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Preface 

This volume is the result of a (mainly) instructional conference on arithmetic 
geometry, held from July 30 through August 10, 1984 at the University of 
Connecticut in Storrs. This volume contains expanded versions of almost all 
the instructional lectures given during the conference. In addition to these 
expository lectures, this volume contains a translation into English of Falt
ings' seminal paper which provided the inspiration for the conference. We 
thank Professor Faltings for his permission to publish the translation and 
Edward Shipz who did the translation. 

We thank all the people who spoke at the Storrs conference, both for 
helping to make it a successful meeting and enabling us to publish this 
volume. We would especially like to thank David Rohrlich, who delivered 
the lectures on height functions (Chapter VI) when the second editor was 
unavoidably detained. In addition to the editors, Michael Artin and John 
Tate served on the organizing committee for the conference and much of the 
success of the conference was due to them-our thanks go to them for their 
assistance. 

Finally, the conference was only made possible through generous grants 
from the Vaughn Foundation and the National Science Foundation. 

December, 1985 G. Cornell 
J. H. Silverman 
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Introduction 

The chapters of this book, with the exception of Chapters II, XI and XII, are 
expanded versions of the lectures given at the Storrs Conference. They are 
intended, as was the conference, to introduce many of the ideas and tech
niques currently being used in arithmetic geometry; and in particular to ex
plicate the tools used by Faltings in his proof of the Isogeny, Shafarevich and 
Mordell conjectures. 

The first chapter is a brief overview, by Faltings himself, of the history 
leading up to the proof of the Mordell conjecture, and the second is a 
translation from the German of Faltings' paper in which he proved all three 
conjectures. The heart of this book, Chapters III through IX, contain (with 
varying amounts of detail) all of the results used in Faltings' paper. In par
ticular, there is a thorough treatment of finite group schemes and p-divisible 
groups (Chapter III), Abelian and Jacobian varieties and schemes (Chapters 
IV, V, VII and VIII), their moduli spaces (Chapter IX) and height functions 
(Chapter VI). The prerequisites vary for each chapter, but in general, little is 
needed beyond what would normally be covered in one-year graduate courses 
in algebraic number theory and algebraic geometry. 

After a brief chapter to illustrate the general theory for the particular case 
of elliptic curves (Chapter X), there are four chapters devoted to the theory of 
local height functions and arithmetic (Arakelov) intersection theory. Finally, 
Chapter XV contains an exposition ofVojta's far-reaching conjecture, whose 
consequences would include many of the standard finiteness theorems and 
outstanding conjectures in arithmetic geometry. 

The editors hope that this volume will provide a path into the forest that 
is modern arithmetic geometry, wherein you will discover the beautiful flow
ers that blossom when arithmetic and geometry are intertwined, and there 
perchance, discover some new, exotic species heretofore unknown to the 
world of mathematics. 



CHAPTER I 

Some Historical Notes 

GERD FALTINGS 

The purpose of these notes is to give some information about the origin of the 
ideas used in the proofs of the conjectures of Tate, Shafarevich, and Mordell. 
They are not meant to be a complete historical treatment, and they present 
only the author's very personal opinion of how things evolved, and who 
contributed important ideas. He therefore apologizes in advance for the inac
curacies in them, and that he has omitted many who have contributed their 
share. He does not intend to offend them, and welcomes advice and remarks. 
Hopefully his remarks will encourage the reader, to look into the original 
papers. The general strategy is to explain when and why the main ideas were 
invented. In explaining them we use the modern terminology, which usually 
makes it much easier to state them than it was at the time when they were 
first used. Of course, this does not mean that we intend to critize those who 
invented them, which had to state them at a time when the technical means 
available were much weaker than those we have today. 

The main topics are: 

(1) The theorems of Mordell and Mordell-Weil. 
(2) Siegel's theorem about integral points. 
(3) The proof of the Mordell conjecture for function fields, by Manin and 

Grauert. 
(4) The new ideas of Parshin and Arakelov, relating the conjectures of Mor

dell and Shafarevich. 
(5) The work of Szpiro, extending this to positive characteristic. 
(6) The theorem of Tate about endomorphisms of abelian varieties over 

finite fields. 
(7) The work of Zarhin. 
(8) Bibliographical remarks. 



2 G. FALTINGS 

§1. The Theorems of Mordell and Mordell-Weil 

Let us start (arbitrarily) with the theorem of L. J. Mordell, that the rational 
points on an elliptic curve are a finitely generated abelian group. He also 
conjectured that there are only finitely many rational points on curves of 
higher genus, but stated that this was only a guess, and that he had no 
argument for it. A. Weil, trying to prove this conjecture, extended his result 
to Jacobians of curves of arbitrary genus (and thus, in the modern terminol
ogy which is far more sophisticated than that which he had in his hands, to 
abelian varieties). Both Mordell and Weil used infinite descent. In short the 
argument is as follows: 

Let A denote an abelian variety over a number field K. Show first that 
A(K)j2· A(K) is finite, by injecting it into a cohomology-group Hl(Os, A[2]). 
Then use the fact that the height function h(P) is almost a quadratic form on 
A(K). 

A natural idea of how to use this result to prove the Mordell conjecture is 
the following: 

Inject a curve X of genus g > 1 into its Jacobian J, and prove that any 
finitely generated subgroup of J has finite intersection with X. The latter 
property may be verified over the complex numbers, so that we may use 
analytic tools. 

Unfortunately, this assertion is rather difficult and its only known proof 
consists in deriving it from the Mordell conjecture. Thus the theorem of 
Mordell-Weil does not help us in proving the Mordell conjecture, and in fact 
it is not used in the proof. 

§2. Siegel's Theorem About Integral Points 

This theorem of C. L. Siegel states that on an affine curve of positive genus 
there can be only finitely many integral points over any number field. (For 
affine curves there is a difference between integral and rational points, in 
contrast to complete curves.) The main tool is diophantine approximation, 
first used by Thue, refined by Siegel, and put into its final form by Roth. 

The idea of Siegel's proof goes as follows: 

Let K denote a number field, X a complete curve over K, and 00 E X(K) a 
rational point. For any other rational point P E X(K) the height h(P) (for 
some projective embedding) can be computed as an Arakelov type intersec-
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tion number between the divisors P and 00. If P is an integral point on the 
affine curve X - { 00 } only the infinite places of K contribute to this intersec
tion, and we obtain h(P) by summing over local contributions hv(P), for v an 
infinite place 

h(P) = L hv(P)· 
vloo 

Diophantine approximation gives us a constant c such that for almost all P 
we have 

hv(P) ~ c . h(P) for all vi 00. 

In fact, any c > 2 will do. 

This estimate can be refined by using coverings: 

If the genus g of X is positive, we can find unramified coverings X' ~ X of 
arbitrarily high degree nY, n some natural number. After extending K we may 
assume that P lifts to a rational point pi E X' (K). 

The construction of X' uses multiplication by n on the Jacobian of X, and 
gives a projective embedding of X' such that 

h(PI
) = ~ . h(P). 

n 

Furthermore, we obtain for the infinite contributions that hV(PI) is approxi
mately equal to hv(P), since at each infinte place pi can be very close only to 
one of the points lying above 00, the covering being unramified. 

If we apply the inequality above to X' instead of X, we obtain 

c 
hv(P) ~ 2 . h(P) 

n 

for almost all P; that is, the inequality remains true for almost all integral 
points P if we take any positive c > 0 (instead of c > 2). As h(P) is the sum 
over the finitely many hv(P), we obtain a contradiction for almost all P; that 
is, the number of P's must be finite. 

After Siegel's theorem there was almost no progress for about 30 years, 
except that K. Mahler extended the results to S-integral points, S a finite set 
of places containing all the infinite ones. (He extended diophantine approxi
mation to p-adic fields.) The results are ineffective because of the use of 
diophantine approximation, but we obtain effective bounds for the number 
of integral points. Nobody so far has been able to apply the technique to the 
study of rational points. 
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§3. The Proof of the Mordell Conjecture for Function 
Fields, by Manin and Grauert 

In 1963 Yu Manin proved the Mordell conjecture for curves over a complex 
function field. It states that nonisotrivial curves have only finitely many ra
tional points. (Some assumption is necessary to exclude the constant curves.) 
This proof was very ingenious and used the Gauss-Manin connection. 
Another proof was given by H. Grauert in 1966. Both times the essential use 
was made of the fact that the ground field has a nontrivial derivation. Thus 
the proofs do not carryover to number fields. 

§4. The New Ideas of Parshin and Arakelov, Relating 
the Conjectures of Mordell and Shafarevich 

, 
A. N. Parshin introduced a new idea to relate Mordell's conjecture to the 
Shafarevich conjecture fo~ curves. For this he introduced the "Parshin trick," 
which is amply explained elsewhere in this volume. He also proved the 
Shafarevich conjecture for families with good reduction everywhere, over a 
complex curve. The general idea is as follows: 

Let f: X -+ B denote a smooth family of curves of genus g ~ 2, over the 
base B (a compact Riemann surface). Consider the relative differentials 
WX/B = nl/B and their direct images f*(wX/B), f*(wi,B)' We can bound the 
degree of f*(WX/B)' because 

r(B,f*(wX /B ) ® nj) = r(X, nil 
is a subspace of H2(X, IC), and the dimension of the singular cohomology of 
X is bounded because of the Leray special sequence 

E~,q = Hq(B, RPf*1C) = Hp+q(X, IC). 

This leads to bounds for the numerical invariants of the surface X, like ci, 
wi'B' etc. 

We furthermore show that X is a surface of general type if the genus of B 
is bigger than one (which we can assume), and we derive that the possible X 
make up only finitely many algebraic families. 

Finally, we show that X can be deformed only if it is isotrivial. This goes 
as follows: 

The infinitesimal deformations are given by Hi (X, wx/~). By Kodaira it 
suffices to show that W X /B is ample if X is not isotrivial. 
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It is easy to see that W X /B has positive intersection with any curve on X. It 
remains to be seen that Wi/B is positive (by Nakai's criterion). If Wi/B = 0 we 
show that Nf*(wX/B) has degree zero. But this is wJ /B, where J = PicO(X/B) 
denotes the Jacobian of X, and this is the pullback of an ample line bundle 
on the moduli space of abelian varieties. Thus Wi/B = 0 implies J / B isotrivial 
implies X/B isotrivial, by Torelli. 

For the general case (that is, X may have bad reduction over some points 
of B) Parshin still proves quite a lot, namely: 

Let X/B denote a stable family, with good reduction outside S c B. 

(a) Wi/B is bounded (WX/B = relative dualizing sheaf). 
(b) X moves in only finitely many algebraic families. 

(a) suffices to prove the Mordell conjecture for function fields, with an explicit 
bound for the height of a rational point. To conclude the proof of the 
Shafarevich conjecture we only need an extension of the deformation argu
ment above. 

This extension was given by Arakelov. His main new idea was the use of 
Weierstrass points to construct an injection 

f*(Nf*(wX/B)) c; wlJr.%+1)/2. 

As before we get that deg(Nf*(wx/B)) > 0 for families which are not isotrivial, 
and the inclusion above can be used to show that Wi/B > O. The rest essen
tially goes as before. 

Some further comments: 

(i) S. Arakelov has developed an intersection theory for arithmetic sur
faces, and some of the results above carryover (for example, Wi/B ~ 0). But 
as the proof of the Shafarevich conjecture makes essential use of the differ
entiation in the ground field, it does not carryover. Similarly for the weaker 
boundedness statements which suffice for the Mordell conjecture: 

They use Hodge theory, and even do not carryover to positive character
istics (Frobenius gives counterexamples). 

(ii) The Shafarevich conjecture had been shown for curves. One part of its 
proof applies also to families of principally polarized abelian variety: The 
results about boundedness still hold. 

But the deformation theory fails: 

There are highly nonisotrivial families of abelian varieties which can be 
deformed. Therefore the stronger form of the Shafarevich conjecture does not 
hold for function fields. It thus came as a surprise that it can be shown for 
number fields. 

(iii) The methods used for function fields leads to effective bounds for the 
heights of rational points. For number fields the situation is worse. 



6 G. FALTINGS 

§5. The Work of Szpiro, Extending This to 
Positive Characteristic 

L. Szpiro extended the results of Parshin and Arakelov to positive character
istics. The main new ideas are: 

(a) A vanishing theorem in positive characteristic, which replaces Kodaira. 
(b) Instead of nonisotrivial we demand that the Kodaira-Spencer class of a 

family is nonzero. We derive ampleness for WX/B, as before. 
(c) To get upper bounds for deg(Nf*wx/B ) we use that the Kodaira-Spencer 

class KEH1(X,f*(f!A) ® WX/~) does not vanish. Thus WX/B cannot be 
"too ample," because otherwise this would contradict the vanishing theo
rem mentioned above. 

Furthermore, his work very much helped to clarify the problems remaining 
for number fields. Also, for some time he seemed to stand alone with his 
optimism and his belief that the ideas of Parshin and Arakelov were the right 
method to tackle the problems. He also convinced the author of these lines 
that his view was correct. 

§6. The Theorem of Tate About Endomorphisms of 
Abelian Varieties over Finite Fields 

A different line of investigation was started by J. Tate when he proved the 
Tate conjecture for endomorphisms of abelian varieties over finite fields 
(which is a special case of his much more general conjecture about algebraic 
cycles). For this he invented the idea of dividing the abelian variety by finite 
subgroups, and of using the fact that up to isomorphism there are only 
finitely many different quotients. (This was easy to prove, since the quotients 
are parametrized by some variety of finite type, which has only finitely many 
rational points over the finite base field.) He had some difficulty in treating 
polarizations, which forced him to use the fact that the Galois group in 
question is cyclic, generated by the Frobenius element. 

His essential contribution was to show how to derive the Tate conjecture 
from the Shafarevich conjecture. It is thus quite amusing that the proof of the 
Shafarevich conjecture for number fields goes the opposite way, since the 
Tate conjecture is the first important step in it. 

§7. The Work of Zarhin 

J. G. Zarhin generalized Tate's work to function fields over finite fields. He 
contributed two main new ideas. 

(i) He showed how to get rid of the polarizations (the "Zarhin trick"). 
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(ii) He used the height on the moduli space of abelian varieties. (Here he 
could build on some ideas of Parshin.) 

Point (ii) was made difficult by the fact that he had to use Mumford's theta 
functions to compactify the moduli space of abelian varieties. Today we 
might phrase his argument as follows: 

The height of a semiabelian variety G over a base B (= a curve over a 
finite field) is the degree of wG/B • Any isogeny of degree prime to the charac
teristic is etale and induces an isomorphism for the w's. Hence it does not 
change the height. 
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CHAPTER II 

Finiteness Theorems for Abelian Varieties 
over Number Fields 

GERD FALTINGS 

§l. Introduction 

Let K be a finite extension of 10, A an abelian variety defined over K, 
1t = Gal(.K/K) the absolute Galois group of K, and [ a prime number. Then 
1t acts on the (so-called) Tate module 

ll(A) = lim A[[n](K). 
+
n 

The goal of this chapter is to give a proof of the following results: 

(a) The representation of 1t on ll(A) ®z, lOt is semisimple. 
(b) The map 

is an isomorphism. 
(c) Let S be a finite set of places of K, and let d > O. Then there are only 

finitely many isomorphism classes of abelian varieties over K with polar
izations of degree d which have good reduction outside of S. 

(a) and (b) are known as the Tate conjectures, (c) as the Shafarevich con
jecture. FUrthermore, one knows [9] that the Mordell conjecture follows 
from (c). The Tate conjectures for abelian varieties over finite fields have 
already been proven by tate himself. Zarhin generalized this to function 
fields over such fields, [15], [16], and our proof is an adaptation of his 
method to the case of a number field. Arakelov supplied the dictionary 
necessary for this translation [2], and the author has built upon his methods 
[5]. In brief, what is needed is to provide "everything" with a hermitian 
metric. 
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The proof of (c) is achieved by first showing finiteness only for isogeny 
classes. The basic idea for this was communicated to me by a referee for 
Inventiones in connection with the publication of my paper [6], and I then 
had only to translate it from Hodge theory into etale cohomology. I would 
therefore like to heartily thank this referee, who is personally unknown to 
me, for his suggestion. 

The rest of the proof of (c) uses a variant of the methods employed in 
proving (a) and (b). 

The paper begins, first of all, with some technical details concerning 
heights. The complications arise because, at least to my knowledge, no good 
moduli space for semiabelian varieties over 7l. exists yet. (L. Moret-Bailly, 
who investigated the situation over functions fields, had to struggle with 
similar problems [7].) After that, we use the very beautiful results of Tate 
[13] on p-divisible groups. The conclusion is then again somewhat technical. 

I have learned much about the subject from L. Szpiro, and I want to thank 
him here for introducing me to this circle of problems. P. Deligne called my 
attention to a discrepancy in an earlier version of this work. 

§2. Semiabelian Varieties 

Definition. Let S be a scheme (or an algebraic stack). A semiabelian variety of 
relative dimension g over S is a smooth algebraic group p: G -+ S whose 
fibres are connected of dimension g, and are extensions of an abelian variety 
by a torus. 

EXAMPLE. Let q: C -+ S be a stable curve of genus g [4]. Then 

J = Pict(CjS) -+ S 

is a semiabelian variety of relative dimension g. 
We need the following: 

Lemma 1. Let S be normal, U c S open and dense, PI: Al -+ Sand P2: A2 -+ S 
two semiabelian varieties, t/J: At/U -+ A 2 /U a homomorphism of algebraic 
groups defined over U. Then t/J can be extended uniquely over all of s. 

PROOF. This is well known in case S is the spectrum of a complete discrete 
valuation ring. In general, one reduces immediately to the case in which S is 
noetherian and excellent, and writes 

X c;; Al Xs A2 

for the closure of the graph of t/J. 
After base change with suitable valuation rings, one sees that the projection 

pr I: X -+ Al is proper, and that its fibres have only one point. Since Al is 
normal, pr I must be an isomorphism, and X the graph of the uniquely 
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determined extension of ¢>. (Uniqueness follows, for example, by consideration 
of torsion points, or in a thousand other ways.) D 

Definition. Let p: A ~ S be a semiabelian variety of relative dimension g, 

s: S ~ A the zero section. 
Let 

WAfS = s*(n~fS)' 

WAfS is a line bundle on S. 

Remarks. (a) If p is proper, then wAfS ~ p*(n~/s). 
(b) wAfS commutes with a change of base. 
(c) If A = Pict(CjS) for a stable curve q: C ~ S, then wAfS ~ Nq*(wCjs), 

where Wets denotes the relative dualizing module. 
(d) If S = Spec(C) and p is proper (i.e., Ale is a complex abelian variety), 

then wAfS ~ qA, n1/d admits a canonical hermitian scalar product, namely: 
If 0:, pare holomorphic differential forms on A, then 

<0:, P) = GJ L 0: 1\ 13· 

We need some facts about the moduli spaces for stable curves and abelian 
varieties. For this the language of algebraic stacks seems to be the most 
appropriate. Should this notation appear too abstract to the reader, he might 
think through the following considerations: 

We are really concerned with finiteness statements. If (Ij is one of the 
stacks to be introduced below, and S denotes the corresponding coarse 
moduli space, there is always an open covering 

S= UUi 
i=l 

and finite surjective maps Vi ~ Ui' such that over Vi the "universal object for 
(Ij" exists. One can then carry out all calculations in the Vi. 

Now for the algebraic stacks to be used here. 

(1) lUlg classifies stable curves of genus 9 [4]. lUlg is proper over Spec(d:), and 
the coarse moduli variety belonging to it is called Mg. 

(2) mg classifies the principally polarized abelian varieties of relative dimen
sion g, and Ag the corresponding moduli variety. 

mg is not proper over Spec(d:), but the following facts are known: 

(a) If 
p: A ~ mg 

denotes the universal abelian variety over mg , then there exists an r > 0 
for which (WAf'll.)®r defines a very ample line bundle on AgiO [3]. 
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Let ~/O be the Zariski closure in the corresponding projective space 
iP>~, Ag/lL the Zariski closure in iP>~, and .It the line bundle llJ(l) on Ag/lL. 

® -(.It extends (WA/A9) ron Ag/O.) 
(b) Over C there is a proper dominating morphism 

,p: 9l-+ Ag/C, 

such that there exists a semiabelian variety over 9l which extends the 
universal variety over ~g (see [8, §9]). Moreover, it is known that the 
w®r of this semiabelian variety is isomorphic to ,p*(.It). (This is proven 
by a direct calculation; see my exposition in [6, §2]). 

Lemma 2. Over Spec(lL), there exists a proper algebraic stack 3, an open subset 
U c 3, and a proper morphism 1/1: U -+ ~g, which extends to a if: 3/0 -+ A;,/O, 
such that the following objects exist: 

(a) A stable curve q: C -+ 3. 
(b) A sub-line-bundle (= local direct summand) ,P £: Nq*(wc(zJ. 
(c) A pair of group homomorphisms over U 

0(: Pic'(C/3) -+ I/I*(A), 

p: I/I*(A) -+ Pic'(c/3), 

with 

0( 0 P = multiplication by d dEN, d =F O. 

(Here A is again the universal abelian variety over ~g.) 
(d) There exists an isomorphism 'p®r = if*(.It) over 3 ®z 0 and ,P is the 

image of 

0(*: I/I*(WA/A9) -+ Agq*(wc/z) 

over UfO. The resulting isomorphism (over UfO) 

I/I*(WA/A)®r ~ I/I*(.It) 

is the I/I*-pullback of the isomorphism over Ag resulting from the construc
tion of .It. 

PROOF. The abelian variety associated to the generic point of ~II is the 
quotient of a Jacobian. The curve thus obtained corresponds to a rational 
map from ~g to rolg, for some g. 

If one considers the graph of this map, one obtains (with the help of some 
trivial additional considerations) a first candidate 3, such that conditions (a) 
and (by Lemma 1) (c) are already fulfilled. ,P is then already determined over 
U ®z 0 by (d), and furnishes a rational map from U ®z 0 to a certain 
projective bundle over 3. One replaces 3 by the normalization of the closure 
of the graph of this map and then (b) and the second part of (d) are also 
fulfilled. For the rest of (d), one notes that we have already constructed the 
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required isomorphism over U ®1' 0, and one need now only prove the exis
tence of an extension to 3 ®1' 0. To do this, one can extend the ground field 
from a to C, and it suffices to prove the existence of an extension for a 3/c 
which is dominant and proper over 3. 

With the help of the map rjJ: 91--+ Ag/C introduced above, one constructs a 
normal 3, such that t/I*(A) extends to a semiabelian variety on 3. By Lemma 
lone can also extend C( and {3, and this furnishes the desired isomorphism 
over 3. 0 

Corollary. There exists a natural number e with the following property: 
Let K be a number field, R its ring of integers, 

p: A --+ Spec(R) 

a semiabelian variety such that the generic fibre A/K is proper over K and 
possesses a principal polarization. Then the corresponding map p: Spec(K)--+ 
Ag/o extends to a p: Spec(R) --+ AJlL. 

By construction, there exists an isomorphism 

p*(A) ®R K ~ (WA/RYl9r ®R K. 

Using this isomorphism one gets: 

e' p*(A) £ (WA/R)®r £ e- l . p*(A) (£ p*(A) ®R K). 

PROOF. We may assume that I/i: 3/0 --+ Ag/o can be extended to a proper 
I/i: 3/11 --+ Ag/ll. Then there is a finite field extension K' ;;;2 K (with integers 
R' £ K'), such that p can be lifted to 

jj: Spec(R') --+ 3. 
Since If/*(A) and 2®r are isomorphic over 3 ®1' 0, there is an e l > 0 such 
that over 3 

e l . 2®r £ 1/i*(A) £ ell. 2®r. 

It suffices to prove the claim after a change of base to R', and then we need 
only compare W A /R ' and jj*(2). 

By pullback one obtains a stable curve 

q: C --+ Spec(R') 

and 

C(: Pict(CjR') --+ A/R', {3: A/R' --+ Pict(CjR') 

with C( 0 {3 = d· id (use Lemma 2 over R'), such that jj*(R) is a subbundle of 
Nq*(wC/R')' which is generated by the image of 

C(*: WA/R' --+ Agq*(WC/R')' 

From this, it follows immediately that dg· p*(2) £ WA/R' £ p*(2), and we 
are done. 0 



14 G. FALTINGS 

§3. Heights 

Again let K be a number field, R the ring of integers in K. By analogy to [5], 
we define a metrized line bundle on Spec(R) to be a projective R-module P of 
rank 1, together with norms II Ilv on P ®R Kv for all infinite places of K. Kv 
denotes the completion of K at v, and we define 6v = 1 or 2 according 
to whether Kv ~ IR or Kv ~ C. The degree of the metrized line bundle is 
defined as (" #" = order) 

Deg(P, II II) = log( # (P / R . p)) - 2:>v log II p II v' 
v 

where p is a nonzero element of P, the sum runs over all infinite places of K, 
and the right-hand side is of course independent of p. 

Remark. The idea of metrized line bundle was introduced by Arakelov ([2]). 
The degree of P is naturally also connected with the volume of P. 

We are especially interested in the metrized line bundle wAIR' where 

p: A --+ Spec(R) 

is a semi abelian variety, with proper generic fibre A/K. The metrics at the 
infinite places come from the scalar product mentioned above 

Definition. The moduli-theoretic height h(A) is 

1 
h(A) = [K: 0] deg(wAIR)· 

One sees immediately that h(A) is invariant under extension of the ground 
field. The name "height" is justified by the following: 

In general one defines the height of a point x E IPn(K) by associating to x a 
morphism p: Spec(R) --+ IP~, providing the bundle (9(1) on IP~ with a metric, 
and then defining the height of x to be 

[K ~ 0] . deg(p*(9(1)). 

Changing the hermitian metric only changes the height function by a 
bounded amount, and it is known that for every c, there are only finitely 
many K-rational points of IPn with height ::; c. Corresponding consider
ations apply to closed subvarieties of IPn. In our situation, one embeds Ag in 
lPi as above, by means of vii. We have already defined a metric II lion the 
line bundle induced by vii on AiC). Should this metric admit an extension to 
Ag(C), one could use it to define the height, and then the corollary to Lemma 
2 would show for a semiabelian variety A over R (as above), which has 
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principal polarization over K and so defines an x E Ag(K), that h(x) and 
r . h(A) differ only by a bounded amount. 

Unfortunately, the metric II II has singularities along Ag(C) - Ag(C); how
ever, these are so mild that the fundamental finiteness property of heights 
remains true. 

Definition. Let X Ie be a compact complex variety, Y ~ X a closed sub
variety, .tt a line bundle of X, II II a hermitian metric on .ttl X - Y. The 
metric has logarithmic singularities along Y if the following holds: 

There is a proper dominant map 

rjJ: X --+ X, 

such that X is smooth and r1(y) is a divisor with normal crossings, and 
such that for a local generator h of rjJ*(.tt) and a local equation f of r1(y), 

(with constants c1 , C2 > 0) holds. 

EXAMPLE. 

.tt and II II as before. 

Indeed this was already proven in [6, end of §2], but at the request of the 
referees we present a short sketch of the proof here: 

More generally, it is true that for a smooth X, a divisor Y on X with 
normal crossings and a semi abelian variety 

p: A --+ X, 

such that p is proper and A is principally polarized over X - Y, the canonical 
metric on wAIX has logarithmic singularities along Y. 

To see this one considers p*(n~/x) instead of wAIX ("logarithmic singular
ities" can also be defined for vector bundles), and by the methods of Section 
2 one reduces the problem to the case in which A is the Jacobian of a 
semis table curve q: C --+ X. We will treat briefly the case of a semis table curve 
over the unit disc [[D. The general case goes exactly the same way. If 

q: C --+ [[D = {tlltl < 1} 

is a semistable curve, with good reduction except at 0, then C admits a 
covering 

I 

C= U Ui 
i=l 

such that either 

(a) Ui = {(z, t)llzl < 1, It I < 1}, 

is smooth, and z furnishes coordinates on all fibres; or 

(b) Ui = {(Zl' Z2' t)llz11 < c, IZ21 < c, ZlZ2 = tm}, q(Zl' Z2' t) = t. 
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If 0( is a local section of q*(Wq[l), then on the U/s is of the form 

(a) 

(b) 

0( = (holomorph) . dz resp. 

dZ 1 
0( = (holomorph)-. 

