in R has the form u = wfe11 . . . femm
where w ∈ R◦×, ej ∈ Z. Since vi(w) = 0 for all i, we have

n∑
i=1

aivi(u) =
m∑
j=1

ej

n∑
i=1

aivi(fj) = 0.
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The proposition now follows from Proposition 1.3.10. �

Corollary 1.3.12. Suppose that F is equipped with a discrete valuation vF : F →
Z∪{∞} with ring of integers OF , and that G is a smooth affine group scheme over
OF extending G. Assume that G has connected fibers. Then κvFG : G(F )→ π1(G)ΓF
maps G(OF ) ⊂ G(F ) to {0}.

Proof. Let R◦ be the affine ring of G. Let πF ∈ OF be a uniformizer. Our conditions
imply that πF is a prime element of the noetherian domain R◦, and hence R◦(πF ) is
a DVR. Let v0 be the pull-back to R◦ of the canonical discrete valuation on R◦(πF ).
Let g ∈ G(OF ). We also consider the valuation vg given by R◦ g−→ OF

vF−−→ Z∪{∞}.
In the following we show that κvFG (g) = 0.

Let R = R◦[1/πF ]. Note that v0(πF ) = vg(πF ) = 1. In particular, v0 and vg
extend to R. Since R◦ and v0, vg satisfy conditions (i) (ii) in Proposition 1.3.11,
and since v0(πF ) − vg(πF ) = 0, we may apply that proposition to conclude that
κv0
G (h) − κvgG (h) = 0 for all h ∈ G(R). Applying this to h = gu, where gu is the

universal point in G(R◦) ⊂ G(R), we get
κv0
G (gu) = κ

vg
G (gu) = κvFG (g),

where the second equality follows from functoriality (§1.3.9). This shows that
κvFG (g) does not depend on g ∈ G(R). Hence it must be 0, its value on the identity.

�

Remark 1.3.13. In Corollary 1.3.12, if G is a parahoric group scheme ([HR08]), and
if the discretely valued field (F, vF ) is strictly henselian, then the conclusion follows
from [HR08, Prop. 3].

1.3.14. Keep the setting and notation of Corollary 1.3.12. Assume that G is
reductive, and F is complete. Let πF ∈ F be a uniformizer. Let S ⊂ G be a
maximal split torus. Then we have the Cartan–Iwahori–Matsumoto decomposition

G(F ) =
⋃

µ∈X∗(S)

G(OF )µ(πF )G(OF ).

(The union is not disjoint.) The decomposition in this generality is proved in
[AHH19, Thm. 1.3, Rmk. 3.5].

Corollary 1.3.15. Keep the setting of §1.3.14. If g ∈ G(F ) belongs to the double
coset indexed by µ ∈ X∗(S), then κvFG (g) = [µ], where [µ] is the image of µ under
the natural map X∗(S) = π1(SF )→ π1(G)→ π1(G)ΓF .

Proof. By Corollary 1.3.12, it suffices to show that κvFG (µ(πF )) = [µ]. But this
follows from the functoriality of the Kottwitz map in the group G. �

1.4. Decent elements and twisting. Throughout this subsection, we fix a prime
p, and denote by σ the arithmetic p-Frobenius in Aut(Q̆p).

1.4.1. Let G be a connected reductive group over Qp. For b ∈ G(Q̆p), we write
νb for the Newton cocharacter of b, which is a fractional cocharacter of GQ̆p ; see
[Kot85, §4] and [RZ96, §1.7]. Following [RZ96, Def. 1.8], we say that b is decent, if
there exists n ∈ Z≥1 such that nνb is a cocharacter of GQ̆p , and such that

bσ(b) · · ·σn−1(b) = (nνb)(p).(1.4.1.1)
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In this case, we also say that b is n-decent.
For any n-decent b ∈ G(Q̆p), it is shown in [RZ96, Cor. 1.9] that b ∈ G(Qpn),

and that νb is defined over Qpn . In particular, if b is n-decent, then it is also
n′-decent for n|n′. Clearly the condition that an element of G(Qpn) is n-decent
is invariant under σ-conjugation by G(Qpn). Conversely, if b, b′ are n-decent and
if b′ = gbσ(g)−1 for some g ∈ G(Q̆p), then necessarily g ∈ G(Qpn); see [RZ96,
Cor. 1.10].

1.4.2. We denote by B(G) the set of σ-conjugacy classes in G(Q̆p). For b ∈
G(Q̆p), we denote its class in B(G) by [b]. We recall Kottwitz’s classification of
elements of B(G). Let N (G) denote the set of σ-stable G(Q̆p)-conjugacy classes
of fractional cocharacters of GQ̆p . The association b 7→ νb descends to the Newton
map ν̄ : B(G) → N (G). As in §1.3, we have the Kottwitz homomorphism wG :
G(Q̆p) → π1(G)Γp,0 associated with the p-adic valuation on Q̆p. By [Kot97, §7],
wG is surjective, and descends to a map κG : B(G)→ π1(G)Γp , called the Kottwitz
map. By [Kot97, §4.13], the map

(ν̄, κG) : B(G) −→ N (G)× π1(G)Γp

is injective.
It is proved by Kottwitz [Kot85, §4.3] (cf. [RZ96, §1.11]) that every σ-conjugacy

class in G(Q̆p) is represented by a decent element. Thus B(G) is in natural bijection
with the set of G(Qur

p )-orbits in the set of decent elements of G(Qur
p ), where G(Qur

p )
acts by σ-conjugation.

1.4.3. Let b ∈ G(Q̆p). The functor sending any Qp-algebra R to the group

Jb(R) :=
{
g ∈ G(R⊗Qp Q̆p) | gb = bσ(g)

}
is represented by a reductive group Jb over Qp. We shall also write JGb for Jb,
to make the presence of G explicit. If b is decent (so b ∈ G(Qur

p )), then by
[RZ96, Cor. 1.14], there is a canonical Qur

p -isomorphism from Jb,Qur
p

to the cen-
tralizer GQur

p ,νb
of νb in GQur

p
. (In this case, for any Qur

p -algebra R we have Jb(R) ⊂
G(R ⊗Qp Qur

p ), and the embedding Jb,Qur
p
→ GQur

p
is induced by the natural map

R ⊗Qp Qur
p → R.) In this case the action of σ on GQur

p ,νb
(Qur

p ) with respect to the
Qp-form Jb is given by g 7→ bσ(g)b−1, where σ(·) is defined with respect to the
Qp-form G.

If b is decent and if
W :=

{
c ∈ G(Qur

p ) | cνbc−1 is defined over Qp
}
6= ∅,(1.4.3.1)

then the canonical embedding Jb,Qur
p
→ GQur

p
and W form an inner transfer datum

from Jb to G (Definition 1.2.4). We thus obtain a canonical map

H1(Qp, Jb) ∼= H1
ab(Qp, Jb)→ H1

ab(Qp, G).(1.4.3.2)

Note that for b decent, (1.4.3.1) holds in the following two cases:
(i) G is quasi-split over Qp.
(ii) b is basic in G, i.e., νb is central.

Indeed, the G(Qur
p )-conjugacy class of νb is always stable under Gal(Qur

p /Qp). In
case (i), this conjugacy class must contain a fractional cocharacter defined over Qp.
In case (ii), νb itself is already defined over Qp.
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We remark that in case (ii), the canonical inner transfer datum from Jb to G
equips Jb with the structure of an inner form of G. The isomorphism class of this
inner form of G (see Definition 1.2.2) depends only on [b] ∈ B(G), not on the decent
representative b.

1.4.4. Let G be a connected reductive group over Qp. Let b ∈ G(Q̆p) be a
decent element, and fix an element β ∈ H1(Qp, Jb). By Steinberg’s theorem, β
is represented by a cocycle (aρ)ρ ∈ Z1(Qur

p /Qp, Jb(Qur
p )). Under the canonical

isomorphism Jb,Qur
p

∼−→ GQur
p ,νb , we view aσ ∈ Jb(Qur

p ) as an element of G(Qur
p ),

and define b′ := aσb ∈ G(Qur
p ). It is easy to see that the σ-conjugacy class of b′

in G(Qur
p ) depends only on b, β, not on (aρ)ρ. We shall say that (the σ-conjugacy

class of) b′ is the twist of b by β.

Proposition 1.4.5. In the setting of §1.4.4, we have νb′ = νb, and b′ is decent.
Moreover, if (1.4.3.1) holds for b (e.g., if G is quasi-split), then κG([b′]) − κG([b])
is equal to the image of β under

H1(Qp, Jb)→ H1
ab(Qp, G) ∼−→ π1(G)Γp,tors,

where the first map is (1.4.3.2), and the second isomorphism is as in Proposition
1.1.9.

Proof. Choose n ∈ Z≥1 to be divisible enough such that

(aρ)ρ ∈ Z1(Qpn/Qp, Jb(Qpn)),

and such that b is n-decent. Using that (aρ)ρ is a cocycle, one shows by induction
that

aσi = b′σ(b′) · · ·σi−1(b′)σi−1(b−1) · · ·σ(b−1)b−1,

for each i ∈ Z≥1. Since aσn = 1, we have

b′σ(b′) · · ·σn−1(b′) = bσ(b) · · ·σn−1(b).

Since b is n-decent, the right hand side is equal to pnνb . By the characterization of
νb′ (see [Kot85, §4]), we conclude that νb′ = νb, and that b′ is n-decent.

We now prove the statement about κG([b′])− κG([b]). Since (1.4.3.1) holds, we
can replace b by a σ-conjugate in G(Qur

p ) and assume that νb is defined over Qp.
Then we can replace G by Gνb and reduce to the case where νb is central. To
finish the proof we only need to show that the image of β under the composite
isomorphism H1(Qp, Jb) ∼= H1

ab(Qp, Jb) ∼= π1(Jb)Γp,tors is equal to κJb(aσ). This
follows from [Kot85, Rmk. 5.7] applied to Jb (cf. [RV14, Rmk. 2.2 (iv)]). �

1.5. Shimura varieties and their cohomology.

Definition 1.5.1. Let H be a locally profinite group admitting a countable neigh-
borhood basis of the identity. Let B be a locally noetherian scheme. Let S be
a B-scheme equipped with a right H-action via B-automorphisms. We say that
the action is admissible if there exists a class K of compact open subgroups of H
satisfying the following conditions.

(i) The class K contains all sufficiently small compact open subgroups of H
(i.e., all open subgroups of a fixed compact open subgroup).

(ii) For K ∈ K , the categorical quotient S/K in the category of B-schemes
exists, and is smooth, separated, and of finite type over B.
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(iii) For K1,K2 ∈ K of H such that K1 ⊂ K2, the natural map S/K1 → S/K2
is finite étale.

(iv) The maps S → S/K identify S with lim←−K∈K
S/K.

1.5.2. Let H, B, S and K be as in Definition 1.5.1. For K ∈ K , we write SK
for S/K. Let ` be a prime number invertible on B. The construction in [HT01,
§III.3] can be generalized to define `-adic sheaves on SK and the Hecke action on
the cohomology. We explain this in the following.

Let K,U ∈ K , with U normal in K. The group K/U acts on SU via SK-
automorphisms. Since SK = SU/K and since the map SU → SK is finite étale, we
know that SU → SK is a Galois étale cover, and moreover Gal(SU/SK) is identified
with the maximal quotient of K/U that acts faithfully on SU , cf. [Gro03, Exposé
V, Prop. 3.1].

For each K ∈ K , we define the profinite group
Gal(S/SK) := lim←−

U�K open
Gal(SU/SK).(1.5.2.1)

Since there exists neighborhood basis of 1 in H consisting of countably many open
normal subgroups Ui of K with

· · · ⊂ Ui ⊂ Ui−1 ⊂ · · ·U1 ⊂ K,
we have a presentation

Gal(S/SK) ∼= lim←−
i

Gal(SUi/SK).(1.5.2.2)

Thus we are in a special case of the general setting at the beginning of [HT01,
§III.2], with our SK playing the role of X, and our Gal(S/SK) playing the role of
Γ. By the construction in loc. cit., every continuous Gal(S/SK)-representation ρ
on a finite-dimensional Q`-vector space gives rise to a lisse Q`-sheaf Lρ on SK .

Note that for each K ∈ K , the natural homomorphism K → Gal(S/SK) is
surjective, which can be seen from (1.5.2.2) and the similar presentation K ∼=
lim←−iK/Ui (using that the indexing set is countable). Now let ξ be a continuous
representation of H on a finite-dimensional Q`-vector space W . We make the
following assumption on ξ:

• For all sufficiently small K ∈ K , the restriction ξ|K factors through
Gal(S/SK).

Given such a ξ, we may and shall shrink K and assume that the above condition
holds for all K ∈ K . Then for each K ∈ K we apply the previous construction to
the representation of Gal(S/SK) on W induced by ξ, and obtain a lisse Q`-sheaf
on SK , denoted by Lξ,K .

Consider K1,K2 ∈ K and g ∈ H such that g−1K1g ⊂ K2. The action of g on
S induces a map g : SK1 → SK2 . As on p. 96 of [HT01], the actions of g on S and
on W together define a morphism

−→g ∗ : g∗Lξ,K2 −→ Lξ,K1

between Q`-sheaves on SK1 . For any geometric point x of B, this induces a map
[g]K2,K1 : Hi

c(SK2,x,Lξ,K2) −→ Hi
c(SK1,x,Lξ,K1).

Define
Hi
c(Sx, ξ) := lim−→

K∈K

Hi
c(SK,x,Lξ,K),
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where the transition maps are given by [1]K2,K1 forK1 ⊂ K2. The maps [g]K2,K1 for
varying g,K1,K2 give rise to a left H-action on Hi

c(Sx, ξ), called the Hecke action.
As on p. 97 of [HT01], Hi

c(Sx, ξ) is an admissible H-module over Q`. Indeed, using
the Hochschild–Serre spectral sequence and the fact that the cohomology of a finite
group acting on a Q`-vector space vanishes in positive degrees, we see that for each
K ∈ K the natural map Hi

c(SK,x,Lξ,K)→ Hi
c(Sx, ξ) is injective, and its image is

the subspace of K-invariants. Since Hi
c(SK,x,Lξ,K) is finite-dimensional, we know

that Hi
c(Sx, ξ) is an admissible H-module.

1.5.3. Let (G,X) be a Shimura datum with reflex field E = E(G,X) ⊂ C. By
the theory of canonical models due to Shimura [Shi63, Shi64, Shi65, Shi66, Shi67a,
Shi67b, Shi70a, Shi70b], Deligne [Del71, Del79], Milne [Mil83] (cf. [Mil90a]), and
Borovoi [Bor84], we have a canonical E-scheme Sh = Sh(G,X) equipped with a
right G(Af )-action that is admissible in the sense of Definition 1.5.1. The class K
as in Definition 1.5.1 can be taken to be the class of neat compact open subgroups of
G(Af ) (as defined in [Pin90, §0.6]). For each K ∈ K , we denote Sh /K by ShK =
ShK(G,X). This is a smooth, quasi-projective E-scheme, whose analytification over
C is identified with the hermitian locally symmetric variety G(Q)\X ×G(Af )/K.

If G = T is a torus, then X consists of a single R-homomorphism h : S → TR,
and ShK(E) is identified with the finite set ShK(C) = T (Q)\T (Af )/K. The action
of Gal(E/E) on this finite set is given by the reciprocity law, which we now recall
in order to fix the sign convention. Let µ = µh

6, which is a cocharacter of T defined
over E. Consider the composite homomorphism of Q-algebraic groups

r(µ)alg : ResE/QGm
ResE/Q µ−−−−−−→ ResE/Q T

NE/Q−−−→ T.

This induces a group homomorphism

π0(E×\A×E) −→ π0(T (Q)\T (A)).

Now the left hand side is identified with Gal(Eab/E) under the global Artin map
(normalized geometrically, i.e., uniformizers correspond to geometric Frobenius el-
ements at the finite places), while the right hand side admits a natural map to
T (Q)\T (Af )/K (cf. [Del79, §2.2.3]). We thus obtain a group homomorphism

r : Gal(Eab/E) −→ T (Q)\T (Af )/K.

For σ ∈ Gal(E/E) and x ∈ ShK(E) ∼= T (Q)\T (Af )/K, we have the reciprocity law

σ(x) = r(σ) · x.

This uniquely determines the E-scheme structure of ShK . Note that the above
reciprocity law differs from [Del79] in the sign of µ. Thus the E-scheme which
we call the canonical model for (T, {h}) would be called the canonical model for
(T,
{
h−1}) according to loc. cit. Our sign convention is the same as that used by

Pink [Pin90, Pin92a] and Morel [Mor10].
For general Shimura data, the canonical models are uniquely characterized by

functoriality and the case of tori. According to our sign convention, the Siegel
modular varieties classifying polarized abelian varieties are canonical models for
the Siegel Shimura data as specified in [Kis10, §2.1.5]. (This is proved in [Del71,

6The convention used here is the same as in [Del79]. If TR = Gm,R and h is given by h(z) =
zpz̄q , then µh is given by µh(z) = z−p.
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Thm. 4.21].) The discrepancy between this fact and Deligne’s sign conventions in
[Del79] was observed in [Mil90b].
Definition 1.5.4. Let T be a Q-torus. We denote by Ta be the maximal Q-
anisotropic subtorus of T (see [Spr98, Prop. 13.2.4]). We denote by Tac the smallest
Q-subgroup of Ta whose base change to R contains the maximal R-split subtorus
of Ta,R. (Clearly Tac exists and is a torus.) We call Tac the anti-cuspidal part of T .
We say that T is cuspidal, if T has equal Q-split rank and R-split rank (cf. [Mor10,
Def. 3.1.1]).
Lemma 1.5.5. Let T be a Q-torus. The following statements are equivalent.

(i) T is cuspidal.
(ii) T is isogenous over Q to the product of a split Q-torus and a Q-torus that

is anisotropic over R.
(iii) Ta is R-anisotropic.
(iv) Tac is trivial.
(v) T (Q) is discrete in T (Af ).
(vi) All arithmetic subgroups of T (Q) are finite.
(vii) T satisfies the following Serre condition (cf. [Kis17, §3.5.6]). Fix a complex

conjugation ι ∈ Gal(Q/Q). For all τ ∈ Gal(Q/Q) and all µ ∈ X∗(T ), we
have

(τ − 1)(ι+ 1)µ = (ι+ 1)(τ − 1)µ = 0.
In general, Tac is the smallest Q-subgroup S of T such that T/S is cuspidal.
Proof. The equivalence of (i), (ii), (iii), and (iv) follows from [Spr98, Prop. 13.2.4].
The equivalence of (i), (v), and (vi) is shown in [Gro99, Prop. 1.4]. We now show
that (vii) is equivalent to the other conditions. Note that (vii) is invariant under
isogeny over Q, and is satisfied when T is is either split over Q or anisotropic over
R. Hence (ii) implies (vii). Conversely, if (vii) holds, then every µ ∈ X∗(T )ι=1 is
fixed by Gal(Q/Q), since (ι+ 1)µ = 2µ is fixed by Gal(Q/Q). This implies (i).

The last assertion in the lemma is clear since (i) and (iii) are equivalent. �

1.5.6. Let (G,X) be a Shimura datum with reflex field E. Write Z for ZG,
and write Zac for (Z0)ac. For each compact open subgroup K ⊂ G(Af ), we write
Z(Q)K for Z(Q) ∩ K, and write ZK for Z(Af ) ∩ K. Here both intersections are
inside G(Af ).
Lemma 1.5.7. Let K ⊂ G(Af ) be a neat compact open subgroup. Then Z(Q)K is
contained in Zac(Q).
Proof. By Lemma 1.5.5, Z0/Zac, all congruence subgroups of (Z0/Zac)(Q) are fi-
nite. Thus the same is true for all congruence subgroups of (Z/Zac)(Q). It follows
that the image of Z(Q)K in (Z/Zac)(Q) is finite. But this image is also neat inside
(Z/Zac)(Af ), so it is trivial. �

1.5.8. Fix a prime number `. Let ξ be an irreducible algebraic representation
of G over Q`. We set Gc := G/Zac, and assume that ξ factors through Gc.7 In
the following we construct Q`-sheaves on ShK associated with ξ, for all sufficiently
small K, by applying the general formalism in §1.5.2. This construction is well

7 In [Mil90a, §III], Gc is defined to be G/Zs, where Zs is the maximal Q-subtorus of Z0 that
is Q-anisotropic and R-split. Note that it is assumed in [Mil90a, §II, (2.1.4)] that Z0 splits over
a CM field. Under this assumption, Zs is equal to Zac. In general, the two can be different.
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known. See for instance [Kot92b, §6], [Pin92a, §5], [HT01, §3.2], and [LS18, §3],
which give this construction at different levels of generality. Note that in all but
the last reference, the Shimura varieties being considered satisfy G = Gc.

Let K and U be neat compact open subgroups of G(Af ), with U normal in K.
Since each neat congruence subgroup Λ of G(Q) acts on X with kernel Λ ∩ Z(Q),
we have

Gal(ShU / ShK) = K/(Z(Q)KU).(1.5.8.1)

Write Z(Q)− for the closure of Z(Q) in Z(Af ), and write Z(Q)−K for the intersection
Z(Q)− ∩ K inside G(Af ). Note that Z(Q)−K is also the closure of Z(Q)K inside
K, since K is open and closed in G(Af ). Define Gal(Sh / ShK) as in (1.5.2.1). By
(1.5.8.1), we have

Gal(Sh / ShK) ∼= K/Z(Q)−K ,(1.5.8.2)
(cf. [Del79, §2.1.9]). By Lemma 1.5.7, the natural mapK → Gc(Af ) factors through
Gal(Sh / ShK).8

Via the projection G(Af ) → G(Q`), we obtain a continuous representation of
G(Af ) on a finite-dimensional Q`-vector space induced by ξ. This continuous rep-
resentation satisfies the assumption in §1.5.2, namely its restriction to K factors
through Gal(Sh / ShK) for all sufficiently small (in fact, all neat) K. By the con-
struction in §1.5.2, we obtain a lisse Q`-sheaf Lξ,K on ShK for all neat K, and
obtain the admissible G(Af )-module

Hi
c(ShE , ξ) := lim−→

K

Hi
c(ShK,E ,Lξ,K).

We have a natural continuous Gal(E/E)-action on Hi
c(ShE , ξ) that commutes

with the G(Af )-action. Our main interest is to understand the virtual G(Af ) ×
Gal(E/E)-module ∑

i

(−1)i Hi
c(ShE , ξ).

1.6. Kottwitz parameters.
1.6.1. Let (G,X) be a Shimura datum, and let p be a prime number. In this
subsection we define Kottwitz parameters with respect to (G,X) and p, generalizing
the considerations in [Kot90, §2] where Gder is assumed to be simply connected.

Let E ⊂ C be the reflex field of (G,X). From the fixed embeddings Q ↪→ C and
Q ↪→ Qp, we obtain a prime p of E over p. Let pr be the cardinality of the residue
field of p. Fix a positive multiple n of r.

The Hodge cocharacters attached to h ∈ X all have the same image in π1(G),
which we denote by [µ]X ∈ π1(G).

We say that an element γ0 ∈ G(Q) is semi-simple and R-elliptic, if ε ∈ T (R)
for some elliptic maximal torus T in GR. Since G is part of a Shimura datum,
Gad

R admits a Cartan involution. Therefore GR contains elliptic maximal tori, and
our definition of R-elliptic elements agrees with the more general definition in the
literature, cf. [Kot86, §9.1].

8In fact, the induced map Gal(Sh /ShK) ∼= K/Z(Q)−K → Gc(Af ) is never injective, if
Zac is non-trivial. This follows from the fact that Zac(Q)(K ∩ Zac(Af )) has finite index in
Zac(Af ) ([Bor63, Thm. 5.1]), and the fact that Zac(Q)− has infinite index in Zac(Af ) ([PR94,
Prop. 7.13(2)]). In [Mil90a, §III, Rmk. 6.1] it is incorrectly stated that Gal(Sh / ShK) is isomorphic
to the image of K in Gc(Af ), cf. §3 of the updated online version of [LS18] and its erratum.
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Definition 1.6.2. A classical Kottwitz parameter of degree n (with respect to
(G,X) and p) is a triple

(γ0, γ = (γl)l 6=p, δ) ∈ G(Q)×G(Apf )×G(Qpn),

satisfying the following conditions.
CKP1: The element γ0 ∈ G(Q) is semi-simple and R-elliptic.
CKP2: For each prime l 6= p, γl is stably conjugate to γ0 as elements of
G(Ql).

CKP3: The image of γ0 in G(Qp) is a degree n norm of δ (see [Kot82, §5]).
CKP4: The image of δ under the Kottwitz map κG : B(GQp)→ π1(G)Γp is

equal to the image of −[µ]X .
We denote by KPcla(pn) the set of classical Kottwitz parameters of degree n.

1.6.3. We define an equivalence relation ∼ on G(Q)×G(Apf )×G(Qpn) by declaring
(γ0, γ, δ) ∼ (γ0

′, γ′, δ′) if the following conditions are satisfied:
• The elements γ0 and γ0

′ are stably conjugate in G(Q).
• The elements γ and γ′ are conjugate in G(Apf ).
• The elements δ and δ′ are σ-conjugate in G(Qpn).

The subset KPcla(pn) ⊂ G(Q)×G(Apf )×G(Qpn) is stable under ∼.

Definition 1.6.4. A Kottwitz parameter (with respect to (G,X) and p) is a tuple
(γ0, a, [b]), consisting of:

• a semi-simple and R-elliptic element γ0 ∈ G(Q),
• an element a ∈ D(G0

γ0
, G;Apf ),

• a σ-conjugacy class [b] in G0
γ0

(Q̆p) (i.e., [b] ∈ B(G0
γ0,Qp)),

satisfying the following condition.
KP0: Let [b]G be the image of [b] in B(GQp). Then the element κG([b]G) ∈
π1(G)Γp is equal to the image of −[µ]X .

We denote by KP the set of all Kottwitz parameters. For c = (γ0, a, [b]) ∈ KP, we
write I0(c) for G0

γ0
. When c is fixed in the context we also simply write I0 for I0(c).

Definition 1.6.5. We say that (γ0, a, [b]) ∈ KP is pn-admissible, if it satisfies the
following condition.

KP1: Let b ∈ I0(Q̆p) be a representative of [b]. There exists c ∈ G(Q̆p) such
that, letting δ := c−1bσ(c) ∈ G(Q̆p), we have

c−1γ0c = δ · σ(δ) · · ·σn−1(δ).(1.6.5.1)

(Clearly this condition is independent of the representative b of [b].) We denote by
KPa(pn) the set of pn-admissible Kottwitz parameters.

1.6.6. Next we deduce some consequences of the condition KP1. We shall work in
a local setting as follows. Let γ0 ∈ G(Qp)ss and let I0 := (GQp)0

γ0
. Let [b] ∈ B(I0),

and assume that KP1 holds for [b] and γ0.

Lemma 1.6.7. Keep the setting of §1.6.6. Choose b and c as in KP1 with respect
to [b] and γ0. Let δ = c−1bσ(c). Then we have δ ∈ G(Qpn). The σ-conjugacy
class of δ in G(Qpn) depends only on [b] ∈ B(I0), not on the choices of b and c.
Moreover, γ0 ∈ G(Qp) is a degree n norm of δ ∈ G(Qpn).
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Proof. By (1.6.5.1) we have (δoσ)n = c−1γ0coσn. Since b and 1oσ both commute
with γ0, we know that δ o σ = c−1(b o σ)c commutes with c−1γ0c. Hence δ o σ
commutes with σn, which means that δ ∈ G(Qpn).

To prove the second statement, we first note that when b is fixed, any choice of
c has to satisfy the equation

γ0c = bσ(b) · · ·σn−1(b)σn(c).

Hence two choices of c give rise to the same coset cG(Qpn). It follows that the
σ-conjugacy class of δ in G(Qpn) is independent of the choice of c. Now suppose
we choose another representative b′ ∈ I0(Q̆p) of [b] ∈ B(I0). Then b′ = dbσ(d)−1

for some d ∈ I0(Q̆p). Letting c′ := dc, we have c′−1b′σ(c′) = δ, and

c′−1γ0c
′ = c−1γ0c = δσ(δ) · · ·σn−1(δ).

Hence b′ still determines the same δ ∈ G(Qpn) up to σ-conjugacy.
Finally, we show that γ0 is a degree n norm of δ. If Gder is simply connected,

then the statement follows from (1.6.5.1) and the definition of norm. In general,
take a z-extension 1 → Z → H → GQp → 1 over Qp. Let c̃ ∈ H(Q̆p) be a lift of
c ∈ G(Q̆p), and let δ̃ ∈ H(Qpn) be a lift of δ ∈ G(Qpn). Define γ̃0 ∈ H(Q̆p) by the
equation

c̃−1γ̃0c̃ = δ̃σ(δ̃) · · ·σn−1(δ̃).(1.6.7.1)

Then γ̃0 is a lift of γ0. We claim that γ̃0 ∈ H(Qp). Once the claim is proved, we
know that γ̃0 is a degree n norm of δ̃ by (1.6.7.1), and it follows that γ0 is a degree
n norm of δ (see [Kot82, §5]).

It remains to prove the claim. Let b̃ = c̃δ̃σ(c̃)−1 ∈ H(Q̆p). By (1.6.7.1) we have
(δ̃ o σ)n = c̃−1γ̃0c̃ o σn. Since δ̃ o σ commutes with σn (i.e., δ̃ ∈ H(Qpn)), it
must commute with c̃−1γ̃0c̃. Hence b̃o σ = c̃(δ̃o σ)c̃−1 commutes with γ̃0. On the
other hand since b̃ is a lift of b ∈ I0, we know that b̃ commutes with γ̃0 by [Kot82,
Lem. 3.1 (1)]. Therefore σ commutes with γ̃0, which proves the claim. �

Lemma 1.6.8. Let H be a smooth affine group scheme over Zp with connected
fibers. Then every element of H(Q̆p)/H(Z̆p) is fixed by some power of σ. The
natural map H(Qur

p )/H(Zur
p )→ H(Q̆p)/H(Z̆p) is a bijection.

Proof. By [Bro13, Lem. 3.2], there exists a closed embedding of Zp-groups H →
GLn. Hence the first statement in the lemma reduces to the case where H = GLn,
and it follows from the fact that GLn(Qur

p ) is dense in GLn(Q̆p) under the p-adic
topology. The second statement (for general H) follows from the first statement
and Greenberg’s theorem [Gre63, Prop. 3] asserting the surjectivity of the map
H(Z̆p)→ H(Z̆p), g 7→ g · σn(g)−1 for arbitrary n ∈ Z≥1. �

Lemma 1.6.9. Keep the setting of §1.6.6. Let b ∈ I0(Q̆p) be a decent representative
of [b] ∈ B(I0) (see §1.4.2). Then there exists t ∈ Z≥1 such that b is t-decent, and
such that

γt0 = pntνbk,(1.6.9.1)

where k lies in a bounded subgroup of G(Q̆p) (in the sense of [Tit79, §2.2]).
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Proof. Assume b is t0-decent. Let c be as in KP1. Let G be a parahoric model of
GQp over Zp, and write c̄ for the image of c in ∈ G(Q̆p)/G(Z̆p). By (1.6.5.1), we
have γ0 · c̄ = (bo σ)n · c̄. Since γ0 commutes with b and 1o σ, for any multiple t of
t0 we have

γt0 · c̄ = (bo σ)nt · c̄ = (pntνb o σnt) · c̄.
By Lemma 1.6.8, when t is sufficiently divisible we have σntc̄ = c̄. Then k :=
p−ntνbγt0 lies in cG(Z̆p)c−1, which is a bounded subgroup of G(Q̆p). �

One can view (1.6.9.1) as a “polar decomposition” of γt0. Such a decomposition
satisfies a very strong sense of uniqueness, as specified in the following lemma.

Lemma 1.6.10. Let F be a complete discretely valued field. Let H be a linear
algebraic group over F , and let ε be a semi-simple element of H(F ). Then there
exists at most one cocharacter ν of Hε defined over F such that for some uniformizer
π ∈ F×, ε−1πν lies in a H(F )-conjugate of a bounded subgroup of H(F ).

Proof. Let ρ : H → GLN be a faithful representation of H over F . If k is an
element of a bounded subgroup of H(F ), then ρ(k) lies in a GLN (F )-conjugate of
GLN (OF ) (cf. the proof of [Kis10, Lem. 2.3.1]), and hence all eigenvalues of ρ(k)
have valuation zero. (Here and below, by eigenvalues we always mean eigenvalues in
F .) To prove the lemma it suffices to prove that for each semi-simple ε ∈ GLN (F ),
there exists at most one cocharacter ν of GLN,ε,F such that for some uniformizer
π ∈ F all eigenvalues of ε−1πν have valuation zero.

Without loss of generality we may assume that ε = diag(λ1IN1 , · · · , λrINr ) with
distinct λ1, · · · , λr ∈ F

×. Then GLN,ε is naturally identified with GLN1 × · · · ×
GLNr . Note that if a semi-simple element k ∈ GLN,ε(F ) is such that all its eigenval-
ues have valuation zero, then the projection of k in each GLNi(F ) satisfies the anal-
ogous condition. We have thus reduced to the case where ε is central in GLN (F ). In
this case, if ν is a cocharacter of GLN,F such that for some uniformizer π all eigen-
values of ε−1πν have valuation zero, then ν must be given by z 7→ diag(zm, · · · , zm)
where m is the valuation of the unique eigenvalue of ε. This proves the uniqueness
of ν. �

Corollary 1.6.11. Keep the setting of §1.6.6. Then [b] is basic in B(I0). If [b′] ∈
B(I0) is another class satisfying KP1 with respect to γ0, then νb = νb′ .

Proof. Let b be a decent representative of [b]. By Lemma 1.6.9 and Lemma 1.6.10
(the latter applied to F = Q̆p, π = p, H = GQ̆p , ε = γ0), any element of G(Q̆p)
that centralizes γ0 has to centralize νb. Therefore νb factors through the center
of I0, and [b] is basic in B(I0). The second statement also follows from these two
lemmas. �

Corollary 1.6.12. Let c = (γ0, a, [b]) ∈ KP(pn). Then [b] is basic in B(I0(c)Qp).
If (γ0, a

′, [b′]) is another element of KP(pn), then νb = νb′ .

Proof. This follows from Corollary 1.6.11. �

1.6.13. Our next goal is to define the notion of an isomorphism between Kottwitz
parameters. We first consider a general construction. Let γ0 ∈ G(Q)ss, and let
I0 := G0

γ0
. Let u ∈ G(Q) be an element satisfying

γ′0 := uγ0u
−1 ∈ G(Q)
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and
u−1ρu ∈ I0, ∀ρ ∈ Γ = Gal(Q/Q).

Let I ′0 := G0
γ′0
. We have a bijection

u∗ : D(I0, G;Apf ) ∼−→ D(I ′0, G;Apf ),(1.6.13.1)

sending the class of a cocycle (aρ)ρ ∈ Z1(Γ, I0(Āpf )) to the class of (uaρρu−1)ρ.
Next note that the cocycle (u−1ρu)ρ ∈ Z1(Qp, I0) becomes trivial in H1(Q̆p, I0) by
Steinberg’s theorem. Hence there exists d ∈ I0(Q̆p) such that

u−1ρu = d−1ρd, ∀ρ ∈ Γp,0.

Then u0 := ud−1 lies in G(Q̆p). We have

u0γ0u
−1
0 = γ′0,

and
u−1

0
σu0 ∈ I0(Q̆p).

By the previous two properties of u0, we have a bijection

u∗ : B(I0,Qp) ∼−→ B(I ′0,Qp)(1.6.13.2)
[b] 7−→ [u0bσ(u0)−1],

which depends only on u, not on the choice of d.

Definition 1.6.14. Let c = (γ0, a, [b]), c′ = (γ′0, a′, [b′]) ∈ KP. By an isomorphism
from c to c′, we mean an element u ∈ G(Q), satisfying the following conditions.

(i) We have Int(u)γ0 = γ′0, and u−1ρu ∈ I0(c) for all ρ ∈ Γ.
(ii) The bijection u∗ : D(I0(c), G;Apf ) ∼−→ D(I0(c′), G;Apf ) as in (1.6.13.1) sends

a to a′.
(iii) The bijection u∗ : B(I0(c)Qp) ∼−→ B(I0(c′)Qp) as in (1.6.13.2) sends [b] to

[b′].
In such a situation we write u : c ∼−→ c′.

1.6.15. If u : c ∼−→ c′ and v : c′ ∼−→ c′′ are two isomorphisms between Kottwitz
parameters, then vu ∈ G(Q) is an isomorphism c

∼−→ c′′, and u−1 ∈ G(Q) is the
isomorphism c′

∼−→ c inverse to u. Moreover, one checks that pn-admissibility of
Kottwitz parameters (Definition 1.6.5) is preserved under isomorphisms.

We denote by KP/∼= the set of isomorphism classes of Kottwitz parameters, and
by KPa(pn)/∼= the set of isomorphism classes of pn-admissible Kottwitz parameters.

1.6.16. We define a natural map
KPa(pn) −→ KPcla(pn)/∼(1.6.16.1)

as follows. Let c = (γ0, a, [b]) ∈ KPa(pn). The element a ∈ D(I0(c), G;Apf ) deter-
mines a conjugacy class in G(Apf ) which is stably conjugate to γ0. Take γ to be
an arbitrary element of this conjugacy class. By Lemma 1.6.7, [b] determines a σ-
conjugacy class in G(Qpn), of which γ0 is a degree n norm. Take δ to be an arbitrary
element of this σ-conjugacy class. Then (γ0, γ, δ) is an element of KPcla(pn), and
its equivalence class depends only on c. We define the map (1.6.16.1) by sending c
to the equivalence class of (γ0, γ, δ).
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One checks that the map (1.6.16.1) factors through KPa(pn)/∼=. Moreover, when
Gder is simply connected, the induced map KPa(pn)/∼= −→ KPcla(pn)/∼ is a
bijection. We will not need this fact in the paper, but we outline here how to
recover [b] ∈ B(I0(c)Qp) from δ, which is perhaps the only non-obvious part of the
argument. Since Gder is simply connected, I0(c) = Gγ0 . Since γ0 is a degree n norm
of δ and since H1(Q̆p, I0) is trivial by Steinberg’s theorem, there exists c ∈ G(Q̆p)
such that (1.6.5.1) holds. Define b := cδσ(c) ∈ G(Q̆p). Since (δoσ)n = c−1γ0coσn
and since δ o σ commutes with σn, we know that δ o σ commutes with c−1γ0c, or
equivalently that bo σ commutes with γ0. Since γ0 is σ-invariant, we know that b
commutes with γ0, i.e., b ∈ I0(c)(Q̆p). In this way we have recovered [b] ∈ B(I0(c)Qp)
from δ.

1.7. The Kottwitz invariant.

1.7.1. In this subsection we define an invariant attached to each Kottwitz param-
eter. We first construct the abelian group where the invariant lies in. We start
with a general setting.

Let G be a reductive group over Q, and let I be a reductive subgroup of G. We
have an infinite commutative diagram with exact rows and columns

...

��

...

��

...

��

...

��
· · · → Hi

ab(Q, I) //

��

Hi
ab(Q, G) //

��

Hi
ab(Q, I → G) //

��

Hi+1
ab (Q, I)→ · · ·

��
· · · → Hi

ab(A, I) //

��

Hi
ab(A, G) //

�� ))

Hi
ab(A, I → G) //

��

Hi+1
ab (A, I)→ · · ·

��
· · · → Hi

ab(A/Q, I) //

��

Hi
ab(A/Q, G) //

��

Hi
ab(A/Q, I → G) //

��

Hi+1
ab (A/Q, I)→ · · ·

��
· · · → Hi+1

ab (Q, I) //

��
Hi+1

ab (Q, G) //

��
Hi+1

ab (Q, I → G) //

��
Hi+2

ab (Q, I)→ · · ·
��

...
...

...
...

We define E(I,G;A/Q) to be the cokernel of the map
H0

ab(A, G) −→ H0
ab(A/Q, I → G)

given by the dashed arrow in the above diagram for i = 0. We have a natural
map E(I,G;A) → E(I,G;A/Q) defined by first lifting an element of E(I,G;A)
to H0

ab(A, I → G), and then mapping the lift to H0
ab(A/Q, I → G) and then to

E(I,G;A/Q). We know that the sequence
E(I,G;Q)→ E(I,G;A)→ E(I,G;A/Q)(1.7.1.1)

is exact; see [Lab99, Prop. 1.8.4].
We write K for the kernel of π1(I) → π1(G). Recall that the functor AQ is

introduced in §1.1.8. As usual we write Γ for Gal(Q/Q).

Lemma 1.7.2. The natural inclusions

ker
(
AQ(K)→ AQ(π1(I))

)
↪→ ker

(
KΓ,tors → π1(I)Γ,tors

)
↪→ ker

(
KΓ → π1(I)Γ

)
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are equalities.

Proof. As in the proof of [Mil92, Prop. B.4], there exists a finite Galois extension
E/Q such that the actions of Γ onK, π1(I), and π1(G) all factor through Gal(E/Q)
and such that

AQ(K) = Ĥ
−1

(Gal(E/Q),K),

AQ(π1(I)) = Ĥ
−1

(Gal(E/Q), π1(I)).

Thus the first group in the lemma is equal to the kernel of

Ĥ
−1

(Gal(E/Q),K) −→ Ĥ
−1

(Gal(E/Q), π1(I)).

From this, it is clear that the first and third groups in the lemma are both canoni-
cally identified with the cokernel of

Ĥ
−2

(Gal(E/Q), π1(I)) −→ Ĥ
−2

(Gal(E/Q), π1(G)).

The lemma follows. �

Proposition 1.7.3. Assume that I contains a maximal torus in G. Then the
abelian group E(I,G;A/Q) is canonically identified with

KΓ,tors⊕
v ker(KΓv,tors → π1(I)Γv ) .

Here v runs through all the places of Q, and the quotient is with respect to the
natural maps KΓv,tors → KΓ,tors. In particular, E(I,G;A/Q) is finite.

Proof. Under our assumption, the map π1(I) → π1(G) is surjective. Applying
Proposition 1.1.9 (ii), we know that E(I,G;A/Q) is canonically identified with the
cokernel of

P(K) : ker
(
BQ(K)→ BQ(π1(I))

)
−→ AQ(K).

By Lemma 1.7.2, we have

ker
(
BQ(K)→ BQ(π1(I))

)
=
⊕
v

ker(KΓv,tors → π1(I)Γv ).

The corollary follows. �

For any Hausdorff locally compact abelian group H, we denote by HD the Pon-
tryagin dual. The following result is well known to experts, cf. [Lab99, p. 43,
Remarque].

Corollary 1.7.4. Under the assumption in Proposition 1.7.3, the abelian group
E(I,G;A/Q) is canonically identified with K(I/Q)D, where K(I/Q) is defined in
[Kot86, §4.6].

Proof. We shall freely use the definitions and results in [Kot86]. Recall that K(I/Q)
is defined as the subgroup of π0([Z(Î)/Z(Ĝ)]Γ) consisting of those elements whose
images in H1(F,Z(Ĝ)) are locally trivial.

Since X∗(Z(Î)) ∼= π1(I) and X∗(Z(Ĝ)) ∼= π1(G), we have X∗(Z(Î)/Z(Ĝ)) ∼= K.
Hence

X∗
(
π0([Z(Î)/Z(Ĝ)]Γ)

)
∼= KΓ,tors.
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Also, for each place v, we have

X∗
(
π0(Z(Î)Γv )

)
∼= π1(I)Γv,tors

and
X∗
(
π0([Z(Î)/Z(Ĝ)]Γv )

)
∼= KΓv,tors.

By the exact sequence
π0(Z(Î)Γv )→ π0([Z(Î)/Z(Ĝ)]Γv )→ H1(Fv, Z(Ĝ)),

we can identify K(I/Q) with the set of x ∈ (KΓ,tors)D such that for each place v the
composite map xv : KΓv,tors → KΓ,tors

x−→ C× equals the composite map KΓv,tors →
π1(I)Γv,tors

yv−→ C×, for some yv ∈ (π1(I)Γv,tors)D. By the exact sequence

(π1(I)Γv,tors)D → (KΓv,tors)D →
(

ker(KΓv,tors → π1(I)Γv,tors)
)D

,

the last condition on xv is equivalent to requiring that x kills the image of
ker(KΓv,tors → π1(I)Γv,tors)

in KΓ,tors. Comparing this description of K(I/Q) and Proposition 1.7.3, we see that
K(I/F ) ∼= E(I,G;AF /F )D. �

1.7.5. We now keep the setting of §1.6.1. Let c = (γ0, a, [b]) ∈ KP, and write I0
for I0(c) = G0

γ0
. We now construct an element

α(c) ∈ E(I0, G;A/Q),
called the Kottwitz invariant of c. This generalizes the construction in [Kot90, §2].

We write βp,∞(c) for the element a ∈ D(I0, G;Apf ). As discussed in §1.1.6,
the abelianization map induces an isomorphism D(I0, G;Apf ) ∼= E(I0, G;Apf ) ⊂
H1

ab(Apf , I0). By Proposition 1.1.9 (i), we have a canonical isomorphism

H1
ab(Apf , I0) ∼=

⊕
v 6=p,∞

π1(I0)Γv,tors.

Hence we also view βp,∞(c) as an element of⊕
v 6=p,∞

π1(I0)Γv,tors.

For each place v /∈ {p,∞}, we write βv(c) ∈ π1(I0)Γv,tors for the component of
βp,∞(c) at v. We pick a lift β̃v(c) ∈ π1(I0) of βv(c) that maps to zero in π1(G). Such
a lift exists, since βv(c) maps to zero in π1(G)Γv and since the map π1(I0)→ π1(G)
is surjective. Since βv(c) = 0 for almost all v, we may and shall assume that
β̃v(c) = 0 for almost all v.

Let βp(c) := κI0([b]) ∈ π1(I0)Γp . We pick a lift β̃p(c) ∈ π1(I0) of βp(c) that maps
to −[µ]X ∈ π1(G). Such a lift exists by condition KP0 in Definition 1.6.4 and by
the surjectivity of the map π1(I0)→ π1(G).

Now we take an elliptic maximal torus T in GR such that γ0 ∈ T (R). Then
T ⊂ I0,R. Since T is elliptic, there exists h ∈ X that factors through T . Let β∞(c)
be the image of µh ∈ X∗(T ) in π1(I0)Γ∞ . By [Kot90, Lem. 5.1], we know that
the image of µh in X∗(T )Γ∞ is independent of the choice of h. Moreover, since
all elliptic maximal tori in I0,R are conjugate under I0(R), the element β∞(c) is
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independent of the choice of (T, h) as above. (For more details see [Kot90, p. 167].)
We pick a lift β̃∞(c) ∈ π1(I0) of β∞(c) that maps to [µ]X ∈ π1(G). Such a lift
exists, since the image of β∞(c) under π1(I0)Γ∞ → π1(G)Γ∞ equals the image of
[µ]X , and since the map π1(I0)→ π1(G) is surjective.

WriteK for ker(π1(I0)→ π1(G)). By the above construction, we have an element
β̃v(c) ∈ K for each place v /∈ {p,∞}, as well as an element β̃p(c) + β̃∞(c) ∈ K. We
define

β̃(c) :=
∑
v

β̃v(c) ∈ K.

Here the summation is over all places v of Q, and only finitely many terms are
non-zero.

Note that KΓ∞ is torsion. Indeed, if we take an R-elliptic maximal torus T in
I0,R and let T̃ and S̃ be the inverse images of T in Gsc,R and I0,sc,R respectively, then
K ∼= X∗(T̃ )/X∗(S̃). Since T̃ is anisotropic over R, we know thatX∗(T̃ )Γ∞ is torsion.
It follows that KΓ∞ is torsion. In particular, KΓ is torsion. Hence β̃(c) gives rise
to an element α(c) ∈ E(I0, G;A/Q), by Proposition 1.7.3. Note that the ambiguity
in β̃(c) caused by the choices of β̃v(c) always comes from

⊕
v ker(K → π1(I0)Γv ).

Hence α(c) is well defined.

1.7.6. It is convenient to have the definition of local components of Kottwitz
invariants when γ0 is not Q-rational for the stabilization of the trace formula.
Suppose γ0 is a semi-simple element of G(Apf ). We have I0 = G0

γ0
over Apf , and

we define the pointed set D(I0, G;Apf ) to be the restricted product
∏′
vD(I0, G;Qv)

with respect to the trivial elements. (The cohomology of Γ acting on I0(Āpf ) no
longer makes sense.) If we are given an element a ∈ D(I0, G;Apf ), we will also
write βp,∞(γ0, a) for a, generalizing the notation βp,∞(c) in §1.7.5. Similarly, given
γ0 ∈ G(Qp)ss and given [b] ∈ B((GQp)0

γ0
) satisfying KP0 in Definition 1.6.4, we

have βp(γ0, [b]) and β̃p(γ0, [b]) (the latter involving an extra choice), generalizing
βp(c) and β̃p(c) in §1.7.5. Finally, starting from a semi-simple R-elliptic element
γ0 ∈ G(R), we can define β∞(γ0) and β̃∞(γ0) (the latter involving an extra choice)
in the same way as in §1.7.5, generalizing β∞(c) and β̃∞(c).

1.7.7. Let us check that our definition of Kottwitz invariants coincides with Kot-
twitz’s definition in [Kot90, §2], when Gder is simply connected. This verification
allows us to freely import results from [Kot90] during the stabilization process.

Under the identification π1(G) ∼= X∗(Z(Ĝ)), we view [µ]X ∈ π1(G) as a charac-
ter on Z(Ĝ). Under the current assumption on Gder, recall that Kottwitz attaches
an invariant α(k) ∈ K(I0/Q)D to a classical Kottwitz parameter k = (γ0, γ, δ) of
degree n. The outline is as follows. Let I0 := Gγ0 , which is connected by the
assumption on Gder. Kottwitz first defines αv(k) ∈ π1(I0)Γv

∼= X∗(Z(Î0)Γv ) at
every place v. Then the character αv(k) on Z(Î0)Γv can be extended to a character
β′v(k) on Z(Î0)ΓvZ(Ĝ), uniquely by the requirement that β′v(k) is either trivial or
equal to −[µ] or [µ] on Z(Ĝ), according as v /∈ {p,∞} or v = p or v = ∞, respec-
tively. 9 Thereby one obtains a character β(k) :=

∏
v β
′
v(k) on

⋂
v Z(Î0)ΓvZ(Ĝ).

Since β(k) is trivial on Z(Ĝ) by construction, it gives rise to a character α(k) on

9We write β′ for Kottwitz’s β to avoid conflict with our own notation.
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v Z(Î0)ΓvZ(Ĝ)

)
/Z(Ĝ). The last group is canonically isomorphic to K(I0/Q) if

γ0 is elliptic in G(Q), which is true since γ0 is R-elliptic. We note that the canonical
map from K = ker(π1(I0) → π1(G)) to the character group of ∩vZ(Î0)ΓvZ(Ĝ) is
compatible with the canonical map from K to E(I0, G,A/Q) via the isomorphisms

E(I0, G;A/Q) ∼= K(I0/Q)D ∼=

(
∩vZ(Î0)ΓvZ(Ĝ)

Z(Ĝ)

)D
as can be seen from the proof of Corollary 1.7.4.

When Gder is simply connected, we remarked in §1.6.16 that we have a bijection
KPa(pn)/∼= → KPcla(pn)/∼. Suppose c = (γ0, a, [b]) ∈ KPa(pn) corresponds to
k = (γ0, γ, δ) ∈ KPcla(pn). We defined βv(c) and β̃v(c) in §1.7.5, for each place v.
For v ∈ {p,∞}, note that β̃v(c) is a character on Z(Î0), extending the character
βv(c) on Z(Î0)Γv . Inspecting the definition we see that

βv(c) = αv(k), ∀v,
and

β̃v(c)
∣∣∣
Z(Î0)ΓvZ(Ĝ)

= β′v(k), ∀v.

Therefore the product
∏
v β̃v(c) gives the element α(c) ∈ K(I0/Q)D. Comparing

with the definition of α(c) in §1.7.5, we conclude that
α(c) = α(k).

From now on we return to the general setting, i.e., we do not assume that Gder
is simply connected.

Proposition 1.7.8. Let c = (γ0, a, [b]), c′ = (γ0, a
′, [b]) ∈ KP. Write I0 for the

group I0(c) = I0(c′). The difference α(c) − α(c′) ∈ E(I0, G;A/Q) is equal to the
image of a− a′ ∈ D(I0, G;Apf ) under the composite map

D(I0, G;Apf ) ∼= E(I0, G;Apf ) ↪→ E(I0, G;A)→ E(I0, G;A/Q).(1.7.8.1)

Proof. Write K for ker(π1(I0)→ π1(G)). By Proposition 1.1.9 (ii), the diagram

H0
ab(A, I0 → G) //

��

H1(A, I0)

H0
ab(A/Q, I0 → G)

is canonically isomorphic to the diagram

Ĥ
−1

(Γ∞,K)⊕
⊕

v 6=∞KΓv,tors //

��

Ĥ
−1

(Γ∞, π1(I0))⊕
⊕

v 6=∞ π1(I0)Γv,tors

KΓ,tors

(1.7.8.2)

For each place v /∈ {p,∞}, we choose β̃v(c) and β̃v(c′) in K as in §1.7.5. The
Γv-action on π1(G) factors through some finite quotient Γ′v of Γv, and we have an
exact sequence H1(Γ′v, π1(G)) → KΓv → π1(I0)Γv . Since the image of β̃v(c) in
π1(I0)Γv is the torsion element βv(c), and since H1(Γ′v, π1(G)) is torsion, the image
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of β̃v(c) in KΓv is torsion. We denote this image by β̄v(c) ∈ KΓv,tors. Similarly we
define β̄v(c′) ∈ KΓv,tors. Let

∆ := (β̄v(c)− β̄v(c′))v 6=p,∞ ∈
⊕
v 6=p,∞

KΓv,tors.

Then ∆ is sent to a−a′ by the horizontal map in (1.7.8.2). By the above discussion,
the image of a− a′ under (1.7.8.1) is equal to the image of ∆ under the composite
map ⊕

v 6=p,∞
KΓv,tors → KΓ,tors → E(I0, G;A/Q),

where the last map is the quotient map as in Proposition 1.7.3. On the other hand,
by the construction of the Kottwitz invariant, the image of ∆ in E(I0, G;A/Q) is
α(c)− α(c′). Hence the image of a− a′ under (1.7.8.1) is α(c)− α(c′). �

1.7.9. Let u : c
∼−→ c′ be an isomorphism between Kottwitz parameters. Then

the isomorphism Int(u) : I0(c)Q
∼−→ I0(c′)Q is an inner twisting, and in particular it

induces an isomorphism of abelian groups

E(I0(c), G;A/Q) ∼−→ E(I0(c′), G;A/Q)(1.7.9.1)

The following result justifies that the Kottwitz invariant is indeed an “invariant”.

Proposition 1.7.10. The isomorphism (1.7.9.1) takes α(c) to α(c′).

Proof. We write I0 and I ′0 for I0(c) and I0(c′). Let K = ker(π1(I0) → π1(G)) and
K ′ = ker(π1(I ′0) → π1(G)). The inner twisting Int(u) : I0,Q

∼−→ I ′0,Q induces a Γ-
equivariant isomorphism π1(I0) ∼−→ π1(I ′0), which we denote by f . Then f restricts
to an isomorphism K

∼−→ K ′. Moreover, if we identify the two sides of (1.7.9.1) with
quotients of KΓ,tors and K ′Γ,tors respectively as in Proposition 1.7.3, then (1.7.9.1)
is induced by f : K ∼−→ K ′.

Let ω ∈ D(I0, G;Q) be the class of the cocycle (u−1ρu)ρ∈Γ. For each place v of
Q, we denote by βv(ω) the image of ω under the composite map

H1(Q, I0)→ H1(Qv, I0)
ab1

Qv−−−→ H1
ab(Qv, I0).

Using the isomorphism H1
ab(Qv, I0) ∼= AQv (π1(I0))π1(I0)Γv,tors in Proposition 1.1.9,

we also view βv(ω) as an element of π1(I0)Γv,tors. We claim that for each place v,
the image of βv(c) + βv(ω) under the isomorphism π1(I0)Γv

∼−→ π1(I ′0)Γv induced
by f equals βv(c′).

Our claim for v /∈ {p,∞} follows from the following commutative diagram, which
is a special case of [Bor98, Lem. 3.15.1]

D(I0, G;Qv)
u∗ //

∼=ab1

��

D(I ′0, G;Qv)

∼=ab1

��
E(I0, G;Qv)

c // E(I0, G;Qv)
d
∼
// E(I ′0, G;Qv)

Here u∗ is the component at v of the bijection (1.6.13.1), c is the translation map
x 7→ x − βv(ω), and d is the group isomorphism induced by the inner twisting
Int(u) : I0,Q

∼−→ I ′0,Q.
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Similarly, the bijection u∗ : B(I0,Qp) ∼−→ B(I ′0,Qp) as in (1.6.13.2) fits in the
commutative diagram

B(I0,Qp) u∗ //

κI0

��

B(I ′0,Qp)

κI′0
��

π1(I0)Γp
c // π1(I0)Γp

f

∼
// π1(I ′0)Γp

where c is the translation map x 7→ x− βp(ω). To see this, we use the fact that if
we choose u0 as in §1.6.13, then the image of u−1

0
σu0 ∈ I0(Q̆p) in π1(I0)Γp under

κI0 equals βp(ω); see [Kot85, Rmk. 5.7] and [RV14, Rmk. 2.2 (iv)]. Our claim for
v = p follows from the above commutative diagram.

Now we prove the claim for v = ∞. As in §1.7.5, we choose (T, h) to define
β∞(c) and choose (T ′, h′) to define β∞(c′). Without loss of generality we may
assume that T ′ = Int(k)(T ) and h = Int(k) ◦ h for some k ∈ G(R). Since elliptic
maximal tori transfer between inner forms, there exists j ∈ I0(C) such that the map
Int(uj) : TC → I ′0,C is defined over R and has image T ′. We have a commutative
diagram

X∗(T )
Int(uj)
∼

//

��

X∗(T ′)

��
π1(I0) ∼

f // π1(I ′0)

,

where the vertical maps are the natural quotient maps. Let n := (uj)−1k ∈ G(C).
Then n is in the normalizer of T in G, and Int(uj)−1(µh′) = Int(n)(µh). Let ∆∞
be the image of Int(n)(µh) − µh under X∗(T ) → π1(I0)Γ∞ . Then by the above
discussion we know that the image of β∞(c) + ∆∞ under f : π1(I0)Γ∞

∼−→ π1(I ′0)Γ∞
equals β∞(c′). On the other hand, by [Kot90, Lem. 5.1], we have ∆∞ = β∞(ω).
Our claim for v =∞ follows.

We have proved the claim. Now for each place v, since βv(ω) maps to zero in
π1(G)Γv , there exists β̃v(ω) ∈ K lifting βv(ω). By the claim, we may choose the
lifts β̃v(c) and β̃v(c′) as in §1.7.5, in such a way that β̃v(c) + β̃v(ω) maps to β̃v(c′)
under f : π1(I0) ∼−→ π1(I ′0). To complete the proof, it remains to show that the
element

Ω :=
∑
v

β̃v(ω) ∈ K

is sent to zero under K → KΓ = KΓ,tors → E(I0, G;A/Q).
In fact, we show that there is a way to choose β̃v(ω) such that the image of Ω in

KΓ is already zero. Pick an element Ω′ ∈ H0
ab(Q, I0 → G) whose image along the

surjection H0
ab(Q, I0 → G) → E(I0, G;Q) ∼= D(I0, G;Q) is ω. Write (Ω′v)v for the

image of Ω′ under the composite map (see Proposition 1.1.9)

H0
ab(Q, I0 → G)→ H0

ab(A, I0 → G) ∼=
⊕
v

AQv (K) ⊂
⊕
v

KΓv,tors.(1.7.10.1)

Then for each v, Ω′v ∈ KΓv,tors is a lift of βv(ω) ∈ π1(I0)Γv . Thus we may and
shall choose the lift β̃v(ω) ∈ K of βv(ω) such that β̃v(ω) is a lift of Ω′v. In this
case, to show that Ω is sent to zero in KΓ, it suffices to note that the composition
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of (1.7.10.1) with the natural map
⊕

vKΓv,tors → KΓ,tors is zero. Indeed, by
Proposition 1.1.9, this composition is identified with the composition

H0
ab(Q, I0 → G)→ H0

ab(A, I0 → G)→ H0
ab(A/Q, I0 → G),

which is zero as desired. �

1.7.11. Let c = (γ0, a, [b]) ∈ KP, and write I0 for I0(c). Assume that [b] ∈ B(I0,Qp)
is basic. This is the case, for example, when c is pn-admissible, by Corollary 1.6.12.
Recall that the notion of inner forms and isomorphisms between inner forms are
given in Definition 1.2.2. The image of a in H1(Apf , Iad

0 ) determines an inner form
Iv of I0 over Qv up to isomorphism for each place v 6= p,∞. The basic element
[b] ∈ B(I0,Qp) determines an inner form Ip of I0 over Qp up to isomorphism, namely
Ip := JI0b for a decent representative b of [b] (see §1.4.3). Finally, let (T, h) be as
in §1.7.5. Then Int(h(i)) induces a Cartan involution on (I0/ZG)R, from which
we obtain an inner form I∞ of I0 over R that is anisotropic modulo ZG,R. The
isomorphism class of this inner form I∞ depends only on c.

Proposition 1.7.12. In the situation of §1.7.11, assume that the Kottwitz invari-
ant α(c) is zero. Then there exists an inner form I = I(c) of I0 over Q, unique up to
isomorphism between inner forms, such that its localization over Qv is isomorphic
to Iv as inner forms of I0,Qv for each place v .

Proof. The uniqueness follows from the Hasse principle for Iad
0 . To prove the exis-

tence, for each place v we denote by ηv the cohomology class in H1(Qv, Iad
0 ) corre-

sponding to the inner form Iv (cf. Remark 1.2.3). By [Kot86, Prop. 2.6] (cf. [Bor98,
Thm. 5.16]) we have an exact sequence of pointed sets

H1(Q, Iad
0 )→

⊕
v

H1(Qv, Iad
0 ) m−→ π1(Iad

0 )Γ,tors.

Here m is defined as follows. For each place v, let mv be the composite

H1(Qv, Iad
0 ) ab1

−−→ H1
ab(Qv, Iad

0 ) ∼= AQv (π1(Iad
0 )) ↪→ π1(Iad

0 )Γv,tors,

(note that these maps are all isomorphisms for v finite) and let iv be the natural
map π1(Iad

0 )Γv,tors → π1(Iad
0 )Γ,tors. Then m :=

∑
v iv ◦mv.

We only need to prove that ∑
v

iv ◦mv(ηv) = 0.

For each v, we claim that mv(ηv) equals the image of βv(c) under π1(I0)Γv →
π1(Iad

0 )Γv = π1(Iad
0 )Γv,tors. Indeed, this statement is non-trivial only for v ∈ {p,∞}.

For v = p, there is a canonical bijection between H1(Qp, Iad
0 ) and the set of basic

elements of B(Iad
0,Qp). If we identify H1(Qp, Iad

0 ) with π1(Iad
0 )Γp = π1(Iad

0 )Γp,tors,
then this bijection is a section of the Kottwitz map B(Iad

0,Qp)→ π1(Iad
0 )Γp . Moreover,

this bijection sends ηp to the image of [b] in B(Iad
0,Qp). For more details see the end of

[RV14, §2.1]. The claim for v = p follows. For v =∞, let (T, h) be as in §1.7.5, and
let T̄ := T/ZG,R. Let h̄ (resp. µ̄h) be the composition of h : S→ T (resp. µh : Gm →
TC) with T → T̄ . Since T̄ is anisotropic, we have Ĥ

−1
(Γ∞, X∗(T̄ )) = X∗(T̄ )Γ∞ ,

and the Tate–Nakayama isomorphism Ĥ
−1

(Γ∞, X∗(T̄ )) ∼−→ H1(R, T̄ ) is induced by
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the map

X∗(T̄ ) −→ Z1(R, T̄ )
λ 7−→ (1 7→ 1, τ 7→ λ(−1)),

where τ denotes the complex conjugation. By definition, η∞ is represented by the
cocycle (1 7→ 1, τ 7→ h̄(i)), whereas β∞(c) is represented by µh ∈ X∗(T ). Thus
to verify our claim it suffices to check that h̄(i) = µ̄h(−1). This follows from the
equality h(i) = µh(−1)wh(i), where wh is the weight cocharacter of h and factors
through ZG,R.

Write K for ker(π1(I0) → π1(G)). By the above claim,
∑
v iv ◦mv(ηv) is equal

to the image of α(c) under the composite map

E(I0, G;A/Q) ∼=
KΓ,tors⊕

v ker(KΓv,tors → π1(I0)Γv ) → π1(I0)Γ,tors → π1(Iad
0 )Γ,tors,

where the first isomorphism is as in Proposition 1.7.3, and the second map is induced
by the inclusion K ↪→ π1(I0). Since α(c) = 0, we have

∑
v iv ◦ mv(ηv) = 0, as

desired. �

1.8. Stating the point counting formula.

1.8.1. Let (G,X) be a Shimura datum, and let p be a prime number. We assume
that G is unramified over Qp, and fix a reductive model G of GQp over Zp. In the
sequel we shall call such a quadruple (G,X, p,G) an unramified Shimura datum.
Let E be the reflex field of (G,X), and let p and q = pr be as in §1.6.1. In the
current case Ep is unramified over Qp, so we identify Ep with Qpr . We write Kp

for the hyperspecial subgroup G(Zp) ⊂ G(Qp).
We fix notations for Hecke algebras. For each compact open subgroup Kp ⊂

G(Apf ), let H(G(Apf )�Kp) be the Hecke algebra of C-valued smooth compactly
supported Kp-bi-invariant distributions on G(Apf ). Let H(G(Apf )�Kp)Q be the Q-
subalgebra of H(G(Apf )�Kp) consisting of distributions that are rational on charac-
teristic functions of compact open subgroups of G(Apf ). Elements of H(G(Apf )�Kp)
can be represented as fpdgp, where fp is a C-valued smooth compactly supported
Kp-bi-invariant function on G(Apf ), and dgp is a Haar measure on G(Apf ) assigning
rational volumes to compact open subgroups. Elements of H(G(Apf )�Kp)Q can
similarly be represented as fpdgp

Fix an irreducible algebraic representation ξ of G over Q that factors through Gc.
Fix a prime number ` 6= p, and view ξ as a representation over Q`. As explained
in §1.5.8, we have the Gal(E/E)×G(Af )-module

Hi
c(ShE , ξ),

which is admissible as an G(Af )-module. For each compact open subgroup Kp ⊂
G(Apf ), we have the induced action of H(G(Apf ) �Kp)Q on the admissible G(Apf )-
module Hi

c(ShE , ξ)
Kp . Fix a decomposition subgroup Dp ⊂ Gal(E/E) at p, and

fix an element Φp ∈ Dp that lifts the geometric q-Frobenius.
For m ∈ Z≥1 and fpdgp ∈ H(G(Apf )�Kp)Q, we define

T (Φmp , fpdgp) :=
∑
i

(−1)itr
(

Φmp × (fpdgp) | Hi
c(ShE , ξ)

Kp

)
∈ Q`.
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Our goal in the rest of this subsection is to state a conjectural formula for the above
quantity. In what follows we keep fpdgp fixed.

1.8.2. Let m ∈ Z≥1 and let n = mr. Fix c = (γ0, a, [b]) ∈ KPa(pn), satisfying
α(c) = 0. As in §1.6.16, c gives rise to a classical Kottwitz parameter (γ0, γ, δ) ∈
KPcla(pn) of degree n, well defined up to equivalence. Let I(c) be the global inner
form of I0(c) as in Proposition 1.7.12. Let R := ResQpn/Qp G, and we view δ as
an element of R(Qp). Let θ be the Qp-automorphism of R corresponding to the
arithmetic p-Frobenius σ ∈ Gal(Qpn/Qp). Let Rδoθ denote the fixed subgroup of
R under the automorphism Int(δ) ◦ θ.

Note that the Apf -group G0
γ is isomorphic to I(c)Ap

f
, and the Qp-group R0

δoθ
is isomorphic to I(c)Qp . Moreover, these isomorphisms are canonical up to inner
automorphisms defined over Apf and Qp respectively. Choose Haar measures dip
on I(Apf ) and dip on I(Qp). They can be transported to G0

γ(Apf ) and R0
δoσ(Qp)

respectively in an unambiguous way. We denote the resulting Haar measures on
G0
γ(Apf ) and R0

δoσ(Qp) still by dip and dip.
Since r|n, and since G is quasi-split over Qp (as it is unramified), the Hodge

cocharacters µh of h ∈ X determine a G(Qpn)-conjugacy class of cocharacters of
GQpn , cf. [Kot84a, §1.3]. The negative of this conjugacy class of cocharacters (i.e.,
with all members replaced by their inverses) further determines a G(Zpn)-double
coset in G(Qpn) via the Cartan decomposition, and we denote the characteristic
function of this double coset by φn : G(Qpn) → {0, 1} (cf. [Kot84a, §2.1]). We
define

O(c,m, fpdgp, dipdip) := Oγ(fpdgp)TOδ(φn) ∈ C,

where Oγ(fpdgp) is the orbital integral∫
G0
γ(Ap

f
)\G(Ap

f
)

fp(g−1γg)dg
p

dip
,

and TOδ(φn) is the twisted orbital integral∫
R0
δoθ(Qp)\R(Qp)

φn(r−1δθ(r))drp
dip

,

with drp the Haar measure on R(Qp) = G(Qpn) giving volume 1 to G(Zpn).

Remark 1.8.3. As the notation suggests, the dependence of O(c,m, fpdgp, dipdip)
on the two Haar measures dip and dip is only via the product measure dipdip
on I(c)(Af ). Moreover, if dipdip is rational on compact open subgroups, then
O(c,m, fpdgp, dipdip) lies in Q. To see this, we may assume that fp = 1KpaKp for
a compact open subgroup Kp ⊂ G(Apf ) and some a ∈ G(Apf ), and that each of
dgp, dip, di

p is rational on compact open subgroups. We then know that Oγ(fpdgp)
lies in Q by adapting [Kot05, (3.4.1)] from the local setting to the adelic setting.10
Similarly, we have TOδ(φn) ∈ Q by a formula similar to [Kot05, (3.4.1)], cf. the
proof of [ZZ20, Lem. 4.2.3].

10Our definition of the orbital integral equals [Gγ(Ap
f

) : G0
γ(Ap

f
)] times the adelic integral

analogous to [Kot05, (3.4.1)].
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Remark 1.8.4. Up to normalizations of the Haar measures onG0
γ(Apf ) andR0

δoθ(Qp),
the dependence of O(c,m, fpdgp, dipdip) on c is only via (γ, δ). However for later
purposes it is important to normalize these Haar measures by choosing a Haar mea-
sure on I(c)(Af ). Note that the classical Kottwitz parameter (γ0, γ, δ) alone does
not determine the global inner form I(c) of G0

γ0
(unless Gder is simply connected),

so this way of normalization only makes sense with the presence of c.

Lemma 1.8.5. Let I be a connected reductive group over Q, and let Z be a Q-
subgroup of ZI . Assume that I/Z is anisotropic over R. Then for any open subgroup
U ⊂ Z(Af ), I(Q)U is a closed subgroup of I(Af ).

Proof. We write Ī for I/Z. Since Ī is anisotropic over R, and since Ī(Q) is discrete
in Ī(A), we know that Ī(Q) is a discrete (and hence closed) subgroup of Ī(Af ). Let
f denote the map I(Af ) → Ī(Af ). Let V := f−1(Ī(Q)). Then Z(Af ) = f−1({1})
is open in V , and V is closed in I(Af ). Since U is open in Z(Af ), it is open in V .
Hence I(Q)U is an open subgroup of V , and therefore closed in V . We have seen
that V is closed in I(Af ), so I(Q)U is closed in I(Af ). �

1.8.6. Keep the setting of §1.8.2. As in §1.5.6, for each compact open sub-
group Kp ⊂ G(Af ) we write ZKpKp for ZG(Af ) ∩KpK

p, and write Z(Q)KpKp for
ZG(Q) ∩KpK

p. Since Z := ZG and I := I(c) satisfy the assumptions in Lemma
1.8.5, we know that I(c)(Q)ZKpKp is a closed subgroup of I(c)(Af ). Recall from
[Bor63, Thm. 5.1] that I(c)(Q)\I(c)(Af )/U is finite for every compact open sub-
group U ⊂ I(Af ). It follows that I(c)(Q)ZKpKp\I(c)(Af ) is compact Hausdorff.
We equip I(c)(Af ) with the Haar measure dipdip, and equip I(c)(Q)ZKpKp with
the Haar measure that gives volume 1 to its open subgroup I(c)(Q)ZKpKp . Then
I(c)(Q)ZKpKp\I(c)(Af ) has finite volume under the quotient measure, and we de-
note this volume by

c1(c,Kp, dipdi
p).

We also define
c2(c) = c2(γ0) :=

∣∣XG(Q, G0
γ0

)
∣∣ .

Note that the product

c1(c,Kp, dipdi
p)O(c,m, fpdgp, dipdip)

is independent of dipdip. Combined with Remark 1.8.3, this implies that the above
product lies in Q. In the sequel, we shall denote this product simply by

c1(c,Kp)O(c,m, fpdgp) ∈ Q.

1.8.7. Let ΣR-ell(G) be the set of stable conjugacy classes of semi-simple, R-elliptic
elements of G(Q). (This is well defined, since R-elliptic maximal tori transfer
between inner forms of reductive groups over R.) We fix a compact open subgroup
Kp ⊂ G(Apf ) such that KpK

p is neat and such that fp is Kp-bi-invariant. We fix
a subset ΣKp of G(Q) such that each Z(Q)KpKp -translation-orbit in ΣR-ell(G) is
represented by exactly one element of ΣKp .

For each γ0 ∈ ΣKp , we write KP(γ0) for the set of c ∈ KP whose first component
is γ0.

For any reductive groupH overQ and any ε ∈ H(Q)ss, we know that (Hε/H
0
ε )(Q)

is isomorphic to a subgroup of the abelian group π1(Hder) by [Ste75, Cor. 2.16 (a)].
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It follows that Hε/H
0
ε is a finite commutative algebraic group over Q. We define

ιH(ε) := [Hε(Q) : H0
ε (Q)],

ῑH(ε) :=
∣∣(Hε/H

0
ε )(Q)

∣∣ .
Conjecture 1.8.8. For all sufficiently large integers m (in a way depending on
fpdgp), we have

(1.8.8.1) T (Φmp , fpdgp)

=
∑

γ0∈ΣKp
ῑG(γ0)−1c2(γ0)tr ξ(γ0)

∑
c∈KP(γ0)∩KPa(pn)

α(c)=0

c1(c,Kp)O(c,m, fpdgp).

Remark 1.8.9. On the right hand side of (1.8.8.1), each summand indexed by γ0 is
of the form tr ξ(γ0) (which lies in Q) times a rational number, by the discussion at
the end of §1.8.6. Hence the right hand side of (1.8.8.1) in fact lies in the smallest
number field containing {tr ξ(γ0) | γ0 ∈ ΣKp}.

Remark 1.8.10. When Gder is simply connected and ZG is cuspidal, the right hand
side of (1.8.8.1) recovers the formula conjectured by Kottwitz in [Kot90, §3]. We
have formulated the conjecture only for m sufficiently large, in anticipation of the
fact that the local terms in the Grothendieck–Lefschetz–Verdier formula are equal
to the naive local terms (i.e., Deligne’s conjecture) only for m sufficiently large. For
applications, it is important (and usually sufficient) to know that (1.8.8.1) holds
for all sufficiently large m, not just all sufficiently divisible m.

2. Variants of the Langlands–Rapoport Conjecture

2.1. The formalism of Galois gerbs. The Langlands–Rapoport Conjecture, in
its original form in [LR87], is formulated using Galois gerbs. In this subsection
we recall the basic definitions in the formalism of Galois gerbs. We mainly follow
[Kis17, §3.1], while we make some corrections (see especially Remark 2.1.2) and
provide some complementary explanations.

In the following, let k′/k be a Galois extension of fields of characteristic zero.

Definition 2.1.1. By a k′/k-Galois gerb, we mean a pair (G,G), where G is
a connected linear algebraic group over k′, and G is an extension of topological
groups

1→ (G(k′),discrete topology)→ G→ Gal(k′/k)→ 1
satisfying the following conditions.

(i) For each g ∈ G, there is a k′-group isomorphism galg : τ∗G → G, where
τ is the image of g in Gal(k′/k), such that the conjugation action of g on
G(k′) is given by G(k′) τ−→ (τ∗G)(k′) galg

−−→ G(k′).
(ii) There exists a continuous group theoretic section of G→ Gal(k′/k) defined

on an open subgroup of Gal(k′/k).
We often write G for a k′/k-Galois gerb (G,G), and write G∆ for G, called the
kernel of G. A morphism between two k′/k-Galois gerbs G1 and G2 is a pair (φ∆, φ)
consisting of a k′-homomorphism φ∆ : G∆

1 → G∆
2 and a continuous homomorphism

φ : G1 → G2 satisfying the following conditions.
(a) φ commutes with the maps Gi → Gal(k′/k).
(b) The restriction of φ to G∆

1 (k′) is given by φ∆.
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We write Grb(k′/k) for the category of k′/k-Galois gerbs.

Remark 2.1.2. The assumption in Definition 2.1.1 that G is connected is missing in
[Kis17, §3.1], and should be added. This assumption implies that G(k′) is Zariski
dense in G (see [Bor91, Cor. 18.3]). In particular, each g ∈ G uniquely determines
the isomorphism galg, which is vital for various constructions. Another consequence
is that for a morphism (φ∆, φ) : G1 → G2 between k′/k-Galois gerbs, φ∆ is uniquely
determined by φ. For this reason we can view φ alone as a morphism G1 → G2.

Remark 2.1.3. Let G ∈ Grb(k′/k). Then all continuous group theoretic sections
of G → Gal(k′/k) defined on open subgroups of Gal(k′/k) belong to the same
germ. Moreover, this germ can be extended to a continuous set theoretic section of
G→ Gal(k′/k) defined on the whole Gal(k′/k).

Definition 2.1.4. Let G be a connected linear algebraic group over k. Let GG
be the split extension G(k′)oGal(k′/k), where Gal(k′/k) acts naturally on G(k′).
Then (Gk′ ,GG) ∈ Grb(k′/k), and it is called the neutral k′/k-Galois gerb associated
with G.

Definition 2.1.5. Let G ∈ Grb(k′/k). For each g ∈ G∆(k′), conjugation by g
induces an automorphism Int(g) of G. Let φ, ψ : H → G be two morphisms in
Grb(k′/k). We say that φ and ψ are conjugate (or G∆(k′)-conjugate, for clarity), if
there exists g ∈ G∆(k′) such that φ = Int(g) ◦ ψ.

2.1.6. Let φ : H → G be a morphism in Grb(k′/k). A k-algebraic group Iφ is
defined in [Kis17, §3.1.1, Lem. 3.1.2]11. We have a canonical identification between
Iφ,k′ and the centralizer G∆

φ∆ of im(φ∆) in G∆. Under this identification, Iφ(k)
is the group of g ∈ G∆(k′) such that Int(g) ◦ φ = φ. Moreover, if we choose a
continuous set theoretic section Gal(k′/k) → H, τ 7→ qτ of H → Gal(k′/k), then
the action of τ ∈ Gal(k′/k) on Iφ(k′) ∼= G∆

φ∆(k′) with respect to the k-form Iφ is
induced by conjugation by φ(qτ ) inside G.

In fact, the axioms for k′/k-Galois-gerbs guarantee that the above description of
the Gal(k′/k)-action on G∆

φ∆(k′) can be naturally upgraded to a k′/k-Galois descent
datum that gives the k-form Iφ of the k′-group G∆

φ∆ . We refer the reader to the
proof of [Kis17, Lem. 3.1.2] for more details. Here we only remark that the cocycle
condition for the descent datum amounts to the fact that for all τ, ρ ∈ Gal(k′/k),
φ(qτqρq−1

τρ ) lies in (imφ∆)(k′), and hence lies in the center of G∆
φ∆ .

If ζ : K→ H and φ : H→ G are two morphisms in Grb(k′/k), then the inclusion
G∆
φ∆ ↪→ G∆

(φ◦ζ)∆ induces an injective k-homomorphism

Iφ ↪→ Iφ◦ζ .(2.1.6.1)

If φ : H → GG is a morphism in Grb(k′/k) with G a connected linear algebraic
group over k, then Iφ contains ZG as a k-subgroup.

Remark 2.1.7. Let G ∈ Grb(k′/k), and let φ be the identity G → G. Then Iφ is a
canonical k-form of G∆

φ∆ = ZG∆ . In particular, if G∆ is a torus, then we have a
canonical k-form of G∆.

11The assumption in [Kis17, Lem. 3.1.2] that the target of φ is a neutral gerb is not needed.
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2.1.8. Let φ : H→ GG be a morphism in Grb(k′/k), where the target is a neutral
gerb associated with a reductive group G over k. We assume that H∆ is a torus.
In this situation we define k-groups I†φ and Ĩφ that are closely related to Iφ.

Let M := Gk′,φ∆ . Then M is a k′-subgroup of Gk′ whose base change to an
algebraic closure of k′ becomes a Levi subgroup. Let M† := M ∩ Gder,k′ , and let
M̃ be the inverse image of M† in Gsc,k′ . ThenM , M†, and M̃ are reductive groups
over k′, and the natural maps M̃ → M† → M induce isomorphisms between the
respective adjoint groups.

The usual conjugation action of G(k′) on Gsc(k′) together with the natural action
of Gal(k′/k) on Gsc(k′) gives rise to an action of GG = G(k′) o Gal(k′/k) on
Gsc(k′), which we denote by IntGsc

G . Choose a continuous set theoretic section
Gal(k′/k) → H, τ 7→ qτ of H → Gal(k′/k). We define Ĩφ to be the k-form of M̃
corresponding to the following Gal(k′/k)-action on M̃(k′): Each τ ∈ Gal(k′/k)
acts by IntGsc

G (φ(qτ )). More precisely, just as the definition of Iφ via Galois descent
discussed in §2.1.6, this Galois action can be naturally upgraded to a k′/k-Galois
descent datum on M̃ . The cocycle condition in the current context amounts to the
requirement that for all τ, ρ ∈ Gal(k′/k), IntGsc

G (φ(qτqρq−1
τρ )) acts trivially on M̃ .

This is indeed true, because φ(qτqρq−1
τρ ) lies in ZM , and any element of ZM acts

trivially on M̃ via IntGsc
G . Using the same principle, one sees that the Galois descent

datum does not depend on the choice of τ 7→ qτ . Thus we obtain the k-group Ĩφ
canonically.

In the same way we define a k-form I†φ of M†. The natural k′-homomorphism
M̃ →M† ↪→M induce k-homomorphisms Ĩφ → I†φ ↪→ Iφ between reductive groups.
Note that the composite k′-homomorphism Iφ,k′ ↪→ Gk′ → Gab

k′ is defined over k,
and its kernel is naturally identified with I†φ.

2.1.9. Let l′/l be another Galois extension of fields of characteristic zero, equipped
with compatible embeddings k ↪→ l and k′ ↪→ l′. In this situation we have the pull-
back functor

PB : Grb(k′/k) −→ Grb(l′/l).(2.1.9.1)
We explain its definition.

We first define PB of an object. Let G ∈ Grb(k′/k), with kernel G. We have a
short exact sequence

1→ G(k′)→ G0
l′/l → Gal(l′/l)→ 1,

where G0
l′/l is the fiber product G×Gal(k′/k) Gal(l′/l) in the category of topological

groups. The above short exact sequence is in fact an extension of topological groups,
which follows easily from Remark 2.1.3.

Given any g ∈ G0
l′/l with image τ ∈ Gal(l′/l), the conjugation action of g on

G(k′) is induced by a k′-isomorphism (τ |k′)∗G
∼−→ G uniquely determined by g (i.e.,

the isomorphism halg, where h is the image of g in G). The last k′-isomorphism
induces an l′-isomorphism ug : τ∗(Gl′)

∼−→ Gl′ , and in particular an automorphism
of G(l′) given by

G(l′) = Gl′(l′)
τ−→ (τ∗Gl′)(l′)

ug−→ Gl′(l′) = G(l′).
In this way we obtain an action of G0

l′/l on G(l′) via group automorphisms.
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Let Gl′/l be the quotient group (G(l′)oG0
l′/l)/

{
xo x−1 | x ∈ G(k′)

}
. We shall

denote elements of Gl′/l by [x, (u, τ)], for x ∈ G(l′), (u, τ) ∈ G0
l′/l. We have a short

exact sequence

1→ G(l′) x 7→[x,(1,1)]−−−−−−−→ Gl′/l
[x,(u,τ)] 7→τ−−−−−−−→ Gal(l′/l)→ 1.(2.1.9.2)

We equip Gl′/l with the quotient topology of the product topology on G(l′) o
G0
l′/l. (As always, G(l′) has the discrete topology.) ThenGl′/l is a topological group,

and (2.1.9.2) is an extension of topological groups. One checks that (Gl′ ,Gl′/l) ∈
Grb(l′/l). We define PB(G) to be (Gl′ ,Gl′/l).

We now define PB of a morphism. Given any morphism φ : G→ H in Grb(k′/k),
we define PB(φ) to be (φ∆, φl′/l) : PB(G)→ PB(H), where φl′/l is given by

φl′/l : Gl′/l −→ Hl′/l

[x, (u, τ)] 7−→ [φ∆(x), (φ(u), τ)], x ∈ G(l′), (u, τ) ∈ G0
l′/l.

This concludes the definition of the functor PB.
Note that for G ∈ Grb(k′/k), there is a canonical group homomorphism

ςGcan : Gal(l′/lk′) −→ Gl′/l, τ 7−→ [1, (1, τ)],

which is a section of Gl′/l → Gal(l′/l).

Lemma 2.1.10. Keep the setting of §2.1.9, and assume in addition that l = k.
Let G,H ∈ Grb(k′/k). A morphism ψ : PB(G) → PB(H) is of the form PB(φ) for
some morphism φ : G → H if and only if ψ ◦ ςGcan = ςHcan. Moreover, when this is
the case, φ is unique.