Zl 

An explicit calculation shows that for t -+ 0 

~r o(Aa 

2 J U,nq-'(t) 

either remains bounded, or grows at most like Ilogltll. Further, one sees 
immediately that 

II II ~ (pos. const.) II 111' 

where II 111 denotes a hermitian metric on q*(wc/x ) defined on all of X. 

Lemma 3. Let X ~ I?~ be Zariski-closed, Y ~ X closed, II II a hermitian 
metric on (9(l)I(X(c) - Y(C)), with logarithmic singularities along Y. For a 
number field K, and xEX(K) - Y(K) one defines h(x) as before. Then for 
every c, there are only finitely many x E X(K) - Y(K) with h(x) ::;; c, 

PROOF. Let II 111 be a hermitian metric for (9(l)IX(c), hl the corresponding 
height function, and choose an s > 0 and 

fl' ... ,!rEr(X/lL, (9(s)), 

whose set of common zeros is exactly Y. Then II 111 defines a metric on (9(s) 
(which is also called II 111), and from the hypotheses it follows immediately 
that there exist constants c1, Cz > 0 with 

I II II I . log ~(z) ::;; C1 + Cz ' mf{log(llogll};(z)1111)} 

for ZEX(C). 
If x E X(K) - Y(K), there corresponds a 

p: Spec(R) -+ X, 

and then the}; define sections p*(};) of p*«(9(s)), with whose help the height 
hl (x) can be calculated. Since II };(z) 111 is bounded above on X(C), one imme
diately obtains constants C3' C4 > 0 with 

Ih(x) - h1(x)1 ::;; C3 + c4 Iog(h l (x)). 

The claim follows directly. o 
We can now reap the fruits of our labors. The following result is almost 

already proven. 

Theorem 1. Let c be given. Then there are only finitely many isomorphism 
classes of pairs of: 
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(i) a semiabelian variety of relative dimension g 

p: A --+ Spec(R) 

with proper generic fibre A/K. 
(ii) a principal polarization of Aj K 

for which 

h(A) ~ c 

holds. 

17 

PROOF. According to the corollary to Lemma 2 the difference between h(x) 
and r . h(A) is bounded (x E Ag(X) corresponding to A). According to Lemma 
3, the A for which h(A) ~ c provide only finitely many different x E Ag(K). We 
must now note that only finitely many K-isomorphism classes can induce the 
same isomorphism class over the algebraic closure K. Thus, we fix such a 
class over K and consider the AjK belonging to it. It is known that all of 
these have bad reduction at the same places of K. It follows immediately 
from Lemma 4 below that there exists a finite extension K' :2 K, which for 
some n ~ 3 contains the nth division points of all AjK. It is known that our 
A's are already isomorphic over K', and the rest follows from basic general 
theorems of Galois cohomology. 0 

There remains to be added the 

Lemma 4. Let K be a number field, S a finite set of places of K. Then there 
are only finitely many field extensions of a given degree which are unramified 
outside of s. 

PROOF. Well known (Hermite-Minkowski). o 

§4. Isogenies 

We examine the behavior of h(A) under isogeny. As always K is a number 
field, R c K its ring of integers. 

Let 

and 

P2: A2 --+ Spec(R) 

be semiabelian varieties with proper generic fibre, 

s: Spec(R) --+ Ai 

the zero section, and r/J: Ai --+ A2 an isogeny. (Of course, by Lemma 1, it is 
enough that r/J be defined over K.) 
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We set G = Ker(<p) s; A 1 • Since <p is automatically flat, G is a quasi-finite 
flat group scheme over Spec(R). 

<p induces an injection 

and one sees at once that 

# (WAI/R/<P*(WA2/R» = #s*(nl/A') = #S*(nb/R)· 

Since moreover <p* changes the norms at the infinite places by (deg(<p»1/2, 
there follows directly 

LemmaS. 

Remark. If G is annihilated by a number nE N, then n also annihilates nb/R. 
It follows that 

is a rational number in whose numerator and denominator only the prime 
factors of deg(<p) appear. The exponents of these primes can be bounded by 
their exponents in deg(<p). 

We now investigate the behavior of the h(An), in the case An = A/Gn, 
where Gn runs through the levels of an I-divisible group G s; A [I 00]. 

Theorem 2. Let p: A --+ Spec(R) be a semiabelian variety with proper generic 
fibre, I a prime number, and G/K S; A [looJ/K an I-divisible subgroup. 

Furthermore, let Gn be the kernel of In in G, and An the semiabelian variety 
An = A/Gn. Then 

PROOF. Let v1 , •.• , Vn be the places of k lying over I, K; = KVi the corre
sponding local fields, R; S; K; the valuation rings, m; = [K;: i!),J, so that 

r 

m = [K: i!)J = L mi· 
;=1 

We fix an i, and consider the formal group scheme A over Spf(R;), the 
completion of A/R; along the fibre As over the closed point s of Spec(R;). 

As is an extension 0 --+ 1'. --+ As --+ Bs --+ 0, with 1'. a torus, Bs an abelian 
variety. 

According to general fundamental theorems, one can lift 1'. to a torus T 
over Spec(R;), and f is a closed formal subscheme of A. (Morphisms from 1'. 
into smooth group schemes can be lifted.) 
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Let 

Hi = Al/ooJ 

be the associated I-divisible group. Hi is the formal completion of an I-divisible 
group Hi over Ri, and HdKi is an I-divisible subgroup of A [/ooJ/Ki. The same 
holds for T[looJ, and to these subgroups, there correspond 1:/-sublattices 

1/(T) £ 1/(H;) £ 1/(A). D 

Lemma 6. Let Di = Gal(KjK;) be the absolute Galois group of K i, Ii £ Di the 
ramification group. 

Then Ii acts trivially on 1/(A)/1/(Hi), and the induced action of DdIi ~ 2 
factors through a finite quotient of 2. 

PROOF. Let 

< , ): 1/(A) x 1/(A) ~ 1:/(1) = 1/(Gm) 

be the symplectic form induced by a polarization of A/K. < , ) is not degen
erate, and it is known [SGA VII, Exp IX, §7J that 

<1/(T), 1/(Hi ) = o. 
By a dimension argument, 1/(H;) = 1/(T).l, and we have an injection 

1/(A)/1/(H;) c:; Homz,(1/(T), 1:/(1)). 

This injection is Di linear, and Di acts on Homz,(1/(T), 1:/(1)) in the required 
way. 0 

Now, once again, back to our G/K £ A [looJ/K. After base extension 
K £ Ki, we can form the intersection Gi = G n Hi' This is the maximal 
I-divisible subgroup of GdKi which can be extended over R i , and we have 

# (s*O~/An ®R RJ = # s*(OtGilnIR,). 

By [13, Prop. 2J, one can calculate this immediately: Let di be the dimension 
of the maximal formal subgroup of Gi. Then 

#S*(Ol ) = In·miodi. 
(GilnlRi 

If Ci denotes the completion of the algebraic closure of K i , then it is known 
furthermore [13, Theorem 3, Cor. 2J, that as Di-modules 

(hi = height (G;), "( + 1)" = Tate twist). 

Together with Lemma 6, this implies that Di acts on 

N1/(G) ®z, Ci £ N1/(A) ®z, Ci (h = height (G)) 

as on 

(Xo = cyclotomic character). 

We now carry this over to the global case. 
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We have 

and 

( h r m. ) h(An) - h(A) = n' log(l)· - - I ----'- . di • 
2 i=l m 

We must therefore show that Ir=l midi = tmh. For this purpose, we consider 
the absolute Galois group ii = Gal(ij/O), and the ii-module 

V = Ind~('r,(A)) (n = Gal(K/K)). 

This contains the submodule 

w = Ind~(T,(G)) 

of rank mh, and ii acts on the line 

L = Amh(w) s AmheV) 

via a character x: ii - 7Lr. 
From class field theory it follows that X is of the form 

X = (l-adic power of Xo)' (character of finite order). 

The above l-adic power of XO is determined as follows: 
Let C be the completion of the algebraic closure of 0 " 

D ~ Gal(ij,!O,) ~ if. 

the decomposition group of 1. Then as D-modules we have 

L®z, C ~ c( + it midi) 

(this follows from our previous calculations), and hence by [13, Theorem 2], 

X • Xo L;~' midi 

is a character of finite order of D and also of ii. Finally, from the part of the 
Weil conjectures already proven by Weil, together with some local considera
tions, it follows that, for almost all p, X(Fp) (p = a prime number, Fp = 
Frobenius) is an alge~raic number, all of whose conjugates have absolute 
value pmh/2. Since Xo(Fp) = p, we have, as desired 

r mh 
I midi =-2 . 
i=l 

§5. Endomorphisms 

Let K be a number field, A/K an abelian variety of dimension g, 1 a prime 
number, T, = T,(A) the Tate module, on which n = Gal(K/K) acts. 
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Theorem 3. The action of n on 7; <29z Q , is semisimple. 

Theorem 4. The map 

is an isomorphism. 

PROOF. The two theorems are proven together. It is well known that it 
suffices, instead of Theorem 4, to prove the somewhat weaker statement that 
the map 

is bijective. 
For the proof one may extend the ground field, or replace A by an 

isogenous abelian variety. We can also assume that A/K is principally polar
ized, and that A extends to a semiabelian variety over Spec(R). Then 7; 
admits a nondegenerate skew-symmetric bilinear form. Let 

W s;; 7; <29z, Q , 

be a n-invariant maximal isotropic subspace. This corresponds to an I-divisible 
subgroup G s;; A[lOO], and the semi abelian varieties An = A/Gn again admit 
principal polarizations. 

By Theorem 2, h(An) = h(A), and by Theorem 1, infinitely many An's are 
isomorphic. 

As in [16], it follows that W is the image of an idempotent in EndK(A) <29z 
Q/. The rest of the proof goes exactly as in [16], and it will only be sketched 
here: 

Choose a, b, c, dEQ, with aZ + bZ + CZ + dZ = 1. 
Set 

-b -c 

a d 
-d a 
c -b 

-d) -c 
b 
a 

(corresponding to the quaternion a + bi + cj + dk), so v . tv = -1. If W is an 
arbitrary n-invariant subspace of 7; <29z Q/ then one applies the above con
siderations to the maximal isotropic subspace. 

WI = {(x, VX)IXE W4} E9 {(y, -vy)IYE(w1f} s;; 7;(A)8 <29z, Q/. 

Corollary 1. Let Al and A z be abelian varieties over K. Then 

HomK(A I , A z) <29z "L, --+ Hom,,(7;(A I ), 7;(A z)) 

is an isomorphism. 

PROOF. Theorem 4 applied to Al X A z. 

o 
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The L-series of A is defined, as is well known, as 

1 
L(A, s) = Q det(l _ (Nv) s. Fvl7;(A)) = Q Lv(A, s), 

where the product runs over almost all places of K. The local L-factors are 
independent of l. 

Corollary 2. Let At. A2 be as in Corollary 1. Thefollowing are equivalent: 

(i) Al and A2 are isogenous. 
(ii) 7;(A I ) (8)z, Q, ~ 7;(A2) (8)z, Q, as n-modules. 

(iii) Lv(s, AI) = Lv(s, A 2) for almost all places v of K. 
(iv) LJs, AI) = Lv(s, A 2) for all v. 

PROOF. The equivalence of (i) and (ii) follow from Theorem 4, that of (ii) and 
(iii) from Theorem 3 (+ Cebotarev), and that (ii) implies (iv) implies (iii) is 
trivial. 0 

Corollary 3. Let AIK be an abelian variety, d > O. Then there are only finitely 
many isomorphism classes of abelian varieties BIK, with polarization of degree 
d, such that,for alii, 7;(A) ~ 7; (B). 

PROOF. The assumptions imply that for every I there exists an isogeny between 
A and B which is of degree prime to I. Furthermore, for the purpose of the 
proof, we may extend the ground field, and then assume that A and all B's 
extend to semiabelian varieties over Spec(R), and that for all B's, there exists 
an isogeny of degree .jd with a principally polarized abelian variety. One 
then comes easily to the following assumptions: 

(a) all B's have semistable reduction; 
(b) all BIK are principally polarized; 
(c) there exists an N such that for every prime number I and all B, there exist 

isogenies ifJ: A ..... B, for which the greatest power of I in deg(ifJ) divides N. 

The remark after Lemma 5 then shows that exp(2[K: Q](h(B) - h(A))) is 
a rational number, whose numerator and denominator divide a certain power 
ofN. 

Thus h(B) is bounded, and one can apply Theorem 1. o 

§6. Finiteness Theorems 

Theorem 5. Let S be a finite set of places of K. Then there are only finitely 
many isogeny classes of abelian varieties over K of a given dimension which 
have good reduction outside S. 
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PROOF. Let A be such an abelian variety. According to the Weil conjectures, 
for v ¢ S there are only finitely many possibilities for the local L-factors 
Lv(A, s). We will construct finitely many places V l , .•. , v" such that two A's 
are isogenous if they have the same local L-factor at these places. For this 
purpose, one chooses a prime number I. By Lemma 4, there exists a finite 
Galois extension K' ::2 K that contains all field extensions of K of degree 
:s 18g2 which are unramified outside I and S (g = dim (A)). 

Let G = Gal(K'/K); and choose vl , .•• , Vr such that every conjugacy class 
in G contains the image of a Frobenius Fv for v E {Vl' ..• , vr } (Cebotarev). 
Then V l , ••. , Vr fulfills our condition: Let Al and A2 be two abelian varieties 
over K which have the same local L-factors at Vl , .•• , Vr. 

Let 

M s Endzp;(A l )) x Endz,(1,(A2» 

be the Zrsubalgebra which is generated by the image of n. 
Then M is a free Zrmodule of rank :S 8g2, and M has representations on 

1/(A l ) and 1/(A2). 

We must show that for every mEM 

Tr(ml1/(Al)) = Tr(ml1/(A2»· 

It naturally suffices to prove this for m in a Z,-module basis of M, and by 
assumption the equality already holds if m is the image of an element of the 
conjugacy class of Fv, for VE {Vl' ••. , vr }. We show that these images generate 
Mover Z,. By Nakayama it is enough that they generate M/IM. This holds 
for the following reason: 

We have a representation 

p: 11: -+ (M/1M)* = units of M/1M, 

whose image generates M/IM. 
Since # (M/IM)* :S 189>, p factors through G, and p(n) is the union of the 

images of the conjugacy classes of Fm VE{Vl' •.. , Vr}· 0 

Theorem 6 (Shafarevich Conjecture). Let S be a finite set of places of K, d > o. 
Then there are only finitely many isomorphism classes of abelian varieties over 
K of a given dimension, with polarization of degree d, which have good reduction 
outside S. 

PROOF. By Theorem 5, we may assume that all the abelian varieties under 
consideration are isogenous to a fixed A/ K. As in the proof of Corollary 3 to 
Theorem 4, we may further assume that all the B's extend to semi abelian 
varieties over Spec(R), and that d = 1. We already know that 

exp(2[K: OJ (h(B) - h(A))) 

is a rational number. We will construct a number N such that the numerator 
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and denominator of this rational number have no prime factor 1 > N, and so 
that the powers of 1 dividing them are bounded for the prime numbers 1 :::; N. 

The latter is very easy: If, for two abelian varieties, BdK and B2 /K, Yz(B l) 
and Yz(B 1) are isomorphic as n-modules, then by Theorem 4 there exists an 
isogeny between Bl and B2 , of degree prime to 1, and 1 does not occur in 

exp(2[K: 0] (h(Bl) - h(B2))). 

It thus suffices to show that there are only finitely many isomorphism 
classes of n invariap.t lattices in Yz(A) ®z, 0 ,. For this let M, be the 7L ,-
subalgebra of Endz,(Yz(A)) generated by n. Everything follows then from the 
fact that M, ®z, 0 , is semisimple (Theorem 3). 

We now come to the choice of N. for this, let n be the product of prime 
numbers I, for which either the extension K :2 0 is ramified at I, or A does 
not have good reduction at all of the places of characteristic 1. 

Choose any prime number p which does not divide n. Again let 

it = Gal (0/0) :2 n = Gal(K/K), 

and, for 0:::; h :::; 2gm (g = dim (A), m = [K: 0]), let 

Ph(T) = det[T - FpIN(Indfi(Yz(A)))]. 

Here 1 is a prime number, prime to pn, and Fp denotes the Frobenius at the 
place p. 

The Ph(T) are independent of I, have coefficients in 7L, and their zeros have 
absolute value p+h/2 (Weil conjecture, or better, theorem). 

We now choose N ~ 2 so large that no prime number 1 > N divides 
Ph(±pj) for 

In addition, choose N ~ np. 

O:::;h:::;2gm, 

O:::;j:::; gm, 

j =1= ih. 

We will show for every isogeny 

<p: Bl -+ B2 

of abelian varieties isogenous to A, whose degree is a power of 1 for a prime 
number 1> N, that h(Bl) and h(B2) are equal. This argument is similar to 
that in the proof of Theorem 2: We may assume that 1 annihilates the kernel 
G of <p. Let 

~ = Yz(Bl)/I· Yz(Bl) ~ Bl [I] (K), 

v,= Ind:(~), 
W, = G(K) s l'I 
w,= In,d:(W,) s v,. 
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If,p has degree 1\ then it acts on 

L = Amh(<<!) ~ Amh(Vr) 

via a character x: it --+ (lL/IlL)*. 
If e: it --+ { ± 1} denotes the character through which it acts on Am Ind:(lL), 

then X . eh is unramified outside I, because the inertia groups of places of K 
which do not divide I act unipotently on J.i (semistable reduction). By class 
field theory X . eh is a power of the cyclotomic character Xo. The exponent of 
this power can be determined with the help of [10, Theorem 4.11 J (instead of 
Tate's theory [13J) as follows: 

Let 

Id = #s*(n~/R)' 

O~d~gm. 

Then X . eh = Xrid (according to Raynaud). Thus x~(Fp) = ±pd is a zero of 
Pmh(T) modulo 1, and by our choice of N, d = hm/2 must hold. 

Since again 

h(B2 ) - h(B1) = 10g(/)G - ~). 
our claim is proved, and it follows that the h(B)'s of the B's under consid
eration are bounded. Thus Theorem 6 follows from Theorem 1. 0 

Corollary 1. There are only finitely many isomorphism classes of smooth curves 
of genus g ~ 2 which have good reduction outside of S. 

PROOF. Torelli. o 

Theorem 7 (Mordell Conjecture). Let X/K be a smooth curve of genus g ~ 2. 
Then X(K) is finite. 

PROOF. This argument is in [9J: After extending the ground field if necessary, 
there is an unramified covering of degree m > 2: 

ifJ: Xl --+ X. 

Lemma 4 furnishes a finite extension field K 12K such that for every 
XEX(K), ,p-l(X) consists of m different K 1-rational points. Choose one of 
these points, say YEP-l(X). 

Let D = ,p-l(X) - {y} and A/Kl the generalized Jacobian of the pair 
(Xl' D). With the help of y one constructs a map from Xl - D to A. 

Multiplication by 2 on A then induces a covering Y(X) --+ Xl, ramified 
exactly over D, for which the curve Y(x) can have bad reduction only at those 
places v of K l' and for which one of the following three conditions hold: 
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(a) v divides 2. 
(b) Xl has bad reduction at v. 
(c) rjJ ramifies in the fibre mod v. 

There are only finitely many such places, and thus only finitely many possi
bilities for Y(x). 

The same holds for the map Y(x) --+ Xl --+ X, which ramifies exactly over x. 
The claim follows. D 

Remarks. (1) In this way one also obtains a proof of the Siegel theorem about 
integral points, which makes no use of diophantine approximation. 

(2) With the help of the methods of [16], one can conclude from Theorem 
6, that for almost all prime numbers 1, the subalgebra Mz of EndzJT,(A)) 
generated by 1C is the full commutator of EndK(A) ®z 7Lz. 

REFERENCES 

[1] Arakelov, S. Families of curves with fixed degeneracies. Math. USSR Izv., 5 
(1971), 1277-1302. 

[2] Arakelov, S. An intersection theory for divisors on an arithmetic surface. 
Math. USSR Izv., 8 (1974),1167-1180. 

[3] Baily, W. L. and Borel, A. Compactification of arithmetic quotients of bounded 
symmetric domains. Ann. Math., 84 (1966), 442-528. 

[4] Deligne, P. and Mumford, D. The irreducibility of the space of curves of a 
given genus. Publ. Math. I.H.E.S., 36 (1969), 75-110. 

[5] Faitings, G. Calculus on arithmetic surfaces. Ann. Math. 
[6] Faltings, G. Arakelov's theorem for abelian varieties. Invent. Math., 73 (1983), 

337-347. 
[7] Moret-Bailly, L. Varietes abeJiennes polarisees sur les corps de fonctions. C. R. 

Acad. Sci, Paris, 296 (1983), 267-270. 
[8] Namikawa, Y. Toroidal Compactijication of Siegel Spaces. Lecture Notes in 

Mathematics, 812. Springer-Verlag: Berlin, Heidelberg, New York, 1980. 
[9] Parshin, A. N. Algebraic curves over function fields, I. Math. USSR Izv., 2 

(1968),1145-1170. 
[10] Raynaud, M. Schemas en groupes de type (p, ... , p). Bull. Soc. Math. Fr., 102 

(1974),241-280. 
[11] Szpiro, L. Sur Ie theoreme de rigidite de Parsin et Arakelov. Asterisque, 64 

(1979), 169-202. 
[12] Szpiro, L. Seminaire sur les pinceaux de courbes de genre au moins deux. 

Asterisque, 86 (1981). 
[13] Tate, J. p-divisible groups. Proceedings of a Conference on Local Fields, 

Driebergen, 1966. Springer-Verlag: Berlin, Heidelberg, New York, 1967, pp. 
158-183. 

[14] Tate, J. Endomorphisms of abelian varieties over finite fields. Invent. Math., 2 
(1966), 134-144. 

[15] Zarhin, J. G. Isogenies of abelian varieties over fields of finite characteristics. 
Math. USSR Sb., 24 (1974), 451-461. 

[16] Zarhin, J. G. A remark on endomorphisms of abelian varieties over function 
fields of finite characteristics. Math. USSR Izv., 8 (1974), 477-480. 



FINITENESS THEOREMS FOR ABELIAN VARIETIES 27 

ERRATUM 

N. Katz has remarked that Theorem 2 in the above work is not completely 
correct. (0. Gabber constructed a counterexample.) The statement of the 
theorem should be replaced by the following which suffices for what comes 
after it: 

The sequence h(An) becomes stationary. 
The mistake was in overlooking two subtle points. However, the original 

proof works if one replaces from the beginning, A = Ao by Am' for large 
enough m. 

The problems are as follows: 

(a) If W~ T,(.4) is a D;-invariant sublattice, then of course there is a 
corresponding I-divisible subgroup of AjKi' and by forming the Zariski 
closures, one obtains a system of finite flat group schemes over Spf(RJ or 
also over Spec(R;). However, these form an I-divisible group only when the 
mappings 

are isomorphisms for n ~ 1. In general, one cannot expect this. Nevertheless, 
a consideration of the discriminant shows that this is the case for large n. 
Passing from A = Ao to Am means that one need only consider these mappings 
for n > m. This argument is already found in Tate [1]. 

(b) In general, the intersection Gi = G II Hi of I-divisible groups over 
Spec(RJ does not define an I-divisible group even over K i . This problem also 
disappears if we go to a suitable Am. One may then continue as in (a). 
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CHAPTER III 

Group Schemes, Formal Groups, and 
p-Divisible Groups 

STEPHEN s. SHATZ 

D. S. Rim, in memoriam 

§1. Introduction 

When the editors of this volume and organizers of the conference asked me 
to lecture on group schemes with an eye to applications in arithmetic, they 
gave me-with characteristic forethought-a nearly impossible task. I was 
to cover group schemes in general, finite group schemes in particular, sketch 
an acquaintance with formal groups, and study p-divisible groups-all in the 
compass of some six hours of lectures! 

The audience was to consist of young graduate students, senior graduate 
students, professional research mathematicians of varying ages, and the leaders 
of the subject. I paid no mind to the latter and this article is not meant for 
them. Still the diversity of my listeners was staggering, and in this write-up 
of my lectures, the reader will notice many places where I have foundered 
against the implacable conditions of the task. The tempo is uneven: there are 
leisurely and terse arguments in the same paragraph, I have assumed no 
knowledge and large knowledge in the same proof, and I have omitted or 
sketched proofs after an idiosyncratic fashion. Also, personal choice has been 
exercised as to what was included and what omitted. 

One could repair these defects by going to one of two extremes: The article 
could be shortened to one-half or one-third its size; this would render it more 
homogeneously concise and probably unreadable. Or, the article might be 
expanded to near book length; this would render it more pedagogical but 
unacceptable to the editors. So it stands as it is. 

There is little that is original in what I have done. Perhaps the material on 
Sylow group schemes has not appeared before, and perhaps the arrangement 
of topics is somewhat novel. I have attempted to emphasize material which 
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has so far only been in journal articles, and I have laid stress on examples and 
classes of examples. 

It remains only for me to thank the organizers of the conference for a job 
well done and for the confidence they showed in me by tendering me their 
invitation to deliver the lectures. I would also like to remember my late 
colleague D. S. Rim, who had a lively interest in all of these matters and who 
would have been astonished and overjoyed at the way the Safarevic, Tate, 
and Mordell conjectures were finally proved. 

§2. Group Schemes, Generalities 

In the sequel, all schemes will be locally noetherian, even noetherian, unless 
explicit mention is made to the contrary. This is the most important case for 
the applications, and our exposition is slanted towards these-especially the 
arithmetic applications. In addition, when dealing with categories, functors 
and the like, I shall neglect all mention of "universes" and such logical 
niceties. For one thing, such matters are not to my taste; for another, the 
knowledgeable reader will easily fix the exposition to fit correct foundations. 

A group Junctor over S is a cofunctor, F, from schemes over S to the 
category of groups. Of course, this means each F(X), for X a scheme over S, 
has the structure of group, and for each S morphism: Y -+ X, we get a homo
morphism of groups F(X) -+ F(Y). Many examples can be given, here are a 
few rather well-known ones: 

(1) The additive group scheme, Ga: For each X over S, put 

Ga(X) = additive group ofr(X, (9x). 

(2) The general linear group scheme, GIL(n): 

GIL(n)(X) = invertible n x n matrices with entries 
in r(X, (9x), under matrix multiplication. 

When n = 1, GIL(n) has a special designation: Gm, and is called the multiplica
tive group scheme. Of course, 

Gm(X) = r(X, (9x)* = group of units ofr(X, (9x)· 

(3) The special linear group scheme, §1L(n): 

§1L(n)(X) = {AEGIL(n)(X)ldet A = I}. 

(4) The rth roots oj unity, J1.,: 

J1.,(X) = {AEGm(X)IA' = I}. 

(5) If S is a scheme of characteristic p > 0, that is each stalk, (9s, .. is a 
vector space over the prime field of characteristic p, then we define the prth 
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roots of zero, !Xpr: 

!Xpr(X) = {AEGa(X)!Apr = O}. 

Since (A + B)P = AP + BP in r(X, (!)x), it follows that !Xpr(X) is a subgroup of 
Ga(X). 

(6) The constant group functor, Jt': Let H be any group. Define a functor, 
Jt', by 

Jt'(X) = H, and for Y -+ X, let Jt'(X) -+ Jt'(Y) be the identity map. 

Other examples will appear below. If our group functor, F, is representable 
(by a scheme) and if G is the representing object, we call G a group scheme. By 
abuse of language, already indulged in, we also call the functor F a group 
scheme. This is the case with examples (1)-(5) above; example (6), however, is 
a non-representable functor. (A representable functor must take a disjoint 
union of schemes into the product of the functor evaluated on each compo
nent of the union.) 

We assume F is representable, say by G, so that G is a group scheme over 
S. In the usual way, by Yoneda's lemma, the group axioms (functorial on 
each F(X)) translate into commutative diagrams for Gover S. Here they are: 

(1) There exists an S-morphism m: G Xs G -+ G, m is the group multi
plication. The diagram 

G xsG xsG~G xsG 

(A) !mx 1 

G Xs G 

commutes (associative law for m). 

-----+ 
m 

!m 
G 

(2) There exists a section Ii: S -+ G for the structure morphism n: G -+ S, so 
that the diagrams 

m 
G Xs G -----+ G m G Xs G -----+ G 

(E) iex 1 i1 i1 xe i1 
1 1 

S Xs G -----+ G G Xs S -----+ G 

commute. (This means Ii plays the role of identity.) 
(3) There exists an S-morphism inv: G -+ G, so that the diagrams 

G ~ G Xs G 1 xinv I G Xs G G ~ G Xs G invx 1 I G Xs G 

(I) n! 
S 

!m 
G 

commute. Here, A is the diagonal. (This means inv is the inverse map.) 

!m 
G 
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The concepts of homomorphism of group functors or group schemes and 
subgroup functors or subgroup schemes are trivial to formulate. We shall 
assume all our schemes are separated unless we explicitly mention to the 
contrary. Thus, d: G -+ G Xs G is a closed immersion; so, (E) shows that e is 
a closed immersion and a homomorphism. Of course, S is the "trivial group 
scheme" over S. 

Note that base extension of a group scheme Gover S to any new base, T, 
over S, gives. a new group scheme GT = G x s T, over T. Hence, the correct 
way to think of a group scheme over S is as a family of group schemes, G., 
one for each s E S. Here, Gs is G x s Spec /((s) and /((s) is the residue field at s. 
Using the locution "group scheme over A" for a group scheme over Spec A, 
where A is a commutative ring, we see that each Gs is a group scheme over a 
field (the field /((s)). Of course, this implies one should have a theory for group 
schemes over a field as a first step. Here is an instructive example: 

S = Spec 7L and G = Spec A, with A = 7L[X]/(X2 + 2X). 

Since, G Xs G = Spec(A ®z A), the map m corresponds to a 7L-algebra 
homomorphism 

m*: A -+ A ®z A. 

In a similar way, the maps e and inv, correspond to 7L-algebra maps 

e*: A -+ 7L and inv*: A -+ A. 

In this example, we choose 

m*(X) = 1 ® X + X ® 1 + X ® X, 

e*(X) = 0, 

inv*(X) = X. 

The scheme G is then a group scheme over 7L. Let us examine it as a family of 
group schemes, Gp , each Gp being a group scheme over the field 7L/p7L. 

If p is odd, then 1/2 exists in 7L/p7L. If we write Y = -X/2, then as Gp is 
Spec(A/pA), we find 

Gp = Spec(7L/p7L[y]/(y2 - Y)) = Spec((7L/p7L) . e1 ) U Spec((7L/p7L) . e2), 

where e1 = Y, and e2 = 1 - Y. The elements el and e2 are orthogonal idem
po tents; so Gp is the disjoint union of two connected components, each being 
a point. The group scheme structure in terms of e1 , e2 is given by 

e*(e 1 ) = 0, 

inv*(e 1 ) = e1 , 

e*(e2 ) = 1, 

inv*(e2 ) = e2 • 

As a group functor, Gp(X) = {O, 1} if X is connected (0 is the image of el' 
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and 1 is the image of e2 ), and {O, 1} forms an additive group in the usual way. 
Should X be a disjoint union, U"X", of connected components, we have 
Gp(X) = n" Gp(X,,). The group scheme Gp is disconnected over 7L/p7L; indeed 
it is etale over 7L/p7L. 

If, instead of an odd prime p, we choose the generic point of Spec 7L, then 
in the above 7L/p7L is replaced by {l-the rational numbers-and everything 
else goes through unchanged. 

Now let p = 2. Then G2 is Spec A/2A, and we find 

A/2A = 7L/27L[XJ/(X2) = 7L/27L[YJ/(y2 - 1), 

where Y = X + 1. The maps m*, e*, inv* are given by 

m*(Y) = Y® Y; e*(Y) = 1; inv*(Y) = Y. 

An easy check shows that G2 is isomorphic to Ji.2 over 7L/27L and that G2 is 
connected as a scheme. The transformation Y = X + 1 works over 7L as well; 
it shows that our G is just Ji.2 over 7L. The reason G was presented in its 
original form rather than as Ji.2 is that this is the form in which it arises in the 
classification theory of group schemes. 

Over 7L, the group scheme G is connected as 7L -scheme. Here is a sketch of 
it over Spec 7L 

~==::====::===::====:===~_:~~~~~:_-_--= : G
p

{ : 

G 

• • • • • • • • • Spec 7L 
2 3 5 7 1 1 13 17 19 p 

The shaded bands are the generic points ("continuous spectrum"), the dots 
are the special points ("discrete spectrum"). Observe that base extension of Ji.2 
to the open set 7L[!J, obtained by removing 2 from Spec 7L, yields an etale 
group scheme. 

If a given group scheme, G, is affine, say G = Spec A, then (as in the 
example above) the diagrams (A), (E), (I) above are replaced by similar "dual" 
diagrams involving A, k( = qs, (!)s)), A ®k A, etc. All this is trivial. The 
notations m*, e*, inv* will be used for the ring maps corresponding to m, e, 
inv. Observe that if G is affine, diagram (E) shows that S is also affine. Also, 
the ring, A, of an affine group scheme is a Hop! algebra [20]. 

A more important case arises when G is affine over S. In this case, (!)G is an 
(!)s-Hopf algebra, that is, % is a sheaf of Hopf algebras over (!)s. Of the 
examples given at the beginning of this section, all save (6) (which is not a 
group scheme) are affine over their base scheme S. As an exercise, one should 
compute explicitly the maps m*, e*, inv* in these examples. 

Group schemes non-affine over their bases are harder to come by. Essen
tially, they all involve abelian varieties. To give an example, we proceed as 
follows: Take S = Spec IC, and consider the projective plane cubic curve, E, 
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given by 

Here, a and b are complex numbers, and the non-vanishing of a3 - 27b2 is 
necessary to guarantee that E is smooth. The scheme E is an algebraic variety 
which we shall make into a group scheme. We do this by the following 
geometric construction. 

The line z = 0 is a flex tangent to E; we call its triple intersection with E 
the point O. This point will play the role of neutral group element of E. If P, 
Q are points on E, the line PQ cuts E in a third point R and the line OR cuts 
E in a third point. This last point is P + Q. If we use the standard model of 
1P2 over IR as a disc with anti-podal boundary points identified, then a picture 
of the real points of E and the construction above is: 

o 

o 
Real points of E and p2, with group law. 

While it is not immediately obvious that we have defined a group law, this 
is easy to check. Moreover, by elementary analytic geometry, the coordinates 
of P + Q may be computed as rational functions of the coordinates of P and 
Q, the coefficients of these rational functions lying in the field Q(a, b). Hence, 
for any field Lover Q(a, b), and for any pair of points P, Q on E rational over 
L, we can write down expressions for the coordinates of P + Q and these 
expressions are rational functions of the data given by P and Q. This means 
that E forms a group scheme over Spec Q(a, b) which is also a projective 
variety (of dimension 1). Such an object is an elliptic curve or abelian variety 
of dimension 1. (There can be no confusion here, since a theorem of Chevalley 
guarantees that the group law is commutative on an abelian variety.) 

The scheme Ex· .. x E (n times) is an abelian variety of dimension n. One 
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can make abelian varieties which are not products of elliptic curves yet which 
still arise from curves (of genera greater than l)-these are the lacobians of 
curves. One can further make abelian varieties which are not lacobians. All 
of these matters are thoroughly discussed-in the articles by Rosen (classical 
case) [16] and Milne (abstract case) [11] in this volume. 

If the base scheme, S, is not a field, one defines the notion of abelian 
scheme over S. A scheme, .91, over S is an abelian scheme over S if and only if: 
(0) .91 is a group scheme over S, (1) .91 is proper over S, (2) .91 is smooth over 
S, (3) all the fibres d s are abelian varieties over the respective residue fields 
K(S). That is, an abelian scheme is a group scheme which is a relatively 
compact, continuously varying family of abelian varieties. It may be surprising 
that, given S, there may be no abelian scheme over S. For example, if 
S = Spec lL, there is no abelian scheme over S! For relative dimension 1, this 
is an old theorem of Tate [18], while for relative dimension> 1, it is a very 
recent theorem of Fontaine reported on in Ribet's article [15], [21]. 

We return to the general case. Suppose f: H -+ G is a homomorphism of 
group schemes (over the base S). We can easily make the group scheme ker f 
as the pull-back of the identity section, 8G, of G. More specifically, ker J is 
the fibre product H XG S, indicated in the diagram: 

H ~ H XG S = kerf 

I! !pr2 

G( S 

The morphism pr 2 makes kerf an S-group scheme, and pr 1 is a closed 
immersion because 8G is one. From the functorial point of view, ker f is just 
what one expects. It assigns to the S-scheme, T, the group ker(H(T) -+ G(T)). 
Moreover, kerf is a normal subgroup scheme of H in the sense that 
(kerf)(T) is normal in H(T) for every T over S. 

What about coker f, even as a homogeneous space (= coset space)? There 
are at least two reasons why this must be a much more subtle question than 
that for ker f. 

In the first place, the naive idea: "Why not represent the functor 
T-- G(T)/f(H(T))?" fails because almost always this is not representable. 
However, this can be fixed as we shall now sketch. 

If T is a scheme over S, we can consider a family {7;. -+ T} ~ of T-schemes. 
One example of such a family is if each 7;. is an open subscheme of T. We 
might call the family a "Zariski family" in this case. If we are thinking of 
covering T by the 7;., we should demand that the morphism U~ 7;. -+ T be 
surjective. In our example of a Zariski family, we would then get a Zariski 
covering of T (that is, an ordinary covering in the Zariski topology). When 
using such coverings for Cech cohomology and the like, it is not necessary 
that the 7;. really be Zariski-opens of T, rather that certain formal properties 
of the maps 7;. -+ T (which make up the "covering") should hold. Why not 
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throw in more "coverings" {Ya --+ T} than just the Zariski-opens as long as 
the necessary properties hold? This seemingly innocuous idea is tremen
dously fruitful. It is the basic idea behind sites or Grothendieck topologies. In 
our case, the appropriate maps to add are indicated by descent theory. 

Remember that we are interested in the representability of a certain functor. 
Descent theory gives a necessary condition for representability. Namely, if F 
is representable and if the morphism 11" Ya --+ T is faitlifully flat and quasi
compact (fpqc), then the diagram 

b 
(SHF) F(T) ~ n F(Ya) :::t n F(Tp x T 7;) 

" c p,y 

is an exact sequence (i.e., F(T) is isomorphic via the map a to the equalizer of 
band c in n"F(Ya)). 

So, we want to add those "coverings" {Ya --+ T} in which each map Ya --+ T 
is flat and quasi-compact and for which the map 11" Ya --+ T is faithfully flat 
(so is surjective) and quasi-compact. The necessary condition for represent
ability-exactness of (SHF) for fpqc coverings-is not met by the naive 
"coker f" functor. This functor does satisfy the weaker condition that the 
map a of (SHF) is injective. Under these conditions, one can show [lJ, [2J 
that the new functor 

(coker f)(T) = l!!p (EqUaliZer I) G(Ya)/fH(Ya) 

:::t n G(Tp X T 7;)/fH(Tp X T 7;)) 
py 

in which the limit is taken over all fpqc coverings of T, does satisfy (SHF). 
Consequently, this new functor, coker f, which is called the sheaf cokernel of 
f, is a candidate for what we want. 

The second reason is perhaps more surprising-it is best illustrated by an 
example. We let G = GIL(2) over a field, and let H be the subgroup of upper 
triangular matrices, 

Clearly, H is the stabilizer of the line through the first basis vector; so, 
G/H-ifit is to have any real sense-ought to be the orbit of this line under 
G. But then, G/H is the set of lines through the origin in the plane; that is, 
G/H is the projective line even though both G and H are affine. Any hope of 
constructing G/H in general by finding global H-invariant functions on Gis 
thereby dashed, for such functions would be global functions on !p 1 ; hence, 
constant. 

Nevertheless, the object representing the coker sheaf is the correct one. 
The problem is: When does it exist and how does one construct it? We will 
need only a special case of the following result proved by Grothendieck [8]. 
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Theorem. Let G be a finite type S-group scheme and let H be a closed subgroup 
scheme of G. If H is proper and flat over S and if G is quasi-projective over S, 
then the quotient sheaf G/H is representable. 

The theory of group schemes over S gives rise to a subtle interplay between 
the algebro-geometric properties of S and the group theory in the fibres of G. 
To simplify possible complications, one should make preliminary reductions 
of an easy nature. For example, one may always consider group schemes 
where the base scheme, S, is connected. To see this, just write S as the disjoint 
union of its components Sil. If n: G ~ S, write Gil for n-1(SIl)' then the Gil are 
group schemes and G is the disjoint union of the Gil. 

§3. Finite Group Schemes 

Abelian schemes are of primary importance in the arithmetic applications. 
To study them, one examines group schemes finite over the base S and limits 
of these. Such group schemes have simpler structure than abelian schemes, 
yet knowledge of them is crucial for the study of abelian schemes. It scarcely 
makes any sense to study finite group schemes unless they are flat over the 
base S. 

The group schemes Ilr and apr are finite and flat over their base schemes. 
Another class of examples is given by the following construction. 

(7) Let S = Spec R, where R is a complete (more generally-Hensel) 
noetherian local ring with residue field k. Write n for the Galois group of ks/k 
(ks is a separable closure of k)-so, n is the etale fundamental group of S. An 
abstract group G will be called a n-group if n acts on it in such a way that the 
action is continuous when G is given the discrete topology. If G is an-group, 
we write d(G) for the set of all functions on G to Rh, where Rh is the strict 
Henselization (= Hensel closure) of R.* Then Rh ®R k ~ k., and if fEd(G), 
we write j for the function from G to ks given by 

j«(J) = f«(J) ®R 1 ERh ®R k ~ ks• 

Let d( G) be the set of such j, then d( G) has the usualn-action 

(V tEn)(V (JEG)(tj)((J) = t ·j(C1 (J». 

In this action, j is fixed by n if and only if j is n-equivariant, i.e., t . j«(J) = 

j(t(J). 
Now assume G is a finite group, then 

d(G x G) = d(G) ®Rh d(G), 

* Recall that Rh is the limit of "all" unramified local rings over R. 
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and so we can make d(G) into a Hopf algebra over Rh by setting 

((m*)f)(O", ,) = f(O",), 

e*f = f(I), 

(inv* f)(O") = f(O"-l). 

As an Rh-module, d(G) is free of rank #(G) with a basis consisting of 
orthogonal idem po tents, ea , defined by 

this means Spec d(G) is a finite, flat (indeed etale) group scheme over R h • 

Finally, let A(G) be the set of all fEd(G) for which j is n-equivariant. 
Then A(G) is a Hopf algebra over R, and by continuity of the n-action, one 
s{~es that 

A(G) ®R Rh = d(G). 

It follows (by faithfully flat descent) that Spec A(G) is a finite, etale group 
scheme over R, and A(G) has rank #(G). We write r§ for Spec A(G). A simple 
argument shows that the functor 

G~ r§ = Spec A(G) 

establishes a full embedding of the category of abstract, finite n-groups into the 
category of finite, flat group schemes over R. (The image consists exactly of 
the etale group schemes over R, and one recovers G from r§ (as n-group) from 
the equation G = r§(Rh).) 

Of course, every abstract group is a n-group (trivial action); so, the category 
of finite group schemes over S contains the category of ordinary groups. 
Consequently, a full theory of finite, flat group schemes over S contains every 
theorem about finite groups. 

If G is a finite, flat group scheme over a connected base S, then the 
(Os-module, (OG' is locally free of constant rank called the order of G and 
denoted # (G). This terminology is consistent with the older notion of the 
order of a group as its cardinality, for in the case that G is etale of the form 
.Ye, we have #(G) = # (H). From now on all base schemes will be connected and 
finite group scheme means finite, flat group scheme. 

Here is a sketch of how to make the quotient group scheme in the case of 
interest to us, and a theorem giving some of its properties. 

Theorem. Let G be a finite group scheme over S, and let N be a flat subgroup 
scheme of G. Then the quotient scheme GIN exists and is flat and finite over S. 
We have 

#(G) = # (N) # (GIN). 

If N is normal, then GIN is a finite group scheme over S. 
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PROOF [13]. N is finite as {9N is a quotient of the {9s-module {9G; so, N is 
proper over S. Now G is quasi-projective because it is finite. Therefore, 
Grothendieck's theorem tells us that GIN is representable. In this case, how
ever, we can say how to construct GIN. We know N is given by a quasi
coherent ideal, /, of {9G' and we consider the {9s-subalgebra of {9G given by 

(**) {xE{9Glm*(x) == x ® 1 mod {9G ® /}. 

It turns out that the Spec of this {9s-subalgebra is just GIN. 
We still must show GIN is flat over S and that Lagrange's theorem is true. 

From the definition of {9Q by (**), where Q now denotes GIN, one finds that 
the equivalencefelation on G induced by N is exactly the fibred product 

~ = G xQG. 

This is a closed subscheme of G Xs G, and one has the isomorphism 

N x s G ~ ~ = G x Q G; 

so, by base extension (N being faithfully flat over S), we find that pr2: fll-+ G 
is a faithfully flat morphism. But, the cartesian diagram 

G~fll= G xQG 

QpG 

and its symmetry show that pr 1 is also faithfully flat. Now G -+ Q is a surjec
tion, consequently it is dominated by a covering in the fpqc topology. We 
may suppose this is of the form 

X-+G-+Q r p 

and that p 0 r is fpqc. Base extend (*) by X and get 

G~~.,..!!..L~ x X G 

QpG E r X 

in which P2 (being pr 2 base extended) is faithfully flat. But then, p, base 
extended by the fpqc morphism po r is faithfully flat. Descent theory [5] 
shows p to be faithfully flat. Since G is flat over S, the faithful flatness of p 
implies that Q is flat over S. 

When one counts ranks in the isomorphism 

N Xs G~ G xQ G, 
one finds that 

ng = g2lq, g = #(G), q = #(Q), n = #(N), 

as required. That Q is a group when N is normal follows from the functorial 
description of Q as the sheaf cokernel. 0 
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What about the deeper theorems of group theory in this context? For 
example, Sylow's theorems. When the base scheme, S, is sufficiently nice, 
there are positive results and they reveal the fact that some base extension of 
S is necessary. We shall assume that our base 

S is integral, excellent, and of dimension one. 

Suppose we can prove the following lemma: 

Lemma. If G is a finite group scheme over S and if S satisfies (t), then: 

(1) each subgroup scheme, Yf', of the generic fibre, ~, of Gover S, extends 
uniquely to a (flat) subgroup scheme, H, of G having the same order as Yf'; 

(2) Yf' is normal in ~ if and· only if H is normal in G; 
(3) Yf' is conjugate to another subgroup scheme, Yf", of ~ if and only if their 

extensions Hand H' are conjugate in G. 

Then, on the basis of this'lemma, we can prove a version of the Sylow 
theorems. For notation, let us agree that pordp(G) means the highest power of 
p which divides #(G). 

Theorem (Sylow Theorems). Let G be a finite group scheme over a base, S, 
which satisfies (t). If p is a prime number, then there exists a scheme, T, which 
satisfies (t) and is finite and faithfully flat over S, so that GT = G x s T possesses 
a subgroup scheme of order pordp(G) over T. If p is not the characteristic of S, 
then the same statement is true for all exponents a with 0 S; a S; ordp ( G). Again, 
if p is not the characteristic of S, then the number of such p-Sylow subgroup 
schemes divides #(G) and is congruent to one modulo p. Also, any two such 
p-Sylow subgroup schemes are conjugate in Gn and any p-subgroup scheme of 
GT is contained in one of them. 

PROOF. In this proof, we will use certain facts about group schemes over fields 
to be established shortly. The generic fibre, ~, of G is a group scheme over the 
field, K, which is the local ring of the generic point of S. We will show later, 
that each such ~ possesses a canonical exact sequence 

o --+ ~o --+ ~ --+ ~el --+ 0 

in which ~o is the connected component of identity and has order qt, where 
q is the characteristic of K. The group scheme ~el is etale over K; so, by 
example (7) above, it is f for some n-group J. Here, n is the Galois group of 
the separable closure of Kover K. Since J is finite as n-group, there is some 
finite separable extension, L, of K, so that J is a n' (= Gal(K./L»-group with 
trivial action; that is f ®K L is an etale group scheme coming from an ordi
nary group (with no Galois action) over L. 

Now let p be a prime number, not equal to the characteristic of S (hence, 
arbitrary in characteristic zero). It is known that the exact sequence above 
splits over a perfect field; so, as ~ is a finite group scheme, it splits at some 
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finite level below the perfect closure. By adjusting L upwards, if necessary, we 
may assume this splitting already takes place over L. Let T be the normaliza
tion of S in L; the excellence of S implies that T is finite, faithfully flat over S, 
and satisfies (t). By Lagrange's theorem, pa divides the order of ,I ®K L if 
o ~ a ~ ordp(G); so, the ordinary Sylow theorem yields a subgroup, ii, of 
,I ®K L of order pa. By the splitting, ii gives a subgroup scheme, Yf, of '§; the 
lemma extends Yf to the desired subgroup scheme, H, of GT • The remaining 
statements are now clear. They correspond to the splitting ,§et ®K L c:; 

'§ ®K L, to the fact that all p-subgroup schemes of'§ must arise from ,§et (as 
(p, q) = 1), to the ordinary Sylow statements applied in ,I ®K L, and to the 
uniqueness and conjugation statements of the lemma. 

We now consider p = q = char(S). Here, as above, we pick L so that 
,I ®K L becomes trivial as a rei_group; and we define T as the normalization 
of S in L. (Also, we require the exact sequence to split over L.) Now some 
power of p may divide #(,§et), and then ,I ®K L possesses a p-Sylow sub
group. We pull this back in the exact sequence 

o --+ '§O ®K L --+ '§ ®K L --+ ,§et ®K L --+ 0 

to a subgroup scheme of clear order pordp(G) of '§ ®K L. The lemma extends 
it over T as a subgroup scheme of GT . The last two statements are now very 
easy. First of all, '§O ®K L is normal in '§ ®K L; so, conjugation will map it to 
itself. Thus, our p-Sylow subgroup schemes of'§ ®K L are conjugate one to 
the other, and the lemma carries this over to GT • Lastly, if Z is a p-subgroup 
scheme of GT , then its generic fibre, !!Z, is certainly contained in one of the 
p-Sylow subgroup schemes we have constructed for '§ ®K L; so, one more 
application of the lemma finishes our proof. 

There remains only the 

PROOF OF THE LEMMA. We can give two proofs of the existence of an exten
sion across all of S. Fix Gover S, and consid~r the scheme 

Hilbr(G/S)(T) 

{ b h f 
1

(1) H is flat over T; } 
= su sc emes H 0 GT . 

(2) (!)H IS locally free·of rank rover (!)T. 

It is known [9J that Hilbr(G/S) is a projective scheme over S. Now, under our 
hypotheses, the subgroup scheme, Yf, is a rational section of Hilbr(G/S) for 
some r (which divides #(G», and by (t) it extends to an honest section of 
Hilbr(G/S); that is, to a flat sub scheme, H, of G. That this H is a subgroup 
scheme is seen as well from the second construction which we now give. We 
let H be the smallest closed subscheme (= scheme-theoretic closure) of G 
which contains Yf. Now H ®s K = Yf because Yf is closed in '§. Also, if U is 
an affine open of G, with ring of global sections A, then U II '§ = ilIJ is affine 
open in '§, with ring .PI = A ®s K. But then, Yf II ilIJ is defined by an ideal fl 
of .PI and the pull-back of fl under A --+ .PI = A ®s K, say I, is by definition 
the ideal defining H II U. Since A/I is a subring of .PI/fl, this persists under 
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localization. As d/!2 is torsion-free, so then is A/I; it follows that all its 
localizations are flat, that is Spec(A/I) is flat over S. (We have used the one 
dimensionality of S in this argument.) Therefore, we now know H is flat 
over S. Furthermore, H is faithfully flat over S, and this gives the uniqueness 
at once. 

The flatness of the scheme-theoretic closure shows that this operation 
preserves fibred products over S. That is, the extension of Yf' ®K Yf' to all of 
S is merely H x s H. Therefore, an easy argument involving the continuity of 
the multiplication, m, on G shows that H is a subgroup scheme of G whenever 
Yf' is one in '§. It also shows that normali.ty extends, as does conjugation 
(here uniqueness is invoked). The lemma is proved. 0 

The proof of Sylow's theorems just given is clearly the "wrong" one (even 
though correct). It uses too crudely the geometry of S and the group theory 
in the fibres of G-it does not mix them effectively. My best guess as to a 
plausible statement of the Sylow theorem is 

If G is a finite group scheme over an integral scheme S and if pa divides 
# (G), for some prime p, then there is a scheme, T, faithfully flat and quasi
compact over S, such that GT possesses a finite subgroup scheme over T of 
order pa. 

I would suggest an attempt at a proof along the lines of Wielandt's proof: 
Look at Hilbpa(G/S). It is easy to see that G acts on Hilbpa(G/S), but then the 
difficulties begin-most especially with the combinatorial aspects of the clas
sical Wielandt proof. 

A remarkable suggestion, due to B. Gross (oral communication), is that 
one consider a finite group over the generic point of a (discrete) valuation 
ring. Assume the residue field of the ring is of characteristic p > 0 and that p 
divides # (G). Then the structure of the set of extensions of G to a group 
scheme over the ring should be closely related to the Brauer theory of modular 
characters of G over the residue field. 

By the way, it is easy to use the methods of our proof of Sylow's theorems 
over base schemes S satisfying condition (t) to give a proof of the 

Feit-Thompson Theo,'em. Let G be a finite group scheme over a base scheme 
S which satisfies (t), we have: 

(1) If G has odd order, then after a finite, faithfully flat base extension T, the 
group scheme GT is solvable; and 

(2) If G is non-abelian and geometrically simple (GT is simple for all T as 
above), then #(G) is even. 

In all of the above, we based results on the theory over a field. We need to 
examine this now. First, the connected component sequence-done for the 
case of a complete local ring. 
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Proposition. Let R be a complete local ring and let G be an affine group scheme, 
flat and of finite type over R. Then, there is an exact sequence 

o ~ GO ~ G ~ Get ~ 0 

in which GO is a connected, flat affine group scheme over R normal in G and Get 
is an etale finite group scheme over R. 

PROOF. Let GO be the connected component of identity in G. Of course, GO is 
a connected normal subgroup scheme of G. In terms of rings, if A is the ring 
of global sections of G, let Aet be the maximal separable subalgebra of A. This 
exists because the completeness of R allows us to lift idempotents. It is not 
hard to see that Spec Aet is a group scheme over R; it is flat, finite and etale. 
Let Get be Spec Aet. Now write eo, ... , et for the idempotent generators of Aet, 
then 8* vanishes on all but one of them, say 8*(eo) = 1. (We may and do 
assume, by an easy reduction, that the residue field of R is separably closed.) 
But then, 

GO = Spec A/(ker 8* n Aet)A = Spec eoA, 

and we see GO is flat over R. 
In the case that G is a finite group scheme over R, the group GO is 

Spec Amo' where mo = ker 8*. As a functor, GO is given by 

GO(T) = ker(G(T) ~ G(T.ed)) 

whenever T is the Spec of a local, finite R-algebra. o 

To go further, we examine the special case that R is a field k. Then our 
proposition yields the following. 