Proof. The “only if” part is trivial. We show the “if” part.
From the hypothesis on ψ, it follows that ψ∆ is the base change to l′ of a k′-

homomorphism φ∆ : G∆ → H∆, and that ψ[1, (u, τ)] is of the form [1, (φ(u), τ)]
for some function φ : G → H. We now check that (φ∆, φ) is a morphism in
Grb(k′/k). In fact, only the continuity of φ is non-obvious. For this, we observe
that the map H0

l′/l → H∆(l′) o H0
l′/l, (u, τ) 7→ (1, u, τ) is continuous and open,

since H∆(l′) is discrete. Hence the induced injective map H0
l′/l → Hl′/l is also

continuous and open, i.e., a homeomorphism onto its image. It follows that the
map G0

l′/l → H0
l′/l, (u, τ) → (φ(u), τ) is continuous. The continuity of φ then

follows from the openness of the map Gal(l′/l)→ Gal(k′/k).
Given that (φ∆, φ) is a morphism, it is clear that ψ = PB(φ).
Finally, we show that if ψ = PB(φ) then φ is unique. Suppose φ1 also satisfies

the condition. Then

ψ[1, (u, τ)] = [1, (φ(u), τ)] = [1, (φ1(u), τ)],

and in particular φ(u) = φ1(u), for all (u, τ) ∈ G0
l′/l. Since the projection G0

l′/l →
G, (u, τ) 7→ u is surjective, we have φ = φ1. �

Definition 2.1.11. Let pro-Grb(k′/k) be the category whose objects are projective
systems (Gi)i∈I in Grb(k′/k) indexed by directed sets (I,≤) and whose morphisms
are given by

Hompro-Grb(k′/k)((Gi)i∈I , (Hj)j∈J) := lim←−
j∈J

lim−→
i∈I

HomGrb(k′/k)(Gi,Hj).
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Objects of pro-Grb(k′/k) are called pro-k′/k-Galois gerbs. We view Grb(k′/k) natu-
rally as a full subcategory of pro-Grb(k′/k). When we are in the situation of §2.1.9,
the pull-back functor (2.1.9.1) naturally extends to a functor pro-Grb(k′/k) →
pro-Grb(l′/l), which we still call pull-back.

2.1.12. Let G = (Gi)i∈I ∈ pro-Grb(k′/k). Then we can take the projective limit
G∆ := lim←−iG

∆
i in the category of affine k′-group schemes, and take the projective

limit Gtop := lim←−iGi in the category of topological groups. If φ : G → H is a
morphism in pro-Grb(k′/k), then φ naturally induces a homomorphism of affine
k′-group schemes φ∆ : G∆ → H∆, and a continuous homomorphism φtop : Gtop →
Htop. In the sequel, if d is an element of Gtop, we shall simply write d ∈ G. Also,
we shall simply write φ(d) ∈ H for φtop(d) ∈ Htop.

The following definition generalizes Definition 2.1.5.

Definition 2.1.13. Let H = (Hi)i∈I ∈ pro-Grb(k′/k),G ∈ Grb(k′/k), and let
φ, ψ : H → G be two morphisms in pro-Grb(k′/k). We say that φ and ψ are
conjugate (or G∆(k′)-conjugate) if there exists g ∈ G∆(k′) such that ψ = Int(g) ◦φ
as morphisms in pro-Grb(k′/k).

2.1.14. Let H = (Hi)i∈I ∈ pro-Grb(k′/k),G ∈ Grb(k′/k), and let φ : H→ G be a
morphism in pro-Grb(k′/k). We now define Iφ, generalizing the definition in §2.1.6.

Choose i0 ∈ I such that φ is induced by a morphism φi0 : Hi0 → G. For each
i ∈ I with i ≥ i0, let φi be the composition Hi → Hi0

φi0−−→ G. For j ≥ i ≥ i0,
there is a natural k-homomorphism Iφi → Iφj as in (2.1.6.1), whose base change
to k′ is identified with the inclusion map G∆

φ∆
i

→ G∆
φ∆
j

. For sufficiently large i, the
decreasing subgroups im(φ∆

i ) of G∆ stabilize, since G∆ is noetherian. Hence G∆
φ∆
i

and Iφi also stabilize. We can thus define

im(φ∆) := im(φ∆
i ),

G∆
φ∆ := G∆

φ∆
i
,

Iφ := Iφi ,

for i ∈ I sufficiently large. Clearly these definitions are independent of the initial
choices of i0 and φi0 .

By construction, Iφ,k′ is canonically identified with G∆
φ∆ . It is also easy to see

that Iφ(k) precisely consists of those g ∈ G∆(k′) such that Int(g) ◦ φ = φ (as
morphisms in pro-Grb(k′/k)).

If G = GG for some reductive group G over k, and if H∆
i are tori for all i ∈ I,

then we also extend the definitions of I†φ and Ĩφ in §2.1.8 to the present case, in the
obvious way. In this case, each of Iφ, I†φ, Ĩφ is a reductive group. The group Iφ has
the same absolute rank as G, and contains ZG as a Q-subgroup.

2.1.15. Let H,G, φ be as at the beginning of §2.1.14. Given a continuous 1-cocycle
a = (aρ) ∈ Z1(k′/k, Iφ(k′)), there is a morphism aφ : H → G defined as follows.
Choose i ∈ I such that φ is induced by some φi : Hi → G and such that Iφ = Iφi .
Denote by π the structural map Hi → Gal(k′/k). We define

aφi : Hi −→ G, g 7−→ aπ(g)φi(g).
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Here, we view aπ(g) ∈ Iφ(k′) as an element of G∆(k′) ⊂ G via the canonical
embedding Iφ,k′ ↪→ G∆. Then aφi is a morphism in Grb(k′/k), and we define aφ
to be the morphism induced by aφi. This definition is independent of choices.

Lemma 2.1.16. In the setting of §2.1.15, the map a 7→ aφ is a bijection from
Z1(k′/k, Iφ(k′)) to the set of morphisms φ′ : H→ G such that φ′,∆ = φ∆. Moreover,
for a, a′ ∈ Z1(k′/k, Iφ(k′)), we have aφ is conjugate to a′φ if and only if a is
cohomologous to a′.

Proof. Since G∆ is finitely presented over k′, the natural map

lim−→
i

Homk′(H∆
i , Gk′) −→ Homk′(H∆, Gk′)

is a bijection. Here Homk′ denotes the set of homomorphisms of k′-group schemes.
The lemma then reduces to the case where H is in Grb(k′/k). In this case the proof
is exactly the same as the proof of part (2) of [Kis17, Lem. 3.1.2]. �

Definition 2.1.17. For a and φ as in §2.1.15, we call aφ the twist of φ by a.
Similarly, for a class β ∈ H1(k′/k, Iφ(k′)), we define the twist of φ by β, denoted by
φβ , to be the conjugacy class of aφ where a is any cocycle representing β. This is
well defined by Lemma 2.1.16.12 We shall sometimes also write φβ for an unspecified
member of this conjugacy class.

2.1.18. We explain how to obtain Galois gerbs from Reimann’s explicit cocycle
construction in [Rei97, App. B]. We first sketch the idea behind the construction
informally. Let G ∈ Grb(k′/k). Suppose that there is a continuous set theoretic
section ς : Gal(k′/k) → G of G → Gal(k′/k) such that ς(ρ)ς(τ)ς(ρτ)−1 lies in
ZG∆(k′) for all ρ, τ ∈ Gal(k′/k). Then the isomorphisms (ς(τ))alg : τ∗G∆ ∼−→ G∆

for τ ∈ Gal(k′/k) form a k′/k-Galois descent datum. Let G be the corresponding
k-form of G∆. Then the isomorphism class of G can be recovered from G and the
map Gal(k′/k) × Gal(k′/k) → ZG(k′), (ρ, τ) 7→ ς(ρ)ς(τ)ς(ρτ)−1, which is in fact a
continuous 2-cocycle.

We now give the formal construction. First we define a category R(k′/k). The
objects are pairs (G, z), where G is a connected linear algebraic group over k, and
z = (zρ,τ ) is a continuous 2-cocycle Gal(k′/k) × Gal(k′/k) → ZG(k′) satisfying
z1,1 = 1. A morphism (G′, z′)→ (G, z) is a pair (φ∆, f), where φ∆ : G′k′ → Gk′ is
a homomorphism of k′-groups, and f = (fρ) is a continuous 1-cochain Gal(k′/k)→
G(k′) satisfying

zρ,τfρ
ρfτf

−1
ρτ = φ∆(z′ρ,τ ),

Int(fρ) ◦ ρ∗(φ∆) = φ∆,

for all ρ, τ ∈ Gal(k′/k). (In particular, f1 = 1.) The composition of morphisms is
given by

(φ∆, f) ◦ (ψ∆, h) := (φ∆ ◦ ψ∆, (φ∆(hρ)fρ)ρ).
We define a fully faithful functor

E : R(k′/k) −→ Grb(k′/k).(2.1.18.1)

12Since we define φβ to be the whole conjugacy class, its members are not necessarily of the
form aφ for any a ∈ Z1(k′/k, Iφ(k′)).
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Let (G, z) ∈ R(k′/k). To define E(G, z), we let G := G(k′) × Gal(k′/k), equipped
with the product topology. Define a binary operation on G by

(g, ρ) · (h, τ) := (gρ(h)zρ,τ , ρτ).

Then (G, ·) is a topological group, and the maps G(k′) → G, g 7→ (g, 1) and G →
Gal(k′/k), (g, ρ) 7→ ρ make G a topological group extension of Gal(k′/k) by G(k′).
Then (Gk′ ,G) ∈ Grb(k′/k). (To check condition (ii) in Definition 2.1.1, use that
zρ,τ = 1 for all ρ, τ sufficiently close to 1.) We define E(G, z) to be (Gk′ ,G).

For a morphism (φ∆, f) : (G′, z′)→ (G, z) in R(k′/k), we define

E(φ∆, f) : E(G′, z′) = G′(k′)×Gal(k′/k) −→ E(G, z) = G(k′)×Gal(k′/k)
(g′, ρ) 7−→ (φ∆(g′)fρ, ρ).

This completes the definition of the functor E . We omit the proof that E is fully
faithful, since this fact will not be used.

Analogous to Definition 2.1.11, we consider the category pro-R(k′/k) of pro-
objects in R(k′/k) indexed by directed sets. The functor (2.1.18.1) naturally ex-
tends to a functor

E : pro-R(k′/k) −→ pro-Grb(k′/k)(2.1.18.2)

which is also fully faithful.
In [Rei97, App. B], various affine groupoids are defined, which are needed for

the correct formulation of the Langlands–Rapoport Conjecture. There is a functor
from pro-R(k′/k) to the category of affine k′/k-groupoids, and Reimann obtains
the desired groupoids by constructing explicit objects in pro-R(k′/k) (for suitable
k′/k). In the present paper, we shall not need affine groupoids, but we shall im-
port Reimann’s explicit constructions and obtain pro-Galois gerbs via the functor
(2.1.18.2). This is the same as the point of view taken in [Kis17].

2.2. The Dieudonné gerb and the quasi-motivic gerb.

2.2.1. Fix a prime p. We recall the definition of the Dieudonné gerb in terms
of the functor (2.1.18.2), cf. [Rei97, pp. 109–110]. For each n ∈ Z≥1, let κn :
Gal(Qur

p /Qp)×Gal(Qur
p /Qp)→ Z be the unique continuous function satisfying

κn(σi, σj) = bi/nc+ bj/nc − b(i+ j)/nc, ∀i, j ∈ Z.

Here σ denotes the arithmetic p-Frobenius as usual. Let Dn be the object in
R(Qur

p /Qp) given by (Gm, (pκn(ρ,τ))ρ,τ ). For n, n′ ∈ Z≥1 with n|n′, let λn,n′ :
Gal(Qur

p /Qp)→ Z be the unique continuous function satisfying

λn,n′(σi) = bi/n′cn′/n− bi/nc, ∀i ∈ Z.

Let δn′,n : Dn′ → Dn be the morphism in R(Qur
p /Qp) given by

(x 7→ xn
′/n, (pλn,n′ (ρ))ρ).

Then (Dn)n∈Z≥1 equipped with the transition morphisms δn′,n is an object in
pro-R(Qur

p /Qp).
Applying the functor (2.1.18.2) to (Dn)n, we obtain an object D = (Dn)n =

(E(Dn))n in pro-Grb(Qur
p /Qp). This is called the Dieudonné gerb.
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We denote by D the pro-torus lim←−n∈Z≥1
Gm over SpecZ, where for n|n′ the

transition map from the n′-th Gm to the n-th Gm is z 7→ zn
′/n. We have

D∆ = DQur
p
.

Let n ∈ Z≥1. By construction, the set underlying Dn is Gm(Qur
p )×Gal(Qur

p /Qp).
Using this we define a canonical element

dσ,n := (p−b1/nc, σ) ∈ Dn,

and a canonical map
ςn : Gal(Qur

p /Qpn) −→ Dn, ρ 7−→ (1, ρ),

which is a continuous section of Dn → Gal(Qur
p /Qp). Clearly κn(σi, σj) = 0 when

i, j are divisible by n, so κn vanishes on Gal(Qur
p /Qpn)×Gal(Qur

p /Qpn) by continuity.
It follows that ςn is a group homomorphism. For future use, we compute:

dnσ,n = (p−b1/nc
n−1∏
i=1

pκn(σi,σ), σn) = (p−1, σn) = p−1ςn(σn), ∀n.(2.2.1.1)

E(δn,n′)(dσ,n′) = (p−b1/n
′cλn,n′ (σ), σ) = (p−b1/nc, σ) = dσ,n, ∀n|n′.(2.2.1.2)

E(δn,n′)(ςn′(ρ)) = (pλn,n′ (ρ), ρ) = (1, ρ) = ςn(ρ), ∀n|n′,∀ρ ∈ Gal(Qur
p /Qpn′ ).

(2.2.1.3)

By (2.2.1.2), the system (dσ,n)n defines an element dσ ∈ Dtop.

Definition 2.2.2. Let Gp ∈ pro-Grb(Qp/Qp) be the pull back of D. For each
n ∈ Z≥1, let Gp,n ∈ pro-Grb(Qp/Qp) be the pull back of Dn.13 Thus Gp = (Gp,n)n.

Definition 2.2.3. Let G be a connected linear algebraic group over Qp. Let
GG ∈ Grb(Qp/Qp) and Gur

G ∈ Grb(Qur
p /Qp) be the associated neutral gerbs. A

morphism θ : Gp → GG in pro-Grb(Qp/Qp) is called unramified, if it is the pull-back
of a morphism θur : D → Gur

G in pro-Grb(Qur
p /Qp). By the obvious generalization

of Lemma 2.1.10, θur is uniquely determined by θ. For general θ, we write UR(θ)
for the set of g ∈ G(Qp) such that Int(g−1) ◦ θ is unramified.

Lemma 2.2.4. Keep the notation of Definition 2.2.3. The following statements
hold.

(i) For any morphism θ : Gp → GG, the set UR(θ) is a G(Qur
p )-torsor, where

G(Qur
p ) multiplies on the right.

(ii) Let φ : D → Gur
G be a morphism. For sufficiently divisible n, we have

φ(dσ)n = φ∆
n (p−1)o σn ∈ Gur

G , where φn is a morphism Dn → Gur
G induc-

ing φ.

Proof. By the discussion in §2.1.9, the fact that Gp is the pull-back of D gives rise
to a canonical homomorphism ς : Γp,0 = Gal(Qp/Qur

p ) → Gtop
p , which is a section

of Gtop
p → Γp. By (the obvious generalization of) Lemma 2.1.10, a morphism

θ : Gp → GG is unramified if and only if θ(ς(τ)) = 1o τ for all τ ∈ Γp,0.
For part (i), we write θ(ς(τ)) = aτ o τ ∈ GG, for τ ∈ Γp,0. Then (aτ )τ ∈

Z1(Qp/Qur
p , G(Qp)). By the previous paragraph, an element g ∈ G(Qp) lies in

13In [Kis17, §3.1.6], our Gp,n is denoted by G̃
Qpn
p .
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UR(θ) if and only if g−1aττ(g) = 1 for all τ ∈ Γp,0. By Steinberg’s theorem, such
a g exists since G is connected. It is then clear that UR(θ) is a G(Qur

p )-torsor.
We now show part (ii). First pick n such that φ is induced by a morphism

φn : Dn → Gur
G . Since φn is continuous, there exists an open subgroup U of

Gal(Qur
p /Qpn) such that φn(ςn(ρ)) = 1 o ρ for all ρ ∈ U . We may assume that

U = Gal(Qur
p /Qpn′ ) for some n′ divisible by n. Using (2.2.1.3), we may replace n

by n′ and assume that n = n′. We then have

φ(dσ)n = φn(dnσ,n) = φn(p−1ςn(σn)) = φ∆
n (p−1)o σn,

where the second equality is by (2.2.1.1). �

Definition 2.2.5. Let G be a connected linear algebraic group over Qp. For
any unramified morphism θ : Gp → GG, we define bθ ∈ G(Qur

p ) by the formula
θur(dσ) = bθ o σ.

Proposition 2.2.6. Let G be a reductive group over Qp, and let θ : Gp → GG be
an unramified morphism. The following statements hold.

(i) Viewing θur,∆ : DQur
p
→ GQur

p
as a fractional cocharacter of GQur

p
, we have

θur,∆ = −νbθ . Moreover bθ is decent (see §1.4.1).
(ii) There are natural Qp-isomorphisms Jbθ ∼= Iθur ∼= Iθ.
(iii) Let β ∈ H1(Qp, Iθ). Then there is a member θ′ of the conjugacy class θβ

(see Definition 2.1.17) satisfying the following conditions:
(a) The morphism θ′ : Gp → GG is unramified.
(b) By part (ii), we view β as an element of H1(Qp, Jbθ ). Then the σ-

conjugacy class of bθ′ in G(Qur
p ) is given by the twist of bθ by β, as

in §1.4.4.

Proof. (i) Choose n ∈ Z≥1 such that θur is induced by a morphism θn : Dn → Gur
G .

Let νn := θ∆
n . Then νn is a cocharacter of GQur

p
, and θur,∆ = n−1νn. Up to

enlarging n, we may assume that νn is defined over Qpn .
By Lemma 2.2.4 (iii), up to enlarging n we have

bθσ(bθ) · · ·σn−1(bθ) = νn(p−1) ∈ G(Qur
p ).

We conclude that νbθ = −n−1νn = −θur,∆, and that bθ is n-decent.
(ii) As in [RZ96, Cor. 1.14], the fact that bθ is decent implies that

Jbθ (R) =
{
g ∈ GQur

p ,νbθ
(R⊗Qp Qur

p ) | gbθ = bθσ(g)
}
,

for any Qp-algebra R. In view of GQur
p ,νbθ

= GQur
p ,θ

ur,∆ , the above description of Jbθ
agrees with the explicit description of Iθur as in §2.1.6. The natural isomorphism
Iθur ∼= Iθ arises from the fact that they are the same Qp-form of GQur

p ,θ
ur,∆ .

(iii) By Steinberg’s theorem, β is represented by a cocycle

a = (aρ) ∈ Z1(Qur
p /Qp, Jb(Qur

p )).

Viewing a as in Z1(Qp, Iθ), we define θ′ := aθ, which is in the conjugacy class θβ .
Then θ′ is unramified, and we have bθ′ = aσb, which implies condition (b). �

2.2.7. Let G be a reductive group scheme over Zp, with generic fiber G. Let
r ∈ Z≥1, and let µ be a cocharacter of GZpr .
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For each morphism θ : Gp → GG in pro-Grb(Qp/Qp), we recall the definition
of a set Xµ(θ) and a bijection Φ : Xµ(θ) → Xµ(θ) as in [Kis17, §3.3.3]. For each
g ∈ UR(θ), we write bg for bInt(g−1)◦θ ∈ G(Qur

p ). Define

Yµ(θ) :=
{
g ∈ UR(θ) | bg ∈ G(Zur

p )pµG(Zur
p ) ⊂ G(Qur

p )
}
.

The group G(Zur
p ) acts on Yµ(θ) via right multiplication, and we define

Xµ(θ) := Yµ(θ)/G(Zur
p ).

By the Cartan decomposition, the subset G(Zur
p )pµG(Zur

p ) ⊂ G(Qur
p ) depends on

µ only via the G(Zpr )-conjugacy class of µ, and so the same holds for Yµ(θ) and
Xµ(θ).

Consider the map
Φ̃ : UR(θ) −→ UR(θ)

g 7−→ gbgσ(bg) · · ·σr−1(bg).

For g ∈ UR(θ) we have bΦ̃(g) = σr(bg). It follows that Φ̃ restricts to a map Yµ(θ)→
Yµ(θ). If we fix an element g0 ∈ UR(θ) and use it to identify the G(Qur

p )-torsor
UR(θ) with G(Qur

p ), then the map Φ̃ becomes the map G(Qur
p ) → G(Qur

p ), g 7→
bg0σ(bg0) · · ·σr−1(bg0)σr(g). This shows that Φ̃ restricts to a G(Zur

p )-equivariant
bijection Yµ(θ)→ Yµ(θ). Hence Φ̃ induces a bijection

Φ : Xµ(θ) ∼−→ Xµ(θ),
which we call the pr-Frobenius.

The isomorphism class of the ΦZ-set Xµ(θ) depends on θ only through the con-
jugacy class of θ. Moreover, after fixing an element g0 ∈ UR(θ), from the previous
paragraph we know that the map G(Qp) → G(Qp), g 7→ g−1

0 g induces a bijection
from Xµ(θ) to the affine Deligne–Lusztig set

Xµ(bg0) :=
{
g ∈ G(Qur

p )/G(Zur
p ) | g−1bg0σ(g) ∈ G(Zur

p )pµG(Zur
p )
}

∼−→
{
g ∈ G(Q̆p)/G(Z̆p) | g−1bg0σ(g) ∈ G(Z̆p)pµG(Z̆p)

}
,(2.2.7.1)

on which Φ acts by g 7→ bg0σ(bg0) · · ·σr−1(bg0)σr(g). The second line is the usual
definition of an affine Deligne–Lusztig set found in the literature, and we have
a natural map (2.2.7.1) induced by the inclusion G(Qur

p ) ↪→ G(Q̆p). That this
map is a bijection follows from Lemma 1.6.8 and the functoriality of the Cartan
decomposition.

2.2.8. We keep fixing a prime p. For each finite prime v 6= p, let
Gv := Γv ∈ Grb(Qv/Qv).

Let
G∞ ∈ Grb(C/R)

be the Weil group of R, and let
Gp ∈ pro-Grb(Qp/Qp)

be as in Definition 2.2.2.
Consider the pro-torus ResQ/QGm := lim←−L ResL/QGm over Q, where L runs

through the set of finite Galois extensions of Q contained in Q, ordered by inclusion,
and the transition maps are the norm maps. The neutral gerbs GResL/Q Gm ∈ GrbQ
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for different L form a projective system, i.e., an object in pro-Grb(Q/Q). We denote
this object by GResQ/Q Gm .

For each object G (resp. morphism φ) in pro-Grb(Q/Q), we denote its pull-back
in pro-Grb(Qv/Qv) by G(v) (resp. φ(v)), for each place v of Q. Here the pull-back
functor is defined with respect to our fixed embedding Q → Qv. Reimann [Rei97,
§B.2] has constructed a quasi-motivic Galois gerb, which is an object

Q ∈ pro-Grb(Q/Q),

equipped with a morphism ζv : Gv → Q(v) in pro-Grb(Qv/Qv) for each place v of Q,
and a morphism ψ : Q → GResQ/Q Gm in pro-Grb(Q/Q). More precisely, Reimann
constructs in the proof of [Rei97, Thm. B.2.8] versions of Q, ζv, and ψ in the
categories pro-R(Q/Q) and pro-R(Qv/Qv). We transport his constructions via the
functors (2.1.18.2). The unique characterization of the tuple (Q, (ζv)v, ψ) is delicate
to state. We omit this and refer the reader to loc. cit. and [Kis17, Thm. 3.1.9].

By construction, Q is given by a projective system (QL)L in GrbQ, indexed by
the set of finite Galois extensions L/Q contained in Q, ordered by inclusion. For
each L, we have QL,∆ = QLQ, where Q

L is a Q-torus explicitly described in [Rei97,
§B.2]. (Here QL agrees with the canonical Q-form of QL,∆ as in Remark 2.1.7.)
If L ⊂ L′ ⊂ Q, then the transition morphism QL′ → QL is surjective, and its
kernel QL′Q → QLQ is defined over Q. We write Q for the pro-torus (lim←−LQ

L) over
Q. Since the projective system (QL)L is indexed by a countable set and since the
transition morphisms are surjective, we conclude that the projections Qtop → QL

are surjective. (See §2.1.12 for the notation Qtop.)
For v ∈ {p,∞} , we denote the group scheme homomorphism ζ∆

v : G∆
v → Q(v)∆

(see §2.1.12) by ν(v). By construction, ν(v) is defined over Qv. Thus we have
ν(p) : DQp → QQp and ν(∞) : Gm,R → QR.

2.2.9. Let T be a torus over Q, and let µ ∈ X∗(T ). Let L/Q be a finite Galois
extension contained in Q such that µ is defined over L. Then µ induces a Q-
homomorphism

µ∗ : ResL/QGm
ResL/Q µ−−−−−−→ ResL/Q T

NL/Q−−−→ T.

We obtain a morphism ΨT,µ : Q→ GT in pro-Grb(Q/Q) via the composition

Q
ψ−→ GResQ/Q Gm → GResL/Q Gm

µ∗−→ GT .

This is independent of the choice of L.

Lemma 2.2.10. Let θ = ΨT,µ(p) ◦ ζp : Gp → GT (p). Choose g ∈ UR(θ), and let
[b] ∈ B(TQp) be the σ-conjugacy class of bInt(g−1)◦θ ∈ T (Qur

p ) in T (Q̆p) (which is
well defined, by Lemma 2.2.4 (i)). Then κT ([b]) ∈ X∗(T )Γp is equal to the image
of −µ ∈ X∗(T ).

Proof. The proof reduces to the “universal case”, where T = ResL/QGm, and the
map µ∗ : ResL/QGm → T is the identity. In this case, X∗(T )Γp is torsion free, and
therefore the homomorphism ι : X∗(T )Γp → X∗(T )⊗Q induced by taking averages
of Γp-orbits in X∗(T ) is injective. For each [b′] ∈ B(TQp), we have ι(κT ([b′])) = νb′

by [Kot85, §2.8]. Hence to prove the lemma it suffices to prove that ι(µ) = −νb. By
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Proposition 2.2.6 (i), we have −νb = (Int(g−1) ◦ θ)ur,∆ = θ∆. By [Kis17, (3.1.11)],
θ∆ is indeed equal to ι(µ), as desired.14 �

2.3. Strictly monoidal categories.

2.3.1. Let G,H be two strictly monoidal categories (which we always assume to
be small). By a strictly monoidal functor G→ H, we mean a functor that strictly
respects the monoidal structures. By a monoidal isomorphism between two strictly
monoidal functors φ, ψ : G→ H, we mean an isomorphism of functors A : φ ∼−→ ψ
such that for any two objects g1, g2 ∈ G the following diagram commutes:

φ(g1 ⊗ g2)
A(g1⊗g2) // ψ(g1 ⊗ g2)

φ(g1)⊗ φ(g2)
A(g1)⊗A(g2)// ψ(g1)⊗ ψ(g2)

Every group can be naturally viewed as a strictly monoidal category, where the
only morphisms are the identities. For two groups G and H, the set of strictly
monoidal functors G→ H is the same as the set of group homomorphisms G→ H.
More generally, each crossed module (H̃ → H) also determines a strictly monoidal
category denoted by H/H̃; see [Kis17, §3.2.1]. When (H̃ → H) is a crossed module,
each element h ∈ H induces via conjugation a strictly monoidal functor Int(h) :
H/H̃ → H/H̃.

2.3.2. Now let G be a group and (H̃ %−→ H) be a crossed module. We denote
the structural action of H on H̃ by Int. Consider two strictly monoidal functors
φ, ψ : G→ H/H̃. If A : φ ∼−→ ψ is an isomorphism of functors, then for each q ∈ G
the isomorphismA(q) : φ(q) ∼−→ ψ(q) corresponds to an elementA(q) ∈ H̃. Thus we
may view A as a function G→ H̃. In this way, there is a one-to-one correspondence
between monoidal isomorphisms A : φ ∼−→ ψ and functions A : G→ H̃ satisfying

A(qr) = A(q) · Int(φ(q))(A(r)),
%(A(q)) · φ(q) = ψ(q), ∀q, r ∈ G.

When G is equipped with a topology, we shall call a monoidal isomorphism A :
φ
∼−→ ψ continuous, if the corresponding function A : G → H̃ is continuous with

respect to the given topology on G and the discrete topology on H̃.

2.3.3. Let k be a field of characteristic zero, and let k̄ be a fixed algebraic closure.
Let G be a reductive group over k, and let GG be the associated neutral gerb in
Grb(k̄/k). As in [Kis17, §3.2.2], we have a crossed module Gsc(k̄) → GG, and we
denote the corresponding strictly monoidal category GG/Gsc(k̄) by GG/Gsc . We
have a canonical strictly monoidal functor GG → GG/Gsc .

Lemma 2.3.4. Keep the setting and notation of §2.3.3. Let H = (Hi)i∈I be an
object in pro-Grb(k̄/k) such that the projections Htop → Hi are surjective and such
that H∆

i are tori for all i ∈ I. Let φ : H→ GG be a morphism in pro-Grb(k̄/k). Let

14A similar argument is made in the proof of [Kis17, Lem. 3.4.2] in order to determine κT ([b])
for T = ResL/Q Gm. There T is unramified over Qp, so the cited result [RR96, Thm. 4.2 (ii)] is
valid. Our present argument does not need this unramifiedness assumption.
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a ∈ Z1(k, Iφ) and let φ′ = aφ (see §2.1.15). Let φãb (resp. φ′
ãb
) be the composite

strictly monoidal functor

Htop φtop (resp. φ′,top)−−−−−−−−−−−→ GG −→ GG/Gsc .

Then there exist g ∈ G(k̄) and a continuous monoidal isomorphism φãb
∼−→ Int(g) ◦

φ′
ãb
, if and only if the class of a in H1(k, Iφ) lies in the image of H1(k, Ĩφ) →

H1(k, Iφ). Here Ĩφ is defined in §2.1.8 and §2.1.14.

Proof. By the assumption that Htop → Hi are surjective, the lemma reduces to
the case where H ∈ Grb(k̄/k), which we now assume. Write M for Gk̄,φ∆ . Let %
denote the natural map Gsc → G, and let M̃ := %−1(M) ⊂ Gsc,k̄. Write π for the
structural map H → Gal(k̄/k). For each q ∈ H, we write φ(q) = gq o π(q), with
gq ∈ G(k̄).

Assume there exist g ∈ G(k̄) and a continuous monoidal isomorphism A : φãb
∼−→

Int(g) ◦ φ′
ãb
. As discussed in §2.3.2, A can be viewed as a continuous function

H→ Gsc(k̄) satisfying
A(qr) = A(q) · Int(φ(q))(A(r)),(2.3.4.1)

%(A(q)) · φ(q) = Int(g)[aπ(q)φ(q)], ∀q, r ∈ H.(2.3.4.2)

Decompose g as g = g′z, with g′ ∈ Gder(k̄), z ∈ ZG(k̄). Fix a lift g̃ ∈ Gsc(k̄) of g′,
and define a continuous map B : H→ Gsc(k̄) by

B(q) := g̃−1A(q) · Int(φ(q))(g̃) ∈ Gsc(k̄), ∀q ∈ H.

Then by (2.3.4.1), we have
B(qr) = B(q) · Int(φ(q))(B(r)), ∀q, r ∈ H.(2.3.4.3)

By (2.3.4.2), we have

%(B(q)) = (g′)−1 · [%(A(q)) · φ(q)] · g′φ(q)−1

= zaπ(q)φ(q)g−1 · g′φ(q)−1 = zaπ(q)gqπ(q)z−1π(q)−1g−1
q ,

i.e.,

%(B(q)) = z
π(q)

z−1aπ(q), ∀q ∈ H.(2.3.4.4)

From (2.3.4.4), we see that

B(q) ∈ M̃(k̄), ∀q ∈ H;(2.3.4.5)
B(q) ∈ ZGsc(k̄), ∀q ∈ H∆(k̄).(2.3.4.6)

Using (2.3.4.3) and (2.3.4.5), we see that the map B|H∆(k̄) : H∆(k̄) → ZGsc(k̄) is
a group homomorphism. Since H∆(k̄) is a divisible abelian group and ZGsc(k̄) is
finite, we have B|H∆(k̄) ≡ 1. Combining the last fact with (2.3.4.3), we see that B(q)
depends only on π(q), i.e., B = B ◦ π for a continuous map B : Gal(k̄/k)→ M̃(k̄).
Now by the definition of the k-form Ĩφ of M̃ , the relation (2.3.4.3) precisely means
that B ∈ Z1(k, Ĩφ). Note that the inclusion of k̄-groups ZG,k̄ ↪→ M induces an
inclusion of k-groups ZG → Iφ. Hence (2.3.4.4) implies that the class of a in
H1(k, Iφ) equals the image of the class of B in H1(k, Ĩφ).
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Conversely, assume the class of a in H1(k, Iφ) lies in the image of H1(k, Ĩφ).
Then there exist g ∈ Iφ(k̄) and B ∈ Z1(k, Ĩφ) such that

aτ = g · %(B(τ)) · Int(gτ )(τg−1), ∀τ ∈ Gal(k̄/k).

Decompose g as g = %(g̃)z−1, with g̃ ∈ M̃(k̄) and z ∈ ZG(k̄). Then we can absorb
g̃ into B by replacing each B(τ) with g̃B(τ) Int(gτ )(τ g̃−1). Hence we may assume
that g = z−1. Let B := B ◦ π : H → M̃(k̄). Then B is continuous and satisfies
(2.3.4.3) and (2.3.4.4). Note that the relation (2.3.4.4) can also be written as

%(B(q)) · φ(q) = Int(z)[aπ(q)φ(q)](2.3.4.7)

(since π(q)
z = Int(φ(q))(z)). By (2.3.4.3) and (2.3.4.7), B is a continuous monoidal

isomorphism φãb
∼−→ Int(z) ◦ φ′

ãb
. �

Remark 2.3.5. By the discussion in §2.2.8, the assumptions on H in Lemma 2.3.4
are satisfied by the quasi-motivic Galois gerb Q ∈ pro-Grb(Q/Q).
2.4. Admissible morphisms for an unramified Shimura datum.
2.4.1. Let (G,X, p,G) be an unramified Shimura datum as in §1.8.1. Let E be the
reflex field, and let p and q = pr be as in §1.6.1. We will use the following notation
throughout the paper. For each field extension F/E such that GF is quasi-split,
the Hodge cocharacters µh attached to h ∈ X determine a G(F )-conjugacy class
of cocharacters of GF . We denote this conjugacy class by �X(F ). Now inside
�X(Qpr ), there is a canonical G(Zpr )-conjugacy class consisting of those cochar-
acters in �X(Qpr ) that extend to cocharacters of GZpr . We denote this G(Zpr )-
conjugacy class by �GX .

A choice of x ∈ X gives rise to a morphism
ξ∞ : G∞ −→ GG(∞)

in Grb(C/R), whose conjugacy class depends only on X. See [Kis17, §3.3.5] for the
explicit construction. For a finite prime v unequal to p, let

ξv : Gv = Γv −→ GG(v) = G(Qv)o Γv
be the natural section. Then ξv is a morphism in Grb(Qv/Qv).

Let φ : Q → GG be a morphism in pro-Grb(Q/Q). (Here Q is defined with
respect to the fixed p.) For each place v of Q except p, we define

Xv(φ) :=
{
g ∈ G(Qv) | Int(g) ◦ ξv = φ(v) ◦ ζv

}
.

We define
Xp(φ) := X−µ(φ(p) ◦ ζp)

for µ ∈ �GX . Here the right hand side is as in §2.2.7, and it is independent of the
choice of µ. We have the pr-Frobenius Φ : Xp(φ) ∼−→ Xp(φ).
Definition 2.4.2 (cf. [Kis17, §3.3.6]). Keep the setting of §2.4.1. A morphism
φ : Q → GG in pro-Grb(Q/Q) is called admissible, if the following conditions are
satisfied.

(i) Let µ ∈ �X(Q). Let ψµ
ãb

: Q −→ GG/Gsc be the associated strictly
monoidal functor, defined in [Kis17, §3.3.1]. Let φãb be the composite

strictly monoidal functor Q φ−→ GG → GG/Gsc . We require that there exist
g ∈ G(Q) and a continuous monoidal isomorphism A : Int(g)◦ψµ

ãb

∼−→ φãb.
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(ii) For each place v of Q, Xv(φ) 6= ∅.

Remark 2.4.3. Condition (i) in Definition 2.4.2 is a correction of condition (1) in
[Kis17, §3.3.6] in that we add the requirement that A should be continuous. The
results on admissible morphisms in [Kis17, §3.4], especially the statement and proof
of [Kis17, Prop. 3.4.11], are only correct with the present definition.

Remark 2.4.4. Given a morphism Q → GG in pro-Grb(Q/Q), whether it is ad-
missible depends only on its conjugacy class. We may thus speak of admissible
conjugacy classes of morphisms Q→ GG.

Remark 2.4.5. As is pointed out by Reimann [Rei97, App. B], the original con-
struction of the quasi-motivic gerb Q in [LR87] is incorrect. As such, the defi-
nitions and results in [LR87, §5] about “admissible morphisms” do not directly
apply to the objects defined in Definition 2.4.2. Nevertheless, most of the content
of loc. cit. can be modified to suit the corrected definition of Q. In the sequel, we
shall cite loc. cit. only for those technical results that are essentially independent
of the actual construction of Q.

2.4.6. Let φ : Q→ GG be an arbitrary morphism in pro-Grb(Q/Q). By condition
(ii) in [Rei97, Def. B2.7], there exists a continuous cocycle ζp,∞φ : Γ→ G(Āpf ) that
induces the morphisms φ(l) ◦ ζl for all finite primes l 6= p, in the following sense.
We have a canonical map Āpf = Apf ⊗Q Q → Ql given by the projection Apf → Ql
and the fixed embedding Q→ Ql. Denote the composition

Γl ↪→ Γ
ζp,∞
φ−−−→ G(Āpf )→ G(Ql)

by ζφ,l. Then for each τ ∈ Gl = Γl we have

(φ(l) ◦ ζl)(τ) = ζφ,l(τ)o τ ∈ G(Ql)o Γl.

If we choose an arbitrary Z-structure on G, then for almost all primes l 6= p the
set Xl(φ) contains integral points in G(Ql) (and is a fortiori non-empty). Indeed,
for almost all l, the chosen Z-structure on G has connected smooth reduction at l,
and ζφ,l is induced by a continuous unramified cocycle Gal(Qur

l /Ql)→ G(Zur
l ). It is

a standard result (see for instance [PR94, p. 294, Thm. 6.8’]) that any such cocycle
is a coboundary, and this precisely means that Xl(φ) contains integral points.

2.4.7. Let φ : Q → GG be an admissible morphism. On choosing a Z-structure
on G, we form the restricted product

Xp(φ) :=
′∏

l/∈{p,∞}

Xl(φ)

with respect to the subsets of integral elements of the Xl(φ) (cf. §2.4.6). Clearly
Xp(φ) is independent of the choice of Z-structure, and is a G(Apf )-torsor under
right multiplication. (It is non-empty since φ is admissible.) Equivalently, with the
notation in §2.4.6, Xp(φ) is the right G(Apf )-torsor consisting of x ∈ G(Āpf ) such
that

x−1 · ζp,∞φ (τ) · τx = 1, ∀τ ∈ Γ.
We now define

X(φ) := Xp(φ)×Xp(φ),
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which is equipped with the action of ΦZ × G(Apf ). We still call Φ the q-Frobenius
on X(φ).

By definition, X(φ) is a subset of G(Qp)/G(Zur
p )×G(Āpf ). Under the canonical

embedding Iφ,Q ↪→ GQ, we let the group Iφ(Af ) act on G(Qp)/G(Zur
p ) × G(Āpf )

via left multiplication. This induces a left action of Iφ(Af ) on X(φ). For each
τ ∈ Iad

φ (Af ), we set
Sτ (φ) := lim←−

Kp

Iφ(Q)τ\X(φ)/Kp,

where Kp runs through the compact open subgroups of G(Apf ), and Iφ(Q)τ denotes
the image of

Iφ(Q) ↪→ Iφ(Af ) Int(τ)−−−−→ Iφ(Af ).
Then Sτ (φ) inherits the action of ΦZ × G(Apf ). When τ = 1, we write S(φ) for
Sτ (φ).
2.5. Integral models and the Langlands–Rapoport Conjecture.

2.5.1. Keep the setting and notation of §2.4.1. Let Kp = G(Zp), and let ShKp =
ShKp(G,X) be the inverse limit

lim←−
Kp

ShKpKp(G,X),

where Kp runs through compact open subgroups of G(Apf ). This inverse limit
exists as an E-scheme, since the transition maps are finite. The right G(Apf )-action
on ShKp induced by the G(Af )-action on Sh(G,X) is admissible in the sense of
Definition 1.5.1.
Definition 2.5.2. By a smooth integral model of ShKp , we mean a scheme SKp over
OE,(p) extending ShKp , equipped with an admissible right G(Apf )-action extending
the G(Apf )-action on ShKp .15 When SKp is given, we write SKpKp for SKp/K

p

for all sufficiently small compact open subgroups Kp ⊂ G(Apf ).

The following theorem is proved in [Kis10] for p > 2, and in [KMP16] for p = 2.
Theorem 2.5.3 ([Kis10, KMP16]). If (G,X) is of abelian type, then there ex-
ists a smooth integral model of ShKp . This model is uniquely characterized by the
extension property as detailed in [Kis10, §2.3.7].
Remark 2.5.4. In [Kis10] and [KMP16], it is not explicitly verified that the G(Apf )-
action on the integral model satisfies the separatedness in condition (ii) and con-
dition (iii) in Definition 1.5.1. The former follows from the facts that the Siegel
modular schemes at finite levels are separated over Z(p), that normalization maps
and closed immersions are separated, and that taking finite free quotients preserve
separatedness. For the latter, see [LS18, §3] for an explanation.

2.5.5. Now fix a prime ` 6= p and fix an irreducible Q`-representation ξ of G
that factors through Gc = G/Zac, as in §1.5.8. Suppose a smooth integral model
SKp is given. As explained in §1.5.2, for sufficiently small compact open subgroups
Up ⊂ Kp ⊂ G(Apf ), the map SKpUp → SKpKp is finite étale Galois and the Galois

15The adjective “smooth” refers to the smoothness requirement in condition (ii) in Definition
1.5.1 for the admissible G(Ap

f
)-action on SKp . The scheme SKp is typically not locally of finite

presentation over OE,(p).
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group is identified with the maximal quotient of Kp/Up that acts faithfully on
SKpUp . Since ShKpUp is dense in SKpUp , we see that the last group is identified
with Gal(ShKpUp /ShKpKp). Thus by (1.5.8.1), we have

Gal(SKpUp/SKpKp) ∼= Kp/UpZ(Q)−,(p)KpKp ,

where Z(Q)−,(p)KpKp is the image of Z(Q)−KpKp under the projection G(Af )→ G(Apf ).
Hence Gal(SKp/SKpKp) as defined in (1.5.2.1) is the quotient of Kp by the closure
of Z(Q)−,(p)KpKp in G(Apf ). (Actually Z(Q)−,(p)KpKp is already closed in G(Apf ), because
Z(Q)−KpKp is compact.) By Lemma 1.5.7, (the closure of) Z(Q)−,(p)KpKp is contained
in Zac(Apf ) when Kp is sufficiently small. We now view ξ as a continuous represen-
tation of G(Apf ) via the projection G(Apf )→ G(Q`). Then for all sufficiently small
Kp, the restriction ξ|Kp factors through Gal(SKp/SKpKp) by the above discussion.
Thus as in §1.5.2, for each sufficiently small Kp we obtain a lisse Q`-sheaf Lξ,Kp

on SKpKp , and for each geometric point x of SpecOE,(p) we have the admissible
G(Apf )-module

Hi
c(SKp,x, ξ) := lim−→

Kp

Hi
c(SKpKp,x,Lξ,Kp).

When x = SpecE, the above is identified with Hi
c(ShE , ξ)

Kp . Moreover, we have a
canonical adjunction morphism

Hi
c(SKp,Fq , ξ) −→ Hi

c(SKp,E
, ξ) ∼= Hi

c(ShE , ξ)
Kp ,(2.5.5.1)

which is Gal(Ep/Ep) × G(Apf )-equivariant. Here Gal(Ep/Ep) acts on the left via
the quotient Gal(Fq/Fq), and acts on the right via the embedding into Gal(E/E).

Definition 2.5.6. We say that SKp has well-behaved H∗c , if (2.5.5.1) is an isomor-
phism for all choices of ` 6= p, ξ, and i.

Theorem 2.5.7 ([LS18, Cor. 4.6]). The canonical smooth integral model in Theo-
rem 2.5.3 has well-behaved H∗c .

Recall that for each admissible morphism φ : Q→ GG, we have defined in §2.4.7
a set S(φ) equipped with an action of G(Apf ) and a q-Frobenius Φ, where q is the
residue cardinality of p.

Conjecture 2.5.8 (Langlands–Rapoport). There exists a smooth integral model
SKp of ShKp over OE,(p) which has well-behaved H∗c and for which there is a
bijection

SKp(Fq)
∼−→
∐
φ

S(φ)

compatible with the actions of G(Apf ) and the q-Frobenius Φ. Here φ runs through a
set of representatives for the conjugacy classes of admissible morphisms Q→ GG.

In the rest of this section, we formulate a variant of the above conjecture, which
we call “the Langlands–Rapoport–τ Conjecture”.

2.6. Preparations for the Langlands–Rapoport–τ Conjecture. In this sub-
section we develop the prerequisites for our formulation of the Langlands–Rapoport–
τ Conjecture.
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2.6.1. Using that the projections Qtop → QL are surjective (see §2.2.8), for each
τ ∈ Γ we can choose a lift qτ ∈ Qtop of τ . We fix such a choice in the sequel. We
first study a “well-positioned” condition for morphisms from Q to neutral gerbs.
Let G be an arbitrary reductive group over Q. Recall from §2.2.8 that Q∆ has the
canonical Q-structure Q.

Definition 2.6.2. A morphism φ : Q → GG in pro-Grb(Q/Q) is called günstig
gelegen (to be abbreviated as gg)16, if φ∆ : Q∆ → GQ is defined over Q.

Lemma 2.6.3. Let φ : Q → GG be a morphism in pro-Grb(Q/Q). For each
τ ∈ Γ = Gal(Q/Q), write φ(qτ ) = gτ o τ , with gτ ∈ G(Q). Then φ is gg if and only
if gτ lies in GQ,φ∆(Q) for each τ ∈ Γ. If φ is gg, then the canonical Q-isomorphism
Iφ,Q

∼−→ Gφ∆,Q is an inner twistings between the underlying Q-groups.

Proof. Assume that φ is induced by a morphism φ0 : QL → GG in Grb(Q/Q). Let
y ∈ QL(Q) = QL,∆(Q) and τ ∈ Γ be arbitrary. We denote the image of qτ ∈ Qtop

in QL still by qτ . Then
φ∆

0 (τy) = φ0(qτyq−1
τ ) = (gτ o τ)φ∆

0 (y)(gτ o τ)−1 = gτ
τ [φ∆

0 (y)]g−1
τ .(2.6.3.1)

Now φ∆ is defined over Q if and only if φ∆
0 is defined over Q (since the transition

maps in the pro-torus Q = lim←−LQ
L are all surjective). By (2.6.3.1), this is equiva-

lent to the condition that each gτ centralizes im(φ∆
0 ). Since im(φ∆

0 ) = im(φ∆), the
last condition is equivalent to the condition that each gτ lies in GQ,φ∆(Q).

Now if φ is gg, then for each τ ∈ Γ the Q-isomorphism Iφ,Q
∼−→ Gφ∆,Q differs

from its τ -twist by composition with Int(gτ ). Since gτ ∈ Gφ∆(Q), this means that
the Q-isomorphism is an inner twisting. �

Definition 2.6.4. Let φ : Q → GG be a morphism in pro-Grb(Q/Q). By a G-
rational maximal torus in Iφ, we mean a maximal torus T ⊂ Iφ (defined over Q)
such that the composite embedding TQ ↪→ Iφ,Q

∼= GQ,φ∆ ↪→ GQ is defined over Q.

Remark 2.6.5. In Definition 2.6.4, T is necessarily a maximal torus in G. This is
because Q∆ is a pro-torus, and as a result Iφ is a reductive group having the same
absolute rank as G, cf. §2.1.14.

Lemma 2.6.6. Let φ : Q → GG be a morphism in pro-Grb(Q/Q) such that Iφ
contains a G-rational maximal torus T . Then φ is gg. Moreover, let f denote the
Q-embedding underlying TQ ↪→ Iφ,Q

∼= GQ,φ∆ ↪→ GQ. Then φ factors as Q
φT−−→

GT
f−→ GG.

Proof. For each τ ∈ Γ, define gτ ∈ G(Q) as in Lemma 2.6.3. For t ∈ T (Q), we have
f(τ t) = gτ

τ [f(t)]g−1
τ ,

by the definition of the Q-structure of Iφ; see §2.1.6 and §2.1.8. Since f is defined
over Q, we have f(τ t) = τ [f(t)]. Hence gτ commutes with f(T (Q)). Since f(T ) is a
maximal torus in G (see Remark 2.6.5), we have gτ ∈ f(T )(Q). We conclude that
φ is gg by Lemma 2.6.3. Moreover, since ZIφ ⊂ T and since φ∆ factors through the

16This terminology comes from Langlands–Rapoport [LR87, §5]. However, the definition of
günstig gelegen morphisms given by Langlands–Rapoport uses the elements δn, which do not
directly make sense with the corrected definition of Q.
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center of Gφ∆ , we know that φ∆ factors through f(T ) ⊂ G. We have already seen
that each gτ lies in f(T )(Q). It follows that φ factors through f : GT → GG. �

Lemma 2.6.7. Let φ : Q → GG be an admissible morphism. Then the R-group
Iφ(∞)◦ζ∞ is an inner form of GR. Moreover, the R-groups (Iφ/ZG)R = Iφ(∞)/ZG,R
and Iφ(∞)◦ζ∞/ZG,R are both anisotropic.

Proof. As in (2.1.6.1) we have an R-embedding Iφ(∞) ↪→ Iφ(∞)◦ζ∞ . Since φ is
admissible, φ(∞) ◦ ζ∞ is conjugate to ξ∞. Hence there is an R-isomorphism
Iφ(∞)◦ζ∞

∼−→ Iξ∞ induced by Int(g) for some g ∈ G(C). As discussed in [Kis17,
§3.3.5], Iξ∞ is the inner form of GR with anisotropic adjoint group. The lemma
follows. �

2.6.8. We now return to the setting of §2.4.1. Thus we have an unramified Shimura
datum (G,X, p,G) and the notion of admissible morphisms Q→ GG.

Proposition 2.6.9. Let φ : Q → GG be an admissible morphism. For each max-
imal torus T ⊂ Iφ defined over Q, there exists g ∈ G(Q) such that Int(g)(T ) is a
G-rational maximal torus in IInt(g)◦φ.

Proof. This is essentially proved by Langlands–Rapoport, when they prove [LR87,
Lem. 5.23]. We sketch the argument, as the precise statement of the proposition is
not explicit in [LR87].17

Let ψ : GQ
∼−→ G∗Q be an inner twisting from G to a fixed quasi-split reductive

group G∗ over Q. Then the G∗(Q)-conjugacy class of the composite embedding
ι : TQ ↪→ GQ

ψ−→ G∗Q is stable under Γ. By [Kot82, Cor. 2.2], we can modify ψ by
an inner automorphism to arrange that ι is defined over Q.

Let T ∗ = ι(T ). Then T ∗ is a maximal torus in G∗ defined over Q, and we
have a Q-isomorphism ι : T ∼−→ T ∗. We now check that T ∗ transfers to G locally
at all places v, or equivalently, that some G(Qv)-conjugate of T is a Qv-torus in
GQv . For v = p, this follows from the assumption that G is unramified, and hence
quasi-split, over Qp. For v = ∞, this follows from the fact that T ∗/ZG∗ ∼= T/ZG
is anisotropic over R (Lemma 2.6.7). For v /∈ {∞, p}, pick uv ∈ G(Qv) such that
Int(u−1

v ) ◦ φ(v) ◦ ζv = ξv, which exists since φ is admissible. Then the canonical
embedding IInt(uv)◦φ(v),Qv

↪→ GQv
is defined over Qv, and hence Int(uv)(TQv ) is a

Qv-maximal torus in GQv , as desired.
Since T ∗ transfers to G locally and is elliptic over R, it transfers globally to

G by [LR87, Lem. 5.6]. This means there exists g ∈ G(Q) such that Int(g)(T )
is a Q-maximal torus in G and such that the isomorphism Int(g) ◦ ψ−1 : T ∗ →
Int(g)(T ) is defined over Q. It follows that Int(g)(T ) is a G-rational maximal torus
in IInt(g)◦φ. �

Corollary 2.6.10. Every admissible morphism φ : Q → GG is conjugate to a gg
morphism.

Proof. By Proposition 2.6.9, φ is conjugate to a morphism φ′ : Q→ GG such that
Iφ′ contains a G-rational maximal torus. By Lemma 2.6.6, φ′ is gg. �

17The only information about Q used in this argument is the fact that Q∆ is a pro-torus
with surjective transition maps. Hence the validity of this argument is unaffected by Reimann’s
correction of the definition of Q.
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2.6.11. Let φ : Q→ GG be an admissible morphism. By Corollary 2.6.10, the set
W :=

{
g ∈ G(Q) | Int g ◦ φ is gg

}
is non-empty. Using Lemma 2.6.3, one checks

that the canonical embedding Iφ,Q → GQ and W together form an inner transfer
datum from Iφ to G (Definition 1.2.4). We thus obtain a canonical map

H1
ab(Q, Iφ) −→ H1

ab(Q, G),(2.6.11.1)

and we define X∞
G (Q, Iφ) ⊂ H1(Q, Iφ) as in §1.2.5.

Proposition 2.6.12. Let φ : Q → GG be an admissible morphism, and β ∈
H1(Q, Iφ). Then φβ (see Definition 2.1.17) is admissible if and only if β belongs to
X∞

G (Q, Iφ).

Proof. The “if” part is proved in [Kis17, Lem. 4.5.6], under the assumption that
Z0
G is cuspidal. Below we give complete proofs of both directions of the implica-

tion, taking into account the correction of the definition of admissible morphisms
mentioned in Remark 2.4.3. Since the admissibility condition is invariant under
conjugacy, we use Corollary 2.6.10 to reduce to the case where φ is gg. We now
assume that φ is gg and fix a cocycle a ∈ Z1(Q, Iφ) representing β.

Step 1. We show that β has zero image under the composite

H1(Q, Iφ)
ab1

Q−−→ H1
ab(Q, Iφ) (2.6.11.1)−−−−−−→ H1

ab(Q, G)(2.6.12.1)

if and only if there exist h ∈ G(Q) and a continuous monoidal isomorphism Int(h)◦
φãb

∼−→ (aφ)ãb. (See Definition 2.4.2 for the notation.) By Lemma 2.3.4 and Remark
2.3.5, the latter condition is equivalent to asking that β comes from H1(Q, Ĩφ). We
have a natural exact sequence of pointed sets

H1(Q, Ĩφ)→ H1(Q, Iφ)→ H1(Q, Ĩφ → Iφ),

where H1(Q, Ĩφ → Iφ) is the Galois cohomology of the crossed module (Ĩφ → Iφ)
of Q-groups; see [Bor98, §3]. (The crossed module structure is the one inherited
from the crossed module Gsc → G.) The natural map (ZGsc → ZG) → (Ĩφ →
Iφ) is a quasi-isomorphism of crossed modules, and therefore H1(Q, Ĩφ → Iφ) is
naturally isomorphic to H1

ab(Q, G). The composition H1(Q, Iφ) → H1(Q, Ĩφ →
Iφ) ∼= H1

ab(Q, G) is equal to (2.6.12.1). This proves the desired statement.
Step 2. We show that β has trivial image in H1(R, Iφ) if and only if φ(∞) ◦ ζ∞

is conjugate to (aφ)(∞) ◦ ζ∞. By Lemma 2.1.16, the latter condition is equivalent
to the vanishing of the image of β under

H1(Q, Iφ)→ H1(R, Iφ) = H1(R, Iφ(∞))
†−→ H1(R, Iφ(∞)◦ζ∞),

where † is induced by the R-inclusion Iφ(∞) ↪→ Iφ(∞)◦ζ∞ . Thus the desired state-
ment boils down to † having trivial kernel, which follows from Lemma 2.6.7 and
[Kis17, Lem. 4.4.5].

Step 3. We show that if β has zero image under (2.6.12.1), then φ(l) ◦ ζl is
conjugate to (aφ)(l) ◦ ζl for all finite primes l 6= p. For this, it suffices to show that
β has trivial image under the composite map

H1(Q, Iφ)→ H1(Ql, Iφ) = H1(Ql, Iφ(l))→ H1(Ql, Iφ(l)◦ζl).(2.6.12.2)
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Since φ is admissible, φ(l) ◦ ζl is conjugate to ξl. It follows that the canonical Ql-
embedding Iφ(l)◦ζl,Ql

→ GQl
is an inner twisting between Ql-groups. This induces

a canonical isomorphism

H1
ab(Ql, Iφ(l)◦ζl)

∼−→ H1
ab(Ql, G).(2.6.12.3)

Now we have a commutative diagram

H1(Q, Iφ)
(2.6.12.2) //

(2.6.12.1)
��

H1(Ql, Iφ(l)◦ζl)
ab1

Ql

∼=
// H1

ab(Ql, Iφ(l)◦ζl)

(2.6.12.3)∼=
��

H1
ab(Q, G) localization // H1

ab(Ql, G)

which implies the desired statement.
Step 4. We show that if β has zero image under (2.6.12.1), then Xp(aφ) 6= ∅.

We fix µ ∈ �GX as in §2.4.1. Let θ := φ(p) ◦ ζp, and let θ′ := (aφ)(p) ◦ ζp. By
definition Xp(φ) = X−µ(θ) and Xp(aφ) = X−µ(θ′).

Fix an arbitrary g0 ∈ UR(θ), and write θ0 for Int(g−1
0 )θ. Thus θ0 is unramified.

Now Int(g−1
0 ) induces a Qp-isomorphism Iθ

∼−→ Iθ0 . Let β0 denote the image of β
under the composite

H1(Q, Iφ)→ H1(Qp, Iφ)→ H1(Qp, Iθ)
Int(g−1

0 )
−−−−−→ H1(Qp, Iθ0).

Then θ′ belongs to the conjugacy class of θβ0
0 .

By Proposition 2.2.6 (iii), the conjugacy class θβ0
0 contains an unramified member

θ′0 such that b′ := bθ′0 is obtained from b := bθ0 by twisting by β0. Since G is quasi-
split over Qp, we can apply Proposition 1.4.5 to conclude that νb = νb′ , and that
κG(b′) − κG(b) is the image of β0 in π1(G)Γp,tors. Our assumption on β implies
that the last image is zero. Hence we have [b] = [b′] in B(GQp), by Kottwitz’s
classification (see §1.4.2).

Since θ0 (resp. θ′0) is an unramified member in the conjugacy class of θ (resp. θ′),
by the discussion in §2.2.7, we have X−µ(θ) ∼= X−µ(b), and X−µ(θ′) ∼= X−µ(b′).
Since [b] = [b′], we have X−µ(b) ∼= X−µ(b′). Thus the non-emptiness of X−µ(θ)
implies the non-emptiness of X−µ(θ′).

The proof of the proposition is completed by combining the above four steps.
(The “only if” part follows from Steps 1 and 2 alone.) �

2.6.13. Let φ : Q→ GG be an admissible morphism. We define

H(φ) := Iφ(Af )\Iad
φ (Af )/Iad

φ (Q),
Ep(φ) := Iφ(Apf )\Iad

φ (Apf ).

We have a natural map
Ep(φ) −→ H(φ),

and it is surjective by weak approximation (see [PR94, Thm. 7.8]) applied to Iad
φ .

The boundary map arising from the short exact sequence 1 → ZIφ → Iφ →
Iad
φ → 1 induces an isomorphism of pointed sets Ep(φ) ∼= D(ZIφ , Iφ;Apf ). Since
D(ZIφ , Iφ;Apf ) ∼= E(ZIφ , Iφ;Apf ) is an abelian group, we have a canonical abelian
group structure on Ep(φ).
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Lemma 2.6.14. The surjection Ep(φ)→ H(φ) induces an abelian group structure
on H(φ). Moreover, we have a commutative diagram

Ep(φ) //

��

E(ZIφ , Iφ;Apf )

��
H(φ) // E(ZIφ , Iφ;Af )/D(ZIφ,sc , Iφ,sc;Q)

(2.6.14.1)

where the rows are isomorphisms. Here the right vertical arrow is induced by the
inclusion E(ZIφ , Iφ;Apf ) → E(ZIφ , Iφ;Af ), and the bottom arrow is induced by the
boundary map δ : Iad

φ (Af )→ D(ZIφ , Iφ;Af ) ∼= E(ZIφ , Iφ;Af ) arising from the short
exact sequence 1→ ZIφ → Iφ → Iad

φ → 1.

Proof. First note that D(ZIφ,sc , Iφ,sc;Q) is a subgroup of H1(Q, ZIφ,sc), so the quo-
tient on the lower right corner of the diagram is defined. Now the boundary map δ
induces a bijection Iφ(Af )\Iad

φ (Af ) ∼−→ E(ZIφ , Iφ;Af ), and maps Iad
φ (Q) ⊂ Iad

φ (Af )
onto the image of D(ZIφ,sc , Iφ,sc;Q) → E(ZIφ , Iφ;Af ) (since we have a surjective
boundary map Iad

φ (Q)→ D(ZIφ,sc , Iφ,sc;Q) associated with the short exact sequence
1→ ZIφ,sc → Iφ,sc → Iad

φ → 1). The lemma follows. �

Lemma 2.6.15. The subset D(ZIφ,sc , Iφ,sc;Q) of H1(Q, ZIφ,sc) (which is a sub-
group) is equal to the kernel of the composite map of pointed sets

H1(Q, ZIφ,sc)→ H1(R, ZIφ,sc)→ H1(R, Iφ,sc).

Proof. By the Kneser–Harder–Chernousov Theorem (see [Bor98, Thm. 5.0.3]), the
localization map H1(Q, Isc)→ H1(R, Isc) is a bijection. The lemma follows. �

2.6.16. Let AM = AM(G,X, p,G) be the set of all admissible morphisms Q →
GG. On this set we define an equivalence relation ≈ by declaring φ1 ≈ φ2 if and
only if φ∆

1 is G(Q)-conjugate to φ∆
2 . Clearly ≈ is weaker than the equivalence

relation defined by conjugacy among admissible morphisms. By Lemma 2.1.16, we
know that φ1 ≈ φ2 if and only if there exists a (necessarily unique) β ∈ H1(Q, Iφ)
such that φ2 belongs to the conjugacy class φβ1 . Moreover, when this is the case,
we know that β lies in X∞

G (Q, Iφ1) by Proposition 2.6.12.
As a consequence of Lemma 2.6.14 and Lemma 2.6.15, we know that for φ ∈ AM,

the abelian group H(φ) depends only on the groups ZIφ , ZIφ,sc , Iφ,sc,R and the maps
between them. The same is true for the abelian group Ep(φ) ∼= E(ZIφ , Iφ;Apf ).
Now if φ1, φ2 ∈ AM are such that φ1 ≈ φ2, then for any g ∈ G(Q) such that
Int(g) ◦ φ∆

1 = φ∆
2 , the Q-isomorphism Int(g) : GQ,φ∆

1

∼−→ GQ,φ∆
2

induces an inner
twisting Compg : Iφ1,Q

∼−→ Iφ2,Q between Q-groups. Clearly the equivalence class
(Definition 1.2.1) of the inner twisting Compg is independent of the choice of g. It
follows that ZIφ1

, ZIφ1,sc
are canonically identified with ZIφ2

, ZIφ2,sc
respectively. If

we let Compg,sc : Iφ1,sc,Q
∼−→ Iφ2,sc,Q be the inner twisting induced by Compg, then

the equivalence class of Compg,sc is also independent of g. Moreover, Compg,sc⊗QC
is the composition of an R-isomorphism with an inner automorphism defined over
C. This is because if we let β be the element of X∞

G (Q, Iφ1) such that φ2 ∈ φβ1 ,
then the class of Compg,sc in H1(Q, Iad

φ1
) is the image of β, and hence has trivial

image in H1(R, Iad
φ1

). Thus Iφ1,sc,R is canonically identified with Iφ2,sc,R up to inner
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automorphisms defined over R. From this analysis, we see that there are canonical
abelian group isomorphisms

Compφ1,φ2 : H(φ1) ∼−→ H(φ2)

CompEp

φ1,φ2
: Ep(φ1) ∼−→ Ep(φ2)

which depend only on φ1 and φ2. These maps commute with the natural surjections
Ep(φi)→ H(φi). For any three φ1, φ2, φ3 ∈ AM such that φ1 ≈ φ2 ≈ φ3, we have
the following cocycle relations

Compφ2,φ3 ◦Compφ1,φ2 = Compφ1,φ3 , Compφ1,φ1 = idH(φ1);

CompEp

φ2,φ3
◦CompEp

φ1,φ2
= CompEp

φ1,φ3
, CompEp

φ1,φ1
= idEp(φ1) .

We now view AM = AM(G,X, p,G) as a discrete topological space, and define
sheaves of abelian groups Ep = Ep(G,X,p,G) and H = H(G,X,p,G) on AM whose
stalks at each φ ∈ AM are Ep(φ) and H(φ) respectively. We have a surjective
homomorphism Ep → H. The above discussion implies that Ep and H are the
pull-backs of unique (up to unique isomorphism) sheaves of abelian groups Ep≈ and
H≈ on the quotient space AM/≈. The surjective homomorphism Ep → H is the
pull-back of a unique surjective homomorphism Ep≈ → H≈.

The quotient map AM → AM/≈ factors through AM/conj, the set of conju-
gacy classes of admissible morphisms. We let Hconj (resp. Epconj) be the pull-back
of H≈ (resp. Ep≈) to AM/conj.

Definition 2.6.17. For F ∈ {Ep,H}, we denote by Γ(F) the group of global
sections of the sheaf F on AM. For τ ∈ Γ(F), we write τ(φ) ∈ F(φ) for the germ
of τ at each φ ∈ AM. We denote by Γ(F)0 (resp. Γ(F)1) the subgroup of Γ(F)
consisting of those global sections that descend to global sections of F≈ over AM/≈
(resp. global sections of Fconj over AM/conj). Thus Γ(F)0 ⊂ Γ(F)1 ⊂ Γ(F).

2.6.18. Let φ ∈ AM. The boundary map Iφ(Af )\Iad
φ (Af )→ H1(Af , ZIφ) arising

from the short exact sequence 1→ ZIφ → Iφ → Iad
φ → 1 induces a map

H(φ) = Iφ(Af )\Iad
φ (Af )/Iad

φ (Q) −→ H1(Af , ZIφ)/X∞
Iφ

(Q, ZIφ).(2.6.18.1)

Indeed, since Iad
φ (R) is compact (by Lemma 2.6.7), it is connected (see [Bor91,

§24.6]). Hence the map Iφ(R)→ Iad
φ (R) is onto, and the boundary map Iad

φ (R)→
H1(R, ZIφ) is trivial. In particular, the image of Iad

φ (Q) in H1(Q, ZIφ) lies in
X∞

Iφ
(Q, ZIφ), and it follows that (2.6.18.1) is well defined. We have a commutative

diagram:

Ep(φ)
∼= //

��

E(ZIφ , Iφ;Apf )

��
H(φ)

(2.6.18.1)
// H1(Af , ZIφ)/X∞

Iφ
(Q, ZIφ)

(2.6.18.2)

where the left vertical arrow is the natural surjection and the right vertical arrow
is induced by the inclusion H1(Apf , ZIφ)→ H1(Af , ZIφ).

Definition 2.6.19. Let τ ∈ Γ(H), and σ ∈ Γ(Ep).



74 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

(i) We say that τ is tori-rational, if for each φ ∈ AM and for each maximal
torus T ⊂ Iφ, the image of τ(φ) is trivial under the composite map

H(φ) (2.6.18.1)−−−−−−→ H1(Af , ZIφ)/X∞
Iφ

(Q, ZIφ)→ H1(Af , T )/X∞
G (Q, T ).(2.6.19.1)

(ii) We say that σ is tori-rational, if for each φ ∈ AM and for each maximal
torus T ⊂ Iφ, the image of σ(φ) is trivial under the composite map

Ep(φ) ∼= E(ZIφ , Iφ;Apf ) ⊂ H1(Apf , ZIφ)→ H1(Apf , T )→ H1(Apf , T )/X∞,p
G (Q, T ).

In the above, X∞
G (Q, T ) denotes the kernel of the composite map X∞(Q, T ) →

X∞(Q, Iφ)→X∞(Q, G), and similarly for X∞,p
G (Q, T ); see §1.2.5 and §2.6.11.

The next lemma relates the two notions of tori-rationality for elements of Γ(H)
and of Γ(Ep).

Lemma 2.6.20. Let τ ∈ Γ(H). The following statements are equivalent.
(i) τ is tori-rational.
(ii) The section τ has a lift σ ∈ Γ(Ep) along the natural surjection Γ(Ep) →

Γ(H) such that σ is tori-rational.
(iii) Every σ ∈ Γ(Ep) lifting τ is tori-rational.

Proof. The implication (ii)⇒ (i) follows from the commutative diagram (2.6.18.2).
Obviously (iii) ⇒ (ii). It remains to show (i) ⇒ (iii).

Let σ ∈ Γ(Ep) be a lift of τ . For each φ ∈ AM, we have a natural surjection
E(ZIφ , Iφ;Af ) → H(φ) as in Lemma 2.6.14. Fix an element εφ ∈ E(ZIφ , Iφ;Af )
lifting τ(φ). Then the image of τ(φ) under (2.6.18.1) is represented by εφ.

By the commutative diagram (2.6.18.2), the image of σ(φ) under H1(Apf , ZIφ)→
H1(Af , ZIφ) equals the sum of εφ and the image of some υφ ∈X∞

Iφ
(Q, ZIφ). For

each maximal torus T ⊂ Iφ, by tori-rationality of τ there exists an element βφ,T ∈
X∞

G (Q, T ) whose image in H1(Af , T ) equals that of εφ. Let β′φ,T ∈X∞
G (Q, T ) be

the sum of βφ,T and the image of υφ in X∞
Iφ

(Q, T ) ⊂X∞
G (Q, T ). Then the image

of σ(φ) under
E(ZIφ , Iφ;Apf )→ E(ZIφ , Iφ;Af )→ H1(Af , T )

equals that of β′φ,T . It follows that β′φ,T lies in X∞,p
G (Q, T ), and that the image of

σ(φ) in H1(Apf , T )/X∞,p
G (Q, T ) is trivial, as desired. �

2.7. The Langlands–Rapoport–τ Conjecture.

2.7.1. Let (G,X, p,G) be an unramified Shimura datum. Let τ ∈ Γ(H)1 (Defini-
tion 2.6.17). For each admissible morphism φ : Qf → GG, we set

Sτ (φ) := S
τ̃(φ)(φ),

where τ̃(φ) ∈ Iad
φ (Af ) is any lift of τ(φ) ∈ H(φ), and S

τ̃(φ)(φ) is defined as in
§2.4.7. The isomorphism class of the ΦZ × G(Apf )-set Sτ (φ) is independent of the
choice of τ̃(φ). Moreover, from the assumption that τ ∈ Γ(H)1, it follows that the
isomorphism class of the ΦZ×G(Apf )-set Sτ (φ) depends on φ only via its conjugacy
class.

We write LR(G,X, p,G, τ) for the modification of Conjecture 2.5.8 where each
S(φ) is replaced by Sτ (φ).
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Combined with Theorem 2.5.3 and Theorem 2.5.7, the main result of [Kis17] can
be stated as follows.

Theorem 2.7.2. Let (G,X, p,G) be an unramified Shimura datum such that (G,X)
is of abelian type. Assume p > 2. Then there exists τ ∈ Γ(H)1 such that the
statement LR(G,X, p,G, τ) holds.

We refer the reader to Theorem 6.2.4 below for a more precise version of the above
theorem. There we will also explain that the assumption p > 2 can be removed. In
the following conjecture, we impose better control of τ than the condition that τ
belongs to Γ(H)1.

Conjecture 2.7.3 (Langlands–Rapoport–τ). For each unramified Shimura datum
(G,X, p,G), there exists a tori-rational element τ ∈ Γ(H)0 such that the statement
LR(G,X, p,G, τ) holds.

Theorem 2.7.4. Conjecture 2.7.3 implies Conjecture 1.8.8.

We devote the next section to the proof of Theorem 2.7.4. Note that Conjecture
2.7.3 is weaker than Conjecture 2.5.8, as the latter asserts that τ can be taken to be
trivial. In view of Theorem 2.7.4, Conjecture 2.7.3 is a viable substitute for Con-
jecture 2.5.8 for applications to computing zeta functions and `-adic cohomology.

Theorem 2.7.2 is weaker than Conjecture 2.7.3 in that no extra control of τ ∈
Γ(H)1 is provided. In Part 2 we shall improve on Theorem 2.7.2 and prove Con-
jecture 2.7.3 in the case of abelian type.

3. Langlands–Rapoport–τ implies point counting

Throughout §3, we fix an unramified Shimura datum (G,X, p,G), and keep the
notation E, p, q = pr as in §2.4.1. Our goal is to prove Theorem 2.7.4.

3.1. Semi-admissible and admissible Langlands–Rapoport pairs.

Definition 3.1.1. By a Langlands–Rapoport pair (LR pair), we mean a pair (φ, ε),
where φ : Q → GG is a morphism in pro-GrbQ, and ε is an element of Iφ(Q). We
call such a pair (φ, ε) semi-admissible, if φ is admissible. We denote by LRP the
set of all LR pairs, and by LRPsa the subset of semi-admissible LR pairs.

Remark 3.1.2. If (φ, ε) ∈ LRPsa, then ε is semi-simple. This is because (Iφ/ZG)(R)
is anisotropic by Lemma 2.6.7.

3.1.3. The group G(Q) acts on the set LRP by conjugation in the following sense.
If (φ, ε) ∈ LRP and g ∈ G(Q), then Int(g)(φ, ε) := (Int(g) ◦ φ, Int(g)ε) is also an
element of LRP. We write

〈LRP〉 := LRP/G(Q)-conjugacy.

For (φ, ε) ∈ LRP, we denote by

〈φ, ε〉 ∈ 〈LRP〉

the G(Q)-conjugacy class of (φ, ε). The subset LRPsa ⊂ LRP is stable under
G(Q)-conjugacy, and we write

〈LRPsa〉 := LRPsa/G(Q)-conjugacy.
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3.1.4. Let (φ, ε) ∈ LRPsa. Let θ = φ(p) ◦ ζp : Gp → GG(p), and choose g ∈
UR(θ) (see Definition 2.2.3 and Lemma 2.2.4). Let bg := bInt(g−1)◦θ ∈ G(Qur

p ) (see
Definition 2.2.5), and let εg := Int(g−1)(ε) ∈ G(Q). Since ε is semi-simple (Remark
3.1.2), so is εg.

We have εg ∈ IInt(g)−1◦θ(Qp), and hence εg ∈ Jbg (Qp) by Proposition 2.2.6. Also,
by the same proposition, bg is decent. It then also follows that εg ∈ G(Qur

p ), as
Jbg (Qp) ⊂ G(Qur

p ) (see §1.4.3). We let

clsp(φ, ε) := {(bg, εg) | g ∈ UR(θ)} .
Let G(Qur

p ) act on clsp(φ, ε) on the left by h · (b, ε′) := (hbσ(h)−1, hε′h−1). Since
UR(θ) is a G(Qur

p )-torsor, the G(Qur
p )-action on clsp(φ, ε) is transitive.

3.1.5. Fix a positive integer m, and let n = mr. (Recall that q = pr is the
residue cardinality of p.) We will define qm-admissible LR pairs, which will serve
to describe Fqm -points of the Shimura variety.

Let (φ, ε) ∈ LRPsa, and let (b, ε′) ∈ clsp(φ, ε). Recall from §2.2.7 and §2.4.1 that
the set Xp(φ) is identified with the set X−µ(b), where µ ∈ �GX . The action of Φ
on Xp(φ) corresponds to the left multiplication by Φb := (bo σ)r on X−µ(b). The
action of ε on Xp(φ) corresponds to the left multiplication by ε′ on X−µX (b). Let

Xp(φ, ε, qm) := {x ∈ Xp(φ) | εx = Φmx} .
Then we have an identification

Xp(φ, ε, qm) ∼= X−µ(b, ε′, qm) := {x ∈ X−µ(b) | ε′x = Φmb x} .
This motivates the following definition.

Definition 3.1.6. We say that an element (φ, ε) ∈ LRPsa is qm-admissible, if for
one (and hence every) element (b, ε′) of clsp(φ, ε), we have{

x ∈ G(Q̆p)/G(Z̆p) | ε′x = Φmb x
}
6= ∅.

We denote by LRPa(qm) the set of qm-admissible elements of LRPsa. This subset
is stable under G(Q)-conjugacy, and we write

〈LRPa(qm)〉 := LRPa(qm)/G(Q)-conjugacy.

Lemma 3.1.7. Let (φ, ε) ∈ LRPa(qm), and let (b, ε′) ∈ clsp(φ, ε). Then there
exists t ∈ Z≥1 satisfying the following conditions.

(i) The fractional cocharacter tνb is a cocharacter of G defined over Qpt .
(ii) We have ε′t = pntνbk, for k lying in some conjugate of G(Z̆p) in G(Q̆p).

Proof. We have seen in §3.1.4 that b is decent. Take t such that b is t-decent. Then
condition (i) is already satisfied. Also by assumption there exists x ∈ G(Q̆p)/G(Z̆p)
such that

ε′x = Φmb x.
Since ε′ commutes with Φb = (bo σ)r, we have

ε′tx = Φmtb x.

By Lemma 1.6.8, we can replace t by a multiple, and assume that σtx = x. Let
s = tn = tmr. Then

ε′tx = Φmtb x = (bo σ)sx = bσbσ
2
b · · · σ

s−1
bx.
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Therefore

k := (bσbσ
2
b · · · σ

s−1
b)−1ε′t ∈ xG(Z̆p)x−1.(3.1.7.1)

Finally, since b is t-decent we have k = p−ntνbε′
t. This proves condition (ii). �

Recall from §2.2.8 that we have a homomorphism of Qp-group schemes ν(p) :
DQp → QQp .

Proposition 3.1.8. Let (φ1, ε1), (φ2, ε2) ∈ LRPa(qm). Suppose ε1 = ε2 as ele-
ments of G(Q). Then φ∆

1 ◦ ν(p) = φ∆
2 ◦ ν(p) as homomorphisms DQp

→ GQp
.

Proof. As in §3.1.4, for i = 1, 2, we choose gi ∈ UR(φi(p) ◦ ζp), and let (bi, ε′i) be
the element of clsp(φi, εi) associated with gi. By Lemma 3.1.7, we can find t ∈ Z≥1
such that

ε′i
t = pntνbiki,

where ki lies in some G(Q̆p)-conjugate of G(Z̆p), for i = 1, 2. Since ε′i commutes
with bi o σ, we know that ε′i

t commutes with ntνbi . Also ki lies in a bounded
subgroup of G(Q̆p). Applying Lemma 1.6.10 to F = Q̆p, we see that ntνbi is the
unique cocharacter ν of G over Q̆p commuting with ε′i

t such that ε′i
−t
pν lies in a

G(Q̆p)-conjugate of a bounded subgroup of G(Q̆p). Let g = g−1
2 g1 ∈ G(Qp). Then

we have ε′2 = Int(g)ε′1. By the above-mentioned uniqueness of ntνbi with respect to
ε′i
t, we have

νb2 = Int(g) ◦ νb1 .(3.1.8.1)

By Proposition 2.2.6 (i) we have

−νbi =
(
Int(g−1

i ) ◦ φi(p) ◦ ζp
)∆ = Int(g−1

i ) ◦ φ∆
i ◦ ν(p).(3.1.8.2)

Comparing (3.1.8.1) with (3.1.8.2), we have φ∆
1 ◦ ν(p) = φ∆

2 ◦ ν(p) as desired. �

Recall from §2.2.8 that we have a homomorphism of R-group schemes ν∞ : Gm →
QR.

Lemma 3.1.9. Let φ1, φ2 : Q → GG be two admissible morphisms. Then φ∆
1 ◦

ν(∞) = φ∆
2 ◦ ν(∞).

Proof. By condition (ii) in Definition 2.4.2 with v =∞, we know that φi(∞) ◦ ζ∞
is conjugate to ξ∞. Hence (φi(∞) ◦ ζ∞)∆ = φ∆

i ◦ ν(∞) is conjugate to ξ∆
∞. By

the definition of ξ∞ in [Kis17, §3.3.5], ξ∆
∞ is equal to the weight cocharacter for

the Shimura datum (G,X), which is central in G (see [Del79, §2.1.1]). The lemma
follows. �

Corollary 3.1.10. Let (φ1, ε1), (φ2, ε2) ∈ LRPa(qm). For i = 1, 2, assume that φi
is gg (Definition 2.6.2), and that εi lies in G(Q). Then for all g ∈ G(Q) such that
Int(g)(ε1) = ε2, we have Int(g) ◦ φ∆

1 = φ∆
2 .

Proof. Write H :=
{
g ∈ G(Q) | Int(g)ε1 = ε2

}
. Let g ∈ H. For all τ ∈ Γ, we

have τg ∈ H, since ε1, ε2 ∈ G(Q). Applying Proposition 3.1.8 and Lemma 3.1.9 to
(φ2, ε2) and Int(τg)(φ1, ε1), we get

φ∆
2 ◦ ν(v) = Int(τg) ◦ φ∆

1 ◦ ν(v), for v = p,∞.(3.1.10.1)
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Now we apply τ−1 to both sides of (3.1.10.1). As φ∆
1 and φ∆

2 are defined over Q
(by the gg assumption), we get

φ∆
2 ◦ τ

−1
ν(v) = Int(g) ◦ φ∆

1 ◦ τ
−1
ν(v), for v = p,∞.(3.1.10.2)

By construction, for each finite Galois extension L/Q contained in Q, the Q-
torus QL is split over L, and the Q-vector space X∗(QL)⊗Z Q is generated by the
Gal(L/Q)-conjugates of the fractional cocharacters

DQp
ν(p)−−−→ QQp

→ QLQp

and
Gm,C

ν(∞)−−−→ QC → QLC .

See [Kis17, §3.1] for details. Hence (3.1.10.2) for all τ implies that φ∆
2 = Int(g) ◦

φ∆
1 . �

3.2. The günstig gelegen condition. As in §2.6.1, for each τ ∈ Γ we choose a
lift qτ ∈ Qtop. For (φ, ε) ∈ LRP, we write I0

φ,ε for (Iφ)0
ε .

Definition 3.2.1. We say that an LR pair (φ, ε) ∈ LRP is günstig gelegen (to be
abbreviated as gg)18, if the following conditions are satisfied:

• The embedding Iφ,Q ↪→ GQ maps ε ∈ Iφ(Q) into G(Q). Moreover, ε is
R-elliptic in G, cf. §1.6.1.
• For each τ ∈ Γ, write φ(qτ ) = gτ o τ, with gτ ∈ G(Q). Then gτ lies in

(GQ,φ∆)0
ε(Q) = I0

φ,ε(Q).
We denote by LRPgg the set of gg LR pairs.

Remark 3.2.2. Let (φ, ε) ∈ LRP, and let φ(qτ ) = gτ o τ , for τ ∈ Γ. If one changes
the choice of qτ , then gτ is left multiplied by a Q-point of im(φ∆), which is a central
torus in GQ,φ∆ . Hence the second condition in Definition 3.2.1 is independent of
the choice of qτ .

3.2.3. Let (φ, ε) ∈ LRPgg. By Lemma 2.6.3, φ is gg, and the canonical Q-
isomorphism Iφ,Q

∼−→ Gφ∆,Q is an inner twisting between the Q-groups Iφ and
Gφ∆ . Moreover, in the current case this inner twisting restricts to an inner twisting
between the Q-groups Iφ,ε and (Gφ∆)ε, and an inner twisting between the Q-groups
I0
φ,ε and (Gφ∆)0

ε .
In fact, the inner twisting between I0

φ,ε and (Gφ∆)0
ε can be interpreted as follows.

Let I0 = G0
ε ⊂ G. Since (φ, ε) is gg, φ factors as Q → GI0 → GG. We write φI0

for φ when we view it as a morphism Q → GI0 . Then φI0 is itself gg. Hence
by Lemma 2.6.3 applied to φI0 , we obtain an inner twisting between IφI0 and
(I0)(φI0 )∆ = (I0)φ∆ . It is easy to see that as Q-groups we have IφI0 = I0

φ,ε and
(I0)φ∆ = (Gφ∆)0

ε .

Definition 3.2.4. We write [LRPgg] for the quotient set of LRPgg divided by
the equivalence relation of G(Q)-conjugacy.19 For (φ, ε) ∈ LRPgg, we denote its
image in [LRPgg] by [φ, ε]. We denote the natural injection [LRPgg]→ 〈LRP〉 by
v (standing for vergessen).

18As in Definition 2.6.2, this terminology comes from [LR87, §5], but our definition is modified
to suit the corrected definition of Q.

19We caution the reader that the subset LRPgg ⊂ LRP is not stable under G(Q)-conjugacy.
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Lemma 3.2.5. Let (φ, ε) ∈ LRP, and let a = (aτ )τ ∈ Z1(Q, Iφ,ε). Then (aφ, ε) ∈
LRP (i.e., the element ε ∈ G(Q) lies in the image of Iaφ(Q) ↪→ Iaφ(Q) ↪→ G(Q)).
Here aφ is the twist of φ by the cocycle a as in §2.1.15. If in addition we have
(φ, ε) ∈ LRPgg and a ∈ Z1(Q, I0

φ,ε), then (aφ, ε) ∈ LRPgg.

Proof. First recall that (aφ)∆ = φ∆, and Iφ,Q and Iaφ,Q are equal as Q-subgroups
of GQ. Write φ(qτ ) = gτ o τ for each τ ∈ Γ. Then we have (aφ)(qτ ) = aτgτ o τ .
Since ε ∈ Iφ(Q), we have gτ τ εg−1

τ = ε. Since ε commutes with aτ , we have

aτgτ
τ εg−1

τ a−1
τ = ε,

which means that ε ∈ Iaφ(Q). Thus we have shown that (aφ, ε) ∈ LRP.
To show the second statement, we need to check that aτgτ ∈ I0

aφ,ε(Q) for all τ .
But both gτ and aτ lie in I0

φ,ε(Q), and we have I0
aφ,ε(Q) = I0

φ,ε(Q). The desired
statement follows. �

Lemma 3.2.6. Let (φ, ε) ∈ LRP. Let a, b ∈ Z1(Q, Iφ,ε). Then a, b are cohomolo-
gous in Iφ,ε if and only if 〈aφ, ε〉 = 〈bφ, ε〉.