Corollary. If G is a finite type affine group scheme over the field k, then the 
one-forms on Gover k satisfy 

nb/K ~ A ®k (ker 8*/(ker 8*)2). 

To see this, we merely remark that nbO/k is AO ®k (ker 8*/(ker 8*)2). One 
should also check that the universal derivation is given as follows: Say 

m*(a) = La; ® b;EA ®k A. 
; 

Consider the projection 

A = k . 1 EB ker 8* ~ ker e* ~ ker 8* /(ker 8*)2 

and write z for the image of z under this projection. Then, 

d(a) = La; ® h; (d: A ~ nb/k = A ®k (ker 8*/(ker 8*f)). 
i 

This corollary implies a fundamental result due to P. Cartier [3], [20]. 

o 
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Theorem (Cartier). If k is a field of characteristic zero, and if G = Spec A is 
an affine group scheme over k, then A is reduced. In particular, every finite 
group scheme is eta Ie, and so has the form Jf for an-group H. 

PROOF. We may assume (by taking direct limits) that A is finitely generated 
as k-algebra. Write mo for ker e*, then mo/m~ is a finite-dimensional k
space. Assume we have proved 

(*) If Xl' ... , X t are a k-basis for mo/m~, the monomials X~I ... x~' in which 
a l + ... + at = z form a k-basis for mo/mo+l, that is, grmo(A) is a poly-
nomial ring in Xl' ... , X t , 

then we are done. For, we need only show that if y2 = 0, the element y must 
be zero. Look at the smallest n so that the image, y, of y in gr(A)n = mOlm~+l 
is not zero. By (*), y can be written Yo + 1], where Yo is a homogeneous form 
of degree n in the x/s, and 1] lies in m~+l. But then, y~ + element of m~n+l 
is zero, i.e., y2 Em~n+1, contradicting (*). It follows that we have yE nn m~. 
Now, if necessary, pass by base extension to k, the algebraic closure of k. 
Then, by translation in the group, all the other maximal ideals, m, of A share 
the above property vis-a.-vis y: y2 = 0:;. YEn" m". The Krull intersection 
theorem implies y = 0, as contended. 

There remains only (*) (which is standard commutative algebra once we 
have our corollary above). Consider the map 

bj : A = k . 1 El3 mo ~ mo/m~ ~ k 

in which, on the right, we send Xj to 1 E k, all other Xj go to zero. Given a E A, 
write m*(a) = L aj ® bj, and form the k-derivation (cf. our corollary) 

L\j(a) = L a1bj(b1)· 
I 

It is easy to see that 

Lli(xj ) == bij mod mo. 

And now, if P is a form in the Xi' we get 

and so the Leibnitz rule yields 

L\~' ... L\~I (other monomials of same degree) == 0 mod mo. 

We have enough linear functionals to separate the monomials; so, they are 
linearly independent. 0 

Here is a quick application of Cartier's result to the question of "lifting 
group schemes to characteristic 0 from characteristic p > 0". Suppose R is an 
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integral domain of charaateristic zero and p is a maximal ideal of R with Rjp 
a field of characteristic p > o. If G is a group scheme over Spec(Rjp), we say 
G lifts to R (more properly to S = Spec R) if and only if there is a flat group 
scheme, '1J, over S whose base extension to Rjp (i.e., fibre over p) is Rjp
isomorphic to G. In this case, '1J is a continuously varying family of group 
schemes over S whose fibre at p is given. Such a '1J is an example of a 
deformation of G; frequently, R is a local ring. 

Now to the application: Let the characteristic of k be p > 0, then the group 
scheme (J.p exists and its automorphism scheme is Gm • Hence, we can make 
the semi-direct product 

E((J.p, /1p): 0 --. (J.p --. E((J.p, /1p) --. /1p --. 0, 

where /1p acts on (J.p as automorphisms according to its embedding in Gm • In 
down-to-earth terms, E((J.p, /1p) represents the functor 

E((J.p, /1p)(L) = {(~ ~) I a E /1p(L), bE (J.p(L), matrix mUltiPlication} 

for each k-algebra L. The group scheme E((J.p, /1p) has order p2; it is non
commutative. Now for the surprise: E((J.p, /1p) admits no lifting to any ring of 
characteristic zero. For otherwise, it could be lifted to a domain of character
istic zero, and we could form, '1Jo, the generic fibre of the lifting, '1J. By 
Cartier's theorem, '1Jo is etale, and by base extension to a separably closed 
field, it arises from an abstract group of order p2. Consequently, '1Jo would be 
commutative, and it follows (as '1Jo is dense in '1J) that '1J itself would be 
commutative. But then, E((J.p, /1p), a fibre of'1J, would also be commutative, a 
contradiction. 

Practically all the applications of finite group schemes (and their limits) 
to arithmetic come from commutative finite group schemes. We shall now 
examine these. 

§4. Commutative Finite Group Schemes 

Most of what we need has been done already, except for Cartier duality and 
some classification results. We suppose G is a finite group scheme over S, and 
we assume such G are commutative unless explicit mention to the contrary is 
made. 

If {!}G is the {!}s-algebra of G, then the {!}s-module 

is again the {!}s-algebra of a commutative group scheme, flat over S. Multi
plication in {!}/? is (m*)D, the structure map is (e*)D, etc. We set 

GD = Spec({!}/?); so, {!}GD = {!}/?, 
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and call GD the Cartier dual of G. Of course, we have 

#(GD) = # (G) and (GD)D ~ G. 

Consider the "sheaf Hom" 

£'oms(A, B)(T) = HomT(A Xs T, B Xs T), 

then it is easy to see that 

where the subscript "Group Schemes/S" refers to the subsheaf of group 
scheme homomorphisms. Clearly, GD is the character group scheme of G as 
is usual. It is also easy to define the pairing G x GD -+ Gm explicitly. For this, 
write Gm as Spec (9s[T, T-1], and pick a trivializing open subset of S, say U, 
for the locally free sheaf (9G. Let e1, ... , eg be a basis for (9GI U, and let ep, ... , 
e~ be the dual basis in (9GDI U. Then the map 

(9s[T, T-1] I U -+ (9GI U ®l!!sIU (9GDI U 

is simply 

9 

T-+ Lei ® ef· 
i=l 

Note that under the canonical isomorphism 

(9GD ®l!!s (9G ~ £'oml!!s«(9G, (9G)' 

the element Lei ® ef goes over to the identity (module) map (9G -+ (9G. 

Hence, the explicit map (*) really is canonical-it is independent of the choice 
of the ei . Here are some examples. 

(8) Z/r Z is dual to Jlr. 
(Hence, the dual of an etale group scheme may be connected and vice versa.) 
The general pairing is somewhat messy, but if (9s has characteristic p > 0 and 
if r = pt, then it is rather nice. For this, recall that we have the exact sequences 

and 

f.J 
0-+ Z/P'Z -+ "W t -+ "W t -+ 0, 

where "W t is the Witt group scheme of length t over S; that is, "W t represents 
the functor 

{ and tuples are } 
Jt;(T)= <oco,.··,oct - 1 )IOCjEr(T,(9T), dd d W· , 

a e as Itt vectors 
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and where p is the Artin-Schreier map: 

p( <0(0' ... , O(t-1») = <O(g, ... , O(f-1) - <0(0' ... , O(t-1)· 

(The case t = 1: 0 --+ 7L/p7L --+ G. ~ G. --+ 0 is familiar.) 
First take the case t = 1. We have 

7L/p7L = Spec (9s[X]/(XP - X), Jlp = Spec (9s[Y]/(P - 1). 

A basis for the algebra of 7L/p7L is 1, X, ... , Xp-1; let the dual basis be fO./1' 
... , fp-1. One can check that the /; are divided powers of f1; that is, 

ff 
/; =1· 

I. 

Let exp denote the "truncated exponential", 

e2 ep - 1 

exp(e) = 1 + e + 2! + ... + (p _ I)! ' 

then it is easy to show that Y = exp(fd. Hence, our prescription for the 
Cartier pairing shows that it is 

T --+ exp(X ® log Y). 

In the general case (t ;::: 1), we need the Artin-Hasse exponential. For this, 
we begin with the classical formula 

e-S = n (1 - sn),.I(n)/n, Jl = Mobius function. 
n 

We set 
Fp(s) = n (1 - sn)l'(n)/n, 

(n.p)=l 

and observe that Fp(s) lies in 1 + s7L(P)[[s]]. If 

00 spr 
L(s) = - L~' 

,=0 p 

then Fp(s) is exp(L(s)) (usual exponential). Now one finds that 

Fp(as)Fp(bs) = n Fp(l/!,(a, b)spr); 
,;;:'0 

so, we define the Artin-Hasse exponential by 

E(a; s) = E((ao, at, ... ); s) = n Fp(a,sP'), 
,;;:'0 

where a is the Witt vector (ao, a1 , •• • ). It follows that 

E(a; s)E(b; s) = E(a + b; s), 

in which a + b signifies addition of Witt vectors. 
For the application to Cartier duality, we observe that 7L/i7L has 
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(!)s-algebra generated by Xo, ... , Xt-I' and a basis given by the monomials 
X~ ... X:~~I" where 0 ::; ij ::; p - 1. The dual basis possesses some special 
elements, namely the duals of the algebra generators Xo, ... , X t - 1 , which 
we denote by fo, ... , fr-l' Once again Y is a truncated exponential, 

Y = E«(fo, ... ,fr-d; 1) (truncated); 

the Cartier pairing is exactly 

T --+ E(X ® log Y) = E«Xi ® f i); 1) (truncated). 

(9) In characteristic p > 0, again, let f: Wt --+ Wt be the Frobenius map, 
that is, 

f«ao,···, at-d) = (ag, . .. , af-d. 

Write Pt for the kernel of f on Wt, then Pt is a finite group scheme of order pt 
over S. The ring of Pt is 

(!)s[Xo, ... , Xt-IJ/(xg, ... , Xf-l)' 

while that of (J.p' is (!)s[YJ/(P'). They are Cartier duals, the Cartier pairing is 

T --+ E(Y ® (Xo, ... , Xt-d; 1), 

and Y means the vector (Y, 0, ... ,0). When t = 1, this gives the self-duality of 
(J.p, via the pairing 

T --+ exp(Y ® X) (truncated exp). 

Slightly more generally, write 

sPt = kerfs on Wt, 

where fS( <ao, ... , at-I») is just <ag", ... , af~l)' Then, IPt is our old Pt and 
tPI is our old (J.p,. These are finite group schemes over S, and the group 
schemes rPs and sPr are Cartier duals, via the Cartier pairing 

T --+ E«Xo, ... , Xr - 1 ) ® (Yo, ... , Y.-d; 1). 

(10) As a last example of Cartier duality, we sketch some results of Oort 
and Tate [12J on the classification of finite group schemes. We shall treat 
their work more fully below. Let S = Spec R, where R is a complete, unequal 
characteristic local ring-let the residue field characteristic be p > O. We 
introduce the group schemes G~, with a, c in R, such that ac = p. The group 
scheme is given by 

G~ = Spec R[XJ/(XP - aX), 

p-l Xi XP-i 
m*(X) = 1 ® X + X ® 1 + c L - ® -, 

i=1 Wi W p - i 

in which WI' •.. , W p -l are certain units of R. The elements Xi/Wi play the role 
of divided powers, indeed 



GROUP SCHEMES, FORMAL GROUPS, AND p-DIVISIBLE GROUPS 49 

Now it turns out that G~ is isomorphic to Gt if and only if there is a unit, u, 
of R such that 

b = UP-1 a and d = u1 - p c. 

The Cartier dual of G~ is G~~;,,-~I, and the Cartier pairing is 

1 p-1 (X ® y)i 
T -+ 1 + -- L = "generalized" exp(X ® Y). 

1 - P i=1 Wi 

In characteristic p > 0, and in certain applications, the Frobenius morphism 
(variants of which have appeared above) plays an important role. Here is how 
it comes about in general. There is a map <pp: X -+ X obtained by raising to 
the pth power in each stalk of (!Jx. Suppose G is a finite group scheme over S, 
where S is a scheme of characteristic p > O. Then there is a commutative 
diagram 

! 
S rS 

in which the outer square is not cartesian, but the inner one is cartesian. That 
is, IFs(G) is the product of G and S over S, as the diagram shows, and fG/s is 
the morphism induced by 1C and <pp (on G). The scheme IFs(G) is the Frobenius 
group scheme of Gover S, and fG/s is the Frobenius morphism. The scheme 
IFs(G) is a group scheme over S because it is a base extension, and the 
Frobenius morphism is a homomorphism of group schemes. Because the 
Frobenius operation is a base extension, it commutes with products and 
inverse limits. Also, observe that 

(!Juos(G) = (!JG ®(1)s (!Js, with (!Js -+ (!Js via pth power 

and that fG/s on the sheaf level is the map 

f(a ® A.) = aP A. 

Suppose S = Spec R, with R a complete local ring. For a finite group 
scheme over S, say G, the differentials nb/R are given by A ® mo/m~. Here, 
A = r(G, (!JG) and mo is ker e*. Of course, mo/m~ is the cotangent space at 
the identity of G and can be identified with wG/R-the space of invariant 
differentials of G (i.e., w(uv) = w(u) + w(v)). Write AR for the ring of dual 
numbers over R, that is, 

AR = R[T]/(T2 ). 

We can consider the kernel of the map G(AR) -+ G(R); it is easily seen that 
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this kernel is the dual of mo/m~. These remarks lead immediately to the 
following proposition and its corollaries. 

Proposition. Let R be a complete, equicharacteristic local ring of characteristic 
p > 0 and let G be a finite, connected group scheme over R. Then, the kernel of 
fGIR is never zero unless G is trivial. Hence, if R is Artinian, there is an integer 
n > 0 for which G = ker £GIR. The smallest such n is the Frobenius height of 
Gover R. 

PROOF. We examine the diagram 

Dual of (mo/m~) --+ G(AR) --+ G(R) 

!f !f !f 
Dual of (mo/m~)p --+ IFR(G)(AR) --+ IFR(G)(R). 

As f(a ® A) = aP A and p ~ 2, the leftmost vertical map is zero. If f were a 
monomorphism, we would find mo = m~. So, Krull's theorem would show 
mo = (0), i.e., G = S. 

If R is Artinian, the sequence of kernels ker f~/R would eventually be 
stationary-so, it would have to stop at G. D 

Corollary 1. Every finite group scheme of prime order is automatically 
commutative. 

PROOF. Since multiplication in either order is continuous, the equalizer of 
these maps is closed; hence, it suffices to show every point of G x G lies in the 
equalizer. This means the problem is local. When R is a field, decompose G 
into connected and etale parts. Since G has order p, it is either one or the 
other. By faithfully flat-base extension, we may even assume R is algebraically 
closed. If G is etale, it has the form yt' for a group of order p; hence, G is 
commutative. If G is connected, it has Frobenius height one by the proposi
tion. Hence, if t E mo, we find t P = O. Now the ring (2G is dual to the envelop
ing algebra of the Lie algebra of G (Lie G = ker(G(AR) --+ G(R», and so this 
enveloping algebra has rank p over R. But then, mo must be principal and, 
the enveloping algebra being generated by one element, is commutative. 
However, its multiplication is m*; so G is commutative. 

Finally, if R is just local, write {j for G ®R R/mR, and observe that {j is 
commutative. SO, {jD is commutative, of rank p over R/mR, and (by the 
above) its algebra, (2(jD, is generated by a single element. Lift this element to 
the module (28 over R, call the lifting t; we find (282 R[t]. Yet, (28 is free 
of rank p over R; so, Nakayama's lemma implies (28 is just R[t]. Thus, (28 is 
a commutative ring, which means G is ~ commutative group scheme. D 

Corollary 2.1f R is a complete local ring with separably closed residue field (or, 
more generally, a strict Hensel local ring), and if the characteristic of the 
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residue field is p > 0, then a connected finite group scheme over R has order pt, 
for some t. 

PROOF. Let G be the connected group scheme over R, and write G for its fibre 
over the closed point (G = G (8)R R/mR ). The scheme G must be c·onnected, 
else we could lift a non-trivial idempotent of (!JG" from R/mR to R (by 
completeness). (Such an idempotent exists in (!JG" as R/mR is separably 
closed.) This would show Get to be non-trivial, a contradiction. Since 
# (G) = # (G), we are reduced to the case in which R is a separably closed 
field of characteristic p > 0. In this case, our proposition and induction 
on the Forbenius height of G, reduce us further to the case G = ker fG/R • 

But, here, it is easy to see that, as an R-module, the algebra (!JG is 
R[t1 , ••• , tn]/(tf, ... , tn; the corollary is proved. 0 

Remark. Corollary 2 supplies the step missing in the proof of the Sylow type 
results of Section 3. 

Corollary 3. Let G be a finite group scheme of order m over a base scheme S. 
If m is invertible in (!Js, then G is hale over S. 

PROOF. According to [6], we may and do assume S = Spec k, where k is an 
algebraically closed field. Here, we use the decomposition into etale and 
connected parts, Lagrange's theorem, and Corollary 2 to conclude that GO is 
trivial. 0 

Oort and Tate [12] studied group schemes of prime order. It turns out 
that by assuming a mild restriction on the base scheme, S, a classification of 
these group schemes is achieved. The classification shows that the arithmetic 
in (!Js is vitally connected to the number and complexity of the group schemes 
of order p over S. 

We start by defining the basic ring, Ap , over which the classification is 
achieved. Let 7Lp be the p-adic integers; there is a well-known multiplicative 
section of the residue class map 7Lp --+ 7L/p7L (the Teichmiiller representative). 
Call this section X, and recall that it is given by 

x(a) = lim apn, where a lifts a. 

It follows that the image of 7L/p7L* in 7Lp under X consists of the (p - 1)st roots 
of unity in 7Lp- Now we define Ap by 

Ap = 7L [X(7L/P7L), p(p ~ 1)J n 7Lp, 

where the intersection is taken in 4Jp, the fraction field of 7Lp- In other words, 
Ap consists in adjoining to 7L certain units from 7Lp, among them the ones 
occurring when we factor p in 7Lp and use X(7L/P7L). For example, if p = 2, then 
Ap is 7L. But, if p = 5, then X(7L/57L) is {O, i, i2 , i3, 1}, and X(2) = i, so that i == 2 
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(mod 5). Then 5 = (2 + i)(2 - i) in 7L5 and (2 + i) is a unit. Since t lies in 7L p, 
for odd p, we find 

A5 = 7L[i' 2(2
1+ i)J 

Now let S = Spec Ap , and let G be an S-group scheme of order p. Since G 
is commutative, the kernel of multiplication by p is a closed subgroup scheme 
of G. On the generic fibre of Gover S, this kernel is the whole fibre; hence, the 
kernel of p is G, that is, G is killed by p. (In [12], one finds a much more 
general statement and better proof. In fact, the statement (proof by Deligne) 
is: Every commutative group scheme of order m over any base is killed by m.) 
Because G is killed by p, the group (7L/p7L)* acts on G-this is the crucial 
observation. 

We examine the group algebra ((H7L/p7L*] and its action on mo (the kernel 
of e* in (!!G). Write [j] for the j-fold addition in G as an endomorphism, and 
consider the elements ei of {!!s[7L/p7L*] given by 

1 " . ei = -( 1) L., X-'U) [j]. 
p - jEZ/p71* 

It turns out that the ei are orthogonal idempotents, and they split the aug
mentation ideal, mo, into a direct sum of (p - 1) ideals of (!!G 

mo = e1 mo Et> ... Et> ep - 1 mo· 

The most important thing about this decomposition is that it is an eigenspace 
decomposition. That is, if we write Ii for ei mo, then the ideal Ii is exactly the 
part of mo where the endomorphism Em] acts like xi(m) for every mE7L/p7L*. 
Thus, 

f E qs, IJ => Em] (f) = xi(m)f, all mE 7L/p7L*. 

The ideal mo is locally free of rank p - 1; so, each Ii is locally free and 
Nakayama's lemma (reduction to a field) proves that each Ii has rank one. 
Moreover, one finds that Ii is If9i; so, we can summarize all this by 

{

mo = II Et> ..• Et> Ip- 1 = II Et> Ir>2 Et> .•• Et> I?p-l, 

on Ij, t~e elements of 7L/p7L* act as endomorphisms like 
XJ(7L/p7L*), and 

Ij = Ir>j is (!!s-invertible. 

In the description of the Tate-Oort group schemes, certain units arise. 
These have already been mentioned when we discussed Cartier duality for 
these group schemes; they give rise to generalized divided powers and are 
defined by reference to Jl.p • Let A be the affine ring of Jl.p over Ap , so that A is 
Ap[Z]/(ZP - 1), and the kernel of e* on A is the principal ideal, m, generated 
by Z - 1. Of course, as A-module, we have the decomposition 

p-l 

m = U A(Zj - 1). 
j=l 
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Now consider the elements 

Yj = (p - l)ej(l - Z) = I x- j(s)(l - ZS). 
S E Z/pz* 

We find that m = Ur:l AYi' and thus the ideals Ii (for /lp) are precisely the 
AYi' In terms of these Yi we can define our units Wi of Ap' They are given by 

Y1 = y. 

One shows that Wi == i! (mod p); so, the Yi are generalized divided powers. 
Also, if we set wp = pwp- 1, then yp = wpy. (The details of these arguments are 
in [12].) 

To continue with the general construction, let X be a scheme over Ap , and 
look at the symmetric algebra on 11 over @x 

Symm(!)pd = @x E9 11 E9 Ir>2 E9 .... 

The inclusion 11 C; @G gives a homomorphism Symm(!)x(Id ~ @G' By what 
we have said above, this is surjective. Now consideration of the ei above 
shows that under multiplication in % the @x-module Ir>p goes to 11; that is, 
there is a homomorphism 

aEHom(!)Pr>p, 11) = Hom(!))@x, Ir>l- P ). 

Thus, a is a global section of Ir>l-P, and we find that the kernel of the 
surjection Symm(!)x(I1) ~ @G is generated by (a - 1) ® Ir>p. We now apply all 
of this to the Cartier dual, GD, of G. For the ideals, Ij , one can check that 

(ID)j = (Ij)D ~ I j- 1 (as invertible @x-modules), 

and we write aD for the corresponding element of reX, If®(l-p»), i.e., 

aD E reX, Ir>(P-1»). 

Recall the Cartier pairing of example (10), 

1 p-1 Zi yp-i 

T~l+-- I -®--, 
1 - p i=l Wi wp - i 

it sends T to a generating section of 11 ® If; that is, the image of T gives an 
isomorphism of 11 ® If with @x. If we use this isomorphism, we find that 
a ® aD = wp1(!)x' Oort and Tate then use this to prove. 

Theorem (Oort-Tate). The correspondence 

G H (If, a, aD) 

is a bijection of the (isomorphism classes of) group schemes of order p over X 
(which lies over Ap) with the (isomorphism classes of) triples (.P, ri, P) in which 

(1) !l' is an invertible @x-module; 
(2) ri E reX, 'p®(p-1) and P E reX, 'p®(l-P»); 
(3) ri ® P = wp1@x' 
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The reconstruction of the functor which the group scheme determined by 
(2', a, P) represents, and which we can denote G;;, in terms of the data 2', 
a, P goes as follows: Let T be a scheme over X, then if (E G;;(T) we have 
the lPrhomomorphism 

G = G;;. 
Compose' with the inclusion 11 4 lPG and remember that 11 = 2'-1, this 
gives 

Z: 2'-1 --+ lPT> i.e., ZEr(T, 2' ®(!)x lPT)' 

The correspondence ( +-+ Z is bijective, so we obtain 

G;;(T) = {ZEr(T, 2' ®(!)x lPT)lz®P = a ® z}, 

and the group structure is given by 

P (z, y) --+ Z + y + -- ® Dp(z ® 1, 1 ® y), 
wp - 1 

in which Dp is the polynomial 

Dp(Z, Y) = wp- 1 P'f Zi YP-i. 
1 - P i=1 Wi Wp- i 

ap = pwp - 1 , 

(Note that Dp(Z, Y) = (lip) [(Z + y)P ~ zp - PJ (mod p).) 
One further remark should be made. The completion of Ap is the p-adic 

integers, Zp; so, if R is a complete local ring with residue field characteristic 
p > 0, we can find a homomorphism Ap --+ R. This means the Oort-Tate 
classification holds over R; moreover, line bundles over R are trivial so we are 
really facing the situation sketched in example (10). Over Z, the Oort-Tate 
classification holds for group schemes of order 2, and #2 appears naturally in 
the form sketched at the very beginning. 

Raynaud [14J extended this work of Oort and Tate. He considers a finite 
S-group scheme which is commutative and p-torsion (i.e., killed by p), and 
calls such S-group schemes "group schemes of type (p, p, ... , Pl". Here is a 
rapid sketch of how he generalizes Oort - Tate to the new situation. 

To get the correct endomorphisms (which one hopes will act on lPG to 
effect an eigenspace decomposition), choose a finite extension, F, of ZlpZ and 
write q = # (F) = pro There is an analog of the ring Ap , let us call it AF , it 
arises as follows: Add the (q - l)st roots of unity to Z, invert the integer 
q - 1, and adjoin to Z all primes of the field (\J«(q-1) lying above p except one 
of them (fixed in what follows). Here, (q-1 is a primitive (q - 1)st root of 
unity. The choice of an omitted place above p, let us call it p, serves to 
delineate "good" characters. To see this, call a character good if the composed 
map 

x A red 
F ~ F at SOl K(f.J) 
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is a morphism of fields (i.e., additive). Once one good character, X, is chosen 
all the others are Xh = Xp\ with 0 :::; h :::; r - 1, and we have Xpr = X. Of 
course, by choice xf = Xi+l' The good characters form a p-basis for all the 
characters, for if'" is any character F -+ AF , then 

r-l 

'" = n xi', 0:::; ni :::; P - 1. 
i=O 

(In the Oort-Tate case, there is a unique good character-the Teichmiiller 
character.) If another choice is made for the omitted place, the Galois group 
will move the old omitted place to the new one and move the old good 
characters to the new ones. 

We now suppose G is slightly more special than just of type (p, p, ... , p), 
namely, we assume G is an F vector space scheme (this means G(T) is 
functorially an F vector space). We shall also assume G is an X-scheme and 
that the base, X, lies over AF • Of course, these assumptions imply G has type 
(p, p, ... , p), and that GD also satisfies all these assumptions. For each char
acter, x, we form the element 

as in Oort-Tate. These ex are orthogonal idempotents, and they break mo 
( = ker e*) into a direct sum of @x-modules 

Further, 

mo = U !!lx' where !!lx = exmo· 
x 

(a) each!!lx is locally free, and 
(b) !!lx is the x-eigenspace ofmo; that is, if AEF*, then [AJ acts on!!lx via X(A). 

Now one needs to assume the condition. 

(RND) Each !!lx is rank one (i.e., @x-invertible). 

Condition (RND) is not really that restrictive. For one thing, it says 
#(G) = q. For another, Raynaud proved that (RND) will hold if #(G) = q 
and if for at least one fibre either G or GD is etale. (For example, if X has 
characteristic 0.) But, (RND) does not always hold: it fails for rip EfJ •.. EfJ rip 

(r times). 
One also needs the analogs of the units Wi of Oort and Tate. For this, let 

Xl' ... , Xn be characters, then write 

W X1 ... Xn = (Xl'" Xn)(n), i.e., 

WX, . .• Xn = En] on !!lXI" ,Xn' 

If Xi is a good character, set Wi equal to xf(p) (= wx, ... x,). Raynaud proves Wi 

is independent of i, let us call it w. Now by studying Gauss sums, the special 
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case G = F+ {additive group of F}, and the corresponding GD, Raynaud 
proves: 

{1} wx is invertible in AF , for all characters x; 
{2} If X = ni::b x't', with Xi the good characters and 0 :;; ai :;; p - 1, then 

wx == ao! a1 ! ... a,! {mod p}; 
{3} w == p! {mod p2}, w = up with u a unit of AF and u == -1 {mod p} {Wilson's 

theorem}. 