Proof. Write φ(qτ ) = gτ o τ , for each τ ∈ Γ. If a, b are cohomologous in Iφ,ε, then
there exists u ∈ Iφ,ε(Q) such that

aτ = u−1bτgτ
τug−1

τ , ∀τ ∈ Γ.(3.2.6.1)

Here τu denotes the action of τ on u viewed as in G(Q). Then

(aφ)(qτ ) = aτgτ o τ = u−1bτgτ
τuo τ = Int(u−1) ◦ (bφ)(qτ ).

Hence we have Int(u−1) ◦ (bφ) = aφ as they already agree on the kernel. Also
Int(u−1)ε = ε. Therefore (aφ, ε) = Int(u−1)(bφ, ε), and so 〈aφ, ε〉 = 〈bφ, ε〉.

Conversely, assume that 〈aφ, ε〉 = 〈bφ, ε〉. Then there exists u ∈ G(Q) such that
(aφ, ε) = Int(u−1)(bφ, ε). Since (aφ)∆ = (bφ)∆, we have u ∈ Iφ,ε(Q). Now the
relation Int(u−1) ◦ (bφ) = aφ is equivalent to (3.2.6.1), which shows that a and b
are cohomologous. �

3.2.7. Let (ψ, δ) ∈ LRP and (φ, ε) ∈ LRPgg. In view of Lemma 3.2.5 and Lemma
3.2.6, we have well-defined maps

Z1(Q, Iψ,δ)→ LRP, a 7→ (aψ, δ)

and

Z1(Q, I0
φ,ε)→ LRPgg, a 7→ (aφ, ε),

which induce maps
ιψ,δ : H1(Q, Iψ,δ) −→ 〈LRP〉

and
ηφ,ε : H1(Q, I0

φ,ε) −→ [LRPgg]
respectively. Moreover, by Lemma 3.2.6 the map ιψ,δ is injective.

Lemma 3.2.8. Let (φ, ε) ∈ LRPgg. The subset im(ηφ,ε) of [LRPgg] depends only
on [φ, ε] ∈ [LRPgg].
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Proof. Suppose we have (φ′, ε′) ∈ LRPgg such that [φ, ε] = [φ′, ε′]. Then (φ′, ε′) =
Int(g)(φ, ε) for some g ∈ G(Q). We have an isomorphism Int(g) : I0

φ,ε → I0
φ′,ε′

defined over Q. This induces a bijection

g∗ : H1(Q, I0
φ,ε)→ H1(Q, I0

φ′,ε′),

and we have ηφ,ε = ηφ′,ε′ ◦ g∗. �

Definition 3.2.9. For x = [φ, ε] ∈ [LRPgg], we define the subset

Cx := im(ηφ,ε) ⊂ [LRPgg].

This is well defined by Lemma 3.2.8.

Lemma 3.2.10. Let x, y ∈ [LRPgg]. Then y ∈ Cx if and only if x ∈ Cy. In
particular, subsets of the form Cx form a partition of [LRPgg].

Proof. Let x = [φ, ε] ∈ [LRPgg]. Assume that y ∈ Cx. Then there exists a =
(aτ )τ ∈ Z1(Q, I0

φ,ε) such that y = [aφ, ε]. We identify Iφ(Q) with Iaφ(Q). For each
τ ∈ Γ, let τ̂(·) (resp. τ̌(·)) denote the action of τ on Iφ(Q) with respect to the
Q-structure Iφ (resp. Iaφ). We have

τ̌(·) = aτ τ̂(·)a−1
τ .

For each τ , let bτ := a−1
τ ∈ Iaφ(Q). Then for σ, τ ∈ Γ we have

bστ = (aσσ̂(aτ ))−1 = (σ̌(aτ )aσ)−1 = bσσ̌(bτ ),

showing that (bτ )τ ∈ Z1(Q, Iaφ). Clearly we have φ = b(aφ), and so x ∈ Cy. �

Lemma 3.2.11. Let (φ1, ε1), (φ2, ε2) ∈ LRPgg be elements having the same image
in [LRPgg], and let g ∈ G(Q) be such that Int(g)(φ1, ε1) = (φ2, ε2) (which exists by
the first assumption). Then we have g τg−1 ∈ G0

ε2(Q) for all τ ∈ Γ. In particular,
ε1, ε2 ∈ G(Q) are stably conjugate.

Proof. For i = 1, 2, we write φi(qτ ) = gi,τ o τ . Then

g2,τ = gg1,τ
τg−1 = gg1,τg

−1g τg−1,

and hence
g τg−1 = (gg1,τg

−1)−1g2,τ .

Since (φ1, ε1), (φ2, ε2) ∈ LRPgg, we have g1,τ ∈ G0
ε1(Q) and g2,τ ∈ G0

ε2(Q). It
follows that gg1,τg

−1 ∈ G0
ε2(Q). Hence g τg−1 ∈ G0

ε2(Q), as desired. �

Definition 3.2.12. As in §1.8.7, let ΣR-ell(G) be the set of stable conjugacy classes
of semi-simple, R-elliptic elements of G(Q). We define the stable conjugacy class
map

scc : [LRPgg] −→ ΣR-ell(G),

sending [φ, ε] to the stable conjugacy class of ε. This is well defined by Lemma
3.2.11.

Definition 3.2.13. Fix m as in §3.1.5. We set

LRPgg
sa := LRPgg ∩ LRPsa, LRPgg

a (qm) := LRPgg ∩ LRPa(qm),

[LRPgg
sa ] := v−1(〈LRPsa〉), [LRPgg

a (qm)] := v−1(〈LRPa(qm)〉).
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3.2.14. Let (φ, ε) ∈ LRPgg
a (qm). Then φ is gg (see §3.2.3), and ε ∈ G(Q).

Hence by Corollary 3.1.10 the Q-inclusion Iφ,Q ↪→ GQ induces a Q-isomorphism
Iφ,ε,Q

∼−→ Gε,Q. By this fact and by the discussion in §3.2.3, we obtain canonical
inner twistings

(I0
φ,ε)Q

∼−→ (G0
ε)Q,

(Iφ,ε)Q
∼−→ (Gε)Q.

Lemma 3.2.15. Let (φ, ε) ∈ LRP. Assume that Iφ contains a G-rational maximal
torus T (see Definition 2.6.4) such that ε ∈ T (Q) and such that T/ZG is anisotropic
over R. Then (φ, ε) ∈ LRPgg.

Proof. The assumptions imply that ε is a semi-simple R-elliptic element of G(Q).
By the proof of Lemma 2.6.6, if we write φ(qτ ) = gτ o τ , then gτ lies in T (Q) for
each τ ∈ Γ. Note that T ⊂ I0

φ,ε. Hence gτ lies in I0
φ,ε(Q) as desired. �

Lemma 3.2.16. Let (φ, ε) ∈ LRPsa. Then there exists g ∈ G(Q) such that
(φ′, ε′) := Int(g)(φ, ε) ∈ LRPsa satisfies the following condition: The group Iφ′

contains a G-rational maximal torus T ′ such that ε′ ∈ T ′(Q) and such that T ′/ZG
is anisotropic over R. Moreover, in this case we have (φ′, ε′) ∈ LRPgg

sa .

Proof. Choose a maximal torus T ⊂ Iφ defined over Q such that ε ∈ T (Q). (This is
possible since ε is semi-simple; see Remark 3.1.2.) Since φ is admissible, Proposition
2.6.9 implies that there exists g ∈ G(Q) such that Int(g)(T ) is a G-rational maximal
torus in IInt(g)◦φ. We write (φ′, ε′) for Int(g)(φ, ε), and write T ′ for Int(g)(T ). Then
T ′ is a G-rational maximal torus in Iφ′ , and ε′ ∈ T ′(Q). Since φ′ is admissible,
we know that T ′/ZG is anisotropic over R by Lemma 2.6.7. Finally, we have
(φ′, ε′) ∈ LRPgg

sa by Lemma 3.2.15. �

Corollary 3.2.17. The injection v : [LRPgg] → 〈LRP〉 restricts to bijections
[LRPgg

sa ] ∼−→ 〈LRPsa〉 and [LRPgg
a (qm)] ∼−→ 〈LRPa(qm)〉.

Proof. By Lemma 3.2.16, every G(Q)-conjugacy class in LRPsa contains an ele-
ment of LRPgg

sa . Hence v restricts to a bijection [LRPgg
sa ] ∼−→ 〈LRPsa〉. Since

[LRPgg
a (qm)] is by definition v−1(〈LRPa(qm)〉), we see that v also restricts to a

bijection [LRPgg
a (qm)] ∼−→ 〈LRPa(qm)〉. �

3.2.18. Let (φ, ε) ∈ LRPgg
sa . As I0

φ,ε is a Q-subgroup of Iφ, we use the canonical
inner transfer datum from Iφ to G as in §2.6.11 to define X∞

G (Q, I0
φ,ε); see §1.2.5.

Proposition 3.2.19. Let (φ, ε) ∈ LRPgg
sa . Then η−1

φ,ε([LRP
gg
sa ]) = X∞

G (Q, I0
φ,ε).

Proof. By Proposition 2.6.12, an element β ∈ H1(Q, I0
φ,ε) lies in η−1

φ,ε([LRP
gg
sa ]) if

and only if the image of β in H1(Q, Iφ) lies in X∞
G (Q, Iφ). Thus we only need to

check that the map H1(R, I0
φ,ε) → H1(R, Iφ) has trivial kernel. Note that (I0

φ,ε)R
and (Iφ)R are both reductive groups over R, and their centers both contain ZG,R.
The desired statement then follows from Lemma 2.6.7 and [Kis17, Lem. 4.4.5]. �

Proposition 3.2.20. Let x ∈ [LRPgg
a (qm)], and let e = scc(x) ∈ ΣR-ell(G). Then

Cx ∩ [LRPgg
a (qm)] = scc−1(e) ∩ [LRPgg

a (qm)].
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Proof. We only need to show the containment scc−1(e) ∩ [LRPgg
a (qm)] ⊂ Cx. Let

y ∈ scc−1(e) ∩ [LRPgg
a (qm)] be arbitrary. Write x = [φ0, ε0], y = [φ1, ε1], for some

(φi, εi) ∈ LRPgg
a (qm), i = 0, 1. Since scc(x) = scc(y), there exists g ∈ G(Q) such

that

Int(g)ε1 = ε0,(3.2.20.1)
gτg−1 ∈ G0

ε0(Q), ∀τ ∈ Γ.(3.2.20.2)

Let φ′ = Int(g) ◦ φ1. By (3.2.20.1), we have (φ′, ε0) ∈ LRP, and (φ′, ε0) is
G(Q)-conjugate to (φ1, ε1). By Corollary 3.1.10 applied to the relation (3.2.20.1),
we have φ′∆ = φ∆

0 . By Lemma 2.1.16 we have φ′ = aφ0 for some a ∈ Z1(Q, Iφ0).
For i = 0, 1, we write φi(qτ ) = g

(i)
τ o τ. Then

φ′(qτ ) = aτg
(0)
τ o τ.(3.2.20.3)

By the definition of φ′ we have

φ′(qτ ) = Int(g) ◦ φ1(qτ ) = g(g(1)
τ o τ)g−1 = gg(1)

τ
τg−1 o τ.(3.2.20.4)

Comparing (3.2.20.3) and (3.2.20.4), we have

aτ = gg(1)
τ

τg−1(g(0)
τ )−1 = Int(g)(g(1)

τ ) · (gτg−1) · (g(0)
τ )−1.(3.2.20.5)

Since (φi, εi) is gg, we have g(i)
τ ∈ G0

εi(Q). Hence Int(g)(g(1)
τ ) and (g(0)

τ )−1 both
lie in G0

ε0(Q). Thus by (3.2.20.2) and (3.2.20.5), we have aτ ∈ G0
ε0(Q). By the

discussion in §3.2.14, we have (G0
ε0)Q = (I0

φ0,ε0
)Q, since (φ0, ε0) ∈ LRPgg

a (qm).
Hence a = (aτ ) is a cocycle in Z1(Q, I0

φ0,ε0
). It follows from Lemma 3.2.5 that the

pair (φ′, ε0) = (aφ0, ε0) is gg. Since this pair is G(Q)-conjugate to (φ1, ε1), we have
y = [φ′, ε0] = [aφ0, ε0] ∈ im(ηφ0,ε0) = Cx. �

3.3. Admissible morphisms and maximal tori. We first explain a result which
considerably strengthens Corollary 2.6.10.

Definition 3.3.1. By a special point datum for (G,X), we mean a triple (T, i, h),
where T is a torus over Q, i : T → G is an injective Q-homomorphism whose image
is a maximal torus in G, and h : S→ TR is an R-homomorphism such that i◦h ∈ X.
We denote the set of special point data by SPD(G,X).

Definition 3.3.2. Let (T, i, h) ∈ SPD(G,X). Let µh ∈ X∗(T ) be the Hodge
cocharacter associated with h. We denote by φ(T, i, h) the composite morphism

Q
ΨT,µh−−−−→ GT

i−→ GG

in pro-Grb(Q/Q). (See §2.2.9 for ΨT,µh .)

Theorem 3.3.3 ([Kis17, Lem. 3.5.8, Thm. 3.5.11]). A morphism φ : Q → GG is
admissible if and only if there exists (T, i, h) ∈ SPD(G,X) such that φ is conjugate
to φ(T, i, h).

Remark 3.3.4. Let (T, i, h) ∈ SPD(G,X), and let φ = φ(T, i, h). Then i(TQ)
is contained in Iφ,Q (when they are both viewed as subgroups of GQ), and the
inclusion TQ ↪→ Iφ,Q is defined over Q. In other words, T is naturally a G-rational
maximal torus in Iφ. By Lemma 2.6.6, φ is gg. With this observation, we see that
Theorem 3.3.3 strengthens Corollary 2.6.10.
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3.3.5. Our next goal is to prove a more precise version of the “only if” direction
in Theorem 3.3.3. We introduce some general notation. For a Qp-torus T and a
cocharacter λ ∈ X∗(T ), we write λ̄T , or simply λ̄, for

[L : Qp]−1
∑

τ∈Gal(L/Qp)

τ(λ) ∈ X∗(T )⊗Q,

where L/Qp is any finite Galois extension over which λ is defined. For an unramified
reductive group M over Qp, we write

wM : M(Q̆p) −→ π1(M)Γp,0 = π1(M)

for the Kottwitz homomorphism associated with the p-adic valuation on Q̆p, as in
§1.3 and §1.4.2. (Here Γp,0 acts trivially on π1(M) since M is unramified over Qp.)

We fix µ ∈ �GX as in §2.4.1. For each b ∈ G(Q̆p), we define X−µ(b) as in §2.2.7.

Lemma 3.3.6. Let T ⊂ GQp be a maximal torus over Qp. Let b ∈ T (Q̆p) ⊂ G(Q̆p)
be such that X−µ(b) is non-empty. Then there exists µT ∈ X∗(T ) which is G(Qp)-
conjugate to µ and such that νb is equal to −µT T as elements of X∗(T )⊗Q.

Proof. This is proved by Langlands–Rapoport, when they prove [LR87, Lem. 5.11].
We recall the argument with the suitable changes in notation.

First note that νb is a fractional cocharacter of T defined over Qp (as this holds
for arbitrary b ∈ T (Q̆p)). Let M be the centralizer in GQp of the maximal Qp-split
subtorus of T . Then M is a Qp-Levi subgroup of GQp containing T , and νb factors
through the center of M . Up to conjugating T and b by an element of G(Qp), we
may assume that M contains a maximal torus T ′ that is the centralizer of (the
generic fiber of) a maximal Zp-split torus in G. In particular, there is a reductive
model M of M over Zp such that the embedding M ↪→ GQp extends to M ↪→ G.
Without loss of generality, we may also assume that µ is a cocharacter of T ′ defined
over Ep = Qpr .

Let Ω (resp. ΩM ) denote the absolute Weyl group of G (resp. M). The Cartan
decompositions give rise to maps

cG : G(Q̆p) −→ G(Z̆p)\G(Q̆p)/G(Z̆p)
∼−→ Ω\X∗(T ′),

cM : M(Q̆p) −→M(Z̆p)\M(Q̆p)/M(Z̆p)
∼−→ ΩM\X∗(T ′).

These maps lift the Kottwitz homomorphisms wG and wM respectively, cf. Corollary
1.3.15.

Now by the assumption that X−µ(b) 6= ∅, there exists x ∈ G(Q̆p) such that
cG(x−1bσ(x)) = Ω · (−µ).

From this, it is shown on p. 178 of [LR87] that there exists m ∈M(Q̆p) such that
cM(m−1bσ(m)) = ΩM · (−µ).(3.3.6.1)

(The argument uses the Iwasawa decomposition and the fact that µ is minuscule,
cf. also the proof of [Kis17, Lem. 2.2.2].)

We take the desired µT to be any element of X∗(T ) that is conjugate to µ ∈
X∗(T ′) by M(Qp). It remains to check that νb = −µT T . Note that µT T factors
through the maximal Qp-split subtorus of T , and is therefore central inM . We have
seen that νb is also central in M . Hence in order to check νb = −µT T , it suffices
to check that νb and −µT T have equal image in π1(M)Q := π1(M)⊗Z Q. Without
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loss of generality, we may replace b by a σ-conjugate in T (Q̆p), and assume that b
is decent in T (Q̆p) (see §1.4.1). Then for sufficiently divisible n we have

bσ(b) · · ·σn−1(b) = pnνb .

For each λ ∈ X∗(T ′)⊗Q, we denote its image in π1(M)Q by [λ]. We compute

[nνb] = wM (pnνb) = wM (bσ(b) · · ·σn−1(b))
= wM (m)− wM (σn(m))− [µ+ σ(µ) + · · ·+ σn−1(µ)],

where the last equality follows from (3.3.6.1). (Note that the action of σ on X∗(T ′)
is indeed well defined as T ′ is unramified.) We can choose n divisible enough such
that the coset mM(Z̆p) ∈ M(Q̆p)/M(Z̆p) is fixed by σn (see Lemma 1.6.8), and
such that T ′ splits over Qpn . Then the above relation becomes

[νb] = −[µ̄T
′
].

Finally, [µ̄T ′ ] is equal to the image of µT T in π1(M)Q. This is because µ and µT
have the same image in π1(M), and the Galois actions on both X∗(T ) and X∗(T ′)
are compatible with that on π1(M). Thus we conclude that νb and −µT T have the
same image in π1(M)Q, as desired. �

Lemma 3.3.7. Let T ⊂ G be a maximal torus over Q such that TR is elliptic in
GR. Let i denote the inclusion T ↪→ G. Let µT ∈ X∗(T ) be such that i ◦ µT lies in
�X(Q). Then there exist u ∈ G(Q) and an R-homomorphism h : S→ TR, satisfying
the following conditions.

(i) i′ := Int(u) ◦ i : TQ → GQ is defined over Q.
(ii) µT = µh.
(iii) i′ ◦ h ∈ X.

Proof. This is proved by Langlands–Rapoport, when they prove [LR87, Lem. 5.12].
In fact, in that lemma µT is assumed to be of the form ωµh0 , where ω is an element
of the absolute Weyl group of (G,T ), and h0 is an R-homomorphism S→ TR such
that i ◦ h0 ∈ X. We explain why our hypothesis implies that setting. Since TR
is elliptic in GR, there indeed exists an R-homomorphism h0 : S → TR such that
i ◦ h0 ∈ X. Then i ◦ µh0 and i ◦ µT are conjugate by G(C), and it follows that
µ = ωµh0 for some ω in the absolute Weyl group. �

3.3.8. Let φ : Q → GG be an admissible morphism. Let T ⊂ Iφ be a maximal
torus over Q. Since (φ(p) ◦ ζp)∆ is a central fractional cocharacter of Iφ,Qp , it can
be viewed as an element of X∗(T ) ⊗ Q. We say that a cocharacter µT ∈ X∗(T ) is
φ-admissible, if the composition Gm,Q

µT−−→ TQ ↪→ Iφ,Q ↪→ GQ is a cocharacter in
�X(Q), and if µT TQp = (φ(p) ◦ ζp)∆ as elements of X∗(T )⊗Q.

Theorem 3.3.9. Let φ : Q → GG be an admissible morphism, and let T ⊂ Iφ be
a maximal torus over Q. The following statements hold.

(i) There exists µT ∈ X∗(T ) that is φ-admissible in the sense of §3.3.8.
(ii) Let µT ∈ X∗(T ) be as in (i). Then there exists a special point datum of

the form (T, i, h) ∈ SPD(G,X), satisfying the following conditions:
(a) We have µT = µh.
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(b) There exists g ∈ G(Q) such that Int(g) ◦ φ = φ(T, i, h), and such that
the embedding i : T → G equals the composition

TQ ↪→ Iφ,Q
Int(g)−−−−→ Iφ(T,i,h),Q ↪→ GQ.

(Here the first two maps are defined over Q, and the second map is
an isomorphism.)

Proof. This essentially follows from the proof of [LR87, Satz 5.3]. We reproduce
the argument for the convenience of the reader, and we remove the assumption in
loc. cit. that Gder is simply connected.

(i) By Proposition 2.6.9, we may assume that T is a G-rational maximal torus
in Iφ. By Lemma 2.6.6, φ factors through GT ⊂ GG. Hence the G(Qur

p )-torsor
UR(φ(p) ◦ ζp) contains elements of T (Qp). We choose t ∈ UR(φ(p) ◦ ζp) ∩ T (Qp),
and let b = bInt(t−1)◦φ(p)◦ζp ∈ G(Qur

p ) (see Definition 2.2.5). Then b ∈ T (Qur
p ).

Since φ is admissible, we have X−µ(b) 6= ∅ for µ ∈ �GX . Hence by Lemma 3.3.6 we
find µT ∈ X∗(T ) such that µT TQp = −νb. Finally, by Proposition 2.2.6 (i), we have
−νb = (Int(t)−1 ◦ φ(p) ◦ ζp)∆, which equals (φ(p) ◦ ζp)∆. Hence µT is φ-admissible.

(ii) Again by Proposition 2.6.9, we may assume that T is a G-rational maximal
torus in Iφ. We denote by i0 the inclusion TQ ↪→ Iφ,Q ↪→ GQ, which is defined
over Q. By Lemma 2.6.7, i0(TR) is an elliptic maximal torus in GR. Applying
Lemma 3.3.7, we find u ∈ G(Q) and an R-homomorphism h : S → TR such that
Int(u) ◦ i0 : T → G is still defined over Q, such that µT = µh, and such that
Int(u) ◦ i0 ◦ h ∈ X.

We may replace φ and i0 by Int(u) ◦ φ and Int(u) ◦ i0 respectively, and assume
that u = 1. This does not change the property that T is G-rational, and we now
have (T, i0, h) ∈ SPD(G,X) such that µT = µh.

By Lemma 2.6.6, we may factorize φ uniquely as φ = i0 ◦ φT , where φT is a
morphism Q→ GT . Analogously, φ(T, i0, h) factors as i0 ◦ΨT,µT by its definition.
We claim that φ∆

T = Ψ∆
T,µT

, or equivalently φ∆ = φ(T, i0, h)∆. In fact, the φ-
admissibility of µT implies that

(φT (p) ◦ ζp)∆ = (ΨT,µT (p) ◦ ζp)∆(3.3.9.1)

(see [Kis17, (3.1.11)]). Also, since φ and φ(T, i0, h) are both admissible (the former
by assumption and the latter by the “if” direction in Theorem 3.3.3), we have

(φT (∞) ◦ ζ∞)∆ = (ΨT,µT (∞) ◦ ζ∞)∆(3.3.9.2)

by Lemma 3.1.9. Since φ∆
T and Ψ∆

T,µT
are both homomorphisms Q∆ → TQ defined

over Q (for instance by Lemma 2.6.6), the above relations (3.3.9.1) and (3.3.9.2)
imply that φ∆

T = Ψ∆
T,µT

as desired (cf. the discussion on the tori QL in the proof of
Corollary 3.1.10).

By the claim above and by Lemma 2.1.16, we have φT = aΨT,µT , for some
element a ∈ Z1(Q, IΨT,µT ) = Z1(Q, T ). By the admissibility of φ and φ(T, i0, h)
and by Proposition 2.6.12, the image of a under

Z1(Q, T )→ H1(Q, T )→ H1(Q, Iφ(T,i0,h))

lies in X∞
G (Q, Iφ(T,i0,h)). By Lemma 2.6.7 and [Kis17, Lem. 4.4.5], the map

H1(R, T ) → H1(R, Iφ(T,i0,h)) has trivial kernel. Thus the class of a in H1(Q, T )
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lies in the kernel of the map X∞(Q, T ) →X∞(Q, G) induced by i0 : T → G. It
follows that there exists g ∈ G(Q), satisfying:

i0(aτ ) = g−1τg, ∀τ ∈ Γ;(3.3.9.3)
g ∈ G(R) · i0(T (C)) ⊂ G(C).(3.3.9.4)

For each τ ∈ Γ, we write φ(T, i0, h)(qτ ) = gτ o τ , and φ(qτ ) = g′τ o τ . (Here qτ ∈ Q
is a lift of τ , as always). Because i0(aτ ) and gτ both lie in i0(T (Q)) and commute
with each other, we have g′τ = i0(aτ )gτ = gτ i0(aτ ) = gτg

−1τg. Then we have
(Int(g) ◦ φ)(qτ ) = gg′τ

τg−1 o τ = ggτg
−1.(3.3.9.5)

Now let i := Int(g) ◦ i0. By (3.3.9.3), i is a Q-embedding T → G. By (3.3.9.4),
i ◦ h ∈ X. In particular, (T, i, h) ∈ SPD(G,X). By (3.3.9.5), we have (Int(g) ◦
φ)(qτ ) = φ(T, i, h)(qτ ). Since we also have (Int(g) ◦ φ)∆ = φ(T, i, h)∆ (because
φ∆
T = Ψ∆

T,µT
), we have Int(g) ◦ φ = φ(T, i, h). Thus (T, i, h) and g are the desired

elements. �

3.4. Admissible stable conjugacy classes. The goal of this subsection is to
construct certain elements of the image of [LRPgg

a (qm)] ⊂ [LRPgg] under the map
scc : [LRPgg] → ΣR-ell(G) in Definition 3.2.12. For M a reductive group over Qp,
we write wM : M(Q̆p)→ π1(M)Γp,0 for the Kottwitz homomorphism, as in §1.4.2.
For each k ∈ Z≥1, we denote by B(k)(M) the set of σk-conjugacy classes in M(Q̆p).

Lemma 3.4.1. Let M be an unramified reductive group over Qp. Let x ∈ M(Q̆p)
be in the kernel of wM . For all k ∈ Z≥1, the class of x in B(k)(M) is in the image
of the natural map B(k)(Msc)→ B(k)(M).
Proof. Write τ := σk. We first assume thatMder = Msc. ConsiderMab = M/Mder,
which is an unramified torus over Qp. The image x̄ of x inMab(Q̆p) is in the kernel
of wMab , and this kernel is the unique parahoric subgroup of Mab(Q̆p) (which
is hyperspecial in this case). By Greenberg’s theorem [Gre63, Prop. 3], we have
x̄ = c̄ · τ c̄−1 for some c̄ ∈ Mab(Q̆p). Let c ∈ M(Q̆p) be a lift of c̄, which exists
because H1(Q̆p,Mder) is trivial by Steinberg’s theorem. Then c−1xτ c ∈Mder(Q̆p),
which means that the class of x in B(k)(M) comes from B(k)(Mder) = B(k)(Msc).

In the general case, as in [Kot84a, §3] we take a z-extension
1 −→ Z −→ H −→M −→ 1

over Qp, where H is an unramified reductive group with simply connected derived
subgroup, and Z is an unramified induced torus contained in the center of H. Then
we have a commutative diagram with exact rows:

1 // Z(Q̆p)

wZ

��

// H(Q̆p) //

wH

��

M(Q̆p) //

wM

��

1

1 // π1(Z) // π1(H) // π1(M) // 1

By [Kot97, §7], the vertical arrows in the above diagram are surjective. Since
wM (x) = 0, there exists h ∈ ker(wH) ⊂ H(Q̆p) that maps to x ∈M(Q̆p). Applying
the first part of the proof to H, we know that the class of h in B(k)(H) comes
from B(k)(Hsc). But the composite map Hsc → H →M factors through Msc. The
lemma follows. �
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Lemma 3.4.2. Let M be an unramified reductive group over Qp. Let T ⊂ M be
an elliptic maximal torus. Let x ∈ T (Qp) be such that wM (x) = 0 ∈ π1(M). Then
some integer power of x lies in a compact subgroup of T (Qp).
Proof. Let T ◦ be the connected Néron model of T over Zp. Then the kernel of
wT : T (Q̆p) → X∗(T )Γp,0 is T ◦(Z̆p); see [Rap05, Rmk. 2.2 (iii)]. If wT (xk) = 0
for some integer k, then xk lies in T ◦(Z̆p) ∩ T (Qp) = T ◦(Zp), which is a compact
subgroup of T (Qp). Hence it remains to show that wT (xk) = 0 for some k. We
know that wT maps T (Qp) ⊂ T (Q̆p) into the group of σ-invariants (X∗(T )Γp,0)σ.
It remains to show that the natural map

(X∗(T )Γp,0)σ ↪→ X∗(T )Γp,0 → π1(M)Γp,0 = π1(M)
has torsion kernel. For this, let A be the maximal Qp-split subtorus of ZM . Since
T is elliptic in M , A is also the maximal Qp-split subtorus of T . In particular
X∗(A) is identified with X∗(T )Γp . The inclusion map X∗(A) ∼= X∗(T )Γp ↪→ X∗(T )
induces an isomorphism

X∗(A)⊗Q ∼−→ (X∗(T )Γp,0)σ ⊗Q.
(The inverse map is induced by taking average over Γp,0-orbits in X∗(T ).) Thus we
reduce to showing that the natural map X∗(A)⊗Q→ π1(M)⊗Q is injective, but
this is clear. �

Definition 3.4.3. For ε ∈ G(Qp)ss, we letM(ε) be the Levi subgroup of GQp that is
the centralizer of the maximal Qp-split subtorus of the center of G0

ε . (Equivalently,
M(ε) is the smallest Levi subgroup of GQp containing G0

Qp,ε.)

Definition 3.4.4. Let ε ∈ G(Qp)ss, and let M := M(ε). Let n = mr as in §3.1.5.
We say that ε is pn-admissible, if there exists a cocharacter µM of MQpn satisfying
the following conditions.

• µM ∈ �X(Qpn). (Here �X(Qpn) is well defined since Ep = Qpr ⊂ Qpn .)
• We have

wM (ε) = −
n−1∑
i=0

σi[µM ]M ∈ π1(M),(3.4.4.1)

where [µM ]M denotes the image of µM in π1(M).
The following lemma generalizes [LR87, Lem. 5.17] to the case where Gder is not

necessarily simply connected.
Lemma 3.4.5. The set of pn-admissible elements in G(Qp)ss is invariant under
stable conjugacy over Qp.
Proof. Evidently this set is invariant under G(Qp)-conjugacy. Now let ε, ε′ ∈
G(Qp)ss be stably conjugate and suppose that ε is pn-admissible. We show that
ε′ is pn-admissible. Let M = M(ε). Since M is a Levi subgroup of GQp , the in-
clusion M ⊂ GQp induces an injection H1(Qp,M) → H1(Qp, G), cf. [Hai09, §4.1].
Also note that G0

ε = M0
ε . Hence we have a natural bijection D(M0

ε ,M ;Qp)
∼−→

D(G0
ε , G;Qp). It follows that we have a natural surjection from the set of M(Qp)-

conjugacy classes in the stable conjugacy class of ε in M onto the set of G(Qp)-
conjugacy classes in the stable conjugacy class of ε in GQp .20 Conjugating ε′ by an

20Recall that these two sets are mapped onto by D(M0
ε ,M ;Qp) and D(G0

ε , G;Qp) respectively.
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element of G(Qp) if necessary, we may assume that ε′ lies in M(Qp), and that ε′ is
stably conjugate to ε inside M . Under these assumptions, we have M = M(ε′). To
check that ε′ is pn-admissible, it suffices to show that wM (ε) = wM (ε′). For this,
note that since ε and ε′ are stably conjugate in M , they are conjugate in M(Q̆p)
by Steinberg’s theorem. The desired statement follows from the fact that wM is a
group homomorphism from M(Q̆p) to an abelian group. �

By Lemma 3.4.5, we have a well-defined notion of pn-admissibility for stable con-
jugacy classes in G(Qp)ss. The following result is a generalization of one direction
in [LR87, Satz 5.21].

Theorem 3.4.6. Let ε ∈ G(Q)ss represent a stable conjugacy class in ΣR-ell(G)
whose localization over Qp is pn-admissible. Then the stable conjugacy class of ε
lies in the image of [LRPgg

a (qm)] under the map scc : [LRPgg]→ ΣR-ell(G). (Here
n = mr and pn = qm.)

Proof. By assumption there exists an R-elliptic maximal torus in (G0
ε)R. By a

theorem of Kneser [Kne65], there exists a Qp-elliptic maximal torus in (G0
ε)Qp . It

then follows from [LR87, Lem. 5.10] that there exists a maximal torus T in G0
ε such

that TQv is elliptic in (G0
ε)Qv for v =∞ and p.

Let M = M(ε) (which is defined over Qp) be as in Definition 3.4.3, and let µM
be as in Definition 3.4.4. Then TQp is a maximal torus in M . Let µT ∈ X∗(T ) be
a conjugate of µM under M(Qp). By Lemma 3.3.7, we find u ∈ G(Q) such that
Int(u) : T → G is defined over Q, and such that Int(u) ◦ µT = µh for some h ∈ X.
Note that ε is stably conjugate to Int(u)(ε), because u−1τu ∈ T (Q) ⊂ G0

ε(Q)
for all τ ∈ Γ. Hence we may replace ε, T,M by Int(u)(ε), Int(u)(T ), Int(u)(M)
respectively, and assume that µT = µh for some h ∈ X (which necessarily factors
through TR).

We denote the inclusion T ↪→ G by i. Then we have (T, i, h) ∈ SPD(G,X). Let
φ = φ(T, i, h) (Definition 3.3.2). Then ε ∈ T (Q) ⊂ Iφ(Q), and we have (φ, ε) ∈
LRPsa by Theorem 3.3.3. Moreover, by Remark 3.3.4 we have (φ, ε) ∈ LRPgg

sa . It
remains to show that (φ, ε) ∈ LRPgg

a (qm).
SinceM is an unramified reductive group over Qp, it contains an unramified and

elliptic maximal torus T ′ (see [LR87, p. 171] or [DeB06, §2.4]). Let µ′ ∈ X∗(T ′) be
a conjugate of µT and µM under M(Qp). Let b′ = µ′(p−1) ∈ T ′(Qur

p ). Then one
immediately checks the following properties:

(i) The element b′ is decent in T ′(Q̆p).
(ii) We have wT ′(b′) = −µ′ ∈ X∗(T ′). In particular, we have

wM (b′) = −[µM ]M ∈ π1(M).(3.4.6.1)

Since φ = φ(T, i, h) = i ◦ ΨT,µT , the G(Qur
p )-torsor UR(φ(p) ◦ ζp) contains the

T (Qur
p )-torsor UR(ΨT,µT (p)◦ ζp). Let (b0, ε0) ∈ clsp(φ, ε) be the element associated

with some g ∈ UR(ΨT,µT (p) ◦ ζp) (see §3.1.4). Then ε0 = ε, and b0 ∈ T (Qur
p ).

Moreover, by Lemma 2.2.10, the element κT (b0) ∈ X∗(T )Γp equals the image of
−µT .

Since TQp and T ′ are both elliptic in M , we know that b0 ∈ T (Q̆p) and b′ ∈
T ′(Q̆p) are both basic in M(Q̆p). By what we have seen about wT ′(b′) and κT (b0),
we have κM (b′) = κM (b0) ∈ π1(M)Γp . It follows that b′ and b0 represent the
same (basic) class in B(M) (see [Kot85, Prop. 5.6]). Since b0 and b′ are decent,
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there exists s ∈ M(Qur
p ) such that b′ = sb0σ(s)−1 (see §1.4.1). We then have

(b′, sεs−1) ∈ clsp(φ, ε).
We write ε′ for sεs−1, which is an element of M(Qur

p ). It remains to show that
ε′−1(b′ o σ)n has a fixed point in G(Q̆p)/G(Z̆p). For each k ∈ Z≥1, let

Uk := (ε′)−k · b′ · σ(b′) · · ·σkn−1(b′) ∈M(Qur
p ),

so that
(ε′)−k(b′ o σ)kn = Uk o σkn.(3.4.6.2)

Since ε′ is M(Qur
p )-conjugate to ε, we have wM (ε′) = wM (ε). Hence wM (Uk) = 0

by (3.4.4.1) and (3.4.6.1). By Lemma 3.4.1, the class of U1 in B(n)(M) comes from
B(n)(Msc). We claim that the class of U1 in B(n)(M) is basic with trivial Newton
point. Given the claim, we use the fact that the only basic class in B(n)(Msc) is the
trivial class ([Kot85, Prop. 5.4]) to deduce that U1 = cσn(c−1) for some c ∈M(Q̆p).
It follows that ε′−1(b′ o σ)n = U1 o σn has a fixed point in G(Q̆p)/G(Z̆p), namely
cG(Z̆p). The proof of the theorem will then be finished.

To prove the claim, it suffices to find t ∈ Z≥1 and e ∈M(Q̆p) such that

U1 · σn(U1) · σ2n(U1) · · ·σ(t−1)n(U1) = e · σtn(e−1).(3.4.6.3)

Since ε′ commutes with b′oσ, it easily follows from (3.4.6.2) that the left hand side
of (3.4.6.3) is equal to Ut. Fix an arbitrary reductive modelM of M over Zp. By
Greenberg’s theorem [Gre63, Prop. 3] (cf. [Kot84a, Lem. 1.4.9]), in order to find
t, e such that Ut = e · σtn(e−1) it suffices to find t such that Ut ∈M(Z̆p).

Now for each k ∈ Z≥1 we have

Uk = (ε′)−kpλk ,(3.4.6.4)
where

λk := −
kn−1∑
j=0

σj(µ′).

Since T ′ is unramified, for sufficiently divisible k we have σkn(µ′) = µ′. In this case
λk is defined over Qp, and in particular it is central in M by the ellipticity of T ′.
Hence for sufficiently divisible k we have

s−1Uks = ε−kpλk ∈ T (Qp).
Since wM (s−1Uks) = wM (Uk) = 0, and since TQp is elliptic in M , we apply Lemma
3.4.2 to conclude that some power of s−1Uks lies in a compact subgroup of T (Qp).
In particular, for any given neighborhood N of 1 in T (Qp), all sufficiently divisible
powers of s−1Uks lie in N . Now observe that when λk is defined over Qp, we have
λkl = l · λk for all l ∈ Z≥1, and therefore

s−1Ukls = (s−1Uks)l, ∀l ∈ Z≥1.

We conclude that for N as above, we have s−1Uks ∈ N for all sufficiently divisible
k. If we take N to be (s−1M(Z̆p)s) ∩ T (Qp), then we see that Uk ∈M(Z̆p) for all
sufficiently divisible k, as desired. �

For a quasi-split reductive group M over Qp, recall that the degree n norm is a
map from the set of σ-conjugacy classes in M(Qpn) to the set of stable conjugacy
classes in M(Qp); see [Kot82, §5].
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Lemma 3.4.7. Let ε ∈ G(Qp)ss, and let M = M(ε). Assume that there exists
a cocharacter µM of MQpn satisfying the first condition in Definition 3.4.4 and
such that ε is a degree n norm with respect to M of some δ ∈ M(Qpn) satisfying
wM (δ) = −[µM ]M . Then ε is pn-admissible.

Proof. It suffices to check (3.4.4.1), for the given µM . First assume that Mder is
simply connected. Then we have π1(M) = π1(Mab). Let ε̄ and δ̄ be the images of ε
and δ inMab(Qp) andMab(Qpn) respectively. Then we have ε̄ = δ̄σ(δ̄) · · ·σn−1(δ̄).
It follows that

wM (ε) = wMab(ε̄) =
n−1∑
i=0

σi(wMab(δ̄)) =
n−1∑
i=0

σi(wM (δ)),(3.4.7.1)

which gives the desired (3.4.4.1).
In the general case, we take an unramified z-extension 1 → Z → H → M → 1

as in the proof of Lemma 3.4.1. Let δ̃ ∈ H(Qpn) be a lift of δ, and let ε̃ ∈ H(Qp)
be a degree n norm of δ̃. By the identity (3.4.7.1) applied to H, ε̃, δ̃, we have

wH(ε̃) =
n−1∑
i=0

σi(wH(δ̃)).(3.4.7.2)

Now the image of ε̃ inM(Qp) is stably conjugate to ε over Qp, and thereforeM(Q̆p)-
conjugate to ε. Hence the image of wH(ε̃) ∈ π1(H) under π1(H) → π1(M) equals
wM (ε). Obviously the image of wH(δ̃) ∈ π1(H) under π1(H) → π1(M) equals
wM (δ). Hence from (3.4.7.2) we get

wM (ε) =
n−1∑
i=0

σi(wM (δ)),

which gives the desired (3.4.4.1). �

In the next proposition, let the function φn : G(Qpn) → {0, 1} be as in §1.8.2.
Thus φn is the characteristic function of the double coset G(Zpn)p−µG(Zpn) for
arbitrary µ ∈ �GX , in the notation of §2.4.1.

Proposition 3.4.8. Let ε ∈ G(Q)ss represent a stable conjugacy class in ΣR-ell(G).
Assume that ε ∈ G(Qp) is a degree n norm of some δ ∈ G(Qpn) whose σ-conjugacy
class in G(Qpn) intersects non-trivially with the support of φn. Then the stable
conjugacy class of ε is in the image of [LRPgg

a (qm)] under scc.

Proof. Let ε′ be a G(Qp)-conjugate of ε such that M(ε′) contains the generic fiber
of a maximal Zp-split torus A in G. By Theorem 3.4.6, we only need to check that
ε′ is pn-admissible.

Write M for M(ε′). Since M ⊃ AQp , we have a reductive model M of M over
Zp such that the embedding M ↪→ GQp extends to M ↪→ G. Let S be a maximal
Zpn -split torus in GZpn such that S contains AZpn . In particular, S := SQpn is
a maximal Qpn -split torus in GQpn , and it is contained in MQpn . There exists
µ′ ∈ X∗(S) that is G(Zpn)-conjugate to some µ ∈ �GX . We fix such a µ′. Note that
φn is the characteristic function of G(Zpn)p−µ′G(Zpn).

Denote by sM (φn) the function in the unramified Hecke algebra ofM(Qpn) with
respect toM(Zpn), obtained from φn via the partial Satake transform (a.k.a. nor-
malized constant term). Now [Hai09, Lem. 4.2.1] implies that there exists δM ∈
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M(Qpn) which is σ-conjugate to δ in G(Qpn) and whose degree n norm with respect
to M is the stable conjugacy class of ε in M(Qp). By the descent formula [Hai09,
(4.4.4)], the σ-conjugacy class of δM in M(Qpn) intersects non-trivially with the
support of sM (φn). On the other hand, one deduces from the computation of Satake
transform on p. 297 of [Kot84a] that sM (φn) is a non-negative linear combination
of the characteristic functions of the double cosetsM(Zpn)p−uµ′M(Zpn), where u
runs over the Qpn -rational Weyl group of M in G (acting on S). Hence we may
assume that δM lies inM(Zpn)p−uµ′M(Zpn), for some u as above. Let µM := uµ′.
Then µM satisfies the first condition in Definition 3.4.4, and wM (δM ) = −[µM ]M .
Since the stable conjugacy class of ε′ in M(Qp) is the degree n norm of δM with
respect to M , we apply Lemma 3.4.7 to conclude that ε′ is pn-admissible. �

3.5. Constructing Kottwitz parameters.

3.5.1. Let (φ, ε) ∈ LRPgg
sa , and let τ ∈ Iad

φ (Apf ) be an arbitrary element. Our first
goal is to assign to the triple (φ, ε, τ) a Kottwitz parameter (see Definition 1.6.4)

t(φ, ε, τ) ∈ KP.

Let γ0 := ε, and I0 := G0
γ0
. The Kottwitz parameter t(φ, ε, τ) shall be of the

form (γ0, a, [b]). Note that by the first condition in Definition 3.2.1, γ0 is indeed a
semi-simple and R-elliptic element of G(Q), meeting the requirement in Definition
1.6.4.

We construct a ∈ D(I0, G;Apf ). Fix a lift τ̃ ∈ Iφ(Āpf ) of τ , and let ζp,∞φ : Γ →
G(Āpf ) be the cocycle as in §2.4.6. Since (φ, ε) is gg, ζp,∞φ takes values in I0(Āpf ).
For each ρ ∈ Γ, let tρ := τ̃−1 · ρτ̃ ∈ ZIφ(Āpf ). (Here ρτ̃ is defined with respect to
the Q-structure of Iφ.) Then (tρ)ρ is a continuous cocycle Γ→ ZIφ(Āpf ). Consider
the map

A : Γ −→ G(Āpf )
ρ 7−→ tρζ

p,∞
φ (ρ).

Using the fact that the natural map ZIφ → G is defined over Q and factors through
I0, we know that A is a continuous cocycle Γ → I0(Āpf ). We claim that A has
trivial image in H1(Γ, G(Āpf )). In fact, if we denote by τ̃G the image of τ̃ under the
canonical embedding Iφ(Āf )→ G(Āf ), then

tρ = τ̃−1
G · ζp,∞φ (ρ) · ρτ̃G · ζp,∞φ (ρ)−1.

(Here ρτ̃G is defined with respect to the Q-structure of G.) Hence
A(ρ) = τ̃−1

G · ζp,∞φ (ρ) · ρτ̃G, ∀ρ ∈ Γ.(3.5.1.1)

Since φ is admissible, the cocycle ζp,∞φ has trivial image in H1(Γ, G(Āpf )). It follows
from (3.5.1.1) that A also has trivial image in H1(Γ, G(Āpf )). Now from (3.5.1.1)
it is clear that the class of A in H1(Apf , I0) is independent of the choice of τ̃ . We
define the desired element a ∈ D(I0, G;Apf ) to be the class of A.

Next we construct [b] ∈ B(I0,Qp). By §3.2.3, we may view φ as a morphism
φI0 : Q → GI0 . We choose g ∈ UR(φI0(p) ◦ ζp) and let b = bInt(g−1)◦φI0 (p)◦ζp ∈
I0(Qur

p ); see Definition 2.2.5. By Lemma 2.2.4 (i), the class [b] of b in B(I0,Qp) is
independent of choices. We now check condition KP0 in Definition 1.6.4 for [b]. By
the admissibility of φ, we have Xp(φ) 6= ∅. Comparing §2.2.7 and §2.4.1, we have
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Xp(φ) ∼= X−µ(b) for µ ∈ �GX , and so X−µ(b) 6= ∅. It immediately follows that b and
−µ have the same image in π1(G)Γp (cf. Corollary 1.3.15). Thus KP0 is satisfied
by [b]. This finishes the construction of t(φ, ε, τ) ∈ KP.

Proposition 3.5.2. Let (φ, ε) ∈ LRPgg
sa , and let τ ∈ Iad

φ (Apf ). Let

(γ0, a, [b]) := t(φ, ε, 1),
(γ0, a

′, [b′]) := t(φ, ε, τ).

Then [b′] = [b]. The difference

a′ − a ∈ D(I0, G;Apf ) ∼= E(I0, G;Apf )

is equal to the image of τ under the composite map

Iad
φ (Apf )→ D(ZIφ , Iφ;Apf ) ∼−→ E(ZIφ , Iφ;Apf )→ E(I0, G;Apf ).(3.5.2.1)

In particular, the dependence of t(φ, ε, τ) on τ is only through the image of τ in
E(I0, G;Apf ).

Proof. The first statement follows from the definition of [b] and [b′]. For the second
statement, using the notation in §3.5.1, we know that a is represented by the cocycle
ρ 7→ ζp,∞φ (ρ) whereas a′ is represented by the cocycle ρ 7→ tρζ

p,∞
φ (ρ), where tρ is

determined by a choice of τ̃ lifting τ . The difference a′ − a in H1
ab(Apf , I0) is then

given by the image of the class of (tρ)ρ under H1(Apf , ZIφ) = H1
ab(Apf , ZIφ) →

H1
ab(Apf , I0). The desired statement follows. �

Proposition 3.5.3. Let (φ, ε), (φ′, ε′) ∈ LRPgg
sa such that [φ, ε] = [φ′, ε′]. Let

u ∈ G(Q) be an element such that Int(u)(φ, ε) = (φ′, ε′). Let τ ∈ Iad
φ (Apf ), and

let τ ′ ∈ Iad
φ′ (A

p
f ) be the image of τ under the Q-isomorphism Iad

φ
∼−→ Iad

φ′ induced
by the Q-isomorphism Int(u) : Iφ

∼−→ Iφ′ . Then u is an isomorphism t(φ, ε, τ) ∼−→
t(φ′, ε′, τ ′) in the sense of Definition 1.6.14.

Proof. We write t(φ, ε, τ) = (γ0, a, [b]) and t(φ′, ε′, τ ′) = (γ′0, a′, [b′]). By definition,
γ0 = ε and γ′0 = ε′. We check that u satisfies the three conditions in Definition
1.6.14. Condition (i) follows from Lemma 3.2.11.

To check condition (ii), we define tρ as in §3.5.1, with respect to (φ, ε, τ). Then
the counterpart t′ρ with respect to (φ′, ε′, τ ′) can be chosen to be utρu−1. Now a is
represented by the cocycle A : ρ 7→ tρζ

p,∞
φ (ρ), and a′ is represented by the cocycle

A′ : ρ 7→ t′ρζ
p,∞
φ′ (ρ) = utρu

−1ζp,∞φ′ (ρ). Note that ζp,∞φ′ (ρ) = u · ζp,∞φ (ρ) · ρu−1, since
φ′ = Int(u) ◦ φ. Hence

A′(ρ) = uA(ρ)ρu−1, ∀ρ ∈ Γ.

This proved condition (ii).
To check condition (iii), we write I0 for G0

ε and write I ′0 for G0
ε′ . We choose d ∈

I0(Q̆p) such that u0 := ud−1 lies in G(Q̆p), as in §1.6.13. Choose g ∈ UR(φI0(p) ◦
ζp) ⊂ I0(Qp), and g′ ∈ UR(φ′I′0(p) ◦ ζp) ⊂ I ′0(Qp). We may assume that b =
bInt(g−1)◦φI0 (p)◦ζp and b′ = bInt(g′−1)◦φ′

I′0
(p)◦ζp . Then we have

g−1u−1g′ ∈ G(Qur
p ),(3.5.3.1)
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since this element conjugates the unramified morphism Int(g′−1)◦φ′(p)◦ ζp : Gp →
GG(p) to the unramified morphism Int(g−1)◦φ(p)◦ζp : Gp → GG(p). For the same
reason we have

b = (g−1u−1g′)b′σ(g−1u−1g′)−1.(3.5.3.2)

The bijection u∗ : B(I0,Qp) → B(I ′0,Qp) as in (1.6.13.2) sends [b] to [u0bσ(u0)−1],
and by (3.5.3.2) the latter element equals [wb′σ(w)−1], where

w = u0g
−1u−1g′ ∈ G(Q̆p).

To finish the proof it suffices to show that w ∈ I ′0(Q̆p). Since d−1, g−1 ∈ I0(Q̆p), we
have u0g

−1u−1 = Int(u)(d−1g−1) ∈ I ′0(Q̆p). Also g′ ∈ I ′0(Qp), so w ∈ I ′0(Q̆p). By
the fact that u0 ∈ G(Q̆p) and by (3.5.3.1), we have w ∈ G(Q̆p). Hence w ∈ I ′0(Q̆p),
as desired. �

3.5.4. Let (φ, ε) ∈ LRPgg
sa . Let I0 := G0

ε . Recall that the group X∞
G (Q, I0

φ,ε) is
defined in §3.2.18. Using the canonical inner twisting between I0

φ,ε and (Gφ∆)0
ε ⊂ I0

as in §3.2.3, we have a natural homomorphism X∞
G (Q, I0

φ,ε) → E(I0, G;Q). Let
e = (eρ)ρ ∈ Z1(Q, I0

φ,ε) be a cocycle representing a class in X∞
G (Q, I0

φ,ε). By
Proposition 3.2.19, we obtain (eφ, ε) ∈ LRPgg

sa .

Proposition 3.5.5. Let (ε, a, [b]) := t(φ, ε, 1), and (ε, a′, [b′]) := t(eφ, ε, 1). Then
the difference a′−a ∈ E(I0, G,Apf ) is equal to the natural image of e. The elements
[b′], [b] ∈ B(I0,Qp) have conjugate Newton cocharacters. Moreover, if νb is central
in I0, then κI0(b′) − κI0(b) ∈ π1(I0)Γp is equal to the image of e in H1

ab(Qp, I0),
which is identified with π1(I0)Γp,tors as in Proposition 1.1.9.

Proof. By construction, a and a′ are represented by the cocycles ζp,∞φ and ζp,∞eφ
respectively. Clearly

ζp,∞eφ (ρ) = eρζ
p,∞
φ (ρ), ∀ρ ∈ Γ(3.5.5.1)

The statement about a′ − a follows from this and [Bor98, Lem. 3.15.1].
We now prove the statement about [b] and [b′]. As in §3.2.3, we may view φ

as a morphism Q → GI0 , which we denote by φI0 . We may also view e as a
cocycle in Z1(Q, IφI0 ). Then eφ is induced by eφI0 : Q→ GI0 . By construction, b
(resp. b′) is associated with the choice of an element g in UR(φI0(p) ◦ ζp) (resp. g′
in UR((eφI0)(p) ◦ ζp)). Let θ := Int(g)−1 ◦ φI0(p) ◦ ζp and let θ′ := Int(g′)−1 ◦
(eφI0)(p) ◦ ζp, and we view both as unramified morphisms Gp → GI0(p). Thus
b = bθ and b′ = bθ′ . Now Int(g−1) induces a Qp-map IφI0 ,Qp → Iθ. We let eθ
denote the image of e under

Z1(Q, IφI0 ) −→ Z1(Qp, IφI0 ) Int(g−1)−−−−−→ Z1(Qp, Iθ).

By Proposition 2.2.6 (ii), we have a canonical isomorphism Iθ ∼= JI0b . (See §1.4.3 for
the notation JI0b .) We write eb for eθ when we view it as an element of Z1(Qp, JI0b ).
Now θ′ is in the conjugacy class of eθθ (as morphismsGp → GI0(p)). By Proposition
2.2.6 (iii), the σ-conjugacy class of b′ in I0(Qur

p ) is the twist of b by eb. In particular,
[b] and [b′] have conjugate Newton cocharacters by Proposition 1.4.5.
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If νb is central, then we can apply Proposition 1.4.5 (to the group I0,Qp), and
conclude that κI0(b′)− κI0(b) is equal to the image of eb under

H1(Qp, JI0b ) ∼−→ H1
ab(Qp, JI0b ) ∼−→ H1

ab(Qp, I0) ∼−→ π1(I0)Γp,tors.

Here the second isomorphism is induced by the canonical inner twisting ι between
the Qp-groups JI0b and I0,Qp , as in case (ii) of §1.4.3. We are left to check that the
above image of eb in π1(I0)Γp,tors is equal to the image of e in π1(I0)Γp,tors as in the
proposition. This boils down to the commutativity of the following diagram up to
inner automorphisms:

(IφI0 )Qp
//

∼= Int(g−1)

��

I0,Qp

Iθ,Qp

∼= // (JI0b )Qp

∼= ι

OO

Here the top arrow is given by the canonical inner twisting between IφI0 and
(I0)φ∆ ⊂ I0. The bottom arrow is the canonical isomorphism in Proposition 2.2.6
(ii). It suffices to check that the composition Iθ,Qp

∼−→ (JI0b )Qp
ι−→ I0,Qp

is equal
to the canonical embedding Iθ,Qp → I0,Qp

attached to θ : Gp → GI0(p). This is
straightforward by the proof of Proposition 2.2.6 (ii). �

Proposition 3.5.6. Let (φ, ε) ∈ LRPgg
sa , and let c = t(φ, ε, 1) ∈ KP. Then the

Kottwitz invariant α(c) is trivial.

Proof. By Proposition 3.5.3 and Proposition 1.7.10, we may replace (φ, ε) by any
other element (φ′, ε′) ∈ LRPgg

sa such that [φ, ε] = [φ′, ε′], in the course of the proof.
Choose a maximal torus T ⊂ Iφ defined over Q such that ε ∈ T (Q). (This is possible
since ε is semi-simple.) By Theorem 3.3.9, there exists (T, i, h) ∈ SPD(G,X) and
g ∈ G(Q) such that Int(g) ◦ φ = φ(T, i, h), and such that Int(g)(ε) = i(ε) ∈ G(Q).
Using Lemma 3.2.15 one checks that (Int(g) ◦ φ, Int(g)(ε)) ∈ LRPgg. Hence up to
replacing (φ, ε) by (Int(g) ◦ φ, Int(g)(ε)), we may assume that φ = φ(T, i, h), that
ε ∈ T (Q), and that the embedding TQ ↪→ Iφ,Q ↪→ GQ coincides with i.

Write c = (γ0 = ε, a, [b]). By definition (see §2.2.9 and Definition 3.3.2), φ factors
as Q → GResL/Q Gm → GG, where L/Q be a finite Galois extension contained
in Q splitting T , and GResL/Q Gm → GG is induced by a Q-homomorphism f :
ResL/QGm → G. In particular, ζp,∞φ is induced by cocycle Γ → (ResL/QGm)(Āpf )
and f . By Shapiro’s lemma and Hilbert 90, the class a is trivial.

Recall that b = bθ, where θ = Int(g−1) ◦ φ(p) ◦ ζp for some g ∈ UR(φ(p) ◦
ζp) ∩ I0(Qp). Since φ factors through i : GT → GG, we may take g to be inside
i(T )(Qp). Then θ factors through i : GT (p) → GG(p), and b ∈ i(T )(Qur

p ). Write
b = i(bT ). By Lemma 2.2.10, the element κT (bT ) ∈ X∗(T )Γp is equal to the image
of −µh ∈ X∗(T ). Therefore, keeping the notation in §1.7.5, we may choose β̃p(c)
to be the image of −µh ∈ X∗(T ) in π1(I0(c)) (with respect to i : T → I0(c)). Also,
we may choose β̃∞(c) to be the image of µh ∈ X∗(T ) in π1(I0(c)). We have seen
that a is trivial, so we may choose β̃l(c) to be zero for all l /∈ {p,∞}. Then we have
α(c) = 0. �
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Corollary 3.5.7. Let (φ, ε) ∈ LRPgg
sa and let τ ∈ Iad

φ (Apf ). Let c = t(φ, ε, τ) ∈ KP.
Then α(c) is equal to the image of τ under

Iad
φ (Apf ) (3.5.2.1)−−−−−→ E(I0(c), G;Apf ) ↪→ E(I0(c), G;A)→ E(I0(c), G;A/Q).

Proof. This follows from Proposition 3.5.6, Proposition 3.5.2, and Proposition 1.7.8.
�

As in §3.1.5, let n be a positive multiple of r.

Proposition 3.5.8. Let (φ, ε) ∈ LRPgg
sa and τ ∈ Iad

φ (Apf ). Then (φ, ε) is pn-
admissible if and only if t(φ, ε, τ) is pn-admissible.

Proof. Write t(φ, ε, τ) = (ε, a, [b]) and write I0 for G0
ε . By construction, [b] ∈

B(I0,Qp) has a representative b ∈ I0(Qur
p ) such that b = bθ, where θ = Int(g−1) ◦

φ(p)◦ζp for some g ∈ UR(φ(p)◦ζp)∩I0(Qp). Since g commutes with ε, we see that
(b, ε) ∈ clsp(φ, ε). By [Kot84a, Lem. 1.4.9], t(φ, ε, τ) is pn-admissible if and only if
ε−1(boσ)n has a fixed point in G(Q̆p)/G(Z̆p). The latter condition is precisely the
definition that (φ, ε) is pn-admissible. �

Proposition 3.5.9. Let c = (γ0, a, [b]) ∈ KPa(pn) with α(c) = 0. Assume that
there exists an element of LRPgg

a (pn) of the form (φ0, γ0). Then there exists an
element of LRPgg

a (pn) of the form (φ, γ0) such that c = t(φ, γ0, 1).

Proof. Let I0 := G0
γ0
. Write t(φ0, γ0, 1) = c0 = (γ0, a0, [b0]) ∈ KP. By Proposition

3.5.8, we have c0 ∈ KPa(pn). Hence by Corollary 1.6.12 we know that νb0 is central
in I0 and that νb = νb0 . In particular, κI0(b) and κI0(b0) both lie in π1(I0)Γp,tors.
Consider the element

e0 := (a− a0) ⊕ (κI0(b)− κI0(b0))
∈ H1

ab(Apf , I0) ⊕ π1(I0)Γp,tors ∼= H1
ab(Af , I0).

By KP0 in Definition 1.6.4, the element κI0(b) − κI0(b0) goes to zero in π1(G)Γp .
Therefore e0 ∈ E(I0, G;Af ).

Note that the image of e0 in E(I0, G;A/Q) is just α(c)−α(c0). We have α(c) = 0
by hypothesis, and α(c0) = 0 by Proposition 3.5.6. By the exact sequence (1.7.1.1),
there exists a lift e1 ∈X∞

G (Q, I0) of e0. Let I := I0
φ0,γ0

. Then we have a canon-
ical inner twisting IQ

∼−→ I0,Q as in §3.2.14, and hence a canonical isomorphism
X∞

G (Q, I) ∼= X∞
G (Q, I0). Let e2 ∈ X∞

G (Q, I) be the element corresponding to
e1 ∈X∞

G (Q, I0).
By Proposition 3.2.19, we obtain an element (e2φ0, γ0) ∈ LRPgg

sa . We claim that
t(e2φ0, γ0) = c. Write t(e2φ0, γ0) = (γ0, a

′, [b′]). By Proposition 3.5.5, we have
a′ − a0 = a − a0, and so a′ = a. As νb0 is central in I0, we can Proposition 3.5.5
to conclude that νb′ = νb0 , and that κI0(b′) − κI0(b0) = κI0(b) − κI0(b0). Thus we
have [b] = [b′] by the classification of B(I0,Qp) (see §1.4.2). Having checked that
t(e2φ0, γ0) = c, we deduce that (e2φ0, γ0) ∈ LRPgg

a (pn) by Proposition 3.5.8. �

3.6. The effect of a controlled twist. Recall that Conjecture 2.7.3 predicts the
existence of a tori-rational element τ ∈ Γ(H)0 such that LR(G,X, p,G, τ) holds.
In this subsection we fix such a τ . By Lemma 2.6.20 there exists a tori-rational
σ ∈ Γ(Ep)0 lifting τ . By the last assertion in Proposition 3.5.2, we have a well-
defined Kottwitz parameter t(φ, ε, σ(φ)) assigned to each (φ, ε) ∈ LRPgg

sa . We shall
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write tσ(φ, ε) for t(φ, ε, σ(φ)). We establish analogues of the results in §3.5, for the
function tσ : LRPgg

sa → KP.
As in §3.1.5, let n be a positive multiple of r.

Proposition 3.6.1. Let (φ, ε) and (φ′, ε′) be elements of LRPgg
sa such that [φ, ε] =

[φ′, ε′]. Let u ∈ G(Q) be an element such that Int(u)(φ, ε) = (φ′, ε′). Then u is an
isomorphism tσ(φ, ε) ∼−→ tσ(φ′, ε′). In particular, the isomorphism class of tσ(φ, ε)
depends on (φ, ε) only through [φ, ε] ∈ [LRPgg

sa ].

Proof. Since σ ∈ Γ(Ep)0, we may find a lift τ ∈ Iad
φ (Apf ) of σ(φ) and a lift τ ′ ∈

Iad
φ′ (A

p
f ) such that τ maps to τ ′ under the isomorphism Iad

φ
∼−→ Iad

φ′ induced by
Int(u) : Iφ

∼−→ Iφ′ . The proposition then follows from Proposition 3.5.3. �

Proposition 3.6.2. Keep the setting and notation of §3.5.4, and assume in addi-
tion that (φ, ε) ∈ LRPgg

a (pn). Let (ε, a, [b]) := tσ(φ, ε), and (ε, a′, [b′]) := tσ(eφ, ε).
The following statements hold.

(i) The difference a′ − a ∈ E(I0, G;Apf ) is equal to the natural image of e.
(ii) The elements [b′], [b] ∈ B(I0,Qp) are basic and have equal Newton cochar-

acter. The difference κI0(b′)− κI0(b) ∈ π1(I0)Γp is equal to the image of e
in π1(I0)Γp,tors as in Proposition 3.5.5.

(iii) Let e′ ∈ Z1(Q, I0
φ,ε) be another cocycle representing the same cohomology

class as e. Then we have tσ(eφ, ε) = tσ(e′φ, ε). (These two Kottwitz
parameters are equal, not just isomorphic.)

Proof. For (i), in view of Proposition 3.5.2 and the statement about a′ − a in
Proposition 3.5.5, it suffices to check that σ(φ) and σ(eφ) have the same image in
E(I0, G;Apf ). But this follows easily from the fact that σ ∈ Γ(Ep)0.

By Proposition 3.5.2, the components [b] and [b′] are unaffected by σ. Hence
to prove (ii) we may assume that σ is trivial. By Proposition 3.5.8 and Corollary
1.6.12, we know that [b] is basic in B(I0). The remaining statements in (ii) follow
from Proposition 3.5.5.

Part (iii) follows from the previous two parts, and Kottwitz’s classification of
B(I0,Qp) (see §1.4.2). �

For each c ∈ KP, recall that we have defined the Kottwitz invariant α(c) in
§1.7.5.

Proposition 3.6.3. For each (φ, ε) ∈ LRPgg
sa , we have α(tσ(φ, ε)) = 0.

Proof. Choose a maximal torus T ⊂ Iφ defined over Q such that ε ∈ T (Q). (This is
possible since ε is semi-simple.) By Corollary 3.5.7 and the exact sequence (1.7.1.1),
it suffices to show that the image of σ(φ) in H1(Apf , T ) comes from X∞,p

G (Q, T ).
This follows from the fact that σ is tori-rational. �

Let n be a positive multiple of r.

Lemma 3.6.4. Let (φ1, ε1) ∈ LRPgg
a (pn). Let g ∈ G(Q) be an element that stably

conjugates ε1 to some ε2 ∈ G(Q), i.e., Int(g)(ε1) = ε2, and g τg−1 ∈ G0
ε2(Q) for all

τ ∈ Γ. Define φ2 := Int(g) ◦ φ1. Then (φ2, ε2) ∈ LRPgg
a (pn).

Proof. We only need to show that (φ2, ε2) ∈ LRPgg. Since ε2 ∈ G(Q) is stably
conjugate to ε1, it is R-elliptic in G as ε1 is (cf. §1.8.7). Now write φi(qτ ) = gi,τ oτ ,
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for i = 1, 2. It remains to show that g2,τ ∈ I0
φ2,ε2

(Q), for each τ ∈ Γ. As in the
proof of Lemma 3.2.11, we have

g τg−1 = [gg1,τg
−1]−1g2,τ .

The left hand side lies in G0
ε2(Q) by hypothesis, and the term gg1,τg

−1 lies in G0
ε2(Q)

since g1,τ ∈ G0
ε1(Q). Hence we have g2,τ ∈ G0

ε2(Q). By §3.2.14, the last group is in
fact equal to I0

φ2,ε2
(Q). �

Proposition 3.6.5. Let c = (γ0, a, [b]) ∈ KPa(pn). Let (γ0, γ, δ) ∈ KPcla(pn) be
the classical Kottwitz parameter of degree n (up to equivalence) assigned to c as in
§1.6.16. Assume that the σ-conjugacy class of δ in G(Qpn) intersects non-trivially
with the support of φn. (Here φn is as in §1.8.2.) Assume that α(c) = 0. Then
there exists an element of LRPgg

a (qm) of the form (φ, γ0) such that tσ(φ, γ0) = c.

Proof. Let I0 := G0
γ0
. Since γ0 ∈ G(Qp) is a degree n norm of δ ∈ G(Qpn),

by Proposition 3.4.8 and Lemma 3.6.4 there exists an element of LRPgg
a (pn) of

the form (φ0, γ0). By Proposition 3.5.9, we find (φ1, γ0) ∈ LRPgg
a (pn) such that

t(φ1, γ0, 1) = c.
Consider the Kottwitz parameter

(γ0, a1, [b1]) := tσ(φ1, γ0).(3.6.5.1)

By Proposition 3.5.2, we know that [b1] = [b], and that a1− a is equal to the image
of σ(φ1) in E(I0, G;Apf ). Fix a maximal torus T ⊂ Iφ1 such that γ0 ∈ T (Q). Then
by tori-rationality of σ, the image of σ(φ1) in H1(Apf , T ) is equal to the image of
some β ∈X∞,p

G (Q, T ).
Under T ↪→ I0

φ1,γ0
the class −β determines a class in X∞,p

G (Q, I0
φ1,γ0

). Fix a
cocycle e ∈ Z1(Q, I0

φ1,γ0
) representing the latter class. By Proposition 3.2.19, we

obtain (eφ1, γ0) ∈ LRPgg
sa . Write φ for eφ1, and let

(γ0, a
′, [b′]) := tσ(φ, γ0).(3.6.5.2)

Comparing (3.6.5.1) and (3.6.5.2), we see from Proposition 3.6.2 that a′−a1 equals
the image of −β in E(I0, G;Apf ), and that [b′] = [b1] (since −β is trivial at p). Thus
we have [a′] = [a] and [b′] = [b]. Hence tσ(φ, γ0) = c. �

3.7. Proof of Theorem 2.7.4.

3.7.1. Throughout we fix a tori-rational element τ ∈ Γ(H)0 such that the state-
ment LR(G,X, p,G, τ) holds. Namely, we have a smooth integral model SKp of
ShKp over OE,(p) which has well-behaved H∗c , and we have a bijection

SKp(Fq)
∼−→
∐
φ

Sτ (φ)(3.7.1.1)

compatible with the actions of G(Apf ) and the q-Frobenius Φ.
Our goal is to prove (1.8.8.1) for all sufficiently large m. First observe that in the

proof we may arbitrarily replace Kp by an open subgroup. In particular, we may
and shall assume that Kp is neat (see [Lan13, Def. 1.4.1.8, Rmk. 1.4.1.9]), and that
SKpUp is defined for each open subgroup Up ⊂ Kp. It follows from the neatness
of Kp that K = KpK

p is neat in the sense of Pink [Pin90, §0.6]. In the sequel we
write Z(Q)K for ZG(Q) ∩K and write ZK for ZG(Af ) ∩K, as in §1.8.6.
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By linearity, we may assume that fp = 1Kpg−1Kp for some g ∈ G(Apf ), and that
dgp assigns volume 1 to Kp.

By Lemma 2.6.20 we fix a tori-rational σ ∈ Γ(Ep)0 lifting τ . For each admissible
morphism φ, we fix a lift τφ ∈ Iad

φ (Apf ) of σ(φ) ∈ Ep(φ) = Iφ(Apf )\Iad
φ (Apf ). We let

Xp(φ)′ be the Iφ(Apf )-set whose underlying set is Xp(φ), but the Iφ(Apf )-action is
given by the natural action pre-composed with conjugation by τφ. Thus Sτ (φ) is
isomorphic to

lim←−
Up

Iφ(Q)\(Xp(φ)×Xp(φ)′/Up).

Lemma 3.7.2. For each admissible morphism φ, the following statements hold.
(i) Let ε′ be an element of Iφ(Af ) which is conjugate under Iad

φ (Af ) to some
ε ∈ Iφ(Q). If there exist yp ∈ Xp(φ)/Kp

g and yp ∈ Xp(φ) such that

ypg ≡ ε′ypg mod Kp, and ε′yp = yp,

then ε′ ∈ Z(Q)K .
(ii) We have Iφ(Q)der ∩ Z(Q)K = {1}.

Proof. (i) The proof follows the same idea as [Mil92, Lem. 5.5]. We view ε as an
element of G(Q) and let ε̄ be its image in Gad(Q). By Lemma 2.6.7, ε is semi-simple,
and ε̄ lies in the R-points of a compact form ofGad

R . By the existence of yp, the image
of ε under G(Q) → G(Āpf ) has a conjugate u that lies in Kp ⊂ G(Apf ) ⊂ G(Āpf ).
By the existence of yp, the image of ε under G(Q)→ G(Qp) has a conjugate v that
lies in G(Zur

p ). It follows that ε̄ is torsion. Now let ū be the image of u in Gad(Apf ).
Then ε̄ is conjugate to ū inside Gad(Āpf ), and so ū is torsion. But ū lies in the image
of Kp under G(Apf )→ Gad(Apf ), which is neat. Hence at least one local component
of ū is trivial. It follows that ε̄ = 1. We have thus shown that ε ∈ Z(Q), and in
particular ε = ε′.

Since the natural embedding Z → Iφ is defined over Q and since ε ∈ Iφ(Q),
we have ε ∈ Z(Q). Now using the existence of yp and yp it is easy to see that
ε ∈ Z(Q)K .

(ii) Clearly Iφ(Q)der∩Z(Q)K is contained in the Q-points of the center of Iφ,der,
and is hence finite. Since K is neat, Z(Q)K is torsion free, and so Iφ(Q)der ∩
Z(Q)K = {1}. �

Lemma 3.7.3. We keep the assumptions on fp and dgp in §3.7.1. When m is
sufficiently large (in a way depending on Kp and fp), we have

T (Φmp , fpdgp) =
∑
φ

∑
ε

#O(φ, ε,m, g) · tr ξ(ε),(3.7.3.1)

where
• the first summation is over a set of representatives for the conjugacy classes
of admissible morphisms φ.
• for each φ the second summation is over a subset of Iφ(Q) such that each
conjugacy class in Iφ(Q)/Z(Q)K is represented exactly once.
• the set O(φ, ε,m, g) is defined as the quotient of

Xp(φ, ε, qm)×
{
yp ∈ Xp(φ)′/Kp

g | yp ≡ εypg mod Kp
}

by the diagonal left action of Iφ,ε(Q). Here Xp(φ, ε, qm) is defined in §3.1.5.
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Proof. Since (2.5.5.1) is an isomorphism by assumption, T (Φmp , fpdgp) is equal to∑
i

(−1)itr
(

Φmp × (fpdgp) | Hi
c(SKp,Fq , ξ)

)
.(3.7.3.2)

Let Kp
g := Kp ∩ gKg−1. We have two maps πg, π1 : SKpK

p
g
→ SK , induced by the

actions of g ∈ G(Apf ) and 1 ∈ G(Apf ) on SKp , respectively. By our specific choices
of fp and dgp, the endomorphism Φmp × (fpdgp) of Hi

c(SK,Fq ,Lξ,Kp)is induced by
the correspondence

SKpK
p
g ,Fq

πg

yy

Fmr◦π1

%%
SK,Fq SK,Fq

(3.7.3.3)

and the cohomological correspondence

π∗gLξ,Kp

−→g ∗−−→ Lξ,Kp
g

(−→1 ∗)−1

−−−−−→ π∗1Lξ,Kp ∼= π∗1(Fmr)∗Lξ,Kp .(3.7.3.4)

(See §1.5.2 for −→g ∗ and −→1 ∗.) Here F is the absolute p-Frobenius endomorphism, and
the last isomorphism in (3.7.3.4) is induced by the canonical isomorphism between
any étale sheaf and its pull-back under F .

We now apply the Grothendieck–Lefschetz–Verdier trace formula together with
Deligne’s conjecture to compute (3.7.3.2). The latter has been proved by Fujiwara
[Fuj97] and Varshavsky [Var05] (cf. also [Pin92b]), and states that the local terms
in the trace formula can be replaced by the naive local terms, under the assumption
that m is sufficiently large (while fixing Kp and g).

Let FIX be the set of Fq-valued fixed points of the correspondence (3.7.3.3).
Using the bijection (3.7.1.1), we obtain a description of FIX as follows. For each
admissible morphism φ, by Lemma 3.7.2 we know that the data

Y = Xp(φ)×Xp(φ)′/Kp
g ,

X = Xp(φ)×Xp(φ)′/Kp,

I = Iφ(Q),
C = Z(Q)K ,
a : Y → X, (yp, yp) 7→ (yp, ypg mod Kp),
b : Y → X, (yp, yp) 7→ (Φmyp, yp mod Kp).

(3.7.3.5)

satisfy the hypotheses of [Mil92, Lem. 5.3]. By loc. cit., (3.7.1.1) induces a bijection

FIX ∼=
∐
φ

∐
ε

O(φ, ε,m, g),(3.7.3.6)

where φ and ε run through the same ranges as in (3.7.3.1).
It remains to calculate the naive local term at each point in FIX . We need

to show that if x ∈ FIX corresponds to a point in O(φ, ε,m, g) under (3.7.3.6),
then the naive local term at x is equal to tr ξ(ε). Note that x only determines the
conjugacy class of ε in Iφ(Q)/Z(Q)K . By our assumption that ξ factors through
Gc and by Lemma 1.5.7, we know that tr ξ is invariant under Z(Q)K since K is
neat. Hence tr ξ defines a class function on G(Q) that is translation-invariant under
Z(Q)K , and our desideratum makes sense.
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Now let x̃ be a lift of x in SKp(Fq). Since x ∈ FIX , there exists k
x̃
∈ Kp such

that
Φmx̃ = x̃gk

x̃
.

Let k` ∈ G(Q`) be the component of k
x̃
at `, and let g` ∈ G(Q`) be the component

of g ∈ G(Apf ) at `. By the same argument as [Kot92b, p. 433], the naive local term
at x is given by

tr ξ(k−1
` g−1

` ).

If x corresponds to an element of O(φ, ε,m, g) under (3.7.3.6), then k−1
` g−1

` is
conjugate to ε in G(Q`). Thus the naive local term at x is tr ξ(ε), as desired. �

Lemma 3.7.4. Let (φ, ε) ∈ LRPgg
sa , and let c = tσ(φ, ε). The set O(φ, ε,m, g)

defined in Lemma 3.7.3 is empty unless (φ, ε) ∈ LRPgg
a (qm). In the latter case, we

have c ∈ KPa(pn) by Proposition 3.5.8, and we define c1(c,Kp)O(c,m, fpdgp) as
in §1.8.2 and §1.8.6. We have

#O(φ, ε,m, g) = ιIφ(ε)−1c1(c,Kp)O(c,m, fpdgp).

Proof. We write c = (γ0, γ, [b]), where γ0 = ε, and let (γ0, γ, δ) ∈ KPcla(pn) be
the classical Kottwitz parameter associated with c (which is well defined up to
equivalence). By construction, (b, ε) ∈ clsp(φ, ε), so Xp(φ, ε, qm) is identified with
X−µX (b, ε, qm); see §3.1.5. If O(φ, ε,m, g) 6= ∅, then Xp(φ, ε, qm) 6= ∅, and it follows
that (φ, ε) is qm-admissible.

Now assume that (φ, ε) is qm-admissible. The computation of #O(φ, ε,m, g) is
essentially the same as the computation by Kottwitz in [Kot84a, §1.4, §1.5]. We
explain how to make the transition from our setting to the setting of loc. cit. We
write Y p for the set {yp ∈ Xp(φ)′/Kp

g | yp ≡ εypg mod Kp}, and write Yp for the
set Xp(φ, ε, qm). Thus O(φ, ε,m, g) = Iφ,ε(Q)\(Yp × Y p). Note that #O(φ, ε,m, g)
is equal to the cardinality of I0

φ,ε(Q)\(Yp × Y p) multiplied by ιIφ(ε)−1. This is
because, if an element u ∈ Iφ,ε(Q) has a fixed point in Yp × Y p, then by Lemma
3.7.2 (applied to g = 1), we must have u ∈ Z(Q)K ⊂ I0

φ,ε(Q). Thus it remains to
show that

#
(
I0
φ,ε(Q)\(Yp × Y p)

)
= c1(c)O(c,m, fpdgp).(3.7.4.1)

As explained in §2.4.7, we identify Xp(φ)′ = Xp(φ) with a right G(Apf )-coset
inside G(Āpf ). Fix yp0 ∈ Xp(φ)′ ⊂ G(Āpf ). Inspecting definitions, we see that
γ ∈ G(Apf ) is conjugate to (Int(yp0)−1 ◦ Int(τφ))(ε) ∈ G(Apf ) inside G(Apf ). We may
assume that they are equal. Now if we use the “base point” yp0 to identify Xp(φ)′
with G(Apf ), then we have a bijection

Y p
∼−→W p :=

{
yp ∈ G(Apf )/Kp

g | yp ≡ γypg mod Kp
}
.

Under this bijection, the action of I0
φ,ε(Q) on Y p corresponds to the action of

I0
φ,ε(Q) onW p given by the composition of the Apf -isomorphism Int(yp0)−1◦Int(τφ) :

(I0
φ,ε)Apf ↪→ (G0

γ)Ap
f
(see §3.2.14) followed by left multiplication of G0

γ(Apf ) on W p.
Let µ ∈ �GX . We have already seen that Yp can be identified with X−µ(b, ε, qm) as

in §3.1.5. More precisely, write I0 for G0
ε , and suppose that b = bInt(g−1)◦φI0 (p)◦ζp
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for g ∈ UR(φ(p) ◦ ζp) ∩ I0(Qp). (Here we follow the notation in §3.5.1.) Then
yp 7→ g−1yp induces a bijection

Yp
∼−→ X−µ(b, ε, qm),

see §2.2.7 and §3.1.5. Moreover, under this bijection the action of I0
φ,ε(Q) on Yp

corresponds to the action of I0
φ,ε(Q) on X−µ(b, ε, qm) given by the composition

of the Qp-isomorphism Int(g−1) : (I0
φ,ε)Qp

∼−→ JI0b followed by left multiplication
of JI0b (Qp) on X−µ(b, ε, qm). Here, to see that Int(g−1) : (I0

φ,ε)Qp
∼−→ JI0b is an

isomorphism, use the identification I0
φ,ε
∼= IφI0 as in §3.2.3 and §3.2.14, and use the

fact that b is basic in I0 by Corollary 1.6.12.
If we fix c ∈ G(Q̆p) such that δ = c−1bσ(c) and such that (1.6.5.1) holds, then

the map x 7→ c−1x induces a bijection
X−µ(b, ε, qm) ∼−→Wp :=

{
yp ∈ G(Qpn)/G(Zpn) | y−1

p δσ(yp) ∈ G(Zpn)p−µG(Zpn)
}
.

Under this bijection, the action of JI0b (Qp) on the left corresponds to the following
action on Wp: We have an injective Qp-homomorphism JI0b → R0

δoσ induced by
Int(c−1). (See §1.8.2 for R0

δoθ.) This homomorphism is in fact an isomorphism,
because both groups are connected, and their dimensions are equal to that of I0.
We thus identify JI0b (Qp) with R0

δoθ(Qp), and let the latter group act on Wp by
left multiplication.

In conclusion, we have bijections

I0
φ,ε(Q)\(Yp × Y p)

∼−→ I0
φ,ε(Q)\(X−µ(b, ε, qm)×W p) ∼−→ I0

φ,ε(Q)\(Wp ×W p),
(3.7.4.2)

where I0
φ,ε(Q) acts on X−µ(b, ε, qm), W p, and Wp in the way described above. By

abuse of notation, we still write I0
φ,ε(Q) for the image of I0

φ,ε(Q) inside JI0b (Qp) ×
G0
γ(Apf ) ∼= R0

δoθ(Qp) × G0
γ(Apf ), under the embeddings described above. We also

identify the last two product groups with I(c)(Af ), canonically up to conjugation
by I(c)ad(Af ). We assume for a moment that I0

φ,ε(Q)ZK is closed and has finite
co-volume inside I(c)(Af ). Then the computation in [Kot84a, §1.5]21 shows that
the cardinality of the third set in (3.7.4.2) is given by

vol(I0
φ,ε(Q)ZK\I(c)(Af )) ·O(c,m, fpdgp).

Here, I0
φ,ε(Q)ZK is equipped with the Haar measure giving volume 1 to its open

subgroup ZK = ZG(Af ) ∩K.
To complete the proof, we need to verify our assumption on I0

φ,ε(Q)ZK , and we
need to identify vol(I0

φ,ε(Q)ZK\Ic(Af )) with c1(c). For both purposes, it suffices
to prove the following claim: The image of I0

φ,ε(Q) inside I(c)(Af ) is I(c)ad(Af )-
conjugate to I(c)(Q). (Note that the Haar measure on I(c)(Af ) is invariant under
conjugation by I(c)ad(Af ).)

To prove the claim, note that we have a canonical inner twisting between the
Q-groups I0

φ,ε and I0, as in §3.2.14. We have described an Apf -isomorphism I0
φ,ε

∼−→
G0
γ , and a Qp-isomorphism I0

φ,ε
∼−→ JI0b . One checks that these isomorphisms are

isomorphisms between inner forms of I0 (in the sense of Definition 1.2.2). Also,

21In loc. cit., it is assumed that Gder is simply connected, so that Gγ and Rδoσ (which is
denoted by Gσδ ) are connected. To transport the computation to the current situation, one simply
replaces all appearances of Gγ and Rδoσ by their identity components.
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I0
φ,ε/ZG is anisotropic over R, and up to isomorphism there is at most one inner
form of I0 over R which is anisotropic modulo ZG. The claim then follows from the
unique characterization of I(c) as an inner form of I0 over Q (up to isomorphism),
in Lemma 1.7.12. �

3.7.5. We have a natural action
Z(Q)K × [LRPgg

a (qm)] −→ [LRPgg
a (qm)]

(z, [φ, ε]) 7−→ [φ, zε].

We fix a set of representatives for the Z(Q)K-orbits in [LRPgg
a (qm)] and by abuse

of notation denote this subset of [LRPgg
a (qm)] by

[LRPgg
a (qm)]/Z(Q)K .