The classification proceeds as follows: Take the good characters Xo, Xl"'" 
X,-l and form f = fl xo EB ... EB fl Xr _t' Then the symmetric algebra of f 
over tPx maps onto tPG provided G satisfies condition {RND}. One analyzes its 
kernel in the same manner as Oort-Tate, and one finds the 

Theorem {Raynaud}. The map GI--+{flxo' ... , fl Xr _t' ci , d;), where ci : flx,+t-t 
fl x;' and di : flxf -t flx,+t arise from the iterated comultiplication and multi
plication in tPG, is a bijection of the (isomorphism classes of) F-vector space 
group schemes satisfying {RND} over X with the (isomorphism classes of) 
systems formed of r invertible tPx-modules 2'0' 2'1' ... , "<£"-1 and r pairs of 
tPx-module maps Yi: 21+1 -t 2't, bi: 2't -t 21+1, such that biYi = w1~,+t for 
all i. 

If R is a complete local {more generally, Hensel} ring whose residue field 
contains a field with q elements, then R is a Ap-algebra; so, the above applies 
to Spec R. But here, locally free modules are free, and we get the much more 
down-to-earth assertion: 

The F-vector space group schemes over R which satisfy {RND} correspond 
to r pairs of elements of R: a1 , b1 , ••• , a" br with ajbj = w for every j. Here 
#{G} = q = p', and G is given by the equations 

i = 1,2, ... , r. 

{The map m* is given by a messy "universal" polynomial involving the a/s as 
parameters.} 

The F-vector space group schemes G::::::: and G~::::J.. (with obvious nota
tions) are isomorphic if and only if there are units u1 , ••• , tl, of R with 

§5. Formal Groups 

We intend no grand theory here,just what is needed for p-divisible groups {to 
be treated in the next section}. To this end, R will always be a complete local 
ring {in particular, R could be a field or an Artinian local ring}, and S will 
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denote Spec R For group schemes, we began with functors on the category 
of schemes; here, we restrict the category on which our functors are defined. 

We look at schemes T over S which satisfy 

(1) T is finite over S (hence, affine); and 
(2) r (1: (1)T) is an R -module of finite length. 

(If R is a field or is Artinian local, then (1) implies (2).) To coin a word, let 
us call the schemes T satisfying (1) and (2) very finite over S. (Warning: This 
is not standard terminology.) The use of these very finite schemes is analogous 
to the use of COO-functions with compact support as test functions in the 
theory of distributions. 

A formal functor, F, over S, is a cofunctor on the very finite schemes over 
S to sets, and a formal group functor over S is a formal functor so that each 
F(T) has, in a functorial way, the structure of group. 

Of course, every ordinary S-functor or S-group functor, say F, gives us a 
formal counterpart, call it P, obtained by restricting F to the very finite 
S-schemes T. We call P the formal completion of F. 

To treat questions of represent ability, let us call a commutative R-algebra, 
A, pro finite if it is lim A/~ over a family of ideals ~ such that A/~ is very 

+-
finite over R* Note that R is itself profinite, because R = limR/mk; and 

+-
every R-algebra, A, finite as R-module, is also profinite. But, observe that the 
power series ring R [[Xl' ... , Xn]], while not finite over R, is still pro finite. To 
see this let 

'" = (Xl' ... , Xn) + mRR[[Xl , ... , Xn]], 

then the power series ring is the projective limit of R[[Xl , ... , Xn]]/",t as 
t -+ 00. 

Each profinite R-algebra, A, defines a formal functor. We call this functor 
the formal spectrum of A, and denote it by Spf A. Here is the explicit defini
tion: 

(Spf A)(T) = HomR,cont.(A, nT, (1)T», 

where T is very finite over Sand nT, (1)T) has the discrete topology. 
Let us rewrite (*) solely in terms of B = nT, (1)T), so that it gives a (covar

iant) functor on very finite R-algebras: 

(**) (Spf A)(B) = HomR,cont,(A, B) if B is very finite. 

The definition (**) immediately leads to an extension of Spf A as a functor on 
profinite R-algebras. Namely, suppose B is profinite, say B = lima B/!!3a , 

~~~ +-

(Spf A)(B) = I~HomR,cont.(A, B/!!3a). 
a 

.. We reject the barbarisms: "pro very finite", or "very profinite". 
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In this way, our formal functors are really functors on pro finite R-algebras. 
Now we can make the obvious definition: 

A formal S-scheme (respectively, a formal S-group scheme or (better) an 
S-formal group) is a representable functor on the category of profinite R
algebras to sets (resp. groups). That is, a formal S-scheme is just Spf A for 
some profinite R-algebra A. (If Spf A is a formal group, A will get more 
structure.) 

If A is a finitely generated R-algebra, we have the ordinary representable 
functor Spec A. We can form the completion of Spec A, which we have 

----------denoted Spec A. It is easy to see that this completion is representable; that is, 
it is a formal S-scheme, Spf(A) for some profinite A over R. To do this, write 
a presentation for A 

qJ 
R[Xl' ... , Xm] ~ R[Yl , ... , y,,] ~ A ~ 0, 

and observe that cp is given by m polynomialst in the Y's. If we replace the 
polynomial rings by power series rings, cp still is defined and we get a presen
tation for A (= coker cp on power series) 

qJ ~ 

R[[Xl ,···, Xm]] ~ R[[Yl , ... , y,,]] ~ A ~ 0. 

-----------This A is the profinite R-algebra we seek to represent Spec A. 
If Spf A is a formal group, then the group multiplication gives rise to a 

comuItiplication 

m*:A~A ®RA, 

where the caret over the tensor sign signifies the complete tensor product. If 
A = lim A/m:, then A ®R A is just lim (A/m:) ®R (A/m:). This operation 

+- +-
yields a profinite R-algebra and is the coproduct in the category of profinite 
R-algebras. 

One of the nice things about the formal category is the ease in deciding on 
representability (compare the ease in differentiating distributions). This is a 
result of Grothendieck [7] and goes as follows (we skip the proof): 

Theorem (Grothendieck). A functor from pro finite R-algebras to sets (groups) 
is representable if and only if it is left-exact ( = commutes with fibred products 
and final elements). 

Let us now restrict attention to formal groups. We have 

Proposition. Every formal group, G, over S = Spec R has a canonical exact 
sequence 

t By linear change of variable in R[X], we may assume no constant term. 
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in which GO is a connected normal formal subgroup of G and Ge! is an etale 
formal group. 

PROOF. Write G = Spf A, and A = lim A/~l. Then, as in the proof of the 
~ 

corresponding exact sequence for ordinary group schemes, we have the R-
algebras (A/'ll)e! and we pass these to the limit to get A e!. Of course, Ge! is 
Spf(Ae!), and it is easy to see that the group law on G gives one on Ge! so 
that our surjection G -+ Ge! is a homomorphism. Let the kernel be GO. By 
the completeness of R, we can lift idempotents, and this shows that GO is 
connected. 0 

We say that G is smooth over S if GO is the formal spectrum of a power 
series ring over R. A smooth, connected formal group is called a formal Lie 
group; so, a formal Lie group is Spf(R[[XI' ... , XnJJ) and the integer n is the 
dimension of the formal Lie group. The isomorphism 

R[[XI' ... , XnJJ ®R R[[YI , ... , YmJJ ~ R[[SI' ... , Sn, TI , ..• , TmJJ, 

in which Sj = Xj ® 1 and 1j = 1 ® lj, shows that to give 

Spf(R[[XI' ... , XnJJ) 

the structure of a formal Lie group we need to give n special power series in 
2n variables. Suppose that Fi(SI, TI , ... , Sn, 7;.) for 1 ~ i ~ n are such given 
power series, and write 

F(S, T) = (FI ( ... , Si' 7;, ... ), ... , Fn(· .. , Si' 7;, ... )). 

Then, the rules we require of our power series result from translating the 
group axioms in these terms, they are: 

(1) X = F(X, 0) = F(O, X) (e*-law); 
(2) F(X, F(Y, Z)) = F(F(X, Y), Z) (associative law); 
(3) F(X, Y) = F(Y, X) (if the group is commutative). 

The inverse law is automatic. 

If Xl' ... , Xn, Yl, ... , Yn are elements of some very finite R-algebra, B, and 
not units of B, and if X signifies (Xl' ... , xn ), and similarly for y, then the 
group law on (Spf A)(B) is given by 

X * Y = F(x, y) = X + y + higher order terms in x, y. 

Recall that a complex Lie group is a group in the category of complex 
analytic manifolds. So, if (X I, ... , Xn) are coordinates near a point, then the 
group operations-being holomorphic-are given by complex power series 
in the coordinates of the points. The exponential map from the Lie algebra 
(= tangent space) shows that these series begin linearly. Thus, in the complex 
Lie group 

xy = X + y + higher terms in x, y (converging in C). 

What we have done is to replace the converging series by formal series, and 
this explains the name "formal Lie group". 
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If G is a smooth formal group, its dimension will be the dimension of its 
connected component. Etale formal groups are zero dimensional. This is 
standard terminology because the tangent space at the origin is the same for 
G and its connected component, and the vector space dimension of the 
tangent space is the dimension of G. 

Returning to our basic definitions, we see that if A is a profinite ring A = 
l~a Aa , instead of giving A we may as well give the projective mapping 
system {Aa, maps Ap-+ Aa}. Consequently, we obtain an inductive system of 
very finite R-schemes Xa = SpecAa, and we can consider a formal scheme 
Spf A as an inductive system (Xa) of very finite R-schemes. As functors, some 
caution must be observed. If B is very finite, then 

(Spf A)(B) = HomR,cont. (l~ Aa, B) = l~ HomR(Aa, B) = l~ Xa(B). 
a a a 

That is, on very finite B, we have (Xa)(B) = lima Xa(B). But, if B is pro finite, 
-+ 

say B = l~p Bp, then our definition of the functor Spf A was 

(Xa)(B) = (Spf A)(B) = I~HomR,cont.(A, Bp) = 1~I~Xa(Bp), 
p p a 

and, in general, we cannot interchange the two limits. Thus, in general, 
(Xa)(B) =1= lima Xa(B), if B is merely profinite. 

-+ 

§6. p-Divisible Groups 

A p-divisible group is a special kind of formal group. The definition can be 
formulated over any commutative ring R, or even over a scheme, but the 
essential case is where R is local (and, even more interesting, of residue 
characteristic p > 0). 

We fix the prime p and a non-negative integer h. 

Definition. A p-divisible group over R of height h is an inductive system (Gv, iv) 
in which: 

(1) Gv is a finite, commutative group scheme over R of order phv. 
(2) For each v, we have the exact sequence 

that is, iv maps Gv (by closed immersion) to Gv+1 and identifies it with the 
kernel of pV on the latter group scheme. 

The inductive system (Gvo iv) gives a formal group; if Gv = Spec Av and we 
write A = lim Av, then Spf A is the p-divisible group (Gv' iv)' Most often we 

+--
work directly with the Gv and only occasionally with G = Spf A. Consider the 
diagram 
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0-- Gv ~ Gv+1 ------;;-+ Gv+1 
Iv P 

It shows that Gv is the kernel of pV on Gv+2 via the iterated injection iV+l 0 iv' 
This holds for all t ~ 1 on Gv+t as is clear; hence, Gv is the kernel of pV on G 
and G is p-torsion (as it is lim Gv). 

-+ 
Next, the diagram 

commutes. The map Gv+t -+ GV+t+1 via iv+t 0 pt = pt 0 iv+t must factor through 
the kernel of pV by (2) of the definition applied to Gv+t. But, this kernel is Gv 
as we have observed, so the dotted arrow (shown) exists, call itjt.v' Then the 
lower triangle of our diagram 

commutes for every t. Now the kernel ofjt.v is the kernel of p' on Gv+t> that is, 
it is Gr. Since the order of Gv+r is the product of the orders of Gv and Gr by (1), 
we deduce that 

is exact for every v and every t. It follows that the mapping p: G -+ G is an 
isogeny, meaning that it is onto and its kernel is a finite group scheme over S. 
We have therefore proved the 

Proposition. A p-divisible group over R is a p-torsion commutative formal 
group, G, over R for which p: G -+ G is an isogeny. 

Remarks. We recover Gv as the kernel of pV on G, the height h appears as the 
exponent of the order of ker p, and G = lim Gv because it is p-torsion. 

-+ 

EXAMPLES OF p-DIVISIBLE GROUPS 

(1) If n is the fundamental group of S, and if T is a free d:'p-module of rank 
h on which n operates continuously, then we shall set 7;, = TjpvT. The 7;, 
form an inductive system of n-modules of order pVh with associated etale 
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group schemes, :T", over S. We obtain the etale p-divisible group of height h, 
lim:T", over S, and each etale p-divisible group has this form (cf. example (7) 
~ 

of Section 3). 

(2) Let Gv = (ker pV on Gm ) = Jlpv. Then the Jlpv form an inductive system, 
and we get the p-divisible group of Gm : Gm(p) = lim Jlpv. The height of 
Gm(p) is 1. ~ 

(3) (This is the most important-the motivating-example.) Let X be an 
abelian scheme of relative dimension dover S. If pvX denotes the kernel of 
multiplication by pV on X, then it is known that pvX is a finite group scheme 
over S of order p2dv, [11]. Consequently, the inductive system (pvX, incl.) 
gives a p-divisible group, X (p), of height 2d. We call X (p) the p-divisible group 
of the abelian scheme X. 

Since each p-divisible group fits into an exact sequence with kernel a 
connected and cokernel an etale p-divisible group, and since example (1) 
gives all etale p-divisible groups, we need to give a construction of connected 
p-divisible groups. 

(4) (Connected p-divisible groups). Let r be an n-dimensional commuta
tive formal Lie group over S. Assume the map p: r ~ r (multiplication by p, 
the residue characteristic of R) is an isogeny. If this is so, r is called divisible. 
Now repeat the process of examples (2) and (3) to make the p-divisible group 
np) = lim (ker pn on r). To actually see that the kernel of pn on r has 

-,4 

order pnh, we use the flatness to base extend to the residue field which has 
characteristic p > O. In characteristic p, the Frobenius morphism and its 
Cartier dual, the Verschiebung V, are related by the following diagram (in 
which G is a formal group) 

G PIG 

~ /v ~ 
!FkG p I !FkG. 

That is, p = fV = Vf. As r is connected, so is r ®R k because R is complete. 
Our diagram now shows that the kernel of pn on r has order pn\ all n; the 
height, h, of np) is the exponent of the degree of the isogeny p: r -+ r. 

Example (4) turns out to be perfectly general. Indeed in Tate's article [19], 
one finds a sketch of the proof of the following characterization of connected 
p-divisible groups obtained by Serre and Tate. 

Theorem. The functor r-- np) is an equivalence of categories between the 
category of divisible, commutative formal Lie groups over R and the category 
of connected p-divisible groups over R. 

The essential content of this theorem (whose proof is omitted) is that every 
connected p-divisible group is smooth. Flatness reduces the proof of this to 
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the case of the special fibre, which lies over a field of characteristic p > O. 
Here, the Frobenius-Verschiebung diagram above together with knowledge 
of the orders of the Gv allows one to give the proof. 

There is the notion of Cartier duality for p-divisible groups. We have the 
diagram 

for each v. Since each jv is surjective, the system (G~, j~) forms a p-divisible 
group, called the Cartier dual of (Gv' iv)' 

In the examples given above, the dual of Gm(p) is the etale p-divisible 
group Qp/Zp = l!!p Z/pvZ. If X is an abelian scheme, then ~omgroups(X, Gm ) 

is always trivial. But @"xt~roups(X, Gm ) is an abelian scheme, call it XD, and 
it is dual to X. (One should think of an extension 0 -. Gm -. P -. X -. 0 as 
defining a bundle over X with fibre Gm • If one adds the zero section, there 
results a line bundle on X, i.e., an element of Pic(X).) Now we consider the 
isogeny pV on X, 

pV 
o -. pvX -. X -. X -. O. 

By using ~om( -, G m ), we get 

o -. ~omgroups(pvX, Gm ) -. @"xt~roups(X, Gm ) ~ @"xt~roups(X, Gm ) -. 0, 

or (in terms of the dual abelian scheme, XD) 

pV 
o -. (pvxt -. X D -. X D -. O. 

We deduce that (pvX)D = pv(XD); in other words that 

XD(p) is Cartier dual to X(p). 

Since the connected component of a p-divisible group is a formal Lie 
group, the latter has a dimension and the dimension of our p-divisible group 
is just the dimension of its connected component. Moreover, it is clear that 
the height of a p-divisible group and its dual are the same. The dimension and 
height of p-divisible groups are connected through Cartier duality: 

Proposition. If G is a p-divisible group over Rand GD is its dual, then 

dim G + dim GD = ht( G) = ht( GD). 

PROOF. The invariants do not change by restriction to the closed fibre; so, 
we may assume R is a field of characteristic p > O. Then the Frobenius
Verschiebung diagram shows that 

o -. ker f -. ker p -. ker V -. 0 

is exact. Since fl Get is injective, ker f is concentrated in GO. Here, f operates 
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by raising the variables to the pth power, therefore the order ofker fis pdimG. 
The map V is dual to f; so, ker V is to ker f as GD is to G. But then, the order 
of ker V is pdim G". By the exact sequence, 

pdimG. pdimGD = # (ker p) = pht(G) 

This finishes the proof. 

(definition of ht(G)}. 

D 

In example (2), Gm(p} has height one and dimension one; its dual, Op/7Lp, 
has height one, qimension zero. In example (3), both",x(p} and XD(p} have 
height 2d. The dimension of both X(p} and XD(p} is d{the tangent space to 
the origin of X is d-dimensional and this tangent space is the Lie algebra for 
the formal Lie group X(p}O}. However, the height of X(p}O can be any integer 
n with d ::; n ::; 2d depending on the p-torsion in the reduction of X. When 
the reduction of X mod mR is "ordinary", the height of X(p}O is d. 

For applications to arithmetic, we need to study the points of G with 
values in a complete topologized ring. When we defined the points of Spf A 
with values in B as l~ (Spf A)(B/~p), we really did not need that Bp (= B/~p) 
was very finite, what we needed was that B is topologized so that it is 
complete and so that Bp is discrete. Let us specialize R to be a complete 
discrete valuation ring whose residue field, k, has characteristic p > O. If K is 
the fraction field of R, we will soon assume that K has characteristic zero, 
however, this is not yet necessary. Let L be the completion of an algebraic 
extension of K (with respect to an extension of the valuation of R), and write 
S for the ring of integers of L. Of course, S = lim SjmkS, and so if G = (Gv ) 

+-
is p-divisible over R, we get 

G(S) = lim G(S/mkS} = lim lim Gv(S/mkS}. 
+r 7ft 

From tPe exact sequence 
p. o -+ Gv -+ G -+ G -+ 0 

and the left-exactness of lim, we get the exact sequence 
+-

p. 
o -+ GiS} -+ G(S) -+ G(S). 

Hence, the torsion sub~roup of G(S), denoted G(S}tors, is 

G(Shors = lim Gv(S) = lim lim Gv(S/mkS) . 
..-+ -+ +:-v v I 

This shows in clear detail that the two limiting operations cannot, in general, 
be interchanged. However, when Gis etale, we find that Gv(S/mk) = Gv(S); so 
for G etale we get G(S) = G(S)tors. Quite generally we have: If G = Spf A, and 
S is complete with respect to its valuation topology, then 

G(S) = HomR,cont.(A, S), 

where A has its adic-topology and S its valuation topology. 
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Look at the case in which G is connected. Then A = R[[X1 , ••• , XnJJ, and 
the points of G in S (i.e., the elements of G(S)) are n-tuples (e 1, ... , en), where 
each ei lies in the maximal ideal of S. As S is complete, the power series 
defining the group multiplication e * '1 converge in S, and G(S) is therefore an 
analytic group over L (p-adic analog of a complex Lie group). Observe as well 
that G(S) is a Zp-module. 

From now on, assume K has characteristic zero. Let K be the algebraic 
closure of K and write (f) for the Galois group of K/K. 

Definition. If X is a commutative group scheme or a formal group over R, the 
Tate module of X, denoted Tp(X), is 

_ pV _ 
~(X) = 1~(ker(X(K) -+ X(K)). 

v 

(Note that if X = lim Gv = Gis p-divisible, then Tp(G) = limv Gv(K).) We can 
-+ +-

define the Tate comodule of the p-divisible group G (not standard nomencla-
ture), denoted <l>p(G), by 

Remarks. (1) ~(G) and <l>p(G) are Zp-modules. 
(2) (f) acts on both ~(G) and <l>p(G) continuously. 
(3) ~(G) and <l>p( G) depend only upon the generic fibre, G ®R K, of Gover R. 
(4) The Tate module, ~(G), determines the generic fibre of Gover R. 

(To see this, note that in any case, G ®R K is etale as char(K) = O. Hence, 
G ®R K is determined by the Galois modules (Gv ®R K)(K), i.e., by Gv(K). 
However, we have Tp(G)/pvTp(G) = Gv(K), by definition of Tp(G); so, our 
remark follows.) 

(5) The Tate comodule, <l>p(G), determines the generic fibre of Gover R. 
(Similar argument to remark (4).) 

(6) As a Zp-module, ~(G) is Z:t(G); and, similarly, <l>p(G) is (Qp/Zp)ht(G). 
(7) We have the canonical (f)-isomorphisms 

<l>p(G) ~ Tp(G) ®zp Qp/Zp, 

Tp(G) ~ Homzp(Qp/Zp, <l>p(G)). 

(8) For the p-divisible group G, knowledge of anyone of the Tate module, 
~(G), the Tate comodule, <l>p(G), the generic fibre over R, G ®R K, implies 
knowledge of the other two. (This is the conjunction of (4), (5), and (7).) 

We wish to connect the Tate modules of G and GD in order to get further 
information on each as well as more information on G and GD from each of 
the Tate modules. For this, it turns out that we must introduce the true 
analog of C in the p-adic theory. We let C be the completion of the algebraic 
closure, K, of K. The field C is algebraically closed and it is complete (but not 
locally compact); so, C is the analog of C. Write Rc for the ring of integers 
in C. 
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Now for any completion, L, of an algebraic extension of K, with ring of 
integers S, we have 

Gv(S} = Gv(L}. 

In particular, when L = C and S = Re, we get Gv(Rd = Gv(C). But, the 
comodule <l>p(G} is the direct limit of the Gv(Rd, and so we deduce 

<l>p(G} = torsion subgroup of G(Rd = torsion subgroup of G(C). 

Consider the Cartier dual of Gv , it is .1t'omgroups(Gv, Gm}. Consequently, by its 
very definition, we find 

G~(Rd = HOmRC-groups(Gv ®R Re, Gm }, 

(*) G~(Rd = HOmRC-grOups(Gv ®R Re, flpv}. 

Remember that GnK} = G~(Rd = G~(C), and observe that (*) may also 
be written 

G~(Rd = HomRc·groups(Gv ®R Re, Gm(p}}. 

Pass the latter equation to the projective limit over v; we get 
D ~ 

(**) J;,(G } = HOmRC-grOUPs(G ®R Re, Gm(p))· 

Now (*) yields the pairing 

G~(Rd x Gv(Rd -+ flpv(Rd, 

which, when passed to the projective limit, yields in turn the duality pairing 
for Tate modules 

Pairing (*)' is a (f)-pairing, and if we write Zp(l) for J;,(G m}, we get the 
(f)-pairing (for Tate modules) 

On the other hand, (**) gives us the pairing 

where Ue is the group of units of Re congruent to one modulo the maximal 
ideal. The Galois group, (f), acts on (***), and so we derive the homomorphism 

G(Rd ffi -+ Homffi(Tp(GD }, Ud· 

At this point, we need the fundamental fact-proved by Tate in his article 
[19]-that the fixed points of C under its Galois action by (f) are exactly K, 
i.e., 

HO(f), C) = K. 

(This is done by Tate by analyzing ramification; independent proofs were 
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given separately by Ax and Dwork. We will omit these arguments.) Thus, our 
homomorphism becomes the fundamental homomorphism 

OCR: G(R) -+ Homffi('l~(GD), Vd. 

Note that if we were to succeed in proving OCR an isomorphism, then Tp(GD ) 

would determine the R-points of G, and (*)" would show that Tp(G) deter
mines the R-points of G. We aim to do this and more. In order to make sense 
of the arguments to follow, we make a small digression to discuss what is now 
known as the "Tate twist". 

Let ( be a primitive pVth root of 1, then for each s E (f), the element s( is 
another pVth root of 1, so that 

s( = C(s) 

for some element r(s)E(ZjpVZ)*. We pass to the limit over v and thereby get 
a character, r, with values in the units of Zp. Thus, for every (E Zp(1) 
(= Tp(G m )), we have 

s( = (t(s), 

where r: (f) -+ (Zp)* is a continuous map (character). The character r is called 
the cyclotomic character. Now if M is a Zp-module and also a {f)-module, and 
if X is any character of (f) with values in (Zp)*, then we can twist the action of 
(f) on M by x; that is, we can make a new (f)-action on M: 

s*m = X(s) . (sm), 

The module M with this new action is denoted M(X) and is called M twisted 
by X. The particular case of X = r (the cyclotomic character) is called the Tate 
twist. Clearly, 

M(r) = M ®z Zp(l) = M(l). 
p (def) 

Of course, for n > 0, we define 

M(n) = M(rn) = M ®zp Zp(1r8>n = M ®zp Zp(n), 

and if n < 0, we set 

M(n) = M(rn) = M ®zp Zp( _1)0JnJ = Homzp(Zp(n), M). 

Here, 

Zp( -1) = Homzp(Zp(1), Zp). 

Clearly, M(O) = M and Zp(O) is Zp with trivial {f)-action. The same formalities 
hold for the Tate twist as hold for the Serre twist (<8> (\\(1)) of projective 
algebraic geometry. Tensoring with Zp(n) is called the n-fold Tate twist. From 
now on, when we write M(n) it will mean the n-fold Tate twist of M. 

Now we return to the dualities involving the Tate modules of p-divisible 
groups. We have the duality pairing (*)", and it shows that 

Tp(GD ) ~ Homzp,cont.cl~(G)( -1), Zp), 
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(d = Zp-duality). 

We shall need the vector spaces (over C) 

W = Homz/l;'(G), C) and W D = Homzp(J;,(GD ), C). 

By remark (6) above, these have dimension h = ht(G) over C, and they are 
(f)-modules. Thus, 

W D = Homzp(Tp(GD ), C) ~ Homzp(Tp(G)d(I), C) 

~ Homzp(J;,(G)d, C( -1)) 

~ Tp(G) ® C( -1). 

From this, we get the perfect duality of h-dimensional vector spaces over C 

W®c WD-+C(-I) 

and (t) is a (f)-pairing, as well. 
The map aR above is not sufficient, we need a differential form of it so that 

information about the tangent spaces may be gleaned. These spaces control 
the dimensions of G and GD • To get this differential form of aR , it will be 
necessary to assume the residue field of R is perfect and we do so from now 
on. Of course, this is no restriction in the applications to arithmetic. 

The connected-etale sequence 

o -+ GO -+ G -+ Get -+ 0 

splits over the special fibre of R because the residue field is perfect. Since G is 
flat over R, this splitting (already true on the generic fibre) holds over Rand 
we find 

o -+ GO -+ G -+ Get -+ 0 is split exact. 

Thus, for each complete ring S, 

0-+ GO(S) -+ G(S) -+Get(S) -+ 0 

is exact. Now p: GO -+ GO is an isogeny and Get(S) = Get(S ®R k). Because k is 
perfect, the maps 

(mult. by p), 

are surjective for every v, and if we pass to Rc instead of S, the isogeny on GO 
gives the surjection GO(Rd -+ GO (Rd. Hence the five lemma shows that 

Lemma. If the residue field of R is perfect, then the group G(Rd is divisible. 

The tangent space to G is the tangent space to its formal Lie group GO; so, 
tG(L) means the points of the tangent space to GO (at its origin) with coor
dinates in L (where, L is a field over K). If GO = SpfR[[X1, ... ,XnJJ, 
then each Z E tG(L) is an R-linear derivation of the power series ring 
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R[[XI' ... , Xn]] into L. That is, z is R-linear and 

z(fg) = f(O)z(g) + g(O)z(f). 

This is the same as giving an R-linear map from 1/12 to L, where 

1 = (Xl' ... , Xn)· 
Now we know from Section 3 that 1/12 is the space of invariant one-forms 

on GO, and it is easy to see that for each OJE1/12, there exists a unique power 
series QEK[[XI' ... , Xn]] with Q(O) = 0 and dQ = OJ. (Formal Poincare 
Lemma.) Using this Q for each OJ, we can define the logarithm map 

log: G(S) ~ tG(L), L = Frac(S). 

Here is the definition: 

If x E G(S), then 10g(x)(OJ) = Q(x). 

(There is another way to get the logarithm map, it goes as follows: For each 
x E G(S) and each f E 1, set 

log(x)(f) = lim (f(P:X)) , 
r-oo p 

and observe that prx E GO(S) for r » 0 because Get(S) is torsion.) 
The logarithm map is a Zp-homomorphism and is a local isomorphism. 

The kernel of log is G(S)tors (as is most easily seen from the second definition), 
and the logarithm will be surjective if Frac(S) (= L) is algebraically closed. 
This is true because the co kernel of log is torsion and G(S) is divisible if L 
is algebraically closed-as in our lemma above. We can summarize these 
matters as follows: 

log o ~ G(S)tors ~ G(S) ~ tG(L) is exact, 
log o ~ G(Rdtors ~ G(Rd ~ tG(C) ~ 0 is exact, 

log: G(S) ®zp Q p ~ tG(L) is an isomorphism. 

If G = Gm(p), then G(S) is the units of S congruent to 1 mod ms (the 
"principal units") and tG(L) is just L. The log is the usual p-adic logarithm. If 
G = A(p) for an abelian scheme over R, then G(S) is the subgroup of A(S) 
consisting of those points of A(S) which have finite p-power order after 
reduction mod ms. The logarithm map was studied by E. Lutz for elliptic 
curves and A. Mattuck for abelian varieties. For further details on the analytic 
aspects of logarithms, exponentials, and tangent spaces, see [17]. 

We apply the logarithm map to the pairing (***), and we get a new pairing 

(*** log): Tp(GD ) x tG(C) ~ tGm(P)(C) = C. 

The Galois group, m, acts on this pairing; and, as C(lj = K, we deduce the 
"differential of aR", namely the map 

daR: tG(K) ~ Hom(lj(Tp(GD ), C). 
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We now have the following important theorem proved by Tate in his 
article on p-divisible groups. 

Theorem (Tate). If R is a complete, mixed characteristic, discrete valuation ring 
with perfect residue field of characteristic p > 0, and if G is a p-divisible group 
over R, then for an open subgroup ~ of (i) with fixed field L and ring of 
integers S, the two maps 

OCs: G(S) --+ Homf)(Tp(GD ), Ud, 

docs: tG(L) --+ HomD(~(GD), C) 
are isomorphisms. 

Remark. The source of the restriction to an open subgroup, ~, of (i) is a 
technical part of the proof to be sketched below. It essentially rests on Tate's 
method for analyzing the (i)-action on C by higher ramification. 

PROOF. We have the commutative diagram 

cco1 1cc 1dcc 

° --+ Hom(~(GD), UCto.,) --+ Hom(Tp(GD ), Ud --+ Hom(Tp(GD ), C) --+ 0, 

in which the middle and right-hand vertical arrows come from pairings (***) 
and (*** log) and the left-hand vertical arrow comes from the direct limit of 
perfect dualities on the finite layers. (See the discussion preceding pairing (*)'.) 
Consequently, the left vertical arrow is an isomorphism. The kernel and 
cokernel of doc are linear; so the snake lemma implies the same for ker oc and 
coker oc. 

Now the trick is to examine OCR' the (i)-fixed part of oc, and to show that it 
is injective. For suppose this is done, then our diagram shows doc is injective 
on the image of logl G(R). However, the latter image spans tG(K) and there
fore dOCR is injective, too. But then the whole map doc is injective, because it 
factors as 

tG(C) ~ tG(K) ®K C dccR@1 1 Hom(jj(Tp(GD ), C) ®K C --+ Hom(Tp(GD ), C) 

and the right-hand map is injective. (For the latter, one must prove for a 
vector space over C, say Z, and a semi-linear (i)-action on Z, the map 
Z(jj ®K C --+ Z is injective. This is an argument involving a shortest linear 
dependence.) 

Remember that the valuation on R is discrete. So, if x lies in GO(R) and its 
coordinates are in m~, then px has all its coordinates in m~l by the 
discreteness of the valuation. Thus n prGO(R) = (0). Yet, ker oc is a linear 
space and so it is uniquely divisible; thus, by what we have just said, 

. ker oc n GO(R) = (0). 

Again, ker oc is a linear space; so, it is torsion free. But, G(R)jGO(R) is a torsion 
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group, and thus ker a n G(R) = ker(aR) is zero. We have shown aR and daR 
(and da) are injective. 

The equation Cffi = K (and our diagram above) shows that 

coker aR ~ (coker a)ffi, and 

coker daR ~ (coker da)ffi. 

But, the snake lemma for our diagram says in particular that coker a --.. 
coker da is an isomorphism; hence, 

coker aR --.. coker daR is injective. 

Consequently, the surjectivity of daR will imply the surjectivity of aR. We are 
now free to concentrate on the K-linear map daR and argue via dimension. 
Recall the spaces Wand W D and their duality pairing (t) which is a GJ
pairing. Let J, JD be the dimensions of Wffi and (WD)ffi respectively. Now the 
injectivity of daR shows that 

n = dim G ~ JD and nD = dim GD ~ J (symmetry); 

we know that n + nD = h, and we will show that 

J + JD ~ h. 

This will complete the proof as then n = JD and nD = J which gives surjec
tivity. 

We take fixed points of pairing (t), and get 

(tt) Wffi ®K (WD)ffi --.. C( _1)ffi. 

Now for an open subgroup, f" of GJ, Tate showed that C( -1)f, = (0), and 
Hl(f" C( -1)) = (0). We may replace GJ by f, through all the above; so, we 
may assume GJ = f,. Equation (tt) and our remarks imply that Wffi ®K C 
and (WD)ffi ®K C are orthogonal subspaces of Wand WD, and so J + JD ~ 
h = dim W = dim W D • D 

Three important corollaries issue from this theorem. 

Corollary 1. The Tate module Tp( G) determines the dimension of G and the 
dimension of GD• 

PROOF. I;,(G) determines G ®R K (remark (4)), and GD ®R K = (G ®R K)D. 
Hence, Tp(G) determines GD ®R K and thereby (remark (7)) determines 
Tp(GD ). Yet the theorem implies tGD(L) is Homf,(Tp(G), C) and tG(L) IS 

Homf,(Tp(GD ), C); that is, nD and n are determined. 

Corollary 2 (Hodge-Tate Decomposition). The f,-module Tp(G) ®K C is 
canonically isomorphic to the direct sum 
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(tG(L) ®L C)(I) EB (t~D(L) ®L C), 

where t~D(L) is the cotangent space to GD at its origin. 

(Here, f) is the open subgroup of G; for which HO(f), C(± 1» and 
Hl(f), C(± 1» vanish, and L is the fixed field of f).) 

PROOF. We shall assume G; = f), and thus L = K, by passing everything up 
to the base field L if necessary. Now the map drl~ takes tGD(K) ®K C 
(= tGD(C» injectively to a subspace of Wand, similarly, drlR takes tG(C) to a 
subspace of W D• As, HO(G;, C( -1» vanishes, these image subspaces are 
orthogonal complements in the pairing (t). There results an exact sequence 
of G;-vector spaces 

daD 
0- tGD(C) ~ W - t~(C)( -1) - O. 

The exact sequence splits as a sequence of G;-modules because the obstruc
tion lies in 

Hl(G;, Hom (tMC)( -1), tGD(C») = Hl(G;, Hom(C( -1), CnnnD 

= Hl(G;, C(I»nnD = (0). 

The set of splittings is a torseur for 

HO(G;, Hom(tMC)( -1), tGD(C))) = HO(G;, C(I»nnD = (0); 

and so there is a unique splitting. Thus we find the canonical decomposition 

or 

Tp(G)d ® C ~ tGD(C) EB t~(C)( -1). 

Replace G by GD, we get 

Tp(GD)d ® C ~ tG(C) EB t~D(C)( -1). 

Remember that 7;,(GD)d is 7;,(G)( -1) and twist the last decomposition by 
C(I); the corollary results. 0 

Corollary 3. We have N(7;,(G) ®K C) ~ C(n) as an f)-module. 

PROOF. The direct sum of f)-modules 

Tp(G) ®K C = tG(C)(I) EB t~D(C) 

shows that 

N(Tp(G) ®K C) = N(tG(C)(I» ® NDt~D(C). 

This proves our corollary. o 

Remarks. (1) The Tate module Tp(X), for the case X = A(p) in which A is an 
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abelian scheme over R, represents the first homology group of A with coeffi
cients in ?Lp- One sees this as Tp(X) is obtained by passing the pVth division 
points of A to the limit and these division points correspond to dividing the 
lattice (in the complex case) from which A arises. (See [l1J and [16].) There
fore, the G)-module W = Hom(Tp(G), C) can be written as 

W = Hom(H1 (A, ?L p ), C) = Hl(A, (J)p) ® c. 

(The cohomology group is the etale cohomology group [16J of A.) Now 
the tangent space to the dual abelian scheme, AD, over R is known to be 
Hl(A, (DA) = Hl(A, Q~) (sheaf cohomology), and the cotangent space (at the 
origin) of A itself is HO(A, Q~). Consequently, the canonical decomposition 
proved in Corollary 2 

can be written 

Hl(A, (J)p) ® C ~ Hl(A, Q~) EE> HO(A, Q~)( -1). 

This is visibly a "Hodge decomposition" in the p-adic cohomology, obtained 
after tensoring with the p-adic analog of the complex numbers, C; it explains 
why the decomposition of Corollary 2 is called the Hodge-Tate decomposi
tion. It also shows the rich structure obtained from the Galois action by G). 

Since the cohomology of an abelian variety is determined by the first 
cohomology group of the variety, the total cohomology of an abelian scheme 
over R has a Hodge-Tate decomposition. In [19J, Tate asked whether pro
jective, smooth schemes over a base Y admitted a Hodge-Tate decomposi
tion in their p-adic cohomology after tensoring with C; that is, was the Hodge 
theorem valid in the non-archimedian case? Recently, Faltings proved that 
this is so [4]. Briefly and crudely, here is the idea of his proof: He constructs 
two cohomology theories, the p-adic one (tensored up to C) and the one 
modelled on a Hodge-Tate decomposition. To compare them, he embeds 
them both in one big cohomology theory and then he examines them on the 
projective spaces IPn. He shows they agree on IPn for all n and concludes his 
proof from this. 

(2) The meaning of Corollary 3 is that i) acts on NJ;,(G) via the character 
rn, where n = dim G. This fact is used in the proof of the Safarevic and Tate 
conjectures for abelian varieties over number fields by Faltings. Actually, it is 
true for the whole group G) as we shall see below by a different method due 
to Raynaud. 

If G and G' are p-divisible groups, then Hom(G, G') is a ?Lp-module. Any 
homomorphism G ---+ G' will induce a corresponding homomorphism Tp(G)---+ 
Tp(G') and the latter will be a G)-homomorphism (i.e., G)-equivariant) because 
it is induced by a homomorphism defined over K. We therefore get a map 

(): Hom(G, G') ---+ Homm(J;,(G), J;,(G')). 

If G and G' come from abelian schemes A, A' over R so that G = A(p) and 
G' = A'(p), then there is an obvious map 
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Hom(A, A') ®z 7l..p --+ Hom(A(p), A'(p)), 

and there results the commutative triangle 

Homm(,I;'G), J;,(G')) 

Y ~ 