By the first statement in Lemma 3.7.4 and by Corollary 3.2.17, we may replace the
two summations in (3.7.3.1) by the summation over [LRPgg

a (qm)]/Z(Q)K . Apply-
ing Lemma 3.7.4 to the summands, we obtain

(3.7.5.1) T (Φmp , fpdgp)

=
∑

[φ,ε]∈[LRPgg
a (qm)]/Z(Q)K

ιIφ(ε)−1c1(tσ(φ, ε)) O
(
tσ(φ, ε),m, fpdgp

)
tr ξ(ε),

for all sufficiently large m. Here, for (φ, ε) ∈ LRPgg
a (qm), we know that the iso-

morphism class of tσ(φ, ε) depends only on [φ, ε], by Proposition 3.6.1. Moreover,
the value of

c1(tσ(φ, ε)) ·O
(
tσ(φ, ε),m, fpdgp

)
depends on tσ(φ, ε) only via its isomorphism class, which can be checked using the
definitions.

Let ΣKp be as in §1.8.7, and for each γ0 ∈ ΣKp we write KP(γ0, q
m)α for the set

of c ∈ KP(γ0)∩KPa(qm) satisfying α(c) = 0. (See §1.8.7 for the notation KP(γ0).)
By Proposition 1.7.10, KP(γ0, q

m)α is stable under isomorphisms between Kottwitz
parameters. Using Proposition 3.6.3, we rewrite (3.7.5.1) as

T (Φmp , fpdgp) =
∑

γ0∈ΣKp
tr ξ(γ0)

∑
c∈KP(γ0,qm)α/∼=

c1(c)O(c,m, fpdgp)A (c),(3.7.5.2)

where
A (c) :=

∑
[φ,ε]∈[LRPgg

a (qm)]
tσ(φ,ε)∼=c

ιIφ(ε)−1.(3.7.5.3)

Lemma 3.7.6. Let γ0 ∈ ΣKp and let c ∈ KP(γ0, q
m)α. Assume that O(c,m, fpdgp)

is non-zero. Let k be the number of elements of KP(γ0, q
m)α that are isomorphic

to c. Then we have
A (c) = k · ῑG(γ0)−1 · c2(γ0).

Here the notation is as in §1.8.6 and §1.8.7.

Proof. First note that k is finite, since it is at most
∣∣Gγ0/G

0
γ0

∣∣. From the non-
vanishing O(c,m, fpdgp) (or rather just the non-vanishing of the twisted orbital
integral at p), it follows that c satisfies the assumptions of Proposition 3.6.5 (for
n = mr). By that proposition, there exists an element of LRPgg

a (qm) of the form
(φ0, γ0) such that tσ(φ0, γ0) = c. By Proposition 3.2.20, all [φ, ε] appearing in the
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summation in (3.7.5.3) necessarily lie inside C[φ0,γ0]. On the other hand, for each
[φ, ε] ∈ C[φ0,γ0] ∩ [LRPgg

sa ], if tσ(φ, ε) ∼= c, then [φ, ε] is automatically qm-admissible,
by Proposition 3.5.8. Hence we can rewrite (3.7.5.3) as

A (c) =
∑

[φ,ε]∈C[φ0,γ0]∩[LRPgg
sa ]

tσ(φ,ε)∼=c

ιIφ(ε)−1.(3.7.6.1)

Let X̃∞
G (Q, I0

φ0,γ0
) denote the inverse image of X∞

G (Q, I0
φ0,γ0

) in Z1(Q, I0
φ0,γ0

).
By Definition 3.2.9 and Proposition 3.2.19, we have a surjection

X̃∞
G (Q, I0

φ0,γ0
) −→ C[φ0,γ0] ∩ [LRPgg

sa ]
e 7−→ [eφ0, γ0].

which factors through a surjection
ηφ0,γ0 : X∞

G (Q, I0
φ0,γ0

) −→ C[φ0,γ0] ∩ [LRPgg
sa ].

Define D̃ to be the subset of X̃∞
G (Q, I0

φ0,γ0
) consisting of elements e such that

tσ(eφ0, γ0) ∼= c.

Now let c1, c2, · · · , ck be all the distinct elements of KP(γ0, q
m)α that are isomorphic

to c. For each e ∈ D̃, we have tσ(eφ0, γ0) = ci for a unique i ∈ {1, · · · , k}. We thus
obtain a partition

D̃ =
k∐
i=1

D̃i.

By Proposition 3.6.2 (iii), for each 1 ≤ i ≤ k, the set D̃i is the inverse image of a
subset Di of X∞

G (Q, I0
φ0,γ0

). We can thus rewrite (3.7.6.1) as

A (c) =
k∑
i=1

∑
β∈Di

1
ιIeφ0

(γ0) ·#η−1
φ0,γ0

(ηφ0,γ0(β))
(3.7.6.2)

where e is a cocycle representing β. (We will soon see that the fibers of ηφ0,γ0 are
indeed finite.)

By §3.2.14, the Q-embedding (I0
φ0,γ0

)Q → (G0
γ0

)Q is an isomorphism and is an
inner twisting between the Q-groups I0

φ0,γ0
and G0

γ0
. Using this observation and

Proposition 3.6.2, it is easy to see that for each 1 ≤ i ≤ k, the set Di is either
empty, or a coset of X(Q, I0

φ0,γ0
) inside X∞

G (Q, I0
φ0,γ0

). We claim that it is never
empty. Let ui ∈ G(Q) be an isomorphism c

∼−→ ci. Then ui ∈ Gγ0(Q), and
ui
τu−1

i ∈ G0
γ0

(Q),∀τ ∈ Γ. By Lemma 3.6.4, we have (Int(ui)◦φ0, γ0) ∈ LRPgg
a (qm).

By Proposition 3.6.1, we have tσ(Int(ui) ◦ φ0, γ0) = ci. It remains to check that
Int(ui) ◦ φ0 is of the form eφ0 for some e ∈ Z1(Q, I0

φ0,γ0
). For this, we fix a lift

qτ ∈ Q of each τ ∈ Γ, and write φ0(qτ ) = gτ o τ . Define eτ := uigτ
τu−1

i g−1
τ . Then

e = (eτ )τ is a cocycle in Z1(Q, Iφ0), and Int(ui) ◦ φ0 = eφ0. It remains to check
that eτ ∈ I0

φ0,γ0
(Q) for each τ . Let π0 := (Gγ0/G

0
γ0

)(Q), which is an abelian group
as explained in §1.8.7. We have seen that ui and τui map to the same element
of π0. Since (φ0, γ0) is gg, gτ maps to the identity in π0. Hence eτ maps to the
identity in π0, i.e., eτ ∈ G0

γ0
(Q) = I0

φ0,γ0
(Q), as desired.

We have proved the claim. Hence for each 1 ≤ i ≤ k, we have
|Di| =

∣∣X(Q, I0
φ0,γ0

)
∣∣ .
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Since I0
φ0,γ0

is an inner form of G0
γ0

over Q, this number is equal to c2(γ0) =∣∣X(Q, G0
γ0

)
∣∣.

To complete the proof of the lemma, it suffices to check that each summand in
(3.7.6.2) is equal to ῑG(γ0)−1. Recall from §3.2.7 that the composition of ηφ0,γ0

with the natural injection v : [LRPgg]→ 〈LRP〉 factors as

H1(Q, I0
φ0,γ0

)→ H1(Q, Iφ0,γ0)
ιφ0,γ0−−−−→ 〈LRP〉.

The map ιφ0,γ0 is injective. Hence for each β ∈ H1(Q, I0
φ0,γ0

), the set

η−1
φ0,γ0

(ηφ0,γ0(β))

is equal to the fiber of the map H1(Q, I0
φ0,γ0

) → H1(Q, Iφ0,γ0) containing β. This
fiber can be identified with the kernel of H1(Q, I0

eφ0,γ0
) → H1(Q, Ieφ0,γ0), where e

is a cocycle representing β. By [Lab04, Cor. III.1.3], the cardinality of this kernel
is

ῑIeφ0
(γ0) · (ιIeφ0

(γ0))−1.

From this, we see that if a summand in (3.7.6.2) is indexed by β, then this summand
is equal to ῑIeφ0

(γ0)−1 for any cocycle e representing β. Since β ∈ Di for some i and
since ci is qm-admissible (as c is), we have (eφ0, γ0) ∈ LRPgg

a (qm) by Proposition
3.5.8. Thus by §3.2.14, we have canonical inner twistings (Ieφ0,γ0)Q

∼−→ (Gγ0)Q
and (I0

eφ0,γ0
)Q

∼−→ (G0
γ0

)Q. In particular, we have an inner twisting between the
commutative groups Ieφ0,γ0/I

0
eφ0,γ0

and Gγ0/G
0
γ0

(see §1.8.7), which must be an
isomorphism over Q. It follows that ῑIeφ0

(γ0) = ῑG(γ0). The proof is complete. �

The proof of (1.8.8.1) is completed by combining (3.7.5.2) and Lemma 3.7.6.
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Part 2. Shimura varieties of abelian type

4. Results on crystalline representations

Throughout this section we fix a prime number p.

4.1. Generalities on fiber functors.

4.1.1. Let G be a flat, finite-type, affine group scheme over Zp, and RepZpG the
category of representations of G on finite free Zp-modules. For any commutative
ring S, we write Modfp

S for the category of finite projective S-modules. Now let R
be a faithfully flat Zp-algebra. By a fiber functor over R, we mean a faithful exact
⊗-functor ω : RepZpG→ Modfp

R . We denote by 1R : RepZpG→ Modfp
R the functor

which takes L to L⊗R. Then 1R is a fiber functor, called the standard fiber functor.
If ω : RepZpG → Modfp

R is a ⊗-functor and S is an R-algebra, we write ωS for
the composition of ⊗-functors

RepZpG
ω−→ Modfp

R
·⊗RS−−−→ Modfp

S ,

called the base change or pull-back of ω over S.
For two ⊗-functors ω1, ω2 : RepZpG → Modfp

R , we write Isom⊗(ω1, ω2) for the
R-scheme of ⊗-isomorphisms from ω1 to ω2; see [Del90, §1.11]. Thus for any R-
algebra S, Isom⊗(ω1, ω2)(S) is the set of ⊗-isomorphisms ω1,S

∼−→ ω2,S . If ω1 = ω2,
we write Aut⊗(ω1) for Isom⊗(ω1, ω1).

The reconstruction theorem, which is well known over a field, is valid in our
current setting, since Zp is a Dedekind domain and G is affine flat. This theorem
says that the natural morphism G → Aut⊗(1Zp) is an isomorphism of Zp-group
schemes; see for instance [Mil12, X, Thm. 1.2, Rmk. 1.6], or [Wed04, Thm. 5.17].

Let RepQpG be the category of G-representations on finite-dimensional Qp-vector
spaces. By [Ser68, §1.5], every representation in RepQpG contains a G-stable Zp-
lattice (since Zp is noetherian and G is affine flat). Using this fact, for each fiber
functor ω : RepZpG→ Modfp

R we can define a ⊗-functor

ω[1/p] : RepQpG→ Modfp
R[1/p]

as follows: If V is in RepQpG, then we write V = lim−→i
Vi as a direct limit of G-

stable Zp-lattices. We set ω[1/p](V ) = lim−→i
ω(Vi), which is naturally isomorphic to

ω(Vi)⊗R R[1/p] for any i. Note that ω[1/p] is again a fiber functor, i.e., a faithful
exact ⊗-functor.

Given the above construction, it is easy to see that the category of fiber functors
RepZpG→ Modfp

R is equivalent to the category of fiber-wise faithful exact functors
between fibered categories Rep G → BunSpecR (fibered over the small Zariski
site of SpecZp), as considered in [Bro13]. Thus we shall freely import results
from loc. cit. for the fiber functors in our sense. Also cf. the last remark in the
introduction of loc. cit.

Let ω : RepZpG → Modfp
R be a fiber functor. Then Isom⊗(1R, ω) has a right

GR-action via the natural homomorphism GR → Aut⊗(1R) (which we have seen is
an isomorphism). By [Bro13, Thm. 4.8], Isom⊗(1R, ω) is in fact a right GR-torsor
over R (for the fppf topology). This result could be viewed as a generalization of
the reconstruction theorem recalled above. In the sequel, we denote the GR-torsor
Isom⊗(1R, ω) by Pω.
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4.1.2. Let G and R be as in §4.1.1. We introduce a short-hand notation. Let
ω : RepZpG → Modfp

R be a fiber functor, and let S be a R[1/p]-algebra. Then the
base change ωS : RepZpG→ Modfp

S of ω over S factors as

RepZpG
·⊗Qp−−−→ RepQpG

ω[1/p]−−−−→ Modfp
R[1/p]

·⊗R[1/p]S−−−−−−→ Modfp
S .

We denote the composite functor

(· ⊗R[1/p] S) ◦ ω[1/p] : RepQpG −→ Modfp
S

again by ωS .

Definition 4.1.3. For any finite free module M over any commutative ring S,
we denote by M⊗ the direct sum of all the S-modules which can be formed from
M using the operations of taking duals, tensor products, symmetric powers, and
exterior powers. Elements of M⊗ are called tensors over M .

4.1.4. Let G and R be as in §4.1.1. Let ω : RepZpG→ Modfp
R be a fiber functor.

Then ω is compatible with the operations considered in Definition 4.1.3, by [Bro13,
Thm. 4.8, Rmk. 4.2]. (The compatibility with taking duals follows from rigidity;
see [DM82, Prop. 1.9].) In this case, for each L in RepZpG and each G-invariant
element s ∈ L⊗, we may think of s as a morphism 1 → L⊗ (where 1 is the unit
object) and apply ω to it. We then get a morphism ω(s) : 1 → ω(L⊗) ∼= ω(L)⊗,
or equivalently an element ω(s) ∈ ω(L)⊗. Here, it is understood that ω has been
extended to infinite direct sums of objects, when we apply it to L⊗.

Definition 4.1.5. Let G be a flat, finite-type, affine group scheme over Zp. We
say that G is definable by tensors, if there exists L in RepZpG, and a subset
(sα)α∈α ⊂ L⊗, such that the Zp-homomorphism G→ GL(L) is a closed embedding
whose image is the point-wise stabilizer of (sα)α∈α. When this is the case we call
(L, (sα)α∈α) a defining datum for G.

Remark 4.1.6. If G is a flat, finite-type, affine group scheme over Zp such that GQp
is reductive, then G is definable by tensors, by combining [Bro13, Lem. 3.2] and
[Kis10, Prop. 1.3.2].

4.1.7. Let G be a flat, finite-type, affine group scheme over Zp that is definable
by tensors. Fix a defining datum (L, (sα)α∈α) for G. Let R be a faithfully flat
Zp-algebra. It will be useful to give a description of more explicit data giving rise
to a fiber functor over R.

Let D be a finite free R-module equipped with a collection of tensors (sα,0)α∈α ⊂
D⊗ indexed by the set α, and suppose that there exists an R-module isomorphism
L ⊗Zp R

∼−→ D taking each sα to sα,0. (Obviously such D and (sα,0)α∈α always
exist.)

Lemma 4.1.8. Keep the setting of §4.1.7. There exists a fiber functor

ω : RepZpG −→ Modfp
R

equipped with an isomorphism ι : ω(L) ∼−→ D such that ι maps ω(sα) ∈ ω(L)⊗ to
sα,0 for each α ∈ α. The pair (ω, ι) is unique up to unique isomorphism in the fol-
lowing sense. Given two such pairs (ω, ι), (ω′, ι′), there is a unique ⊗-isomorphism
ω
∼−→ ω′ which takes ι to ι′.
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Proof. To show the existence of ω, we set ω(Q) = Q⊗ZpR for Q in RepZpG, and we
take ι to be any isomorphism L⊗ZpR

∼−→ D taking sα to sα,0. (Such an isomorphism
is assumed to exist in §4.1.7.)

For the uniqueness, consider two such pairs (ω, ι), (ω′, ι′). We may assume that
(ω, ι) is as constructed above, so in particular ω = 1R. Consider the R-scheme
Isom(sα)(ω(L), ω(L′)) whose points valued in any R-algebra S classify S-linear iso-
morphisms ω(L) ⊗R S

∼−→ ω′(L) ⊗R S taking ω(sα) to ω′(sα) for each α. Using
the existence of ι and ι′, one sees that Isom(sα)(ω(L), ω(L′)) is a trivial GR-torsor.
(Here GR acts on ω(L) = L⊗Zp R.) There is a natural GR-equivariant map

Pω′ = Isom⊗(1R, ω′) −→ Isom(sα)(ω(L), ω(L′)),

which is necessarily an isomorphism since Pω′ is a GR-torsor. It follows that Pω′ is
a trivial GR-torsor, and there exists an isomorphism of ⊗-functors ω ∼−→ ω′ which
is unique up to multiplication by elements of G(R). In particular, there is a unique
choice of such an isomorphism which takes ι to ι′. �

Remark 4.1.9. The proof of Lemma 4.1.8 also shows that if (ω, ι) is a pair as in
that lemma, then ω is ⊗-isomorphic to 1R.

Lemma 4.1.10. Keep the setting of §4.1.7, and let (ω, ι) be a pair as in Lemma
4.1.8. Let ω′ be a fiber functor RepQpG→ Modfp

R[1/p], and let ι′ be an isomorphism
ω′(L[1/p]) ∼−→ D[1/p] taking ω′(sα) ∈ ω′(L[1/p])⊗ to sα,0 ∈ D[1/p]⊗ for each
α ∈ α. Then there is a unique ⊗-isomorphism ω[1/p] ∼−→ ω′ which takes ι to ι′.

Proof. By Remark 4.1.9, we may assume that ω = 1R without loss of generality.
The proof of the lemma is then completely analogous to the proof of the uniqueness
in Lemma 4.1.8. �

Lemma 4.1.11. Let G be a smooth affine group scheme over Zp with connected
fibers. (We do not need to assume that G is definable by tensors.) Let R be the ring
of integers in either a finite unramified extension of Qp or Qur

p . Let ω : RepZpG→
Modfp

R be a fiber functor. Then Pω is a trivial GR-torsor. In particular, the set
Pω(R) is a G(R)-torsor.

Proof. Our assumptions, together with Lang’s theorem, imply that any GR-torsor
over R, such as Pω, is necessarily trivial. �

4.1.12. We continue to consider G and R as in §4.1.1. For each fiber functor
ω : RepZpG→ Modfp

R we set

Y (ω) := Pω(R[1/p]) = {⊗-isomorphisms 1R[1/p]
∼−→ ωR[1/p]}.

This is either empty or a right G(R[1/p])-torsor (i.e., for η ∈ Y (ω) and g ∈
G(R[1/p]), we define η · g := η ◦ g). When Pω(R) is non-empty and thus a (right)
G(R)-torsor, there is a canonical isomorphism

Y (ω) ∼= Pω(R)×G(R) G(R[1/p]).

In this case we write Y (ω)◦ for Pω(R) when we view it as a subset of Y (ω). Its
elements are called integral points of Y (ω).
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4.2. Integral F -isocrystals with G-structure.

4.2.1. Let K0 be either a finite unramified extension of Qp, or Qur
p . Let σ ∈

Aut(K0) be the arithmetic p-Frobenius. We will apply the considerations in §4.1
to F -isocrystals over K0 with additional structures.

Recall that an F -isocrystal over K0 is a finite-dimensional K0-vector space V,
equipped with an isomorphism ϕV : σ∗V ∼−→ V called the Frobenius. We denote by
IsocK0 the category of F -isocrystals over K0.

Let Isoc◦K0
be the category of pairs (M,ϕM ), where M is a finite free OK0 -

module, and (M [1/p], ϕM ) is an F -isocrystal. We shall often write ϕ for ϕM when
no confusion can arise. Morphisms in this category are by definition morphisms
of OK0-modules that respect the Frobenii (after inverting p). We call an object of
Isoc◦K0

an integral F -isocrystal over K0. Note that Isoc◦K0
contains the category

of the usual F -crystals, but has the advantage of containing duals of objects. We
write

v : Isoc◦K0
−→ Modfp

OK0

for the forgetful functor, taking each (M,ϕM ) toM . (Here v stands for “vergessen”,
as in [RZ96, §1].)

Let G be a flat, finite-type, affine group scheme over Zp. By an integral F -
isocrystal with G-structure over K0, we mean a faithful, exact, ⊗-functor

Υ : RepZpG −→ Isoc◦K0
.

Equivalently, Υ is a ⊗-functor such that the composition v◦Υ : RepZpG→ Modfp
OK0

is a fiber functor. Note that we do not require v ◦Υ to be equal to 1K0 .
Similarly, by an F -isocrystal with G-structure over K0, we mean a faithful, exact,

⊗-functor

Υ : RepQpG −→ IsocK0 .

If Υ is an integral F -isocrystal with G-structure, then the similar construction
as in §4.1.1 yields a natural F -isocrystal with G-structure Υ[1/p].

We denote the categories of integral F -isocrystals (resp. F -isocrystals) with G-
structure over K0 by G-Isoc◦K0

(resp. G-IsocK0). In these categories, morphisms are
by definition ⊗-isomorphisms between ⊗-functors RepZpG→ Isoc◦K0

(resp. between
⊗-functors.

4.2.2. Let G be a flat, finite-type, affine group scheme over Zp that is definable by
tensors, and fix a defining datum (L, (sα)α∈α) for G (see §4.1.7). Let (D,ϕD) be
an object in Isoc◦K0

, equipped with a collection of ϕD-invariant tensors (sα,0)α∈α ⊂
D⊗, such that there exists an OK0-module isomorphism L⊗OK0

∼−→ D taking each
sα to sα,0. (Obviously such a tuple (D,ϕD, (sα,0)α∈α) always exists.)

Lemma 4.2.3. Keep the setting of §4.2.2. There exists an integral F -isocrystal
with G-structure Υ equipped with an isomorphism ι : Υ(L) ∼−→ (D,ϕD) in Isoc◦K0

such that ι maps Υ(sα) ∈ Υ(L)⊗ to sα,0 for each α ∈ α. The pair (Υ, ι) is unique
up to unique isomorphism in the following sense. Given two such pairs (Υ, ι),
(Υ′, ι′), there is a unique isomorphism Υ ∼−→ Υ′ in the category G-Isoc◦K0

which
takes ι to ι′.
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Proof. Fix an OK0 -module isomorphism ι : L ⊗ OK0 ' D taking each sα to sα,0.
The composite map

L⊗K0
∼−→
σ∗ι

σ∗D[1/p] ϕD−−→ D[1/p] ∼−→
ι−1

L⊗K0

fixes (sα), and hence has the form δσ for some δ ∈ G(K0). For Q in RepZpG we set
Υ(Q) = Q⊗OK0 , and set ϕQ := δσ : σ∗Q[1/p] ∼−→ Q. This shows the existence of
(Υ, ι).

To show uniqueness, let (Υ, ι), (Υ′, ι′), be two pairs as in the lemma. Let ω = v◦Υ
and ω′ = v◦Υ′. By Lemma 4.1.8, there is a unique isomorphism η : ω ∼−→ ω′ of fiber
functors overOK0 taking ι to ι′. In particular the isomorphism η(L) : ω(L) ∼−→ ω′(L)
is compatible with the Frobenii on ω(L)[1/p] and on ω′(L)[1/p]. Since for any Q
in RepZpG, the Qp-representation Q⊗Qp of G is a subquotient of (L⊗Qp)⊗, this
implies that the isomorphism η(Q) : ω(Q) ∼−→ ω′(Q) is compatible with the Frobenii
on ω(Q)[1/p] and on ω′(Q)[1/p]. Hence the isomorphism η : ω ∼−→ ω′ comes from a
(necessarily unique) isomorphism Υ ∼−→ Υ′ in G-Isoc◦K0

. �

Lemma 4.2.4. Keep the setting of §4.2.2, and let (Υ, ι) be a pair as in Lemma
4.2.3. Let Υ′ be an F -isocrystal with G-structure, and let ι′ be an isomorphism
Υ′(L[1/p]) ∼−→ (D[1/p], ϕD) in IsocK0 such that ι′ maps Υ′(sα) ∈ Υ′(L[1/p])⊗ to
sα,0 ∈ D[1/p]⊗ for each α ∈ α. Then there is a unique isomorphism Υ[1/p] ∼−→ Υ′
in the category G-IsocK0 which takes ι to ι′.

Proof. Let ω = v ◦Υ[1/p] and ω′ = v ◦Υ′[1/p]. These are fiber functors RepQpG→
Modfp

K0
. By Lemma 4.1.10, there is a unique ⊗-isomorphism ω

∼−→ ω′ which takes
ι to ι′. By exactly the same argument as in the proof of Lemma 4.2.3, this isomor-
phism comes from a unique isomorphism Υ[1/p] ∼−→ Υ′ in G-IsocK0 . �

4.2.5. Let G be a smooth affine group scheme over Zp with connected fibers. Let
Υ be an integral F -isocrystal with G-structure over K0, and write ω for v ◦Υ. By
Lemma 4.1.11, Pω(OK0) is a non-empty G(OK0)-torsor. Then we have the G(K0)-
torsor Y (ω), and a canonical G(OK0)-torsor Y (ω)◦ ⊂ Y (ω), as in §4.1.12. In the
sequel, we shall write Y (Υ) and Y (Υ)◦ for Y (ω) and Y (ω)◦ respectively.

Now consider an element y ∈ Y (Υ). For each L in RepZpG, the K0-linear iso-
morphism L⊗Zp K0

∼−→ Υ(L)[1/p] induced by y allows us to view the Frobenius on
Υ(L)[1/p] as being given by δy,L ·σ for some δy,L ∈ GL(L⊗K0). Since every repre-
sentation in RepQpG contains a G-stable Zp-lattice (see §4.1.1), the reconstruction
theorem over a field implies that the elements δy,L for all L come from a unique
element δy ∈ G(K0). Thus we have obtained a map

Y (Υ) −→ G(K0), y 7−→ δy.

It is clear that the set {δy | y ∈ Y (Υ)} is a G(K0)-orbit under σ-conjugation, and
the set {δy | y ∈ Y (Υ)◦} is a G(OK0)-orbit under σ-conjugation. We call the last
G(OK0)-orbit the invariant of Υ, and denote it by inv(Υ).

Lemma 4.2.6. Keep the assumptions in §4.2.5. The construction Υ 7→ inv(Υ)
induces a bijection from the set of isomorphism classes in the category G-Isoc◦K0

,
to the set of G(OK0)-σ-conjugacy classes in G(K0).

Proof. It is easy to check that the map described in the lemma is well defined. The
inverse of the map is induced by the following construction: Given δ ∈ G(K0), we
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define a functor Υδ : RepZpG→ Isoc◦K0
by sending L to L⊗Zp OK0 and equipping

L⊗Zp K0 with δσ as the Frobenius. �

Definition 4.2.7. Let G be a reductive group scheme over Zp, and let υ : Gm →
GOK0

be a homomorphism of OK0-group schemes. Let Υ be an integral F -isocrystal
with G-structure over K0. With the notation as in §4.2.5, we define

Yυ(Υ) := {y ∈ Y (Υ) | δy ∈ G(OK0)υ(p)G(OK0)} .
This is a subset of Y (Υ) stable under the G(OK0)-action. We define

Xυ(Υ) := Yυ(Υ)/G(OK0).

Remark 4.2.8. In the setting of Definition 4.2.7, if we fix an element y0 ∈ Y (Υ)
and use it to identify the G(K0)-torsor Y (Υ) with G(K0), then Xυ(Υ) is identified
with {

g ∈ G(K0)/G(OK0) | g−1δy0σ(g) ∈ G(OK0)υ(p)G(OK0)
}
.

When K0 = Qur
p , the above is the affine Deligne–Lusztig set Xυ(δy0) introduced in

§2.2.7.

4.3. Crystalline representations with G-structure.

4.3.1. Let G be a connected reductive group over Qp. Let K/Qp be a finite
extension inside Qp, and let K0 be the maximal unramified extension of Qp inside
K.22 We denote by RZG(K) the set of pairs (µ, δ), where µ is a K-homomorphism
Gm,K → GK , and δ ∈ G(K0). These pairs are considered by Rapoport–Zink in
[RZ96, §1].

Let MFϕK be the category of filtered ϕ-modules over K. This is a Tannakian
category, equipped with the fiber functor v : MFϕK → Modfp

K0
taking each filtered

ϕ-module to its underlying K0-vector space. There is a bijection
(µ, δ) 7−→ Iµ,δ

from the set RZG(K) to the set of faithful exact ⊗-functors I : RepQpG → MFϕK
such that v ◦ I is equal to the standard fiber functor

1K0 : RepQpG −→ Modfp
K0
, V 7−→ V ⊗Qp K0.

We refer the reader to [RZ96, §1] for details.
We say that two elements (µ1, δ1) and (µ2, δ2) of RZG(K) are equivalent, if Iµ1,δ1

and Iµ2,δ2 are ⊗-isomorphic. We denote this equivalence relation on RZG(K) by
∼. We call an element (µ, δ) of RZG(K) admissible, if Iµ,δ lands in the subcategory
MFϕ,aK of admissible filtered ϕ-modules. We call an element (µ, δ) of RZG(K)
neutral, if κG(δ) = [µ] ∈ π1(G)Γp . Here κG is the Kottwitz map B(G) → π1(G)Γp
as in §1.4.2. We denote by RZa

G(K) (resp. RZn
G(K)) the subset of admissible

(resp. neutral) elements of RZG(K). We also write RZa,n
G (K) for RZa

G(K)∩RZn
G(K).

It is easy to see (cf. [RZ96, Def. 1.23]) that two elements (µ1, δ1), (µ2, δ2) ∈
RZG(K) are equivalent if and only if there exists g ∈ G(K0) such that gδ1σ(g)−1 =
δ2 and such that Int(g)◦µ1 and µ2 define the same filtration (in the sense of [SR72,
IV, §2]) on the fiber functor 1K : RepQpG→ Modfp

K . By [SR72, IV, 2.2.5 (2)], the
last condition on µ1 and µ2 implies that µ1 and µ2 are conjugate by G(K). From

22The notations K and K0 are standard in p-adic Hodge theory. In the context of Shimura
varieties, we often use K to denote the level. In such a case we will use notations such as F and
F0 to denote p-adic fields.
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this we see that the subset RZa
G ⊂ RZG is invariant under the equivalence relation

∼. It is also clear that the subset RZn
G ⊂ RZG is invariant under ∼.

When G is a torus, the equivalence relation and the admissibility condition on
RZG(K) can be made more explicit as follows.

Proposition 4.3.2. Let T be a torus over Qp. The following statements hold.
(i) Two elements (µ1, δ1), (µ2, δ2) ∈ RZT (K) are equivalent if and only if

µ1 = µ2 and δ1 is σ-conjugate to δ2 in T (K0).
(ii) We have RZa

T (K) = RZn
T (K).

Proof. Part (i) follows easily from the discussion in §4.3.1. For part (ii), we fix an
embedding Qp → Q̆p as usual, and write K̆ for the compositum of K and Q̆p inside
Q̆p. The condition of being neutral is equivalent to the second condition in [RZ96,
Prop. 1.21]. Thus by that proposition, an element (µ, δ) ∈ RZT (K) is neutral if
and only if the ⊗-functor RepQpT → MFϕ

K̆
obtained by base changing Iµ,δ lands

in MFϕ,a
K̆

. Since the admissibility of a filtered ϕ-module over K is equivalent to the
admissibility of its base change to K̆, part (ii) follows. �

4.3.3. Keep the setting of §4.3.1. If K ′/K is a finite extension inside Qp, then
there is a natural map RZG(K) → RZG(K ′), which sends equivalent elements to
equivalent elements, and preserves neutrality and admissibility. We define

RZG := lim−→
K

RZG(K),

where K runs through finite extensions of Qp inside Qp, and the transition maps
are the ones mentioned above. Similarly, we define the three subsets RZa

G, RZn
G,

and RZa,n
G of RZG by taking direct limits. We write ∼ for the inherited equivalence

relation on RZG . The three subsets of RZG introduced above are all stable under
∼.

Corollary 4.3.4. Let T be a torus over Qp. We have RZa
T = RZn

T . There is a
natural bijection between RZa

T /∼ and the set{
(µ, [δ]) | µ ∈ X∗(T ), [δ] ∈ T (Qur

p )/(1− σ), κT ([δ]) = [µ]
}
.

Proof. This follows from Proposition 4.3.2. �

4.3.5. Keep the setting of §4.3.1. We say that a homomorphism

ρ : ΓK −→ G(Qp)

is a G(Qp)-valued crystalline representation of ΓK , if for some faithful represen-
tation V in RepQpG, the homomorphism ΓK → GL(V )(Qp) arising from ρ is a
crystalline representation. This condition is in fact independent of the choice of V .
We denote by CrysG(K) the set of all such ρ.

We define
CrysG := lim−→

K

CrysG(K),

where K runs through finite extensions of Qp inside Qp, and the transition maps
are given by restriction. We have a natural G(Qp)-action on CrysG by conjugation.
We denote the resulting equivalence relation on CrysG by ∼.
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For ρ ∈ CrysG(K), we denote the image of ρ in CrysG by [ρ]. From ρ, we obtain
a faithful exact ⊗-functor Iρ : RepQpG→ MFϕK taking each V to

Dcris(V ) = (Bcris ⊗Qp V )ΓK ,

where V is viewed as a crystalline representation of ΓK via ρ. (The fact that Iρ is
a faithful exact ⊗-functor follows from the fundamental properties of Dcris [Fon79,
§3.4].) We thus obtain a fiber functor v ◦ Iρ : RepQpG → Modfp

K0
. By Steinberg’s

theorem, the GK0 -torsor Isom⊗(1K0 , v◦Iρ) becomes trivial after a finite unramified
extension of K0. Hence if we replace K by a suitable finite extension, then we may
assume that this torsor is trivial. In this case, Iρ is ⊗-isomorphic to Iµ,δ for some
(µ, δ) ∈ RZG(K) which is unique up to equivalence; see §4.3.1. The image of (µ, δ)
in RZG/∼ is independent of all choices, and it depends on ρ only via its image in
CrysG /∼. Mapping ρ to (µ, δ), we have obtained a well-defined map

DG
cris : CrysG /∼ −→ RZG/∼.

Proposition 4.3.6. The map DG
cris is injective with image RZa,n

G /∼.

Proof. Firstly, it is clear from the definitions that im(DG
cris) ⊂ RZa

G /∼.
For each finite extension K/Qp inside Qp, we let Repcris

ΓK be the category of
crystalline representations of ΓK over Qp. Then Dcris : Repcris

ΓK → MFϕ,aK is a
⊗-equivalence of ⊗-categories, with a quasi-inverse given by the functor

Vcris : D 7−→ Fil0(Bcris ⊗K0 D)ϕ=1

(which is also a ⊗-functor). Let u : Repcris
ΓK → Modfp

Qp be the functor sending a
crystalline representation to its underlying Qp-vector space.

By a result of Wintenberger [Win97], we know that an element (µ, δ) ∈ RZa
G(K)

is neutral if and only if the composite ⊗-functor
u ◦ Vcris ◦ Iµ,δ : RepQpG→ Modfp

Qp

is ⊗-isomorphic to the standard fiber functor 1Qp .23 From this result, it is clear
that im(DG

cris) ⊂ RZa,n
G /∼.

Now we construct a map RZa,n
G /∼ → CrysG /∼ inverse to DG

cris. Let (µ, δ) ∈
RZa,n

G (K). By the result of Wintenberger mentioned above, the ⊗-functor F :=
u ◦ Vcris ◦ Iµ,δ is ⊗-isomorphic to 1Qp . By composing the tautological homo-
morphism ΓK → Aut⊗(u)(Qp) with the natural homomorphism Aut⊗(u)(Qp) →
Aut⊗(F)(Qp), we obtain a homomorphism ρ′ : ΓK → Aut⊗(F)(Qp). By choos-
ing a ⊗-isomorphism between 1Qp and F , we identify the Qp-group Aut⊗(F) with
G, and identify ρ′ with a homomorphism ρ : ΓK → G(Qp). Clearly the G(Qp)-
conjugacy class of ρ is independent of choices. It is straightforward to check that
the construction (µ, δ) 7→ ρ gives rise to the desired inverse map of DG

cris. �

Corollary 4.3.7. Let T be a torus over Qp. The map DT
cris induces a bijection

CrysT
∼−→
{

(µ, [δ]) | µ ∈ X∗(T ), [δ] ∈ T (Qur
p )/(1− σ), κT ([δ]) = [µ]

}
.

Proof. This follows from Corollary 4.3.4 and Proposition 4.3.6. (Note that CrysT =
CrysT /∼.) �

23This was originally a conjecture of Rapoport–Zink; see the paragraph below [RZ96,
Prop. 1.20]. Wintenberger showed in [Win97] that it is a consequence of the Colmez–Fontaine
Theorem [CF00].
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4.3.8. Let T be a cuspidal torus over Q (see Definition 1.5.4). We call an element
δ ∈ T (Qur

p ) motivic, if for some n ≥ 1, the element γ = δσ(δ) . . . σn−1(δ) is in T (Q),
and is a p-unit (i.e., γ lies in a compact open subgroup of T (Apf )). We denote
by T (Qur

p )mot ⊂ T (Qur
p ) the subset of motivic elements. Note that T (Qur

p )mot is
stable under σ-conjugation by T (Qur

p ). We denote by T ◦ the connected Néron
model of TQp over Zp. Let ◦∼ be the equivalence relation on T (Qur

p )mot defined by
σ-conjugation by T ◦(Zur

p ). As in §1.4.2, we denote by wT : T (Q̆p) → X∗(T )Γp,0
the Kottwitz homomorphism, which is surjective. By [Rap05, Rmk. 2.2 (iii)], we
have ker(wT ) = T ◦(Z̆p). Hence the restriction of wT to T (Qur

p )mot factors through
T (Qur

p )mot/
◦∼.

Lemma 4.3.9. In the setting of §4.3.8, the map wT induces a bijection

T (Qur
p )mot/

◦∼ ∼−→ X∗(T )Γp,0 .(4.3.9.1)

Proof. The surjectivity of (4.3.9.1) follows from the second construction in [Kis17,
§4.3.9]. We explain this in more detail. Let µ ∈ X∗(T ), and let L/Q be a finite
Galois extension inside Q splitting T . Let Lp be the completion of L at the place
above p determined by the fixed embedding Q ↪→ Qp, and let π be a uniformizer
of Lp. Then the same argument as in loc. cit. (with µhT replaced by µ) shows that
there exist s ∈ Z≥1 and a p-unit γ ∈ T (Q) such that NLp/Qp(µ(π))sγ−1 ∈ T ◦(Zp).
By Greenberg’s theorem [Gre63, Prop. 3], the map T ◦(Z̆p)→ T ◦(Z̆p), c 7→ cσ(c)−1

is surjective. Hence we can find c ∈ T ◦(Z̆p) such that24

cNLp/Qp(µ(π))sσ(c)−1 = γ.

Let
δ := cNLp/Lp,0(µ(π))σ(c)−1 ∈ T (Q̆p),

where Lp,0 is the maximal unramified extension of Qp inside Lp. As in loc. cit., we
have δσ(δ) · · ·σn−1(δ) = γ, and we have δ ∈ T (Qpn), where n = s[Lp,0 : Qp]. Hence
δ ∈ T (Qur

p )mot. We now check that wT (δ) equals the image of µ in X∗(T )Γp,0 ,
which will prove the surjectivity of (4.3.9.1). For this, it suffices to show that
wT (NLp/Lp,0(µ(π))) equals the image of µ, since wT (c) is trivial. Writing F for
Lp,0, we have X∗(T )ΓF = X∗(T )Γp,0 . Let σF = σ[F :Qp]. By [Kot85, §2.5], wT
induces a bijection

BF (T ) :=
{
σF -conjugacy classes in T (Q̆p)

}
∼−→ X∗(T )ΓF ,

whose inverse is induced by µ 7→ NLp/F (µ(π)). (Here we use that T splits over Lp
and that Lp/F is totally ramified.) This gives what we want.

For the injectivity of (4.3.9.1), let δ1, δ2 ∈ T (Qur
p )mot be such that wT (δ1) =

wT (δ2). Let δ = δ1δ
−1
2 . Then δ is also motivic, so we can choose n such that

γ := δσ(δ) · · ·σn−1(δ) is a p-unit in T (Q). Since wT (δ) = 0, we have δ ∈ T ◦(Z̆p),
and in particular γ ∈ T ◦(Zp). Therefore γ lies in a congruence subgroup of T (Q),
and has finite order by Lemma 1.5.5. Up to enlarging n, we may assume that
γ = 1. Again by Greenberg’s theorem, we can write δ ∈ T ◦(Z̆p) as cσ(c)−1, for
some c ∈ T ◦(Z̆p). Since γ = 1, we have cσn(c)−1 = 1, i.e., c ∈ T ◦(Zpn). Hence
δ1 = δδ2 = cδ2σ(c)−1 with c ∈ T ◦(Zur

p ), which means δ1
◦∼ δ2. �

24In the last paragraph of [Kis17, §4.3.9], it is used that such c can be found in T (Q̆p).
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Lemma 4.3.10. In the setting of §4.3.8, the map wT induces a bijection from the
set of T (Qur

p )-σ-conjugacy classes in T (Qur
p )mot to X∗(T )Γp .

Proof. The map wT induces a group isomorphism T (Q̆p)/T ◦(Z̆p)
∼−→ X∗(T )Γp,0 .

In view of Lemma 1.6.8, this induces a group isomorphism T (Qur
p )/T ◦(Zur

p ) ∼−→
X∗(T )Γp,0 , which is equivariant for the natural actions of σ on the two sides. The
lemma follows from this fact and Lemma 4.3.9. �

Definition 4.3.11. Let T be a cuspidal torus over Q. Let MotT be the subset of
CrysTQp

consisting of those [ρ] whose image under the bijection in Corollary 4.3.7 is
of the form (µ, [δ]) where [δ] ∈ T (Qur

p )/(1− σ) is in the image of T (Qur
p )mot. Note

that the definition of MotT depends on T over Q, not just TQp .

Proposition 4.3.12. In the setting of Definition 4.3.11, the µ-component of the
map DTQp

cris induces a bijection
MT : MotT

∼−→ X∗(T ).

Proof. This follows from Corollary 4.3.7 and Lemma 4.3.10. �

4.3.13. Let T be a cuspidal torus over Q. We now use class field theory to
construct certain T (Qp)-valued global Galois representations, and show that their
localizations at places above p give rise to elements of MotT .

Let µ ∈ X∗(T ), and let Eµ ⊂ Q be the field of definition of µ. Similar to §1.5.3,
we consider the composite homomorphism of Q-algebraic groups

r(µ)alg : ResEµ/QGm
ResEµ/Q µ−−−−−−→ ResEµ/Q T

NEµ/Q−−−−→ T.

We have an induced homomorphism between topological groups
E×µ \A×Eµ −→ T (Q)\T (A).(4.3.13.1)

By Lemma 1.5.5, T (Q) is discrete in T (Af ), and so we have
T (Q)\T (Af ) = lim←−

U

T (Q)\T (Af )/U,

where U runs through compact open subgroups of T (Af ). For each such U , we
have a natural map π0(T (Q)\T (A)) → T (Q)\T (Af )/U , cf. §1.5.3. In the limit we
obtain a map

π0(T (Q)\T (A)) −→ T (Q)\T (Af ).(4.3.13.2)
The composition

E×µ \A×Eµ
(4.3.13.1)−−−−−−→ T (Q)\T (A) −→ π0(T (Q)\T (A)) (4.3.13.2)−−−−−−→ T (Q)\T (Af )

(4.3.13.3)

factors through the global Artin map E×µ \A×Eµ → π0(E×µ \A×Eµ) ∼= Gal(Eab
µ /Eµ).

(Recall from §1.5.3 that we take the geometric normalization of the global Artin
map.) We thus obtain a map

r(µ) : Gal(Eab
µ /Eµ) −→ T (Q)\T (Af ).

Let U ⊂ T (Af ) be a neat compact open subgroup. Since T (Q) is discrete in
T (Af ), we have T (Q) ∩ U = {1} (cf. the proof of Lemma 1.5.7). The kernel of the
projection

π(U) : T (Q)\T (Af )→ T (Q)\T (Af )/U
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is T (Q)\T (Q)U , which we identify with U , using that T (Q)∩U = {1}. Let Eµ,U/Eµ
be the finite extension inside Eab

µ /Eµ such that Gal(Eab
µ /Eµ,U ) is the kernel of

πU ◦ r(µ). Then r(µ) induces a homomorphism

r(µ)U : Gal(Eab
µ /Eµ,U ) −→ kerπU ∼= U.

We denote by r(µ)U,p the composite homomorphism

Gal(Eab
µ /Eµ,U ) r(µ)U−−−−→ U ↪→ T (Af ) projection−−−−−−→ T (Qp).

The fixed embeddings Eµ,U ↪→ Q ↪→ Qp give rise to a place v of Eµ,U above p.
Let K = Eµ,U,v ⊂ Qp. We denote by r(µ)U,p,loc the composite map

ΓK = Gal(Qp/K) −→ Gal(Eab
µ /Eµ,U ) r(µ)U,p−−−−−→ T (Qp).

Proposition 4.3.14. In the setting of §4.3.13, assume in addition that U is of
the form UpUp, where Up is a neat compact open subgroup of T (Apf ) and Up is
a compact open subgroup of T (Qp). Then r(µ)U,p,loc : ΓK → T (Qp) is a T (Qp)-
valued crystalline representation. The element [r(µ)U,p,loc] ∈ CrysTQp

lies in MotT .
Moreover, the image of [r(µ)U,p,loc] under the bijection MT in Proposition 4.3.12
is −µ.

Proof. Let f be the composite map of topological groups

K×
ArtK−−−→ Γab

K −→ Gal(Eab
µ /Eµ,U ) r(µ)U−−−−→ U,

where ArtK is the local Artin map (normalized geometrically). Let F be the com-
pletion of Eµ inside K = Eµ,U,v. Let f1 be the composite map of Qp-algebraic
groups

ResK/Qp Gm
NK/F−−−−→ ResF/Qp Gm ↪→ (ResEµ/QGm)⊗Q Qp

r(µ)alg⊗QQp−−−−−−−−→ TQp .

Then f1 induces a map

K× = (ResK/Qp Gm)(Qp)
f1−→ T (Qp) ↪→ T (Af ),

which we again denote by f1.
We claim that f and f1 induce the same map O×K → T (Af ). In fact, by the

definition of r(µ)U and the compatibility of the local and global Artin maps, we
have

f1(x) ∈ f(x)T (Q) ⊂ T (Af ), ∀x ∈ K×.(4.3.14.1)

Take x ∈ O×K , and let γ ∈ T (Q) be such that f1(x) = f(x)γ. Note that f1(x)
lies inside the maximal compact subgroup Up,max of T (Qp), by the compactness of
O×K . Hence γ lies in UpUp,max, which is a neat compact open subgroup of T (Af )
by the neatness of Up. Since T (Q) is discrete in T (Af ), we have γ = 1. The claim
is proved.

Now to check that r(µ)U,p,loc is crystalline, we take an arbitrary representation V
of TQp and check that ΓK

r(µ)U,p,loc−−−−−−−→ T (Qp) → GL(V )(Qp) is crystalline. For this,
it suffices to check that the composition K× f−→ U → T (Qp) → GL(V )(Qp) agrees
with a Qp-algebraic group homomorphism ResK/Qp Gm → GL(V ) on O×K , by a
well-known criterion in p-adic Hodge theory (see for instance [Con11, Prop. B.4 (i)]



116 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

and the remark following it). But this follows immediately from our claim proved
above.

We now check that [r(µ)U,p,loc] ∈ CrysTQp
lies in MotT . Let [δ] ∈ T (Qur

p )/(1−σ)
be the element attached to [r(µ)U,p,loc] as in Corollary 4.3.7, and let δ ∈ T (Qpn)
be a representative of [δ]. By taking a faithful representation of TQp and applying
[Con11, Prop. B.4 (ii)], we know that up to enlarging n the element

γn := δσ(δ) · · ·σn−1(δ) ∈ T (Qp)
is equal to25

[f(π)−1
p f1(π)]−n/nK ∈ T (Qp).

Here π is a uniformizer of K, nK is the residue degree of K, and f(π)p denotes the
component at p of f(π) ∈ U . It remains to show that f(π)pf1(π)−1 is a p-unit in
T (Q). By (4.3.14.1) there exists γ ∈ T (Q) such that f1(π) = f(π)γ ∈ T (Af ). Then
f(π)−1

p f1(π) equals the image of γ in T (Qp). In addition, γ and f(π)−1 have the
same image in T (Apf ), which shows that γ ∈ Up. Hence γ is a p-unit.

Finally, we check that MT ([r(µ)U,p,loc]) = −µ. Let Cp be the completion of Qp.
For each faithful representation V of TQp , the ΓK-representation on V induced by
r(µ)U,p,loc is Hodge–Tate, and we have the cocharacter hV : Gm,Cp → GL(V )Cp
as in [Ser79, §1.4]. We know that hV factors through TCp (see loc. cit.), and the
resulting Hodge–Tate cocharacter µHT ∈ X∗(T ) is independent of the choice of V
by the functoriality of the construction. Since the filtration on DdR(Qp(1)) jumps
at −1, it is easy to see that MT ([r(µ)U,p,loc]) = −µHT. We are left to check that
µHT = µ.

Let T ′ = ResK/Qp Gm. We identify T ′Qp
with

∏
τ∈HomQp (K,Qp)Gm,Qp , and de-

fine µ′ ∈ X∗(T ′) by µ′(z) = (z, 1, · · · , 1), where the first spot corresponds to the
canonical embedding K ↪→ Qp. Let r′ : ΓK,0 → O×K be the Lubin–Tate character
(cf. [Ser79, §2.1]). Then r′ is a T ′(Qp)-valued crystalline representation. Since
ArtK ◦ r′ is the inclusion ΓK,0 ↪→ ΓK (thanks to the geometric normalization of
ArtK), we know that the restriction of r(µ)U,p to ΓK,0 equals the composition

ΓK,0
r′−→ O×K

f−→ U → T (Qp).

Moreover, by our previous claim that f and f1 induce the same map O×K → T (Af ),
we know that the above composition is equal to the composition of r′ with f1 :
K× → T (Qp). Therefore if we let µ′HT ∈ X∗(T ′) be the Hodge–Tate cocharacter
of r′, then µHT equals f1 ◦ µ′HT. (Recall that f1 is an algebraic homomorphism
T ′ → TQp .) By the last paragraph of [Ser79, §2.1], we have µ′HT = µ′. Therefore
µHT = f1 ◦ µ′, which is easily seen to be equal to µ. �

4.4. Crystalline lattices with G-structure.

4.4.1. Let K be a finite extension of Qp inside Qp, with residue field k. Let K0
be the maximal unramified extension of Qp inside K0, and let σ ∈ Aut(K0) be the
arithmetic p-Frobenius.

We write W for W (k) = OK0 . Fix a uniformizer π of K, and let E = E(u) be its
Eisenstein polynomial over K0. We set S = W [[u]], and let ϕ be the endomorphism

25Note that in [Con11] the arithmetic normalization of the local Artin map is used, which is
opposite to our normalization. This results in the sign difference in the exponent in the expression
below.
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of S that restricts to σ onW and sends u to up.We have aW -algebra isomorphism
S/(E) ∼−→ OK , which sends u mod (E) to π. Thus we have specialization maps
S → OK and S → W , sending u to π and 0 respectively. Using these two maps
we view K and K0 as S-algebras respectively. (These S-algebra structures are not
compatible with the inclusion K0 ↪→ K.)

For any height 1 prime ideal p ⊂ S, the localization Sp is a DVR, and we write
Ŝp for its completion.

We denote by Modϕ/S the category of pairs (M, ϕM), where M is a finite free
S-module, and ϕM is a S-module isomorphism ϕ∗M[1/E] ∼−→ M[1/E]. For such
a pair (M, ϕM), the S-module ϕ∗M carries a filtration, given by Fili(ϕ∗M) =
ϕ−1
M (EiM) ∩ ϕ∗M ⊂ ϕ∗M[1/E] for i ∈ Z.
Let Repcris ◦

ΓK be the category of ΓK-stable Zp-lattices in crystalline representa-
tions of ΓK over Qp. Recall from [Kis10, §1.2] that there is a faithful ⊗-functor

M : Repcris ◦
ΓK −→ Modϕ/S .

For each L in Repcris ◦
ΓK , the following statements hold (see loc. cit.).

(i) There is a canonical isomorphism

M(L)⊗S K0 ∼= Dcris(L⊗Qp)

of isocrystals over K0. The Frobenius on the left is induced by ϕM(L).
This isomorphism is functorial in L and compatible with tensor products.

(ii) There is a canonical isomorphism

ϕ∗M(L)⊗S K ∼= DdR(L⊗Qp)(4.4.1.1)

of filtered K-vector spaces. The filtration on the left is induced by the
filtration on ϕ∗M(L). This isomorphism is functorial in L and compatible
with tensor products.

(iii) There is a faithfully flat and formally étale Ŝ(p)-algebra ÔEur , and a canon-
ical ÔEur-linear isomorphism

ÔEur ⊗Zp L
∼= ÔEur ⊗S M(L).

This isomorphism is functorial in L and compatible with tensor products.
We set Mcris(L) := M(L)⊗S W . Thus Mcris is a ⊗-functor

Repcris ◦
ΓK −→ Isoc◦K0

.

By (i) above, Mcris(L) is a W -lattice in the K0-vector space Dcris(L ⊗ Qp). The
following property is proved by Tong Liu in [Liu18, §4].

(iv) Inside Dcris(L ⊗ Qp), the W -lattice Mcris(L) is independent of the choice
of a uniformizer in F (which is needed to define the functor M). Moreover,
if K ′/K is a finite extension in Qp and L′ ∈ Repcris ◦

ΓK′ denotes L equipped
with the inherited ΓK′ -action, then we have a canonical identification

Mcris(L′) ∼= Mcris(L)⊗W (k) W (k′).

This is compatible with the usual identification

Dcris(L′) ∼= Dcris(L)⊗K0 K
′
0.

Here k′ denotes the residue field of K ′, and K ′0 denotes W (k′)[1/p].
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The filtered isomorphism (4.4.1.1) is induced by another canonical filtered iso-
morphism, which we now recall. Note that Ŝ(E) is a complete DVR with residue
field K, which has characteristic zero. Hence Ŝ(E) is canonically a K-algebra,
and the K-algebra structure is compatible with the natural W -algebra structure.
The following statements follow from the proof of [Kis10, Thm. 1.2.1], and [Kis06,
Lem. 1.2.12 (4)]. For each L in Repcris ◦

ΓK , there is a canonical filtered isomorphism

ϕ∗M(L)⊗S Ŝ(E)
∼−→ DdR(L⊗Qp)⊗K Ŝ(E).(4.4.1.2)

Here the filtration on the right is the tensor product filtration, coming from the
filtration on DdR(L ⊗ Qp) and the E-adic filtration on Ŝ(E). The filtration on
the left is the one induced by the filtration on ϕ∗M(L) (which is also the same as
the tensor product filtration coming from the filtration on ϕ∗M(L) and the E-adic
filtration on Ŝ(E)). Now (4.4.1.1) is induced by (4.4.1.2) by passing to the residue
field K of Ŝ(E).

4.4.2. Let G be a flat, finite-type, affine group scheme over Zp. We say that a
homomorphism

ρ : ΓK −→ G(Zp)
is a G(Zp)-valued crystalline representation, if the composition of ρ with the inclu-
sion G(Zp) ⊂ G(Qp) is a G(Qp)-valued crystalline representation as in §4.3.5.

Given a G(Zp)-valued crystalline representation ρ, we obtain a tautological func-
tor

ρ1 : RepZpG −→ Repcris ◦
ΓK ,

sending each L to the ΓK-stable lattice L in the crystalline representation L⊗Qp.
We shall need a generalization of ρ1. Let ΓK act on the left on G(Qp)/G(Zp)

by
γ(gG(Zp)) := ρ(γ)gG(Zp), ∀γ ∈ ΓK , g ∈ G(Qp).

Since ρ(ΓK) ⊂ G(Zp), the coset of 1 in G(Qp)/G(Zp) is fixed by Γp. Now let
λ ∈ G(Qp)/G(Zp) be a point fixed by ΓK . Let

ρ1
λ : RepZpG −→ Repcris ◦

ΓK

be the functor sending each L to the ΓK-stable lattice λ · L inside L⊗Qp.
We define ⊗-functors

ωλρ : RepZpG
M◦ ρ1

λ

−−−−−→ Modϕ/S → Modfp
S, L 7→M(λ · L)

and

ωλρ,0 : RepZpG
Mcris◦ ρ1

λ

−−−−−−−→ Isoc◦K0
→ Modfp

W , L 7→Mcris(λ · L).
Here the last arrows in both cases are the natural forgetful functors. Clearly

ωλρ,0 = (ωλρ )W .

We also write Υλ
ρ for the ⊗-functor

Mcris ◦ ρ1λ : RepZpG −→ Isoc◦K0
.

When λ is the coset of 1, we omit it from the superscripts. Note that the
definition of ωλρ depends on the choice of a uniformizer in F , but the definitions of
Υλ
ρ and ωλρ,0 are independent of such a choice (up to canonical ⊗-isomorphism), by

property (iv) in §4.4.1,
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As in §4.1.1, we denote by Pωλρ the S-scheme Isom⊗(1S, ωλρ ). Since Aut⊗(1S) ∼=
GS by the reconstruction theorem, we know that Pωλρ is a pseudo-torsor under GS

(i.e., for each S-scheme S, the set Pωλρ (S) is either empty or a principal homoge-
neous space under G(S)). However, in general ωλρ may not be a fiber functor (as it
may not be exact), and Pωλρ may not be a GS-torsor.

Lemma 4.4.3. Let G, ρ, λ be as in §4.4.2. Let U be the complement of the closed
point in SpecS. Then Pωλρ |U is a GU -torsor over U .

Proof. We write ω for ωλρ . By [KP18, Thm. 3.3.2], the functor ωU : L 7→ ω(L)|U
is an exact faithful ⊗-functor from RepZpG to the category of vector bundles on
U . As in §4.1.1, we may also regard ωU as a fiber-wise faithful exact functor
between the fibered categories Rep G and BunU , where the fibers of BunU over
SpecZp and SpecQp are respectively the categories of vector bundles on U and
on U ×SpecZp SpecQp. Since Pω|U is identified with PωU , we know that it is a
GU -torsor by [Bro13, Thm. 4.8]. �

4.4.4. Let G be a smooth affine group scheme over Zp with connected fibers.
Let U be the complement of the closed point in SpecS. We say that G satisfies
property KL, if every G-torsor over U extends to SpecS.26 (Here “KL” stands for
“Key Lemma”.) Since G is smooth with connected fibers and since the residue field
of the closed point in SpecS is the finite field k, by Lang’s theorem we know that
all G-torsors on SpecS are trivial. Thus property KL is equivalent to the property
that all G-torsors on U are trivial.

It has been proved by Anschütz [Ans18, Cor. 1.2] that all parahoric group
schemes G over Zp satisfy property KL, generalizing earlier results in [CTS79]
and [KP18]. We will make use of this result mainly when G is either a reductive
group scheme over Zp, or the connected Néron model of a torus. (In the former
case this result already follows from [CTS79], as explained in Step 5 in the proof
of [Kis10, Prop. 1.3.4].) In Corollary 4.4.16 below we will also apply the result of
Anschütz to some other parahoric group schemes.

Lemma 4.4.5. Let G be a smooth affine group scheme over Zp with connected
fibers, satisfying property KL. Let ρ : ΓK → G(Zp) be a G(Zp)-valued crystalline
representation, and let λ ∈ G(Qp)/G(Zp) be a point fixed by ΓK . Then ωλρ :
RepZpG → Modfp

S defined in §4.4.2 is ⊗-isomorphic to 1S (non-canonically). In
particular, ωλρ and ωλρ,0 are fiber functors, and Υλ

ρ is an object in G-Isoc◦K0
.

Proof. We write ω for ωλρ . By Lemma 4.4.3 and by the discussion in §4.4.4, we know
that Pω|U is a trivial GU -torsor. Fix a section of it over U . Then for each L in
RepZpG, we obtain an isomorphism ιL : 1S(L)|U

∼−→ ω(L)|U between vector bundles
on U , which is functorial in L and compatible with tensor products. Since S is a
noetherian normal domain and since the closed point in it has codimension 2, the
isomorphism ιL extends uniquely to an isomorphism ι̃L : 1S(L) ∼−→ ω(L) between
finite projective S-modules. By the uniqueness, we know that ι̃L is functorial in L

26By descent, G satisfies property KL if and only if all G-torsors on the complement of
the closed point of SpecW (Fp)[[u]] extend to SpecW (Fp)[[u]], cf. Step 4 in the proof of [KP18,
Prop. 1.4.3]. Thus property KL is intrinsic to the group G, and is independent of the finite
extension k/Fp appearing in the definition S = W (k)[[u]].
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and compatible with tensor products. Thus we have constructed a ⊗-isomorphism
1S

∼−→ ω between ⊗-functors.
Since ωλρ is ⊗-isomorphic to 1S, it is a fiber functor. Since ωλρ,0 ∼= (ωλρ )W , it is

also a fiber functor. It follows that Υλ
ρ is in G-Isoc◦K0

. �

4.4.6. Keep the setting of Lemma 4.4.5, and take λ to be trivial. Fix a ⊗-
isomorphism η : 1S

∼−→ ωρ as in Lemma 4.4.5. Then for L in RepZpG, the isomor-
phism L ⊗Zp S

∼−→ ωρ(L) induced by η carries the Frobenius on ωρ(L)[1/E] to a
ϕ-semi-linear endomorphism on L ⊗Zp S[1/E], which is of the form δS,L ⊗ ϕ for
some δS,L ∈ GL(L)(S[1/E]). By the reconstruction theorem, the elements δS,L
for all L come from a common, unique element δS ∈ G(S[1/E]) (cf. the similar
argument in §4.2.5). If we change the choice of η, then δS gets ϕ-conjugated by an
element of G(S).

Let δ ∈ G(K0) be the image of δS under the specialization u 7→ 0. Then the
G(OK0)-σ-conjugacy class of δ is independent of the choice of η, and it coincides
with inv(Υρ,0) defined in §4.2.5. More precisely, η naturally induces a point y ∈
Y (Υρ,0)◦, and we have δ = δy, where δy is defined in §4.2.5.

Let [ρ] ∈ CrysGQp
be the element represented by ρ. We can apply the map

DG
cris in §4.3.5 to [ρ] and obtain an element of RZG /∼. In particular, we obtain

a cocharacter µ of GQp
, well defined up to G(Qp)-conjugacy (cf. the discussion on

the equivalence relation ∼ in §4.3.1).
For brevity, we write π1(G) for π1(GQp). As in Definition 1.3.8, we have the

Kottwitz homomorphism

κ
vp
GK0

: G(K0) −→ π1(G)ΓK0

associated with the p-adic valuation on K0. We write [µ] for the image of µ in
π1(G)ΓK0

, which depends only on [ρ].

Proposition 4.4.7. With the notation in §4.4.6, we have κvpGK0
(δ) = [µ].

For the proof of the proposition we need the following result which will be used
again later.

Lemma 4.4.8. Let f be a non-zero irreducible element of S with f(0) ∈W having
p-adic valuation 1. Let vf be the f -adic valuation on FracS, and let

κ
vf
GK0

: G(FracS) −→ π1(G)ΓK0

be the associated Kottwitz homomorphism as in Definition 1.3.8. Let g ∈ G(S[1/f ])
and let g0 be the image of g in G(K0) via the specialization u 7→ 0. Then we have
κ
vf
GK0

(g) = κ
vp
GK0

(g0) in π1(G)ΓK0
.

Proof. Let vf , vp be the discrete valuations on S[1/fp] attached to the primes
(f), (p). Let v0 be the discrete valuation on S[1/fp] given by

S[1/fp] u 7→0−−−→ K0
vp−→ Z ∪ {∞} .

Since f, p ∈ S are prime elements, any unit w ∈ S[1/fp]× has the form w = f ipjy
with i, j ∈ Z, and y ∈ S×. Hence we have vf (w) + vp(w) = v0(w) = i + j. By
Proposition 1.3.10, for any g ∈ G(S[1/fp]) we have

κ
vf
GK0

(g) + κ
vp
GK0

(g) = κv0
GK0

(g) = κ
vp
GK0

(g0).
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Now if g ∈ G(S[1/f ]), then g ∈ G(S(p)), and we have

κ
vp
GK0

(g) = 0,

by Corollary 1.3.12. The lemma follows. �

Proof of Proposition 4.4.7. We write ω for ωρ. For each L ∈ RepZpG and V ∈
RepQpG, we understand that ΓK acts on L and V via ρ.

Let ω′ : RepZpG → Modfp
S be the base change of ω along ϕ : S → S, that is,

ω′(L) := ϕ∗M(L). As in §4.1.2, we have a functor

ω′K : RepQpG −→ Modfp
K

induced by ω′. By (ii) in §4.4.1, the functor ω′K is canonically identified with the
functor V 7→ DdR(V ). Note that DdR(V ) is an admissible filtered ϕ-module for
each V ∈ RepQpG. Now the filtrations on DdR(V ) for all V give rise to a ⊗-
filtration on ω′K . Since ω′K is exact, and since exact sequences of admissible filtered
ϕ-modules are automatically strict with respect to the filtrations, the ⊗-filtration
on ω′K is exact in the sense of [SR72, IV, §2.1] (cf. [Zie15, §4.2]). Now since Qp
and K are fields of characteristic zero and since GQp is of finite type, a theorem
of Deligne (see [SR72, IV, §2.4]) implies that the filtration on ω′K is induced by a
cocharacter µdR : Gm,K → Aut⊗(ω′K). The ⊗-isomorphism η : 1S

∼−→ ω fixed in
§4.4.6 induces a ⊗-isomorphism η′ : 1S

∼−→ ω′ via pull-back along ϕ. (Note that
we have a canonical identification ϕ∗(1S) ∼= 1S.) We use η′ to identify Aut⊗(ω′K)
with GK , and thereby identify µdR with a cocharacter µ′ of GK .

We claim that µ′ lies in the G(Qp)-conjugacy class of µ, and in articular [µ′] =
[µ] ∈ π1(G)ΓK0

. In fact, by the definition of µ, there exists a finite extension F/K
and an element of RZG(F ) of the form (µ, γ) such that the ⊗-functor

RepQpG −→ {finite-dimensional filtered F -vector spaces} , V 7−→ DdR(V )
is ⊗-isomorphic with

RepQpG
Iµ,γ−−−→ MFϕK

(·)⊗F0F−−−−−→ {finite-dimensional filtered F -vector spaces} .

(4.4.8.1)

Now (4.4.8.1) lifts 1F , and gives an (exact) ⊗-filtration on 1F . This ⊗-filtration
is (tautologically) induced by the cocharacter µ of Aut⊗(1F ) = GF . The claim
immediately follows.

Now consider an object L in RepZpG. We write M for ω(L) = M(L), and
write LR for L ⊗Zp R, for any Zp-algebra R. We write B+ for Ŝ(E), which is a
S[1/p]-algebra, and write B for B+[1/E] = FracB+. Then η′ induces a B-linear
isomorphism

F : LB
∼−→ ϕ∗M⊗S B.

We equip LB = LK ⊗K B with the tensor product filtration of the filtration on LK
defined by µ′ and the E-adic filtration on B. We equip ϕ∗M⊗S B with the tensor
product filtration of the filtration on ϕ∗M and the E-adic filtration on B. Since
the isomorphism (4.4.1.1) is induced by the filtered isomorphism (4.4.1.2), we know
that F is a filtered isomorphism. In particular, we have

F (µ′(E)−1 · LB+) = F (Fil0LB) = Fil0(ϕ∗M⊗S B).(4.4.8.2)

Here µ′(E) ∈ G(B) acts on LB .



122 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

By the definition of δS, we have a commutative diagram

LS[1/E]
η′

∼=
//

δS

��

ϕ∗M[1/E]

ϕM

��
LS[1/E]

η

∼=
//M[1/E]

Base changing from S[1/E] to B, we obtain the commutative diagram

LB
F
∼=
//

δS

��

ϕ∗M⊗S B

ϕM

��
LB

η

∼=
//M⊗S B

It is easy to see that in the above diagram ϕM maps Fil0(ϕ∗M⊗S B) into M⊗S

B+ ⊂M⊗S B. Hence by (4.4.8.2) we have

δS · µ′(E)−1 · LB+ ⊂ LB+ .

Since L is arbitrary, by the reconstruction theorem we know that the element
δS · µ′(E)−1 ∈ G(B) lies in G(B+). Applying Corollary 1.3.15 to F = B and
OF = B+, we obtain that κvEGK0

(δS) = [µ′] in π1(G)ΓK0
, where κvEGK0

is as in
Lemma 4.4.8. By Lemma 4.4.8, we have κvpGK0

(δ) = [µ′]. But we have seen that
[µ′] = [µ]. This finishes the proof. �

4.4.9. Let K/Qp be a finite extension (inside Qp). Consider G, ρ, and λ as
in Lemma 4.4.5. There is a natural base change functor Isoc◦K0

→ Isoc◦Qur
p
, D 7→

D ⊗OK0
Zur
p . This induces a base change functor G-Isoc◦K0

→ G-Isoc◦Qur
p
. We set

Υλ
ρ,ur ∈ G-Isoc◦Qur

p

to be the base change of Υλ
ρ ∈ G-Isoc◦K0

, namely, Υλ
ρ,ur is the composite ⊗-functor

RepZpG
Υλρ−−→ Isoc◦K0

(·)⊗OK0
Zur
p

−−−−−−−−→ Isoc◦Qur
p
.

If K ′/K is a finite extension inside Qp and if ρ′ is the restriction of ρ to ΓK′ ,
then the same construction gives rise to

Υλ
ρ′,ur ∈ G-Isoc◦Qur

p
.

By property (iv) in §4.4.1, we know that Υλ
ρ′,ur is canonically ⊗-isomorphic with

Υλ
ρ,ur. Therefore up to canonical isomorphism in G-Isoc◦Qur

p
, the definition of Υλ

ρ,ur ∈
G-Isoc◦Qur

p
depends on ρ only via its germ at 1 ∈ Γp,

Now suppose we are given a general element [ρ] ∈ CrysGQp
(see §4.3.5). Let

ρ ∈ CrysGQp
(K) be a representative of [ρ], where K/Qp is a finite extension inside

Qp. Since the homomorphism ρ : ΓK → G(Qp) is continuous, there is a finite
extension K ′/K in Qp for which ρ(ΓK′) ⊂ G(Zp). Moreover, if λ ∈ G(Qp)/G(Zp)
is an arbitrarily given element, we can further enlarge K ′ if necessary to arrange



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 123

that λ is fixed by ρ(ΓK′) ⊂ G(Zp). (This can be achieved because the stabilizer of
λ in G(Zp) is the open subgroup G(Zp) ∩ λG(Zp)λ−1.) We then define

Υλ
[ρ] := Υλ

ρ|Γ
K′
,ur ∈ G-Isoc◦Qur

p
.

This definition depends only on [ρ] ∈ CrysGQp
and λ ∈ G(Qp)/G(Zp), up to canon-

ical isomorphism.
As usual, if λ is trivial, we write Υ[ρ] for Υλ

[ρ].

4.4.10. Let G be a smooth affine group scheme over Zp with connected fibers,
satisfying property KL. We fix [ρ] ∈ CrysGQp

, and obtain Υ[ρ] ∈ G-Isoc◦Qur
p

as in
§4.4.9. In §4.2.5, we defined the G(Zur

p )-σ-conjugacy class inv(Υ[ρ]) attached to
Υ[ρ]. Let δur ∈ G(Qur

p ) be a representative of inv(Υ[ρ]). Let µ be as in §4.4.6
(which depends only on [ρ] ∈ CrysGQp

). As usual, write wG : G(Q̆p) → π1(G)Γp,0

for the Kottwitz homomorphism associated with the p-adic valuation on Q̆p. Then
wG is trivial on G(Zur

p ) (by Corollary 1.3.12), and so wG(δur) depends only on Υ[ρ]
and not on the choice of δur.

Corollary 4.4.11. In the setting of §4.4.10, the element wG(δur) ∈ π1(G)Γp,0 is
equal to the image of µ.

Proof. As explained in §4.4.9, we can pick a G(Zp)-valued crystalline representation
ρ : ΓK → G(Zp) that represents [ρ]. Up to replacing K by a finite (unramified)
extension, we may assume that π1(G)Γp,0 = π1(G)ΓK0

. We may also assume that
δur = δ, where δ is as in §4.4.6 (defined with respect to ρ). The corollary then
follows from Proposition 4.4.7. �

Corollary 4.4.12. Let T be a cuspidal torus over Q, and let [ρT ] be an element of
MotT ⊂ CrysTQp

(see Definition 4.3.11). Let µ = MT ([ρT ]) ∈ X∗(T ), where MT

is the bijection in Proposition 4.3.12. Let T ◦ be the connected Néron model of TQp
over Zp, and let Υ[ρT ] be the object in T ◦-Isoc◦Qur

p
associated with [ρT ] as in §4.4.9.

Let δT ∈ T (Qur
p ) be a representative of inv(Υ[ρT ]) (see §4.2.5). Then δT lies in

T (Qur
p )mot, and wTQp

(δT ) ∈ X∗(T )Γp,0 is equal to the image of µ.

Proof. Since [ρT ] lies in Mot(T ), we have δT ∈ T (Qur
p )mot. The claim about

wTQp
(δT ) follows from Corollary 4.4.11 applied to G = T ◦. Here we have used

that T ◦ satisfies KL; see §4.4.4. �

Remark 4.4.13. By Lemma 4.3.9, the two properties satisfied by δT claimed in
Corollary 4.4.12 uniquely characterize the T ◦(Zur

p )-orbit of δ under σ-conjugation.

4.4.14. Keep the setting of §4.4.10. Let λ ∈ G(Qp)/G(Zp) be an arbitrary element.
We then obtain Υ[ρ] = Υ1

[ρ] and Υλ
[ρ]. As in §4.2.5, associated with Υλ

[ρ] ∈ G-Isoc◦Qur
p

we have the G(Qur
p )-torsor Y (Υλ

[ρ]), together with a G(Zur
p )-torsor

Y (Υλ
[ρ])◦ ⊂ Y (Υλ

[ρ]).

Thus we can canonically identify Y (Υλ
[ρ])/G(Zur

p ) with G(Qur
p )/G(Zur

p ). Similarly,
we identify Y (Υ[ρ])/G(Zur

p ) with G(Qur
p )/G(Zur

p ).
There is a tautological ⊗-isomorphism Υλ

[ρ][1/p]
∼−→ Υ[ρ][1/p], induced by the

tautological isomorphism L⊗Qp
∼−→ (λ ·L)⊗Qp in RepQpG for each L in RepZpG.
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This induces a tautological isomorphism Y (Υλ
[ρ])

∼−→ Y (Υ[ρ]). Thus we have an
induced map

Y (Υλ
[ρ])/G(Zur

p ) −→ Y (Υ[ρ])/G(Zur
p ),

which we identify as a map

G(Qur
p )/G(Zur

p )→ G(Qur
p )/G(Zur

p ).

Let λ0 ∈ G(Qur
p )/G(Zur

p ) be the image of 1 under the last map. Since the Kottwitz
homomorphism wG : G(Q̆p)→ π1(G)Γp,0 is trivial on G(Zur

p ) (by Corollary 1.3.12),
we obtain well-defined elements wG(λ), wG(λ0) ∈ π1(G)Γp,0 .

Proposition 4.4.15. In the setting of §4.4.14, we have wG(λ) = wG(λ0).

Proof. As explained in §4.4.9, we may pick a G(Zp)-valued crystalline representa-
tion ρ : ΓK → G(Zp) representing [ρ], where K/Qp is a finite extension inside Qp,
such that the ΓK-action on G(Qp)/G(Zp) induced by ρ fixes λ. For later purposes
we shall also suitably enlarge K to assume that π1(G)ΓK0

= π1(G)Γp,0 . (As always,
K0 denotes the maximal unramified extension of Qp inside K.)

As in §4.4.2, we have ⊗-functors ωρ and ωλρ : RepZpG → Modfp
S (defined with

respect to K and a chosen uniformizer.) For brevity we denote them by ω and
ωλ respectively. By Lemma 4.4.5, Pω(S) and Pωλ(S) are non-empty. In partic-
ular, Y (ω)/G(S) and Y (ωλ)/G(S) admit canonical base points, and can both be
identified with G(S[1/p])/G(S) canonically (see §4.1.12). The tautological isomor-
phism ωλ[1/p] ∼−→ ω[1/p] induces a map Y (ωλ)/G(S) → Y (ω)/G(S), which we
identify as a map G(S[1/p])/G(S) → G(S[1/p])/G(S). Denote the image of 1
under the last map by λS. It is clear that λ0 is equal to the image of λS un-
der G(S[1/p])/G(S)→ G(K0)/G(OK0)→ G(Qur

p )/G(Zur
p ), where the first map is

induced by the specialization u 7→ 0.
Now write C for ÔEur . By (iii) in §4.4.1, the base change ωλC of ωλ to C is

canonically ⊗-isomorphic to the functor

1λC : RepZpG −→ Modfp
C , L 7→ (λ · L)⊗Zp C.

Similarly, ωC is canonically ⊗-isomorphic to 1C . Moreover, the canonical ⊗-
isomorphisms 1λC

∼= ωλC and 1C
∼= ωC are compatible with the tautological iso-

morphisms 1λC [1/p] ∼= 1C [1/p] and ωλC [1/p] ∼= ωC [1/p]. It follows that the image
of λS under G(S[1/p])/G(S)→ G(C[1/p])/G(C) is equal to the image of λ under
G(Qp)/G(Zp) → G(C[1/p])/G(C). Since the map Gr → G(C[1/p])/G(C) is in-
jective, we conclude that the image of λS in G(Ŝ(p)[1/p])/G(Ŝ(p)) is equal to the
image of λ.

Consider the Kottwitz homomorphism

κ
vp
GK0

: G(FracS) −→ π1(G)ΓK0
= π1(G)Γp,0

associated with the p-adic valuation vp on FracS. By Lemma 1.3.12 and by
the functoriality of the Kottwitz homomorphism, κvpGK0

factors through a map
G(Ŝ(p)[1/p])/G(Ŝ(p)) → π1(G)Γp,0 , whose restriction to G(Qp)/G(Zp) is equal to
wG. Since λS and λ have the same image in

G(Ŝ(p)[1/p])/G(Ŝ(p)),
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we conclude that κvpGK0
(λS) = wG(λ). Now by Lemma 4.4.8, we have κvpGK0

(λS) =
wG(λ0) since λ0 is the image of λS under the specialization u 7→ 0. Therefore
wG(λ) = wG(λ0) as desired. �

Corollary 4.4.16. Let F/Qp be a finite extension. Let G0 be a parahoric group
scheme over OF , and let G = ResOF /Zp G0. Then G satisfies KL, and in particular
the conclusion of Proposition 4.4.15 holds for G.

Proof. It suffices to show that G is parahoric and apply the result of Anschütz
[Ans18] (recalled in §4.4.4). The fact that G is parahoric is well known; see for
instance [HR20, Prop. 4.7]. �

4.5. Crystalline representations factoring through a maximal torus.

4.5.1. Let G be a parahoric group scheme over Zp, and write G for GQp . (Note
the change of notations from §4.4.) We fix [ρ] ∈ CrysG. Let T ⊂ G be a maximal
torus. We assume that [ρ] is equal to the image of an element [ρT ] ∈ CrysT
under the natural injection CrysT ↪→ CrysG. Let [ρab] be the image of [ρT ] under
CrysG → CrysGab .

Let T ◦ (resp. Gab) be the connected Néron model of T (resp. Gab) over Zp.
As recalled in §4.4.4, the Zp-group schemes G, T ◦,Gab satisfy KL. As in §4.4.9 we
obtain

Υ[ρ] ∈ G-Isoc◦Qur
p
,

Υ[ρT ] ∈ T ◦-Isoc◦Qur
p
,

Υ[ρab] ∈ Gab-Isoc◦Qur
p
.

As in §4.2.5 we obtain the G(Qur
p )-torsor Y (Υ[ρ]), the T (Qur

p )-torsor Y (Υ[ρT ]), and
the Gab(Qur

p )-torsor Y (Υ[ρab]). For ∗ ∈
{

Υ[ρ],Υ[ρT ],Υ[ρab]
}
, we have the set of

integral points Y (∗)◦ ⊂ Y (∗).
By definition, Y (Υ[ρ]) depends only on the fiber functor

(v ◦Υ[ρ])[1/p] : RepQpG −→ Modfp
Qur
p
.

Similarly, Y (Υ[ρT ]) depends only on the fiber functor

(v ◦Υ[ρT ])[1/p] : RepQpT −→ Modfp
Qur
p
.

Observe that (v ◦Υ[ρ])[1/p] is canonically isomorphic to the composition

RepQpG
Res−−→ RepQpT

(v◦Υ[ρT ])[1/p]−−−−−−−−−→ Modfp
Qur
p
,

as they are both identified with the functor V 7→ Dcris(V )⊗K0 Qur
p , where we view

V as a Gal(Qp/K)-representation via [ρ] (for a sufficiently large finite extension
K/Qp). Hence we obtain a canonical map Y (Υ[ρT ])→ Y (Υ[ρ]), which is equivariant
for the T (Qur

p )-action on the two sides. In particular this map is injective.
Similarly, we obtain a natural map Y (Υ[ρT ]) → Y (Υ[ρab]) which is equivariant

with respect to T (Qur
p )→ Gab(Qur

p ), and a natural map Y (Υ[ρ])→ Y (Υ[ρab]) which
is equivariant with respect to G(Qur

p )→ Gab(Qur
p ).

Since the inclusion T ↪→ G does not necessarily extend to a map T ◦ → G over
Zp, one cannot expect that the map Y (Υ[ρT ]) → Y (Υ[ρ]) sends integral points to
integral points. Nevertheless, we have the following compatibility result.
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Proposition 4.5.2. The natural maps

Y (Υ[ρT ]) −→ Y (Υ[ρab])

and

Y (Υ[ρ]) −→ Y (Υ[ρab])

send integral points to integral points. If we assume that G is a reductive group
scheme, then the image of Y (Υ[ρT ])◦ in Y (Υ[ρ]) is contained in Y (Υ[ρ])◦ ·Gder(Qur

p ).

Proof. The first statement follows immediately from the functoriality of the con-
structions, and the fact that the Qp-homomorphisms T → Gab andG→ Gab extend
to Zp-homomorphisms T ◦ → Gab and G → Gab respectively. The second statement
follows from the first statement once we know that the map Y (Υ[ρ])◦ → Y (Υ[ρab])◦
(provided by the first statement) is surjective. For the last fact, it suffices to ob-
serve that the map G(Zur

p ) → Gab(Zur
p ) is surjective when G is a reductive group

scheme. In fact, in this case we even know that G(Zpn) → Gab(Zpn) is surjective
for all n ∈ Z≥1, by Lang’s theorem applied to Gder,Zpn which is smooth over Zpn
and has connected fibers. �

Remark 4.5.3. Let K/Qp be a large enough finite extension such that [ρT ] is in-
duced by T ◦(Zp)-valued crystalline representation ρT : Gal(K/K)→ T ◦(Zp) which
factors through T ◦(Zp) ∩ G(Zp). Let ρ (resp. ρab) be the induced G(Zp)-valued
(resp. Gab(Zp)-valued) crystalline representation. Let K0 be the maximal unram-
ified extension of Qp inside K. Then we have the variant of Proposition 4.5.2,
where Y (Υ[ρT ]), Y (Υ[ρ]), Y (Υ[ρab]), and Gder(Qur

p ) are replaced by the T (K0)-torsor
Y (ΥρT ), the G(K0)-torsor Y (Υρ), the Gab(K0)-torsor Y (Υρab), and Gder(K0) re-
spectively.

5. Shimura varieties of Hodge type

5.1. Abelian schemes and related structures on the Shimura variety.

5.1.1. Throughout this section we keep the following setting. Let (G,X, p,G) be
an unramified Shimura datum as in §2.4.1, and assume that (G,X) is of Hodge
type. Let E ⊂ C be the reflex field of (G,X), viewed as a subfield of Q via our
fixed embedding Q ↪→ C. Let p be the prime of E determined by the embedding
E ↪→ Q ↪→ Qp. We write Kp for G(Zp).

Since G is smooth over Zp, its Hopf algebra OG(G) injects into OGQp
(GQp). The

intersection OG(G) ∩OG(G) inside OGQp
(GQp) has the natural structure of a Hopf

algebra over Z(p), and defines a Z(p)-group scheme G(p). Thus G(p) is the unique
(up to unique isomorphism) reductive group scheme over Z(p) whose generic fiber
is identified with G and whose base change to Zp is identified with G.

We fix an embedding of Shimura data (G,X) ↪→ (GSp(VQ), S±), where VQ is a
symplectic space over Q, and (GSp(VQ), S±) is the corresponding Siegel Shimura
datum. As in [Kis17, §1.3.3], we may choose the symplectic space VQ and the
embedding G ↪→ GSp(VQ) suitably such that the latter is induced by a closed
embedding of Z(p)-group schemes G(p) ↪→ GL(VZ(p)), for some self-dual Z(p)-lattice
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VZ(p) in VQ.27 We fix such choices of VQ, G ↪→ GSp(VQ), and VZ(p) . For any Z(p)-
algebra R we write VR for VZ(p) ⊗Z(p) R. We write GSp for the Q-algebraic group
GSp(VQ), and write Kp for the compact open subgroup GSp(VZ(p))(Zp) of GSp(Qp).
Thus the embedding G(Qp) ↪→ GSp(Qp) maps Kp into Kp.

As in [Kis17, §1.3.6], we fix once and for all a collection of tensors (sα)α∈α ⊂ V ⊗Z(p)

such that the image of G(p) ↪→ GL(VZ(p)) is the scheme-theoretic stabilizer of these
tensors. In the sequel, we shall assume that the collection (sα)α∈α is maximal, i.e.,
it consists of all elements of V ⊗Z(p)

that are stabilized by G(p).
Let V ∗Zp be the Zp-linear dual of VZp . We shall view it as a representation of G

over Zp, i.e., the contragredient of VZp . Similarly, we view the Q-linear dual V ∗Q of
VQ as a representation of G over Q. We view (sα)α∈α also as tensors over V ∗Zp or
V ∗Q .

Lemma 5.1.2. For any Shimura datum (G,X) of Hodge type, the following state-
ments hold.

(i) The Q-tori Z0
G and Gab are cuspidal (see Definition 1.5.4).

(ii) The anti-cuspidal part (Z0
G)ac of Z0

G (see Definition 1.5.4) is trivial.
(iii) Let (T, i, h) be a special point datum for (G,X) (see Definition 3.3.1).

Then T is cuspidal, and i(TR) is an elliptic maximal torus in GR.