Hom(A, A') ®z 7l.. p --+ Hom(A(p), A'(p)) 

(A(p) = G, A'(p) = G'). 
The Tate conjecture is the statement that if K is finitely generated over its 

prime field, the map T is an isomorphism. This was proved by Tate for the 
case of finite fields, by Zarhin for function fields over finite fields (equi
characteristic case), and is now proved by Faltings in the unequal character
istic case. Tate, in trying to prove his conjecture, developed the theory of 
p-divisible groups, and he was able to prove the analog of his conjecture in 
this theory, namely that the map () is an isomorphism. 

We shall give a sketch of this result which is the main theorem of [19]. 

Theorem (Tate). If R is an integrally closed, noetherian domain with Frac(R) = 

K of characteristic zero, then for two p-divisible groups G, G' over R, the map 

restr. to ) Hom (G ® K, G' ® K) 
gen') fibre K R R 

is an isomorphism. Equivalently, the map 

is an isomorphism. 

We have the immediate corollary: 

Corollary. If f: G --+ G' is a homomorphism of p-divisible groups under the 
assumptions of the theorem, and if f ® 1: G ®R K --+ G' ®R K is an isomor
phism, then f is an isomorphism. 

To prove the theorem, one first proves the corollary directly and deduces 
the theorem from it. This is what we now sketch. 

First observe that R = n Rp , where P runs over the height one primes of 
R. Therefore, we achieve an immediate reduction to the case: R local, of 
dimension one, and normal, i.e., to the case that R is a discrete valuation ring 
and Frac(R) has characteristic zero. Furthermore, we may even assume R to 
be complete and that its residue field is algebraically closed. Now if the 
characteristic of k ( = RjmR ) is not p, then G and G' are etale and everything 
is trivial; so, we will assume the residue field of R has characteristic p. Thus, 
we are in exactly the situation of the previous pages. 

Write G = (Gv), G' = (G~), and set Gv = Spec Am and G~ = Spec Bv. We 
are given compatible homomorphisms Uv: Bv --+ Av and our assumption is 
that Uv ® 1: Bv ®R K --+ Av ®R K is an isomorphism for each v. It follows 
immediately that each map Uv is injective. If we prove that the discriminants 
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of Bv and Av are non-zero and equal, then uv will be surjective for each v, as 
desired. Now we shall soon see that the discriminant of Av over R is gener
ated by pnvphV, where n = dim G, and h = ht G. Since dimension and height 
are determined by the generic fibre (by previous results), the discriminant of 
Bv must be that of Av. 

To finish the corollary, we need to evaluate the discriminant of Av-as 
above. Discriminants of etale algebras are the unit ideal; so, the connected
etale decomposition places us in the connected case. Here, 

G = Spf R[[Xl' ... , Xn]] = Spf d. 

The map d -+ d via pV (= addition pV-times in the formal group), makes d 
a free module over itself of rank pvh. Write d(pV) for d when it is considered 
over itself via pV. If I = (Xl' ... , Xn), then d(pV)j I d(pV) is just Av, and there
fore it suffices to prove the discriminant ideal of d(pV) over d is generated 
by pnvphV. 

The map w: d -+ d(pV) gives a corresponding map dw: n;"/R -+ nlt(pV)/R' 
The highest wedge of the latter map 

An dw: Annlt/R -+ Annlt(pv)/R' 

takes x E A"nlt/R to ax E A"nlt(pV)/R for some fixed a E d(pV). Now it is known 
that the discriminant of the d-module d(pV) is generated by Nd(pv)/."Aa).* 
But, we know from Section 3 that 

nlt/R ~ d ®R Wd/R, 
where Wd/R is the space of invariant differentials; and if Xl' .•• , Xn is a basis 
for wd/R, then w(xJ = pVXj' Thus, An dw(x) = pnvx; that is, a = pnv. But then, 

as claimed. 

N ( ) nvphv 
d(pV)/d a = P , 

Now that the corollary is proved, one proves the theorem from it as follows: 
The homomorphism f on the generic fibres: G ®R K -+ G' ®R K gives a 
homomorphism Tp( G) -+ Tp( G'). The graph, M, of the latter homomorphism 
is a Zp-direct summand of I;,(G x G'). It can be shown (and this we omit), 
that such a summand arises from a homomorphism cp: r -+ G x G' of p
divisible groups so that I;,(cp): Tp(r) -+ M is an isomorphism. Admitting this, 
we see that pr 1 0 cp maps r to G, and on Tate modules (or, what is the same, 
generic fibres) is an isomorphism. Our corollary implies pr 1 0 cp is an isomor
phism of p-divisible groups. But then, the generic fibre homomorphism f 
extends across R by 

As uniqueness is clear, the proof is finished. o 

* This depends on the existence of a trace map 

A"n!,(pV)/R ..... A"n!,/R' 
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§7. Applications of Groups of Type (p, p, ... , p) 
to p-Divisible Groups 

Recall that in the proof of the lemma preceding the Sylow theorem of Section 
3, the existence of a subgroup was proved (by the second method) by taking 
the scheme-theoretic closure of the subgroup on the generic fibre in the 
ambient scheme. This closure operation yielded a group scheme from a 
group scheme, it commuted with products, and the resulting closure was flat 
over the base. 

Let R be a complete discrete valuation ring of mixed characteristic. Then 
there may be many ways of extending a finite commutative group scheme 
from K ( = Frac(R)) to R as a finite R-group scheme (remember: flatness is 
assumed), but Raynaud' [14] showed that if extension is possible at all there 
will be a maximal and a minimal way to extend. Moreover, Cartier duality 
will interchange these extremal extensions. 

Let v be the valuation of R, and write v(p) = e; the number e is the 
ramification index of Rover 7Lp • Raynaud [14] showed the following facts 
about extending group schemes from K to R: 

(1) If e < p - 1 (so that R is certainly tamely ramified at worst over 7L p ), then 
each K -group scheme of p-power order can be extended in at most one 
way (if extension is possible at all) to a finite R-group scheme. 

(2) Under the hypotheses of (1), if G, G' are p-power order R-group schemes, 
then the map 

HomR.grouPs(G, G') -+ HomK.groups(G ®R K, G' ®R K) 

is an isomorphism. If UK is extended by uEHom(G, G'), then ker U and 
coker U are flat over R, and the map 

ExtR_groups(G, G') -+ ExtK_groups(G ®R K, G' ®R K) 

is injective. 
(3) Assume the residue field of R is algebraically closed and e ::;; p - 1. Then 

each p-power order R-group scheme possesses a composition series whose 
factors are F-vector space schemes for varying finite fields F. (This permits 
an analysis of these p-power group schemes by using Raynaud's results 
sketched in Section 4.) 

(4) Each finite K-group scheme killed by a power of p has a composition 
series whose factors are F-vector space schemes. If G is an F-vector space 
scheme over K, then there is a condition on the representation of (fj 

(= GaICK/K)) in F* which is necessary and sufficient in order that G 
extend to R. The condition is satisfied if e ~ p - 1. 

Tate's main theorem on p-divisible groups (proving the Tate conjecture 
for them) characterizes the p-divisible group G = (Gv ) by its generic fibre: 
G ®R K = (Gv ®R K). But, when can one extend a p-divisible group from K 
to all of R? Using the ideas of scheme-theoretic closure, Raynaud proves. 
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Proposition. Let (Gv ) be a p-divisible group over K (= Frac R, where R is a 
complete discrete valuation ring of mixed characteristic) and suppose each Gv 

can be separately extended to a finite R-group scheme. Then there exists a 
unique p-divisible group (rv) over R whose generic fibre is (Gv). 

This proposition and result (4) above give the argument skipped at the end 
of the proof of Tate's main theorem on p-divisible groups. 

Lastly, there is the matter of the Galois action of (D on the highest wedge 
of the Tate module of a p-divisible group. Corollary 3 in Section 6 asserts this 
action is via ,.dim G for a suitable open subgroup, f), of (D. Actually, this is true 
for (D as well; here is a sketch of Raynaud's proof. 

Theorem (Raynaud-Tate). If R is a mixed characteristic complete discrete 
valuation ring with fraction field K, and if G is a p-divisible group over R, then 
the (D (= Gal(K/K))-action on N(7;,(G) ®K C) is given by,.", where h = ht(G) 
and n = dim G. 

PROOF. (Raynaud). Call a p-divisible group, ordinary, if its connected compo
nent of identity is the dual of an etale p-divisible group. Now the character ,. 
acts trivially if and only if 7;,( G) is unramified; so, for ordinary p-divisible 
groups, our theorem is clear. Next, by decomposing the special fibre of G, call 
it G, we may assume G is connected. 

There is a vast machinery concerning the deformations of formal Lie 
groups over fields; this machinery shows that there is a formal power series 
ring (9 = R[[X1 , ... , X,]] so that V = Spec (9 plays the role of a versal 
parameter space for the deformations of G. Moreover, there is a p-divisible 
group, t§, lying over V which is the versal p-divisible group [10]. By some 
results of Cartier, Raynaud shows that G may be deformed to an ordinary 
p-divisible group equicharacteristically, i.e., over the generic point of 
k[[X1 , ••• , Xt]]-where k = R/mR • Because (V, t§) is the versal pair, this 
means that ii = t§ ®R k is ordinary at the generic point of V = V ®R k. 
Dimension and height are preserved by deformation. Write x for the generic 
point of V, then iix is an ordinary p-divisible group of height h and dimen
sion n. Here is a picture of V, V, x, R, and k. 

v 

R 
K k 

By passing to the strict Henselization of V, we may assume k is separably 
closed. As iix is ordinary, and as the etale fundamental group of V is trivial, 
we see that iix has 
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0--+ Gm(pt --+ r§x --+ (Op/Zpt-n --+ 0 

for its connected-etale decomposition. But then, the Galois module 
N(Tp(~»)( -n) is unramified at x. It is also unramified at the points of 
V ®R K which are of characteristic zero. Hence, A\Tp(~»)( - n) is unramified 
at all points of codimension :$ 1 of V. The theorem of purity of the branch 
locus implies that N(Tp(~)( - n) is unramified over all of V. But, some point 
of V corresponds to our original p-divisible group G by versality; hence 
N(~(G»)( -n) is unramified over R, which is what we wanted to prove. 0 
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CHAPTER IV 

Abelian Varieties over C 

MICHAEL ROSEN 

(Notes by F. o. McGuinness, Fordham University) 

§o. Introduction 

These lecture notes present, in outline, the theory of abelian varieties over the 
complex numbers. They focus mainly on the analytic side of the subject. In 
the first section we prove some basic results on complex tori. The second 
section is devoted to a discussion of isogenies. The third section (the longest) 
describes the necessary and sufficient conditions that a complex torus must 
satisfy in order to be isomorphic to an abelian variety. In the fourth section 
we describe the construction of the dual abelian variety and the concluding 
two sections discuss polarizations and the moduli space of principally pola
rized abelian varieties. Proofs for the most part are omitted or only sketched. 
Details can be found in [SW] or [L-A] (see the list of references at the end 
of this chapter). For the algebraic-geometric study of abelian varieties over 
arbitrary fields, the reader is referred to [M-AV] and to the articles of 1. S. 
Milne in this volume. 

The author would like to extend a special note of thanks to F. O. 
McGuinness who reworked the original sketchy notes into a coherent manu
script and made a number of very useful improvements, additions, and 
clarifications. 

§1. Complex Tori 

An abelian variety A is a complete and connected algebraic group defined 
over the field of complex numbers. Thus A comes equipped with a multiplica
tion m: A x A -+ A and an inverse map i: A -+ A which are morphisms of 
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varieties and satisfy the usual group axioms. The complex points A(C) is then 
a connected, compact, complex Lie group. We will begin by considering 
properties of such objects. Let T be an arbitrary connected, compact, com
plex Lie group. Then: 

(1) T is a commutative group 
To see why this is so, let V denote the tangent space to T at the identity 

element e. Consider the adjoint representation of T on V: 

Ad: T --+ AutdV). 

(Ad(t) is the differential of the conjugation map u --+ tut- 1 on T.) The coordi
nate functions with respect to a basis of V are holomorphic on the compact 
complex manifold T and so must be constants. Thus Ad(t) = Ad(e) = Id for 
all t E T. It is now easy to check that the exponential map, exp: V --+ T, maps 
V onto a subgroup of the center of T. Since T is connected, exp(V) generates 
T, and so Tis commutative. 

(2) T is a complex torus 
A more refined analysis shows exp is a surjective homomorphism from V 

to T with kernel A a discrete subgroup. Recall that a discrete subgroup of a 
real vector space with compact quotient is called a lattice. Thus, T ~ VjA, is 
a complex torus. See [M - A V] fot the proof. 

From now on we will write the group law on T additively and denote the 
identity element by O. 

(3) Holomorphic I-forms 
The representation of T as a complex torus can be achieved in an

other way. Let 0 be the vector space of holomorphic I-forms on T. Define 
H1(T, Z) --+ 0* = HomdO, C) by y --+ (WH Lw) where Lw is the integral 
of w around the integral I-cycle y. 

This map is injective and the image A is a lattice in 0*. Now define 
T --+ O*/A by pH(W --+ Sgw). Note that Jgw is well-defined modulo A. This 
yields an isomorphism 

T ~ O*/A. 

(4) Mappings between complex tori 
Suppose Tl and T2 are complex tori and r/J: Tl --+ T2 is a holomorphic map. 

If r/J(O) = 0 then r/J is a homomorphism. This is implied by (3) above since r/J 
induces a linear map Of --+ ot which takes Al to A2 • In general, r/J is a 
homomorphism followed by a translation. If we write 1j = ~/ Aj then every 
hoi om orphic homomorphism from Tl to T2 is induced by a C linear map 
from V1 to V2 such that r/J(A1 ) S A2 . We continue to call this map r/J. This 
yields two faithful representations: 

Pc: Hom(Tl' T2 ) --+ HomC(Vl' V2 ), 

P7L: Hom(T1 , T2 ) --+ Hom7L(A1 , A2 ), 

called the complex representation and the rational representation respec-
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tively. The fact that P7L is faithful shows immediately that Hom(Tl' T2) is a 
finitely generated, torsion-free, abelian group of rank::; 4(dim Td(dim T2)' 

The case Tl = T2 = T is of particular interest. Hom(T, T) = End(T) is a 
ring which we will discuss further below. Here we present another way of 
looking at endomorphisms of complex tori. Suppose A is a lattice in an 
even-dimensional real vector space V. The real torus V;' A will be a complex 
torus if V has the structure of a complex vector space. A complex structure 
on V is given by an IR-linear map J: V --+ V such that J2 = - Id (set iv = Jv). 
Any Z-linear map ¢J: A --+ A defines an IR-endomorphism of V = IR ®7L A 
and therefore an endomorphism of V;' A. The map ¢J is an endomorphism 
of the complex torus V;'A if and only if ¢J 0 J = J 0 ¢J. Thus, End(T) = 
{¢JEEnd7L(A)I¢JoJ = J o¢J}. Continuing in this direction leads to the definition 
of the Hodge group, a certain Q-algebraic subgroup of GI(V) whose com
plex points contain J. However, we will not pursue this. 

(5) The image and kernel of a morphism. 
If ¢J: Tl --+ T2 is a morphism of complex tori then im ¢J is a subtorus of T2 

while ker ¢J is a closed subgroup of Tl whose connected component is a 
sub torus of finite index in ker ¢J. Both these facts are easily established. 

§2. Isogenies of Complex Tori 

A morphism ¢J: Tl --+ T2 is an isogeny if it is a surjective homomorphism with 
finite kernel. The order ofthe kernel is called the degree of ¢J, deg(¢J). 

EXAMPLE. Let C> be the identity map on T, a complex torus. Let m > 0 be an 
integer. The map mc>: T --+ Tis an isogeny of degree m2d where d = dim T. To 
see this, write T = V;'A. Then ker(mc» = (1/m)A/A ~ AjmA ~ (Z/mZ)2d. 

If ¢J 1: Tl --+ T2, and ¢J2: T2 --+ T3 are isogenies, then so is ¢J2 0 ¢J 1 and degrees 
multiply: deg(¢J2 0 ¢Jd = deg(¢Jl)deg(¢J2)' 

We say that Tl and T2 are isogenous, Tl '" T2, if there is an isogeny ¢J: 
Tl --+ T2· The next proposition shows that isogeny is an equivalence relation. 

Proposition. Let d = dim Tl = dim T2. If ¢J: Tl --+ T2 is an isogeny of degree m 
there is a unique isogeny t/!: T2 --+ Tl of degree m2d- 1 such that t/! 0 ¢J = mC>l and 
¢J 0 t/! = mC>2' t/! is called the dual isogeny to ¢J. 

PROOF. Since ker ¢J £; ker(mC>l), a map t/! exists which makes the following 
diagram commutative: 

1/1 
Tl-T2 

~!Vt 
Tl 

One checks that t/! is the desired isogeny. Uniqueness is straightforward. 
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Since t/J 0 ifJ = mb i one sees (ifJ 0 t/J - m(2 ) 0 ifJ = O. It follows that ifJ 0 t/J = mb2 

because ifJ is onto. Finally, taking the degree of both sides of t/J 0 ifJ = mb i 

yields deg t/J = m2d- l . 0 

-::: ,---' 

Let the dual isogeny t/J be denoted by ifJ. Then ifJ = m2d- 2 ifJ and ifJ2 oifJl = 
~lo~2. 

We now begin our study of End(T). We define Endo(T) = End(T) ®z Q. 
Endo(T) is a finite-dimensional Q-algebra and End(T) can be considered as 
an order in it. We note that ifJ E End(T) is an isogeny if and only if it is 
invertible in Endo(T). 

A complex torus T is called simple if it contains no proper complex 
subtorus. We say T is of semisimple type (this is not standard terminology) if 
it is isogenous to a product of simple complex tori. If T is simple then the 
usual Schur's lemma argument shows that Endo(T) is a division algebra. 

Proposition. If T is of semisimple type, then Endo(T) is a semisimple Q-algebra. 

PROOF. Write T ~ TIn! X T2n2 X ••. X T'::m where the 1j are simple and 
pairwise non-isogenous. Then, Endo(T) ~ Mn! (Dd ® ... ® MnJDm) where 
Dj = Endo(1j) is a finite-dimensional division algebra over Q. 0 

To study Endo(T) further we recall the complex representation 

Pc: Endo(T) -+ Endc V 

and the rational representation Po = pz ® Q 

Po: Endo(T) -+ Endo(A ®z Q). 

Proposition. Po ® C ~ Pc ® Pc· 

See [SW, Lemma 39, p. 70], for the (simple) proof. 
Let ifJEEnd(T). We define the characteristic polynomial, char(ifJ, x) of ifJ to 

be det(pz(ifJ) - xl). Not~ that char(ifJ, X)EZ[X] is a monic polynomial of de
gree 2d where d = dim T. We can easily extend this definition to ifJ E Endo(T). 

Lemma. Let t/J E End(T). Then det(pz(t/J)) = deg(t/J) (if t/J is not an isogeny we 
define deg(t/J) = 0). 

PROOF. pz(t/J): A -+ A is 1-1 if and only if det(pz(t/J)) #- O. Thus, if t/J is an 
isogeny 

det(pz(t/J)) = [A: pz(t/J)A] = [pz(t/Jt l A: A] = deg(t/J). 0 

Using the lemma we can give an intrinsic characterization of char(ifJ, x). 

Proposition. For all but finitely many integers n, ifJ - nb is an isogeny. The 
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characteristic polynomial char((,6, x) is the unique polynomial such that for all 
nEZ, char((,6, n) = deg((,6 - nb). 

PROOF. (,6 - nb is an isogeny if and only if det(pz((,6) - nb) =1= O. Thus if n is 
not a root of char((,6, x), (,6 - nb is an isogeny. In this case, by the lemma, 
char((,6, n) = det(pz((,6) - nb) = deg((,6 - nb). D 

We note that this proposition makes sense in characteristic p and can be 
used to define the characteristic polynomial in the abstract theory. 

We conclude this section by making a few remarks about the I-adic repre
sentations. For n E Z define T[n] = ker(nb). As we have seen, T[n] is isomor
phic to (Z/nZ)2d. If (,6EEnd(T) then (,6(T[n]) S T[n]. For a prime number I 
consider the inverse system {T[lm] I m ~ 1} where Ib: T[lm+l] --+ T[lm] are 
the transition maps. An endomorphism (,6 induces a map of this inverse 
system and thus acts on proj lim T[lm] = ll(T), the l-adic Tate module. Let 
Jt;(T) = ll(T) ®z, iIJ,. Then we have a representation 

Po,: Endo(T) --+ Endo,(Jt;(T)). 

It is easy to check that ll(T) ~ A® Z, both as a Z, and as an End(T) 
module. Thus the l-adic representations are all equivalent to the rational 
representation. In working over IC they provide no new information. How
ever, when working with abelian varieties over arbitrary fields the l-adic 
representations can always be defined whereas an analogue of the rational 
representation need not exist. 

§3. Abelian Varieties 

We will be using some standard terminology from the theory of complex 
analytic manifolds. We assume known the definitions of holomorphic and 
meromorphic functions on such manifolds, as well as the definitions of divi
sors, positive divisors, etc. See [SW, §3], for a concise discussion. Another 
good reference is [SHAF, Chap. VIII]. 

Let v1t(T) be the field of merom orphic functions on the complex torus T. 
Since T is compact the only holomorphic functions are constants. How big 
is v1t(T)? How can one construct elements of v1t(T)? We quote a general 
theorem of Siegel. See [SHAF] for a proof. 

Theorem. Let M be a compact, connected, complex manifold of dimension d. 
Then v1t(M) has transcendence degree over IC at most d. If d is attained then 
v1t(M) is a finitely generated field over IC. 

If M = X(IC), the complex points on a non-singular algebraic variety X, 
then v1t(M) ~ IC(X}, the field of rational functions on X. Thus, in this case, 
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.A(M) is a finitely generated field of transcendence degree d = dim X. This 
shows that if the complex torus T is an abelian variety .A(T) is "big." Later 
on we will give an example of a torus T with .A(T) = Co This never happens 
when T has dimension 1. Let E = CIA be a one-dimensional complex torus. 
Then .A(E) is generated by the Weierstrass elliptic function &>(z, A) and its 
derivative &>'(z, A). These functions are connected by the well-known equation 

&>'(z, Af = 4&>(z, A)3 - g2&>(Z, A) - g3' 

where g2 and g3 are constants satisfying g~ - 27g~ # O. The map 

E --. [1, &>(z, A), &JJ'(z, A)] 

extends to an imbedding of E into jp>2 as a non-singular cubic plane curve. 
Thus one-dimensional complex tori are one-dimensional abelian varieties or 
elliptic curves. 

In higher dimensions the situation is more complicated. There are non
trivial conditions on a complex torus in order that it correspond to an 
abelian variety. To explain these conditions we need to review some linear 
algebra. 

Suppose V is a finite-dimensional complex vector space. A map 

H: V x V --. C 

is a Hermitian form on V if: 

(i) for fixed v E V, 

U 1--+ H(u, v) 

is a linear map V --. C; 

(ii) for fixed u E V, 

V 1--+ H(u, v) 

is an anti linear map V --. C; 

(iii) H(u, v) = H(v, u) for all u, v in V. 

(Of course, (i) + (iii) => (ii)). 
If H is a Hermitian form, then we will always write S for the real part of H 

and E for the imaginary part. 
Thus H(u, v) = S(u, v) + iE(u, v), U, VE V, and S, E: V x V -.IR are real 

bilinear. We also see that: 

S(u, v) = E(iu, v), 

S(iu, iv) = S(u, v), E(iu, iv) = E(u, v), 

S is symmetric (S(u, v) = S(v, u)), 

E is antisymmetric (E(u, v) = - E(v, u)). 

Conversely, if E is a real, antisymmetric bilinear form on V satisfying 
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E(iu, iv) = E(u, v), then H(u, v) = E(iu, v) + iE(u, v) is a Hermitian form. The 
set of Hermitian forms on V form a group under pointwise addition and 
subtraction. 

Definition. Suppose T = VI A is a complex torus. A Riemann form on T is a 
Hermitian form H on V such that E = 1m H is integer valued on A, i.e. 
E(A,l' A,2)E&", for all A,l' A,2 EA. If H(u, u) ~ o for all UE Vwe say H is a positive 
Riemann form. If H is positive definite, i.e. H(u, u) > 0 for all u E V, u =F 0, we 
say H is a non-degenerate Riemann form on T. 

One sometimes calls H a Hermitian Riemann form on T, and E = 1m H an 
alternating Riemann form on T. 

Theorem A. A complex torus T is the manifold of complex points on an abelian 
variety if and only if T possesses a non-degenerate Riemann form. 

The proof will be sketched later. The idea is to construct theta functions 
using the non-degenerate Riemann form on T and use these to construct a 
projective embedding of T. 

We will now discuss some naturally occurring Riemann forms. If dim T = 1 
we have T = CjA where A = &"A,l + &"A,2 with Im(A,dA,2) > o. Regard C as 
a two-dimensional vector space over IR, and define E(z, w) by the equation 
z 1\ w = E(z, W)A,l 1\ A,2. Then E(z, w) is a Riemann form on T. E(iz, iw) = 
E(z, w) follows from the fact that multiplication by i is area preserving. Every 
other Riemann form on T is an integral multiple of E. Thus, the Riemann 
form does not usually occur explicitly in the theory of elliptic functions. 

Here is another class of complex tori for which it is possible to explicitly 
write down a Riemann form. Suppose K is a eM field, i.e. a totally imaginary 
quadratic extension of a totally real number field, K+. Examples are pro
vided by imaginary quadratic number fields, and cyclotomic fields. Set 
[K : ([)J = 2d, and let <1> = {tPl' ... , tPd} be a subset of distinct complex imbed
dings K c; C such that if tP E <1>, ¢J ¢ <1>, where ¢J is the complex conjugate em
bedding. <1> provides an isomorphism, which we continue to call <1>, of K ®Q IR 
with Cd, which takes IX ® 1 to (tPl(IX), tP2(1X), ... , tPilX)). Let .91 be an integral 
ideal in K. It can be shown that <1>(.91) is a lattice in Cd. Set A = Cdj<1> (d). 
We proceed to find a Riemann form on A. A simple calculation shows 
we can find an algebraic integer ~ E K such that K = K+ (~), - ~2 E K+ and 
is totally positive, and 1m tPi~) > 0 for j = 1, ... , d. For z, WE Cd define 
E(z, w) = 'L1=l tPi~)(ZjWj - z}Vj). E(z, w) is IR-bilinear, anti-symmetric, and 
E(iz, w) is symmetric and positive definite. A calculation shows that for IX, 
{J E K, E(<1>(IX), <1>({J)) = t(~a.{J) where IX -+ a. is the non-trivial automorphism of 
KjK+ and t is the trace from K to ([). Thus, E(z, w) takes integral values on 
<1>(.91), and is a non-degenerate Riemann form on A. The ring of integers (!)K 
of K imbeds in End(d) via the map which associates to w the diagonal 
matrix whose iith coefficient is tPi(W). Thus, K c; Endo(A). In this situation, A 
is said to admit complex multiplication by K and the corresponding abelian 
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variety is said to be of CM type (K, <1». The assumption that d is an integral 
ideal is unnecessarily restrictive. It suffices to assume that d is a Z-lattice in 
K. For this and much more on abelian varieties ofCM type see [L-CM] and 
[SHIM]. 

Returning to the general theory we make the following convenient defini
tion. A complex torus is an abelian manifold if it possesses a non-degenerate 
Riemann form. 

Restricting the Riemann form shows that a subtorus of an abelian mani
fold is again an abelian manifold. One can show that a quotient of an abelian 
manifold is also an abelian manifold. This is a corollary of the following 
important result. 

Theorem (Poincare Reducibility Theorem). Suppose A is an abelian manifold 
and Al c A an abelian submanifold. Then there is an abelian submanifold A z 
such that Al n A z is finite and A is isogenous to Al X A z. 

PROOF. Sketch. Write A = VjA with Riemann form H. Then Al = VdAI 
where VI S V is a complex subspace and Al = VI n A. Set Vz = V/, the 
orthogonal complement of VI with respect to H, and set A z = Vz n A. It can 
be shown that A z is a lattice in Vz and so A z = Vz/ A z is an abelian submani
fold of A. Moreover, Al + A z is of finite index in A. The map Al x A z --+ A 
given by (aI' az) --+ al + az is an isogeny. See [SW, Theorem 34, Cor. 3] or 
[L-A, p. 117] for more details. 0 

Corollary. An abelian manifold A is of semisimple type and so Endo(A) is a 
semisimple O-algebra (see the second proposition in Section 2). 

We will now discuss some analytic results which will lead to the introduc
tion of theta functions. We will explain Poincare's basic result (Theorem B) 
that every periodic divisor is generated by a theta function, and then the 
important theorem of Frobenius (Theorem C) which computes the dimen
sion of a certain vector space of theta functions. Then, finally, we will be in a 
position to state the Lefschetz Embedding Theorem (Theorem D) of which 
Theorem A is an immediate consequence. 

Suppose V is a d-dimensional vector space over C and A is a lattice in V. 
Put T = VjA and let n: V --+ Tbe the projection map. A function f on V is 
periodic with respect to A if f(z + A) = f(z) for all z E V, A E A. Such a function 
gives rise to a function on T, and conversely if g is a function on T then 
f = g 0 n is a periodic function on V. A Cartier divisor D on V is given by a 
family {(Va, fa)} where the Va form an open covering of V, fa is merom orphic 
on Va, not identically zero, and fa/fp is holomorphic on Va n Vp for all Ct, /3. 
The divisor is called positive if the function fa are holomorphic. If a E V the 
translate of D by a, Da, is given by {(Va + a, fa(z - an. If DA = D for all A E A 
we say D is a periodic divisor. Note that the divisor of a periodic meromor
phic function is a periodic divisor. Let EC(V) and EC(T) be the group of 
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divisors on V and T respectively. Then n induces a homomorphism 

n*: 9C(T) -+ 9C(V). 

The image of n* consists of the periodic divisors. 
Divisors on Yare easier to analyze than those on T. For example, we have 

the following facts: 

(1) Suppose g E A(V) has trivial divisor. Then g is a nowhere vanishing 
holomorphic function and we can write 

g(z) = e(h(z)), 

where h(z) is holomorphic and e(z) = exp(2niz), i = j=1. 
(2) (Cousin's Theorem). Every divisor on V is principal, i.e. we can set all 

f~ = f, a single function merom orphic on V. In cohomological terms this 
says Hl(V, (!)*) = (0) where (!)* is the sheaf of nowhere vanishing holo
morphic functions on V. 

Suppose D' is a divisor on T and n*(D') = D is the corresponding periodic 
divisor on V. By Cousin's theorem, D = (f). Since D;. = D for all AEA, we see 
f(z + A) = U;.(z)f(z) for all AEA where U;.(z) is a nowhere vanishing holo
morphic function. Thus, by (1), U;.(z) = e(h;.(z)) where h;.(z) is holomorphic. 
Setting A = Al + A2 we find the following consistency condition 

h;.,H2(Z) == h;.,(z + A2 ) + h;'2(Z) mod 7l.. 

We wish to choose h;.(z) to be as simple as possible. The simplest choice 
leading to a fruitful theory is 

h;.(z) = L(z, A) + J(A) 

where L(z, A) is linear in z, and J(A) is a constant. 

Definition. Let L: V x A -+ C and J: A -+ C be maps with L(z, A) linear in 
z for all A E A. A holomorphic (resp. merom orphic) theta function for A of 
type (L, J) is a holomorphic (resp. merom orphic) function () on V such that 
()(z + A) = e(L(z, A) + J (A)) ()(z) for all z E V, A E A. 

Theorem B (Poincare). For every divisor D' on T, the periodic divisor 
n*(D') = D is the divisor of a meromorphic theta function, n*(D') = «()). If D' is 
a positive (holomorphic) divisor, then () is a holomorphic theta function. 

Note that Theorem B is a sharp form of Cousin's theorem in the special 
case of periodic divisors. The early proofs were quite complicated. The proof 
usually quoted today is due to A. Weil ("Theoremes fondamentaux de la 
theorie des fonctions theta", Seminar Bourbaki, 1948/49). 

A question which naturally arises is to what extent () is determined by D'. 
An easy exercise shows that a theta function has trivial divisor if and only if 
()(z) = e(q(z) + l(z) + c) where q(z) is a quadratic form, I(z) is linear, and c is 
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a constant. We call such theta functions trivial theta functions. Then: 

~( }::;::: group of theta functions 
T trivial theta functions . 

Suppose 8 is a theta funcction of type (L, J). We now show how to asso
ciate a Hermitian form to 8. 

The consistency conditions explained earlier impose the following restric
tions on Land J: 

(a) J()" + p,} - J()"} - J(p,} == L()", p,} mod Z; 
(b) L()", p,} == L(p,,)..} mod Z; 
(c) L(z,).. + p,} = L(z, )..} + L(z, p,}. 

Note that (b) follows from (a). Condition (c) implies that L(z, )..} can be 
extended to an IR-bilinear function on V. Define E(z, w} = L(z, w} - L(w, z}. 
Then, E is an anti-symmetric IR-bilinear function on V x V which assumes 
integer values on A x A, by (b). This last condition implies E is real valued 
on V x V. Moreover, we have the following result. 

Lemma. E(iz, iw} = E(z, w}. 

PROOF. E(iz, iw} = L(iz, iw} - L(iw, iz} = i(L(z, iw} - L(w, iz}} and E(z, w} = 
L(z, w} - L(w, z} = - i(L(iz, w} - L(iw, z». Thus E(iz, iw} E(z, w} = 

i(E(iz, w} - E(iw, z» must be zero since it is in IR n iIR. D 

Define H(z, w} = E(iz, w} + iE(z, w}. Then H is a Riemann form on 
T = VIA, called the Riemann form associated to 8. 

Suppose 8(z} = e(q(z} + l(z} + c} is a trivial theta function. Let B(z, w} = 

q(z + w} - q(z} - q(w}. B(z, w} is {>bilinear and symmetric. A short cal
culation shows that 8(z + )..} = e(B(z, )..} + q()..} + 1()"»8(z}. Thus E(z,)..} = 

B(z, )..} - B()", z} = 0 and the Riemann form associated with a trivial theta 
function is zero. Thus there is a homomorphism from the divisor group ~(T) 
to the group of Hermitian forms on T given by: 

D' -+ n*(D'} = (8) -+ H. 

We can refine this further. 

Proposition. Suppose D = n*(D'} is a positive divisor. If D = (8), then 8 
is an entire function and the corresponding Riemann form H is positive, i.e. 
H(z, z}? 0 for all ZE V. 

See [SW, p. 31, Lemma 31J for the proof. If H is positive definite we say 8 
is non-degenerate and that the corresponding divisor on T is ample. That 
ample divisors in this sense are ample in the sense of algebraic geometry will 
be shown later. 

Since we can multiply a given theta function by a trivial theta function 
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without changing the corresponding divisor it is natural to look for a normal 
form. 

Proposition. Let () be a theta function and H the associated Riemann form. 
Then there is a theta function e, unique up to a multiplicative constant, such 
that el(} is a trivial theta function, and 

e(z + A) = e Gi H (z + ~, A) + K (A) ) e(z), 

where K(A) is real valued and 

K(AI + A2) - K(AI) - K(A2) == iE(AI' A2) mod 7L. 