Proof. Let w be the weight cocharacter of (G,X). Since (G,X) is of Hodge type, we
know that w is defined over Q, and that Int(h(

√
−1)) induces a Cartan involution

on GR/w(Gm,R) for each h ∈ X (by directly checking the similar properties for
the Siegel Shimura datum). Recall from [Del79, §2.1.1] that w is central. Thus
(Z0

G)R/w(Gm,R) is anisotropic. Since w(Gm,R) is defined and split over Q, we see
that Z0

G is cuspidal. Since Gab is isogenous to Z0
G over Q, it is also cuspidal. This

proves (i). Statement (ii) follows from (i) in view of Lemma 1.5.5. For (iii), we have
i ◦ h ∈ X, and the Cartan involution Int((i ◦ h)(

√
−1)) on GR/w(Gm,R) restricts

to the identity on i(TR)/w(Gm,R). Hence i(TR)/w(Gm,R) is anisotropic, and the
desired statements follow. �

5.1.3. For each compact open subgroup K ⊂ G(Af ) (resp. K ⊂ GSp(Af )), we
write ShK (resp. ShK) for the Shimura variety ShK(G,X) (resp. ShK(GSp, S±)).
Below we recall the construction of the canonical smooth integral model SKp of
ShKp = lim←−Kp

ShKpKp in Theorem 2.5.3.
Fix once and for all a neat compact open subgroup Kp

1 ⊂ G(Apf ) whose image in
GSp(Apf ) is a neat compact open subgroup Kp1. We write K p for the set of open
subgroups of Kp

1 . Clearly all members of K p are neat. Let Kp ∈ K p. By [Kis10,
Lem. 2.1.2], there exists an open subgroup Kp ⊂ Kp1 such that the image of Kp in
GSp(Apf ) is contained in Kp and such that the natural map

ShKpKp −→ ShKpKp ×QE

is a closed embedding of E-schemes.
Now ShKpKp has a canonical model SKpKp over Z(p), which represents the usual

Siegel moduli problem. We define SKpKp to be the normalization of the closure

27This uses [Kis10, Lem. 2.3.1] and Zarhin’s trick. In the former result, there is an extra
assumption on G when p = 2. However this extra assumption can be removed, as explained in
the proof of [KMP16, Lem. 4.7].
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of ShKpKp inside SKpKp ×Z(p) OE,(p). (It is shown in [Xu20] that taking the nor-
malization is redundant.) By the main results of [Kis10] and [KMP16], SKpKp is
smooth over OE,(p), and the inverse limit SKp = lim←−Kp∈K p

SKpKp is the canonical
smooth integral model of ShKp . For each Kp ∈ K p, we have SKpKp = SKp/K

p,
so the notation here is consistent with that in Definition 2.5.2.

In the sequel, we write
K1 := KpK

p
1 .

Over SK1 we have an abelian scheme up to prime-to-p isogeny A that is the pull-
back of the universal abelian scheme up to prime-to-p isogeny over SKpKp1 . For any
OE,(p)-scheme Y and anyOE,(p)-morphism x : Y → SK1 , we denote byAx the pull-
back of A along x. For any Y as above and any OE,(p)-morphism x : Y → SKp , we
again write Ax for the pull-back of A along the composite map Y x−→ SKp → SK1 .

5.1.4. For a scheme Y and a prime number l, we write LisseZl(Y ) (resp. LisseQl(Y ))
for the ⊗-category of lisse Zl-sheaves (resp. lisse Ql-sheaves) on Y . We define the
category of lisse Apf -sheaves LisseAp

f
(Y ) to be the Q-isogeny category associated

with the product category of LisseZl(Y ) for all primes l 6= p. Thus LisseAp
f
(Y ) is

an Apf -linear ⊗-category, with unit object given by the product of the unit objects
in LisseZl(Y ). For R ∈ {Zl,Ql,Apf}, we denote the unit objects in LisseR(Y ) by R.
More generally, given any finite free R-moduleW we still writeW for the “constant
sheaf” in LisseR(Y ) represented by W .

By Lemma 1.5.7, (1.5.8.2), and Lemma 5.1.2 (ii), we have
Gal(Sh / ShK1) ∼= K1.

For each W ∈ RepZpG, we can view W as a continuous Zp-representation of
Gal(Sh / ShK1) via Gal(Sh /ShK1) = K1

proj−−→ Kp = G(Zp). By the Zp-linear vari-
ant of the construction in [HT01, §III.3] (the Qp-linear version was used in §1.5.8),
we can attach to the Gal(Sh / ShK1)-representation W a lisse Zp-sheaf Lp(W ) on
ShK1 . This construction defines a faithful exact ⊗-functor

Lp : RepZpG −→ LisseZp(ShK1).(5.1.4.1)

Similarly, by Lemma 1.5.7, §2.5.5, and Lemma 5.1.2 (ii), we have
Gal(SKp/SK1) ∼= Kp

1 ,

and we obtain a faithful exact ⊗-functor
Lp : RepQG −→ LisseAp

f
(SK1)(5.1.4.2)

by viewing W ⊗QApf as a continuous Apf -representation of Gal(SKp/SK1) for each
W ∈ RepQG.

The functors Lp and Lp have complex analytic analogues defined using the com-
plex uniformization. For each W ∈ RepZpG, define a subspace E(W ) ⊂WQp ×X ×
G(Af ) by

E(W ) =
{

(w, h, (gv)v) | w ∈ gpW ⊂WQp
}
.

We let G(Q) act on E(W ) on the left by
g · (w, h, (gv)v) = (gw, gh, (ggv)v),

and let K act on E(W ) on the right by
(w, h, (gv)v) · k = (w, h, (gv)v · k).
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Let Lp(W ) be the sheaf on the complex manifold ShK1(C) consisting of local sec-
tions of

G(Q)\E(W )/K1 → ShK1(C) = G(Q)\X ×G(Af )/K1, [(w, h, (gv)v)] 7→ [h, (gv)v].

Similarly, for each W ∈ RepQG, let LQ(W ) be the sheaf on ShK1(C) consisting of
local sections of

G(Q)\W ×X ×G(Af )/K1 → ShK1(C), [(w, h, (gv)v)] 7→ [h, (gv)v],

where on the left hand side G(Q) acts diagonally on the three factors and K1 acts
by right multiplication on G(Af ). We obtain faithful exact ⊗-functors

Lp : RepZpG −→ {Zp-local systems on ShK1(C)} ,
LQ : RepQG −→ {Q-local systems on ShK1(C)} .

For each W ∈ RepZpG, there is a natural isomorphism between Lp(W ) and the
analytification Lp(W )an of Lp(W ) which is compatible with tensor products. Sim-
ilarly, for each W ∈ RepQG, there is a natural isomorphism between LQ(W )⊗QApf
and the analytification Lp(W )an of Lp(W ) which is compatible with tensor prod-
ucts. These observations go back to Langlands [Lan73, §3], cf. for instance [Mor05,
§2.1.4].

5.1.5. Denote the structure morphism A → SK1 by h, and denote the structure
morphism A|ShK1

→ ShK1 by hη.
Over the complex manifold ShK1(C), we have a Zp-local system VB,p (resp. a Q-

local system VB,Q) given by the first relative Betti cohomology of the analytification
of hη with coefficients in Zp (resp. Q). By the moduli interpretation of the complex
uniformization of the Siegel Shimura variety, we have canonical identifications

VB,p ∼= Lp(V ∗Zp), VB,Q ∼= LQ(V ∗Q ),(5.1.5.1)

cf. [Kis17, §1.4.11].28 For each α ∈ α, we can view sα as a morphism Zp → (V ∗Zp)⊗
between G-representations. By the identifications in (5.1.5.1) we obtain a tensor
sα,B,p := Lp(sα) over VB,p and a tensor sα,B,Q := LQ(sα) over VB,Q.

Let
Vp := R1hη,ét,∗Zp ∈ LisseZp(ShK1),

and
Vp := R1hét,∗Apf ∈ LisseAp

f
(SK1).

Analogous to (5.1.5.1), we have canonical identifications

Vp ∼= Lp(V ∗Zp), Vp ∼= Lp(V ∗Q ),(5.1.5.2)

arising from the fact that the tower of Siegel Shimura varieties relatively represents
the moduli of level structures.

By (5.1.5.2), for each α ∈ α, we obtain a tensor sα,p := Lp(sα) over Vp, and a
tensor sα,Ap

f
:= Lp(sα) over Vp.

28In [Kis17, §1.4.11], the line “H1(A(C),Z(p))
∼−→ gp · VZ(p) ⊂ VQ” should be corrected to

“H1(A(C),Zp) ∼−→ gp · VZp ⊂ VQp”.
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Remark 5.1.6. The natural isomorphism Lp(V ∗Zp)an ∼= Lp(V ∗Zp) at the end of §5.1.4
coincides with the comparison isomorphism Van

p
∼= VB,p, if we identify the two sides

with Van
p and VB,p respectively. Since the analytification functor is faithful, we see

that sα,p is uniquely characterized by the fact that under the comparison isomor-
phism Van

p
∼= VB,p it corresponds to sα,B,p. In a similar way, sα,Ap

f
is characterized

by sα,B,Q. This shows that the current definitions of sα,p and sα,Ap
f
agree with

those in [Kis17, §1.3.6]. 29

5.1.7. Let κ be a subfield of C containing E, and let κ be the algebraic closure
of κ in C. For z ∈ ShK1(κ), we write Vp(z) for the stalk of Vp at z viewed as a κ̄-
point. Thus Vp(z) is a finite free Zp-module equipped with a continuous Gal(κ̄/κ)-
action, and it is identified with H1

ét(Az,κ̄,Zp). For each α ∈ α, write sα,p,z for
the tensor over Vp(z) induced by sα,p. Then sα,p,z is invariant under Gal(κ̄/κ).
We write Gz for the closed subgroup scheme of the Zp-group scheme GL(Vp(z))
fixing sα,p,z for all α ∈ α. Thus we have a natural continuous homomorphism
ρ(z) : Gal(κ̄/κ)→ Gz(Zp).

Lemma 5.1.8. In the setting of §5.1.7, there exists a (non-canonical) Zp-module
isomorphism V ∗Zp

∼−→ Vp(z) taking each sα to sα,p,z. In particular, there is an
isomorphism of Zp-group schemes G ∼−→ Gz, canonical up to conjugation by G(Zp).

Proof. Let zC ∈ ShK1(C) be the point induced by z. By Remark 5.1.6, it suffices to
show the existence of a Zp-module isomorphism f from V ∗Zp to the stalk VB,p(zC) of
VB,p at zC such that f takes each sα to the tensor on VB,p(zC) induced by sα,B,p.
This follows from [Kis17, §1.4.11]. �

Lemma 5.1.9. On SKp , there is a canonical isomorphism between the pull-back
of Vp and the constant lisse Apf -sheaf V ∗Ap

f
. This isomorphism takes sα,Ap

f
to sα

(viewed as a tensor on the constant sheaf V ∗Ap
f
) for each α ∈ α.

Proof. The composition of Lp : RepQG→ LisseAp
f
(SK1) with the pull-back functor

LisseAp
f
(SK1) → LisseAp

f
(SKp) is canonically identified with the functor sending

each W ∈ RepQG to the constant sheaf W ⊗Q Apf . The lemma follows from this
fact and the second identification in (5.1.5.2). �

5.2. Crystalline tensors.

5.2.1. Let A be an abelian variety up to prime-to-p isogeny over Fp. We define

V0(A) := H1
cris(A0/W (k))⊗W (k) Zur

p ,

where A0 is a model of A over some finite field k ⊂ Fp. Then V0(A) has the natural
structure of an integral F -isocrystal over Qur

p (see §4.2.1), and it is independent of
the choices of k and A0 up to canonical isomorphism. We denote the Frobenius on
V0(A)[1/p] simply by ϕ.

For x ∈ SK1(Fp), we write V0(x) for V0(Ax). For x ∈ SKpKp(Fp) withKp ∈ K p

or x ∈ SKp(Fp), we define V0(x) to be V0(y), where y ∈ SK1(Fp) is the image of
x.

29In [Kis17, §1.3.6], only the l-adic components of Vp and sα,Ap
f
are considered.
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5.2.2. Let x be a closed point of the special fiber of SK1 , with residue field k(x).
We then obtain the abelian variety Ax up to prime-to-p isogeny over k(x). As a
key construction in [Kis10] and [Kis17], for each α ∈ α we have a tensor sα,0,x over
the W (k(x))-module H1

cris(Ax/W (k(x))), which is furthermore ϕ-invariant (after
inverting p). Below we recall the construction of sα,0,x given in [Kis17, §1.3], and
explain why the assumption p > 2 in loc. cit. can be removed.

Let F be a finite extension of Ep in Qp whose residue field k contains k(x). Let
x̃ ∈ ShK1(F ) be a point that extends (necessarily uniquely) to a point in SK1(OF )
which specializes to x. (Clearly such a pair (F, x̃) exists for any prescribed x
and finite extension k/k(x); one can moreover take F to be W (k(x))[1/p].) Since
Ax,k := Ax ×k(x) k and A

x̃
are the special and generic fibers of an abelian scheme

over OF , we know that the Gal(Qp/F )-representation Vp(x̃)[1/p] ∼= H1
ét(Ax̃,Qp ,Qp)

is crystalline. Moreover, by the integral comparison isomorphism we have a canon-
ical isomorphism of integral F -isocrystals

Mcris(Vp(x̃)) = Mcris(H1
ét(Ax̃,Qp ,Zp)

) ∼−→ H1
cris(Ax,k/W (k)),(5.2.2.1)

which refines the crystalline comparison isomorphism
Dcris

(
H1

ét(Ax̃,Qp ,Qp)
) ∼−→ H1

cris(Ax,k/W (k))[1/p].

Here the functorMcris is defined in §4.4.1, and recall thatMcris(L) is aW (k)-lattice
in the W (k)[1/p]-vector space Dcris(L ⊗ Qp), for any L ∈ Repcris,◦

ΓK . This integral
comparison isomorphism is proved in [Kis10, Thm. 1.4.2] (cf. [Kis17, Thm. 1.1.6]
for a correction in the normalization) for p > 2, and proved in [Kim12, Prop. 4.2]
for p = 2. An independent proof valid for all p is given by Lau [Lau14, Lau19].30

Now since s
α,p,x̃

is Gal(Qp/F )-invariant, we have the ϕ
Mcris(Vp(x̃))-invariant ten-

sor Mcris(sα,p,x̃) over Mcris(Vp(x̃)) by the functoriality of Mcris. Under (5.2.2.1),
Mcris(sα,p,x̃) corresponds to a ϕ-invariant tensor s

α,0,x̃ over H1
cris(Ax,k/W (k)).

Note that H1
cris(Ax,k/W (k)) is canonically identified with

H1
cris(Ax/W (k(x)))⊗W (k(x)) W (k).

It is shown in the proof of [Kis10, Prop. 2.3.5] (cf. [Kis17, Prop. 1.3.9]) that s
α,0,x̃

in fact comes from a tensor sα,0,x on H1
cris(Ax/W (k(x))) that depends only on x

and not on the choices of F and x̃.
For any x1 ∈ SK1(Fp) we have a canonical identification (see §5.2.1)

V0(x1) ∼= H1
cris(Ax/W (k(x)))⊗W (k(x)) ⊗Zur

p ,

where x is the closed point of SK1 given by the image of x1. The tensor sα,0,x on
H1

cris(Ax/W (k(x))) thus induces a tensor sα,0,x1 on V0(x1), for each α ∈ α. For
any y ∈ SKp(Fp) mapping to x1 ∈ SK1(Fp), we have V0(y) = V0(x1) by definition.
In this case we also write sα,0,y for the tensor sα,0,x1 on V0(y).

Lemma 5.2.3. For each x1 ∈ SK1(Fp), there exists a Zur
p -module isomorphism

V ∗Zp ⊗Zp Zur
p
∼−→ V0(x1) which takes sα to sα,0,x1 for each α ∈ α.

30In all these references, the integral comparison isomorphism is proved more generally for
p-divisible groups over OF . See the proof of [KMP16, Thm. 2.12] for a historical account of
the different proofs. The integral comparison is now known for arbitrary proper smooth formal
schemes (under a certain torsion-free assumption) by the work of Bhatt–Morrow–Scholze [BMS18,
Thm. 14.6.3 (iii)].
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Proof. This is proved in [Kis10, Cor. 1.3.4]. Below we recast the proof using the
formalism in §4.4. Let x be the closed point of SK1 induced by x1, and let
x̃ ∈ ShK1(F ) be a lift of x to some finite extension F/Qp as in §5.2.2. Fix an
isomorphism V ∗Zp

∼−→ Vp(x̃) as in Lemma 5.1.8, and use this isomorphism to view
V ∗Qp as a Gal(Qp/F )-representation. This Galois representation is crystalline, and
V ∗Zp is a Galois-stable lattice. Moreover, each tensor sα on V ∗Zp is Gal(Qp/F )-
invariant, since each s

α,p,x̃
is invariant under ρ(x̃) (see §5.1.7). The action map

Gal(Qp/F ) → GL(V ∗Zp)(Zp) thus factors through a G(Zp)-valued crystalline rep-
resentation ρ : Gal(Qp/F ) → G(Zp). Let k be the residue field of F . By the
construction of sα,0,x recalled in §5.2.2 and by Lemma 5.1.8, we only need to find
a Zur

p -module isomorphism

Mcris(V ∗Zp)⊗W (k) Zur
p
∼−→ V ∗Zur

p

which takes each Mcris(sα) to sα. For this, it suffices to find a W (k)-module
isomorphism

ωρ,0(V ∗Zp) ∼−→ V ∗W (k)

which takes each ωρ,0(sα) to sα. (See §4.4.2 for ωρ,0.) For this it suffices to know
that ωρ,0 is ⊗-isomorphic with 1W (k). This is indeed the case by the fact that G
satisfies KL (§4.4.4) and by Lemma 4.4.5. �

Lemma 5.2.4. For each x ∈ SK1(Fp), there is an integral F -isocrystal with G-
structure

Υx : RepZpG −→ Isoc◦Qur
p
,

together with an isomorphism ιx : Υx(V ∗Zp) ∼−→ V0(x) in Isoc◦Qur
p

which takes Υx(sα)
to sα,0,x for each α ∈ α. Moreover, the pair (Υx, ιx) is unique up to unique iso-
morphism, in the same sense as in Lemma 4.2.3.

Proof. By Lemma 5.2.3, the object (D,ϕD) := V0(x) in Isoc◦Qur
p
, together with the

tensors sα,0,x on it, satisfies the hypotheses in §4.2.2 with respect to the defining
datum (V ∗Zp , (sα)α∈α) for G. The lemma then follows from Lemma 4.2.3. �

Definition 5.2.5. For each x ∈ SK1(Fp), we fix the choice of a pair (Υx, ιx) as in
Lemma 5.2.4 once and for all. If y ∈ SKp(Fp) maps to x, we also write (Υy, ιy) for
(Υx, ιx).

5.3. Kottwitz triples.

Definition 5.3.1. Let n ∈ Z≥1. Define Tstr
n to be the set of triples (γ0, γ, δ),

where γ0 ∈ G(Q), γ = (γl)l 6=p ∈ G(Apf ), and δ ∈ G(Qpn), satisfying the following
conditions:

(i) γ0 is conjugate to γ in G(Āpf ).
(ii) γ0 is conjugate to δσ(δ) · · ·σn−1(δ) in G(Qp).
(iii) the image of γ0 in G(R) is elliptic over R.

5.3.2. Note that for n, t ∈ Z≥1, there is a natural map

Tstr
n −→ Tstr

nt , (γ0, γ, δ) 7→ (γt0, γt, δ).
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We set
Tstr := lim−→

n∈Z≥1

Tstr
n ,

where Z≥1 is a directed set under divisibility.
Let k = (γ0, γ,δ) ∈ Tstr

n for some n ∈ Z≥1. Recall from [Kis17, §4.3] that k gives
rise to the following objects:

• a Q-subgroup I0 of G, defined to be the centralizer in G of a sufficiently
divisible power of γ0.
• a Ql-subgroup Il of G for each finite places l 6= p, defined to be the
centralizer in G of a sufficiently divisible power of γl.
• a Qp-algebraic group Ip defined by

Ip(R) =
{
g ∈ G(Qur

p ⊗Qp R) | g−1δσ(g) = δ
}

for any Qp-algebra R. We shall view Ip as a subfunctor of the functor
ResQur

p /Qp(G) which sends every Qp-algebra R to the group G(Qur
p ⊗Qp R).

When t ∈ Z≥1 is sufficiently divisible, we have

Ip(R) =
{
g ∈ G(Qpnt ⊗Qp R) | g−1δσ(g) = δ

}
(5.3.2.1)

for any Qp-algebra.
For each finite place v, there is a natural equivalence class (see Definition 1.2.1)

of inner twistings ηv : I0,Qv ' Iv; see [Kis17, §4.3.1]. The datum (I0, (Iv)v, (ηv)v)
depends on k only through the image of k in Tstr. In other words, we can attach
(I0, (Iv)v, (ηv)v) to any element of Tstr.

Definition 5.3.3. Let k ∈ Tstr, with associated datum (I0, (Iv)v, (ηv)v) as in §5.3.2.
A refinement of k is a tuple (I, ι0, ι = (ιv)v), where

• I is a Q-group and ι0 is an inner twisting I0,Q → IQ.
• For each finite place v, ιv is a Qv-isomorphism IQv → Iv such that ιv ◦ ι0
as an inner twisting between Qv-groups lies in the equivalence class ηv.
• (I/ι0(ZG))(R) is compact.

We denote by KTstr the subset of Tstr consisting of elements which admit refine-
ments. Elements of KTstr are called strict Kottwitz triples.

Definition 5.3.4. Two strict Kottwitz triples k, k′ ∈ KTstr are called equivalent
(resp. congruent), written as k ∼ k′ (resp. k ≡ k′), if there exist n ∈ Z≥1 and
respective representatives (γ0, γ, δ), (γ′0, γ′, δ′) ∈ Tstr

n of k, k′, satisfying the following
conditions.

• γ0 and γ′0 are conjugate in G(Q).
• γ and γ′ are conjugate in G(Apf ) (resp. γ = γ′).
• δ and δ′ are σ-conjugate in G(Qpn) (resp. δ = δ′).

5.3.5. Recall that A∗f := Apf ×Qur
p . Let g = (gp, gp) ∈ G(A∗f ) = G(Apf )×G(Qur

p ).
For each n ∈ Z≥1, we have a bijection

Tstr
n −→ Tstr

n , (γ0, γ, δ) 7→ (γ0, (gp)−1γgp, g−1
p δσ(gp)).

These maps for all n induce a bijection KTstr ∼−→ KTstr. In this way we obtain a
right action of G(A∗f ) on KTstr, which descends to an action on KTstr/≡.



134 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

Definition 5.3.6. We denote the orbit space (KTstr/≡)/G(Zur
p ) by KT. Elements

of KT are called Kottwitz triples. (This terminology agrees with [Kis17].) The
equivalence relation ∼ on KTstr descends to an equivalence relation on KT, still
denoted by ∼.

Remark 5.3.7. The natural map KTstr/∼ → KT/∼ is a bijection.

5.3.8. We summarize the various definitions in the following diagram:

Tstr = lim−→n
Tstr
n KTstr

KTstr/∼ KTstr/≡

KT/∼ KT = (KTstr/≡)/G(Zur
p )

subset of refinable elts
G(A∗f )

1:1

G(A∗f )

5.3.9. As in Definition 3.3.1, we denote by SPD(G,X) the set of special point
data for (G,X). Let s = (T, i, h) be an element of SPD(G,X). By Lemma 5.1.2
(iii), T is a cuspidal torus.

Let µh ∈ X∗(T ) be the Hodge cocharacter of h. By Lemma 4.3.9, we obtain from
the image of −µh in X∗(T )Γp,0 a canonical ◦∼-equivalence class in T (Qur

p )mot. Let
δT be an element of this equivalence class. Then for n sufficiently divisible, the
element

γ0,T,n := δTσ(δT ) · · ·σn−1(δT )

lies in T (Q). Note that the triple

(i(γ0,T,n), (i(γ0,T,n))l 6=p, i(δT ))(5.3.9.1)

is an element of Tstr
n . In fact, condition (iii) in Definition 5.3.1 is satisfied since TR is

elliptic in GR, and the other two conditions are trivial. For n sufficiently divisible,
the image of (5.3.9.1) under Tstr

n → Tstr is an element

k(s, δT ) = k(T, i, h, δT ) ∈ Tstr

which depends only on s and δT , not on n. By [Kis17, Lem. 4.3.11], k(s, δT ) lies in
KTstr ⊂ Tstr.

Note that the ◦∼-equivalence class of δT is determined by s. If we σ-conjugate δT
by an element of T ◦(Zur

p ) (or even T (Qur
p )), the element γ0,T,n remains unchanged

as long as n is sufficiently divisible. It follows that the image of k(s, δT ) in KT/∼ is
a well-defined invariant of s ∈ SPD(G,X).31 We denote this element of KT/∼ by
k(s).

Definition 5.3.10. An equivalence class of Kottwitz triples in KT/∼ is called
special, if it is of the form k(s) for some s ∈ SPD.

31Note that the same cannot be said for the image of k(s, δT ) in KT = (KTstr/≡)/G(Zur
p ). This

is because two elements of G(Qur
p ) that are σ-conjugate by an element of T ◦(Zur

p ) need not be
σ-conjugate by an element of G(Zur

p ).
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5.4. Isogeny classes.
5.4.1. For each x ∈ SKp(Fp), we write Vp(x) for the stalk at x of (the pull-back
to SKp of) Vp. This is a finite free Apf -module. For each α ∈ α, we write sα,Ap

f
,x

for the tensor on Vp(x) induced by the tensor sα,Ap
f
on Vp.

Let x, x′ ∈ SKp(Fp). Let R be a Q-algebra, and let
f ∈ Hom(Ax,Ax′)⊗Z(p) R

be an R-isogeny. Then f induces an Apf ⊗Q R-linear isomorphism

fVp : Vp(x′)⊗Q R
∼−→ Vp(x)⊗Q R,

since the two sides are identified with H1
ét(Ax′ ,A

p
f ) ⊗Q R and H1

ét(Ax,A
p
f ) ⊗Q R

respectively. Similarly, f induces a Qur
p ⊗Q R-linear isomorphism

fV0 : V0(x′)⊗Zur
p
Qur
p ⊗Q R

∼−→ V0(x)⊗Zur
p
Qur
p ⊗Q R.

We say that f preserves G-structures, if fVp takes sα,Ap
f
,x′ to sα,Ap

f
,x and fV0 takes

sα,0,x′ to sα,0,x for each α ∈ α. We denote by Ix,x′(R) the set of all such f
preserving G-structures. The functor R 7→ Ix,x′(R) is represented by a Q-scheme
Ix,x′ . If x = x′, then we write Ix for Ix,x′ , which is a Q-algebraic group. Two
points x, x′ ∈ SKp(Fp) are said to be isogenous, if Ix,x′(Q) 6= ∅. This defines
an equivalence relation on SKp(Fp), and the equivalence classes are called isogeny
classes.
Remark 5.4.2. We explain that the above definition of isogeny classes is equiva-
lent to the definition in [Kis17]. The perfect symplectic form on VZ(p) induces an
isomorphism ι : VZ(p)

∼−→ V ∗Z(p)
, from which we obtain an element

spol := ι⊗ ι−1 ∈ Hom(VZ(p) , V
∗
Z(p)

)⊗Hom(V ∗Z(p)
, VZ(p)) ⊂ V

⊗
Z(p)

.

Note that the scheme-theoretic stabilizer of spol in the Zp-group scheme GL(VZ(p))
is precisely GSp(VZ(p)). By our maximality assumption on (sα)α∈α in §5.1.1, spol

is one of the sα. On A we have a canonical weak polarization (i.e., a Z×(p)-orbit of
Z(p)-isogenies A → A∨ which can be represented by a polarization) arising from
the moduli interpretation of SKpKp1 . See [Kis17, §1.3.4] for details. This weak
polarization induces an isomorphism  : Vp ∼−→ (Vp)∗, which is well defined up to
(Apf )×. We can then form the tensor ⊗−1 on Vp, which is well defined on the nose.
Recall that spol,Ap

f
is defined to be Lp(spol) via the identification (5.1.5.2). Since

the level structure on the tower of Siegel Shimura varieties lim←−Kp SKpKp respects
weak polarizations, we have spol,Ap

f
=  ⊗ −1. It follows that each f ∈ Ix,x′(Q)

necessarily respects the canonical weak polarizations on Ax and Ax′ . Thus x and
x′ are isogenous in our sense if and only if they satisfy the conditions in [Kis17,
Prop. 1.4.15]. By that proposition, our definition of isogeny classes is equivalent to
the definition in [Kis17, §1.4.14]. In particular, each isogeny class is stable under
the G(Apf )-action on SKp(Fp).
5.5. Connected components.
5.5.1. Recall that G(Q)+ denotes G(Q) ∩ G(R)+, where G(R)+ is the preimage
of Gad(R)+ in G(R). As in [Kis17, Lem. 3.6.2], we set

π(G) := G(Q)−+\G(Af )/Kp,
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where G(Q)−+ denotes the closure of G(Q)+ in G(Af ). Since Kp is compact, the
projection G(Af ) → G(Af )/Kp is a closed map. Hence the image of G(Q)−+ in
G(Af )/Kp is closed. It easily follows that we have canonical isomorphisms

π(G) ∼= lim←−
Kp

G(Q)−+\G(Af )/KpK
p ∼= lim←−

Kp

G(Q)+\G(Af )/KpK
p,(5.5.1.1)

where Kp runs through compact open subgroups of G(Apf ).

Lemma 5.5.2. The set π(G) has the natural structure of an abelian group. The
natural map G(Apf )→ π(G) is a surjective group homomorphism.

Proof. By strong approximation (see [Del79, §2.5.1]), G(Q)−+ contains the image of
Gsc(Af ) → G(Af ). Since this image is a normal subgroup of G(Af ) with abelian
quotient (see [Del79, §2.0.2]), we see that π(G) is naturally an abelian group. The
second statement follows from [Kis10, Lem. 2.2.6] (which uses that Kp is hyperspe-
cial). �

Lemma 5.5.3. The subgroup G(Q)−+ of G(Af ) is generated by G(Q)+ and the
image of Gsc(Af )→ G(Af ).

Proof. Write Q for the image of Gsc(Af ) → G(Af ). We first show that G(Q)Q
is closed in G(Af ). The proof is similar to the argument in [Del79, §2.0.15]. By
Lemma 5.1.2, Gab is a cuspidal torus. By Lemma 1.5.5, Gab(Q) is discrete in
Gab(Af ). It follows that Gder(Q)Q is an open subgroup of G(Q)Q. On the other
hand, by [Del79, Cor. 2.0.8], Gder(Q)Q is closed in Gder(Af ). Hence G(Q)Q is
indeed closed in G(Af ) (as it is locally closed).

Consequently, G(Q)−+ ⊂ G(Q)Q. Now by strong approximation applied to Gsc
and by the connectedness of Gsc(R) (Cartan’s theorem), we know that Q ⊂ G(Q)−+.
Thus we have reduced the proof of the lemma to showing that

G(Q) ∩G(Q)−+ ⊂ G(Q)+.

Let g ∈ G(Q) ∩ G(Q)−+. By [Del79, Cor. 2.0.7], there exists an open subgroup
U of G(Af ) such that U ∩ G(Q) ⊂ G(R)+. Since g ∈ G(Q)−+, there exists g′ ∈
gU ∩ G(Q)+. Then g−1g′ ∈ U ∩ G(Q) ⊂ G(R)+, and so g ∈ g′G(R)+. Since
g ∈ G(Q) and g′ ∈ G(Q)+, we conclude that g ∈ G(Q)+ as desired. �

5.5.4. Now consider the set (cf. [Del79, §2.1.3])

π(G,X) := lim←−
Kp

π0(ShKpKp(C)) = lim←−
Kp

G(Q)\ (π0(X)×G(Af )/KpKp) ,

where Kp runs through compact open subgroups of G(Apf ). There is a natural map
π0(X)→ π(G,X), induced by

π0(X) −→ π0(X)×G(Af ), C 7−→ (C, 1).

This allows us to speak of the image of an element of X or π0(X) inside π(G,X).
By (5.5.1.1) we see that π(G,X) is a π(G)-torsor. We have a natural G(Apf )-

equivariant map
SKp(Fp) −→ π(G,X),

defined as the inverse limit of the natural maps

SKpKp(Fp) −→ π0(SKpKp,Fp) ∼= π0(ShKpKp(C)).



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 137

In particular, for each isogeny class I in SKp(Fp) (see §5.4), we have a natural
G(Apf )-equivariant map

cI : I −→ π(G,X).
By the G(Apf )-equivariance and Lemma 5.5.2, the above map is surjective.

In the following definition, recall that A∗f := Apf ×Qur
p .

Definition 5.5.5. We set π∗(G) := G(Q)+\G(A∗f )/G(Zur
p )Gder(A∗f ). This is nat-

urally an abelian group, and is a quotient group of the subgroup G(A∗f )/Gder(A∗f )
of Gab(A∗f ).

5.5.6. By Lemma 5.5.3, the natural inclusion map G(Af ) ↪→ G(A∗f ) induces a
group homomorphism π(G) → π∗(G). We define the π∗(G)-torsor π∗(G,X) to be
the push-out of the π(G)-torsor π(G,X) along π(G) → π∗(G). Thus we have a
canonical map π(G,X) → π∗(G,X), and we shall use this map to speak of the
image of an element of X or π0(X) inside π∗(G,X).

5.6. Uniformization on the geometric side.

Definition 5.6.1. Let I be a small connected groupoid category, i.e., a small cat-
egory where all morphisms are isomorphisms and all objects are isomorphic. Let H
be a group. By a right H-torsor over I , we mean a functor from I to the category
of right H-torsors. Let Y be such a functor, and let x be an object in I . Then
Aut(x) naturally acts (on the left) on Y (x) via H-equivariant automorphisms, and
the right H-set Aut(x)\Y (x) is independent of x up to canonical H-isomorphism.
We denote this right H-set by Ȳ (I ).

5.6.2. For x ∈ SKp(Fp), let
Y (x) := Yp(x)× Y p(x),

where Yp(x) is the right G(Qur
p )-torsor Y (Υx), and Y p(x) is the right G(Apf )-torsor

consisting of Apf -module isomorphisms V ∗Ap
f

∼−→ Vp(x) taking sα to sα,Ap
f
,x for each

α ∈ α. Thus Y (x) is a right G(A∗f )-torsor. In fact, by Lemma 5.1.9, Y p(x) has a
canonical trivialization.

The set Yp(x) can be interpreted without reference to Υx as follows. Recall
from Definition 5.2.5 that we have a canonical isomorphism ιx : Υx(V ∗Zp) ∼−→ V0(x)
taking Υx(sα) to sα,0,x. Now each element of Y (Υx) gives rise to an isomorphism
V ∗Qur

p

∼−→ Υx[1/p](V ∗Zp) taking sα to Υx(sα). Composing this with ιx[1/p], we obtain
an isomorphism V ∗Qur

p

∼−→ V0(x)[1/p] taking sα to sα,0,x. In this way, Y (Υx) is in
canonical bijection with the set of Qur

p -linear isomorphisms V ∗Qur
p

∼−→ V0(x)[1/p] tak-
ing sα to sα,0,x. The G(Qur

p )-action on the latter set is given by the G(Qur
p )-action

on V ∗Qur
p
. Note that under this bijection, the subset Y (Υx)◦ ⊂ Y (Υx) corresponds

to those isomorphisms V ∗Qur
p

∼−→ V0(x)[1/p] that take sα to sα,0,x and map V ∗Zur
p

to
V0(x).

Now let y = (yp, yp) ∈ Y (x). Let n ∈ Z≥1 be sufficiently divisible such that the
image of x in SK1(Fp) comes from a Fpn -rational point xn (and Fpn ⊃ OE,p/p). We
then have the pn-Frobenius acting on Vp(x) ∼= H1

ét(Axn,Fp ,A
p
f ), which fixes sα,Ap

f
,x

for all α ∈ α. Via yp : V ∗Ap
f

∼−→ Vp(x), this automorphism of Vp(x) corresponds
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to an automorphism of V ∗Ap
f
fixing all sα, namely an element γn ∈ G(Apf ). On

the other hand, attached to the element yp ∈ Yp(x) = Y (Υx) we have the element
δyp ∈ G(Qur

p ) as in §4.2.5. More concretely, yp gives rise to an isomorphism V ∗Qur
p

∼−→
V0(x)[1/p] as in the above paragraph, and the Frobenius acting on the right hand
side corresponds to δypσ acting on the left hand side.

It is shown in [Kis17, §2.3] that up to replacing n by a multiple, the pair (γn, δ)
extends to an element (γ0,n, γn, δ) ∈ Tstr

n whose image in Tstr lies in KTstr. The
image of (γ0,n, γn, δ) in KTstr/≡ depends only on y and not on the choices of n and
γ0,n. Thus we have obtained a map

Y (x) −→ KTstr/≡, y 7→ k(y).(5.6.2.1)

This map is easily seen to be G(A∗f )-equivariant. (See §5.3.5 for the right G(A∗f )-
action on KTstr/≡.)

5.6.3. Now let I ⊂ SKp(Fp) be an isogeny class. We view I as a small groupoid,
where the set of morphisms between x and x′ ∈ I is given by Ix,x′(Q) defined in
§5.4. Then I is a connected groupoid category. For each f ∈ Ix,x′(Q), we have
isomorphisms fVp : Vp(x′) ∼−→ Vp(x) and fV0 : V0(x′)[1/p] ∼−→ V0(x)[1/p] as in §5.4.
By definition, fVp takes sα,Ap

f
,x′ to sα,Ap

f
,x, and so it induces a G(Apf )-equivariant

bijection
Y p(f) : Y p(x) ∼−→ Y p(x′).

Similarly, fV0 takes sα,0,x′ to sα,0,x, and so it induces an isomorphism Υx[1/p] ∼−→
Υx′ [1/p] by Lemma 4.2.4. By functoriality, this then induces a G(Qur

p )-equivariant
bijection

Yp(f) : Yp(x) ∼−→ Yp(x′).

We define Y (f) to be the bijection

(Yp(f), Y p(f)) : Y (x) ∼−→ Y (x′).

The associations I 3 x 7→ Y (x) and Ix,x′(Q) 3 f 7→ Y (f) define a functor from I
to the category of right G(A∗f )-torsors. In other words, we have obtained a right
G(A∗f )-torsor Y over I in the sense of Definition 5.6.1. As in that definition, we
obtain a right G(A∗f )-set Ȳ (I ), together with canonical isomorphisms

Ix(Q)\Y (x) ∼−→ Ȳ (I )(5.6.3.1)

for all x ∈ I .
For x, x′ ∈ I and f ∈ Ix,x′(Q), we claim that the bijection Y (f) : Y (x) ∼−→

Y (x′) commutes with the maps Y (x) → KTstr/≡ and Y (x′) → KTstr/≡ as in
(5.6.2.1). In fact, since Yp(f) : Y (Υx) ∼−→ Y (Υx′) is induced by an isomorphism
Υx[1/p] ∼−→ Υx′ [1/p], it commutes with the maps Yp(x) → G(Qur

p ), y 7→ δy and
Yp(x′) → G(Qur

p ), y 7→ δy in §4.2.5. For sufficiently divisible n, the isogeny f is
defined over Fpn , and so the element γn ∈ G(Apf ) attached to any y ∈ Y p(x) is
equal to its counterpart attached to Y p(f)(y) ∈ Y p(x′). Our claim follows.

It follows that for each x ∈ I , the map Y (x)→ KTstr/≡ descends to a map

Ix(Q)\Y (x) −→ KTstr/≡,
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which is independent of x if we identify the left hand side with Ȳ (I ) as in (5.6.3.1).
Hence we have obtained a canonical map

Ȳ (I ) −→ KTstr/≡, ȳ 7−→ k(ȳ).(5.6.3.2)
For x ∈ I and y ∈ Y (x), the left Ix(Q)-action on the right G(A∗f )-torsor Y (x)

gives rise to a homomorphism
ιy : Ix(Q) −→ G(A∗f )(5.6.3.3)

defined by
j · y = y · ιy(j), ∀j ∈ Ix(Q).

Thus we have a map ιy,v : Ix(Q) → G(Qv) for each prime v 6= p, and a map ιy,p :
Ix(Q)→ G(Qur

p ). These maps have the following extra structures, by the results in
[Kis17, §2.3]. Let k̇(y) ∈ KTstr be a representative of the image of k(y) ∈ KTstr/≡.
Let (I0, (Iv)v, (ηv)v) be the datum attached to k as in §5.3.2. For each prime v 6= p,
the map ιy,v comes from an isomorphism of Qv-groups Ix,Qv

∼−→ Iv, which we
still denote by ιy,v. Also, the map ιy,p comes from an isomorphism of Qp-groups
Ix,Qp

∼−→ Ip, which we still denote by ιy,p. (Here recall that Iv(Qv) ⊂ G(Qv) for
v 6= p and Ip(Qp) ⊂ G(Qur

p ).) In particular, the map (5.6.3.3) is injective. Moreover,
the isomorphisms ιy,v for all primes v can be extended to a refinement of k̇(y) of the
form (Ix, ι0, (ιy,v)v). (See Definition 5.3.3 for the notion of a refinement.) This in
particular implies that Ix is a reductive group over Q such that Ix,R is anisotropic
mod center.

5.6.4. Let I ⊂ SKp(Fp) be an isogeny class. Set

I ∗ = Ȳ (I )/G(Zur
p ).

Then we have a natural right G(Apf )-action on I ∗. It is immediate that the map
(5.6.3.2) induces a map

I ∗ −→ KT = (KTstr/≡)/G(Zur
p ).(5.6.4.1)

For each x ∈ I , inside
Y (x)/G(Zur

p ) ∼= (Y (Υx)/G(Zur
p ))×G(Apf )

we have a canonical base point, whose first coordinate is given by the image of
the G(Zur

p )-torsor Y (Υx)◦ ⊂ Y (Υx), and whose second coordinate is 1 ∈ G(Apf ).
This base point determines an element x∗ of I ∗ ∼= Ix(Q)\Y (x)/G(Zur

p ) (where the
canonical isomorphism is induced by (5.6.3.1)). Sending x to x∗, we have obtained
a map

I −→ I ∗.(5.6.4.2)
By [Kis17, Prop. 2.1.3], the map (5.6.4.2) is injective andG(Apf )-equivariant. The

image of (5.6.4.2) is described as follows. As in §2.4.1, we choose µX ∈ �X(Ep)
such that µX extends to a cocharacter of GOE,p over OE,p. Let

υ = σ(−µX)
Let x ∈ I . Recall from Definition 4.2.7 that inside Y (Υx) we have the G(Zur

p )-stable
subset Yυ(Υx), and that we denote the quotient Yυ(Υx)/G(Zur

p ) by Xυ(Υx). The
subset G(Zur

p )pυG(Zur
p ) ⊂ G(Qur

p ) depends on υ only via its G(Zur
p )-conjugacy class,

and the latter is independent of the choice of µX . Hence Yυ(Υx) and Xυ(Υx) are
independent of the choice of µX (cf. the independence of µX in §2.4.1). Moreover,
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if x′ is another element of I and if f ∈ Ix,x′(Q), we have seen in §5.6.3 that
the isomorphism Yp(f) : Y (Υx) ∼−→ Y (Υx′) commutes with the maps Y (Υx) →
G(Qur

p ), y 7→ δy and Y (Υx′) → G(Qur
p ), y 7→ δy. It follows that Yp(f) induces a

bijection Yυ(Υx) ∼−→ Yυ(Υx′). Therefore inside Ȳ (I ) we have a canonical subset
of the form

Ȳ (I )\ ∼= Ix(Q)\Yυ(Υx)× Y p(x),
which is independent of the choice of x.

Proposition 5.6.5. The image of (5.6.4.2) is equal to the image of Ȳ (I )\ under
the projection Ȳ (I )→ I ∗.

Proof. By [Kis17, §1.4.1], we have
Y (Υx)◦ ⊂ Yυ(Υx), ∀x ∈ I .(5.6.5.1)

It follows that the image of (5.6.4.2) is contained in Ȳ (I )\. The reverse contain-
ment follows from the definition of isogeny classes in [Kis17, §1.4.14], which we have
seen is equivalent to our definition (see §5.4). �

Remark 5.6.6. Keep the setting of §5.6.4. From Proposition 5.6.5, we see that the
choice of an element x ∈ I gives rise to a bijection

Ix(Q)\Xυ(Υx)× Y p(x) ∼−→ I .

As explained in Remark 4.2.8, if we choose y ∈ Yυ(Υx), then Xυ(Υx) is identified
with the affine Deligne–Lusztig set Xυ(δy). The natural action of Ix(Q) on Xυ(Υx)
corresponds to the natural action of ιy,p(Ix(Q)) on Xυ(δy). (Recall from §5.6.3 that
ιy,p(Ix(Qp)) is the σ-centralizer of δy in G(Qur

p ). This group acts on Xυ(δy) by left
multiplication). Similarly, under the canonical identification Y p(x) ∼= G(Apf ), the
natural action of Ix(Q) on Xυ(Υx) × Y p(x) corresponds to the left-multiplication
action of ιy(Ix(Q)) on Xυ(δy)×G(Apf ). Thus we obtain a bijection

ιy(Ix(Q))\Xυ(δy)×G(Apf ) ∼−→ I(5.6.6.1)

associated with the choices of x and y. This bijection is the same as the map [Kis17,
(2.1.4)].

5.6.7. We summarize the various constructions in the following commutative di-
agram.

Ix(Q)\Yυ(x)× Y p(x) �
� //

∼=∀x∈I

��

Ix(Q)\Y (x)

∼=,(5.6.3.1)∀x∈I

��
Ȳ (I )\ �

� //

quot. by G(Zur
p )

����

Ȳ (I )

quot. by G(Zur
p )

����

(5.6.3.2) // KTstr/≡

quot. by G(Zur
p )

����
I �
� (5.6.4.2) // I ∗

(5.6.4.1) // KT
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5.6.8. It follows from the Cartan decomposition that the Kottwitz homomorphism
wG : G(Q̆p)→ π1(G) induces a bijection

G(Qur
p )/Gsc(Qur

p )G(Zur
p ) ∼−→ π1(G)

and an injection
G(Qp)/Gsc(Qp)G(Zp) ↪→ π1(G)Γp = π1(G)σ.

By [Kot97, §7.7] (cf. [Kis17, Lem. 1.2.3]), the above injection is also a bijection. It
follows that the natural map

G(Qp)/Gsc(Qp)G(Zp) −→ G(Qur
p )/Gsc(Qur

p )G(Zur
p )

is injective, and that its image is precisely the preimage of π1(G)σ in
G(Qur

p )/Gsc(Qur
p )G(Zur

p ).
From this observation, we see that each element rp ∈ G(Qur

p ) satisfying wG(rp) ∈
π1(G)σ uniquely determines an element r′p ∈ G(Qp)/Gsc(Qp)G(Zp).

Lemma 5.6.9. Let I ⊂ SKp(Fp) be an isogeny class. Let y ∈ Ȳ (I ). Let r =
(rp, rp) ∈ G(A∗f ) = G(Apf )×G(Qur

p ), and let y′ = yr ∈ Ȳ (I ). Assume that both y
and y′ lie in Ȳ (I )\. Then the following statements hold.

(i) The element rp ∈ G(Qur
p ) satisfies wG(rp) ∈ π1(G)σ. In particular, rp

determines an element r′p ∈ G(Qp)/Gsc(Qp)G(Zp) as in §5.6.8. By Lemma
5.5.3, the image of (rp, r′p) in π(G) is well defined. We denote this image
by rπ(G).

(ii) The images of y and y′ under the composite map

Ȳ (I )\ −→ I
cI−−→ π(G,X)

differ by the element rπ(G) ∈ π(G) in part (i). More precisely, cI (y′) =
cI (y) · rπ(G).

Proof. Since (5.6.4.2) is G(Apf )-equivariant, so is the map Ȳ (I )\ → I . The map
cI is also G(Apf )-equivariant. The proof is thus reduced to the case rp = 1. In the
following we assume rp = 1, and write r for rp.

Let x ∈ I be the image of y. Then under the identification
Ȳ (I ) ∼= Ix(Q)\Yp(x)× Y p(x) = Ix(Q)\Y (Υx)×G(Apf ),

the element y is represented by (yp, 1) ∈ Y (Υx) × G(Apf ) with yp ∈ Y (Υx)◦. The
element y′ is represented by (ypr, 1).

Let δ = δyp ∈ G(Qur
p ). Let υ be as in §5.6.4. By (5.6.5.1), we have yp ∈ Yυ(Υx).

Since y′ ∈ Ȳ (I )\, we also have ypr ∈ Yυ(Υx) by the discussion in §5.6.4. As
in Remark 4.2.8, we have an identification Xυ(Υx) = Yυ(Υx)/G(Zur

p ) ∼−→ Xυ(δ),
under which the image of yp (resp. ypr) in Xυ(Υx) corresponds to the element
G(Zur

p ) (resp. rG(Zur
p )) of G(Qur

p )/G(Zur
p ). Clearly all elements of Xυ(δ) have the

same image under the composite map

G(Qur
p )/G(Zur

p ) wG−−→ π1(G) 1−σ−−−→ π1(G).
Since G(Zur

p ) and rG(Zur
p ) both lie in Xυ(δ), statement (i) follows.

Let C denote the composite map

Xυ(δ) ∼= Xυ(Υx) z 7→(z,1)−−−−−→ Ix(Q)\Xυ(Υx)×G(Apf ) ∼= I
cI−−→ π(G,X).
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We are left to show that C(r) and C(1) differ by rπ(G).
We follow [Kis17, §§1.2–1.4] closely. Let G be the p-divisible group Ax[p∞] over

Fp. By [Kis17, §1.2.16, Lem. 1.2.18], for any finite extension K/Q̆p and any GZ̆p -
adapted lifting G̃ of G to OK , there is an associated map (which is denoted by
g 7→ g0 in loc. cit.)

f
G̃

: G(Qp)/G(Zp) −→ Xυ(δ).

In fact, in the language of §4.4, the choice of G̃ gives rise to an element [ρ
G̃

] ∈
CrysG, and the map f

G̃
by definition sends each λ ∈ G(Qp)/G(Zp) to the element

λ0 ∈ G(Qur
p )/G(Zur

p ) associated with [ρ
G̃

] and λ as in §4.4.14.
By [Kis17, Prop. 1.2.23], we can choose G̃ such that the composite map

G(Qp)/G(Zp)
f

G̃−−→ Xυ(δ) −→ π0(Xυ(δ))

is surjective. Here π0(Xυ(δ)) is the set of connected components of the affine
Deligne–Lusztig set Xυ(δ), defined in [CKV15] (cf. [Kis17, §1.2]). We fix such
a choice of G̃ , and choose g ∈ G(Qp) such that f

G̃
(g) lies in the same connected

component of Xυ(δ) as r. In what follows we write g0 for f
G̃

(g) ∈ Xυ(δ).
By [Kis17, Cor. 1.4.12], we have

C(g0) = C(1) · g.

Here on the right hand side we again write g for the natural image of g ∈ G(Qp) in
π∗(G). Thus we are left to show that

C(r) = C(g0) · g−1rπ(G).

Since r and g0 lie in the same connected component of Xυ(δ), we have C(r) =
C(g0).32 Hence it suffices to show that the image of g in π(G) is equal to rπ(G).
For this, it suffices to show that wG(g) = wG(r).

The fact that r and g0 lie in the same connected component of Xυ(δ) implies
that wG(r) = wG(g0), in view of [CKV15, Lem. 2.3.6]. By [Kis17, Lem. 1.2.18] or
Proposition 4.4.15, we have wG(g0) = wG(g). Hence wG(g) = wG(r) as desired. �

Proposition 5.6.10. Let I ⊂ SKp(Fp) be an isogeny class. There is a unique
map

c∗I : I ∗ −→ π∗(G,X)
such that the diagram

I �
� (5.6.4.2) //

cI

��

I ∗

c∗I
��

π(G,X) // π∗(G,X)
commutes, and such that the composite

Ȳ (I )→ I ∗
c∗I−−→ π∗(G,X)

32In fact, if one modifies the setting of [Kis17, §1.4.10] by replacing the integral model of the
Shimura variety with a connected component of the geometric special fiber, then exactly the same
argument there shows that the map Xυ(δ) ∼= Xυ(Υx)→ Ix(Q)\Xυ(Υx)×G(Ap

f
) ∼= I sends each

connected component of Xυ(δ) into one fiber of cI .
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is G(A∗f )-equivariant. Here G(A∗f ) acts on π∗(G,X) via the natural homomorphism
G(A∗f )→ π∗(G).

Proof. We have Ȳ (I )\ ·G(Qur
p ) = Ȳ (I ), from which the uniqueness of c∗I follows.

To show the existence, we fix x ∈ I . The choice of x gives an identification
Ix(Q)\Y (x) ∼= Ȳ (I ). As discussed in §5.6.3, the left action of Ix(Q) on Y (x)
can be reconstructed as the composition of the inversion map Ix(Q) → Ix(Q),
the embedding ιy : Ix(Q) → G(A∗f ) (see (5.6.3.3)), and the right multiplication
of G(A∗f ) on itself. By Lemma 5.6.9, the composed homomorphism Ix(Q) ιy−→
G(A∗f )→ π∗(G) is trivial. By this fact and by Lemma 5.6.9, we know that the map
Ȳ (I )\ → π∗(G,X), obtained as the composition of the map Ȳ (I )\ → π(G,X)
considered in Lemma 5.6.9 and the natural map π(G,X) → π∗(G,X), extends
to a G(A∗f )-equivariant map c : Ȳ (I ) → π∗(G,X). Now c necessarily factors
through the projection Ȳ (I )→ I ∗ = Ȳ (I )/G(Zur

p ), because G(Zur
p ) acts trivially

on π∗(G,X). This finishes the proof. �

5.7. Special points on the geometric side.

5.7.1. Let s = (T, i, h) ∈ SPD(G,X) be a special point datum. From s we can
produce a canonical element

xs ∈ SKp(Fp)
as follows. For each neat compact open subgroup K ⊂ G(Af ), the subgroup
i−1(K) ⊂ T (Af ) is neat compact open. We have the Shimura variety Shi−1(K)(T, h),
which is a zero-dimensional E(T, h)-scheme. We write ShK(T, h) for Shi−1(K)(T, h),
while we still write ShK for ShK(G,X). We write µ for the Hodge cocharacter
µh ∈ X∗(T ) associated with h. The reflex field of the Shimura datum (T, h) is by
definition the field of definition of µ, and we shall denote it by Eµ ⊂ C in accordance
with the notation in §4.3.13.

We have E ⊂ Eµ. Let Kp ∈ K p. The morphism i : (T, h) → (G,X) between
Shimura data induces an Eµ-scheme morphism

ShKpKp(T, h) −→ ShKpKp ×SpecE SpecEµ.(5.7.1.1)
For each neat compact open subgroup U ⊂ T (Af ) we have the finite abelian
extension Eµ,U/Eµ as defined in §4.3.13. By the explicit description in §1.5.3
of the Shimura varieties associated with (T, h), we know that all geometric con-
nected components of the Eµ-scheme ShKpKp(T, h) have the same field of definition
Eµ,i−1(KpKp). To simplify notation, we write Es,Kp for Eµ,i−1(KpKp). The restric-
tion of (5.7.1.1) to the neutral geometric connected component, namely the one
corresponding to the neutral C-point

1 ∈ ShKpKp(T, h)(C) = T (Q)\T (Af )/i−1(KpK
p),

gives rise to an E-scheme morphism
x̃s,Kp : SpecEs,Kp −→ ShKpKp .

Let Fs,Kp be the topological closure of Es,Kp inside Qp (with respect to the
fixed embedding Es,Kp ↪→ Q ↪→ Qp). We thus have a tower of field extensions
(Fs,Kp)Kp∈K p , and we let Fs be the union of these fields. Note that for every place
w of Eµ above p, the kernel of the map

O×Eµ,w → E×µ \A×Eµ
(4.3.13.3)−−−−−−→ T (Q)\T (Af )→ T (Q)\T (Af )/i−1(KpK

p)
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is independent of Kp, which follows easily from the discreteness of T (Q) in T (Af )
(by Lemma 1.5.5 and Lemma 5.1.2 (iii)) and the neatness of i−1(Kp). This implies
that the transition maps in the tower (Fs,Kp)Kp∈K p are unramified field extensions.
In particular, OFs

is a regular local ring.
The morphisms x̃s,Kp are compatible when Kp varies in K p, so they give rise

to a morphism of Ep-schemes
SpecFs = lim←−

Kp∈K p

SpecFs,Kp −→ SKp,Ep
.(5.7.1.2)

SinceOFs
is a regular local ring, the extension property of SKp implies that (5.7.1.2)

extends to a unique OE,p-morphism SpecOFs
→ SKp . Passing to the special fiber

we obtain a point
xs ∈ SKp(Fp).

5.7.2. Keep the setting and notation of §5.7.1. We write K1 for KpK
p
1 as in

§5.1.3. Fix s ∈ SPD(G,X). To simplify notation, we write F for Fs,Kp
1
, and write

x̃ ∈ ShK1(F ) for the point induced by x̃s,Kp
1
. We also simply write x for xs. By

construction, the image of x in SK1 is the specialization of x̃.
We write VB,Q(x̃) for the stalk of VB,Q at x̃, viewed as a point in ShK1(C). Thus

VB,Q(x̃) ∼= H1
B(A

x̃
(C),Q). For each α ∈ α, we write s

α,B,Q,x̃ for the tensor over
VB,Q(x̃) induced by the tensor sα,B,Q over VB,Q (see §5.1.5).

Since x̃ comes from the neutral point 1 ∈ ShK1(T, h)(C), there is a canonical
Q-linear isomorphism

trivs : V ∗Q
∼−→ VB,Q(x̃).

This satisfies the following properties:
(i) trivs takes sα to s

α,B,Q,x̃ for each α ∈ α.
(ii) trivs restricts to a Z(p)-module isomorphism V ∗Z(p)

∼−→ H1
B(A

x̃
(C),Z(p)).

(iii) We view VB,Q(x̃) as a faithful representation of T via trivs and the rep-
resentation T

i−→ G → GL(V ∗Q ). Then the action of the Mumford–Tate
group of A

x̃
on VB,Q(x̃) is via an embedding into T . The Hodge structure

on VB,Q(x̃) is given by h : S→ TR.
Using the comparison isomorphisms, we obtain from trivs canonical isomor-

phisms
trivs,p : V ∗Zp

∼−→ Vp(x̃),

trivs,Ap
f

: V ∗Ap
f

∼−→ Vp(xs).

We use these isomorphisms to define a TQp -representation on Vp(x̃)[1/p] and a
TAp

f
-representation on Vp(x). The isomorphism trivs,p induces an isomorphism

G ∼−→ G
x̃

(5.7.2.1)
which lies in the canonical G(Zp)-conjugacy class of such isomorphisms as in Lemma
5.1.8. (Here G

x̃
is defined as in §5.1.7.) The isomorphism trivs,Ap

f
coincides with

the stalk at x of the canonical isomorphism in Lemma 5.1.9.
Since the Mumford–Tate group of A

x̃
is contained in T , we know that A

x̃
has

complex multiplication by some CM field H, and that the action of H× on VB,Q(x̃)
induces embeddings of Q-algebraic groups

T ↪→ ResH/QGm ↪→ GL(VB,Q(x̃)).
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In particular, we have a canonical embedding of T into the Q-algebraic group of
self-isogenies of Ax. This embedding factors through Ix, since the action of T on
VB,Q(x̃) fixes s

α,B,Q,x̃ for all α ∈ α. Thus we have a canonical embedding

T ↪→ Ix.(5.7.2.2)

5.7.3. Keep the setting and notation of §5.7.1 and §5.7.2.
Analogous to the functor (5.1.4.1), we have a faithful exact ⊗-functor

L′ : RepQpT −→ LisseQp(ShK1(T, h)).

Analogous to (5.1.5.2), we have a canonical isomorphism between the pull-back to
ShK1(T, h)E of Vp ⊗Zp Qp and (the pull-back of) L′(V ∗Qp). In particular, we have a
canonical Gal(Qp/F )-equivariant Qp-linear isomorphism

Vp(x̃)[1/p] ∼= L′(V ∗Qp)(x̃),(5.7.3.1)

where the right hand side denotes the stalk of L′(V ∗Qp) at x̃ viewed as a Qp-point of
ShK1(T, h). Using (5.7.3.1), for each TQp -invariant tensor rβ ∈ (V ∗Qp)⊗, we obtain
a tensor r

β,p,x̃
over Vp(x̃)[1/p] induced by the tensor L′(rβ) over L′(V ∗Qp). It is not

hard to see that the isomorphism

trivs,p[1/p] : V ∗Qp
∼−→ Vp(x̃)[1/p]

takes each rβ to r
β,p,x̃

. It follows that the image of the embedding

TQp −→ GL(Vp(x̃)[1/p])

coincides with the stabilizer of all r
β,p,x̃

. In particular, the Gal(Qp/F )-action on
Vp(x̃)[1/p] is via a homomorphism

ρ(T,h) : Gal(Qp/F ) −→ T (Qp).

We now give an explicit description of ρ(T,h). Let µ = µh ∈ X∗(T ), and let U =
i−1(K1) ⊂ T (Apf ). As in §4.3.13, we have the field Eµ,U,v, and the homomorphism

r(µ)U,p,loc : Gal(Qp/Eµ,U,v) −→ T (Qp).

Note that Eµ,U,v ⊂ F . The homomorphism ρ(T,h) is equal to the restriction of
r(µ)U,p,loc to Gal(Qp/F ). This fact is just another way to look at the Shimura–
Taniyama reciprocity law, and it easily follows from the explicit description of the
tower of Shimura varieties attached to (T, h) as in §1.5.3. Also cf. [Pin92a, §(5.5)].

Note that the hypothesis on U in Proposition 4.3.14 is satisfied in the current
situation. By that proposition and by the above discussion, we know that ρ(T,h) is
crystalline, and that the element [ρ(T,h)] ∈ CrysTQp

is equal to M−1
T (−µh) ∈ MotT .

5.7.4. Keep the setting and notation of §§5.7.1–5.7.3. From [ρ(T,h)] ∈ CrysTQp
, we

obtain an element [i ◦ ρ(T,h)] ∈ CrysGQp
. Denote by T ◦ the connected Néron model

of TQp over Zp. Applying §4.5.1 to [ρ] = [i ◦ ρ(T,h)] and [ρT ] = [ρ(T,h)], we obtain
Υ[ρ(T,h)] ∈ T ◦-Isoc◦Qur

p
and Υ[i◦ρ(T,h)] ∈ G-Isoc◦Qur

p
. To simplify notation we denote

them by Υ(T,h) and Υs respectively. As in §4.5.1, we have a natural injection from
the T (Qur

p )-torsor Y (Υ(T,h)) to the G(Qur
p )-torsor Y (Υs).

As before we write x for the point xs ∈ SKp(Fp). We have a canonical isomor-
phism Υs

∼= Υx, which we now explain.
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Letting Gal(Qp/F ) act on V ∗Qp via

Gal(Qp/F )
ρ(T,h)−−−−→ T (Qp)

i−→ G(Qp)→ GL(V ∗Qp),

we have a canonical Gal(Qp/F )-equivariant isomorphism V ∗Qp
∼= Vp(x̃)[1/p] induced

by trivs,p. Since this isomorphism takes V ∗Zp to Vp(x̃), it induces an isomorphism
of integral F -isocrystals

Υs(V ∗Zp) ∼−→Mcris(Vp(x̃))⊗OF0
Zur
p ,(5.7.4.1)

where F0 denotes the maximal unramified extension of Qp in F as usual. The
isomorphism (5.7.4.1) takes the tensor Υs(sα) over the left hand side to the tensor
Mcris(sα,p,x̃) over the right hand side, since trivs,p takes sα to s

α,p,x̃
. Now the

right hand side of (5.7.4.1) is identified with V0(x) via the integral comparison
isomorphism (5.2.2.1), and under this identification s

α,p,x̃
is identified with sα,0,x

by the discussion in §5.2.2. Hence we obtain a canonical isomorphism of integral
F -isocrystals

Υs(V ∗Zp) ∼−→ V0(x),(5.7.4.2)

which takes Υs(sα) to sα,0,x for all α ∈ α. It then follows from Lemma 5.2.4 that
there is a unique isomorphism

Υs
∼−→ Υx(5.7.4.3)

in G-Isoc◦Qur
p

taking the isomorphism (5.7.4.2) to the isomorphism ιx : Υx(V ∗Zp) ∼−→
V0(x).

Via (5.7.4.3), we have a canonical isomorphism Y (Υs) ∼= Y (Υx). Composing
this with the canonical injection Y (Υ(T,h)) ↪→ Y (Υs), we obtain an injection

Y (Υ(T,h)) ↪→ Y (Υx).(5.7.4.4)

Recall from §5.6.2 that Y (x) = Yp(x) × Y p(x), where Yp(x) = Y (Υx), and Y p(x)
is canonically identified with G(Apf ). We write 1 for the canonical base point of
Y p(x).

Recall from §4.2.5 that inside the T (Qur
p )-torsor Y (Υ(T,h)) we have the subset of

integral points Y (Υ(T,h))◦, which is a T ◦(Zur
p )-torsor.

Definition 5.7.5. Let s ∈ SPD(G,X), and let x = xs ∈ SKp(Fp). Let yp ∈ Yp(x)
be an element of the image of Y (Υ(T,h))◦ under (5.7.4.4), and let y = (yp, 1) ∈ Y (x).
We call y an integral special point33 associated with s.

In the next proposition we prove fundamental properties of integral special
points.

Proposition 5.7.6. Let x = xs and let y = (yp, 1) ∈ Y (x) be an integral special
point as in Definition 5.7.5. The following statements hold.

(i) Let δyp be the image of yp under the map Y (Υ(T,h))→ T (Qur
p ), z 7→ δz as

in §4.2.5. Then δyp lies in T (Qur
p )mot, and the ◦∼-equivalence class of δyp

corresponds to the image of −µh in X∗(T )Γp,0under the bijection (4.3.9.1).

33The images of the integral special points under Y (x)→ I ∗, where I is the isogeny class of
x, are called “integral special points” in the Introduction.
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(ii) By (i), the element δyp satisfies the assumptions on δT in §5.3.9. By the
construction in §5.3.9, we obtain an element k(s, δyp) ∈ KTstr. The image
k(y) of y under the map Y (x) → KTstr/≡ as in (5.6.2.1) is equal to the
image of k(s, δyp).

(iii) Let I be the isogeny class of x. The image of y under the composite map

Y (x)→ Ix(Q)\Y (x)/G(Zur
p ) ∼= I ∗

c∗I−−→ π∗(G,X)

is equal to the image of i ◦h ∈ X in π∗(G,X). (See Proposition 5.6.10 for
c∗I .)

Proof. We have seen in §5.7.3 that [ρ(T,h)] = M−1
T (−µh) ∈ MotT . Statement (i)

follows from this fact and Corollary 4.4.12.
For (ii), tracing the definitions we see that the δ-component of k(y) is i(δyp).

By the Shimura–Taniyama reciprocity law, for sufficiently divisible n the geometric
pn-Frobenius in Ix(Q) is given by an element of T (Q), if we view T as a Q-subgroup
of Ix as in (5.7.2.2). This element has to be γ0,T,n introduced in §5.3.9. (Recall
that γ0,T,n depends only on (T, h) and n.) Now the composition

TAp
f

(5.7.2.2)−−−−−→ Ix,Ap
f
→ GL(Vp(x)) ∼−→ GL(V ∗Ap

f
),

where the last isomorphism is induced by trivs,Ap
f

: V ∗Ap
f

∼−→ Vp(x), is equal to the
base change to Apf of i : T → G. Hence the γ-component of k(y) is represented by
i(γ0,T,n) at level n. Statement (ii) follows.

For (iii), let y′p be an element of Y (Υx)◦ ⊂ Y (Υx) = Yp(x), and set y′ := (y′p, 1) ∈
Yp(x)×Y p(x) = Y (x). Then the image of y′ in I ∗ is equal to the image of x under
the canonical injection I ↪→ I ∗. See §5.6.4 for details. By the construction of
x = xs in §5.7.1, for each Kp ∈ K p the image of x in SKpKp(Fp) is the reduction
of a point of ShKpKp whose induced C-point is the image of (i ◦h, 1) ∈ X ×G(Af ).
Hence x and i ◦ h ∈ X have the same image in π(G,X) (cf. §5.5.4), and a fortiori
they have the same image in π∗(G,X). Therefore we only need find y′ as above
such that y and y′ have the same image in π∗(G,X). By the second statement in
Proposition 4.5.2, we can find y′p such that it lies in the Gder(Qur

p )-orbit of yp. But
then y and y′ have the same image in π∗(G,X), since the map Y (x) → π∗(G,X)
in question is G(A∗f )-equivariant, and since the G(A∗f )-action on π∗(G,X) restricts
to the trivial action of Gder(A∗f ). �

5.7.7. Let x ∈ SKp(Fp), and let T be a maximal torus in the Q-reductive group
Ix. For each µ ∈ X∗(T ), we define µ̄TQp ∈ X∗(T ) as in §3.3.5 (with respect to the
Qp-torus TQp).

Let y ∈ Y (x). Then we have a Qp-isomorphism ιy,p : Ix,Qp
∼−→ Ip, where Ip ⊂

ResQur
p /Qp G is the reductive group over Qp associated with k(y) ∈ KTstr. Let δy

be the δ-component of k(y), and let νδy be the Newton cocharacter of δy ∈ G(Qur
p )

Then νδy can be viewed as a central fractional cocharacter of Ix,Qp via ιy,p. In
particular we can view νδy as an element of X∗(T )⊗Q. We say that a cocharacter
µ ∈ X∗(T ) is x-admissible, if the composition

Gm,Qp
µ−→ TQp

↪→ Iφ,Qp
ιy,p−−→ Ip,Qp

→ GQp
(5.7.7.1)
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lies in �X(Qp), and if µ̄TQp = νδy as elements of X∗(T )⊗Q. Here the map Ip,Qp →
GQp

is induced by the map (ResQur
p /Qp G)Qp → GQp

induced by the inclusion Qur
p ↪→

Qp. It is straightforward to check that the definition of x-admissible cocharacters
is independent of the choice of y. (Note the analogy between this definition and the
definition in §3.3.8.) The following theorem is the geometric analogue of Theorem
3.3.9.

Theorem 5.7.8. Let x ∈ SKp(Fp), and let T be a maximal torus in Ix defined
over Q. The following statements hold.

(i) There exists µ ∈ X∗(T ) that is x-admissible.
(ii) Let µ ∈ X∗(T ) be an x-admissible cocharacter. Then there exists a special

point datum of the form s = (T, i, h) satisfying the following conditions:
(a) µ = µh.
(b) The points x and xs lie in the same isogeny class. Moreover, there

exists g ∈ Ix,xs
(Q) such that the isomorphism g∗ : Ix

∼−→ Ixs
induced

by g has the property that the composition

T ↪→ Ix
g∗−→ Ixs

is equal to the canonical embedding T ↪→ Ixs
as in (5.7.2.2).

Proof. Part (i) is proved in [Kis17, Lem. 2.2.2], and part (ii) is proved in [Kis17,
Cor. 2.2.5]. �

5.8. Uniformization on the gerb side.

5.8.1. Let φ : Q→ GG be an admissible morphism (see Definition 2.4.2). Set

Yp(φ) := UR(φ(p) ◦ ζp),
Y p(φ) := Xp(φ),
Y (φ) := Yp(φ)× Y p(φ).

See Definition 2.2.3 and §2.4.7 for the notations. Thus Yp(φ) is a right G(Qur
p )-

torsor, Y p(φ) is a right G(Apf )-torsor, and Y (φ) is a right G(A∗f )-torsor.
The construction in [Kis17, §4.5.1] gives rise to a map

Y (φ) −→ KT.(5.8.1.1)

In fact, the construction is more precise, as we now explain. Let y = (yp, yp) ∈ Y (φ).
Write φ(p)y for the morphism Int(yp)−1 ◦ φ(p) : Q(p)→ GG(p). The Qp-subgroup
im(φ(p)∆

y ) ⊂ GQp
is defined over Qur

p . Let

Uφ,y = Uy := im(φ(p)∆
y )(Qur

p ) ∩ G(Zur
p ),

where the intersection is inside G(Qur
p ). The construction in loc. cit. attaches to y

a Uy-orbit in KTstr/≡, which we denote by

[k(y)] ⊂ KTstr/≡.

(Here Uy acts on KTstr/≡ by the embedding Uy ↪→ G(Zur
p ) and the G(Zur

p )-action
in Definition 5.3.6.) If we just remember the G(Zur

p )-orbit in KTstr/≡ induced by
[k(y)], then we obtain the map (5.8.1.1). (However, we caution the reader that there
is no well-defined map Y (φ)→ KTstr/≡, which is unlike the situation in §5.6.2.)
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Let k ∈ [k(y)] and let δy be the δ-component of k. Thus δy is canonical up to
σ-conjugation by Uy. It follows easily from the construction in [Kis17, §4.5.1] that
δy satisfies the following conditions. (Note that both the conditions are invariant
when we σ-conjugate δy by Uy.)

(i) Define by ∈ G(Qur
p ) such that the morphism D → Gur

G underlying φ(p)y ◦
ζp : Gp → GG(p) sends dσ to by o σ, cf. Definition 2.2.5. Given any
neighborhood O of 1 in im(φ(p)∆

y )(Q̆p) (for the p-adic topology), there
exists u ∈ Uy such that

uδyσ(u)−1 ∈ O ·σ by.

Here the right hand side denotes{
abyσ(a)−1 ∈ G(Q̆p) | a ∈ O

}
,

where each element of O is viewed as an element of G(Q̆p). In particular,
by and δy are σ-conjugate by an element of G(Z̆p) ∩ im(φ(p)∆

y )(Q̆p).
(ii) The canonical homomorphism Iφ(p)y,Qp

→ GQp
is defined over Qur

p , and
induces an isomorphism

Iφ(p)y (R) =
{
g ∈ G(Qur

p ⊗Qp R) | gδyσ(g)−1 = δy
}

for each Qp-algebra R. (Here we view the left hand side as a subgroup of
Iφ(p)y (Qur

p ⊗QpR), which maps toG(Qur
p ⊗QpR) via the Qur

p -homomorphism
Iφ(p)y,Qur

p
→ GQur

p
.)

By property (ii) above, we know that although δy is only well defined up to σ-
conjugation by Uy, the σ-centralizer of δy in G is unambiguous as a subfunctor of
ResQur

p /Qp G.
Let y be as above. Let g ∈ G(A∗f ). Then we have y · g ∈ Y (φ). Recall from

§5.3.5 that G(A∗f ) acts on KTstr/≡ on the right. By inspecting the construction in
[Kis17, §4.5.1], we see that:

(iii) There exists k ∈ [k(y)] such that k · g ∈ [k(y · g)].

5.8.2. Let J be a conjugacy class of admissible morphisms Q → GG. We make
J into a small category, where morphisms φ→ φ′ are given by elements g ∈ G(Q)
such that φ′ = Int(g) ◦ φ. The composition of morphisms φ g−→ φ′

h−→ φ′′ is given by
φ

hg−→ φ′′. Then J is a connected groupoid category. Each morphism g : φ → φ′

in J induces a G(A∗f )-map Y (g) : Y (φ) → Y (φ′) given by the left multiplication
by g. This makes Y a right G(A∗f )-torsor over J in the sense of Definition 5.6.1.
As in that definition, we obtain a right G(A∗f )-set Ȳ (J ), together with canonical
isomorphisms

Iφ(Q)\Y (φ) ∼−→ Ȳ (J )

for all φ ∈J .
Let φ ∈ J and y ∈ Y (φ). It is easy to see that the subgroup Uφ,y ⊂ G(Zur

p )
depends only on the image ȳ of y in Ȳ (J ), not on φ and y. We therefore denote
it also by Uȳ. Moreover, the Uφ,y-orbit [k(y)] in KTstr/≡ attached to y as in §5.8.1
depends only on ȳ. We thus have a canonical Uȳ-orbit in KTstr/≡ attached to each
ȳ ∈ Ȳ (J ), which we denote by [k(ȳ)].
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The following discussion is completely analogous to §5.6.3. For φ ∈ J and
y = (yp, yp) ∈ Y (φ), the left Iφ(Q)-action on the right G(A∗f )-torsor Y (φ) gives rise
to a homomorphism

ιy : Iφ(Q) −→ G(A∗f )(5.8.2.1)

defined by
j · y = y · ιy(j), ∀j ∈ Iφ(Q).

Thus we have a map ιy,v : Iφ(Q) → G(Qv) for each prime v 6= p, and a map
ιy,p : Iφ(Q) → G(Qur

p ). For v 6= p, clearly ιy,v is induced by Int(y−1
v ), where

yv ∈ G(Qv) is the image of yp under G(Āpf ) → G(Qv). Similarly ιy,p is induced
by Int(y−1

p ). Let k̇(y) ∈ KTstr be an arbitrary element whose image in KTstr/≡
belongs to [k(y)]. Let (I0, (Iv)v, (ηv)v) be the datum attached to k̇(y) as in §5.3.2.
For each prime v 6= p, the map ιy,v comes from an isomorphism of Qv-groups
ιy,v : Iφ,Qv

∼−→ Iv, which is still induced by Int(y−1
v ). Also, the map ιy,p comes from

an isomorphism of Qp-groups ιy,p : Iφ,Qp
∼−→ Ip. The isomorphism ιy,p is induced

by Int(y−1
p ), in the sense that the following diagram commutes

Iφ,Qp
� � //

ιy,p

��

GQp

Int(y−1
p )

// GQp

Ip,Qp
� � // (ResQur

p /Qp G)Qp

OO
(5.8.2.2)

Here the bottom arrow is the base change to Qp of the Qp-embedding Ip ↪→
ResQur

p /Qp G, and the vertical arrow on the right is given by the mapG(Qur
p ⊗QpR)→

G(R) induced by Qur
p ⊗Qp R → R, a ⊗ a′ 7→ aa′ for all Qp-algebras R, . (This de-

scription of ιy,p is just a reformulation of property (ii) in §5.8.1.) Moreover, the
isomorphisms ιy,v for all primes v can be extended to a refinement of k̇(y) of the
form (Iφ, ι0, (ιy,v)v).

With the above notation, note that Uφ,y is canonically identified with a subgroup
of ZIp(Qur

p ). If we change the choice of k̇(y), then both Ip (as a subfunctor of
ResQur

p /Qp G) and the map ιy,p : Iφ,Qp
∼−→ Ip do not change. Thus for every prime

v, the reductive group Iv and the map ιy,v : Iφ,Qv
∼−→ Iv depend only on y, not on

the choice of k̇(y).

The following lemma holds in our current setting of Hodge type.

Lemma 5.8.3. Let φ : Q→ GG be an admissible morphism, and let τ ∈ Iad
φ (Af ).

Let Kp ⊂ G(Apf ) be a neat compact open subgroup. Then the action of Iφ(Q)τ :=
Int(τ)(Iφ(Q)) ⊂ Iφ(Af ) on X(φ)/Kp is free. Moreover, the natural map

Iφ(Q)τ\X(φ) −→ Sτ (φ)

is a bijection.

Proof. Suppose γ ∈ Iφ(Q)τ has a fixed point in X(φ)/Kp. By Lemma 3.7.2 (i),
we have γ ∈ ZG(Q) ∩ KpK

p. By Lemma 1.5.7 and Lemma 5.1.2 (ii), we have
ZG(Q) ∩KpK

p = {1}. Hence γ = 1. This proves the first part.
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By the definition of Sτ (φ) (see §2.4.7), we have a natural surjection

Iφ(Q)τ\
(

lim←−
Kp

X(φ)/Kp

)
−→ Sτ (φ).

By the previous part this surjection is a bijection. Since Xp(φ) is a torsor under
the locally profinite group G(Apf ), the natural map X(φ) → lim←−Kp

X(φ)/Kp is a
bijection. This proves the second part. �

5.8.4. Let J be a conjugacy class of admissible morphisms Q→ GG. Set

S∗(J ) = Ȳ (J )/G(Zur
p ).

For each φ ∈J , by Lemma 5.8.3 we have

S(φ) ∼= Iφ(Q)\X(φ) = Iφ(Q)\Xp(φ)×Xp(φ).

In the future we shall view this as an equality. Recall from §2.2.7 and §2.4.1 that

Xp(φ) = X−µX (φ(p) ◦ ζp) = Y−µX (φ(p) ◦ ζp)/G(Zur
p ),

where Y−µX (φ(p)◦ζp) is a subset of UR(φ(p)◦ζp) = Yp(φ). Here µX is as in §2.4.1,
and the subset Y−µX (φ(p) ◦ ζp) ⊂ Yp(φ) is independent of the choice of µX . We
have a natural injection

S(φ) ↪→ S∗(J ).(5.8.4.1)

If g : φ → φ′ is a morphism in J , then the bijection Yp(g) : Yp(φ) → Yp(φ′)
restricts to a bijection Y−µX (φ(p) ◦ ζp) → Y−µX (φ′(p) ◦ ζp). It follows that inside
Ȳ (J ) we have a canonical subset of the form

Ȳ (J )\ ∼= Iφ(Q)\Y−µX (φ(p) ◦ ζp)× Y p(φ),

which is independent of the choice of φ ∈J . The image of the injection (5.8.4.1)
is equal to the image of Ȳ (J )\ under the projection Ȳ (J ) → S∗(J ), namely
Ȳ (J )\/G(Zur

p ). In particular, we have a canonical bijection

S(φ) ∼= Ȳ (J )\/G(Zur
p ).

5.8.5. Recall the following constructions in [Kis17, §§3.6–3.7]. Associated with
each admissible morphism φ : Q −→ GG, we have a π(G)-torsor π(G,φ), together
with a G(Apf )-equivariant map

c̃φ : X(φ) −→ π(G,φ).

(Here G(Apf ) acts on π(G,φ) via the natural surjection G(Apf )→ π(G) as in Lemma
5.5.2.) For each τ ∈ Iad

φ (Af ), the map cφ descends to a G(Apf )-equivariant map

cφ,τ : Sτ (φ) −→ π(G,φ).

See [Kis17, Cor. 3.6.4, Lem. 3.7.4] for more details. It follows from the G(Apf )-
equivariance that the maps c̃φ and cφ,τ are surjective.

By [Kis17, Prop. 3.6.10], for each admissible morphism φ there is a canonical
isomorphism of π(G)-torsors

ϑφ : π(G,φ) ∼= π(G,X).(5.8.5.1)

In the following we shall use the above identification freely, sometimes omitting it
from the notation.
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Lemma 5.8.6. Let J be a conjugacy class of admissible morphism Q→ GG. Let
φ ∈J . The composite map

Ȳ (J )\ → Ȳ (J )\/G(Zur
p ) ∼= S(φ) cφ,1−−→ π(G,φ) ϑφ−−→ π(G,X)(5.8.6.1)

depends only on J and not on φ.

Proof. The proof is just by collecting various facts from [Kis17, §3.6, §3.7]. By
[Kis17, Cor. 3.6.4], the π(G)-torsor π(G,φ) depends on φ only via the conjugacy
class of φ (in fact, only via the conjugacy class of the composite morphism Q

φ−→
GG → GGad), up to canonical isomorphism. Also, by the characterization of ϑφ
in [Kis17, Prop. 3.6.10], ϑφ depends on φ only via its conjugacy class. By the
definition of c̃φ (see [Kis17, Lem. 3.7.4]), it is functorial in φ ∈ J . Namely, if
g : φ→ φ′ is a morphism in J , then we have a commutative diagram

X(φ)
X(g) //

c̃φ
��

X(φ′)

c̃φ′

��
π(G,φ)

∼= // π(G,φ′)

where the top map is the functorial map induced by g and the bottom map is the
canonical isomorphism mentioned above. The lemma follows from these facts. �

Lemma 5.8.7. Let J be a conjugacy class of admissible morphisms Q → GG.
Let y ∈ Ȳ (J ). Let r ∈ G(A∗f ), and let y′ = yr ∈ Ȳ (J ), Assume that both y and
y′ lie in Ȳ (J )\. Then the images of y and y′ under the composite map

Ȳ (J )\ (5.8.6.1)−−−−−→ π(G,X)→ π∗(G,X)
differ by the image of r in π∗(G) under the natural map G(A∗f )→ π∗(G). Here the
sign is similar to the one in Lemma 5.6.9 (ii).

Proof. This follows from the proofs of [Kis17, Lem. 3.6.2, Cor. 3.6.4]. �

Proposition 5.8.8. Let J be a conjugacy class of admissible morphisms Q→ GG.
There is a unique map

c∗J : S∗(J ) −→ π∗(G,X)
such that for each φ ∈J the diagram

S(φ) �
� (5.8.4.1) //

cφ,1

��

S∗(J )

c∗J

��
π(G,X) // π∗(G,X)

commutes, and such that the composite

Ȳ (J )→ S∗(J )
c∗J−−→ π∗(G,X)

is G(A∗f )-equivariant. Here G(A∗f ) acts on π∗(G,X) via the natural homomorphism
G(A∗f )→ π∗(G).

Proof. The proof is similar to Proposition 5.6.10. One applies Lemma 5.8.7 instead
of Lemma 5.6.9. �
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5.9. Special points on the gerb side.

5.9.1. Let s = (T, i, h) ∈ SPD(G,X) be a special point datum. From s we
obtain a morphism ΨT,µh : Q → GT as in §2.2.9. To simplify notation we write
ΨT,h for ΨT,µh . As in Definition 3.3.2, we write φ(s) = φ(T, i, h) for the morphism
i ◦ΨT,h : Q→ GG. This morphism is admissible, as recalled in Theorem 3.3.3.

We make the following definitions which are analogous to §5.8.1.

Yp(ΨT,h) := UR(ΨT,h(p) ◦ ζp),
Y p(ΨT,h) := Xp(ΨT,h),
Y (ΨT,h) := Yp(ΨT,h)× Y p(ΨT,h).

By Lemma 2.2.4, Yp(ΨT,h) is a T (Qur
p )-torsor. The definition of Xp(ΨT,h) is as

in §2.4.7, but with G replaced by T . A priori Xp(ΨT,h) is either empty or a
T (Apf )-torsor. By [Kis17, Prop. 3.6.7], it is a T (Apf )-torsor.

There is a canonical injection

Y (ΨT,h) ↪→ Y (φ(s))(5.9.1.1)

induced by i.
Each t ∈ Yp(ΨT,h) determines an element bTt ∈ T (Qur

p ) such that the morphism
D → Gur

T underlying the unramified morphism Int(t−1) ◦ ΨT,h(p) ◦ ζp maps dσ :
Gp → GT (p) to bTt o σ, cf. Definition 2.2.5. Define

Xp(ΨT,h) :=
{
t ∈ Yp(ΨT,h) | wTQp

(bTt ) = [−µh] ∈ X∗(T )Γp,0

}
.

Here wTQp
: T (Q̆p) → X∗(T )Γp,0 is the Kottwitz map. By [Kis17, Prop. 3.6.7], the

set Xp(ΨT,h) is a T (Qp)T ◦(Zur
p )-torsor, where T ◦ is the connected Néron model of

TQp over Zp.34 We set

X(ΨT,h) := Xp(ΨT,h)×Xp(ΨT,h).

Thus X(ΨT,h) is a T (Af )T ◦(Zur
p )-torsor.

By Lemma 1.5.5 and Lemma 5.1.2 (iii), T (Q) is discrete in T (Af ), and hence
closed in T (Af ). By this fact and by [Kis17, Prop. 3.6.7], there is a canonical
T (Af )-equivariant bijection

T (Q)\X(ΨT,h)/T ◦(Zur
p ) ∼−→ T (Q)\T (Af )/T ◦(Zp).

We denote by X(ΨT,h)neu the T (Q)T ◦(Zur
p )-orbit in X(ΨT,h) corresponding to

the double coset of 1 ∈ T (Af ) in the right hand side. (The subscript stands for
“neutral”.)

Elements of the image of X(ΨT,h)neu under (5.9.1.1) play a parallel role as the
integral special points in Definition 5.7.5. In order to avoid complicated terminology
we do not give these elements a name parallel to “integral special points”. The
fundamental properties of these elements are proved in the following proposition.

Proposition 5.9.2. Keep the setting of §5.9.1. Let y ∈ X(ΨT,h)neu. We denote
the image of y in Y (φ(s)) under (5.9.1.1) still by y. The following statements hold.

34In [Kis17, §3.6.6, Prop. 3.6.7], what is denoted by Xp(ψµT ) is Xp(ΨT,h)/T ◦(Zp) in our
notation.
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(i) Write J for the conjugacy class of φ(s). The image of y under the com-
posite map

Y (φ(s))→ Ȳ (J )→ S∗(J )
c∗J−−→ π∗(G,X)(5.9.2.1)

is equal to the image of i ◦ h ∈ X in π∗(G,X). (See Proposition 5.8.8 for
c∗J .)

(ii) The Uy-orbit [k(y)] ⊂ KTstr/≡ (see §5.8.1) has a representative in KTstr of
the form k(s, δT ), for some δT lying in the ◦∼-equivalence class in T (Qur

p )mot

determined by −µh. (See §5.3.9 for k(s, δT ) ∈ KTstr.)

Proof. As is explained in [Kis17, §3.6.8], there is a natural map f : X(ΨT,h) →
π(G,X). (More precisely, the target is π(G,φ(s)), but we identify it with π(G,X)
via (5.8.5.1).) The composition of f with the natural map π(G,X)→ π∗(G,X) is
equal to the composite map

X(ΨT,h) ⊂ Y (ΨT,h) (5.9.1.1)−−−−−→ Y (φ(s)) (5.9.2.1)−−−−−→ π∗(G,X).

By [Kis17, Prop. 3.6.10 (2)], f sends y to the image of i ◦ h in π(G,X). Statement
(i) follows.

We now prove (ii). We view i : T ↪→ G as the inclusion and omit it from the
notation. Write φ for φ(s). Define by ∈ G(Qur

p ) as in property (i) in §5.8.1 (with
respect to φ). Since y comes from Xp(ΨT,h), we have by = bTy ∈ T (Qur

p ), where
bTy is determined by y ∈ Xp(ΨT,h) as in §5.9.1. By the definition of Xp(ΨT,h), we
have wTQp

(by) = [−µh] ∈ X∗(T )Γp,0 . Keep the notation φ(p)y as in §5.8.1. As a
subgroup of GQp

, im(φ(p)∆
y ) is contained in TQp .

Let k be an arbitrary element of [k(y)] ⊂ KTstr/≡. By the construction in [Kis17,
§4.5.1] (also cf. [Kis17, §4.3.9]), k has a representative in Tstr

n (for suitable n) of the
form (γ0, (γ0)l 6=p, δk), where δk ∈ T (Qpn) and γ0 = δkσ(δk) · · ·σn−1(δk) ∈ T (Q) ⊂
T (Qp). Moreover, γ0 is a p-unit in T (Q), so in particular δk ∈ T (Qur

p )mot. Note
that δk is uniquely determined by k, which justifies our notation.

Now 1 has an open neighborhood

O := im(φ(p)∆
y )(Q̆p) ∩ T ◦(Z̆p)

in im(φ(p)∆
y )(Q̆p). By property (i) in §5.8.1, there exists k ∈ [k(y)] such that

δk ∈ O ·σ by. Thus δk is σ-conjugate to by by an element of T ◦(Z̆p), and in par-
ticular, wTQp

(δk) = wTQp
(by) = [−µh]. Therefore δk lies in the ◦∼-equivalence class

in T (Qur
p )mot determined by −µh. Letting δT = δk, we know from the previous

paragraph that the current k ∈ KTstr/≡ is the image of k(s, δT ) ∈ KTstr. �

Lemma 5.9.3. Let s, s1 be two special point data of the form s = (T, i, h) and
s1 = (T, i1, h). Let y ∈ X(ΨT,h)neu. We still write y for the image of y in Y (φ(s))
under (5.9.1.1), and we write y1 for the image of y in Y (φ(s1)) under the obvious
analogue of (5.9.1.1). Then there exists δT lying in the ◦∼-equivalence class in
T (Qur

p )mot determined by −µh such that k(s, δT ) ∈ KTstr is a representative of
(an element of) [k(y)] ⊂ KTstr/≡ and k(s1, δT ) ∈ KTstr is a representative of (an
element of) [k(y1)] ⊂ KTstr/≡.
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Proof. Let bTy be the element of T (Qur
p ) determined by y ∈ Xp(ΨT,h) as in §5.9.1.

By the construction in [Kis17, §4.5.1] (also cf. [Kis17, §4.3.9]), for every neighbor-
hood OT of 1 in T (Q̆p) contained in i−1(G(Z̆p))∩ i−1

1 (G(Z̆p)), there exists δT lying
in the intersection of T (Qur

p ) and

OT ·σ bTy =
{
abTy σ(a)−1 | a ∈ OT

}
satisfying the following conditions.

• For sufficiently divisible n, [k(y)] has a representative in Tstr
n of the form

(i(γ0), (i(γ0))l 6=p, i(δT )), where

γ0 = δTσ(δT ) · · ·σn−1(δT ) ∈ T (Q) ⊂ T (Qp).
Moreover, γ0 is a p-unit.
• For sufficiently divisible n, [k(y1)] has a representative in Tstr

n of the form
(i1(γ0), (i1(γ0))l 6=p, i1(δT )), where γ0 is as above.

In fact, write θT,ur
y for the morphism D → Gur

T underlying the unramified mor-
phism Int(y−1)◦ΨT,h(p)◦ζp : Gp → GT (p). In [Kis17, §4.5.1], choose the element c′
sufficiently close to c such that θT,ur

y (c′c−1) ∈ OT . Write a for θT,ur
y (c′c−1). We can

then take δT to be abTy σ(a)−1. Here the key point is that c′ is sufficiently close to c
with respect to both φ(s) and φ(s1) in the sense of loc. cit., since OT is contained
in i−1(G(Z̆p)) ∩ i−1

1 (G(Z̆p)).
We now take OT to be sufficiently small such that it is also contained in T ◦(Z̆p),

and choose δT with respect to OT as above. As in the proof of Proposition 5.7.6 (ii),
this δT necessarily lies in the ◦∼-equivalence class in T (Qur

p )mot determined by −µh.
The above two conditions imply that k(s, δT ) represents [k(y)] and that k(s1, δT )
represents [k(y1)]. �

Remark 5.9.4. The analogue of Lemma 5.9.3 for finitely many special point data
of the form (T, i, h), (T, i1, h), · · · , (T, ik, h) is also true. The choice of δT is not
intrinsic to the Shimura datum (T, h) and the point y ∈ X(ΨT,h)neu, but depends
on the given finite list of embeddings i, i1, · · · , ik of T into G.

5.10. Markings and amicable pairs.

Definition 5.10.1. Let I be an isogeny class in SKp(Fp), and let J be a conju-
gacy class of admissible morphisms Q → GG. By a marking of (I ,J ), we mean
a pair

(ȳ, ȳ′) ∈ Ȳ (I )× Ȳ (J )
such that

k(ȳ) ∈ [k(ȳ′)].
Here k(ȳ) ∈ KTstr/≡ is the image of ȳ under (5.6.3.2), and [k(ȳ′)] is the Uȳ′ -orbit in
KTstr/≡ attached to ȳ′ as in §5.8.2. We say that the marking (ȳ, ȳ′) is π∗-compatible,
if the image of ȳ under

Ȳ (I ) −→ I ∗
c∗I−−→ π∗(G,X)(5.10.1.1)

equals the image of ȳ′ under

Ȳ (J ) −→ S∗(J )
c∗J−−→ π∗(G,X).(5.10.1.2)

See Proposition 5.6.10 and Proposition 5.8.8 for c∗I and c∗J respectively.



156 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

We call the pair (I ,J ) weakly amicable (resp. amicable) if a it admits a marking
(resp. a π∗-compatible marking).

Lemma 5.10.2. Let (I ,J ) be a weakly amicable pair. For every ȳ′ ∈ Ȳ (J ),
there exists ȳ ∈ Ȳ (I ) such that (ȳ, ȳ′) is a marking of (I ,J ). Moreover, if
(I ,J ) is amicable, then we can choose ȳ such that (ȳ, ȳ′) is a π∗-compatible
marking.

Proof. Let (z̄, z̄′) be a marking of (I ,J ). Let u ∈ G(A∗f ) be such that z̄′ · u = ȳ′.
By assumption, k(z̄) ∈ [k(z̄′)]. By property (iii) in §5.8.1, there exists k0 ∈ [k(z̄′)]
such that k0 · u ∈ [k(ȳ′)]. Since k0 and k(z̄) lie in the same Uz̄′ -orbit, and since
Uz̄′ ⊂ G(Zur

p ), there exists u0 ∈ G(Zur
p ) such that k0 = k(z̄) · u0. Then we have

k(z̄) · u0u ∈ [k(ȳ′)].

Let ȳ = z̄ · u0u ∈ Ȳ (I ). By the G(A∗f )-equivariance of the map (5.6.2.1), we
have k(ȳ) = k(z̄) · u0u. Thus we have

k(ȳ) ∈ [k(ȳ′)],
which means that (ȳ, ȳ′) is a marking of (I ,J ).

If we assume that (I ,J ) is amicable, then we can choose (z̄, z̄′) as above to
be π∗-compatible. It remains to show that the marking (ȳ, ȳ′) produced above is
π∗-compatible. But this follows from the G(A∗f )-equivariance of the maps (5.10.1.1)
and (5.10.1.2), and the fact that u0 has trivial image in π∗(G) (since u0 ∈ G(Zur

p )).
�

5.10.3. Let (I ,J ) be a weakly amicable pair, and let (ȳ, ȳ′) be a marking of
it. Fix k̇(ȳ) ∈ KTstr representing k(ȳ) ∈ KTstr/≡, and let (I0, (Iv)v, (ηv)v) be the
datum attached to k̇(ȳ) as in §5.3.2. Let x ∈ I and φ ∈J . We choose y ∈ Y (x)
lifting ȳ, and choose y′ ∈ Y (φ) lifting ȳ′. Recall from §5.6.3 and §5.8.2 that there
exist inner twistings ι0 : I0,Q → Ix,Q and ι′0 : I0,Q → Iφ,Q of Q-groups such that
the tuples (Ix, ι0, (ιy,v)v) and (Iφ, ι′0, (ιy′,v)v) are both refinements of k̇(ȳ). By the
Hasse principle for adjoint groups and by the fact that Ix and Iφ are both compact
mod center at the place ∞, there is an isomorphism of Q-groups

f : Ix
∼−→ Iφ

such that for each finite place v the two Qv-maps ιy,v ◦ f−1 : Iφ,Qv → Iv and
ιy′,v : Iφ,Qv → Iv differ by an inner automorphism of Iφ,Qv . The isomorphism f
is uniquely determined by (x, φ, y, y′), up to composing with inner automorphisms
defined over Q. (Note that Iv and the maps ιy,v, ιy′,v depend only on (x, φ, y, y′),
not on the choice of the lifting k̇(ȳ) of k(ȳ); see the last paragraph of §5.8.2.) In
Remark 5.10.10 below, we will see that f is in fact uniquely determined by (x, φ)
up to composing with inner automorphisms defined over Q.

Now there is an element
τ = (τv)v ∈ Iad

φ (Af )
such that for each finite place v we have

ιy,v ◦ f−1 = ιy′,v ◦ Int(τv) : Iφ,Qv −→ Iv.

Clearly τ is uniquely determined by (x, φ, y, y′) and f . Moreover, the image of τ
in Iad

φ (Af )/Iad
φ (Q) is determined by (x, φ, y, y′) and independent of the choice of f .
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We denote this element by
τx,φ,y,y′ ∈ Iad

φ (Af )/Iad
φ (Q).

The image of τx,φ,y,y′ in Iφ(Q)\Iad
φ (Af )/Iad

φ (Q) is determined by (φ, ȳ, ȳ′) and in-
dependent of the choices of x, y, y′. We denote this element by

τȳ,ȳ′ ∈ Iφ(Q)\Iad
φ (Af )/Iad

φ (Q).
If φ′ is another element of J , then we have a canonical identification

Iφ(Q)\Iad
φ (Af )/Iad

φ (Q) ∼= Iφ′(Q)\Iad
φ′ (Af )/Iad

φ′ (Q)

induced by Int g for any g ∈ G(Q) conjugating φ to φ′. (This identification is indeed
independent of g, since g is unique up to right multiplication by Iφ(Q).) If we
identify Iφ(Q)\Iad

φ (Af )/Iad
φ (Q) for all φ ∈J in this way, then τȳ,ȳ′ is independent

of φ. This justifies our notation.
Let ξy be the unique G(A∗f )-equivariant bijection Y (x) ∼−→ G(A∗f ) taking y to 1,

and let ξy′ be the unique G(A∗f )-equivariant bijection Y (φ) ∼−→ G(A∗f ) taking y′ to
1. Let δy ∈ G(Qur

p ) be the δ-component of k(y) ∈ KTstr/≡, and let by′ ∈ G(Qur
p ) be

the element attached to y′ as in property (i) in §5.8.1. By the defining property of
a marking and by property (i) in §5.8.1, there exists

e ∈ G(Z̆p) ∩ im(φ(p)∆
y )(Q̆p) ⊂ G(Q̆p)

such that eδyσ(e)−1 = by′ . Fix such e. Define
f1 : G(Qur

p )/G(Zur
p ) −→ G(Qur

p )/G(Zur
p ), g 7−→ σ−1(δ−1

y g).
This is a well-defined bijection because G(Zur

p ) is σ-stable. Recall from Lemma 1.6.8
that G(Qur

p )/G(Zur
p ) ∼= G(Q̆p)/G(Z̆p). Using this, we define

f2 : G(Qur
p )/G(Zur

p ) ∼= G(Q̆p)/G(Z̆p)
g 7→ege−1

−−−−−−→ G(Q̆p)/G(Z̆p) ∼= G(Qur
p )/G(Zur

p ).

Here the middle map is a well-defined bijection because e ∈ G(Z̆p). Let ξy,y′,e be
the composite bijection

Y (x)/G(Zur
p ) ξy−→ G(A∗f )/G(Zur

p )
(idG(Ap

f
), f2◦f1)

−−−−−−−−−−→ G(A∗f )/G(Zur
p )

ξ−1
y′−−→ Y (φ)/G(Zur

p ).

Proposition 5.10.4. Keep the setting and notation of §5.10.3. The map ξy,y′,e
descends to a bijection

I ∗
∼−→ Iφ(Q)τ\Y (φ)/G(Zur

p ).(5.10.4.1)

Here Iφ(Q)τ is the image of Iφ(Q) ↪→ Iφ(Af ) Int τ−−−→ Iφ(Af ). Moreover, (5.10.4.1)
restricts to a bijection

I
∼−→ Sτ (φ),(5.10.4.2)

which is compatible with the actions of G(Apf ) and the q-Frobenius Φ on the two
sides.

Proof. The map ξy induces a bijection

ξ̄y : Ix(Q)\Y (x)/G(Zur
p ) ∼−→ ιy(Ix(Q))\G(A∗f )/G(Zur

p ).
Similarly, ξy′ induces a bijection

ξ̄y′ : Iφ(Q)τ\Y (φ)/G(Zur
p ) ∼−→ ιy(Ix(Q))\G(A∗f )/G(Zur

p ).
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Here we have used that the image of Iφ(Q)τ ↪→ Iφ(Af )
ιy′−−→ G(A∗f ) is equal to

ιy(Ix(Q)) ⊂ G(A∗f ). To show that ξy,y′ descends to (5.10.4.1) it remains to show
that for i = 1, 2 we have

fi(hg) = hfi(g)
for all g ∈ G(Qur

p )/G(Zur
p ) and all h ∈ Ip(Qp). Now f1 satisfies this because Ip(Qp)

is the σ-centralizer of δy in G(Qur
p ). Meanwhile f2 satisfies this because in G(Q̆p),

e commutes with every element in the image of ιy′,p : Iφ(Qp) → G(Qur
p ), and this

image is equal to Ip(Qp).
We now show that (5.10.4.1) induces I

∼−→ Sτ (φ). The image of I ↪→ I ∗ is
described in Proposition 5.6.5 and Remark 5.6.6. By that description we know that
the image of I under ξ̄y is

ιy(Ix(Q))\Xυ(δy)×G(Apf ).(5.10.4.3)

In fact, the bijection from I onto the above set induced by ξ̄y is just the inverse
of (5.6.6.1). By the definition of Sτ (φ) and by the discussion in §2.2.7, the image
of Sτ (φ) under ξ̄y′ is

ιy(Ix(Q))\X−µ(by′)×G(Apf ),(5.10.4.4)

with µ ∈ �X . It remains to show that the bijection f2 ◦ f1 : G(Qur
p )/G(Zur

p ) →
G(Qur

p )/G(Zur
p ) restricts to a bijection

Xυ(δy) ∼−→ X−µ(by′).(5.10.4.5)

Since υ = σ(−µ) (see §5.6.4), it is immediate that f1 induces Xυ(δy) ∼−→ X−µ(δy).
Using the presentation of affine Deligne–Lusztig sets as in (2.2.7.1), we see that f2
induces X−µ(δy) ∼−→ X−µ(by′).

Finally, we need to show that (5.10.4.2) is compatible with the actions of G(Apf )
and Φ. The compatibility with G(Apf ) is clear. The compatibility with Φ boils down
to the following three compatibilities. Firstly, the bijection from I to (5.10.4.3)
induced by ξ̄y is compatible with Φ on I and the operator (δy o σ)r on Xυ(δy)
(with r = [Fq : Fp]). As we have remarked above, this bijection is just the inverse
of (5.6.6.1), which is the map [Kis17, (2.1.4)]. The compatibility follows from
[Kis17, Prop. 1.4.4], cf. [Kis17, Cor. 1.4.13, Prop. 2.1.3, Prop. 4.4.14]. Secondly,
the bijection (5.10.4.5) induced by f2◦f1 is compatible with (δyoσ)r on the left hand
side and (by′ o σ)r on the right hand side. This is immediate from the definitions.
Thirdly, the bijection from Sτ (φ) to (5.10.4.4) induced by ξ̄y′ is compatible with Φ
on Sτ (φ) and (by′oσ)r onX−µX (by′). This follows from the discussion in §2.2.7. �

5.10.5. Let φ : Q → GG be an admissible morphism. Since Q satisfies the
assumption on H in the last paragraph of §2.1.14, we have reductive Q-groups
Ĩφ and I†φ associated with φ. Recall that I†φ is identified with the natural Q-
homomorphism Iφ → Gab. Note that Iφ → Gab is surjective, because Iφ,Q contains
a maximal torus in GQ. We write Z†φ for the center of I†φ. By Lemma 1.2.10 (i)
applied to the map Iφ → Gab, we have

Z†φ = ZIφ ∩ I
†
φ,(5.10.5.1)

and the embedding I†φ ↪→ Iφ induces an isomorphism between the adjoint groups.
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Recall from §2.6.11 that the canonical Q-embedding Iφ,Q ↪→ GQ and the set
W =

{
g ∈ G(Q) | Int g ◦ φ is gg

}
form an inner transfer datum from Iφ to G. It

follows that the canonical Q-embedding I†
φ,Q

↪→ Gder,Q and the set W ∩ Gder(Q)
(which is clearly non-empty, given the non-emptiness of W) form an inner transfer
datum from I†φ to Gder. We use this inner transfer datum to define the map

X∞(Q, I†φ) −→X∞(Q, Gder),(5.10.5.2)

as well as to define X∞
Gder

(Q, H) for any Q-subgroup H ⊂ I†φ, as in §1.2.5.
Consider the boundary map

Iad
φ (Af ) −→ H1(Af , Z†φ)(5.10.5.3)

arising from the short exact sequence 1 → Z†φ → I†φ → Iad
φ = (I†φ)ad → 1. As we

explained in §2.6.18, Iad
φ (R) is connected, and hence I†φ(R)→ Iad

φ (R) is surjective.
Therefore the boundary map Iad

φ (R) → H1(R, Z†φ) arising from the same short
exact sequence is zero. It follows that (5.10.5.3) descends to a map

Iad
φ (Af )/Iad

φ (Q) −→ H1(Af , Z†φ)/X∞
I†
φ

(Q, Z†φ).(5.10.5.4)

Consider the boundary map ∂ : Gab(Qp) → H1(Qp, Z†φ) arising from the short
exact sequence 1→ Z†φ → ZIφ → Gab → 1. We define the abelian group

H(φ) := coker(Gab(Zp)
∂−→ H1(Af , Z†φ)/X∞

Gder
(Q, Z†φ)).(5.10.5.5)

The map (5.10.5.4) induces a map
Iad
φ (Af )/Iad

φ (Q) −→ H(φ).(5.10.5.6)
Suppose that φ1 : Q→ GG is another admissible morphism satisfying φ ≈ φ1 as

in §2.6.16. Then the abelian groups H(φ) and H(φ1) are canonically isomorphic. In-
deed, H(φ) clearly depends only on the two-term complex ZIφ → Gab, and similarly
for H(φ1). Since φ ≈ φ1, there is a canonical equivalence class of inner twistings
between Iφ and Iφ1 , and they all induce the same isomorphism from the complex
ZIφ → Gab to the complex ZIφ1

→ Gab. Thus we have a canonical isomorphism
H(φ) ∼−→ H(φ1).

5.10.6. Now let (I ,J ) be a weakly amicable pair, and let φ ∈ J . For any
marking (ȳ, ȳ′) of (I ,J ), recall that τȳ,ȳ′ is an element of Iφ(Q)\Iad

φ (Af )/Iad
φ (Q).

Note that the map (5.10.5.6) factors through Iad
φ (Q)\Iad

φ (Af )/Iad
φ (Q). (In fact,

suppose that g1 ∈ I†φ(Q) lifts an element of Iad
φ (Q) and g2 ∈ I†φ(Āf ) lifts an element

of Iad
φ (Af ). Then for ρ ∈ Γ we have (g1g2)−1ρ(g1g2) = (g2g1)−1ρ(g2g1) since g−1

1
ρg1

and g−1
2

ρg2 are central in I†φ. This shows that g1g2 and g2g1 have the same image
under (5.10.5.6).) We denote by

τHȳ,ȳ′ ∈ H(φ)
the image of τȳ,ȳ′ in H(φ) under the map induced by (5.10.5.6). Recall from §5.10.3
that the set Iφ(Q)\Iad

φ (Af )/Iad
φ (Q) is independent of φ up to canonical bijection,

and that the element τȳ,ȳ′ of this set is independent of φ. In a similar sense, τHȳ,ȳ′
depends only on (ȳ, ȳ′) and is independent of φ. More precisely, if φ′ is another
element of J , then we have a canonical isomorphism of abelian groups H(φ) ∼=
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H(φ′) which is induced by Int g for any g ∈ G(Q) conjugating φ to φ′. (This is a
special case of the canonical isomorphism discussed in §5.10.5 as φ ≈ φ′.) If we
identify H(φ) for all φ ∈ J in this way, then the element τHȳ,ȳ′ depends only on
(ȳ, ȳ′) and not on φ.

Recall from §2.6.13 that we defined
H(φ) := Iφ(Af )\Iad

φ (Af )/Iad
φ (Q).

The element τȳ,ȳ′ has a natural image in H(φ), which we denote by

τHȳ,ȳ′ ∈ H(φ).
Again, for different φ ∈ J , the abelian groups H(φ) are canonically identified
(cf. §2.6.16). Under such identifications the element τHȳ,ȳ′ is independent of φ.

Lemma 5.10.7. Let (I ,J ) be an amicable pair. Let (ȳi, ȳ′i), i = 1, 2, be two
π∗-compatible markings of (I ,J ). Then

τHȳ1,ȳ′1
= τHȳ2,ȳ′2

,

where the two sides are defined in §5.10.6.

Proof. Fix φ ∈J . We view τHȳ1,ȳ′1
and τHȳ2,ȳ′2

as elements of H(φ). Pick x ∈ I , and
pick yi ∈ Y (x) lifting ȳi for i = 1, 2. Also pick y′i ∈ Y (φ) lifting ȳ′i for i = 1, 2.

Let u ∈ G(A∗f ) be such that y′2 = y′1 · u. As in the proof of Lemma 5.10.2, there
exists u0 ∈ Uφ,y′1

such that (ȳ1 ·u0u, ȳ
′
2) is a marking of (I ,J ). Using that u0 has

trivial image in π∗(G), it is easy to see that (ȳ1 ·u0u, ȳ
′
2) is π∗-compatible. For every

finite place v, let Iv denote the reductive group over Qv associated with k(ȳ1) ∈
KTstr/≡. Since (ȳ1, ȳ

′
1) is a marking, we know that Iv is also the reductive group

over Qv associated with any element of [k(ȳ′1)]. Recall that Uφ,y′1
is canonically

embedded into the Qur
p -points of the center of Ip (cf. the last paragraph of §5.8.2).

It follows that ιy1·u0u,v = ιy1·u,v as maps Ix,Qv → Iv for every finite place v. From
this, it is easy to see that τȳ1,ȳ′1

= τȳ1·u0u,ȳ′2
. We have thus reduced the proof of the

lemma to the case where ȳ′1 = ȳ′2, since we can replace (ȳ1, ȳ
′
1) by (ȳ1 · u0u, ȳ

′
2) .

We now assume that ȳ′1 = ȳ′2, and write ȳ′ for this element. Obviously we
can arrange that y′1 = y′2. For each finite place v, the reductive groups over Qv
associated with k(ȳ1), k(ȳ2) and any element of [k(ȳ′)] are all the same, and we
denote it by Iv.

Write y1 = y2h for h = (hv)v ∈ G(A∗f ). Then hv lies in Iv(Qv) for v 6= p, and hp
lies in

Uφ,y′ · Ip(Qp) ⊂
(
ZIp(Qur

p ) ∩ G(Zur
p )
)
Ip(Qp).

Thus we can write h = Int(y′)−1(s) · t, with s ∈ Iφ(Af ) and t ∈ ZIp(Qur
p ) ∩ G(Zur

p ).
(Here we view y′ and s both as elements of G(A∗f ⊗Q Q) in writing Int(y′)−1(s).
The element Int(y′)−1(s) ∈ G(A∗f ⊗Q Q) in fact lies in G(A∗f ).) Then the elements
τx,φ,y1,y′ and τx,φ,y2,y′ of Iad

φ (Af )/Iad
φ (Q) differ by left multiplication by s. More

precisely, if f1 : Ix
∼−→ Iφ is a Q-isomorphism and τ1 = (τ1,v)v is an element of

Iad
φ (Af ) satisfying that

ιy1,v ◦ f−1
1 = ιy′,v ◦ Int(τ1,v) : Iφ,Qv −→ Iv,

then we have
ιy2,v ◦ f−1

1 = ιy′,v ◦ Int(sτ1,v) : Iφ,Qv −→ Iv.(5.10.7.1)
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It remains to show that the image of s under (5.10.5.6) is zero. Since y1, y2, y
′

all have the same image in π∗(G,X), the image of h ∈ G(A∗f ) in π∗(G) must be
trivial. Note that t has trivial image in π∗(G) since t ∈ G(Zur

p ). Hence Int(y′)−1(s)
has trivial image in π∗(G). The natural map

G(A∗f ) −→ G(Q)+\Gab(A∗f )/Gab(Zur
p )

factors through π∗(G). Therefore the image sab ∈ Gab(A∗f ) of s under Iφ → Gab lies
in [G(Q)+]abGab(Zur

p ), where [G(Q)+]ab denotes the image of G(Q)+ → Gab(Af ).
Since sab in fact lies in Gab(Af ), we have sab ∈ [G(Q)+]abGab(Zp). By Lemma
1.2.10 applied to Iφ → Gab, the composite maps

Iφ(Af )→ Iad
φ (Af ) δ1

−→ H1(Af , Z†φ)

and
Iφ(Af )→ Gab(Af ) δ2

−→ H1(Af , Z†φ)

differ by a sign. Here δ1 is associated with the short exact sequence 1 → Z†φ →
I†φ → Iad

φ → 1, and δ2 is associated with 1 → Z†φ → ZIφ → Gab → 1. To prove
our desired statement that the image of s under (5.10.5.6) is zero, it suffices to
prove that the image of [G(Q)+]ab under the boundary map Gab(Q)→ H1(Q, Z†φ)
analogous to δ2 is contained in X∞

Gder
(Q, Z†φ).

In fact, a stronger statement is true, namely that the image of [G(Q)+]ab under
the boundary map Gab(Q) → H1(Q, ZGder) associated with 1 → ZGder → ZG →
Gab → 1 is contained in X∞

Gder
(Q, ZGder). (This is indeed stronger, as ZGder ⊂ Z

†
φ.)

This statement follows from Corollary 1.2.11 applied to I = G. �

Lemma 5.10.8. Let (I ,J ) be a weakly amicable pair. Let (ȳi, ȳ′i), i = 1, 2 be two
markings of (I ,J ). Then

τHȳ1,ȳ′1
= τHȳ2,ȳ′2

,

where the two sides are defined in §5.10.6.

Proof. Fix φ ∈J . We view τHȳ1,ȳ′1
and τHȳ2,ȳ′2

as elements of H(φ). Pick x ∈ I . By
the same argument as in the proof of Lemma 5.10.7, we reduce to the case where
ȳ′1 = ȳ′2 = ȳ′. In this case, pick yi ∈ Y (x) lifting ȳi for i = 1, 2, and pick y′ ∈ Y (φ)
lifting ȳ′. Then by the same argument we know that the elements τx,φ,y1,y′ and
τx,φ,y2,y′ of Iad

φ (Af )/Iad
φ (Q) differ by left multiplication by an element of Iφ(Af ).

But this immediately implies what we want. �

Definition 5.10.9. Let (I ,J ) be an amicable pair. Let φ ∈J . We define

τH(I ,J ) ∈ H(φ)

to be τHȳ,ȳ′ (see §5.10.6) for any π∗-compatible marking (ȳ, ȳ′) of (I ,J ). By
Lemma 5.10.7 this is well defined. Similarly, we define

τH(I ,J ) ∈ H(φ)

to be τHȳ,ȳ′ (see §5.10.6) for any marking (ȳ, ȳ′). This is well defined by Lemma
5.10.8. If we identify H(φ) (resp. H(φ)) for all φ ∈J as discussed in §5.10.6, then
τH(I ,J ) (resp. τH(I ,J )) is independent of φ.
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Remark 5.10.10. The proofs of Lemma 5.10.7 and Lemma 5.10.8 also show that
the isomorphism f : Ix

∼−→ Iφ in §5.10.3 indeed depends only on (x, φ), up to
composing with inner automorphisms defined over Q. In fact, suppose we have
two pairs (y1, y

′
1) and (y2, y

′
2) in Y (x)× Y (φ), whose images (ȳ1, ȳ

′
1) and (ȳ2, ȳ

′
2) in

Ȳ (I ) × Ȳ (J ) are markings of (I ,J ). For i = 1, 2, the tuple (x, φ, yi, y′i) gives
rise to an isomorphism fi : Ix

∼−→ Iφ, which is well defined up to composing with
inner automorphisms defined over Q. In order to show that f1 and f2 differ only
by an inner automorphism, we argue in the same way as in the proof of Lemma
5.10.7 and Lemma 5.10.8 to reduce to the case where ȳ′1 = ȳ′2. In this case, clearly
replacing (y1, y

′
1) by (y1, y

′
2) does not change f1, so we further reduce to the case

where y′1 = y′2. Then as we showed in the proof of Lemma 5.10.7 (see especially
(5.10.7.1)), we can choose f2 to be equal to f1.

5.11. Gauges.

Definition 5.11.1. By a special fork, we mean an ordered pair (s, s′) consisting of
two special point data s, s′ ∈ SPD(G,X) of the form s = (T, i, h) and s′ = (T, i′, h),
satisfying the following conditions:

(i) The points i ◦ h and i′ ◦ h lie in the same connected component of X.
(ii) The maps i : T → G and i′ : T → G are conjugate by Gad(Q).

When we want to make explicit the ingredients, we also write (T, h, i, i′) for a special
fork.

5.11.2. Given a special fork (T, h, i, i′), the two composite maps T i−→ G → Gab

and T
i′−→ G → Gab are equal. We denote the kernel by T †. The two maps

X∞(Q, T †)→X∞(Q, Gder) induced by i and i′ are equal (since X∞(Q, Gder) ∼=
X∞

ab(Q, Gder) and since i, i′ are conjugate by Gad(Q)), and we denote the kernel
by X∞

Gder
(Q, T †). Similarly, we define X∞

G (Q, T ) to be the kernel of X∞(Q, T )→
X∞(Q, G) induced by either i or i′.

Clearly there exists g ∈ Gder(Q) such that Int(g) ◦ i = i′. Write T ′ for i′(T ) ⊂ G
write T ′† for T ′ ∩ Gder = i′(T †). Since T ′ is self-centralizing in G, the cocycle
(gρg−1)ρ∈Γ defines an element αi,i′ ∈ H1(Q, T ′†) which is independent of the choice
of g.

Lemma 5.11.3. The element αi,i′ lies in X∞
Gder

(Q, T ′†).

Proof. The only non-trivial condition to check is that αi,i′ has trivial image in
H1(R, T ′†). The argument is similar to the proof of [Kis17, Prop. 4.4.13]. Let K ′∞
be the R-algebraic group that is the stabilizer of i′ ◦ h in Gder,R. Since i ◦ h and
i′ ◦ h lie in the same connected component of X, they are conjugate by an element
of Gder(R) (or even Gsc(R)). It follows that αi,i′ has trivial image in H1(R,K ′∞).
By [Kis17, Lem. 4.4.5] applied to H ′ = T ′† and H = K ′∞, the only element of
H1(R, T ′†) having trivial image in H1(R,K ′∞) is the trivial element. Hence αi,i′
must have trivial image in H1(R, T ′†), as desired. �

In the sequel, given any torus T over Q, we write T ◦ for the connected Néron
model of TQp over Zp.

Definition 5.11.4. Let g be a tuple (T, h, i, i′, y, y′), where
• (T, h, i, i′) is a special fork.
• y is an element of the T ◦(Zur

p )-torsor Y (Υ(T,h))◦ (see §5.7.4).
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• y′ is an element of X(ΨT,h)neu (see §5.9.1).
We define the following objects associated with g.

• Let xg be the point x(T,i,h) ∈ SKp(Fp) (see §5.7.1), and let Ig be the
isogeny class of xg.
• Let φg be the admissible morphism φ(T, i′, h) : Q → GG (see Definition
3.3.2 and Theorem 3.3.3), and let Jg be the conjugacy class of φg.
• Let ȳg be the image of y under Y (Υ(T,h))◦ → Yp(xg) ↪→ Y (xg)→ Ȳ (Ig),
where the first map is as in (5.7.4.4), and the second map sends yp to
(yp, 1) where 1 is the canonical base point of Y p(xg) ∼= G(Apf ).

• Let ȳ′g be the image of y′ under X(ΨT,h)neu → Y (φg) → Ȳ (Jg), where
the first map is as in (5.9.1.1).

• Let δg be the element of T (Qur
p )mot attached to y as in Proposition 5.7.6

(i).
We say that g is a quasi-gauge, if the following condition is satisfied:

• The element k(T, i′, h, δg) ∈ KTstr defined as in §5.3.9 represents an el-
ement of [k(ȳ′g)] ⊂ KTstr/≡, where [k(ȳ′g)] is the Uȳ′g

-orbit in KTstr/≡
associated with ȳ′g as in §5.8.2. (Note that k(T, i′, h, δg) is indeed defined,
since δg lies in the ◦∼-equivalence class in T (Qur

p )mot corresponding to −µh
by Proposition 5.7.6(i).)

Lemma 5.11.5. Let (T, h, i′) and (T, h, i′1) be two elements of SPD(G,X). Let
y′ ∈ X(ΨT,h)neu. Then there exists y ∈ Y (Υ(T,h))◦ satisfying the following condi-
tions.

(i) For every special fork of the form (T, h, i, i′), the tuple (T, h, i, i′, y, y′) is
a quasi-gauge.

(ii) For every special fork of the form (T, h, i1, i′1), the tuple (T, h, i1, i′1, y, y′)
is a quasi-gauge.

Proof. We still write y′ for the image of y′ under the map
X(ΨT,h)neu −→ Y (φ(T, i′, h))

as in (5.9.1.1). We write y′1 for the image of y′ under the analogous map
X(ΨT,h)neu → Y (φ(T, i′1, h)).

By Lemma 5.9.3 there exists δT in the ◦∼-equivalence class in T (Qur
p )mot determined

by −µh such that k(T, i′, h, δT ) ∈ KTstr represents [k(y′)] and k(T, i′1, h, δT ) ∈ KTstr

represents [k(y′1)]. By Proposition 5.7.6 (i), the image of Y (Υ(T,h))◦ under the map
Y (Υ(T,h)) → T (Qur

p ), z 7→ δz is precisely the ◦∼-equivalence of δT in T (Qur
p )mot.

Thus we can find y ∈ Y (Υ(T,h))◦ such that δy = δT . This y is our desired element.
�

Definition 5.11.6. Let g be a quasi-gauge. By a rectification of g, we mean an
element u ∈ ker(G(A∗f )→ π∗(G)) satisfying the following conditions:

(i) The pair (ȳg · u, ȳ′g) is a marking of (Ig,Jg).
(ii) Let up be the component of u in G(Qur

p ). We have

i′(δg) = u−1
p i(δg)σ(up).

We call g a gauge, if it admits a rectification.
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Lemma 5.11.7. A quasi-gauge g is a gauge if and only if (Ig,Jg) is an amicable
pair.

Proof. Suppose g has a rectification u. Write g = (T, h, i, i′, y, y′). To show that
(Ig,Jg) is amicable, we only need to check that the marking (ȳg · u, ȳ′g) is π∗-
compatible. By Proposition 5.7.6 (iii) and by the fact that u ∈ ker(G(A∗f ) →
π∗(G)), the image of ȳg · u in π∗(G,X) equals that of i ◦ h. By Proposition 5.9.2
(i), the image of ȳ′g in π∗(G,X) equals that of i′ ◦ h. But i ◦ h and i′ ◦ h lie in the
same connected component of X by assumption, so they have the same image in
π∗(G,X). Thus (ȳg · u, ȳ′g) is indeed π∗-compatible.

Conversely, suppose that (Ig,Jg) is an amicable pair. By Lemma 5.10.2, there
is a π∗-compatible marking of (Ig,Jg) of the form (z̄, ȳg′) for some z̄ ∈ Ȳ (Ig).
Find w ∈ G(A∗f ) such that z̄ = ȳg ·w. Again by Proposition 5.7.6 (iii), Proposition
5.9.2 (i), and the assumption that i◦h and i′◦h lie in the same connected component
of X, we know that ȳg and ȳ′g have the same image in π∗(G,X). Since (ȳg · w, ȳ′g)
is π∗-compatible, we must have w ∈ ker(G(A∗f )→ π∗(G)).

By the defining property of a quasi-gauge, [k(ȳ′g)] ⊂ KTstr/≡ contains the image
of k(T, i′, h, δg) ∈ KTstr. Since (z̄, ȳ′g) is a marking of (Ig,Jg), we know that
[k(ȳ′g)] also contains k(z̄), which is equal to k(ȳg) · w. By Proposition 5.7.6 (ii), the
δ-component of k(ȳg) is i(δg). By definition, the δ-component of k(T, i′, h, δg) is
i′(δg). Thus there exists w0 ∈ Uȳ′g such that

(wpw0)−1i(δg)σ(wpw0) = i′(δg),

where wp denotes the component of w in G(Qur
p ).

Let u = ww0 ∈ G(A∗f ). Since w ∈ ker(G(A∗f ) → π∗(G)) and w0 ∈ G(Zur
p ), we

have u ∈ ker(G(A∗f )→ π∗(G)). It is straightforward to check that u is a rectification
of g. �

Definition 5.11.8. Let s = (T, i, h) ∈ SPD(G,X). We write Is for the isogeny
class of xs ∈ SKp(Fp), and write Js for the conjugacy class of the admissible
morphism φ(s) : Q→ GG.

Corollary 5.11.9. Let s ∈ SPD(G,X). Then (Is,Js) is an amicable pair.

Proof. By Lemma 5.11.5, we can extend the special fork (s, s) to a quasi-gauge of
the form g = (T, h, i, i, y, y′). By the defining property of a quasi-gauge, the fact
that the two embeddings in g are both i, and Proposition 5.7.6 (ii), we know that
(ȳg, ȳ′g) is a marking of (Ig,Jg). It follows that u = 1 is a rectification of g, and
therefore (Is,Js) = (Ig,Jg) is amicable by Lemma 5.11.7. �

Definition 5.11.10. Let g = (T, h, i, i′, y, y′) be a gauge. We have a natural Q-
embedding T ↪→ Iφg

whose composition with Iφg,Q ↪→ GQ is i′, and a natural
Q-embedding T ↪→ Ixg

as in (5.7.2.2). We say that a Q-isomorphism f : Ixg

∼−→ Iφg

is g-adapted, if it satisfies the following conditions.
(i) By Lemma 5.11.7, (Ig,Jg) is (weakly) amicable, so there is canonical

Iad
φg

(Q)-conjugacy class of isomorphisms Ixg

∼−→ Iφg
as in §5.10.3 (cf. Re-

mark 5.10.10). We require that f lies in this conjugacy class.
(ii) f commutes with the natural Q-embeddings T ↪→ Iφg

and T ↪→ Ixg
.
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5.11.11. Let g = (T, h, i, i′, y, y′) be a gauge. By Lemma 5.11.7, the pair (Ig,Jg)
is amicable. Therefore by Definition 5.10.9 we have a well-defined element

τH(Ig,Jg) ∈ H(φ) = coker(Gab(Zp)→ H1(Af , Z†φ)/X∞
Gder

(Q, Z†φ)).

Define T † and X∞
Gder

(Q, T †) as in §5.11.2. Then we have Z†φ ⊂ T † ⊂ I†φ as
subgroups of Iφ. Thus we have a natural map from H(φ) to

coker
(
Gab(Zp)→ H1(Af , T †)/X∞

Gder
(Q, T †)

)
.(5.11.11.1)

Here the map in the definition of the cokernel is the restriction of the boundary
map Gab(Qp)→ H1(Qp, T †) arising from the short exact sequence 1→ T † → T →
Gab → 1.

Proposition 5.11.12. Let g = (T, h, i, i′, y, y′) be a gauge, and assume that there
exists a g-adapted isomorphism f : Ixg

∼−→ Iφg
. Then the image of τH(Ig,Jg) in

(5.11.11.1), as explained in §5.11.11, is trivial.

Proof. (I) Finding a representative of τH(Ig,Jg).
In this part, we find an element τ ∈ Iad

φ (Af ) representing τH(Ig,Jg). Write φ
and x for φg and xg. We denote the image of y in Y (x) still by y, and denote the
image of y′ in Y (φ) still by y′. Fix a rectification u of g. Let z := y · u ∈ Y (x), and
let z̄ be the image of z in Ȳ (Ig). For each finite place v, let Iv be the Qv-group
associated with k(y), and let I ′v be the Qv-group associated with (any element of)
[k(y′)]. Then I ′v is also the Qv-group associated with k(z) since (z̄, ȳ′g) is a marking.
Fix a g-adapted isomorphism f : Ix

∼−→ Iφ, which exists by our assumption. Then
there exists τ = (τv)v ∈ Iad

φ (Af ) such that

ιz,v ◦ f−1 = ιy′,v ◦ Int(τv) : Iφ,Qv → I ′v.(5.11.12.1)
As we showed in the proof of the “only if” direction in Lemma 5.11.7, the marking

(z̄, ȳ′g) is π∗-compatible. Hence τH(Ig,Jg) is the image of τ . In the rest of the
proof we show that the image of τ in (5.11.11.1) is trivial.

(II) Constructing an element tv ∈ T (Qv).
Choose g ∈ Gder(Q) such that

Int(g) ◦ i = i′.(5.11.12.2)

Denote the natural embeddings T ↪→ Iφ and T ↪→ Ix (cf. Definition 5.11.10) by j′
and j respectively. Then ιy,v ◦ j = i and ιy′,v ◦ j′ = i′. Let v be a finite place,
and let t ∈ T (Qv) be a test element. Write uv for the component of u in G(Qv)
(resp. G(Qur

p )) at v 6= p (resp. v = p). When v 6= p, we have the following equalities
between elements of G(Qv):

ιy′,v
(
τvj
′(t)τ−1

v

)
= ιz,v ◦ f−1(j′(t)) by (5.11.12.1)(5.11.12.3)
= ιz,v(j(t)) since f is g-adapted
= Int(uv)−1 ◦ ιy,v(j(t)) since z = y · u
= Int(uv)−1 ◦ i(t).

When v = p, the above computation is still valid if we interpret the equalities as
between elements of G(Qur

p ⊗QpQp), and view up as an element thereof via the map
G(Qur

p )→ G(Qur
p ⊗Qp Qp) induced by Qur

p → Qur
p ⊗Qp Qp, a 7→ a⊗ 1.



166 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

Choose τ̃v ∈ I†φ(Qv) lifting τv ∈ Iad
φ (Qv), and write τ̂v for ιy′,v(τ̃v) ∈ I ′v(Qv).

Then we have

ιy′,v
(
τvj
′(t)τ−1

v

)
= Int

(
τ̂v
)(
ιy′,v(j′(t))

)
= Int

(
τ̂v
)
(i′(t)) = Int

(
τ̂vg
)
(i(t)).

(5.11.12.4)

For every finite place v, set
sv = uv τ̂vg.

Comparing the computations (5.11.12.3) and (5.11.12.4), we have

i(t) = Int(sv)(i(t)), ∀t ∈ T (Qv).(5.11.12.5)

When v 6= p, sv is an element of G(Qv). It follows from (5.11.12.5) that sv ∈
i(T (Qv)). When v = p, sp is a priori an element of G(Qur

p ⊗Qp Qp). Now τ̂p lies in
I ′p(Qp), and I ′p is the σ-centralizer of i′(δg). In the following computation, we let σ
act on G(Qur

p ⊗Qp Qp) only via the first factor Qur
p . We have

spi(δg)σ(sp)−1 = upτ̂pgi(δg)g−1σ(τp)−1σ(up)−1 because σ(g) = g

= upτ̂pi
′(δg)σ(τ̂p)−1σ(up)−1 by (5.11.12.2)

= upi
′(δg)σ(up)−1 because τ̂p ∈ I ′p(Qp)

= i(δg) by (ii) in Definition 5.11.6.

Comparing this with (5.11.12.5), we see that sp is in fact σ-invariant, i.e., it lies in
G(Qp) (which is embedded into G(Qur

p ⊗Qp Qp) via Qp → Qur
p ⊗Qp Qp, a 7→ 1⊗ a).

It then follows from (5.11.12.5) that sp ∈ i(T (Qp)).
We have seen that sv ∈ i(T (Qv)) for every finite place v. Write

sv = i(tv), tv ∈ T (Qv).
(III) Relationship between tv and τ .
In this part, we show that the image of τ in (5.11.11.1) is represented by (tv)v

in a suitable sense.
In the sequel, for every Q-algebra R and every r ∈ G(R), we write rab for the

image of r in Gab(R). Note that sab
v = uab

v . Since up ∈ G(Qur
p ) and since sp is σ-

invariant, we have uab
p ∈ Gab(Qp).35 Thus uab ∈ Gab(Af ). Since u ∈ ker(G(A∗f )→

π∗(G)), we can write u = u(0)u(1), with u(0) ∈ G(Q)+ and u(1) ∈ Gder(A∗f )G(Zur
p ).

Since uab ∈ Gab(Af ), we have u(1),ab ∈ Gab(Zp).
We view the embeddings j′ : T ↪→ Iφ and i′ : T ↪→ G both as inclusions and

omit them from the notations. For each finite place v, the cocycle (τ̂−1
v

ρτ̂v)v∈Γv is
valued in T †, and the collection of these cocycles for all v represents the image of τ
in (5.11.11.1). Let v be a finite place and let ρ ∈ Γv. In the following computation,
if v = p we let ρ act on G(Qur

p ⊗Qp Qp) only via the second factor Qp. In particular
uv is ρ-invariant even for v = p. We compute

(5.11.12.6) τ̂−1
v

ρτ̂v = gs−1
v uv

ρu−1
v

ρsv
ρg−1 = gs−1

v
ρsv

ρg−1

= gi(t−1
v

ρtv)g−1gρg−1 = t−1
v

ρtvg
ρg−1.

Here for the last equality we used (5.11.12.2), and in the last term we wrote tvρt−1
v

for i′(tvρt−1
v ) as we explained above. By Lemma 5.11.3, the cocycle (gρg−1)ρ∈Γ

35This fact also follows directly from condition (ii) in Definition 5.11.6.
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represents an element of X∞
Gder

(Q, T †). Therefore the cocycle (t−1
v

ρtv)ρ∈Γv repre-
sents an element βv ∈ H1(Qv, T †), and the collection (βv)v represents the image of
τ in (5.11.11.1).

(IV) Finishing the proof.
To finish the proof it suffices to show that (βv)v has trivial image in (5.11.11.1).

Now βv is equal to the image of tab
v = sab

v = uab
v ∈ Gab(Qv) under the boundary map

Gab(Qv) → H1(Qv, T †) associated with the short exact sequence 1 → T † → T →
Gab → 1. We have uab = u(1),abu(0),ab. By Corollary 1.2.11, the image of u(0),ab

in H1(Af , T †) comes from X∞
Gder

(Q, T †). We have also seen that u(1),ab ∈ Gab(Zp)
(with trivial components away from p). Hence the image of (βv)v in (5.11.11.1) is
indeed zero. �

Proposition 5.11.13. Assume that we have two quasi-gauges of the form

g = (T, h, i, i′, y, y′), g1 = (T, h, i1, i′1, y, y′).

Let λ, λ′ ∈ Gder(Q). Assume the following conditions.
(i) We have i1 = Int(λ) ◦ i and i′1 = Int(λ′) ◦ i′.
(ii) We have λ ∈ Gder(R)+i(T †(C)), and λ′ ∈ Gder(R)+i′(T †(C)).
(iii) Define T † to be the kernel of the common map T → Gab induced by

i, i′, i1, i
′
1. There exists a cocycle β0(·) ∈ Z1(Q, T †) such that

i(β0(ρ)) = λ−1ρλ, i′(β0(ρ)) = λ′
−1ρλ′, ∀ρ ∈ Γ.(5.11.13.1)

(iv) There exists a rectification u of g such that u ∈ Gder(A∗f )G(Zur
p ). In par-

ticular, g is a gauge.
(v) There exists a g-adapted isomorphism f : Ixg

∼−→ Iφg
. (This notion makes

sense since g is a gauge.)
Then g1 admits a rectification u1 ∈ Gder(A∗f )G(Zur

p ), and there exists a g1-adapted
isomorphism f1 : Ixg1

∼−→ Iφg1
.

Remark 5.11.14. By condition (ii), for each ρ ∈ Γ we have λ−1ρλ ∈ i(T †)(Q) and
λ′−1ρλ′ ∈ i′(T †)(Q). In view of this, condition (iii) is equivalent to the requirement
that i−1(λ−1ρλ) = i′−1(λ′−1ρλ′) for all ρ ∈ Γ.

Proof. (I) Some notations.
We write x and x1 for the points xg = x(T,i,h) and xg1 = x(T,i1,h) in SKp(Fp)

respectively, and write φ and φ1 for the admissible morphisms φg = φ(T, i′, h) and
φg1 = φ(T, i′1, h) respectively. Let j : T ↪→ Ix, j′ : T ↪→ Iφ, j1 : T ↪→ Ix1 , and
j′1 : T ↪→ Iφ1 be the canonical Q-embeddings. We denote the image of y in Y (x)
still by y, and denote the image of y in Y (x1) by y1. Similarly, we denote the image
of y′ in Y (φ) still by y′, and denote the image of y′ in Y (φ1) by y′1.

By construction δg1 = δg. We write δT for this element. To simplify nota-
tion, for $ ∈ {i, i′, i1, i′1}, we write k($) for k(T,$, h, δT ) ∈ KTstr (see §5.3.9).
Since g and g1 are quasi-gauges, we know that k(i′) (resp. k(i′1)) represents [k(ȳ′g)]
(resp. [k(ȳ′g1

)]). By Proposition 5.7.6 (ii), we know that k(i) (resp. k(i1)) represents
k(ȳg) (resp. k(ȳg1)).

Let v be a finite place. Let Iv, I ′v, Iv,1, I ′v,1 be the reductive groups over Qv
associated with k(i), k(i′), k(i1), k(i′1) respectively. Write uv for the component of u
in G(Qv) (resp. G(Qur

p )) for v 6= p (resp. v = p). Then we have a Qv-isomorphism
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Int(uv)−1 : Iv
∼−→ I ′v, and we have

ιy·u,v = Int(uv)−1 ◦ ιy,v : Ix,Qv
∼−→ I ′v,(5.11.14.1)

cf. the third equality in (5.11.12.3).36 If I is one of the four groups Iv, I ′v, Iv,1, I ′v,1,
there is a canonical Qv-map I → Gab

Qv , and we denote the kernel by I†.
(II) Commutative diagrams involving u.
As in §5.10.3, let τ = (τv)v ∈ Iad

φ (Af ) be the element associated with (x, φ, y ·
u, y′) and f . Namely, for each finite place v we have

ιy·u,v ◦ f−1 = ιy′,v ◦ Int(τv) : Iφ,Qv −→ I ′v.(5.11.14.2)

The diagram

I†v
Int(uv)−1

// I ′,†v

I†x

ιy,v

OO

Int(τv)◦f // I†φ

ιy′,v

OO
(5.11.14.3)

consists of Qv-isomorphisms, and it commutes by (5.11.14.1) and (5.11.14.2). Since
Int(τv) induces the identity on H1(Qv, I†φ) ∼= H1

ab(Qv, I†φ), and since f ◦ j = j′ (as
f is g-adapted), we obtain from (5.11.14.3) a commutative diagram

H1(Qv, I†v)
Int(uv)−1

// H1(Qv, I ′,†v )

H1(Qv, T †)

ιy,v◦j

OO

H1(Qv, T †)

ιy′,v◦j
′

OO

Since ιy,v ◦ j = i and ιy′,v ◦ j′ = i′, the above commutative diagram implies that
there exists ∆v ∈ I ′,†v (Qv) such that

u−1
v i(β0(ρ))uv = ∆v · i′(β0(ρ)) · ρ∆−1

v , ∀ρ ∈ Γv.(5.11.14.4)

In view of (5.11.13.1), we can rewrite (5.11.14.4) as

u−1
v λ−1ρλuv = ∆vλ

′−1ρλ′ρ∆−1
v , ∀ρ ∈ Γv.(5.11.14.5)

(III) Constructing u1.
We shall construct a rectification u1 of g1. Let u1,v := λuv∆vλ

′−1. Then u1,v ∈
G(Qv) for v 6= p and u1,p ∈ G(Qur

p ⊗QpQp). Here when v = p we view λ, λ′ ∈ G(Qp)
as inside G(Qur

p ⊗Qp Qp) via Qp → Qur
p ⊗Qp Qp, a 7→ 1 ⊗ a, and view up ∈ G(Qur

p )
as inside G(Qur

p ⊗Qp Qp) via Qur
p → Qur

p ⊗Qp Qp, a 7→ a ⊗ 1. When v = p, we let
Γp act on G(Qur

p ⊗Qp Qp) only via the second factor Qp. Thus uv is Γv-invariant
for every finite place v. It then immediately follows from (5.11.14.5) that u1,v is
Γv-invariant. Thus we have u1,v ∈ G(Qv) for v 6= p and u1,p ∈ G(Qur

p ). We may
and shall also assume that the elements ∆v have been chosen such that the element

36As in the proof of Proposition 5.11.12, when v = p we view up as an element of
(ResQur

p /Qp G)(Qp) = G(Qur
p ). The isomorphism Int(up) : Ip

∼−→ I′p is understood as the iso-
morphism between two subfunctors of ResQur

p /Qp G induced by the inner automorphism Int(up)
of ResQur

p /Qp G.
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(Ωv)v 6=p := (ι−1
y′,v(∆v))v 6=p ∈

∏
v 6=p I

†
φ(Qv) comes from I†φ(Q ⊗Q Apf ). We then see

that the element u1 := (u1,v)v ∈
∏
v 6=pG(Qv)×G(Qur

p ) lies in G(A∗f ).
For v 6= p, we have uv ∈ Gder(Qv) by our assumption (i), and so u1,v ∈ Gder(Qv).

Again by the assumption (i), the image of up in Gab(Qur
p ) lies in Gab(Zur

p ). Since
up and u1,p have the same image in Gab(Qur

p ), we have u1,p ∈ Gder(Qur
p )G(Zur

p ) by
the surjectivity of G(Zur

p ) → Gab(Zur
p ) (which follows from Lang’s theorem applied

to Gder; see the proof of Proposition 4.5.2). We have thus constructed an element
u1 ∈ Gder(Af )G(Zur

p ).
(IV) Proof that u1 is a rectification of g1.
Clearly u1 ∈ ker(G(A∗f ) → π∗(G)). For a sufficiently divisible n ∈ Z≥1, let

γ0,T,n = δTσ(δT ) · · ·σn−1(δT ) ∈ T (Q) (see §5.3.9). Then k($) ∈ KTstr is repre-
sented by

($(γ0,T,n), ($(γ0,T,n))v 6=p, $(δT )) ∈ Tstr
n ,

for $ ∈ {i, i′, i1, i′1}. Clearly $(γ0,T,n) for all four choices of $ are conjugate in
G(Q). For a finite place v 6= p, we have

Int(u1,v)−1(i1(γ0,T,n)) = Int
(
λ′∆−1

v u−1
v λ−1)(i1(γ0,T,n))(5.11.14.6)

= Int
(
λ′∆−1

v u−1
v

)
(i(γ0,T,n))

= Int
(
λ′∆−1

v

)
(i′(γ0,T,n))

= Int
(
λ′
)
(i′(γ0,T,n))

= i′1(γ0,T,n).

Here the second equality is because i1 = Int(λ) ◦ i, the third equality is because
k(i) ·u ∈ k(i′) ·Uȳ′g

, the fourth equality is because ∆v ∈ I ′v centralizes i′(γ0,T,n), and
the fifth equality is because i′1 = Int(λ′) ◦ i′. For a, b ∈ G(Qur

p ⊗Qp Qp), we write
Intσ(a)(b) for abσ(a)−1, where σ acts on G(Qur

p ⊗Qp Qp) only via the first factor
Qur
p . Analogously as in the above computation, we have

Intσ(u1,p)−1(i1(δT )) = Intσ
(
λ′∆−1

p u−1
p λ−1)(i1(δT ))(5.11.14.7)

= Intσ
(
λ′∆−1

p u−1
p

)
(i(δT ))

= Intσ
(
λ′∆−1

p

)
(i′(δT ))

= Intσ
(
λ′
)
(i′(δT ))

= i′1(δT ).

Here the second equality is because i1 = Int(λ) ◦ i = Intσ(λ) ◦ i, the third equality
is by condition (ii) in Definition 5.11.6, the fourth equality is because i′(δT ) is
σ-centralized by ∆p ∈ I ′p, and the fifth equality is because i′1 = Int(λ′) ◦ i′ =
Intσ(λ′) ◦ i′. The fact that i1(γ0,T,n) and i′1(γ0,T,n) are conjugate in G(Q), together
with (5.11.14.6) and (5.11.14.7), implies that u1 is a rectification of g1.

(V) Constructing f1.
We have a Q-isomorphism ψ : Iφ,Q

∼−→ Iφ1,Q induced by Int(λ′). Write φ(qρ) =
gρ o ρ and φ1(qρ) = g1,ρ o ρ. Then gρ ∈ i′(T )(Q) and g1,ρ = Int(λ′)(gρ). We
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compute

ρψ(·) = g1,ρρ[Int(λ′)(gρ−1ρ−1(·)g−1
ρ−1)]g−1

1,ρ

= Int(λ′gρλ′−1ρλ′ρgρ−1)(·)
= Int(λ′gρλ′−1ρλ′g−1

ρ )(·),

where in the last step we use that gρρgρ−1 is central in Iφ(Q). By (5.11.13.1) and
the fact that gρ ∈ i′(T ), we have ρψ(·) = Int(ρλ′). Thus ψ is an inner twisting
satisfying

ψ−1 ◦ ρψ = Int(j′(β0(ρ))) ∈ Aut(Iφ,Q), ∀ρ ∈ Γ.(5.11.14.8)

We now construct an inner twisting χ : Ix,Q
∼−→ Ix1,Q analogous to ψ. As in

§5.7.2, we let x̃ = x̃(T,i,h),Kp
1
and x̃1 = x̃(T,i1,h),Kp

1
. These are points of ShK1(F ) for

some finite extension F/Ep. Under the canonical isomorphisms triv(T,i,h) : V ∗Q
∼−→

VB,Q(x̃) and triv(T,i1,h) : V ∗Q
∼−→ VB,Q(x̃) as in §5.7.2, the element λ ∈ G(Q) induces

an isomorphism of Q-Hodge structures VB,Q(x̃)⊗QQ
∼−→ VB,Q(x̃1)⊗QQ which sends

the tensors s
α,B,Q,x̃ to s

α,B,Q,x̃1
. Thus λ induces an element θ ∈ Ix1,x(Q), satisfying

θ ◦ ρ(θ−1) = j(β0(ρ)) ∈ Ix(Q), ∀ρ ∈ Γ.(5.11.14.9)

Define χ : Ix,Q
∼−→ Ix1,Q to be the isomorphism induced by θ. From (5.11.14.9) it

immediately follows that χ is an inner twisting satisfying

χ−1 ◦ ρχ = Int(j(β0(ρ))) ∈ Aut(Ix,Q), ∀ρ ∈ Γ.(5.11.14.10)

We define f1 by the commutative diagram

Ix,Q
f //

χ

��

Iφ,Q

ψ

��
Ix1,Q

f1 // Iφ1,Q

By (5.11.14.8), (5.11.14.10), and the fact that f ◦ j = j′ (as f is g-adapted), we
know that f1 is a Q-isomorphism. Moreover, χ and ψ commute with the canonical
embeddings of T . Hence f1 ◦ j1 = j′1.

(VI) Constructing τ1.
Let v be a finite place. From the constructions of ψ and χ, we have the commu-

tative diagrams

Iφ,Qv

ιy′,v //

ψ

��

(I ′v)Qv
Int(λ′)
��

Iφ1,Qv

ιy′1,v // (I ′v,1)Qv

(5.11.14.11)
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and

Ix,Qv

ιy,v //

χ

��

(Iv)Qv
Int(λ)
��

Ix1,Qv

ιy1,v // (Iv,1)Qv

(5.11.14.12)

As in part (III), let Ωv := ι−1
y′,v(∆v) ∈ I†φ(Qv). Let τ̃v ∈ I

†
φ(Qv) be a lift of τv. Let

τ̃1,v := ψ(Ω−1
v τ̃v) ∈ I†φ1

(Qv).

Using ιy,v ◦ j = i and ιy′,v ◦ j′ = i′, we can rewrite (5.11.14.4) as
Int(uv)−1 ◦ ιy,v(j(β0(ρ))) = ∆v · ιy′,v(j′(β0(ρ))) · ρ∆−1

v , ∀ρ ∈ Γv.

By (5.11.14.1) and (5.11.14.2), we deduce from the above equality that
ιy′,v ◦ Int(τv) ◦ f(j(β0(ρ))) = ∆v · ιy′,v(j′(β0(ρ))) · ρ∆−1

v , ∀ρ ∈ Γv.

Using f ◦ j = j′ and the definition of Ωv, we get
Int(τv)(j′(β0(ρ))) = Ωv(j′(β0(ρ)))ρΩ−1

v , ∀ρ ∈ Γv.(5.11.14.13)

Write βρ for j′(β0(ρ)). We compute

τ̃−1
1,v

ρτ̃1,v = ψ(τ̃−1
v Ωv) · (ρψ)(ρΩ−1

v
ρτ̃v)(5.11.14.14)

= ψ(τ̃−1
v Ωv) · ψ(βρρΩ−1

v
ρτ̃vβ

−1
ρ ) by (5.11.14.8)

= ψ(τ̃−1
v ΩvβρρΩ−1

v
ρτ̃vβ

−1
ρ )

= ψ(βρτ̃−1
v

ρτ̃vβ
−1
ρ ) by (5.11.14.13)

= ψ(τ̃−1
v

ρτ̃v) because τ̃−1
v

ρτ̃v ∈ Z†φ.

Since ψ is an inner twisting, it follows from (5.11.14.14) that the image of τ̃1,v
in Iad

φ1
(Qv) lies in Iad

φ1
(Qv). We denote this element by τ1,v. Recall from part

(III) that (Ωv)v 6=p comes from an element of I†φ(Q ⊗Q Apf ). It easily follows that
τ1 := (τ1,v)v ∈

∏
v I

ad
φ1

(Qv) is in fact an element of Iad
φ1

(Af ).
(VII) Proof that τ1 is associated with (x1, φ1, y1 · u1, y

′
1) and f1.

We compute
ιy′1,v = Int(λ′) ◦ ιy′,v ◦ ψ−1

= Int(λ′∆−1
v ) ◦ ιy′,v ◦ Int(Ωv) ◦ ψ−1

= Int(λ′∆−1
v ) ◦ ιy·u,v ◦ f−1 ◦ Int(τ̃−1

v Ωv) ◦ ψ−1

= Int(λ′∆−1
v u−1

v ) ◦ ιy,v ◦ f−1 ◦ Int(τ̃−1
v Ωv) ◦ ψ−1

= Int(u−1
1,vλ) ◦ ιy,v ◦ f−1 Int(τ̃−1

v Ωv) ◦ ψ−1

= Int(u−1
1,v) ◦ ιy1,v ◦ χ ◦ f−1 ◦ Int(τ̃−1

v Ωv) ◦ ψ−1

= Int(u−1
1,v) ◦ ιy1,v ◦ f−1

1 ◦ ψ ◦ Int(τ̃−1
v Ωv) ◦ ψ−1

= Int(u−1
1,v) ◦ ιy1,v ◦ f−1

1 ◦ Int(τ1,v)
= ιy1·u1,v ◦ f−1

1 ◦ Int(τ1,v).

Here the first equality is by (5.11.14.11), the second by the definition of Ωv, the third
by (5.11.14.2), the fourth by (5.11.14.1), the fifth by the definition of u1,v, the sixth
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by (5.11.14.12), the seventh by the definition of f1, and the ninth by the analogue
of (5.11.14.1). This shows that f1 : Ix1

∼−→ Iφ1 is the canonical isomorphism (up to
Iad
φ1

(Q)-conjugation) as in §5.10.3, and that τ1 is the element of Iad
φ1

(Af ) associated
with (x1, φ1, y1 · u1, y

′
1) and f1. We have already seen in part (V) that f1 ◦ j1 = j′1.

We conclude that f1 is g1-adapted. �

5.11.15. Keep the assumptions of Proposition 5.11.13. Then g and g′ both admit
rectifications, and so the pairs (Ig,Jg) and (Ig1 ,Jg1) are amicable by Lemma
5.11.7. Thus we have the elements

(τH(Ig,Jg), τH(Ig,Jg)) ∈ H(φ)⊕H(φ)(5.11.15.1)
and

(τH(Ig1 ,Jg1), τH(Ig1 ,Jg1)) ∈ H(φ1)⊕H(φ1)(5.11.15.2)
as in Definition 5.10.9. Note that we have φ ≈ φ1, where ≈ is defined in §2.6.16.
Thus the abelian groups H(φ) and H(φ1) are canonically identified by §2.6.16, and
similarly the abelian groups H(φ) and H(φ1) are canonically identified by §5.10.5.

Proposition 5.11.16. The canonical identification H(φ)⊕H(φ) ∼= H(φ1)⊕H(φ1)
sends (5.11.15.1) to (5.11.15.2).

Proof. Let τ and τ1 be as in the proof of Proposition 5.11.13. As we showed in
the proof of Lemma 5.11.7, the marking (ȳg · u, ȳ′g) of (Ig,Jg) and the mark-
ing (ȳg1 · u1, ȳ

′
g1

) of (Ig1 ,Jg1) are in fact π∗-compatible. Hence τH(Ig,Jg)
and τH(Ig,Jg) are the images of τ in H(φ) and in H(φ) respectively, while
τH(Ig1 ,Jg1) and τH(Ig1 ,Jg1) are the images of τ1 in H(φ1) and in H(φ1) respec-
tively. It remains to show that the natural image of τ in H(φ)⊕H(φ) corresponds
to the natural image of τ1 in H(φ1)⊕H(φ1). This follows from (5.11.14.14). �

5.12. Galois cohomological properties of amicable pairs.

5.12.1. Let (I ,J ) be an amicable pair. Let φ ∈ J . For any maximal torus
T ⊂ Iφ, we write T † for T ∩ I†φ = ker(T → Gab), which is a subtorus of T defined
over Q. As in §5.10.5, we define X∞

Gder
(Q, H) for any Q-subgroup H ⊂ I†φ, in

particular for H = T †.
We have a boundary map ∂ : Gab(Qp) → H1(Qp, T †) arising from the short

exact sequence 1 → T † → T → Gab → 1. Recall from Definition 5.10.9 that there
is a canonical element τH(I ,J ) ∈ H(φ). There is a natural homomorphism from
H(φ) to the group

coker
(
Gab(Zp)

∂−→ H1(Af , T †)/X∞
Gder

(Q, T †)
)

(5.12.1.1)

Theorem 5.12.2. In the setting of §5.12.1, the image of τH(I ,J ) in (5.12.1.1)
is trivial.

Proof. Let j′ : T ↪→ Iφ be the inclusion map. Pick a π∗-compatible marking (ȳ, ȳ′)
of (I ,J ). Pick x ∈ I . Pick y ∈ Y (x) lifting ȳ, and pick y′ ∈ Y (φ) lifting ȳ′.
Choose an isomorphism f : Ix

∼−→ Iφ as in §5.10.3 and Remark 5.10.10. Let j be

the composition T j′−→ Iφ
f−1

−−→ Ix. Via j we view T also as a maximal torus in Ix.
We claim that a cocharacter µ ∈ X∗(T ) is φ-admissible in the sense of §3.3.8

if and only if it is x-admissible in the sense of §5.7.7. In fact, using Theorem
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3.3.9, Proposition 5.9.2, Theorem 5.7.8, and Proposition 5.7.6, one can show that
the elements (φ(p) ◦ ζp)∆ and νδy of X∗(T ) ⊗ Q (introduced in §3.3.8 and §5.7.7
respectively) are both equal to the Newton cocharacter of [δT ] ∈ B(TQp), where δT
is any element of the ◦∼-equivalence class in T (Qur

p )mot corresponding to −µh. It is
also clear that for µ ∈ X∗(T ) the composition (5.7.7.1) lies in �X(Qp) if and only
if j′ ◦ µ lies in �X(Q). The claim follows.

By the above claim, Theorem 3.3.9, and Theorem 5.7.8, we find the following
objects:

• Two special point data of the form s = (T, i, h), s = (T, i′, h) ∈ SPD(G,X)
such that I = Is and J = Js′ .
• An isomorphism w : Ix

∼−→ Ixs
which is induced by some element of

Ix,xs
(Q), satisfying that the composition w ◦ j : T → Ixs

is the canon-
ical embedding (i.e., the embedding (5.7.2.2)).
• An isomorphism w′ : Iφ

∼−→ Iφ(s′) which is induced by some element of
G(Q) conjugating φ to φ(s), satisfying that the composition w′ ◦ j′ : T →
Iφ(s) is the canonical embedding (i.e., the one whose composition with
Iφ(s),Q ↪→ GQ is i′Q).

We claim that we can choose the above objects such that (T, h, i, i′) is a special
fork (see Definition 5.11.1). In fact, from the fact that (I ,J ) is weakly amicable
it already follows that i and i′ are conjugate by Gad(Qv) for each finite place v.
Then i and i′ are conjugate by Gad(Q), since i(T ) and i′(T ) are Q-maximal tori
in G and since the absolute Weyl group of i(T ) in G is the same when considered
over Qv and when considered over Q. Also note that we can freely replace i′ by
Int(g) ◦ i′ for g ∈ G(Q). By the real approximation theorem, we can choose g such
that Int(g) ◦ i′ ◦ h lies in the same connected component of X as i ◦ h. The claim
is proved.

The canonical isomorphism H(φ) ∼−→ H(φs′) commutes with the natural map
from H(φ) to (5.12.1.1) induced by j′ : T → Iφ and the natural map from H(φs′)
to (5.12.1.1) induced by the canonical embedding T → Iφ(s′). Thus we can reduce
the theorem to the following situation:

• We have a special fork (s, s′) = (T, h, i, i′) such that I = Is and J =
Js′ . Moreover, φ = φ(s′), and the inclusion T ↪→ Iφ is the canonical
embedding, namely the one whose composition with Iφ,Q ↪→ GQ is i′.

By Lemma 5.11.5 and Lemma 5.11.7, we can extend the special fork (s, s′) to a
gauge g. Moreover, tracing the above reduction steps we see that there exists a
g-adapted isomorphism f : Ixg

∼−→ Iφg
. (This comes from the initial definition of

j in the first paragraph of the proof.) The theorem then follows from Proposition
5.11.12. �

5.12.3. Let (I ,J ) be a weakly amicable pair. Fix x ∈ I and φ ∈ J . Recall
from §5.10.3 and Remark 5.10.10 that we have an isomorphism f : Ix

∼−→ Iφ which is
canonical up to Iad

φ (Q)-conjugation. In particular, we have a canonical isomorphism
between the abelian groups X∞

G (Q, Iφ) and X∞
G (Q, Ix) that is independent of

all choices. Now fix an element β ∈ X∞
G (Q, Iφ), also viewed as an element of

X∞
G (Q, Ix). As in Definition 2.1.17 and Proposition 2.6.12, we obtain the twisted

admissible morphism φβ , which is well defined up to conjugacy. We denote the
conjugacy class of φβ by J β . Note that for different choices of φ ∈J , the abelian
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groups X∞
G (Q, Iφ) are canonically identified. Define

X∞
G (J ) := lim←−

φ∈J

X∞
G (Q, Iφ).

If we view β as an element of X∞
G (J ), then J β depends only on J and β, not

on φ ∈J .
Similarly, for different choices of x ∈ I , the groups X∞

G (Q, Ix) are canonically
identified. Similarly as above we define

X∞
G (I ) := lim←−

x∈I

X∞
G (Q, Ix).

The canonical isomorphisms X∞
G (Q, Iφ) ∼= X∞

G (Q, Ix) for all φ ∈ J and x ∈ I
induce a canonical isomorphism

X∞
G (I ) ∼= X∞

G (J ).

We have the twisted isogeny class I β constructed in [Kis17, §4.4.7, Prop. 4.4.8].
If we view β as an element of X∞

G (I ), then I β depends only on I and β.
By §2.6.16, the abelian groups H(φ) and H(φβ) are canonically identified, since

φ ≈ φβ . Similarly, by §5.10.5, the abelian groups H(φ) and H(φβ) are canonically
identified.

5.12.4. We take this opportunity to correct a mistake in [Kis10, §3.1], and we
freely use the notation introduced there. Above we used a twisting construction
defined in [Kis10, §3.1]. The statement of Lemma 3.1.5 of loc. cit. should include
the condition that the Z-torsor P, is trivial over R, i.e., that PR is a trivial ZR-
torsor. The result is not true without this condition, as the Q-isogeny λP need not
be a weak polarization.

Unfortunately, this error was imported into [Kis17, §4.1.6] and [KP18, Lemma
4.4.8] via citation. Fortunately, in all instances where this construction is applied to
Shimura varieties in these papers, the condition of triviality at∞ holds. Moreover,
the result is always applied to give a moduli theoretic description of a construction
defined via complex uniformization. Thus, logically, the fact that λP is a weak
polarization is never used, but rather follows a posteriori in all these cases.

Nevertheless, let us explain why λP is a weak polarization if PR is trivial. Recall
that for any Q-algebra R, an R-isogeny φ : A → A∗ is an element of Hom(A,A∗)⊗R
which has an inverse in Hom(A∗,A)⊗R, cf. [Kot92b, §9]. If R is a subring of R, we
say that φ is an R-polarization if it is an R-linear combination of polarizations, with
positive coefficients. We say φ is a weak R-polarization if φ or −φ is a polarization.
Thus a weak Q-polarization is the same thing as a weak polarization. Now if
φ0 : A → A∗ is a Q-isogeny, then φ0 is a weak polarization if and only if it is a
weak R-polarization when viewed as an R-isogeny. This follows from that fact that
the set of Q-polarizations is a convex cone in Hom(A,A∗) ⊗ Q. Similarly φ0 is a
weak polarization if and only if φ0 is a weak R-polarization. Moreover, the set of
weak R-polarizations is stable under multiplication by R×.

We now return to the explanation that λP is a weak polarization if PR is trivial.
Thus, suppose PR is trivial, and let x ∈ P(R). Specializing the commutative dia-
gram [Kis10, (3.1.6)] by x, we see that fc(x)−1λP is a weak R-polarization. Thus,
by what we just saw, λP is a weak R-polarization and hence a weak polarization.



STABLE TRACE FORMULA FOR SHIMURA VARIETIES 175

Theorem 5.12.5. Keep the setting of §5.12.3. Assume that (I ,J ) is amicable.
Then (I β ,J β) is again amicable. Moreover, the elements

(τH(I ,J ), τH(I ,J )) ∈ H(φ)⊕H(φ)
and

(τH(I β ,J β), τH(I β ,J β)) ∈ H(φβ)⊕H(φβ)
(see Definition 5.10.9) correspond to each other under the canonical identification
H(φ)⊕H(φ) ∼= H(φβ)⊕H(φβ).

Proof. Let T be a maximal torus in Iφ such that β comes from a class βT in
H1(Q, T ). Such a maximal torus always exists by [Bor98, Thm. 5.10]. Let j′ : T ↪→
Iφ be the inclusion map. As in the proof of Theorem 5.12.2, we reduce the theorem
to the following situation.

• There is a special fork (s, s′) = (T, h, i, i′). We have φ = φ(s′), and j′ is
the canonical embedding, namely the one whose composition with Iφ,Q ↪→
GQ is i′. We have xs ∈ I . Moreover, in the canonical Iad

φ (Q)-orbit of
isomorphisms Ixs

∼−→ Iφ, we can find an isomorphism f such that f−1 ◦ j′ :
T → Ixs

is the canonical embedding.
DefineX∞

G (Q, T ) andX∞
Gder

(Q, T †) as in §5.11.2, with respect to the special fork
(T, h, i, i′). We will still need to modify our choice of i, but note thatX∞

G (Q, T ) and
X∞

Gder
(Q, T †) are already determined by (T, i′). Also note that X∞

G (Q, T ) is equal
to the preimage of X∞

G (Q, Iφ) under the map X∞(Q, T ) → X∞(Q, Iφ) induced
by j′. By [Kis17, Lem. 4.4.5], the map of pointed sets H1(R, T ) → H1(R, Iφ)
induced by j′ has trivial kernel. Hence X∞

G (Q, T ) is equal to the preimage of
X∞

G (Q, Iφ) under the map H1(Q, T )→ H1(Q, Iφ) induced by j′. We conclude that
βT ∈ X∞

G (Q, T ). Now by Lemma 1.2.6, we can find a class β0 ∈ X∞
Gder

(Q, T †)
lifting βT . Fix a cocycle β0(·) representing β0.

Choose λ′ ∈ Gder(Q) such that

i′(β0(ρ)) = λ′
−1ρλ′, ∀ρ ∈ Γ.(5.12.5.1)

Since β0 is trivial at infinity, we have λ′ ∈ Gder(R)i′(T †(C)). SinceGder(Q)Gder(R)+

is equal to Gder(R) (by real approximation), and since λ′ is determined by (5.12.5.1)
up to left multiplication by Gder(Q), we may and shall assume that

λ′ ∈ Gder(R)+i′(T †(C)).(5.12.5.2)
We define

i′1 := Int(λ′) ◦ i′ : T −→ G.

By (5.12.5.1), i′1 is defined over Q. Choose an arbitrary y′ ∈ X(ΨT,h)neu, and
choose y ∈ Y (Υ(T,h))◦ as in Lemma 5.11.5 with respect to (T, h, i′, i′1, y′). Then
g = (T, h, i, i′, y, y′) is a quasi-gauge, and (Ig,Jg) = (I ,J ). Since (I ,J ) is
amicable, g has a rectification u by Lemma 5.11.7. Since u ∈ ker(G(A∗f )→ π∗(G)),
we can write u = u(0)u(1), with u(0) ∈ G(Q)+ and u(1) ∈ Gder(A∗f )G(Zur

p ). Note
that (T, h, Int(u(0))−1 ◦ i, i′, y, y′) is still a gauge, and that u(1) is a rectification
of it. Moreover, writing s0 for the special point datum (T, Int(u(0))−1 ◦ i, h), we
have xs0 ∈ I , and in the canonical Iad

φ (Q)-orbit of isomorphisms Ixs0

∼−→ Iφ
we can find an isomorphism f0 such that f−1

0 ◦ j′ : T → Ixs0
is the canonical

embedding. Therefore after replacing i by Int(u(0))−1 ◦ i we can arrange that
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g admits a rectification u ∈ Gder(A∗f )G(Zur
p ), and that there exists a g-adapted

isomorphism Ixg

∼−→ Iφg
.

By the same argument as before, there exists λ ∈ Gder(Q) such that
i(β0(ρ)) = λ−1ρλ, ∀ρ ∈ Γ,(5.12.5.3)

and
λ ∈ Gder(R)+i(T †(C)).(5.12.5.4)

We define
i1 := Int(λ) ◦ i : T −→ G,

which is defined over Q by (5.12.5.3). By (5.12.5.2), (5.12.5.4), and the fact that
i ◦ h and i′ ◦ h lie in the same connected component of X, we know that all four
points

i1 ◦ h, i′1 ◦ h, i ◦ h, i′ ◦ h
lie in the same connected component of X. It is also clear that i1 and i′1 are
conjugate by Gad(Q). Hence (T, h, i1, i′1) is a special fork. It follows that the
tuple g1 = (T, h, i1, i′1, y, y′) is a quasi-gauge, by our choice of y (see Lemma
5.11.5). The same argument as in the proof of [Kis17, Cor. 4.6.5] shows that
(I β ,J β) = (Ig1 ,Jg1). Now g, g1, λ, λ

′ satisfy all the assumptions in Proposition
5.11.13, so the current theorem follows from Lemma 5.11.7, Proposition 5.11.13,
and Proposition 5.11.16. �

5.13. Construction and properties of a bijection.

5.13.1. In the current setting of Hodge type, it is expected that there should be
a canonical bijection between the set of conjugacy classes of admissible morphisms
Q → GG and the set of isogeny classes in SKp(Fp). One candidate for such a
bijection is constructed in [Kis17]. However, even giving a general characterization
of what “canonical” should mean for such a bijection seems to be out of current
reach. In the following, we construct such a bijection in a way that is different from
[Kis17] (cf. Remark 5.13.8 below). Throughout this subsection we keep the setting
of §5.1.

We write I for the set of isogeny classes in SKp(Fp), and write J for the set of
conjugacy classes of admissible morphisms Q→ GG.37

In §2.6.16, we defined an equivalence relation ≈ on the set of admissible mor-
phisms Q → GG. This descends to an equivalence relation on J, which we still
denote by ≈. By Proposition 2.6.12, for J1,J2 ∈ J we have J1 ≈ J2 if
and only if J1 = J β

2 for some (unique) β ∈ X∞
G (J1). (See §5.12.3 for the

notations X∞
G (J1) and J β

1 .) When this is the case, for any φ1 ∈ J1 and
φ2 ∈ J2 we have a canonical equivalence class of inner twistings between Iφ1

and Iφ2 . The induced equivalence class of inner twistings between Iφ1,R and Iφ2,R
is trivial, i.e., it contains an R-isomorphism. Thus we have an induced canon-
ical isomorphism H1

ab(Q, Iφ1) ∼= H1
ab(Q, Iφ2), which restricts to an isomorphism

X∞
G (Q, Iφ1) ∼= X∞

G (Q, Iφ2). If we view the last isomorphism as an isomorphism
X∞

G (J1) ∼= X∞
G (J2), then it depends only on J1 and J2, not on any other

choices.
37In §2.6.16, the set J was also denoted by AM/conj. In the current setting of Hodge type we

choose the notation J to reflect the symmetry with the set I of isogeny classes.
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Similarly, we define a binary relation ≈ on I by declaring I1 ≈ I2 when there
exists β ∈ X∞

G (I1) such that I2 = I β
1 . (In Corollary 5.13.4 below we will see

that ≈ is an equivalence relation on I.) Similarly as before, if I1 ≈ I2 then for
any x1 ∈ I1 and x2 ∈ I2 there is a canonical equivalence class of inner twistings
between Ix1 and Ix2 , and moreover the induced equivalence class of inner twistings
between Ix1,R and Ix2,R is trivial. In fact, in this case the Q-scheme Ix1,x2 considered
in §5.4 is an Ix1-torsor, and its class in H1(Q, Ix1) is the element β ∈X∞

G (I1) with
I2 = I β

1 ; see the proof of [Kis17, Prop. 4.4.8]. The above-mentioned equivalence
class of inner twistings between Ix1 and Ix2 is induced by elements of Ix1,x2(Q).
In particular, the element of H1(Q, Iad

x1
) corresponding to this equivalence class

of inner twistings (see Remark 1.2.3) is the image of β under the natural map
H1(Q, Ix1) → H1(Q, Iβx1

). Since β has trivial image in H1(R, Ix1), our assertion
that the induced equivalence class of inner twistings between Ix1,R and Ix2,R is
trivial follows.

From the above discussion, we have a canonical isomorphism X∞
G (Q, Ix1) ∼=

X∞
G (Q, Ix2). Again, if we view this isomorphism as an isomorphism X∞

G (Q,I1) ∼=
X∞

G (Q,I2), then it depends only on I1 and I2.

Lemma 5.13.2. Let J1,J2 ∈ J. Assume that J2 = J β
1 for some β ∈X∞

G (J1).
Let β′ ∈X∞

G (J1), also viewed as an element of X∞
G (J2) via the canonical iso-

morphism X∞
G (J1) ∼= X∞

G (J2). Then J β+β′
1 = J β′

2 .

Proof. We first make a reduction step that is very similar to the proof of Theorem
5.12.5. Let φ ∈ J1. By [Bor98, Thm. 5.10], there exists a maximal torus T ⊂
Iφ such that both β and β′ come from elements βT and β′T of H1(Q, T ). By
Theorem 3.3.9, we reduce to the case where φ = φ(T, i, h) for some (T, i, h) ∈
SPD(G,X), and where the inclusion T ↪→ Iφ is the canonical inclusion (namely
the one whose composition with Iφ,Q ↪→ GQ is i). Define X∞

G (Q, T ) to be the
kernel of X∞(Q, T ) →X∞(Q, G) induced by i. By the same argument as in the
proof of Theorem 5.12.5, we have βT , β′T ∈X∞

G (Q, T ). Now fix cocycles βT (·) and
β′T (·) representing βT and β′T , and find λ1, λ2 ∈ G(Q) such that

λ−1
1

ρλ1 = i(βT (ρ)), λ−1
2

ρλ2 = i(βT (ρ)β′T (ρ)), ∀ρ ∈ Γ.

Define i1 = Int(λ1) ◦ i and i2 = Int(λ2) ◦ i. Then (T, i1, h) and (T, i2, h) are special
point data in SPD(G,X). Moreover, it is easy to check that J2 = J(T,i1,h) and
J β+β′

1 = J(T,i2,h).
To finish the proof, we need to show that J(T,i2,h) is equal to J β′

(T,i1,h). By the
same argument as before, we need only show that there exists λ ∈ G(Q) satisfying
the following conditions:

(i) We have λ−1ρλ = i1(β′T (ρ)), ∀ρ ∈ Γ.
(ii) We have i2 = Int(λ) ◦ i1.

Clearly λ = λ2λ
−1
1 satisfies the second condition. To check the first condition, we

compute

λ−1ρλ = λ1λ
−1
2

ρλ2
ρλ−1

1 = λ1i
(
βT (ρ)β′T (ρ)

)
ρλ−1

1

= λ1λ
−1
1

ρλ1i(β′T (ρ))ρλ−1
1 = ρλ1i(β′T (ρ))ρλ−1

1 .
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Since i is defined over Q, the above is equal to

ρ

(
λ1i
(
ρ−1(β′T (ρ))

)
λ−1

1

)
= ρ

(
i1
(
ρ−1(β′T (ρ))

))
.

But i1 is also defined over Q, so the above is equal to i1(β′T (ρ)), as desired. �

Lemma 5.13.3. Let I1,I2 ∈ I. Assume that I2 = I β
1 for some β ∈X∞

G (I1).
Let β′ ∈ X∞

G (I1), also viewed as an element of X∞
G (I2) via the canonical iso-

morphism X∞
G (I1) ∼= X∞

G (I2). Then I β+β′
1 = I β′

2 .

Proof. The proof is completely analogous to that of Lemma 5.13.2. Let x ∈ I1. By
[Bor98, Thm. 5.10], there exists a maximal torus T ⊂ Ix such that both β and β′
come from elements βT and β′T of H1(Q, T ). By Theorem 5.7.8, we reduce to the
case where x = x(T,i,h) for some (T, i, h) ∈ SPD(G,X), and where the inclusion
T ↪→ Ix is the canonical inclusion (as in (5.7.2.2)). Define X∞

G (Q, T ) to be the
kernel of the map X∞(Q, T )→X∞(Q, G) induced by i. As in the proof of Lemma
5.13.2, we have βT , β′T ∈X∞

G (Q, T ). Now fix cocycles βT (·) and β′T (·) representing
βT and β′T , and find λ1, λ2 ∈ G(Q) such that

λ−1
1

ρλ1 = i(βT (ρ)), λ−1
2

ρλ2 = i(βT (ρ)β′T (ρ)), ∀ρ ∈ Γ.

Define i1 = Int(λ1) ◦ i and i2 = Int(λ2) ◦ i. Then (T, i1, h) and (T, i2, h) are special
point data in SPD(G,X). Moreover, the same argument as in the proof of [Kis17,
Cor. 4.6.5] shows that I2 = I(T,i1,h) and I β+β′

1 = I(T,i2,h).
To finish the proof, we need to show that I(T,i2,h) is equal to I β′

(T,i1,h). By the
same argument as before, we need only show that there exists λ ∈ G(Q) satisfying
the following conditions:

(i) We have λ−1ρλ = i1(β′T (ρ)), ∀ρ ∈ Γ.
(ii) We have i2 = Int(λ) ◦ i1.

As in the proof of Lemma 5.13.2, the element λ = λ2λ
−1
1 satisfies the above condi-

tions. �

Corollary 5.13.4. The relation ≈ on I is an equivalence relation.

Proof. To see reflexivity, for each I ∈ I we have by definition I = I β with
β = 0 ∈ X∞

G (I ). The transitivity and symmetry follow directly from Lemma
5.13.3. �

5.13.5. For I ∈ I and y ∈ Ȳ (I ), the image of k(y) ∈ KTstr/≡ under KTstr/≡ →
KT/∼ depends only on I . We denote this element by k(I ). Thus we have a map
I → KT/∼. Similarly, for J ∈ J and y ∈ Ȳ (J ), the image of [k(y)] ⊂ KTstr/≡
under KTstr/≡ → KT/∼ consists of a unique element, and this element depends
only on J . We denote this element by k(J ). Thus we have a map J→ KT/∼.

It follows from Theorem 3.3.9, Theorem 5.7.8, Proposition 5.7.6, and Propo-
sition 5.9.2, that the images of I → KT/∼ and J → KT/∼ are both equal to
{k(s) | s ∈ SPD(G,X)}. (See §5.3.9 for k(s).) We denote this set by (KT/∼)sp.

5.13.6. Let (I ,J ) be a weakly amicable pair. For each x ∈ I and φ ∈ J ,
we have an isomorphism Ix

∼−→ Iφ that is canonical up to composing with inner
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automorphisms defined over Q; see §5.10.3 and Remark 5.10.10. We thus have a
canonical isomorphism of abelian groups

X∞
G (Q,I ) ∼= X∞

G (Q,J )(5.13.6.1)

that is independent of all choices (also cf. §5.12.3).
As a special case, let s ∈ SPD(G,X) be a special point datum and consider the

pair (Is,Js). By Corollary 5.11.9, (Is,Js) is amicable. Hence we get a canonical
identification

X∞
G (Is) ∼= X∞

G (Js).

We denote the identified abelian group by X∞
G (s).

More generally, we call a pair (I ′,J ′) consisting of I ′ ∈ I and J ′ ∈ J an
acquainted pair, if there exists a weakly amicable pair (I ,J ) such that I ′ ≈ I
and J ′ ≈J . Recall that in this case we have canonical isomorphisms X∞

G (I ) ∼=
X∞

G (I ′) and X∞
G (J ) ∼= X∞

G (J ′). Composing these two with the isomorphisms
(5.13.6.1) with respect to the weakly amicable pair (I ,J ), we obtain a canonical
isomorphism

X∞
G (I ′) ∼= X∞

G (J ′)
which depends only on the acquainted pair (I ′,J ′).

Lemma 5.13.7. There exists a (non-canonical) bijection B : J ∼−→ I satisfying the
following conditions.

(i) For each J ∈ J, there exists a special point datum s ∈ SPD(G,X) and
an element β ∈X∞

G (s) such that J = J β
s and B(J ) = I β

s .
(ii) Whenever I = B(J ), the pair (I ,J ) is an acquainted pair. In partic-

ular we have a canonical isomorphism X∞
G (I ) ∼= X∞

G (J ).
(iii) Suppose we have I = B(J ). For any β ∈X∞

G (I ) ∼= X∞
G (J ), we have

B(J β) = I β .

Remark 5.13.8. A similar bijection J ∼−→ I is implicitly used in [Kis17]; see the proof
of [Kis17, Cor. 4.6.5]. However, the bijection in [Kis17] satisfies a different set of
conditions than those in Lemma 5.13.7. More specifically, the groups X∞

G (s) and
X∞

G (J ) in conditions (i) and (iii) in Lemma 5.13.7 are replaced by the subgroups
consisting of elements that come from the centers of Iφ(s) and Iφ (for φ ∈J ).

Proof of Lema 5.13.7. As we explained in §5.13.5, the maps J → KT/∼ and I →
KT/∼ have the same image (KT/∼)sp ⊂ KT/∼. By [Kis17, Prop. 4.5.7], each fiber
of the map J → (KT/∼)sp is contained in one equivalence class of ≈. By [Kis17,
Prop. 4.4.13], each fiber of the map I → (KT/∼)sp is contained in one equivalence
class of ≈.

By [Kis17, Lem. 4.4.11, Prop. 4.4.13, Lem. 4.5.6, Prop. 4.5.7], we know that
there is an equivalence relation on (KT/∼)sp whose pull-back to J is ≈ and whose
pull-back to I is ≈. We denote this equivalence relation on (KT/∼)sp also by ≈. In
the current proof we do not need an explicit description of this equivalence relation.
38

38In the notation of [Kis17, §4], we have k1 ≈ k2 in (KT/∼)sp if and only if there exists
β ∈X∞G (Q, I) such that k2 = kβ1 . Here I is the reductive group over Q associated with k1, which
is unique up to an isomorphism that is canonical up to composing with inner automorphisms
defined over Q.
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From the above discussion, we have natural bijections J/≈ ∼−→ (KT/∼)sp/≈ and
I/≈ ∼−→ (KT/∼)sp/≈. We now fix a set of representatives {kj | j ∈ J} ⊂ (KT/∼)sp

for the equivalence relation ≈ on (KT/∼)sp. For each j ∈ J , we choose a special
point datum sj ∈ SPD(G,X) such that kj = k(sj). We then let Jj := Jsj and
Ij := Isj . Consider the subset B := {Jj | j ∈ J} of J, and the subset A :=
{Ij | j ∈ J} of I. For each j ∈ J , we have a canonical identification X∞

G (Ij) ∼=
X∞

G (Jj). As in §5.13.6, we denote the identified group by X∞
G (sj).

Define the set
D := {(j, β) | j ∈ J, β ∈X∞

G (sj)} .
Then we have a map G : D → J sending (j, β) to J β

j , and a map F : D → I sending
(j, β) to I β

j . Clearly B (resp. A) is a set of representatives for the equivalence
relation ≈ on J (resp. on I). It follows that both G and F are surjective. Moreover,
by [Kis17, Prop. 4.4.8, Lem. 4.5.6], both G and F are injective, and so they are
bijections.

We now define the desired bijection B to be F ◦G−1. Then condition (i) follows
from the construction. Condition (ii) follows from condition (i). We are left to check
condition (iii). Suppose we have B(J ) = I . Let (j, β′) = G−1(J ). Then J =
J β′

j and I = I β′

j . Let β be an arbitrary element of X∞
G (I ) ∼= X∞

G (J ). By
Lemma 5.13.2, we have J β = J β+β′

j . Hence B(J β) = I β+β′
j by the definition

of B. But by Lemma 5.13.3, we have I β+β′
j = (I β′

j )β , and this is equal to I β .
Therefore B(J β) = I β , as desired. �

Theorem 5.13.9. There exists a (non-canonical) bijection B : J ∼−→ I satisfying
the following conditions.

(i) Whenever I = B(J ), the pair (I ,J ) is an amicable pair. In particular
we have a canonical isomorphism X∞

G (I ) ∼= X∞
G (J ).

(ii) Suppose we have I = B(J ). For any β ∈X∞
G (I ) ∼= X∞

G (J ), we have
B(J β) = I β .

Proof. It suffices to show that the bijection B as in Lemma 5.13.7 satisfies the
conditions. Condition (i) in the theorem follows from condition (i) in Lemma
5.13.7, Corollary 5.11.9, and Theorem 5.12.5. Condition (ii) in the theorem is just
condition (iii) in Lemma 5.13.7. �

5.13.10. Fix a bijection B as in Theorem 5.13.9. Let J ∈ J and let φ ∈ J .
Since (B(J ),J ) is an amicable pair, we have the elements τH(B(J ),J ) ∈
H(φ) and τH(B(J ),J ) ∈ H(φ) as in Definition 5.10.9. We also write τB(φ) for
τH(B(J ),J ). The assignment φ 7→ τB(φ) is thus an element of Γ(H), in the
notation of Definition 2.6.17. We denote this element by τB. Since τB(φ) depends
on φ only via its conjugacy class (that is, after we canonically identify all H(φ′) for
φ′ in the conjugacy class of φ), we know that τB ∈ Γ(H)1.

Corollary 5.13.11. We have τB ∈ Γ(H)0.

Proof. This follows from the two conditions satisfied by B in Theorem 5.13.9 and
Theorem 5.12.5. �

6. The Langlands–Rapoport–τ Conjecture in case of abelian type

6.1. More sheaves on the set of admissible morphisms.
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6.1.1. Let (G,X, p,G) be an unramified Shimura datum. We let (Gad, Xad) be
the adjoint Shimura datum. Let Gad be the adjoint group of G, which is a reductive
model of Gad

Qp over Zp.
As in §2.6.16, we write AM(G,X, p,G) and AM(Gad, Xad, p,Gad) for the sets

of admissible morphisms with respect to (G,X, p,G) and (Gad, Xad, p,Gad) respec-
tively. For simplicity, in the sequel we denote these two sets by AM(G) and
AM(Gad) respectively. Since (G,X) is arbitrary, our discussion below regarding
AM(G) will also be valid for AM(Gad).

Definition 6.1.2. For each φ ∈ AM(G), we define the Q-reductive group I†φ, the
abelian group H(φ), and the map Iad

φ (Af )/Iad
φ (Q) → H(φ) in exactly the same

way as in §5.10.5. Taking the direct sum of the map Iad
φ (Af )/Iad

φ (Q) → H(φ) and
the quotient map Iad

φ (Af )/Iad
φ (Q) → H(φ) = Iφ(Af )\Iad

φ (Af )/Iad
φ (Q), we obtain

a natural map Iad
φ (Af )/Iad

φ (Q) −→ H(φ) ⊕H(φ). We denote its image by H+(φ).
We denote by H†(φ) the abelian group E(Z†φ, I

†
φ;Af ). Here Z†φ denotes the center

of I†φ as usual.

6.1.3. Let φ ∈ AM(G). We have a natural map H†(φ) → H(φ) induced by the
identity map on H1(Af , Z†φ). We also have a natural map H†(φ)→ H(φ) induced
by the inclusions Z†φ ↪→ ZIφ and I†φ ↪→ Iφ, in view of the presentation of H(φ) as a
quotient of E(ZIφ , Iφ;Af ) as in Lemma 2.6.14. We thus have a natural map

H†(φ) −→ H(φ)⊕H(φ).(6.1.3.1)

As in (5.10.5.3), we have the boundary map Iad
φ (Af ) → H1(Af , Z†φ) arising from

the short exact sequence 1 → Z†φ → I†φ → Iad
φ → 1. The image of the map is

D(Z†φ, I
†
φ;Af ) ∼= E(Z†φ, I

†
φ;Af ) = H†(φ). It follows that the image of (6.1.3.1) is

precisely H+(φ). In particular, H+(φ) is a subgroup of the abelian group H(φ) ⊕
H(φ) since (6.1.3.1) is a group homomorphism.

As in §2.6.16, we view AM(G) as a discrete topological space. We have already
defined the sheaf of abelian groups H on AM(G), whose stalk at each φ ∈ AM(G)
is H(φ). We now define similarly sheaves of abelian groups H,H+,H† on AM(G).
In §2.6.16 we saw that H descends canonically to a sheaf on AM(G)/≈, since we
have a canonical isomorphism H(φ1) ∼= H(φ2) whenever φ1 ≈ φ2, and such canon-
ical isomorphisms satisfy the cocycle relation. Similarly, the sheaves H,H+,H† on
AM(G) all descend canonically to sheaves on AM(G)/≈.

In the next definition we introduce notations analogous to those in Definition
2.6.17.

Definition 6.1.4. For F ∈
{
H,H+,H†

}
, let Γ(F) denote the set of global sec-

tions of the sheaf F on AM(G). Let F≈ denote the canonical descent of F over
AM(G)/≈. Let Γ(F)0 denote the subset of Γ(F) consisting of those global sections
that descend to global sections of F≈.

6.1.5. For each φ ∈ AM(G), we have natural maps H†(φ) → H+(φ) → H(φ) ⊕
H(φ), and the map H†(φ) → H+(φ) is surjective. It follows that we have natural
maps Γ(H†) → Γ(H+) → Γ(H) ⊕ Γ(H), which restrict to natural maps Γ(H†)0 →
Γ(H+)0 → Γ(H)0 ⊕ Γ(H)0. Clearly the maps Γ(H†) → Γ(H+) and Γ(H†)0 →
Γ(H+)0 are surjective.
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Definition 6.1.6. We say that an element τH ∈ Γ(H) is tori-rational, if for each
φ ∈ AM(G) and each maximal torus T in Iφ, the element τH(φ) ∈ H(φ) has trivial
image in

coker(Gab(Zp)
∂−→ H1(Af , T †)/X∞

Gder
(Q, T †)).

Here the definition of the above group, as well as the definition of the natural map
from H(φ) to the above group, are the same as in §5.12.1. We say that an element
τ+ ∈ Γ(H+) is tori-rational, if its image in Γ(H) is tori-rational.

Lemma 6.1.7. Let τ+ ∈ Γ(H+) be a tori-rational element. Then its image in
H(φ) is tori-rational (see Definition 2.6.19).

Proof. It suffices to note that for each φ ∈ AM(G) and each maximal torus T in
Iφ, the composition Gab(Zp)

∂−→ H1(Af , T †)→ H1(Af , T ) is the zero map. This is
indeed the case, since ∂ is induced by the boundary map Gab(Qp) → H1(Qp, T †)
associated with the short exact sequence 1→ T † → T → Gab → 1. �

6.1.8. We let H†,ad,H+,ad,Had,Had be the sheaves on AM(Gad) defined in the
same way as H†,H+,H,H, with (G,X, p,G) replaced by (Gad, Xad, p,Gad). We
shall apply Definition 6.1.4 and Definition 6.1.6 to these sheaves.

For each φ ∈ AM(G), it is easy to see that the composition of φ with the natural
morphism GG → GGad is an admissible morphism φad : Q → GGad in AM(Gad).
Thus we have a natural map AM(G)→ AM(Gad), φ 7→ φad. This further induces
a map AM(G)/≈ → AM(Gad)/≈.39

Lemma 6.1.9. Let φ0 ∈ AM(Gad). Let U(φ0) be the set of conjugacy classes of
φ ∈ AM(G) such that φad is conjugate to φ0. Then U(φ0) is non-empty and is
acted on transitively by the abelian group X∞

G (Q, ZG), where the action is given by
the usual twisting construction (see Proposition 2.6.12).

Proof. We claim that

X∞
G (Q, ZG) = X∞(Q, ZG) ∩ im(H1(Q, ZGsc)→ H1(Q, ZG)).

In fact, as in the proof of [Kis17, Lem. 3.4.8], the group on the right hand side is
the same as

ker(H1(Q, ZG)→ H1(R, ZG)⊕H1
ab(Q, G)),

which is equal to
ker(X∞(Q, ZG)→X∞

ab(Q, G)),
and equal to X∞

G (Q, ZG). The claim is proved. The lemma now follows from the
claim and [Kis17, Lem. 3.4.8, Prop. 3.4.11]. �

Lemma 6.1.10. Let φ ∈ AM(G). The natural map Iφ → Iφad is surjective with
kernel ZG (which is canonically a Q-subgroup of Iφ). In particular, we have a
natural identification Iad

φ
∼= Iad

φad , and a natural surjective map

H(φ) = Iφ(Af )\Iad
φ (Af )/Iad

φ (Q) −→ H(φad) = Iφad(Af )\Iad
φad(Af )/Iad

φad(Q).

39Here we have used the same symbol ≈ for equivalence relations on AM(G) and AM(Gad).
They are defined separately, with respect to the two unramified Shimura data (G,X, p,G) and
(Gad, Xad, p,Gad).
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Proof. As a subgroup of GQ, Iφ,Q is the centralizer of im(φ∆). Note that im(φ∆)
is a subtorus of GQ, since Q = (QL)L and each QL,∆ = QLQ is a torus (see §2.2.8).
Similarly, Iφad,Q is the centralizer of the subtorus im(φad,∆) of Gad

Q .
Clearly im(φad,∆) is the image of im(φ∆) under the natural map G→ Gad. It is

a standard result (see for instance [Bor91, p. 153, Cor. 2]) that if S is a subtorus of
GQ with image S′ in Gad

Q , then the natural map ZGQ
(S) → ZGad

Q
(S′) is surjective

with kernel (ZG)Q. Since we already know that the natural map Iφ → Iφad is
defined over Q and that ZG is contained in the kernel, this finishes the proof. �

Lemma 6.1.11. The natural map AM(G)/≈ → AM(Gad)/≈ is a bijection.

Proof. The surjectivity follows from Lemma 6.1.9. We show injectivity. Let φ, φ′ ∈
AM(G) be such that φad ≈ φ′,ad. We need to show that φ ≈ φ′.

By assumption, there exists β0 ∈X∞
Gad(Q, Iφad) such that φ′,ad is conjugate to

(φad)β0 . By Lemma 6.1.10, we have Iφad ∼= Iφ/ZG. By this fact and by Corollary
1.2.9 (applied to I = Iφ and Z = ZG, where I indeed has the same absolute rank
as G), the natural map X∞

G (Q, Iφ) → X∞
Gad(Q, Iφad) is surjective. Thus we can

find β ∈X∞
G (Q, Iφ) lifting β0. Then (φβ)ad is conjugate to φ′,ad. (Here φβ is only

well defined up to conjugacy, but the ambiguity does not affect the conjugacy class
of (φβ)ad.) By the transitivity in Lemma 6.1.11, we have φβ ≈ φ′. But φ ≈ φβ , so
φ ≈ φ′. �

Proposition 6.1.12. We have a natural surjection Γ(H)0 → Γ(Had)0.

Proof. We can identify Γ(H)0 with the group of global sections of the sheaf H/≈
on AM(G)/≈, and identify Γ(Had)0 with the group of global sections of the sheaf
Had/≈ on AM(Gad)/≈. By Lemma 6.1.11, we identify the spaces AM(G)/≈ and
AM(Gad)/≈. It follows from Lemma 6.1.10 that we have a natural surjection
H/≈ → Had/≈ between sheaves on the identified space. The proposition follows.

�

6.1.13. Consider two unramified Shimura data (G,X, p,G) and (G2, X2, p,G2)
together with an isomorphism

ι : (Gad, Xad) ∼−→ (Gad
2 , Xad

2 )

between the adjoint Shimura data. Assume that ι : Gad ∼−→ Gad
2 lifts to a (unique)

central isogeny ι̃ : Gder → G2,der, and that ιQp : Gad
Qp

∼−→ Gad
2,Qp extends to

an isomorphism Gad ∼−→ Gad
2 . We still use the symbols H†,H+,H,H to denote

the sheaves on AM(G) = AM(G,X, p,G) as in §6.1.3. Their counterparts on
AM(G2) = AM(G2, X2, p,G2) will be denoted with a subscript 2. On AM(Gad) =
AM(Gad, Xad, p,Gad) we define the sheaves H†,ad, H+,ad, Had, Had as in §6.1.8,
and on AM(Gad

2 ) = AM(Gad
2 , Xad

2 , p,Gad
2 ) we have the counterparts denoted with

a subscript 2. Then ι induces an isomorphism
AM(ι) : AM(Gad) ∼−→ AM(Gad

2 )
under which the four sheaves on one space are identified with the four on the other
respectively.

Let µab ∈ X∗(Gab) denote the composite cocharacter

Gm
µ−→ GQ → Gab

Q ,
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where µ is any element of �X(Q). Clearly µab is independent of the choice of µ.
Let τ+ ∈ Γ(H+)0, and let τ ∈ Γ(H)0 be the image of τ+. By Proposition 6.1.12,

we have surjections Γ(H)0 → Γ(Had)0 and Γ(H2)0 → Γ(Had)0. Let τ0 be the image
of τ in Γ(Had)0.

Proposition 6.1.14. Keep the setting of §6.1.13. Assume that τ+ is tori-rational,
and assume that X∗(Gab) is generated by µab as a Gal(Q/Q)-module. Then there
exists a tori-rational element τ2 ∈ Γ(H2)0 mapping to τ0 under the composite map

Γ(H2)0 → Γ(Had
2 )0

∼−→ Γ(Had)0,(6.1.14.1)

where the last isomorphism is induced by AM(ι)−1.

Proof. Consider φ ∈ AM(G) and φ2 ∈ AM(G2) such that AM(ι) sends φad ∈
AM(Gad) to φad

2 ∈ AM(Gad
2 ). By Lemma 6.1.10, ι induces a Q-isomorphism

Iad
φ

∼−→ Iad
φ2
. Clearly this isomorphism lifts to a unique central isogeny I†φ → I†φ2

,
and the latter is induced by the central isogeny ι̃ : Gder → G2,der. In particular,
we have a natural map H†(φ) → H†2(φ2) induced by ι. By this observation, the
same argument as the proof of Proposition 6.1.12 shows that there is a natural map
Γ(H†)0 → Γ(H†2)0 induced by ι.

Recall that the natural map Γ(H†)0 → Γ(H+)0 is surjective. We fix an element
τ † ∈ Γ(H†)0 lifting τ+ ∈ Γ(H+)0. Let τ †2 be the image of τ † under the natural map
Γ(H†)0 → Γ(H†2)0 in the above paragraph. By construction, τ2 is sent to τ0 under
the map in the proposition. We are left to check that τ2 is tori-rational.

Let τ+
2 and τ2 be the images of τ †2 in Γ(H+

2 )0 and Γ(H2)0 respectively. Let
φ2 ∈ AM(G2) and let T2 be a maximal torus in Iφ2 . We need to show that the
image of τ2(φ2) in H1(Af , T2)/X∞

G2
(Q, T2) is trivial.

By Lemma 6.1.11 we find φ ∈ AM(G) such that AM(ι)(φad) = φad
2 . To simplify

notation in the rest of the proof we treat ι as the identity and omit it from the
notation. Write φ0 for φad, which we identify with φad

2 . Let T0 be the image of T2
under Iφ2 → Iφ0 , and let T be the preimage of T0 under Iφ → Iφ0 . It follows from
Lemma 6.1.10 that T0 (resp. T ) is a maximal torus in Iφ0 (resp. Iφ). As usual, set

T † := ker(T → Gab) = T ∩ I†φ
T †2 := ker(T2 → Gab

2 ) = T2 ∩ I†φ2
.

Then there is a natural map u : T † → T †2 induced by the central isogeny I†φ → I†φ2
discussed at the beginning of the proof.

Define the torus U := (T ×T0 T2)0. Denote the natural maps U → T and
U → T2 by p1 and p2 respectively. The inclusion map T † ↪→ T and the composite
map T † u−→ T †2 ↪→ T2 together define a map T † → U , which we denote by ∆. Let V
be the quotient torus U/∆(T †). Then we have a commutative diagram with exact
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rows in the category of tori over Q:

1 // T † // T // Gab // 1

1 // T †
∆ //

u
��

U

p2

��

p1

OO

// V

p̄1

OO

p̄2

��

// 1

1 // T †2 // T2 // Gab
2

// 1

(6.1.14.2)

Here p̄1 and p̄2 are induced by p1 and p2 respectively.
We claim that the image of the map X∗(V )→ X∗(Gab) induced by p̄1 contains

µab. To show the claim, let µT be an arbitrary element of �X(Q) that factors
through TQ (which is embedded into GQ via Iφ,Q ↪→ GQ). Similarly, pick µT2 ∈
�X2(Q) that factors through T2,Q. The two cocharacters of T0,Q induced by µT and
µT2 respectively are conjugate by Gad(Q), and are hence in the same orbit under
the Weyl group of (Gad

Q , T0,Q) (cf. [Kot84a, Lem. (1.1.3)]). Since the Weyl group of
(Gad

Q , T0,Q) and that of (G2,Q, T2,Q) are canonically isomorphic, we can replace µT2

by a Weyl-conjugate and assume that µT and µT2 induce the same cocharacter of
T0,Q. We then obtain from µT and µT2 an element of X∗(U). The image of this
element under the composite map X∗(U)→ X∗(V )→ X∗(Gab) is µT , by the upper
right commutative square in (6.1.14.2). The claim is proved.

By the claim and by our assumption on X∗(Gab), we know that X∗(V ) →
X∗(Gab) is surjective. It follows that the kernel of p̄1 : V → Gab is a torus, which
we denote by V †. Now it is easy to see that the map (p̄1, p̄2) : V → Gab×Gab

2 is an
isogeny between tori over Q. Since Gab and Gab

2 are both unramified over Qp, we
deduce that V and V † are both unramified tori over Qp. Let V denote the Zp-torus
extending VQp . The kernel of V → Gab is a torus over Zp, namely the one extending
the unramified Qp-torus V †Qp . By Lang’s theorem applied to that kernel (which is
smooth over Zp and has connected fibers), we know that the map V(Zp)→ Gab(Zp)
is surjective.

Using this surjectivity result and the commutative diagram (6.1.14.2), we see
that the natural map

H1(Af , T †)/X∞
Gder

(Q, T †) −→ H1(Af , T †2 )/X∞
G2,der

(Q, T †2 )

induced by u : T † → T †2 descends to a map

coker
(
Gab(Zp)→ H1(Af , T †)/X∞

Gder
(Q, T †)

)
−→

coker
(
Gab

2 (Zp)→ H1(Af , T †2 )/X∞
G2,der

(Q, T †2 )
)
.

(The point is that the first cokernel does not change if Gab(Zp) is replaced by V(Zp).)
From this, we see that tori-rationality of τ+ (which is our assumption) implies tori-
rationality of τ+

2 . Finally, we apply Lemma 6.1.7 to deduce tori-rationality of τ2
from tori-rationality of τ+

2 . �
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Remark 6.1.15. The significance of Proposition 6.1.14 is that it allows the propaga-
tion of the tori-rational condition between the unramified Shimura data (G,X, p,G)
and (G2, X2, p,G2), at least when X∗(Gab) satisfies the technical condition. In §6.3
below we shall apply the lemma to an arbitrary (G2, X2, p,G2) of abelian type and
an auxiliary (G,X, p,G) of Hodge type.

6.2. Reformulation of results from [Kis17]. Throughout this subsection, we fix
a prime p, and fix an unramified Shimura datum (G2, X2, p,G2) where (G2, X2) is
of abelian type. For every Shimura datum (G,X), we have an embedding of fields
E(G,X) ↪→ Qp as in §2.4.1. We denote the completion of E(G,X) with respect to
this embedding by E(G,X)p. (In §2.4.1 this was denoted by E(G,X)p.)

Definition 6.2.1. By a nice lifting of (G2, X2, p,G2), we mean an unramified
Shimura datum of the form (G,X, p,G) together with an isomorphism of Shimura
data ι : (Gad, Xad) ∼−→ (Gad

2 , Xad
2 ) satisfying the following conditions:

(i) (G,X) is of Hodge type.
(ii) We have E(G,X)p = E(Gad, Xad)p.
(iii) ι : Gad ∼−→ Gad

2 lifts to a (unique) central isogeny ι̃ : Gder → G2,der.
(iv) ιQp : Gad

Qp
∼−→ Gad

2,Qp extends to an isomorphism Gad ∼−→ Gad
2

Lemma 6.2.2. A nice lifting exists.

Proof. By [Kis17, Lem. 4.6.6]40, there exist a Shimura datum (G,X) and an iso-
morphism ι : (Gad, Xad) ∼−→ (Gad

2 , Xad
2 ) satisfying conditions (i), (ii), (iii) in Defi-

nition 6.2.1. The fact that we can extend (G,X) to an unramified Shimura datum
(G,X, p,G) satisfying condition (iv) is shown in the proof of [Kis10, Cor. 3.4.14].
(The assumption that p > 2 in loc. cit. is not used for the construction of G.) �

6.2.3. Fix a nice lifting (G,X, p,G, ι) of (G2, X2, p,G2). We apply the notation
in §6.1.13 to our current (G,X, p,G) and (G2, X2, p,G2). Fix a bijection B as in
Theorem 5.13.9, and define the corresponding element τB ∈ Γ(H)0 as in Definition
5.13.10 and Corollary 5.13.11. Let τ2 ∈ Γ(H2)0 be an arbitrary element whose
image in Γ(Had)0 under (6.1.14.1) is equal to that of τB.

Theorem 6.2.4. In the setting of §6.2.3, the statement LR(G2, X2, p,G2, τ2) (see
§2.7.1) holds.

Proof. The existence of a canonical smooth integral model having well-behaved
H∗c follows from Theorem 2.5.3 and Theorem 2.5.7. Hence the question is only
about the bijection in the statement LR(G2, X2, p,G2, τ2). We first explain why
this bijection is essentially proved in [Kis17, Prop. 4.6.2, Cor. 4.6.5, Thm. 4.6.7], at
least when ZG is a torus and p > 2. We then explain how to remove the last two
assumptions.41

For the first part, there are two points that deserve clarification. The first point is
that by Proposition 5.10.4, the elements τB(φ0) ∈ Had(φ0), for φ0 ∈ AM(Gad), are

40In [Kis17, Lem. 4.6.6] it is used that every totally real field F admits a totally imaginary
quadratic extension K/F such that every prime of F over p splits in K. This fact is an immediate
consequence of Thm. 5 or Thm. 6 in [AT09, §X.2], regardless of the parity of p.

41For the purpose of [Kis17], the assumption that ZG is a torus is harmless. This is because by
[Kis17, Lem. 4.6.6], for the fixed (G2, X2, p,G2) one can always choose a nice lifting (G,X, p,G, ι)
such that ZG is a torus. However, in the current paper we will need to consider choices of
(G,X, p,G) which do not necessarily satisfy this condition. See Remark 6.3.4 below.
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indeed the same as the elements denoted by τ in [Kis17, Prop. 4.6.2] (except that in
loc. cit. τ is viewed as in Iad

φ0
(Af ), instead of Had(φ0) = Iφ0(Af )\Iad

φ0
(Af )/Iad

φ0
(Q)).

The second point is that in [Kis17, §4.6] the following property of the bijection B
is assumed (where J is defined as in §5.13.1, with respect to (G,X, p,G)):

(*) For every J ∈ J , there exists s ∈ SPD(G,X) such that J = Js and
B(J ) = Is.

This condition is indeed satisfied by the bijection B′ : J ∼−→ I that is implicitly
used in [Kis17]42, but it may not be satisfied by B in our current discussion. Nev-
ertheless, it is clear from the proof of [Kis17, Prop. 4.6.2] that the hypothesis in
that proposition can be weakened as follows: Instead of requiring J and I to be
associated with one same s ∈ SPD(G,X), we only require that (I ,J ) is amica-
ble. From this variant of [Kis17, Prop. 4.6.2], the conclusion of [Kis17, Cor. 4.6.5]
easily follows. More specifically, in the proof of [Kis17, Cor. 4.6.5], instead of ap-
plying [Kis17, Prop. 4.6.2] to all pairs (J ,I ) with J = JT,iβ ,h,I = IT,iβ ,h, we
apply the above-mentioned variant of [Kis17, Prop. 4.6.2] to all pairs (J ,I ) with
arbitrary J ∈ J and I = B(J ). This is valid because (J ,B(J )) is indeed
amicable by Theorem 5.13.9.

We now explain how to remove the assumption that ZG is a torus, which is made
in [Kis17, §4.6]. This assumption comes from [Kis17, Prop. 4.4.17]. As is explained
in the proof of that proposition (see especially footnote 24), this assumption can
be removed once we know that [Kis17, Lem. 1.2.18] can be generalized to Zp-group
schemes of the form G′ = ResOF /Zp G, where F/Qp is an arbitrary finite extension
and G is a reductive group scheme over OF . (The result [Kis17, Lem. 1.2.18] is only
proved for reductive group schemes over Zp, but G′ is not reductive unless F/Qp is
unramified.) This desired generalization is provided by Corollary 4.4.16.

Finally, we explain why the assumption p > 2 in [Kis17] is no longer needed.
In fact, there are two reasons why this assumption is made in [Kis10] and [Kis17].
Firstly, this assumption is made in [Kis10, Lem. 2.3.1]. That this is unnecessary
is explained in the proof of [KMP16, Lem. 4.7]. (We already mentioned this in
§5.1.1.) Secondly, the assumption p > 2 is needed for the integral comparison
isomorphism (5.2.2.1), which is key to both the papers [Kis10] and [Kis17]. We
have already explained in §5.2.2 why p > 2 is no longer needed for the integral
comparison isomorphism. �

6.3. Proof of the Langlands–Rapoport–τ Conjecture.
6.3.1. In the following, by a CM field we mean a totally imaginary quadratic

extension of a totally real field contained in our fixed Q. We denote by ι the
complex conjugation in Gal(Q/Q), defined with respect to our fixed embedding
Q ↪→ C. For any Q-torus T and µ ∈ X∗(T ), we write Eµ for the field of definition
of µ inside Q.

Following [Del82, §A, (a)], we consider the category I of pairs (T, µ), where T
is a Q-torus and µ ∈ X∗(T ), satisfying that w := µ + ι(µ) is defined over Q and
that (T/w(Gm))R is anisotropic. By definition, a morphism (T, µ) → (T ′, µ′) in I
is a Q-homomorphism T → T ′ taking µ to µ′. For each (T, µ) in I, we know that
T is a cuspidal torus since it satisfies condition (ii) in Lemma 1.5.5. By condition
(vii) in that lemma, T splits over a CM or totally real field, so Eµ is either CM or

42In [Kis17] this bijection is not explicitly defined, but it is any bijection as in Remark 5.13.8.
That such a bijection satisfies condition (*) is shown in the proof of [Kis17, Cor. 4.6.5].
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totally real. In the latter case we have Eµ = Q, since µ + ι(µ) is defined over Q
and is equal to 2µ.

As in [Del82, §A, (a)], for every (T, µ) in I, there exists an object in I of the
form (SL, µL) which maps to (T, µ). Here L is a CM field with maximal totally
real subfield L0, and SL is the Q-torus43

ResL/QGm/ ker(NL0/Q : ResL0/QGm → Gm).
The cocharacter µL ∈ X∗(SL) is the one induced by the cocharacter of ResL/QGm
corresponding to the canonical embedding L ↪→ Q. In fact, as discussed above, Eµ
is either a CM field or Q. We can take L to any CM field containing Eµ, and take
the homomorphism SL → T to be the one induced by the composite homomorphism

ResL/QGm
ResL/Q µ−−−−−−→ ResL/Q T

NL/Q−−−→ T.

The fact that the above homomorphism factors through SL follows easily from the
fact that (T, µ) satisfies the defining conditions for objects in I.
Lemma 6.3.2. Keep the setting and notation of §6.2. There exists nice lift-
ing (G,X, p,G, ι) of (G2, X2, p,G2) such that X∗(Gab) is generated by µab as a
Gal(Q/Q)-module. Here µab is as in §6.1.13.
Remark 6.3.3. The purpose of this lemma is to ensure that the technical assumption
on X∗(Gab) in Proposition 6.1.14 can be met, so that we can apply that proposition
to propagate the tori-rational condition.
Proof. By Lemma 6.2.2 we can find a nice lifting (G1, X1, p,G1, ι1) of (G2, X2, p,G2).
Let µab

1 ∈ X∗(Gab
1 ) denote the composite cocharacter Gm

µ1−→ G1,Q → Gab
1,Q

where µ1 ∈ �X1(Q). Since (G1, X1) is of Hodge type, as in the proof of Lemma
5.1.2 we know that the weight cocharacter w1 of X1 is defined over Q, and that
(Z0

G1
/w1(Gm))R is anisotropic. Since Gab

1 is isogenous to Z0
G1

and since µab
1 +

ι(µab
1 ) ∈ X∗(Gab

1 ) is induced by w1 ∈ X∗(Z0
G1

), we know that the pair (Gab
1 , µab

1 )
is in the category I in §6.3.1. As discussed in §6.3.1, the field Eµab

1
is either CM

or Q. In the former case, we let L be Eµab
1
. In the latter case, we let L be an

arbitrary imaginary quadratic field in which p splits. We construct the morphism
(SL, µL)→ (Gab

1 , µab
1 ) in the category I as in §6.3.1. Since we have an unramified

Shimura datum (G1, X1, p,G1), the torus Gab
1 is unramified over Qp. Hence every

conjugate of the subgroup Γp,0 ⊂ Gal(Q/Q) fixes µab
1 . It follows that the Galois

closure of Eµab
1
/Q is unramified over p, and so is the Galois closure of L/Q. Hence

the torus SL is unramified over Qp since it splits over this Galois closure of L/Q.
We now view (SL, µL) as a Shimura datum (SL,

{
hL
}

). (Recall that to specify
a Shimura datum for a given torus over Q is the same as to specify the Hodge
cocharacter, which can be an arbitrary cocharacter over Q.) By the paragraph
preceding [Del82, §A, (a)] and by [Del82, Lem. A.2], we know that SL admits a
faithful representation over Q such that the Hodge structure on that representation
determined by hL is of type {(−1, 0), (0,−1)}. By [Del79, Prop. 2.3.2], the last fact
implies that (SL,

{
hL
}

) is a Shimura datum of Hodge type.
Let G = G1 ×Gab

1
SL. Fix an element h1 ∈ X1. Note that h1 and hL induce the

same map S → Gab
1,R. Hence we obtain a homomorphism h = (h1,

Lh) : S → GR.

43In [Del82, §A, (a)], the CM field is denoted by K and our SL is denoted by KS. We have
avoided the usage of K, and avoided the notation LS as this conflicts with the L-group notation.
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Let X be the G(R)-conjugacy class of h. It is clear that X is a Shimura datum for
G.44 Since (G1, X1) and (SL,

{
hL
}

) are both of Hodge type, we know that (G,X)
is of Hodge type (by taking the direct sum of the faithful symplectic representations
of the two factors). There is a canonical identification ι : Gad ∼= Gad

1 determined by
ι1, under which Xad is identified with Xad

1 . Then (G,X) and ι satisfy conditions (i)
and (iii) in Definition 6.2.1. Note that EµL is contained in L, and the completion
of L with respect to Q ↪→ Qp is equal to the completion of Eµab

1
with respect to

Q ↪→ Qp, which is a subfield of E(G1, X1)p. It follows that E(G,X)p = E(G1, X1)p.
Since (G1, X1) satisfies condition (ii) in Definition 6.2.1, so does (G,X). Since G1
and SL are both unramified over Qp, so is G. Thus as in the proof of [Kis10,
Cor. 3.4.14] we can extend (G,X) to an unramified Shimura datum (G,X, p,G)
satisfying condition (iv) in Definition 6.2.1.

We have thus produced a nice lifting (G,X, p,G, ι) of (G2, X2, p,G2). It remains
to show that X∗(Gab) is generated by µab as a Gal(Q/Q)-module. Now Gab is
canonically identified with SL, and µab is identified with µL. It is clear from the
definition that X∗(SL) is generated by µL as a Gal(Q/Q)-module. �

Remark 6.3.4. In the proof of Lemma 6.2.2, even if ZG1 is a torus, it can happen
that ZG is not a torus. This is why in Theorem 6.2.4 we needed to remove the
assumption that ZG is a torus which is made in [Kis17, §4.6] .

Theorem 6.3.5. Let (G2, X2, p,G2) be an unramified Shimura datum such that
(G2, X2) is of abelian type. Then Conjecture 2.7.3 holds for (G2, X2, p,G2).

Proof. We choose a nice lifting (G,X, p,G, ι) of (G2, X2, p,G2) as in Lemma 6.3.2.
We apply the notation in §6.1.13 to our current (G,X, p,G) and (G2, X2, p,G2).
Fix a bijection B as in Theorem 5.13.9 with respect to (G,X, p,G), and define the
corresponding element τB ∈ Γ(H)0 as in Definition 5.13.10 and Corollary 5.13.11.
In view of Theorem 6.2.4, we only need to show that there exists a tori-rational
element τ2 ∈ Γ(H2)0 whose image in Γ(Had)0 under (6.1.14.1) is equal to that of
τB.

It is clear that the assignment

AM(G) 3 φ 7−→
(
τH(B(J ),J ), τH(B(J ),J )

)
∈ H(φ)⊕H(φ)

as in §5.13.10, where J is the conjugacy class of φ, defines an element τ+ ∈ Γ(H+).
By the conditions satisfied by B in Theorem 5.13.9 and by Theorem 5.12.5, we know
that τ+ ∈ Γ(H+)0. Also, by Theorem 5.12.2, we know that τ+ is tori-rational.

It is clear that τ+ maps to τB under the natural map Γ(H+)0 → Γ(H)0. Since
τ+ is tori-rational and since X∗(Gab) is generated by µab as a Gal(Q/Q)-module,
the existence of the desired tori-rational τ2 ∈ Γ(H2)0 follows from Proposition
6.1.14. �

Theorem 6.3.6 (cf. Theorem 2 in the Introduction). Conjecture 1.8.8 holds for
all Shimura varieties of abelian type.

Proof. This follows from Theorems 2.7.4 and 6.3.5. �

44Here X may depend on the choice of h1, but it does not matter for our proof.
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Part 3. Stabilization

7. Preliminaries for stabilization

7.1. Central character data and the trace formula.

7.1.1. To stabilize the point counting formula for Shimura varieties (1.8.8.1) in
general, it is necessary to work with fixed central characters. To this end, we are
going to introduce the formalism of central character data following [Art13, Ch. 3.1].
The point counting formula can be understood through the lens of a particular
central character datum, but it is useful to allow flexible central character data to
accommodate z-extensions during the stabilization process.

The rest of §7.1 is devoted to discussing the invariant trace formula with fixed
central character. Though this is not logically needed for the stabilization in §8, it
puts central character data into context, motivates the definition of stable distri-
butions with fixed central characters, and also has an application in §9 below.

Throughout §7.1, let G be a connected reductive group over Q with center Z.
Write AZ for the maximal Q-split torus in Z and set AZ,∞ := AZ(R)0.

Definition 7.1.2. A central character datum for G is a pair (X, χ), where X is
a closed subgroup of Z(A) containing AZ,∞ such that Z(Q)X is closed in Z(A),
with a choice of Haar measure on X (often implicit), and χ : X→ C× a continuous
character which is trivial on XQ := X ∩ Z(Q).

Remark 7.1.3. The two extreme cases where X = AZ,∞ or X = Z(A) are already
interesting, but it is important to allow intermediate groups for our purpose.

7.1.4. Let Γell(G) denote the set of elliptic conjugacy classes in G(Q). Given a
central character datum (X, χ). Denote by ΓX,ell(G) the set of XQ-orbits in Γell(G)
with respect to the multiplication action. Write StabX(γ) for the stabilizer subgroup
of XQ fixing γ ∈ Γell(G). It is not hard to see that StabX(γ) is finite, for instance by
reducing to the case of a product of general linear groups via a (possibly reducible)
faithful representation of G.

Fix a maximal compact subgroup K∞ ⊂ G(R). Let v be a place of Q, and
Z a closed subgroup of Z(Qv). For a continuous character ω : Z → C× define
H(G(Qv), ω−1) to be the Hecke algebra of smooth functions on G(Qv) which trans-
form under Z by ω−1 and have compact support modulo Z; we also require K∞-
finiteness if v = ∞. Let π be an admissible representation of G(Qv) which has
central character on Z equal to ω. For f ∈ H(G(Qv), ω−1) define

π(f)(u) :=
∫
G(Qv)/Z

f(g)π(g)u · dg, u ∈ π.

The trace of the trace-class operator π(f) is denoted by tr (f |π) or trπ(f). The
orbital integrals for f ∈ H(G(Qv), ω−1) are defined by the same formula as for
H(G(Qv)), cf. §1.8.2. These definitions obviously extend to the adelic setting.

7.1.5. We recall the invariant distributions

Igeom,χ0 , Ispec,χ0 , Iell,χ0 , Idisc,χ0 , Tell,χ0 , Tdisc,χ0

in the classical setup where the central character datum consists of X = AZ,∞ and
χ0 : AZ,∞ → C×. First off, Igeom,χ0 and Ispec,χ0 are Arthur’s invariant distributions
given in sections 3 and 4 of [Art88], respectively. Define Iell,χ0 to be the M = G
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part of formula (3.3) and Idisc,χ0 to be formula (4.4), both referenced to loc. cit.
All the four distributions are distributions on H(G(A), χ−1

0 ).45
For γ ∈ Γell(G), write Iγ for the connected centralizer of γ in G. We put

Tell,χ0(f) :=
∑

γ∈Γell(G)

ι(γ)−1vol(Iγ(Q)\Iγ(A)/AZ,∞)Oγ(f),

Tdisc,χ0(f) := tr (f |L2
disc,χ0

(G(Q)\G(A))), f ∈ H(G(A), χ−1
0 ).

In general I?(f) is more complicated than T?(f) for ? ∈ {ell,disc}. Arthur’s invari-
ant trace formula is the equality
(7.1.5.1) Igeom,χ0 = Ispec,χ0 .

When G/Z is anisotropic over Q,
(7.1.5.2) Tell,χ0 = Iell,χ0 = Igeom,χ0 = Ispec,χ0 = Idisc,χ0 = Tdisc,χ0 .

7.1.6. Next we introduce the trace formula with respect to a fixed character on a
closed central subgroup. This must be well known to experts but for the lack of a
convenient reference we state the formula here.46

Let (X, χ) be a central character datum for G. Suppose that χ0 : AZ,∞ →
C× is the restriction of χ. We will obtain the χ-versions of the above invariant
distributions by averaging.
Lemma 7.1.7. Let D be a multiplicative group over Q, AD its maximal Q-split
subtorus, and AD,∞ := AD(R)0. Then D(Q)\D(A)/AD,∞ is compact.
Proof. Replacing D by D0, we may assume that D is a torus. Via a closed em-
bedding, we reduce to the case where D is a finite product of tori of the form
ResF/QGm for a finite extension F over Q. When D = ResF/QGm, the lemma is
clear since F×\A1

F is compact, where A1
F denotes the group of ideles of norm 1. �

Corollary 7.1.8. The quotient XQ\X/AZ,∞ is compact.
Proof. This is clear since the inclusion X ⊂ Z(A) induces a closed embedding from
XQ\X/AZ,∞ into Z(Q)\Z(A)/AZ,∞. (The image is closed since Z(Q)X is closed in
Z(A).) �

7.1.9. There is a surjection H(G(A), χ−1
0 ) → H(G(A), χ−1) sending f to the

function
g 7→ fχ(g) :=

∫
X/AZ,∞

f(gz)χ(z)dz,

where the integral converges because z 7→ f(gz) has compact support in X/AZ,∞.
Given a function f on G(A) and z ∈ Z(R), write fz for the translated function
g 7→ f(gz). For each ? ∈ {geom, spec, ell,disc} define
(7.1.9.1)
I?,χ(f) := 1

vol(XQ\X/AZ,∞)

∫
XQ\X/AZ,∞

χ(z)I?,χ0(fz)dz, f ∈ H(G(A), χ−1
0 ),

45Arthur defines them as distributions on a certain space of functions on G(A)1 named
H(G(A)1), but this space is isomorphic to H(G(A), χ−1

0 ) via the product decomposition G(A) =
G(A)1 ×AZ,∞. We do not mention H(G(A)1) again.

46Chapter 3.1 of [Art13] discusses such a variant in the discrete part of the trace formula.
Sections 2 and 3 of [Art02] present both the spectral and geometric expansions of the trace
formula with fixed central character on an induced torus. We treat a more general case than
loc. cit. but proceed in a similar spirit.
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as well as Tell,χ and Tdisc,χ in a similar manner. In the special case where G/Z is
anisotropic over Q, it is clear from (7.1.5.2) that

Tell,χ(f) = Iell,χ(f) = Igeom,χ(f) = Ispec,χ(f) = Idisc,χ(f) = Tdisc,χ(f).
Write L2

disc,χ(G(Q)\G(A)) for the discrete spectrum in the L2-space of complex-
valued functions φ on G(Q)\G(A) such that

• φ(gz) = χ(z)φ(g) for every g ∈ G(A) and every z ∈ X,
•
∫
G(Q)\G(A)1/X∩G(A)1 |φ(g)|2dg < ∞ (for any Haar measure), where G(A)1

denote the “norm one” subgroup of G(A) as defined in [Art78, p. 917].

Proposition 7.1.10. For f ∈ H(G(A), χ−1
0 ) the following equalities hold.

Tell,χ(f) =
∑

γ∈Γell,X(G)

|StabX(γ)|−1ι(γ)−1vol(Iγ(Q)\Iγ(A)/X)Oγ(fχ),

Tdisc,χ(f) = tr (fχ |L2
disc,χ(G(Q)\G(A))).

Proof. We compute Tell,χ(f) as follows:∫
XQ\X/AZ,∞

∑
γ∈Γell(G)

χ(z)ι(γ)−1 vol(Iγ(Q)\Iγ(A)/AZ,∞)
vol Oγz(f)dz

=
∑

γ∈Γell(G)

∫
XQ\X/AZ,∞

χ(z)ι(γ)−1vol(Iγ(Q)\Iγ(A)/X)Oγz(f)dz

=
∑

γ∈Γell,X(G)

vol(Iγ(Q)\Iγ(A)/X)
|StabX(γ)|ι(γ)

∫
X/AZ,∞

χ(z)Oγz(f)dz

=
∑

γ∈Γell,X(G)

vol(Iγ(Q)\Iγ(A)/X)
|StabX(γ)|ι(γ)

∫
X/AZ,∞

Oγ(fχ).

The equality for Tdisc,χ(f) follows from the following two observations. First,
given an admissible representation π of G(A) with central character χπ on X,∫

XQ\X/AZ,∞
χ(z)π(fz)dz = π(f)

∫
XQ\X/AZ,∞

χ(z)χ−1
π (z)dz,

which equals 0 if χ 6= χπ and vol(XQ\X/AZ,∞)π(f) if χ = χπ. Second, if χ = χπ,

π(fχ) =
∫
G(A)/X

π(g)
∫
X/AZ,∞

f(gz)χ(z)dzdg

=
∫
G(A)/X

∫
X/AZ,∞

π(gz)f(gz)dzdg = π(f).

�

7.1.11. We record a simplification of the trace formula with fixed central character
when the test function is a stable cuspidal function at the real place.

Given a central character datum (X, χ), suppose that X = X∞ × X∞ with
X∞ ⊂ Z(Af ) and X∞ ⊂ Z(R). (In particular X∞ contains AZ,∞.) Accordingly
we decompose χ = χ∞χ∞. We also assume that G(R) contains a maximal torus
which is compact modulo X∞.

Let ξ be an irreducible algebraic representation of GC. The inverse of the central
character of ξ on Z(R) is denoted by χξ. Let Π2(ξ) denote the set of isomorphism
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classes of (irreducible) discrete series representations of G(R) whose central and
infinitesimal characters are the same as those of the contragredient of ξ. Define
fξ ∈ H(G(R), χ−1

ξ ) to be the sum of pseudocoefficients of π∞ as π∞ runs over
Π2(ξ), cf. [Art89, Lem. 3.1], [CD90].

A stable cuspidal function on G(R) (relative to X∞) is defined to be f∞ ∈
C∞c (G(R), χ−1

∞ ) such that for every irreducible tempered representation π∞ of G(R)
whose central character restricts to χ∞ on X∞, we have (i) trπ∞(f∞) = 0 unless
π∞ is a discrete series representation, and (ii) trπ∞(f∞) has a constant value as
π∞ runs over each discrete series L-packet, cf. [Art89, §4, p. 266]. An example
is fξ in the last paragraph. In general, a stable cuspidal function is a finite linear
combination of character twists of functions of the form fξ (for different ξ’s), up to
a function whose orbital integrals are identically zero.

Proposition 7.1.12. If f∞ is a stable cuspidal function then

Ispec,χ(f) = Idisc,χ(f) = Tdisc,χ(f).

Proof. This is proved in [Art89, §3] when X∞ = AZ,∞. The same proof extends. �

Remark 7.1.13. When f∞ is stable cuspidal, a simple expansion for Igeom,χ0(f) is
obtained in [Art89, Thm. 6.1]. A similar expansion for Igeom,χ(f) is given in [Dal19,
6.4, 6.5] for more general central character data.

7.2. Endoscopic data and z-extensions.

7.2.1. From here throughout §7, let G be a connected reductive group over a local
or global field F of characteristic zero.

Langlands–Shelstad [LS87, §1.2] and Kottwitz–Shelstad [KS99, §2.1] have de-
fined endoscopic data and related notions in the untwisted and twisted settings.
Here we recall the untwisted case as well as a specific kind of local twisted en-
doscopy (generalizing the unramified base change) as studied in [Mor10, App. A].

Definition 7.2.2. Let F,G be as above. An endoscopic datum for G is a quadruple
e = (H,H, s, η), where

• H is a quasi-split reductive group over F ,
• H is a split extension of WF by Ĥ such that the L-action of WF on Ĥ

determined by H coincides with the L-action of the L-group LH,
• s is a semi-simple element of Ĝ,
• η : H → LG is an L-morphism inducing an isomorphism Ĥ ∼= Cent(s, Ĝ)0

(via η we view s also as an element of Ĥ),
such that Int(s) ◦ η = a · η for a 1-cocycle a : WF → Z(Ĝ) which is trivial (resp. lo-
cally trivial) if F is local (resp. global). In this case H is said to be an endoscopic
group for G.

The datum e is said to be elliptic if η(Z(Ĥ)Γ)0 ⊂ Z(Ĝ). When F is non-
archimedean, we say that e is unramified if H and G are unramified groups over
F and if η is inflated from an L-morphism with respect to the Weil group of F ur

over F . An isomorphism from e = (H,H, s, η) to e′ = (H ′,H′, s′, η′) is an element
g ∈ Ĝ such that gη(H)g−1 = η′(H′) in LG and gsg−1 = s′ in Ĝ/Z(Ĝ).

7.2.3. Automorphisms of an endoscopic datum e induce outer automorphisms of
H as in [KS99, (2.1.8)]. By OutF (e) we mean the image subgroup of the outer
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automorphism group OutF (H) := AutF (H)/Had(F ). Set

λ(e) := |OutF (e)| ∈ Z>0.

The set of endoscopic data is denoted by E(G). Write Eell(G) for the subset of
elliptic endoscopic data. Write E(G) and Eell(G) for the corresponding sets of
isomorphism classes.

For e = (H,H, s, η) ∈ E(G), there exists a canonical injection over F

(7.2.3.1) ZG ↪→ ZH

as we now explain. Since an inner twisting induces a canonical isomorphism of
centers, we may assume that G is quasi-split over F . Choose a maximal torus
TH of H over F . Then there exist a maximal torus T of G and an isomorphism
TH ∼= T , both defined over F [LS87, p. 226] such that the composite embedding
T ∼= TH ⊂ H is canonical up to H(F )-conjugacy. Restricting from TH ∼= T , we get
the desired map ZG ↪→ ZH , which is independent of the choices involved.

7.2.4. If Gder = Gsc then by [Lan79c, Prop. 1], every e ∈ E(G) is represented by
(H, LH, s, η), that is, we can take H = LH. In general there is no guarantee that
this is possible, so we use z-extensions to reduce to this case.

A z-extension of G over F is defined to be a connected reductive group G1
equipped with a short exact sequence

(7.2.4.1) 1→ Z1 → G1 → G→ 1

such thatG1,der = G1,sc, Z1 ⊂ ZG1 , and Z1 ∼=
∏
i∈I ResFi/F Gm for finite extensions

Fi of F over a finite index set I. We also call such a short exact sequence itself a
z-extension of G.

Lemma 7.2.5. If F is non-archimedean and if G is unramified, then there exists
a z-extension G1 of G that is unramified. Similarly, if F is a number field and if
G is unramified at a finite set of finite places S, then there exists a z-extension G1
of G that is unramified at S.

Proof. The lemma follows from [MS82, Prop. 3.1], possibly except the point, per-
taining to the global case, that there exists a maximal torus T of G such that T
splits over an extension of F unramified at S. Let us verify it.

Since G is unramified over Fv for each v ∈ S, so is Gsc. Thus there exists an
unramified maximal torus Tsc,v in Gsc,Fv . Write Tsc,v(Fv)rs ⊂ Tsc,v(Fv) for the open
subset consisting of regular semi-simple elements. Then the non-empty subset

Yv :=
⋃

gv∈Gsc(Fv)

gv · Tsc,v(Fv)rs · g−1
v ⊂ Gsc(Fv)

is open in Gsc(Fv) by Harish-Chandra’s submersion principle [HC80]. By weak
approximation for Gsc, there exists an element γ0 ∈ Gsc(F ) ∩ (

∏
v∈S Yv). Let T ′

denote the connected centralizer in Gsc of γ0. Then T ′ is unramified at S as it is
conjugate to Tsc,v at each v ∈ S. The obvious image of T ′ × Z0

G in G is then a
maximal torus of G which is unramified at S. �

Lemma 7.2.6. Fix a z-extension of G as in (7.2.4.1). For each e = (H,H, s, η) ∈
E(G), there exists a central extension 1 → Z1 → H1 → H → 1 over F , with H1
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connected reductive, such that the induced short exact sequence 1 → Z1 → ZH1 →
ZH → 1 fits in the following row-exact commutative diagram:

1 // Z1 // ZG1
//

��

ZG

(7.2.3.1)
��

// 1

1 // Z1 // ZH1
// ZH // 1.

Moreover, when F is non-archimedean, we can choose H1 to be unramified if H and
G1 are unramified. When F is a number field, H1 can be chosen to be unramified
at a finite set of places S if H and G1 are unramified at S.

Remark 7.2.7. We do not claim that H1 is a z-extension of H, that is, the derived
subgroup of H1 need not be simply connected.

Proof. Choose maximal tori TH ⊂ H and T ⊂ G over F together with an iso-
morphism TH ∼= T over F as in §7.2.3. We pull back the resulting embedding
ZH ⊂ TH ∼= T ⊂ G via the surjection G1 → G to obtain the preimage Z̃1 ⊂ G1
fitting in the exact sequence

(7.2.7.1) 1→ Z1 → Z̃1 → ZH → 1.

Recall from [Del79, §2.0.1] and the notation therein that H = Hsc ∗Z(Hsc) ZH .
Setting H1 := Hsc ∗Z(Hsc) Z̃1, we have a surjection H1 → H induced by Z̃1 → ZH ,
whose kernel is identified with Z1. The construction yields ZH1 = Z̃1 and the
commutative diagram of the lemma. �

7.2.8. Let F be a local or global field of characteristic 0. Fix a z-extension of G
as in (7.2.4.1). Let us explain how each e = (H,H, s, η) ∈ E(G) gives rise to an
endoscopic datum for G1.

Fix inner twistings to quasi-split inner forms HF
∼= H∗

F
and GF ∼= G∗

F
together

with F -pinnings for H∗ and G∗. Along the central extension H1 → H provided
by the preceding lemma, we can lift inner twistings to obtain H1,F

∼= H∗1,F and
G1,F

∼= G∗1,F as well as F -pinnings for H∗1 and G∗1. As explained in [Kot84b,
1.8], we obtain Γ-equivariant maps Ĥ → Ĥ1, Ĝ → Ĝ1, Ĥ1 → Ẑ1, and Ĝ1 → Ẑ1.
We will consider the natural extension of the last three maps to L-morphisms
ζG1 : LG→ LG1, LH1 → LZ1, and LG1 → LZ1, respectively. (As for Ĥ → Ĥ1, we
have ζH1 in the lemma below.) The composition Ĥ → Ĝ→ Ĝ1 factors through the
embedding Ĥ → Ĥ1 to yield the following commutative diagram.

(7.2.8.1) Ĥ //

��

Ĥ1

��
Ĝ // Ĝ1

Lemma 7.2.9. Maintain the notation of §7.2.8.
(i) The embedding Ĥ ↪→ Ĥ1 can be extended to an L-morphism ζH1 : H →

LH1 such that ζH1 induces a homeomorphism from H onto its image.
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(ii) There exists an L-morphism η1 : LH1 → LG1 such that the following is a
commutative diagram extending (7.2.8.1).

H
ζH1 //

η

��

LH1

η1

��
LG

ζG1 // LG1

(iii) The quadruple e1 := (H1,
LH1, s1, η1), with s1 := ζG1(s), is an endoscopic

datum for G1. The isomorphism class of e1 is independent of the choices
in (i) and (ii).

Proof. To verify (i), consider the split extension of Ĥ1 by WF given by H1 :=
(Z(Ĥ1) o H)/Z(Ĥ), where Z(Ĥ) embeds in the semi-direct product diagonally.
The assignment h 7→ (1 o h) induces an embedding H ↪→ H1 extending the map
Ĥ ↪→ Ĥ1. As remarked in §7.2.4, H1 ∼= LH1 since G1,sc = G1,der, so we obtain the
desired map ζH1 by composition. Let us verify (ii). Since G1,sc = G1,der, we can
extend Ĥ1 → Ĝ1 to η0 : LH1 → LG1 by [Lan79c, Prop. 1]. The two L-morphisms
ζG1η and η0ζH1 differ by a 1-cocycle a : WF → C, where C := Cent(Ĥ, Ĝ1). Clearly
Z(Ĥ1) ⊂ C. We also note that Z(Ĥ1) ∩ (C ∩ Ĝ) = Z(Ĥ1) ∩ Ĝ = Z(Ĥ). Thus

Ẑ1 = Z(Ĥ1)/Z(Ĥ) ⊂ C/C ∩ Ĝ ⊂ Ĝ1/Ĝ = Ẑ1,

implying that C = Z(Ĥ1). As a is valued in Z(Ĥ1), one can twist η0 by a to obtain
η1, which then makes the diagram commute. Lastly (iii) is a routine check. �

7.2.10. Given a central extension H1 of H as above, choose a splitting WF → H
to consider the composition

WF → H
ζH1−−→ LH1 → LZ1.

Write λ1 : Z1(F ) → C× if F is local, or λ1 : Z1(F )\Z1(AF ) → C× if F is global,
for the corresponding continuous character, which is independent of the choice of
splitting. This character naturally shows up in endoscopic transfer.

We show that the assignment e→ e1 admits an inverse map.

Lemma 7.2.11. The map e 7→ e1 defined by Lemma 7.2.9 induces a bijection from
E(G) onto E(G1).

Proof. The injectivity is easy to see since Ĝ1 is generated by Ĝ and Z(Ĝ1).
To prove the surjectivity, let e1 = (H1,

LH1, s1, η1) ∈ E(G1). Replacing e1 by an
isomorphic datum, we may assume that η1(WF ) lies in the subgroup LG of LG1.
Indeed, consider the exact sequence of continuous cohomology

H1(WF , Ĝ)→ H1(WF , Ĝ1)→ H1(WF , Ẑ1).

The image of η1 under the second map lifts to a 1-cocycle c valued in Z(Ĝ1), up to
a 1-coboundary, via the map H1(WF , Z(Ĝ1)) → H1(WF , Ẑ1), which is surjective
by [Lan79c, Lem. 4]. Then c · η1 comes from a 1-cocycle valued in Ĝ up to a
1-coboundary.

We define H to be the cokernel of the composite map Z1 ↪→ ZG1 ↪→ ZH1 ↪→ H1.
We can write s1 = sz for some s ∈ Ĝ and z ∈ Z(Ĝ1). By pulling back η1 : LH1 →
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LG1 via LG ↪→ LG1, we obtain an injection η : H → LG and see that H is a split
extension of WF by Ĥ (as H is generated by η1(WF ) and Ĥ).

It is enough to verify that e := (H,H, s, η) is an endoscopic datum for G, since it
would then be obvious that e 7→ e1 by construction, and we will be done. The main
point to show is that Int(s) ◦ η = aη with trivial (resp. locally trivial) 1-cocycle
a : WF → Z(Ĝ) if F is local (resp. global). Let us check this when F is global as the
local case is only simpler. Since e1 ∈ E(G1) we know that Int(s)◦η1 = Int(s1)◦η1 =
a1η1 with a locally trivial 1-cocycle a1 : WF → Z(Ĝ1). Since η1(WF ) ⊂ Ĝ we have
that a1(WF ) ⊂ Z(Ĝ1)∩Ĝ = Z(Ĝ) and that Int(s)◦η = a1η. As G1 is a z-extension
of G, the map H1(WFv , Z(Ĝ))→ H1(WFv , Z(Ĝ1)) is injective at each place v (e.g.,
by [Kot84b, Cor. 2.3]). Hence a1 is locally trivial as a cocycle valued in Z(Ĝ). �

7.2.12. From here until the end of §7.2, F is assumed to be non-archimedean.
Write Fm for the unramified extension of F of degree m ∈ Z≥1 in a fixed algebraic
closure F . Denote by σ ∈ Gal(Fm/F ) the arithmetic Frobenius generator. Fix a
z-extension 1→ Z1 → G1 → G→ 1. Set R := ResFm/F G and R1 := ResFm/F G1.
Write θ (resp. θ1) for the automorphism of R (resp. R1) induced by σ. Identify

R̂ = ĜHom(Fm,F ) =
m−1∏
j=0

Ĝ

such that the j-th component corresponds to the inclusion Fm ⊂ F precomposed
by σj , and similarly for R̂1. There are unique embeddings i : LG ↪→ LR and
i1 : LG1 ↪→ LR1 such that the maps are diagonal embeddings on the dual groups
and the identity map on the Weil groups.

The following is a variant of Lemma 7.2.6. In practice G1 and H1 over F will
come from central extensions over Q independently of m. By contrast, the ex-
tensions G′1 and H ′1 below depend on m and will be considered only in a local
setting.

Lemma 7.2.13. Suppose that G and e = (H,H, s, η) are unramified. Consider z-
extensions 1→ Z1 → G1 → G→ 1 and 1→ Z1 → H1 → H → 1 as constructed in
Lemma 7.2.6 (disregarding the last assertion) such that G1 and H1 are unramified.
Let F ′/F be a finite unramified extension. Then there exist

(i) a z-extension 1 → Z ′1 → G′1 → G → 1 such that Z ′1 ∼=
∏
j∈J ResF ′

j
/F Gm

with J a finite index set and F ′j ⊃ F ′, and
(ii) a central extension 1→ Z ′1 → H ′1 → H → 1 arising from (i) as in Lemma

7.2.6,
such that G′1 and H ′1 are unramified over F , and such that there is a commutative
diagram with an injective middle vertical arrow

(7.2.13.1) 1 // Z1 //

��

G1 //
� _

��

G // 1

1 // Z ′1 // G′1 // G // 1

,

as well as the analogous diagram with H,H1, H
′
1 in place of G,G1, G

′
1.

Proof. We have Z1 ∼=
∏
j∈J ResEj/F Gm for finite unramified extensions Ej/F .

Take Z ′1 :=
∏
j∈J ResEjF ′/F Gm. Along the canonical inclusion Z1 ↪→ Z ′1, we make
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a pushout diagram from the top row of Lemma 7.2.6 as follows:
1 // Z1 //

��

ZG1
//

��

ZG // 1

1 // Z ′1 // Z ′G1
// ZG // 1

With the bottom row in place of (7.2.7.1) we construct a z-extension 1 → Z ′1 →
G′1 → G→ 1 such that ZG′1 = Z ′G1

as in the proof of Lemma 7.2.6. By construction,
we have (i) and (7.2.13.1). Applying Lemma 7.2.6 to G′1, we obtain (ii). Since ZH1

and ZH′1 are preimages of ZH ⊂ G underG1 → G andG′1 → G, we have ZH1 ⊂ ZH′1 .
This in turn induces H1 = Hsc ∗Z(Hsc) ZH1 ⊂ H ′1 = Hsc ∗Z(Hsc) ZH′1 . With this
inclusion as the middle vertical arrow, we see that there is a commutative diagram
analogous to (7.2.13.1) for H,H1, H

′
1. �

7.2.14. Under a temporary assumption on e = (H,H, s, η) ∈ E(G) that

s ∈ Z(Ĥ)ΓF

(in general s ∈ Z(Ĥ)ΓFZ(Ĝ)), we construct some twisted endoscopic data to
be used in the stabilization (§8). Put s̃ := (s, 1, ..., 1) ∈ R̂, which lies in Z :=
Cent(iη(H), R̂). Define the L-morphism η̃ : H → LR to be the twist of iη by the
unramified 1-cocycle a : WF → Z mapping σ to s̃. Then ẽ = (H,H, s̃, η̃) is checked
to be a twisted endoscopic datum for (R, θ), cf. [Mor10, A.1.3, A.2.6] or [Kot90, §7].
Replacing e by e1 (noting that the temporary assumption is still satisfied for e1,
i.e., s1 ∈ Z(Ĥ1)ΓF ) we construct a twisted endoscopic datum ẽ1 = (H1,

LH1, s̃1, η̃1)
for (R1, θ1). With H ′1 playing the role of H1, we also construct e′1 and ẽ′1.

7.3. Cohomological lemmas.

7.3.1. Let F , G, and e be as in §7.2. (The field F is either local or global.) Take a
z-extension G1 as in Lemma 7.2.6. By Hilbert 90 the map G1(F )→ G(F ) is onto.
Let γ ∈ G(F )ss and choose a lift γ1 ∈ G1(F ). We have a commutative diagram of
reductive groups

1 // Z1 // Iγ1
//

��

Iγ //

��

1

1 // Z1 // G1 // G // 1,
which gives rise to a Γ-equivariant commutative diagram by [Kot84b, 1.8]:

(7.3.1.1) 1 // Z(Îγ) // Z(Îγ1) // Ẑ1 // 1

1 // Z(Ĝ) //

OO

Z(Ĝ1)

OO

// Ẑ1 // 1.

In particular we get a Γ-equivariant isomorphism
Z(Îγ)/Z(Ĝ) ∼= Z(Îγ1)/Z(Ĝ1).

Lemma 7.3.2. We have
(i) If F is global or local, there is a canonical isomorphism

K(Iγ/F ) ∼= K(Iγ1/F ).
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(ii) If F is local non-archimedean, there is a canonical bijection
D(Iγ1 , G1;F ) ∼= D(Iγ , G;F ).

Proof. Let us check (i) in the global case. We obtain the following commutative
diagram from [Kot84b, Cor. 2.3] and diagram (7.3.1.1):

π0((Z(Îγ)/Z(Ĝ))ΓF ) //

∼
��

H1(F,Z(Ĝ))

��
π0((Z(Îγ1)/Z(Ĝ1))ΓF ) // H1(F,Z(Ĝ1)).

The left vertical map is an isomorphism. The right vertical map is injective by
[Kot84b, Cor. 2.3] since ẐΓF

1 is connected (a product of copies of C×). Further ob-
serve that the injective right vertical map induces an isomorphism ker1(F,Z(Ĝ)) ∼=
ker1(F,Z(Ĝ1)). To see this, notice that the cokernel is mapped injectively into
ker1(F, Ẑ1), which is trivial since Z1 is a product of induced tori. Since K(Iγ/F )
(resp. K(Iγ1/F )) is the preimage of ker1(F,Z(Ĝ)) (resp. ker1(F,Z(Ĝ1))) under the
top (resp. bottom) horizontal arrow, the left vertical map induces the desired iso-
morphism of (i). In the case of local fields, the same argument works if we replace
the ker1-groups with the trivial group.

For (ii) consider the following commutative diagram of pointed sets (or of abelian
groups by identifying H1 with H1

ab)
1

��

1

��
1 // D(Iγ1 , G1;F )

��

// H1(F, Iγ1)

��

// H1(F,G1)

��
1 // D(Iγ , G;F ) // H1(F, Iγ) //

��

H1(F,G)

��
H2(F,Z1) H2(F,Z1),

where the middle and right columns come from the exact sequences preceding the
lemma and the fact that H1(F, ·) = H1

ab(F, ·) when F is non-archimedean (see
1.1.6). Assertion (ii) now follows from a diagram chase. �

7.3.3. Let (G,X) be a Shimura datum. We study Kottwitz parameters and their
invariants with respect to a z-extension 1 → Z1 → G1 → G → 1 over Q. Let
T ⊂ GR be an elliptic maximal torus. There exists h ∈ X such that µh : Gm → GC
factors through TC. In the notation of §2.4.1, µh ∈ �X(C). Write T1 ⊂ G1,R for the
preimage of T . Then µh : Gm → TC lifts to a cocharacter µ1 : Gm → T1,C, which
we fix henceforth and view also as a cocharacter of G1 over C. As noted in [MS82,
3.4], the conjugacy class of µ1 comes from a Shimura datum (G1, X1) for a suitable
X1, that is, µ1 ∈ �X1(C). In particular the discussion of cohomological invariants
(§§1.7.5–1.7.7) applies to (G1, X1) and µ1.

Let γ0,1 ∈ G1(Apf ) and γ0 ∈ G(Apf ) such that γ0,1 maps to γ0. Write I0,1 and I0
for the connected centralizers of γ0,1 and γ0 in G1 and G over Apf , respectively.
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Lemma 7.3.4. Suppose that γ0 ∈ G(Apf ) is the image of an element γ0,1 ∈
G1(Apf )ss. Then the natural map D(I0,1, G1;Apf )→ D(I0, G;Apf ) is a bijection.

Proof. This follows from (1.1.6.1) and part (ii) of Lemma 7.3.2. �

7.3.5. Now consider a z-extension 1 → Z1 → G1 → G → 1 over Qp (which need
not come from Q-groups via base change). Let µ : Gm → GQp

be a cocharacter
over Qp. Let γ0,1 ∈ G1(Qp)ss, and γ0 ∈ G(Qp) the image of γ0,1. As usual, I0 and
I0,1 are the connected centralizers of γ0 and γ0,1 in G and G1 over Qp, respectively.
Fix a level n ∈ Z>0.

Denote by Dn(γ0, G;Qp) the set of all [b] ∈ B(I0) satisfying condition KP1 of
Definition 1.6.5 with the given γ0 and n. (Here we do not require KP0, which will
come into play in Corollary 7.4.18 below.) This means that for some (thus every)
representative b ∈ I0(Q̆p) of [b], there exists c ∈ G(Q̆p) such that

c−1γ0c = c−1bσ(b) · · ·σn−1(b)σn(c).
Given [b] ∈ Dn(γ0, G;Qp), we will often write δ[b] ∈ G(Qpn) for the element arising
from [b] (well defined up to σ-conjugacy in G(Qpn)) as in Lemma 1.6.7. Then γ0 is
a degree n norm of δ[b].

Likewise we define Dn(γ0,1, G1;Qp). The natural map I0,1 → I0 induces a map
(7.3.5.1) Dn(γ0,1, G1;Qp) −→ Dn(γ0, G;Qp).

Lemma 7.3.6. Let γ0, γ0,1 be as above. Suppose that Z1 ∼=
∏
j∈J ResFj/Qp Gm

with all Fj containing Qpn and J a finite index set. Then the map (7.3.5.1) is a
bijection.

Proof. The map (7.3.5.1) fits in the following commutative diagram

Dn(γ0,1, G1;Qp) �
� //

(7.3.5.1)
��

B(I0,1) //

��

B(R1)

��
Dn(γ0, G;Qp) �

� // B(I0) // B(R),

where the vertical maps are induced by the natural maps I0,1 → I0 and R1 → R.
We may assume that Dn(γ0, G;Qp) is non-empty since the lemma is vacuously

true otherwise. We claim that Dn(γ0,1, G1;Qp) is also non-empty. To see this,
fix [b] ∈ Dn(γ0, G;Qp) and pick a lift δ′1 ∈ G1(Qpn) of δ[b]. Let γ′0,1 ∈ G1(Qp)
be a degree n norm of δ′1. Then the norm of zδ′1 is zσz · · · σn−1

zγ′0,1 with z ∈
Z1(Qpn). The norm map Z1(Qpn) → Z1(Qp) is onto by the hypothesis on Z1, so
we may choose z such that γ0,1 is a norm of δ1 := zδ′1. This implies that there
is c1 ∈ G1(Q̆p) such that c−1

1 γ0,1c1 = δ1
σδ1 · · · σ

n−1
δ1. Setting b1 := c1δ1

σc−1
1 , we

see that b1 ∈ I0,1(Q̆p) (since G1 has simply connected derived subgroup) and that
[b1] ∈ Dn(γ0,1, G1;Qp), proving the claim.

We fix [b], δ1, and [b1] as in the last paragraph. In particular δ1 maps to δ := δ[b],
and [b1] to [b]. By Corollary 1.6.11, [b1] ∈ B(I0,1) and [b] ∈ B(I0) are basic. Define
D([b1], R1) to be the set of basic elements [b′1] ∈ B(I0,1) such that κI0,1([b′1]) −
κI0,1([b1]) lies in ker(π1(I0,1)Γp,tors → π1(R1)Γp,tors). Define D([b], R) exactly in
the same way with I0 and R in place of I0,1 and R1.

We claim that Dn(γ0, G;Qp) is a subset of D([b], R). Indeed, consider an element
[b′] ∈ Dn(γ0, G;Qp), which gives rise to δ′ ∈ G(Qpn) as in Lemma 1.6.7. Corollary
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1.6.11 implies that κI0,1([b′1])− κI0,1([b1]) is a torsion element in π1(I0,1)Γp via the
right half of the commutative diagram on [RR96, p. 162]. We know from Lemma
1.6.7 that δ and δ′ have the same norm, implying that δ and δ′ are stably σ-
conjugate by [Kot82, Prop. 5.7]. Therefore [δ] and [δ′] are equal in B(R). Since b
and b′ are σ-conjugate to δ and δ′ in G(Q̆p), respectively, it follows that [b] = [b′]
in B(R). Hence κI0([b′]) and κI0([b]) have the same image in π1(R)Γp , completing
the proof of the claim.

What we have shown is summarized in the following commutative diagram.

(7.3.6.1) Dn(γ0,1, G1;Qp) �
� //

��

D([b1], R1)

bij.
��

Dn(γ0, G;Qp) �
� // D([b], R)

The right vertical map is a bijection by the proof of [Kot82, Lem. 5.6.(2)]. (This
relies on the assumption of the lemma on Z1.) Indeed, the proof there shows a
canonical bijection from

ker(H1(Qp, Iδ1)→ H1(Qp, R1))

to
ker(H1(Qp, Iδ)→ H1(Qp, R)),

but this is exactly the right vertical map above via the functorial bijection between
H1(Qp, H) and π1(H)Γp,tors for an arbitrary connected reductive group H over Qp,
cf. [Lab99, Prop. 1.6.7] and [RR96, Thm. 1.15.(i)].

Now we verify that the top horizontal map in (7.3.6.1) is a bijection. As
we have seen in the last paragraph, D([b1], R1) is in a canonical bijection with
ker(H1(Qp, Iδ1)→ H1(Qp, R1)), which in turn is canonically bijective onto the set
of σ-conjugacy classes in the stable σ-conjugacy class of δ1 in G1(Qpn). Recall that
γ0,1 is a norm of δ1. Therefore each δ′1 ∈ G1(Qpn) stably σ-conjugate to δ1 gives
rise to an element of Dn(γ0,1, G1;Qp) as described in the second paragraph of the
proof of the current lemma (more detailed on p. 167 of [Kot90]). It is routine to
check that this map gives the inverse of the top horizontal map in (7.3.6.1).

Going back to diagram (7.3.6.1), it is now clear that the left vertical map (as
well as the lower horizontal map) is a bijection. �

Corollary 7.3.7. Assume that Dn(γ0, G;Qp) is non-empty. Then the map [b] 7→
δ[b] gives a surjection from Dn(γ0, G;Qp) onto the set of σ-conjugacy classes in the
stable σ-conjugacy class in G(Qpn) whose norm is γ0. If G has simply connected
derived subgroup then this map is a bijection.

Proof. Thanks to Lemma 7.2.13, we can choose a z-extension G1 such that the
condition on Z1 in Lemma 7.3.6 is satisfied. Then the corollary follows from the
bijectivity of the lower horizontal map of (7.3.6.1), together with the interpretation
of D([b], R) in terms of σ-conjugacy classes below (7.3.6.1). �

7.3.8. Now we turn to the real place. Let (G,X) and (G1, X1) be as in §7.3.3.
Following §1.7.5 and §1.7.6, for each elliptic element γ0 ∈ G(R), we have β̃∞(γ0) ∈
π1(I0) = X∗(Z(Î0)) mapping to [µ] ∈ π1(G) for any µ ∈ �X(Q). The definition
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involves an extra choice, but the restriction of β̃∞(γ0) to Z(Î0)Γ∞Z(Ĝ) is indepen-
dent of the choice. Analogously, for each elliptic element γ0,1 ∈ G1(R), we have
β̃∞(γ0,1) ∈ π1(I0,1) = X∗(Z(Î0,1)) mapping to [µ1] ∈ π1(G1) with µ1 ∈ �X1(Q).

Lemma 7.3.9. Assume that γ0,1 ∈ G1(R) and γ0 ∈ G(R) are elliptic elements
such that γ0,1 maps to γ0. Then the image of β̃∞(γ0,1) under the natural map
π1(I0,1)→ π1(I0) coincides with β̃∞(γ0) on Z(Î0)Γ∞Z(Ĝ).

Proof. In §1.7.5 and §1.7.6 (adapted to (G1, X1)), choose any R-elliptic maximal
torus T1 ⊂ G1 and h1 ∈ X1 factoring through T1 to define β̃∞(γ0,1). Take T ⊂ G

and h ∈ X to be the images of T1 and h1 in the definition of β̃∞(γ0). Then the
lemma is true on the nose. �

7.4. Langlands–Shelstad–Kottwitz transfer.

7.4.1. Let F , G, and e = (H,H, s, η) be as in Definition 7.2.2. Throughout §7.4,
assume F to be a local field (of characteristic 0). Let ψ : G∗

F
→ GF be an inner

twisting of F -groups with G∗ quasi-split over F . We will use the following notation
for G (and likewise for other reductive groups).

• Γ(G) = Γ(G(F )) is the set of semi-simple G(F )-conjugacy classes in G(F ),
• Σ(G) = Σ(G(F )) is the set of stable semi-simple conjugacy classes inG(F ),
• H(G) = H(G(F )) and H(G,ω−1) = H(G(F ), ω−1) as in §7.1.4,
• When F is non-archimedean and G is unramified, we fix a hyperspecial
subgroup K ⊂ G(F ) and define Hur(G) ⊂ H(G) and Hur(G,ω−1) ⊂
H(G,ω−1) to be the subalgebra consisting of K-bi-invariant functions.

7.4.2. We explain the transfer of conjugacy classes in endoscopy following [Kot86,
§3.1]. See also [LS87, §1.3].

Let γH ∈ H(F )ss. Choose a maximal torus TH of H over F containing γH .
There exists a canonical G∗(F )-conjugacy class of embeddings j : TH → G∗ over
F . Fix a choice of j and put T ∗ := j(TH). Denoting the set of absolute roots of
TH in H (resp. T ∗ in G∗) by R(TH , H) (resp. R(T ∗, G∗)), we have R(TH , H) ⊂
R(T ∗, G∗). The element γH is said to be (G,H)-regular if α(γH) 6= 1 for all
α ∈ R(T ∗, G∗)\R(TH , H). The definition depends only on the H(F )-conjugacy
class of γH and not on the extra choices. The (G,H)-regular subset of H(F )ss and
Σ(H) will be denoted by H(F )(G,H)-reg and Σ(H)(G,H)-reg, respectively.

Let γH ∈ H(F )(G,H)-reg. The F -embedding ψ ◦ j : TH → G is canonical up
to G(F )-conjugacy, so γH determines a semi-simple G(F )-conjugacy class in G(F )
defined over F . If this conjugacy class contains an element γ of G(F ), then we take
the stable conjugacy class of γ to be the image of γH . Otherwise the image of γH
is formally denoted by the empty set symbol ∅. (Such a γ always exists by [Kot82,
Thm. 4.4] if G is quasi-split and has simply connected derived subgroup, but not
in general.) To summarize, we obtain a map
(7.4.2.1) Σ(H)(G,H)-reg −→ Σ(G) ∪ {∅}.
We say that γH and γ ∈ G(F )ss have matching conjugacy classes, or simply that
γ is an image of γH . If the centralizer of γ in G is connected (e.g., if Gder = Gsc)
then the centralizer of γH in H is also connected by [Kot86, Lem. 3.2].

If G1 and H1 are as in (7.2.4.1) and Lemma 7.2.6, then the above construction
can be performed for G1 and H1 in place of G and H. This is visibly compatible
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with the surjections G1 → G and H1 → H, leading to the following commutative
diagram (where the symbol ∅ maps to itself under the right vertical map).

Σ(H1)(G1,H1)-reg //

��

Σ(G1) ∪ {∅}

��
Σ(H)(G,H)-reg // Σ(G) ∪ {∅}

By slight abuse of language (as H1 is not an endoscopic group of G), γ ∈ G(F )ss is
said to be an image of γH1 ∈ H1(F )(G1,H1)-reg if the stable conjugacy class of γH1

maps to that of γ in the above diagram.

7.4.3. We introduce κ-orbital integrals, of which stable orbital integrals are the
special case. Let us assume that F is local for convenience. The main definitions
here extend to the adelic setting in the obvious manner.

Let γ ∈ G(F )ss and x ∈ G(F ). Suppose that γx := x−1γx ∈ G(F ) and xρ(x)−1 ∈
Iγ(F ) for every ρ ∈ ΓF . Then x and the 1-cocycle ρ 7→ xρ(x)−1 define an element
of H0(F, Iγ\G), to be denoted by ẋ. The map x 7→ γx factors through H0(F, Iγ\G),
namely there is an induced map

H0(F, Iγ\G) −→ G(F ), ẋ 7−→ γẋ.

Recall that there is a short exact sequence

1→ Iγ(F )\G(F )→ H0(F, Iγ\G)→ D(Iγ , G;F )→ 1,

coming from a long exact sequence. Given Haar measures on Iγ(F ) and G(F ) and
the counting measure on D(Iγ , G;F ), there is a unique way to equip H0(F, Iγ\G)
with a compatible measure. The map ẋ 7→ γẋ induces a map

D(Iγ , G;F ) −→ Γ(G), [x] 7−→ γ[x],

whose image consists of conjugacy classes in the stable conjugacy class of γ. If
Gγ = Cent(γ,G) is connected (so that it equals Iγ) then [x] 7→ γ[x] is a bijection
onto the image. In general the fiber over the conjugacy class of γ′ ∈ G(F ) (stably
conjugate to γ) is in bijection with ker(H1(F, Iγ′)→ H1(F,Gγ′)). Recall the map
D(Iγ , G;F )→ E(Iγ , G;F ) = K(Iγ/F ) from §1.1.7. Thus we have a pairing

〈·, ·〉 : D(Iγ , G;F )× K(Iγ/F ) −→ C×.

Given κ ∈ K(Iγ/F ) and f ∈ H(G) we define the κ-orbital integral of γ by

OG(F ),κ
γ (f) :=

∫
H0(F,I\G)

e(Iγẋ)〈ẋ, κ〉OG(F )
γẋ (f)dẋ

=
∑

[x]∈D(Iγ ,G;F )

e(Iγ[x])〈[x], κ〉OG(F )
γ[x]

(f).

When κ is trivial, one has the stable orbital integral

SOG(F )
γ (f) := OG(F ),1

γ (f).

The superscript G(F ) will be omitted if there is no danger of confusion. The above
definition of κ-orbital integrals works verbatim for f ∈ H(G(F ), ω−1).
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7.4.4. We recall the Langlands–Shelstad transfer in the local untwisted case. See
§7.4.12 below for the twisted case.

When H = LH in the endoscopic datum (this assumption will be removed via
z-extensions), Langlands–Shelstad [LS87, LS90] define the transfer factor

∆(·, ·) : H(F )(G,H)-reg ×G(F )ss −→ C

which vanishes on (γH , γ) unless γ is an image of γH .
When G is quasi-split, the canonical transfer factor ∆0 was given by Langlands–

Shelstad depending only on a choice of F -pinning for G. Another natural normal-
ization in the quasi-split case is the Whittaker normalization in [KS99, §5.3]. While
there is no direct analogue of either when G is not quasi-split, the Whittaker nor-
malization can be extended to G given a suitable rigidification of an inner twisting
of G against its quasi-split inner form. See [Kal16, Kal18] for Kaletha’s notion of
rigid inner forms and a discussion of other rigidifications. In this paper, we do not
attempt to choose a rigidification or a canonical normalization of transfer factor at
every place. However when G is defined over Q, we may and will always choose a
global normalization as in [LS87, §6.4] so that the product formula (Corollary 6.4.B
therein) holds true.

In fact there are more than one sign conventions for (untwisted and twisted)
transfer factors as explained in [KS12]. We work with the factor ∆′ in loc. cit.,
which coincides with the one in [Kot90] (see p. 178 therein) but differs from the
definition of [LS87] by the map (H,H, s, η) 7→ (H,H, s−1, η). The reason for our
choice is that the former is better suited for extension to the twisted setting.

7.4.5. There exists a smooth character λH : ZG(F )→ C× such that
(7.4.5.1) ∆(zγH , zγ) = λH(z)∆(γH , γ), z ∈ ZG(F ).
This is [LS90, Lem. 3.5.A]. We can describe λH explicitly on Z0

G(F ) as follows.

Lemma 7.4.6. When H = LH, the restriction of λH to Z0
G(F ) corresponds to the

composite Langlands parameter

WF → LH
η→ LG

ζ→ LZ0
G,

where the first map is the distinguished splitting, and ζ is dual to the inclusion
Z0
G ↪→ G.

Proof. Consider γH ∈ H(F ), γ ∈ G(F ), and maximal tori T ⊂ G and TH ⊂ H
as in [LS87, §3]. In particular we are given an isomorphism i : T ∼= TH , inducing
an isomorphism Li : LTH ∼= LT . They construct L-morphisms ξTH : LTH → LH
and ξ : LT → LG (depending on some additional choices) as well as a 1-cocycle
a : WF → T̂H such that ηξTH = a · ξT Li as L-morphisms from LTH to LG.
Restricting the equality via the splitting WF → LTH , we obtain
(7.4.6.1) η(ξTH (w)) = a(w)ξT (w) ∈ LG, w ∈WF .

The first paragraph of [LS87, p. 253] tells us that λH |Z0
G

(F ) corresponds to a com-
posed with T̂H ∼= T̂ → Ẑ0

G, which is dual to Z0
G ⊂ T ∼= TH . To prove the lemma, it

is thus enough to verify that the composite map in the lemma is w 7→ ζ(a(w))ow.
To this end, write ξTH (w) = b(w) o w and ξT (w) = c(w) o w. From the con-

struction of ξT in [LS87, §2.6], it follows that ζ(c(w)) = 1. Indeed, the two main
points are that the image of every morphism SL2 → Ĝ maps trivially in Ẑ0

G (thus
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also n(ωT (σ)) therein) and that the coroots of Ĝ map trivially in Ẑ0
G (thus also

rp(w) therein). Similarly, b(w) maps to 1 ∈ Ẑ0
H , so ζ(b(w)) = 1. Now we apply ζ

to (7.4.6.1) to see that ζ(η(w)) = ζ(a(w))o w, as desired. �

7.4.7. We introduce transfer factors in general by reducing to the case Gder = Gsc,
in which case we can always assume that H = LH, cf. §7.2.4 and §7.4.4. Let
e = (H,H, s, η) ∈ E(G). Take a z-extension 1 → Z1 → G1 → G → 1 and define
e1 = (H1,

LH1, s1, η1) ∈ E(G1) as in §7.2.8. Then we have ∆(γH1 , γ1) ∈ C defined
on γH1 ∈ H1(F )(G1,H1)-reg and γ1 ∈ G1(F )ss. Langlands–Shelstad define

∆(·, ·) : H1(F )(G1,H1)-reg ×G(F )ss −→ C
as follows. Set ∆(γH1 , γ) = 0 unless γ is an image of γH1 (§7.4.2), that is, unless γ
lifts to γ1 ∈ G1(F ) which is an image of γH1 , in which case ∆(γH1 , γ) := ∆(γH1 , γ1).
By (7.4.5.1),

∆(zγH1 , γ) = λH1(z)∆(γH1 , γ), z ∈ Z0
G1

(F ).
Notice that Z1 ⊂ Z0

G1
. Lemma 7.4.6 implies that λH1 |Z1(F ) = λ1, where λ1 was

given in §7.2.10. (This is also checked in [LS87, p. 254].)

7.4.8. Keep on assuming that F is a local field. We state the Langlands–
Shelstad transfer and the fundamental lemma for connected reductive groups G1
with G1,der = G1,sc. Let e1 = (H1,

LH1, s1, η1) ∈ E(G1). If G1 and e1 are unrami-
fied, then η1 induces a C-algebra map via the Satake transform:
(7.4.8.1) η∗1 : Hur(G1) −→ Hur(H1).

Proposition 7.4.9. For each f1 ∈ H(G1), there exists fH1
1 ∈ H(H1) enjoying

the following property: If γH1 ∈ H1(F )(G1,H1)-reg has no image in G1(F )ss then
SOγH1

(fH1
1 ) = 0. If γH1 has an image γ1 ∈ G(F )ss then

(7.4.9.1) SOγH1
(fH1

1 ) =
∑

[x]∈D(Iγ1 ,G1;F )

e(Iγ1,[x])∆(γH1 , γ1,[x])Oγ1,[x](f1).

Moreover, the fundamental lemma (FL) holds true, i.e., if G1 and e1 are unramified
and if f1 ∈ Hur(G1) then the above holds with fH1

1 = η∗1f1.

Proof. The second assertion (FL) follows from work of Ngô as well as Cluckers-
Loeser, Hales, and Waldspurger [CL10, Hal95, Ngô10, Wal06]. The first assertion
(the transfer conjecture) is implied by FL [Wal97]. �

7.4.10. Let us adapt Proposition 7.4.9 to the setting with fixed central characters.
Let X be a closed subgroup of Z(F ) and χ : X → C× a continuous character. We
view X also as a closed subgroup of ZH(F ) via Z ↪→ ZH . Denote by XH1 and X1
the preimages of X under H1(F )→ H(F ) and G1(F )→ G(F ), respectively, so that
XH1

∼= X1 canonically. Choose compatible Haar measures on XH1 and X1. Let χ1
denote the character of XH1 or X1 pulled back from χ : X → C×. Restricting λH1

as in §7.4.7, we obtain another character
λH1 |XH1

: XH1 −→ C×.
By slight abuse of notation, we will often denote the above still by λH1 (as we will
not consider λH1 on a larger domain). In the special case when X = {1}, notice
that X1 = XH1 = Z1(F ), χ1 = 1, and λH1 = λ1.

If F is non-archimedean, χ : X → C× is said to be unramified if the character
is trivial on the maximal compact subgroup of X. The same definition works with
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XH1 in place of X. When G, e, χ, and the z-extension G1 are unramified, we have
G1 and e1 also unramified. In this case, the map η∗1 : Hur(G1) → Hur(H1) from
(7.4.8.1) is averaged to give a map
(7.4.10.1) Hur(G,χ−1) −→ Hur(H1, χ

−1
1 λH1)

as follows. Let f1 ∈ Hur(G1) be any lift of f along the natural surjective map,
where the first arrow is averaging against χ1:

Hur(G1)→ Hur(G1, χ
−1
1 ) ∼= Hur(G,χ−1).

For z ∈ XH1 , write f1,z(h) := f1(zh). Define a function fH1 on H1(F ) by

fH1(h) :=
∫
XH1

χ1(z)η∗1f1,z(h)dz =
∫
XH1

χ1(z)λ−1
H1

(z)η∗1f1(zh)dz.

Then fH1 belongs to Hur(H1, χ
−1
1 λH1) and is independent of the choice of f1. The

resulting map (7.4.10.1) is again denoted by η∗1 as there is little danger of confusion.

Proposition 7.4.11. For each χ : X→ C× and f ∈ H(G,χ−1), there exists
fH1 ∈ H(H1, χ

−1
1 λH1)

such that for every γH1 ∈ H1(F )(G1,H1)-reg, if γ ∈ G(F )ss is an image of γH1 then

SOH1(F )
γH1

(fH1) =
∑

[x]∈D(Iγ ,G;F )

e(Iγ[x])∆(γH1 , γ[x])OG(F )
γ[x]

(f).

If γH1 admits no image in G(F ) then SOH1(F )
γH1

(fH1) = 0.
Moreover when F is non-archimedean, if G1, e, and χ are unramified, and if

f ∈ Hur(G,χ−1), then χ1, λH1 |XH1
are unramified and the above holds true with

fH1 = η∗1(f).

Proof. Given f ∈ H(G,χ−1), choose a lifting f1 ∈ H(G1) under the surjective
composite map H(G1)→ H(G1, χ

−1
1 ) = H(G,χ−1). Let fH1

1 ∈ H(H1) be a transfer
of f1 as in Proposition 7.4.9. Define fH1 ∈ H(H1, χ

−1
1 λH1) by

fH1(γH1) := 1
vol(XH1)

∫
XH1

fH1
1 (zγH1)χ1(z)λ−1

H1
(z)dz, γH1 ∈ H1(F ),

so that for γH1 ∈ H1(F )ss,

(7.4.11.1) SOγH1
(fH1) = 1

vol(XH1)

∫
XH1

χ1(z)λ−1
H1

(z)SOz1γH1
(fH1

1 )dz.

If γH1 has no image in G(F ) then it has no image in G1(F ) either, so SOγH1
(fH1)

vanishes. Otherwise, let γ1 ∈ G1(F ) be an image of γH1 . Then zγ1 is an image
of zγH1 for each z ∈ XH1 . Applying Proposition 7.4.9 to (7.4.11.1), we see that
SOγH1

(fH1) equals∫
XH1

χ1(z)
vol(XH1)

∑
[x]∈D(Iγ1 ,G1;F )

e(Iγ1,[x])
∆(zγH1 , zγ1,[x])

λH1(z) Ozγ1,[x](f1)dz,

where Lemma 7.3.2 gives a bijection D(Izγ1 , G1;F ) = D(Iγ1 , G1;F ) ∼= D(Iγ , G;F ).
(We view [x] also as an element of D(Izγ1 , G1;F ) or D(Iγ , G;F ).) By definition
and (7.4.5.1), we have

∆(zγH1 , zγ1,[x]) = ∆(zγH1 , γ[x]) = λH1(z)∆(γH1 , γ[x]), z ∈ XH1 .
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By [Kot83, Cor. (2)] e(Iγ1,[x]) = e(Iγ[x]). All in all, as the sums run over [x] ∈
D(Iγ , G;F ) below,

SOγH1
(fH1) =

∑
[x]

e(Iγ[x])∆(γH1 , γ[x])
(

1
vol(X1)

∫
X1

χ1(z)Ozγ1,[x](f1)dz
)

=
∑
[x]

e(Iγ[x])∆(γH1 , γ[x])Oγ[x](f).

It remains to prove the last assertion when G, e1, and χ are unramified. Let z
be an element in the maximal compact subgroup of XH1 . In the notation above,
if f1 is replaced with a translate f1,z then fH1 is multiplied by λH1(z) according
to §7.4.7. On the other hand, f1 is unchanged if translated by z since f1 is in the
unramified Hecke algebra. Combining the two facts, we see that the stable orbital
integrals of fH1 do not change values under multiplication by λH1(z). Therefore
λH1 is unramified. The fact that we can take fH1 = η∗1(f) follows from the earlier
part of the current proof, where we can pick f1 ∈ Hur(G1) and choose fH1

1 to be
the image of f1 under (7.4.8.1). �

7.4.12. Here we work out a small generalization of some results in local twisted
endoscopy by Morel and Kottwitz [Mor10, §9, App. A] to the setting where H in
the endoscopic datum cannot be taken to be an L-group. We put ourselves in the
setting of §7.2.12 with F = Qp. Let e = (H,H, s, η) ∈ E(G), which gives rise
to e1 = (H1,

LH1, s1, η1) ∈ E(G1) as in Lemma 7.2.9. We make an additional
hypothesis that

s ∈ Z(Ĥ)Γp .

The group G is assumed quasi-split over Qp so that [Mor10, App. A] applies. If G
and H are unramified (which we are not assuming) then we may and will choose
G1 and H1 to be also unramified.

In twisted endoscopy, the norm map is defined by Kottwitz and Shelstad [KS99]
for strongly regular elements and by Labesse [Lab04] for elliptic elements (which
may not be strongly regular). The norm map in untwisted endoscopy is simply
the transfer of conjugacy classes as in §7.4.2. In the special case of base change,
Kottwitz [Kot82] defines the norm map for general elements. (These norm maps
coincide when there are more than one definitions available in a given setting.) For
our purpose, we define the norm map from R1(Qp) to H1(Qp) to be the degree n
base change norm from R1(Qp) to G1(Qp) followed by the transfer of semi-simple
conjugacy classes (§7.4.2) from G1(Qp) to H1(Qp). It is an exercise to check that
this is consistent with the norm map by Kottwitz–Shelstad and Labesse.

Let δ1 ∈ G1(Qpn) = R1(Qp). It has a degree n norm γ0,1 ∈ G1(Qp). We assume
γ0,1 to be semi-simple. Then δ1 corresponds to [b1] ∈ Dn(γ0,1, G1;Qp) according
to Corollary 7.3.7. So we write δ[b1] for δ1 = δ[b1]. Recall βp(γ0,1, [b1]) = κI0,1([b1]).
Suppose that γH1 ∈ H1(Qp)ss is a norm of δ1. Then γ0,1 is an image of γH1 .

When γH1 is strongly G1-regular (equivalently when γ0,1 is strongly regular),
Kottwitz [Mor10, Cor. A.2.10] proved that
(7.4.12.1) ∆0(γH1 , δ[b1]) = ∆0(γH1 , γ0,1)〈βp(γ0,1, [b1]), s1〉,
where we have taken the sign correction of [KS12, §5.6] into account. To make sense
of the pairing, we view s1 ∈ Z(Ĥ1)Γp as an element of Z(Î0,1)Γp via Z(Ĥ1)Γp ⊂
Z(ÎγH1

)Γp = Z(Î0,1)Γp , cf. [Mor10, A.3.11].
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When γH1 is (G1, H1)-regular but not strongly G1-regular, we take (7.4.12.1) as
the definition of ∆0(γH1 , δ[b1]), cf. [Mor10, (A.3.11.1)].

Let γ0 ∈ G(Qp) and [b] ∈ Dn(γ0, G;Qp) be the images of γ0,1 and [b1], re-
spectively. Then [b] gives rise to δ[b] ∈ G(Qpn) via Corollary 7.3.7, and γ0 is a
degree n norm of δ[b]. If the hypothesis on Z1 in Lemma 7.3.6 is satisfied, and if
[b1] ∈ Dn(γ0,1, G1;Qp) and [b] ∈ Dn(γ0, G;Qp) correspond under the bijection of
that lemma, then the σ-conjugacy class of δ[b1] maps to that of δ[b]. We defined
βp(γ0, [b]) to be κI0([b]), which equals the image of βp(γ0,1, [b1]). Thus we have

〈βp(γ0,1, [b1]), s1〉 = 〈βp(γ0, [b]), s〉.

In case G1 and e are unramified, the twisted datum ẽ1 = (H1,H1, s̃1, η̃1) of
§7.2.14 is also unramified, and η̃1 induces C-algebra morphisms

Hur(R1)→ Hur(H1) and Hur(R)→ Hur(H1, λH1)

as in the untwisted case, cf. §7.4.8 and §7.4.10. By slight abuse of notation we call
both maps η̃∗1 . The following is a twisted analogue of Proposition 7.4.11.

Proposition 7.4.13. Let f ∈ H(R(Qp)). Then there exists fH1 ∈ H(H1, λH1) such
that the following holds: Let γH1 ∈ H1(Qp)(G1,H1)-reg. We have SOγH1

(fH1) = 0 if
γH1 is not a norm from R1(Qp). If γH1 is a norm of δ1 ∈ R1(Qp) = G1(Qpn) then
whenever γ0 ∈ G(Qp) is an image of γH1 , we have
(7.4.13.1)

SOγH1
(fH1) = ∆0(γH1 , γ0)

∑
[b]∈Dn(γ0,G;Qp)

e(Iδ[b])〈βp(γ0, [b]), s〉TOδ[b](f).

Moreover if G1 and e are unramified, and if f ∈ Hur(R) then the above is true
for fH1 = η̃∗1(f) ∈ Hur(H1, λH1).

Remark 7.4.14. In the essential case when G1 and e are unramified with f in the
unramified Hecke algebra, if γH1 is restricted to be a strongly G1-regular element,
the proposition is a special case of the twisted fundamental lemma (TFL) for the
full unramified Hecke algebra. When the residue characteristic p is large, TFL
for the unit element is true thanks to Ngô, Waldspurger, Cluckers-Loeser, and
others ([Ngô10, Wal08] with [Wal06] or [CL10]). For general elements of unramified
Hecke algebras, including the case of small p, TFL was recently established by
Lemaire, Moeglin, and Waldspurger [LMW18] and [LW17]. Note that TFL states
an orbital integral identity only for strongly regular elements; in fact the twisted
transfer factors are not defined for other elements in general. However we want an
orbital integral identity for (G1, H1)-regular semi-simple elements which may not be
strongly regular. The transfer factors for such elements are available in our setting,
and Proposition 7.4.13 is proved for such elements in [Mor10, Ch. 9, App. A], under
the hypotheses that Gder = Gsc and that H = LH in the endoscopic datum. So the
point of our proof below is to remove the hypotheses of [Mor10]. The basic idea is
to employ z-extensions, but there is a technical problem: no single z-extension G1
satisfies the assumption of Lemma 7.3.6 for all (sufficiently large) n. We choose an
auxiliary z-extension as in Lemma 7.2.13 to get around the issue.

Proof of Proposition 7.4.13. We present a proof when G1 and e are unramified as-
suming that f ∈ Hur(R). The general case will be taken care of in the last paragraph
of this proof.
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Put Z̃1 := ResQpn/Qp(Z1)Qpn . Choose f1 to be any preimage of f under the
averaging map Hur(R1)→ Hur(R) over ker(R1(Qp)→ R(Qp)) = Z̃1(Qp). Suppose
that zγH1 is not a norm from R1(Qp) for any z ∈ Z1(Qp). Then [Mor10, Prop. 9.5.1,
Prop. A.3.14] tells us that SOzγH1

(η̃∗1(f1)) = 0. Hence

SOγH1
(η̃∗1(f)) =

∫
Z1(Qp)

λ−1
H1

(z)SOzγH1
(η̃∗1(f1))dz = 0.

Now assume the existence of z ∈ Z1(Qp) such that γ′H1
:= zγH1 is a norm

of some element δ′1 ∈ R1(Qp). Let γ0,1 ∈ G1(Qp) be an image of γ′H1
. (Such

a γ0,1 exists since G1 is quasi-split and has simply connected derived subgroup,
cf. [Kot82, Thm. 4.4].) Write γH ∈ H(Qp) and γ0 ∈ G(Qp) for the respective
images of γH1 and γ0,1. Take central extensions G′1 and H ′1 as in Lemma 7.2.13
and write Z ′1 for the common kernel of the surjections G′1 → G and H ′1 → H. Thus
Z ′1
∼=
∏r
i=1 ResFi/Qp Gm for r ∈ Z≥1 and Fi ⊃ Qpn . Set

Z̃ ′1 := ResQpn/Qp(Z ′1)Qpn ∼=
r∏
i=1

∏
Qpn ↪→Fi

ResFi/Qp Gm,

where the second product runs over the set of Qp-embeddings. Fix an embedding
Qpn ↪→ Fi for each i and define Y1 to be the subtorus of Z̃ ′1 whose components
outside the set of fixed embeddings are trivial. The Frobenius automorphism σ ∈
Gal(Qpn/Qp) acts on Z̃ ′1 by permuting the Qp-embeddings.

The norm map N : Z̃ ′1(Qp) → Z ′1(Qp) is obviously onto and restricts to an
isomorphism

N : Y1(Qp)
∼−→ Z ′1(Qp).

From e, we have e′1 = (H ′1, LH ′1, s′1, η′1) ∈ E(G1) as in Lemma 7.2.9. Since s ∈
Z(Ĥ)Γ we have that s′1 ∈ Z(Ĥ ′1)Γ. One builds a twisted endoscopic datum ẽ′1 for
(R′1, θ′1) as in §7.2.12 and §7.2.14.

Choose f ′1 ∈ Hur(R′1) to be a preimage of f under the averaging surjection
Hur(R′1)→ Hur(R). We have

(η̃′1)∗(f ′1) ∈ Hur(H ′1), fH
′
1 := (η̃′1)∗(f) ∈ Hur(H ′1, λH′1).

The inclusion H1 ↪→ H ′1 induces an isomorphism Hur(H1, λH1) ∼= Hur(H ′1, λH′1)
since the character λH′1 restricts to λH1 . The functions fH′1 and fH1 correspond
under the isomorphism. Clearly

SOγ′
H1

(fH
′
1) = SOγ′

H1
(fH1) = SOγH1

(fH1).

By [Mor10, Prop. 9.5.1, Prop. A.3.14],

(7.4.14.1) SOγ′
H1

((η̃′1)∗(f ′1)) =
∑
δ′1

e(Iδ′1)∆0(γ′H1
, δ′1)TOδ′1(f ′1),

where the sum runs over a set of representatives for the σ-conjugacy classes in
G′1(Qpn) = R′1(Qp) whose norm is γ0,1. (Here we view γ′H1

and γ0,1 as elements of
H ′1(Qp) and G′1(Qp) via H1 ⊂ H ′1 and G1 ⊂ G′1.) Let δ ∈ R(Qp) denote the image
of δ′1, and y ∈ Z̃ ′1(Qp) an arbitrary element. We collect the following facts.

• the set of representatives δ′1 in the sum is in bijection withDn(γ0,1, G
′
1;Qp),

and also with Dn(γ0, G;Qp) (Lemma 7.3.6 and Corollary 7.3.7),
• e(Iyδ′1) = e(Iδ) by [Kot83, Cor. (2)],
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• N(y)γ0,1 (resp. N(y)γ′H1
) is a norm of yδ′1 in G′1 (resp. H ′1),

• (7.4.14.1) holds with N(y)γ0,1 and N(y)γ′H1
in place of γ0,1 and γ′H1

,
• ∆0(N(y)γ′H1

, yδ′1) = λH′1(N(y))∆0(γ′H1
, δ′1) by [KS99, p. 53],47

• ∆0(γ′H1
, γ0,1) remains the same whether it is viewed with respect to the

transfer between H ′1 and G′1 or between H1 and G1.48

Putting all this together, we deduce that SOγ′
H1

(fH′1) equals∫
Z′1(Qp)

λ−1
H′1

(z′)SOz′γH′1 ((η̃′1)∗(f ′1))dz′

=
∫
Y1(Qp)

λ−1
H′1

(y)
∑
δ′1

e(Iyδ′1)∆0(N(y)γ′H1
, yδ′1)TOyδ′1(f ′1)dy.

=
∑
δ′1

e(Iδ′1)∆0(γ′H1
, δ′1)

∫
Y1(Qp)

TOyδ′1(f ′1)dy.

=
∑

[b′1]∈Dn(γ0,1,G′1;Qp)

e(Iδ[b′1]
)∆0(γ′H1

, γ0,1)〈βp(γ0,1, [b′1]), s′1〉TOδ[b](f).

=
∑

[b]∈Dn(γ0,G;Qp)

e(Iδ[b])∆0(γH1 , γ0)〈βp(γ0, [b]), s〉TOδ[b](f).

This finishes the proof in the unramified case.
The general case (when either G1 or e is ramified) works in the same way. If zγH1

is not a norm from R1(Qp) for any z ∈ Z1(Qp) then SOγH1
(fH1) = 0 as before.

Otherwise we assume that γ′H,1 := zγH,1 is a norm for some z. Then we repeat the
preceding argument, with the difference occurring in the choice of fH′1 . Namely
by [Mor10, Prop. A.3.14], there exists fH′1 ∈ H(H ′1(Qp)) such that (7.4.14.1) holds
true with fH

′
1 in place of (η̃′1)∗(f ′1), and such that SOγ′

H1
(fH′1) = 0 if γ is not

a norm. Setting fH′1(h′) :=
∫
ZH′1

(Qp) λ
−1
H′1

(z′)fH′1(z′h′)dz′, we see from the above
computation that Proposition 7.4.13 holds. The proof is complete.

�

7.4.15. The last part of Proposition 7.4.13 can be slightly generalized, following
[Kot90, p. 181]. Assume that H and G are unramified, thus choose H1 and G1 to be
unramified, but allow e1 to be ramified. In that case, one can write η1 = c·η◦1 with a
continuous 1-cocycle c : WQp → Z(Ĥ1) such that (H1,H1, s1, η

◦
1) is unramified. (To

see this, apply [Lan79c, Prop. 1] for an unramified extension to find η◦1 , and observe
that η1 and η◦1 must differ by a continuous 1-cocycle valued in Z(Ĥ1).) Via local
class field theory, c determines a smooth character χc : H1(Qp) → C×. Writing
fH1,◦ := η̃◦,∗1 (f), we see that fH1 := χc · fH1,◦ satisfies the desired condition of
Proposition 7.4.13. This follows from the fact that ∆0(γH1 , γ0,1) gets multiplied by

47Unlike the formula in loc. cit., we do not put an inverse over λH′1 since we are following the
convention for ∆′ in [KS12], which inverts ∆III in [KS99].

48To see this, one reduces to the strongly regular case by [LS87, §4.3] and [LS90, §2.4]. The
same a-data and χ-data may be chosen in the two cases to compare transfer factors, as the
centralizer of γ0,1 determines the same root system in G1 and G′1 respectively. Then one sees that
each of ∆I , ∆II , ∆III1 , ∆III2 , and ∆IV is the same by inspecting the definition in [LS87, §3].
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χc(γH,1) when changing from η◦1 to η1. (This factor comes from ∆2 in [LS87, §3.5]
as the 1-cocycle a there is replaced with ac.)

Proposition 7.4.16. In the setting of Proposition 7.4.13, assume that G is un-
ramified over Qp and f ∈ Hur(R(Qp)). If H is ramified over Qp then we can take
fH1 = 0 (i.e., the right hand side of (7.4.13.1) always vanishes).

Proof. The untwisted analogue of this proposition is proven in [Kot86, Prop. 7.5].
We adapt this proof, referred to as “loc. cit.” below, to our twisted setting. (A
proof in the twisted case is alluded to on p. 189 of [Kot90]. We are elaborating on
the details.) We write G′ for the group G1 in loc. cit., as we reserve the symbol G1
to stand for a z-extension. Via z-extensions we reduce to the case where Gder = Gsc
and H = LH. Recall we are also assuming s ∈ Z(Ĥ)Γp .

Fix [b] ∈ Dn(γ0, G;Qp) and a representative b ∈ G(Q̆p) of [b]. Fix c ∈ G(Q̆p)
as in condition KP1 of Definition 1.6.5 so that c−1γ0c = δσ(δ) · · ·σn−1(δ) with
δ = c−1bσ(c) ∈ G(Qpn) (which is also denoted δ[b]). As in the proof of Lemma
7.3.6, the following sets are in natural bijections with each other:

(i) the set of σ-conjugacy classes in the stable σ-conjugacy class of δ,
(ii) ker(H1(Qp, Iδ)→ H1(Qp, R)), and
(iii) Dn(γ0, G;Qp).

To go from (i) to (ii), let δ′ = xδθ(x)−1 with x ∈ R(Qp), where θ denotes the
automorphism of R induced by σ ∈ Gal(Qpn/Qp). Sending δ′ to the cocycle zδ,δ′ :
τ 7→ x−1τx induces the bijection from (i) onto (ii). To go from (i) to (iii), take c′ ∈
G(Q̆p) such that (c′)−1γ0c

′ = δ′σ(δ′) · · ·σn−1(δ′). Then we send δ′ to [c′δ′σ(c′)−1] ∈
B(I0), which lies in the set (iii). Moreover we have the following compatibility: it
follows from the bottom commutative diagram in [Kot97, p. 273] (with Iδ and I0
in place of Jh and H there, and the cocycle h determined by σ 7→ cδσ(c)−1) that
the image of zδ,δ′ under the composite map

H1(Qp, Iδ) ∼= π1(Iδ)Γp,tors ∼= π1(I0)Γp,tors ↪→ π1(I0)Γp

coincides with the image of [b′]− [b] under the composite map

Dn(γ0, G;Qp) ↪→ B(I0)
κI0−−→ π1(I0)Γp .

Write inv(δ, δ′) for the image in π1(I0)Γp . With the preparation so far, we follow
loc. cit. to construct an exact sequence of unramified reductive groups over Qp

1→ G→ G′ → C → 1,

where C is a non-trivial unramified torus. Define R′ := ResQpn/Qp G′. Via the
dual map Ĝ′ → Ĝ, we can pull-back η : Ĥ → Ĝ to define Ĥ ′ equipped with an
embedding Ĥ ′ ↪→ Ĝ′. We equip Ĥ ′ with a Γp-action as in loc. cit.

Write I ′δ for the connected σ-centralizer of δ in R′. As in loc. cit. we have an
exact sequence 1 → Iδ → I ′δ → C → 1, whose dual exact sequence fits in the
following commutative diagram, where rows are Γp-equivariant and exact:

1 // Ĉ // Z(Ĥ ′)

��

// Z(Ĥ) //

��

1

1 // Ĉ // Z(Î ′δ) // Z(Îδ) // 1
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We have s ∈ Z(Ĥ)Γp ⊂ Z(Îδ)Γp . Write χs for the image of s in H1(Qp, Ĉ) under
the connecting homomorphism arising from the first row. Then χs determines a
smooth character C(Qp) → C×, still denoted by χs. As in the proof of [Kot86,
Prop. 7.3.5], the character χs is ramified, i.e., non-trivial on C(Zp). (As C is
unramified, it extends uniquely to a Zp-torus.) This is crucial for our proof.

Now consider g1 ∈ G′(Qp) and put δ′ := g1δθ(g1)−1 = g1δg
−1
1 ∈ G(Qpn). We

claim that δ′ is stably σ-conjugate to δ. Indeed, writing c1 ∈ C(Qp) for the image of
g1, take a lift g2 ∈ I ′δ(Q̆p) of c

−1
1 via the surjection I ′δ → C. Set g := g1g2 ∈ R(Q̆p).

Then we have δ′ = gδθ(g)−1, which proves the claim.
Let [b′] denote the image of δ′ under the bijection from (i) to (iii) above. Then

we assert that

〈βp(γ0, [b′]), s〉〈βp(γ0, [b]), s〉−1 = 〈inv(δ, δ′), s〉 = χs(c−1
1 ).

The first equality follows from the aforementioned compatibility. The second equal-
ity comes from [Kot86, Lem. 1.6] (applied to I = C and G = Iδ), where the image
of c−1

1 in H1(Qp, Iδ) is represented by the cocycle zδ,δ′ . Indeed, after applying the
injection from H1(Qp, Iδ) into B(Iδ) = H1(WQp , Iδ(Q̆p)), they are represented by
the same cocycle since g−1

2
τg2 = g−1τg for τ ∈WQp .

For f ∈ Hur(G(Qp)), define f0 ∈ Hur(G(Qp)) by f(g1xg
−1
1 ) with g1 as above.

(The analogue of f0 is denoted by f1 in loc. cit.) Write fH and fH0 for their twisted
transfers to H. On the one hand, we have f = f0 by the argument of loc. cit.,
so we can take fH = fH0 . On the other hand, comparing the right hand sides of
(7.4.13.1), we have

SOγH (fH0 ) = 〈βp(γ0, [b′]), s〉〈βp(γ0, [b]), s〉−1SOγH (fH) = χs(c−1
1 )SOγH (fH)

if γH is a norm of some δ as above, and SOγH (fH) = 0 if γH is not a norm of any
such δ. In order to verify that the stable orbital integral of fH is identically zero,
it is thus enough to exhibit a suitable c1 such that χs(c−1

1 ) 6= 1.
To this end, let T be a maximally split maximal Qp-torus in G, and take T ′ to

be the centralizer of T in G′. The resulting exact sequence of unramified tori

1→ T → T ′ → C → 1

extends uniquely to an exact sequence of tori over Zp, with 1→ T (Zp)→ T ′(Zp)→
C(Zp)→ 1 exact. Fix any c1 ∈ C(Zp) such that χs(c1) 6= 1 and choose g1 ∈ T ′(Zp)
to be a lift of c1. Running through the above argument, we conclude that the stable
orbital integral of fH vanishes everywhere.

�

7.4.17. Finally we drop the assumption that s ∈ Z(Ĥ)Γp and consider the general
case where s ∈ Z(Ĥ)ΓpZ(Ĝ). Write s = s′s′′ with s′ ∈ Z(Ĥ)Γp and s′′ ∈ Z(Ĝ). As
in §7.2.14, (H,H, s′, η) ∈ E(G) yields a twisted endoscopic datum (H1,

LH1, s̃
′
1, η̃
′
1)

for (R, θ), with s′ playing the role of s.
Consider the setting of §1.8.2, where φn ∈ Hur(R(Qp)) was introduced. If e1 is

unramified, then take fH1
n := µ−1(s′′)η̃′,∗1 (φn). If H is unramified but e1 is ramified,

then we take fH1
n as in §7.4.15. If H (thus also H1) is ramified over Qp then take

fH1
n := 0. We check that Proposition 7.4.13 extends to this case.

Corollary 7.4.18. Let γH1 ∈ H1(Qp)(G1,H1)-reg. We have SOγH1
(fH1
n ) = 0 if γH1

is not a norm from R1(Qp). If γH1 is a norm of δ1 ∈ R1(Qp) then denoting by
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γ0 ∈ G(Qp) an image of γH1 , we have

SOγH1
(fH1
n ) =

∑
[b]∈Dn(γ0,G;Qp)

e(Iδ[b])∆0(γH1 , γ0)〈β̃p(γ0, [b]), s〉TOδ[b](φn),

where the summand is understood to be zero if TOδ[b](φn) = 0. If TOδ[b](φn) 6= 0
then [b] satisfies KP0 and KP1 in Definition 1.6.5 so β̃p(γ0, [b]) is well defined as
explained in §1.7.5.

Proof. By definition [b] ∈ Dn(γ0, G;Qp) always satisfies KP1. Let µ ∈ �GX as in
§2.4.1. If TOδ[b](φn) 6= 0 for some [b] ∈ Dn(γ0, G;Qp) then X−µ(δ[b]) is non-empty
by definition (2.2.7.1), so [δ[b]] ∈ B(G,−µ) by [RR96]. Since [b] = [δ[b]] in B(G), we
see that KP0 holds true. Thus

〈β̃p(γ0, [b]), s〉 = µ−1(s′′)〈β̃p(γ0, [b]), s′〉 = µ−1(s′′)〈βp(γ0, [b]), s′〉.

(The second equality holds because s′ ∈ Z(Ĥ)Γp ⊂ Z(Î0)Γp and βp(γ0, [b]) is an
element of π1(I0)Γp .) Now the proof follows from Proposition 7.4.13 with φn and
s′ in place of f and s, respectively, as µ−1(s′′) ∈ C× cancels out. �

8. Stabilization

We return to the point counting formula for Shimura varieties. Taking Conjec-
ture 1.8.8 for granted, we carry out the stabilization of the formula (1.8.8.1), with
a view towards a representation-theoretic description of the cohomology.

8.1. Initial steps.

8.1.1. We start by fixing a central character datum, rewrite the coefficients in
(1.8.8.1), and apply a Fourier transform on the finite abelian group K(I0/Q).

We freely use the setting of §1.8. Throughout stabilization, we fix an unramified
Shimura datum (G,X, p,G), which determines Kp = G(Zp), and an open compact
subgroup Kp ⊂ G(Apf ) such that K = KpK

p is a neat subgroup.

8.1.2. Recall that Z is the center of G. We endow AZ,∞ = AG,∞, which is
isomorphic to a finite product of copies of R×>0, with the standard multiplicative
Haar measure. Fix Haar measures on Z(Af ) and Z(R), thereby also on X :=
(Z(Af )∩K)·Z(R) and XQ\X/AZ,∞, relative to the counting measure on XQ (which
is discrete and compact in X/AZ,∞). With respect to the set of places of Q, we have
the decomposition X = Xp,∞XpX∞. We put a Haar measure on Z(Q)\Z(A)/X via
the following exact sequence of topological groups

1→ XQ\X/AZ,∞ → Z(Q)\Z(A)/AZ,∞ → Z(Q)\Z(A)/X→ 1,
where the space in the middle is given the Tamagawa measure.

We promote X to a central character datum (X, χ) by defining the finite part
χ∞ to be trivial on Z(Af ) ∩K and the infinite part χ∞ := ω−1

ξ , where ωξ is the
central character of ξ on Z(R).

For a connected reductive subgroup G0 of G over Q containing Z such that
AG0 = AZ , we use the quotient measure to define

τX(G0) := vol(G0(Q)\G0(A)/X)
by viewing the double coset space as the quotient of G0(Q)\G0(A)/AG0,∞ by
XQ\X/AZ,∞, where the former is equipped with the Tamagawa measure and the
latter with the measure explained above. For any inner form G′0 of G0 over Q we
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make sense of τX(G′0) by transporting the measure. Since the Tamagawa volumes
are equal for G0 and G′0 by [Kot88], we have τX(G0) = τX(G′0).

Once and for all, fix a z-extension G1 of G over Q which is unramified over Qp.
This is possible by Lemma 7.2.5 (recalling that G is unramified over Qp). Write
X1 ⊂ ZG1(A) for the preimage of X under G1 → G. Write χ1 for the pull-back of
χ to X1 (thus the finite part of χ1 is trivial). Then (X1, χ1) is a central character
datum for G1, and X1 = Xp,∞1 X1,pX1,∞ analogously as the decomposition of X. We
put the unique Haar measure on X1, and thus also on X1,Q\X1/AG1,∞ similarly as
above, such that

(8.1.2.1) vol(X1,Q\X1/AG1,∞)/vol(XQ\X/AG,∞) = τ(G1)/τ(G),

so that

(8.1.2.2) τX1(G1) = τX(G).

Let c = (γ0, a, [b]) ∈ KPa(pn) for some n ∈ Z≥1. Recall from §1.7.11 that c
determines an inner form Iv of I0 over Qv. Note that Ip depends only on γ0 and [b]
(not on a). Since I∞ is always a compact-mod-center inner form of I0,R we often
write Icpt

0 for I∞. If the Kottwitz invariant α(c) (defined in §1.7.5) vanishes, then
we have an inner form I of I0 over Q which localizes to Iv at each v (Proposition
1.7.12). We defined the constants c1(c,Kp, dipdi

p) and c2(γ0) in §1.8.6.

Lemma 8.1.3. If α(c) vanishes, then

c1(c,Kp, dipdi
p)c2(γ0) = τX(G) · |K(I0/Q)| · vol(Z(R)\I∞(R))−1.

Proof. With the choice of measures as above,

c1(c,Kp, dipdi
p) = vol(I(Q)\I(A)/ZKI∞(R))

= vol(I(Q)\I(A)/ZKZ(R))
vol(Z(R)\I∞(R)) = τX(I0)

vol(Z(R)\I∞(R)) .

On the other hand one deduces as in [Kot86, p. 395] that

c2(γ0) = τ(I0)−1τ(G)|K(I0/Q)| = τX(I0)−1τX(G)|K(I0/Q)|.

We conclude by taking product of the two equations. �

8.1.4. Let c = (γ0, a, [b]) ∈ KPa(pn). Define e(c) :=
∏
v e(Iv) ∈ {±1}, the product

of Kottwitz signs over all places. If α(c) vanishes, then e(c) = 1 since Iv’s come
from a Q-group I. Hence

(8.1.4.1)
∑

κ∈K(I0/Q)

e(c)〈α(c), κ〉 =
{
|K(I0/Q)|, if α(c) = 0,

0, otherwise.

Applying Lemma 8.1.3 and (8.1.4.1) to (1.8.8.1), we have
(8.1.4.2)

T (Φmp , fpdgp) = τX(G)
∑

γ0∈ΣX,R-ell(G)

ιG(γ0)−1
∑

κ∈K(I0/Q)

∑
(a,[b])

N(γ0, κ, a, [b]),

where the third sum runs over D(I0, G;Apf )×Dn(γ0, G;Qp) and

N(γ0, κ, a, [b]) = 〈α(γ0, a, [b]), κ〉e(γ0, a, [b])
Oγa(fp)TOδ[b](φn)tr ξ(γ0)

vol(Z(R)\I∞(R)) .
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This is straightforward possibly except for the following point. In (1.8.8.1), every
c = (γ0, a, [b]) is a pn-admissible Kottwitz parameter. In the formula above, since
condition KP0 is not imposed on [b] ∈ Dn(γ0, G;Qp), a priori (γ0, a, [b]) may not
be a Kottwitz parameter. The necessary observation is that [b] satisfies KP0 as
soon as δ[b] lies in the support of φn.

8.2. Local transfer of orbital integrals.

8.2.1. Here we prove adelic orbital integral identities for each e = (H,H, s, η) ∈
Eell(G). The fixed z-extension G1 (which is unramified over Qp) gives rise to a
central extension H1 of H via Lemma 7.2.6. In particular, if H is unramified over
Qp then so is H1. As before, XH1 is the preimage of X ⊂ ZG(A) ⊂ ZH(A) under
ZH1 → ZH . We have a continuous character Z0

G1
(Q)\Z0

G1
(A)→ C× corresponding

to the global parameterWQ → LH1
η1→ LG1 → LZ0

G1
as in Lemma 7.4.6. Restricting

to X1, we obtain a character

(8.2.1.1) λH1 : X1,Q\X1 −→ C×,

which can be viewed as a character of XH1 via X1 ∼= XH1 . According as X1 =
Xp,∞1 X1,pX1,∞ we decompose λH1 = λp,∞H1

λH1,pλH1,∞. With the Haar measure on
X1 transferred to XH1 via the isomorphism, the analogue of (8.1.2.2) holds.

Lemma 8.2.2. We have τXH1
(H1) = τX(H).

Proof. Once we prove that τ(G1)/τ(G) = τ(H1)/τ(H), the lemma follows in the
same way as (8.1.2.2) is implied by (8.1.2.1). By [Kot84b, (5.2.3), §5.3] (τ1(·) therein
is τ(·) by [Kot88]), we have

τ(G1)/τ(G) =
∣∣∣coker(X∗(Z(Ĝ1))Γ → X∗(Ẑ1)Γ)

∣∣∣ ,
τ(H1)/τ(H) =

∣∣∣coker(X∗(Z(Ĥ1))Γ → X∗(Ẑ1)Γ)
∣∣∣ .

So it is enough to show that the two cokernels are isomorphic. Consider the com-
mutative diagram below, where the rows are coming from the exact sequence of
[Kot84b, Cor. 2.3].

1 // X∗(Z(Ĝ))Γ iG //
� _

��

X∗(Z(Ĝ1))Γ //
� _

��

X∗(Ẑ1)Γ

1 // X∗(Z(Ĥ))Γ

����

iH // X∗(Z(Ĥ1))Γ //

����

X∗(Ẑ1)Γ

X∗(Z(Ĥ)/Z(Ĝ))Γ X∗(Z(Ĥ1)/Z(Ĝ1))Γ

We obtain coker iG ∼= coker iH by diagram chase, and thereby the two cokernels
above are isomorphic. �

8.2.3. For the moment we assume that s ∈ Z(Ĥ)Γp , and we are going to drop this
assumption in §8.2.6 below. By Proposition 7.4.11 there exists a transfer

fH1,p,∞ ∈ H(H1(Ap,∞f ), χ−1
1 λp,∞H1

)
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of fp,∞ ∈ H(G(Apf )�Kp) with the following property. For each

γH1 ∈ H1(Apf )(G1,H1)-reg,

if it has no image in G1(Apf )ss then SOγH1
(fH1,p,∞) = 0. If there exists an image

γ0,1 ∈ G1(Apf )ss of γH1 , then writing γ0 ∈ G(Apf ) for the projection of γ0,1, we have

SOγH1
(fH1,p,∞) =

∑
a1

e(a1)∆(γH1 , γ0,1,a1)Oγ0,1,a1
(fp,∞)

=
∑
a1

e(a1)∆(γH1 , γ0,1)〈βp,∞(γ0,1, a1), s1〉Oγ0,1,a1
(fp,∞)

=
∑
a

 ∏
v 6=p,∞

e(Iv)

∆(γH1 , γ0,1)〈βp,∞(γ0, a), s〉Oγ0,a(fp,∞),(8.2.3.1)

where the sums for a1 and a run over D(I0,1, G1;Apf ) and D(I0, G;Apf ) respectively.
Recall that βp,∞(·, ·) was introduced in §1.7.6. The second equality above follows
from a basic property of transfer factors regarding the change of γ0,1 within its
stable conjugacy class as stated in [Kot86, Conj. 5.5], which can be proved by
arguing as in the proof of [LS87, Lem. 4.1.C ] in the G1-regular case and extended
to the (G1, H1)-regular case by [LS90].

8.2.4. From §7.4.17 and Corollary 7.4.18, we obtain fH1
p ∈ H(H1(Qp), λH1,p)

(renaming fH1
n ) with the following property. Let γH1 ∈ H1(Qp)(G1,H1)-reg. If γH1 is

not a norm from an element of R1(Qp) then SOγH1
(fH1
p ) = 0. If it is a norm, there

exists γ0,1 ∈ G1(Qp) whose conjugacy class matches γH1 . Writing γ0 ∈ G(Qp) for
the projection of γ0,1, we have
(8.2.4.1)

SOγH1
(fH1
p ) =

∑
[b]∈Dn(γ0,G;Qp)

e(Iδ[b])∆0(γH1 , γ0,1)〈β̃p(γ0, [b]), s〉TOδ[b](φn).

By definition Iδ[b] = Ip if [b] comes from c = (γ0, a, [b]) ∈ KPa(pn). Thanks to
Proposition 7.4.13 we may and will take fH1

p = 0 if H is ramified over Qp.

8.2.5. Our starting point for real orbital integrals is the argument of [Kot90, §7]
based on Shelstad’s real endoscopy [She82] and the pseudo-coefficients of Clozel–
Delorme [CD90]. We incorporate central characters and z-extensions.

We have the characters χ1,∞ and λH1,∞ on XH1,∞. We will drop ∞ from the
subscript and write λH1 and χ1 when the context is clearly local archimedean.
Let ξ1 be the irreducible representation of G1 obtained from ξ via the surjection
G1 → G. As in §7.3.8, fix a Shimura datum (G1, X1) and µ1 ∈ �X1(Q). For
each elliptic γ0,1 ∈ G1(R) we have an element β̃∞(γ0,1) ∈ π1(I0,1) which maps to
[µ1] ∈ π1(G1), cf. §1.7.6.

We simply set fH1
∞ := 0 if elliptic maximal tori of GR do not come from those

of HR via transfer (equivalently, if elliptic maximal tori of G1,R do not come from
those of H1,R). In particular fH1

∞ = 0 if HR contains no elliptic maximal tori. From
now on, we assume that HR contains elliptic maximal tori and they transfer to
elliptic maximal tori of GR. In particular Z0

GR
and Z0

HR
have the same R-rank.

Following Kottwitz, we construct a smooth function fH1
∞ on H1(R) that is com-

pactly supported modulo center, by taking a suitable finite linear combination of
pseudo-coefficients of discrete series representations (explicitly as on page 186 of
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[Kot90] with our H1 and G1 playing the roles of his H and G) such that the fol-
lowing hold: if γH1 ∈ H1(R)ss is elliptic and (G1, H1)-regular, which by the above
assumption has an elliptic element γ0,1 ∈ G1(R)ss as image, then

(8.2.5.1) SOγH1
(fH1
∞ ) =

e(Icpt
0,1 )〈β̃∞(γ0,1), s1〉∆∞(γH1 , γ0,1)tr ξ1(γ0,1)

vol(ZG1(R)\Icpt
0,1 (R))

,

whereas if γH1 is non-elliptic and (G1, H1)-regular then SOγH1
(fH1
∞ ) = 0. If γH1 ∈

H1(R)ss is not (G1, H1)-regular, then by [Mor10, Prop. 3.3.4, Rem 3.3.5] adapted
to our setting we have SOγH1

(fH1
∞ ) = 0. The χ−1

1 λH1-equivariance of fH1
∞ follows

from (8.2.5.1) and the equivariance of transfer factors (§7.4.7), recalling that the
central character of ξ1 is χ−1

1 .
We claim that if γH1 is elliptic and (G1, H1)-regular then (8.2.5.1) implies that

(8.2.5.2) SOγH1
(fH1
∞ ) = e(Icpt

0 )〈β̃∞(γ0), s〉∆∞(γH1 , γ0)tr ξ(γ0)
vol(ZG(R)\Icpt

0 (R))
,

where γ0 is the image of γ0,1 in G(R). It is routine to check term-by-term equali-
ties between the right hand sides of (8.2.5.1) and (8.2.5.2). We illustrate the idea
by showing that 〈β̃∞(γ0,1), s1〉 = 〈β̃∞(γ0), s〉, leaving the rest to the reader. Let
us write s for s1 since the latter is the image of s under the inclusion Ĝ → Ĝ1.
We have a decomposition s = s′s′′ with s′ ∈ Z(Ĥ)Γ∞ and s′′ ∈ Z(Ĝ). By defini-
tion ([Kot90, §2]) the character β̃∞(γ0) (resp. β̃∞(γ0,1)) restricts to a character on
Z(Î0)Γ∞ (resp. Z(Î0,1)Γ∞) and a character on Z(Ĝ) (resp. Z(Ĝ1)), each of which
is determined by µ (resp. µ1). They are related via the following commutative
diagrams, from which it is obvious that 〈β̃∞(γ0,1), s′s′′〉 = 〈β̃∞(γ0), s′s′′〉.

s′ ∈ Z(Ĥ)Γ∞ //

��

Z(Î0)Γ∞ β̃∞(γ0) //

��

C× s′′ ∈ Z(Ĝ)
β̃∞(γ0)//

��

C×

Z(Ĥ1)Γ∞ // Z(Î0,1)Γ∞

β̃∞(γ0,1)

;;

Z(Ĝ1)
β̃∞(γ0,1)

::

8.2.6. So far we have constructed the function fH1 := fH1,p,∞fH1
p fH1

∞ on H1(A).
If H is ramified over Qp or if elliptic tori of GR do not come from those of HR,
then we have fH1 = 0 since fH1

p = 0 or fH1
∞ = 0 in each case. When neither is the

case, fH1 depends only on the image of s modulo Z(Ĝ). To see this, suppose that
s is replaced with sz for z ∈ Z(Ĝ). Then fH1,p,∞ as well as the identity (8.2.3.1)
remains unchanged as

∏
v 6=p,∞ β̃v(γ0, a) is trivial on Z(Ĝ). The function fH1

p is
multiplied by µ(z)−1 according to §7.4.17. Since 〈β̃∞(γ0), s〉 is the only term in
(8.2.5.2) to change and it is multiplied by 〈β̃∞(γ0), z〉 = µ(z), the function fH1

∞ is
multiplied by µ(z) to keep (8.2.5.2) valid. All in all, fH1 indeed remains invariant.

8.2.7. Let us summarize the above results in terms of adelic orbital integral iden-
tities. To this end, we slightly extend the definition of N(γ0, κ, a, [b]) in §8.1.4
from rational to adelic elements. Let e = (H,H, s, η) ∈ Eell(G). Let γ0 ∈ G(A)
and suppose that γ0 is an image of γH1 ∈ H1(A)(G1,H1)-reg at every place v. De-
fine a similar quantity N ′(γ0, γH1 , s, a, [b]) for s ∈ Z(Ĥ), a ∈ D(I0, G;Apf ), and



218 MARK KISIN, SUG WOO SHIN, AND YIHANG ZHU

[b] ∈ Dn(γ0, G;Qp) by

N ′(γ0, γH1 , s, a, [b]) = 〈β̃p,∞(γ0, a), s〉〈β̃p(γ0, [b]), s〉〈β̃∞(γ0), s〉∆A(γH1 , γ0)
×Oγa(fp)TOδ[b](φn)tr ξ(γ0)vol(Z(R)\I∞(R))−1.

To compare with (8.1.4), if γ0 ∈ G(Q)R-ell then

(8.2.7.1) N ′(γ0, γH1 , s, a, [b]) = N(γ0, s, a, [b])

by definition of α(γ0, a, [b]) and the product formula that ∆A(γH1 , γ0) = 1.

Lemma 8.2.8. Let γH1 ∈ H1(A)(G1,H1)-reg. If γ0 ∈ G(A)ss is R-elliptic and an
image of γH1 at every place v then

SOγH1
(fH1) =

∑
a∈D(I0,G;Ap

f
)

[b]∈Dn(γ0,G;Qp)

N ′(γ0, γH1 , s, a, [b]).

If no R-elliptic γ0 ∈ G(A)ss is an image of γH1 then SOγH1
(fH1) = 0. If γH1 ∈

H1(Q)ss is not (G1, H1)-regular then again SOγH1
(fH1) = 0.

Proof. If elliptic maximal tori of GR do not come from those of HR then no R-
elliptic element of G(R) is an image of an element of H(R). Then fH1

∞ = 0 by
construction, so the lemma holds. If γH1,∞ is not (G1, H1)-regular then we saw
SOγH1,∞

(fH1
∞ ) = 0, so in particular SOγH1

(fH1) = 0 for non-(G1, H1)-regular
elements γH1 ∈ H1(Q)ss.

From now on, let γH1 ∈ H1(A)(G1,H1)-reg, and assume that elliptic maximal tori
of GR come from those of HR. If γH1 is not R-elliptic (or equivalently if γH1 has
no image in G(R)ell) then SOγH1,∞

(fH1
∞ ) = 0 by [Kot92a, Lem. 3.1] (asserting

that the orbital integrals of pseudocoefficients of discrete series representations are
supported on elliptic elements). Thus the lemma is verified is this case. If γH1,v

does not have an image in G1(Fv)ss at some finite place v then SOγH1
(fH1
v ) = 0

by §8.2.3 and §8.2.4 so the lemma is again true. In the remaining case, there exists
γ0 as in the lemma. Then the desired equality follows from (8.2.3.1), (8.2.4.1), and
(8.2.5.2). �

8.3. Final steps.

8.3.1. Resuming from the formula (8.1.4.2), we apply the adelic transfer of orbital
integrals to finish stabilization. To re-parametrize the sum over (γ0, κ) in (8.1.4.2),
consider the set of equivalence classes

ΣKell(G) := {(γ0, κ) | γ0 ∈ G(Q)ell, κ ∈ K(I0/Q)}/∼,

where (γ0, κ) ∼ (γ′0, κ′) if there exists g ∈ G(Q) such that (i) gγ0g
−1 = γ′0, (ii)

g−1τg ∈ I0(Q) for every τ ∈ Γ, and (iii) the inner twisting I0,Q ∼= Iγ′0,Q
induced by

Int(g) carries κ to κ′. Define another set of equivalence classes

EΣell(G) := {(e, γH) : e = (H,H, s, η) ∈ Eell(G), γH ∈ Σell(H)(G,H)-reg}/∼,

where Σell(H)(G,H)-reg is the set of stable conjugacy classes of (G,H)-regular semi-
simple elements of H(Q), and (e, γH) ∼ (e′, γ′H) if there is an isomorphism between
endoscopic data e = (H,H, s, η) and e′ = (H ′,H′, s′, η′) such that γH is carried to
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γ′H . (In particular (e, γH) ∼ (e, γ′H) if there is an outer automorphism of e mapping
γH to γ′H .) Define an analogous set with the obvious surjection

(8.3.1.1) EΣ∼ell(G) :=
{

(e, γH) | e = (H,H, s, η) ∈ Eell(G),
γH ∈ Σell(H)(G,H)-reg

}
→ EΣell(G).

The outer automorphism group OutF (e) acts transitively on each fiber of the map.
Let us define a map

Ẽ : EΣ∼ell(G) −→ ΣKell(G) ∪ {∅}.
We explained in §7.4.2 how (e, γH) determines either a stable conjugacy class of γ0 ∈
G(Q) or ∅ (when there is no matching conjugacy class in G(Q)). In the latter case,
set Ẽ : (e, γH) 7→ ∅. In the former, we map (e, γH) to (γ0, κ), where κ ∈ K(I0/Q)
is determined by the image of s under the composition Z(Ĥ) ↪→ Z(ÎγH ) ∼= Z(Î0).
Here the canonical isomorphism comes from the fact that I0 is an inner form of
IγH . The ellipticity of γ0 follows from that of γH . Letting Z(Q) act on each of
Σell(G) and Σell(H) by multiplication, we see that Ẽ is Z(Q)-equivariant.

By [Kot86, Lem. 9.7], when Gder = Gsc, the map Ẽ factors through a unique
map E : EΣ∼ell(G)→ EΣell(G), and the image of Ẽ contains ΣKell(G). When Gder is
not simply connected, write Ẽ1 and E1 for the analogous maps for the z-extension
G1. We have a commutative diagram (a priori without E)

(8.3.1.2) EΣ∼ell(G1) // //

��

EΣell(G1) E1 //

��

ΣKell(G1) ∪ {∅}

��
EΣ∼ell(G)

Ẽ

22
// // EΣell(G) ∃!E // ΣKell(G) ∪ {∅},

where the vertical maps are induced by G1 → G, using Eell(G1) ∼= Eell(G) (Lemma
7.2.11) and part (i) of Lemma 7.3.2. We add that the right vertical is required to
send ∅ to itself. By the ZG1(Q)-equivariance of E1, there exists a unique ZG(Q)-
equivariant map E making the entire diagram commute. (The image of E does not
contain ∅ if G is quasi-split over Q, since every γH then has an image in G(Q).)
Lemma 8.3.2. The map E is Z(Q)-equivariant and contains ΣKell(G) in its image.
Moreover for (γ0, κ) ∈ ΣKell(G) and e ∈ Eell(G),

ιG(γ0)−1 = λ(e)−1
∑

γH∈Σ(H) s.t.
E:(e,γH ) 7→(γ0,κ)

ιH(γH)−1.

Remark 8.3.3. We remark that, in the strongly regular case the lemma follows from
[KS99, Lem. 7.2.A], which covers twisted endoscopy.
Proof. The Z(Q)-equivariance was observed above. Since the right vertical map is
surjective in (8.3.1.2) by Lemma 7.3.2, the containment of ΣKell(G) in the image of
E reduces to the case for G1, which is proved in [Kot86, Lem. 9.7] (since G1,der =
G1,sc). Finally the equality asserted in the lemma follows from [Lab04, Cor. IV.3.6].

�

8.3.4. Recall that Kp is a neat subgroup and that X = (Z(Af ) ∩K) · Z(R). In
particular
(8.3.4.1) X ∩Gder(Q) = {1}.
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Let EΣ∼ell,X(G) denote the quotient set of EΣ∼ell(G) by the obvious multiplication of
XQ = X∩Z(Q). Likewise, define ΣX(H) and ΣKell,X(G) from Σ(H) and ΣKell(G).
Let

ẼX : EΣ∼ell,X(G)→ ΣKell,X(G) ∪ {∅}
denote the map E pre-composed with (8.3.1.1) modulo the XQ-action.

Corollary 8.3.5. The image of ẼX is equal to ΣKell,X(G) if G is quasi-split and
contains ΣKell,X(G) in general. Moreover for fixed (γ0, κ) and e,

ιG(γ0)−1 = λ(e)−1
∑

γH∈ΣX(H) s.t.
EX:(e,γH ) 7→(γ0,κ)

ιH(γH)−1.

Proof. The only non-trivial point is to deduce the equality from Lemma 8.3.2.
Let e = (H,H, s, η) ∈ Eell(G), γH , γ′H ∈ H(Q)(G,H)-reg. Suppose that E maps
both (e, γH) and (e, γ′H) to (γ0, κ). What we need to show is that, if γ′H is stably
conjugate to zγH for some z ∈ X, then γ′H is stably conjugate to γH .

By assumption, E maps (e, zγH) to (zγ0, κ). Hence zγ0 is stably conjugate to
γ0. In particular gzγ0g

−1 = γ0 for some g ∈ G(Q). Thanks to (8.3.4.1) the element
z is trivial, so γ′H is stably conjugate to γH as desired. �

Lemma 8.3.6. Let fH1 be as in §8.3.4. Assume that ẼX maps (e, γH) to ∅. Then
SOγH1

(fH1) = 0 for every lift γH1 ∈ H1(Q) of γH .

Proof. Suppose that SOγH1
(fH1) 6= 0. By Lemma 8.2.8 there exists γ0,1 ∈ G1(A)

such that γ0,1,v is an image of γH1,v at every place v. To show that (e, γH) is not
mapped to ∅ under E, it suffices to show the existence of γ′0,1 ∈ G1(Q) which is
stably conjugate to γ0,1 in G1(Qv) for every place v. Indeed, (e1, γH1) then does
not map to ∅, thus (e, γH) does not either, cf. (8.3.1.2). Thus the proof boils down
to the case where G = G1 and H = H1 (with Gder = Gsc). Henceforth we will
write γ0 for γ0,1, γH for γH1 , and so on.

Let G∗ denote a quasi-split inner form of G. Write γ∗0 ∈ G∗(Q)ss for the image
of γH under (7.4.2.1). Now recall that Labesse (see [Lab99, §2.6], with L = G,H =
G∗) constructs a non-empty subset

obsγ∗0 (γ0) ⊂ E(Iγ∗0 , G
∗;A/Q) Cor. 1.7.4======== K(Iγ∗0 /Q)D,

generalizing the construction of Kottwitz in [Kot86].
As in the second paragraph of [Kot90, p. 188], the Chebotarev density theorem

implies that the natural map K(Iγ∗0 /Qw)D → K(Iγ∗0 /Q)D is surjective for some finite
place w. In Labesse’s construction, if we twist γ0,w within its stable conjugacy class
by a class c ∈ K(Iγ∗0 /Qw)D, then obsγ∗0 (γ0) gets shifted by the image of c in the
abelian group K(Iγ∗0 /Q)D. Hence, if we replace γ0,w by a stably conjugate element
and keep the components of γ0 outside w unchanged, then we may arrange that
0 ∈ obsγ∗0 (γ0) ⊂ K(Iγ∗0 /Q)D. By [Lab99, Thm. 2.6.3], the G(A)-conjugacy class of
γ0 contains an element of G(Q), which we can take to be γ′0. �

8.3.7. For each e = (H,H, s, η) ∈ Eell(G), set
(8.3.7.1) ι(G,H) := τ(G)τ(H)−1λ(e)−1 = τX(G)τX(H)−1λ(e)−1.

Given γH ∈ Σell,X(H) we define StabX(γH) to be the group of z ∈ XQ such that
zγH = γH in Σell,X(H). This group is finite by the same argument as in §7.1.4
showing the finiteness of StabX(γH).
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Let us introduce the stable analogue of Tell (see §7.1.6) for H1 with respect to
the central character datum (XH1 , χH1), where χH1 := χ1λ

−1
H1

. To check that it is
indeed a central character datum, note that both χ1 and λH1 are trivial on XH1,Q
by construction, cf. §8.1.2 and (8.2.1.1). For h ∈ H(H1(A), χ−1

H1
), set

(8.3.7.2) STH1
ell,χH1

(h) := τXH1
(H1)

∑
γH1∈Σell,XH1

(H1)

|StabXH1
(γH1)|−1SOγH1

(h).

There is no need for the factor ι(γH1)−1, which is equal to 1 since H1 has simply
connected derived subgroup.

Lemma 8.3.8. For γH1 ∈ H1(Q)(G1,H1)-reg,

|StabXH1
(γH1)| = |StabX(γH)|ιH(γH).

Proof. It suffices to construct a short exact sequence of groups

1→ (HγH/H
0
γH )(Q)→ StabXH1

(γH1)→ StabX(γH)→ 1.

The third arrow from the left is the map induced by the projection XH1 → X and
is clearly surjective. To construct the second arrow, given h ∈ (HγH/H

0
γH )(Q),

choose a lift h ∈ HγH (Q) and a further lift h1 ∈ H1(Q). Then x1 := h1γH1h
−1
1 γH1

belongs to Z1(Q), and moreover x1 ∈ StabXH1
(γH1) since h1γH1h

−1
1 = x1γH1 . The

assignment h 7→ x1 is a well-defined homomorphism. To check this map is injective,
suppose h1γH1h

−1
1 = γH1 . Then h1 lies in the centralizer of γH1 in H1, which is

connected. (To see this, choose a place v such that G1,Qv is quasi-split, so that
γH1,v has an image γ1,v ∈ G1,Qv . Since the centralizer of γ1,v is connected, and
since γH1 is (G1, H1)-regular, the same is true for γH1,v by [Kot86, Lem. 3.2].) Thus
the image of h1 in HγH lies in H0

γH , implying that h is trivial.
The composition of the two maps above is clearly trivial. Finally suppose that

x1 ∈ StabXH1
(γH1) maps trivially into StabX(γH). Then x1 ∈ Z1(Q). To check

that x1 comes from (HγH/H
0
γH )(Q), choose h1 ∈ H1(Q) such that h1γH1h

−1
1 =

x1γH1 . Its image h in H(Q) clearly centralizes γH . Writing h for the image of h in
(HγH/H

0
γH )(Q), we see that h is Q-rational and maps to x1 by construction. �

Remark 8.3.9. In our situation |StabX(γH)| = 1. Indeed the stabilizer group is
a finite subgroup of K via XQ ⊂ Z(Q)K ⊂ K, but K has no non-trivial torsion
elements as K is neat.

Theorem 8.3.10. Assume that Conjecture 1.8.8 is true (cf. Remark 1.8.10). With
fH1 constructed as in §8.3.4 for each e ∈ Eell(G), we have

∑
i

(−1)itr
(

Φmp × (fpdgp) | Hi
c(ShE , ξ)

Kp

)
=

∑
e∈Eell(G)

ι(G,H)STH1
ell,χH1

(fH1)

for all sufficiently large m.
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Proof. We compute the right hand side as follows.∑
e∈Eell(G)

ι(G,H)STH1
ell,χH1

(fH1)

= τXH (G)
∑

e∈Eell(G)

λ(e)−1
∑

γH1∈Σell,XH1
(H1)

|StabXH1
(γH1)|−1SOγH1

(fH1)

= τXH (G)
∑

e∈Eell(G)

λ(e)−1
∑

γH∈Σell,X(H)

ι(γH)−1SOγH1
(fH1)

= τX(G)
∑

(e,γH)∈EΣ∼ell,X(G)

λ(e)−1ι(γH)−1SOγH1
(fH1)

= τX(G)
∑

(γ0,κ)∈ΣKell,X(G)

∑
(e,γH )∈EΣ∼ell,X(G)

EX:(e,γH )7→(γ0,κ)

λ(e)−1ι(γH)−1SOγH1
(fH1)

= τX(G)
∑

(γ0,κ)∈ΣKell,X(G)
γ0: R-elliptic

∑
a∈D(I0,G;Ap

f
)

[b]∈Dn(γ0,G;Qp)

ι(γ0)−1N(γ0, κ, a, [b]).

In the third, fourth, and fifth lines, γH1 ∈ H1(Q)ss is an arbitrary lift of γH ∈
H(Q)ss. Each summand is independent of the choice since f1 transforms under the
character χ−1

H1
, which is trivial on Z1(Q).

We justify these equalities. The first equality uses Lemma 8.2.2 and (8.3.7.1).
The next one is based on Lemma 8.3.8 and the bijection Σell,XH1

(H1)→ Σell,X(H)
induced by the surjection H1(Q) → H(Q). We also used |StabX(γH)| = 1, and
the vanishing of the summand if γH1 is not (G1, H1)-regular by Lemma 8.2.8. To
continue, the third equality is justified by Lemma 8.2.8 telling us that only (G,H)-
regular γH contributes to the sum. The fourth equality follows from Lemma 8.3.6.
The last equality is deduced from Lemma 8.2.8 Corollary 8.3.5, and (8.2.7.1), noting
that γ0,1 can be taken from G1(Q) whenever SOγH1

(fH1) 6= 0 as shown in the proof
of Lemma 8.3.6.

The proof is complete as the last expression in the displayed formula is exactly
the left hand side of the theorem by §8.1.4. �

Theorem 8.3.11 (cf. Theorem 1 in the Introduction). Assume that (G,X) is of
abelian type. With notation as in Theorem 8.3.10, we have∑

i

(−1)itr
(

Φmp × (fpdgp) | Hi
c(ShE , ξ)

Kp

)
=

∑
e∈Eell(G)

ι(G,H)STH1
ell,χH1

(fH1)

for all sufficiently large m.

Proof. This follows from Theorems 6.3.6 and 8.3.10. �

9. Spectral interpretation

In order to read off spectral information from Theorem 8.3.10, we need to turn
the geometric stable distribution into a spectral expansion. After discussing the
stable trace formula in §9.1 when the test function is stable cuspidal at ∞, we will
remark on the prospect for unconditional spectral interpretation in §9.2.
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9.1. The stable trace formula.
9.1.1. Let G be a quasi-split connected reductive group over Q with a fixed z-
extension G1. (We do not assume that G is part of a Shimura datum in §9.1.)
Let (X, χ) be a central character datum such that X ⊃ AZ,∞. For each elliptic
endoscopic datum e = (H,H, s, η) ∈ Eell(G), choose a central extension H1 and
define e1 ∈ Eell(G1) as well as characters χ1 and λH1 as at the start of §8.2. We
have a central character datum (XH1 , χH1) with χH1 := χ1λ

−1
H1

as in §8.3.7. Let us
recall relationships between certain stable distributions on G(A).
9.1.2. Set X0 := AZ,∞. Define χ0 : AZ,∞ → C× to be the restriction of X to X0.
Then (X0, χ0) is a central character datum. Let Sχ0 = SGχ0

denote Arthur’s stable
distribution on H(G(A), χ−1

0 ) inductively defined in [Art02, §9]. Write Sdisc,χ0 for
the discrete part of Sχ0 (see (7.11) in loc. cit.). Define Sχ and Sdisc,χ in terms of
Sχ0 and Sdisc,χ0 exactly as in (7.1.9.1). The equality defining SGχ0

inductively leads
to the analogous equality (compare with [Art13, (3.2.3)])

(9.1.2.1) SGχ (f) = IGχ (f)−
∑

e=(H,H,s,η)∈Eell(G)
H 6=G

ι(G,H)SH1
χH1

(fH1),

where IGχ means either IGspec,χ or IGgeom,χ, which are equal, and fH1 ∈ H(H1(A), χ−1
H1

)
denotes a Langlands–Shelstad transfer of f (Proposition 7.4.11). If f∞ is stable
cuspidal then fH1

∞ is also stable cuspidal (possibly trivial). Indeed, this is reduced
via z-extensions to the case that Gder = Gsc, where this fact follows from work of
Shelstad and Clozel–Delorme by the argument as in [Kot90, pp. 182–186]. (This
argument is also at the basis of constructing fH1

∞ in §8.2.5.)
Likewise the analogue of (9.1.2.1) holds true with Sdisc and Idisc in place of S

and I. What follows is the stable version of Proposition 7.1.12.
Lemma 9.1.3. Let f = f∞f∞ ∈ H(G(A), χ−1) with f∞ stable cuspidal. Then

SGχ (f) = SGdisc,χ(f).
Proof. This follows from Proposition 7.1.12, which implies that

Ispec,χ(f) = Idisc,χ(f)
via the inductive definition above. �

9.1.4. We are going to state a stabilization of the geometric side. Let (X, χ) be
a central character datum for G. Write AGR for the maximal R-split torus in ZGR .
(In general AGR 6= (AG)R.) Consider the following hypotheses:

(H1) GR contains an elliptic maximal torus,
(H2) X = X∞ × X∞ with X∞ ⊂ Z(Af ) and AGR,∞ ⊂ X∞ ⊂ Z(R).

The two conditions are satisfied by the groups contributing to the right hand side
of Theorem 8.3.10, so (H1) and (H2) are harmless to assume for our purpose.

We adapt the definition of the stable distribution STGM in [Mor10, §5.4] to the
case of fixed central character. Let T∞ be an elliptic maximal torus of GR and
write Tsc,∞ ⊂ Gsc,R for the preimage. Write Gcpt for an inner form of GR which is
anisotropic modulo AGR ; such a Gcpt exists by (H1). The Haar measure on Gcpt(R)
is always chosen to be compatible with that of G(R). Define

k(GR) := |im(H1(R, Tsc,∞)→ H1(R, T∞))|,
v(GR) := e(Gcpt)vol(Gcpt(R)/AGR(R)0).
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The two numbers depend only on GR and a Haar measure on G(R).
Let MR ⊂ GR be an R-rational Levi subgroup containing an elliptic maximal

torus. (So the torus is anisotropic modulo AMR .) Let Π be a discrete series L-packet
ofG(R) with fixed central character χ∞ on X, and write ΘΠ for the associated stable
character (either as a function on regular elements or as a distribution on the space
of test functions). Let DGR

MR
denote the Weyl discriminant. Write ΦGR

MR
(·,ΘΠ) for the

unique function on the set of elliptic elements in M(R) which extends the function
γ 7→ |DGR

MR
(γ)|1/2ΘΠ(γ) on M(R) ∩ G(R)reg; such an extension exists by [Art89,

Lem. 4.2]. Let f∞ ∈ C∞c (G(R), χ−1
∞ ). For elliptic elements γ in M(R), define

SΦGR
MR

(γ, f∞) := (−1)dimAMR/AGR · v(M0
R,γ)−1 k(MR)

k(GR)
∑
Π

ΦGR
MR

(γ−1,ΦΠ)ΘΠ(f∞),

where M0
R,γ is the connected centralizer of γ in MR, and the sum runs over discrete

series L-packets with central character χ∞. Set SΦGR
MR

(γ, f∞) = 0 if γ ∈ M(R) is
not elliptic.

Turning back to the global setting, assuming (H1) and (H2) for G, let M be a
Q-rational Levi subgroup of G, which is said to be G-cuspidal if MR contains an
elliptic maximal torus and if dimAM/AG = dimAMR/AGR . This relativizes the
notion of cuspidal reductive groups over Q. Note that M = G is always G-cuspidal
even if G is not cuspidal over Q. Let f = f∞f∞ with f∞ ∈ H(G(Af ), (χ∞)−1)
and f∞ ∈ H(G(R), χ−1

∞ ). Denote by f∞M ∈ H(M(Af ), (χ∞)−1) the constant term
of f∞ defined by [GKM97, (7.13.2)]. (The same definition works regardless of fixed
central character. As explained therein, it is not f∞M itself but its orbital integral
that has well-defined values.) If M is G-cuspidal, put

STGM,χ(f) := τX(M)
∑
γ

ιM (γ)−1SOγ(f∞M )SΦGR
MR

(γ, f∞),

where the sum runs over the set of stable semi-simple conjugacy classes in M(Q).
(The summand is zero unless γ is elliptic in M(R).) Define STGM,χ to be identically
zero if M is not G-cuspidal. Finally, define

STGχ (f) :=
∑
M

|(NG(M)/M)(Q)|−1STGM,χ(f),

where M runs over the set of G(Q)-conjugacy classes of Q-rational Levi subgroups.

Lemma 9.1.5. Let G be a quasi-split reductive group over Q with central character
datum (X, χ). Assume (H1) and (H2) above, and let f = f∞f∞ as above with f∞
stable cuspidal. Then

SGχ (f) = STGχ (f).

Proof. As in (9.1.2.1), we have

IGχ (f) =
∑

e=(H,H,s,η)∈Eell(G)

ι(G,H)SH1
χH1

(fH1).

The assertion is trivial if G is a torus. We induct on the semi-simple rank. Then
SH1
χH1

(fH1) = STH1
χH1

(fH1)

for all e such that H � G. Indeed, if H1,R contains no elliptic maximal torus
or if AGR ( AHR , then the transfer fH1

∞ vanishes so the equality holds trivially.
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OtherwiseH1,R and XH1 satisfy the analogue of (H1) and (H2), so the above equality
is true by the induction hypothesis.

To conclude, it is enough to show that

IGχ (f) =
∑

e=(H,H,s,η)∈Eell(G)

ι(G,H)STH1
χH1

(fH1)

when f∞ is a stable cuspidal function. This was proven by Peng [Pen19, Thm. 9.2]
without fixed central character. The desired equality follows from it by averaging
with respect to (X, χ). (When G is cuspidal over Q with simply connected derived
subgroup, Peng’s result was obtained in an unpublished manuscript by Kottwitz
[Kot, Thm. 5.1], cf. [Mor10, Thm. 5.4.1].) �

9.2. Speculations.

9.2.1. We return to the setting of Theorem 8.3.10 for the compactly supported
cohomology of Shimura varieties, where (H1) and (H2) hold true for G and X as
well as for H1 and XH1 contributing non-trivially to the right hand side.

The analogue of Theorem 8.3.10 is expected to be true for the intersection co-
homology of the Baily–Borel compactification. Writing T IH(Φmp , fpdgp) for the
intersection cohomology analogue of T (Φmp , fpdgp), the conjectural stabilization
should have the form (cf. [Kot90, (10.1)])

(9.2.1.1) T IH(Φmp , fpdgp) =
∑

e∈Eell(G)

ι(G,H)STH1
χH1

(fH1).

The point is that the non-elliptic terms in STH1
χH1

(coming from proper Levi sub-
groups) should be accounted for exactly by the boundary strata of the Baily–Borel
compactification. For non-proper Shimura varieties, (9.2.1.1) is known for cer-
tain special orthogonal group and unitary similitude groups in addition to general
symplectic groups in [LR92, Mor08, Mor10, Mor11, Zhu18]. On the other hand,
Lemmas 9.1.3 and 9.1.5 imply that

(9.2.1.2) STH1
χH1

(fH1) = SH1
disc,χH1

(fH1).

Combined with (9.2.1.1), this yields a trace formula for the intersection cohomol-
ogy in terms of the stable distributions SH1

disc,χH1
, which are of a spectral nature.

Then one can follow Kottwitz [Kot90, §§9–10] to unravel SH1
disc,χH1

(fH1) to obtain
a conjectural description of the intersection cohomology (in each degree, by purity)
as a G(Af )×Gal(E/E)-module, in terms of automorphic representations of G(A)
and their endoscopic classification; see p. 201 therein.49 The endoscopic classifi-
cation for classical groups is worked out in [Art13, Mok15, KMSW14, Taï19], in
the quasi-split case and some more. However, little is known for groups of higher
rank beyond classical groups, except for partial results on general symplectic and
orthogonal groups in [Xu18, Xu21].

49We do not reproduce Kottwitz’s argument or his conjectural description here. We content
ourselves with remarking that the destabilization process in [Kot90] may also be carried out by
applying the conjectural stable multiplicity formula, cf. [Art13, Thm. 4.1.2, (4.8.5)]. Still the key
computation at p and ∞ of [Kot90, §9] is irreplaceable as it reflects the features of test functions
at p and ∞ specific to the context of Shimura varieties.
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9.2.2. We return to compactly supported cohomology. In the special case that
G/Z is anisotropic over Q, the Shimura variety ShK is proper over E for each K.
Thus the intersection cohomology coincides with the compactly supported cohomol-
ogy. In particular T IH(Φmp , fpdgp) = T (Φmp , fpdgp), and the above consideration
suggests that

(9.2.2.1) STH1
χH1

(fH1) ?= SH1
ell,χH1

(fH1).

We stress that this equality is not intrinsic to H1. Indeed, a quasi-split inner form
G∗ of G over Q shares the same elliptic endoscopic data as G. When G∗ can
be promoted to a Shimura datum, (9.2.2.1) would be false for fH1 constructed in
the context of the Shimura variety for G∗ (since the latter does have a non-empty
boundary). Once (9.2.2.1) is verified, we obtain (9.2.1.1), and the preceding para-
graph explains how to extract the spectral information for the compactly supported
cohomology in this case.

If G/Z is isotropic over Q, then the description of the G(Af ) × Gal(E/E)-
module structure on the compactly supported cohomology is expected to be very
complicated. Indeed, this is confirmed by Franke’s formula [Fra98] even if the Galois
action is forgotten. See also [Lau97] for the case of GSp4. Moreover, there may be
cancellations between different degrees since the compactly supported cohomology
need not be pure. We think that it is better to study the intersection cohomology
by proving (9.2.1.1) in this case.

9.2.3. We end by summarizing the prospect of unconditional results on the coho-
mology of Shimura varieties associated with (G,X). In the case of abelian type, our
main result is that the identity in Theorem 8.3.10 holds unconditionally whenever
Kp is a hyperspecial subgroup of G(Qp) and m is sufficiently large. When G/Z
is anisotropic over Q, in order to make the conjectural description in the style of
[Kot90, p. 201] unconditional, the two main missing ingredients are the endoscopic
classification of automorphic representations (for G and the groups H1’s contribut-
ing to the stabilization) and the equality (9.2.2.1). When G/Z is isotropic, instead
of (9.2.2.1), one should attempt to prove (9.2.1.1) by extending the methods of
[Mor10] and [Zhu18]. On top of that, the same endoscopic classification is needed
to arrive at the final description of cohomology.
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