e is called the normalized theta function associated to (). Set t/I(A) = e(K(A)). 
Then t/I satisfies t/I(A I + A2) = t/I(Adt/l(A2)e(iE(AI , A2))' t/I is called the asso
ciated quadratic character of (). Note that I t/I(A) I = 1. 

If Th(L, J) denotes the vector space of theta functions of type (L, J) and 
Thnorm(H, t/I) the space of normalized theta functions with associated Riemann 
form H and quadratic character t/I, then one can find a trivial theta function 
(}o such that multiplication by (}o gives an isomorphism 

Th(L, J) ~ Thnorm(H, t/I). 

See [L-A, Chap. VI, §2] for this and the proof of the above proposition. 
At this point it is easy to show that every f E uH(T) can be represented as a 

quotient of hoi om orphic theta functions of the same type. One can write 
(f) = Do - Doo where Do and Doo are positive divisors. n*(Doo) = ((}oo) by 
Poincare's theorem, Theorem B. Now, n*(f)(}oo has divisor n*(Do) and so is 
a holomorphic theta function, (}o, of the same type as (}oo. Thus n*f = (}ol(}oo 

as asserted. Conversely, the quotient of two theta functions of the same type 
is a periodic merom orphic function. This leads to the problem of construct
ing all holomorphic theta functions of a given type. This is accomplished by 
a theorem of Frobenius. Before stating this theorem it is necessary to review 
the definition of the Pfaffian of an alternating form. 

Let xij' 1 :::; i < j :::; 2d be d(2d - 1) elements algebraically independent 
over Q. Set Xji = - xij and consider the antisymmetric matrix X = (Xi)' 
There is a unique polynomial Pf(x) of degree d such that det X = Pf(xf and 
Pf(x) takes the value 1 on 

( Old) 
-Id 0 . 

If G = (gij) is an anti symmetric 2d x 2d matrix with coefficients in any 
ring we define Pf(G) to be the value of Pf(x) when gij is substituted for xij' 
Pf(G) is called the Pfaffian of G. Let A be a free 7L-module of rank 2d 
and E an alternating form on A. If {AI' A2" .. , A2d } is a basis of A, set 
Pf(E) = Pf(E(Ai' Aj )). This is well defined up to sign. 
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Lemma. Let A be a free 7L -module of rank 2d and E a non-degenerate alter
nating form on A. Then there is a basis {Al' A2, ... , A2d } of A such that 
E(Ai' Aj) = 0 for 1 ~ i,j ~ d, E(Ad+i, Ad+j) = 0 for 1 ~ i,j ~ d, and E(Ai' Ad+) = 
ei(jij for 1 ~ i, j ~ d where ell e2 1 ... 1 ed are positive integers. Finally, Pf(E) = 
e l e2 ••• ed• 

This lemma is due to Frobenius. A basis with the given properties is called 
a symplectic basis for A. If iff is the diagonal matrix with diagonal entries 
el' e2, ... , ed then (E(Ai' A) has the form 

Theorem C (Frobenius). Suppose (L, J) is a type, H the associated Riemann 
form, E = 1m H. Assume H is positive definite. The vector space of holomor
phic theta functions of type (L, J) over C has dimension Pf(E). 

PROOF. Sketch. Choose a symplectic basis for A with respect to E. It is easy 
to check that A1 , A2' ... , Ad are a basis for V over C. Let z l' Z 2, .•. , Zd be the 
coordinate functions on V with respect to this basis. By multiplying by a 
suitable trivial theta function, the space that we are examining is isomorphic 
to the space of holomorphic () on V satisfying the equations 

()(Z + Ai) = ()(z), 

()(z + Ad+J = e(eiz + cJ()(z), 

1 ~ i ~ d, 

1 ~ i ~ d, 

for some fixed constants c 1, C2' ... , Cd. The first set of these equations show 
that we can expand () as a Fourier series 

()(z) = L a(n)e(n· z). 
nEZ'd 

The second set of equations imposes recurrence relations on the set of 
coefficients a(n) which show that all the a(n) can be expressed in terms of 
those a(n) with 0 ~ ni ~ ei - 1 where n = (nl' n2, ... , nd). This gives an upper 
bound of e1 e2 ... ed = Pf(E) on the dimension of the given space of theta 
functions. To get equality one must show that for a collection of a(n) satis
fying the recurrence relations the corresponding formal Fourier series is in 
fact a holomorphic function. We omit the proof but note that here the 
assumption that H is positive definite comes into play. 0 

Theorems Band C allow us to answer all the questions previously raised 
about complex tori. We first discuss a form of the Riemann-Roch theorem. 

Let D be a positive divisor on T and define, as usual 

2(D) = {! E .It(T)I(f) + D ~ O}. 

There is a holomorphic theta function ()o such that n*(D) = (()o). Define 
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2(00 ) to be the space of all holomorphic theta functions with the same type 
as 00 , Then 0 --+ 0/00 gives an isomorphism of 2(00 ) with 2(D). Theorem C 
gives the dimension of this space. 

Theorem. Suppose Do, D1 , ••• , Dm are positive divisors on T and that Do is 
ample. Then there is a polynomial P of degree d such that 

dime 2(of rjDj) = P(ro, r1 , ••• , rm) 
}=o 

whenever rj ~ 0 for all j and r 0 > O. 

PROOF. Set n*(Dj) = (OJ) and let Hj be the Hermitian form corresponding to 
OJ. Then Ij=o rjHj corresponds to TIj=o Op and is positive definite if rj ~ 0 for 
1 ~j ~ m and ro > O. Then we have 

dime 2 (of rjDj) = dime 2(0'0°01' 000 O:;'m) 
}=o 

= Pf(roEo + rIEl + ... + rmEm) 

which is a polynomial in the rj of the type described in the theorem. 0 

Corollary. If D is an ample divisor on T, then dime 2(rD) = rd dime 2(D) for 
r > O. 

Suppose T is a complex torus of dimension d which possesses an ample 
divisor. The above theorem can be used to prove Siegel's theorem (see the 
beginning of this section) for T. We prove the first part as follows. Suppose 
f1,f2' ... , fmEV#(T) with m > d, where d = dim T. There exists an ample 
divisor D such that (ij) + D ~ 0 for 1 ~ j ~ m. Set n*(D) = (00 ) and OJ = ijOo. 
The OJ are holomorphic theta functions of the same type as 00 , For r = Ij=l rj 
there are (m~r) monomials 0'0°01' ... O:;'m as the rj vary over non-negative 
integers. These are all in 2(0'0) which has dimension rdpf(E) where E is the 
alternating form corresponding to 00 , Since m > d we have (m,;:-r) > rdpf(E) 
for large r. The corresponding monomials are then linearly dependent and 
this gives an algebraic relation among the ij. Thus the transcendence degree 
of V#(T) over C is ~ d. See [L-A, Chap. VI, §6] for the proof that when 
equality holds, V#(T) is finitely generated over C. 

Let A be an abelian manifold. Recall that this means A is a complex torus 
with a non-degenerate Riemann form H, i.e. H is positive definite. Frobenius' 
theorem, Theorem C, implies the existence of a theta function 0 on A with H 
its corresponding Hermitian form. Let D be the divisor on A induced by O. 

Theorem D (Lefschetz Embedding Theorem). Let A be an abelian manifold 
and D the divisor on A constructed in the above remarks. Then 2(3D) con
sidered as a linear system on A gives a projective embedding A --+ [p>N(C). 
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See [L-A] or [SW] for the proof. The map is obtained as follows. 
2(3D) ~ 2(03 ). Let 00' 01 , O2 , ••• , ON be a basis of 2(03 ). Then tEA goes to 
[Oo(t), 01 (t), ... , ON(t)] E IfJ>N(C). Since all the OJ are of the same type, the map 
is well defined. One must show it is defined everywhere, is 1-1, and that the 
image is a non-singular subvariety of iP'N(C). 

Let E = 1m H be the alternating Riemann form corresponding to H. Then 
N = dim 2(03 ) - 1 = 3d Pf(E) - 1 where d = dime A. One can also show 
that the degree of the embedding is d! 3d Pf(E). 

Suppose d = 1. Then N = 2 and the degree of the embedding is 3 if we use 
the Riemann form constructed earlier on CIA = A; A embeds as a non
singular plane cubic. Thus, the Lefschetz Embedding Theorem can be con
sidered as a vast generalization of the work of Weierstrass on elliptic func
tions. We remark in passing that the theta function that arises in this context 
is the Weierstrass cr-function, cr(z), whose induced divisor on CIA is just the 
zero element. 

Theorem D is, of course, a very explicit form of Theorem A. Conversely, 
if A is an abelian variety over C then A has a projective embedding. 
The pull-back of a hyperplane section is an ample divisor D on A and if 
n*(D) = (0) then the Hermitian form corresponding to 0 is a non-degenerate 
Riemann form on A(C), i.e. A(C) is an abelian manifold. Thus the existence of 
a non-degenerate Riemann form is a necessary and sufficient condition for a 
complex torus to be the manifold of complex points on an abelian variety! 

§4. The Ne!on-Severi Group and the Picard Group 

In this section we assume A = VIA is an abelian manifold. We define some 
groups of divisors on A. 

~ = group of all divisors on A. 

~a = group of divisors on A whose corresponding Riemann form is O. 

~l = group of principal divisors. 

The divisors in ~a are said to be algebraically equivalent to zero, those in 
~l are said to be linearly equivalent to zero. We have ~l ~ ~a ~ ~. Define the 
Neron-Severi group to be NS(A) = ~/~a' the Picard Group to be Pic (A) = 
~/~l' and PicO(A) = ~a/~l' Then we have the exact sequence 

(0) - PicO(A) - Pic (A) - NS(A) - (0). 

Proposition. NS(A) is a torsion free finitely generated abelian group (and so a 
free abelian group) of rank::;; d(2d - 1) where d = dim A. 

PROOF. The Riemann form H associated to a divisor is completely deter-



ABELIAN VARIETIES OVER C 93 

mined by E = 1m H restricted to A. These form a group isomorphic to a 
subgroup of the 2d x 2d antisymmetric matrices with integer coefficients. 
The latter group is free abelian of rank d(2d - 1). Thus NS(A) injects into a 
free abelian group of rank d(2d - 1). D 

When d = 1, NS(A) ~ lL, the isomorphism being given by D ..... deg(D). 
We will next show that PicO(A) can be given the structure of an abelian 

manifold, A, the dual abelian manifold of A. 
Suppose [D] is the class in Pic°(A) of a divisor D. Then D corresponds 

to a normalized theta function f) which only depends on the class of D. Since 
the Riemann form associated to f) is trivial we have f)(z + A) = e(K(A))f)(Z) 
where K(A) E IR and satisfies K(AI + A2 ) == K(A 1 ) + K(A2)mod lL. Then 
XD(A) = e(K(A)) is a character of A. Note that XD is the trivial character if and 
only if f) E vH(A). Denoting the Pontryagin dual of A by A we get a mono
morphism PicO(A) c; A by [D] ..... XD. Since A ~ lL2d we have A ~ (IRIlL)2d is a 
real torus of dimension 2d. To give PicO(A) the structure of an abelian mani
fold we will show PicO(A) c; A is an isomorphism, that A has the structure of 
a complex torus, and finally that the resulting complex torus has a non
degenerate Riemann form. 

Suppose X is an ample divisor on A, f) the corresponding theta function, 
H the corresponding Riemann form, and E = 1m H. For t E V we set f)1(Z) = 
8(z - t). The divisor corresponding to f)l is Xl' the translation of X by t 
(actually, by the image of t in A). A calculation shows that the normalized 
theta function associated to f)llf) has multiplier e( - E(t, A)). In the first place 
this shows Xl - X is algebraically equivalent to zero. Secondly, since E is 
non-degenerate, every character of A is of the form A ..... e( - E(t, A)) for suit
able t E V. This proves 

Proposition. PicO(A) ..... A given by D ..... XD is an isomorphism. Moreover, every 
DE f0a is linearly eqUivalent to Xl - X for suitable tEA. 

Corollary. If X is an ample divisor on A, the map rPx: A ..... PicO(A) given by 
rPx(t) = [Xl - X] is surjective with finite kernel of order det(E) = Pf(E)2. 

PROOF OF COROLLARY. The surjectivity is given by the theorem. The kernel is 
precisely {tE VIE(t, A)ElL, for all AEA}/A. It is straightforward to see this is 
a finite group of order Pf(E)2 (use a symplectic basis for A). 0 

To put the structure of a complex torus on PicO(A) ~ A we consider the 
space V* of antilinear functionals on V. Explicitly, 

V* = {jEHomn;!(V, C)lf(oct) = -af(t), OCEC, tE V}. 

V* is a complex vector space of the same dimension as V. We have a non
degenerate IR-bilinear pairing < , ): V* x V ..... IR given by <~, t) = 1m ~(t). 
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Define A* by A* = gE V*I<~, A)EZ, for all AEA}. It is not hard to see that 
A * is a lattice in V*. The following lemma follows from the definitions and 
the non-degeneracy of the pairing <~, A). 

Lemma. F or ~ E V* define X~(A) = e ( - <~, A»). Then ~ ---. X~ gives an isomor
phism from V* / A * to A. 

This gives A the structure of a complex torus. 
If H is the given Riemann form on A, then t ---. H(t, .) is an isomorphism 

of V with V* as complex vector spaces. Under this isomorphism one checks 
that A goes to A*. Thus we have an epimorphism ¢JH: V;'A ---. V*/A*. The 
various maps we have defined are tied together by the following commutative 
diagram 

A = V/A~ V*/A* 

!fox! ~g--->x< 

PicO(A)~ A 

It remains to exhibit a Riemannform on V*/A*. The map V---. V* (which 
we also denote by ¢JH) given by t ---. H(t, .) is an isomorphism as we have 
already pointed out. Define 

H*(~, YJ) = H(¢Ji/(~), ¢Jii1(YJ)). 

H* is certainly a Hermitian form on V* but E* = 1m H* need not be integer 
valued on A*. Using the above commutative diagram we see the kernel of 
¢JH: V;'A ---. V*/A* is finite implying ¢Jii1(A*)/A is finite. Thus an appropriate 
integer multiple of H* is a Riemann form on V* / A *. By "transport of struc
ture," PicO(A) becomes an abelian manifold, A called the dual abelian mani
fold of A. 

The association A ~ A is a genuine duality. If p: A ---. B is a morphism of 
abelian manifolds, then p: fj ---. A is the morphism of abelian manifolds in
duced by pulling back divisors. One can show A is canonically isomorphic to 

1, etc. 
For every ample divisor X on A, ¢Jx: A ---. A is an isogeny with kernel of 

order Pf(Ef where E is the alternating Riemann form corresponding to X. 
Before leaving the topic of dual abelian manifolds we briefly discuss the 

Rosati involution. If X is an ample divisor on A the isogeny ¢Jx E Hom(A, A) is 
an isomorphism in Homo(A, A). Let ¢Ji1 E Homo (A, A) be its inverse. If 
p: A ---. A let p: A ---. A be the dual morphism. Then p ---. p extends to a map 
from Endo(A) ---. Endo(A). For p E Endo(A) define p' = ¢Ji1 0 P 0 ¢Jx. The map 
p ---. p' is an involution, i.e. (Pl 0 P2)' = p~ 0 P/l and p" = p, called the Rosati 
involution on Endo(A) (we suppress the dependence on X in the notation). 
Let tr denote the trace map on the semisimple a)-algebra Endo(A). Then 
tr(p' p) > 0 for all p of. o. All this follows from 
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Proposition. Let X be an ample divisor on A, and H the corresponding Riemann 
form. Then H(p' z, w) = H(z, pw) for all z, WE V, i.e. p' is the adjoint of p with 
respect to H. 

The proof, which is not hard, follows from carefully unwinding the 
definitions. 

In the case of abelian varieties over finite fields, the existence and positivity 
of the Rosati involution can be used to prove the Riemann hypothesis for the 
associated zeta function (see [M-AV, Chap. IV, §21] for this). Another 
application is to classify the endomorphism rings of abelian manifolds. This 
theory was developed in the 1930s by A. A. Albert and others under the 
rubric of "Riemann matrices." For example, if D = Endo(A) is a division 
algebra, then the center of D is either totally real or else a CM field. [M -A V, 
Chap. IV, §21], gives the main results. 

§5. Polarizations and Polarized Abelian Manifolds 

For many purposes, it is natural to consider not just an abelian manifold A, 
but A together with the choice of a non-degenerate Riemann form. Roughly 
speaking, a polarized abelian manifold is a pair (A, H) where H is a non
degenerate Riemann form. We actually use a slightly different definition: say 
two Riemann forms HI' H2 are equivalent if there exists nl , n2 E N such that 
n1 H 1 = n2H. Then a polarized abelian manifold is an abelian manifold A 
together with an equivalence class of Riemann forms on A that contains a 
non-degenerate Riemann form. Such an equivalence class is called a (homo
geneous) polarization of A. We use the notation (A, H) for a polarized abelian 
manifold, where fi is the equivalence class of the Riemann form H. 

Note that a non-degenerate Riemann form on A corresponds to an alge
braic equivalence class of a non-degenerate positive divisor. Such a divisor is 
ample on A, and gives rise to a projective embedding of A. Then a polarized 
abelian manifold (A, fi) corresponds to giving the abelian manifold A to
gether with an equivalence class of projective embeddings of A. 

A morphism of polarized abelian manifolds ifJ: (A1' fid --+ (A2' fi2) is a 
morphism ifJ: A 1 --+ A2 such that ifJ* H 2 E fi l' 

A justification for the introduction of the notion of polarization is given by 
the following result. 

Theorem. The automorphism group of a polarized abelian manifold is finite. 

PROOF. Let (A, fi) be a polarized abelian manifold, where H is a non
degenerate Riemann form. Suppose O'EAut(A, fi). Then H(O'x, O'y) = H(x, y) 
(and not just an integer multiple of H). Here we have lifted 0' to a linear map 
on V, the universal cover of A. Thus 0' belongs to the compact group of linear 
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maps preserving H. On the other hand, (J is determined by its restriction to 
the lattice A, on which it preserves the Z-valued alternating form E = 1m H. 
So (J belongs to a di:;crete group also. But the intersection of a compact set 
with a discrete set is finite! 0 

A special role is played by the principally-polarized abelian manifolds. 
These are the polarized abelian manifolds (A, H) for which there is HE H 
with Pf(lm H) = 1. Thus with respect to a symplectic basis of A, E = 1m H is 
given by the matrix 

Examples of principally polarized (p.p.) abelian manifolds are given by the 
Jacobian varieties of non-singular algebraic curves (or Riemann surfaces). If 
r is a non-singular algebraic curve of genus 9 > 0, defined over C, then one 
can show that PicO(r) = {divisors of degree ° on r} / {linear equivalence} has 
the structure of an abelian variety J = Jac(r), the Jacobian of r. (The Abel
Jacobi theorem, proved in [L-A, Chap. IVJ shows that Pic°(r) has the 
structure of a complex torus, while Riemann's relations, proved in [L-A, 
Chap. IV, §4J, imply that PicO(r) is an abelian manifold). Fix Po E r. Then the 
map 0(: r --+ J given by p --+ [p - PoJ induces a map O(g-1): r(g-l) --+ J given 
b (g-l)( ) "g-l ( ) H r(g-l)' th t . d t yO( Pl' P2"'" Pg-l = L.j=l 0( Pj· ere IS e symme fIC pro uc 
of r with itself 9 - 1 times. The image of r(g-l) in J is well determined up to 
translation and is a non-degenerate divisor, the theta divisor (J. It can be 
shown that (J determines a principal polarization on J. 

Torelli's theorem (see [G-H, p. 359J for a proof) says that the pair (J, 0) 
determines r up to isomorphism. More precisely, if (J, 0) ::::::: (J', (J'), where 
J' = Jac(r), then r ::::::: r. 

The following proposition is often useful. 

Proposition. Every polarized abelian manifold is isogenous to a principally 
polarized abelian manifold. 

PROOF. Let (A, H) be a polarized abelian manifold of dimension d. As usual, 
A = VIA and E = 1m H is integer valued on A. Let {A'1' A2 , ... , A2d } be a 
symplectic "basis for A. In particular, E(Aj , Ad+j ) = ej , 1 ~j ~ d, for some 
integers ej • Define a new lattice 

Then E as an alternating form on A', is integer valued, and has determinant 
1. Let A' = VIA'. Then, A = VIA --+ VIA' = A' is an isogeny and A' is princi
pally polarized (by E). 0 

If (A, H) is a polarized abelian manifold, then <PH: A --+ A, the dual abelian 
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manifold, is an isogeny with kernel of order det E = Pf(E)2. In particular, if 
A is principally polarized, A ~ A. It follows that Jacobians are self-dual. 

§6. The Space of Principally Polarized 
Abelian Manifolds 

For d ~ 1, let dd be the set of isomorphism classes of principally polarized 
abelian manifolds. We will indicate how dd can be given the structure of a 
complex analytic space. 

Consider the case d = 1. Every abelian manifold of dimension 1 is princi
pally polarized, so the polarization is irrelevant. Let Yf = {r E ICI 1m r > O}, 
the Poincare upper half plane. One has .911 ~ SI2(Z)\Yf given by 

IC/Zw l + ZW2 --+ r = w 11w2 

where Im(wdw2) > O. The action of SI2(Z) on Yf is given by 

( a b)(r)=ar+b. 
cd cr+d 

This material, which is fairly familiar, will be seen as a special case of our 
further considerations. 

If A = VIA is a principally polarized abelian variety we choose a IC-basis 
for V and a symplectic basis for A. One then sees that A has a concrete 
representation as (lCdl<w 1 , ••• , w2d ), H) where WI' ... , W2d are IR-linearly 
independent column vectors and H is a Riemann form whose imaginary part 

E has matrix (E(Wi' Wj)) = J where J = (0 I). The d x 2d complex 
-I 0 

matrix Q = (Wi> W2' ... , W2d) is called the period matrix. 
Two questions arise. 

(1) What conditions on Q express the condition that the alternating form 
E on <WI' W2, ... , w 2d ) given by J is the imaginary part of a non
degenerate Riemann form? 

(2) When do two period matrices Q and Q' correspond to isomorphic princi
pally polarized abelian manifolds? 

Some calculations (see [L-A, Chap. VIII, §1]) show that Q determines an 
abelian manifold if and only if the following two conditions hold. 

(RI) 

(RII) 

QJQI = 0 

2i(nrl nlt 1 > 0 

(nl = transpose of n), 

(>0 means positive definite). 

These conditions are known as Riemann's relations. (RI) is equivalent to 
the condition E(iz, iw) = E(z, w), and (RII) is equivalent to the condition that 
H be positive definite. In fact, the matrix of H with respect to the standard 
basis of ICd is 2i(nrl nltl. 
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If we write 0 = (01, O2) with 0 1, O2 complex d x d matrices, the Riemann 
relations take the form 

(RI') 

(RIl') 

020i - 010~ = 0, 

2i(02Qi - 0 1 Q~) > O. 

From these relations it is easy to show that both 0 1 and O2 are invertible. 
Let fYt be the set of complex matrices 0 = (010 2) satisfying (RI') 

and (RII'). GIAc) acts on fYt by multiplication on the left and SP2dC:£':) = 
{M E GI2d('~)1 M J Mt = J} acts on f1l by multiplication on the right. One sees 
that 

The action of GIAc) gives an isomorphism of abelian varieties, while the 
action of Sp2AZ) corresponds to a change of symplectic basis. 

Thus 0 = (010 2) ~ (r, I) where r = 0 210 1, The conditions (RI') and 
(RIl') assert that r is symmetric and 1m r is positive definite. 

Definition. Let £d be the space of d x d complex matrices r which are sym
metric and 1m r is positive definite. £d is called the Siegel upper half space. It 
is a complex manifold of dimension d(d + 1)/2. 

When IS (r, I) ~ (r', I)? Write M = (~ ~). Then, (r, I)M = 

(rA + C, rB + D) ~ ((rB + Drl(rA + C), I). Thus, we must have 

r' = (rB + Drl(rA + C) 

for some (~ ~) in Sp2AZ). 

To put things in somewhat more familiar form we note that Sp2AZ) is 
invariant under transpose and that rt = r. Thus, we let Sp2AZ) act on £d by 

(~ ~) r --+ (Ar + B)(Cr + Drl. 

The final conclusion is 

By analyzing this more carefully we see dd is parametrized by a d(d + 1)/2 
complex analytic space. In fact, this space can be given the structure of a 
normal quasi-projective variety. 

When d = 1 we recover the familiar d l ~ SI2(Z)\£ which, via the 
j-function, is isomorphic to the complex plane. 

If one investigates in a similar manner the "space" of complex tori of 
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dimension d it turns out to depend on d 2 complex parameters. Thus one 
suspects that when d > 1 there are complex tori which are not abelian vari
eties since 

d2 _ d(d + 1) = d(d - 1) > 1 when d ~ 2. 
2 2-

This is indeed the case. 
As an example, let d = 2 and set 

{3 
(

a + i 
Q= 

I 
1 0) 

b+i 0 1 ' 

where a, {3, y, and b are real and algebraically independent over Q. Let 
T be the torus C2/<Q), where <Q) is the lattice generated by the columns 
of Q. We will show A(T) = Co Suppose f E A(T) is not a constant. Then 
(I) = Do - Doo where Doo is a non-zero positive divisor on T. As shown in 
[SHAF, pp. 354-356], Doo corresponds to an integral, non-zero, antisymme
tric matrix A such that QAQ! = o. Writing this out shows there is a non
trivial linear relation with coefficients in 7L between 1, {3, y, a + i, b + i, and 
ab - {3y + i(a + b) and so between 1, {3, y, ex, b, ab - {3y. This contradicts the 
algebraic independence of ex, {3, y, and b. 

Here is a heuristic argument that the generic abelian variety is simple. If A 
is a principally polarized abelian variety of dimension d which is not simple 
then A is isogenous to B x C where dim B = b and dim C = c with 1 ::;; b, 
c < d, and b + c = d. The modulus of B is in db, a [b(b + 1)/2]-dimensional 
space, and the modulus of C is in dc, a [c(c + 1)/2]-dimensional space. Thus 
the moduli of A with a factor of dimension b lie in a subspace of dd of 
dimension 

b(b + 1) (d - b)(d - b + 1) 
2 + 2 . 

The maximum of these dimensions for 1 ::;; b < d is easily seen to be that 
given by b = [d/2], namely [(d2 + 2d + 1)/4] (here [x] means the greatest 
integer ::;; x). But, 

[ d2 + 2d + 1] d(d + 1) 
4 < 2 for all d > 1. 

Finally, we show the generic abelian variety A has 7L for its endomor
phism ring. Let, E dd and A be the abelian variety corresponding to (" I). 
Then multiplication by g E MAC) gives an element of End(A) if and only if 

there is a matrix ME M2A7L) such that g(" I) = (" I)M. Let M = (~ ~). 
We must have (g" g) = (,A + C, ,B + D) so g = ,B + D and g, = ,A + c. 
Thus, ,B, + D, - ,A - C = O. Let , = (tij). If B = C = 0 and A = D = nI 
for n E 7L there is no condition imposed on 'r. Otherwise the tij must satisfy 
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certain non-trivial quadratic polynomials with coefficients in 7l.. In general, 
this cannot happen. For example, suppose tij with i :::; j are algebraically 
independent over Q. Then a simple calculation shows that .B. + D. - .A -
C = 0 can only happen when C = B = 0 and A = D = nI for some n E 7l.. For 
the corresponding abelian variety the endomorphism ring is precisely 7l.. Of 
course, when d = 1 we need only require that t = tll not be quadratic 
over Q. 
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CHAPTER V 

Abelian Varieties 

J. S. MILNE 

This chapter reviews the theory of abelian varieties emphasizing those points 
of particular interest to arithmetic geometers. In the main it follows Mum
ford's book [16] except that most results are stated relative to an arbitrary 
base field, some additional results are proved, and etale cohomology is in
cluded. Many proofs have had to be omitted or only sketched. The reader is 
assumed to be familier with [10, Chaps. II, III] and (for a few sections that 
can be skipped) some etale cohomology. The last section of Chapter VII, 
"Jacobian Varieties", contains bibliographic notes for both chapters. 

Conventions 

The algebraic closure of a field k is denoted by k and its separable closure by 
ks • For a scheme V over k and a k-algebra R, VR denotes V xspec(k) spec(R), 
and V(R) denotes Mork(spec(R), V). By a scheme over k, we shall always 
mean a scheme of finite type over k. 

A variety V over k is a separated scheme of finite type over k such that lie 
is integral (that is, reduced and irreducible). It is nonsingular if lie is regular. 
Note that with these definitions, if V is a variety (and is nonsingular) then VK 

is a integral (and is regular) for all fields K ::::J k, and a product of (nonsingular) 
varieties is a (nonsingular) variety; moreover, V(ks ) is nonempty. A k-rational 
point of V is often identified with a closed point v of V such that k(v) = k. 

All statements are relative to a fixed group field: if V and Ware varieties 
over k, then a sheaf or divisor on V, or a morphism V --+ W, is automatically 
meant to be a defined over k (not over some "universal domain" as in the 
pre-scheme days). 

Divisor means Cartier divisor, except that because most of our varieties 
are nonsingular we can usually think of them as Weil divisors. If n: W --+ V is 
a map and D is a divisor on V with local equation f near v, then n*D (or 
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n-1 D) is the divisor on W with local equationf 0 n near n-1 (v). The invertible 
sheaf defined by D is denoted by 2(D). 

The tangent space to V at v is denoted by T,,(V). Canonical isomor
phisms are often denoted by =. The two projection maps p: V x W -+ V and 
q: V x W -+ Ware always so denoted. The kernel of multiplication by n, 
X -+ X, is denoted by X n • An equivalence class containing x is often denoted 
by [x]. 

§l. Definitions 

A group variety over k is a variety V over k together with morphisms 

m: V x V -+ V 

inv: V -+ V 

(multiplication), 

(inverse), 

and an element e E V(k) such that the structure on V(k) defined by m and inv 
is that of a group with identity element e. 

Such a quadruple (V, m, inv, e) is a group in the category of varieties over 
k, i.e., the diagrams [22, §2] commute. (To see this, note that two morphisms 
with domain a variety Ware equal if they become equal over k, and that 
W(k) is dense in Mi.) Thus, for every k-algebra R, V(R) acquires a group 
structure, and these group structures depend functorially on R. 

For a E V(k), the projection map p: Jf x Jf -+ Jf induces an isomorphism 
lie x {a} ~ lie, and we define ta to be the composite 

lie ~ lie x {a} c: lie x lie ~ lie· 

On points ta is the translation map P 1-+ m(P, a). Similarly, for any point 
a E V, there is a translation map ta: l-'k(a) -+ l-'k(a)' In particular, if a E V(k), then 
ta maps V into V. 

A group variety is automatically nonsingular: as does any variety, it con
tains a nonempty, nonsingular open subvariety V, and the translates of Vk 

cover lie. 
A complete group variety is called an abelian variety. As we shall see, they 

are projective and (fortunately) commutative. Their group laws will be writ
ten additively. 

An affine group variety is called a linear algebraic group. Each such variety 
can be realized as a closed subgroup of GLn for some n [24, 3.4]. 

§2. Rigidity 

Theorem 2.1 (Rigidity Theorem). Let f: V x W -+ V be a morphism of varie
ties over k. If V is complete and 

f(V x {wo}) = {uo} = f({vo} x W) 

for some UoE V(k), VoE V(k), WoE W(k), thenf(V x W) = {uo}· 
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PROOF. Let Uo be an open affine neighborhood of Uo. The projection map 
q: V x W --+ W is closed (this is what it means for V to be complete), and so 
the set Z = q(f-l(U - Uo)) is closed in W Note that a closed point w of W 
lies outside Z if and only if f(V x {w}) c Uo. In particular, Wo E W - Z and 
so W - Z is a dense open subset of W As V x {w} is complete and Uo is 
affine, f(V x {w}) must be a point whenever w is a closed point of W - Z, 
[14, p. 104]; in fact,f(V x {w}) = f( {vo} x {w}) = {uo}. Thus f is constant 
on the dense subset V x (W - Z) of V x W, and so is constant. 0 

Corollary 2.2. Every morphismf: A --+ B of abelian varieties is the composite of 
a homomorphism h: A --+ B with a translation ta, a = - f(O) E B(k). 

PROOF. After replacing f with ta 0 f, a = - f(O), we can assume that f(O) = O. 
Define cp: A x A --+ B to be f 0 rnA - mB 0 (f x f), so that on points cp(a, a'l = 
f(a + a'l - f(a) - f(a ' ). Then cp(A x {O}) = 0 = cp( {O} x A), and so the 
theorem shows that cp = 0 on A x A. Thus f 0 rnA = m B 0 (f x f), which is 
what we mean by f being a homomorphism. 0 

Remark 2.3. The corollary shows that the group structure on A is uniquely 
determined by the choice of a zero element. 

Corollary 2.4. The group law on an abelian variety A is commutative. 

PROOF. Commutative groups are distinguished by the fact that the map 
taking an element to its inverse is a homomorphism. The preceding corollary 
shows that inv: A --+ A is a homomorphism. 0 

Corollary 2.5. Let V and W be complete varieties over k with rational 
points Vo E V(k), Wo E W(k), and let A be an abelian variety. Then a morphism 
h: V x W --+ A such that h(vo, wo) = 0 can be written uniquely as h = 
fop + go q with f: V --+ A and g: W --+ A morphisms such that f(vo) = 0, 
g(wo) = O. 

PROOF. Define f to be V = V x {wo} A A and g to be W = {vol x W A A, 

so that k ~ h - (f 0 p + go q) is the map such that on points k(v, w) = 
h(v, w) - h(v, wo) - h(vo, w). Then 

k(V x {wo}) = 0 = k({vo} x W}, 

and so the theorem shows that k = O. o 

§3. Rational Maps into Abelian Varieties 

We improve some of the results in the last section. 
Recall [10, I, 4] that a rational map f: V .-~ W of varieties is an equivalence 

class of pairs (U'/u) with U a dense open subset of Vand fu a morphism 
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U -+ W; two pairs (U'!u) and (U',!u') are equivalent if fu and fu' agree on 
Un U'. There is a largest open subset U of V such that f defines a morphism 
U -+ W, and f is said to be defined at the points of U. 

Theorem 3.1. A rational map f: V .. ~ Afrom a nonsingular variety to an abelian 
variety is defined on the whole of V. 

PROOF. Combine the next two lemmas. D 

Lemma 3.2. A rational map f: V .. ~ W from a normal variety to a complete 
variety is defined on an open subset U of V whose complement V - U has 
codimension ~ 2 

PROOf. Let fu: U -+ W be a representative of J, and let v be a point of V - U 
of codimension 1 ~n V (that is, whose closure {v} has codimension 1). Then 
@v,v is a discrete valuation ring (because V is normal) whose field of fractions 
is k(V), and the valuative criterion of properness [10, II, 4.7] shows that the 
map spec(k(V» -+ W defined by f extends to a map spec((9v, v) -+ W This 
implies that f has a representative defined on a neighborhood of v, and so the 
set on which f is defined contains all points of codimension :s; 1. This proves 
the lemma. D 

Lemma 3.3. Let f: V .. ~ G be a rational map from a nonsingular variety to a 
group variety. Then either f is defined on all of Vor the points where it is not 
defined form a closed subset of pure codimension 1 in V. 

PROOF. See [2, 1.3]. D 

Theorem 3.4. Letf: V x W -+ A be a morphismfrom a product of nons in gular 
varieties into an abelian variety. If 

f(V x {wo}) = {aD} = f({vo} x W) 

for some ao E A(K), Vo E V(k), and Wo E W(k), thenf(V x W) = {ao}. 

PROOF. We can assume k to be algebraically closed. Consider first the case 
that V has dimension 1. Then V can be embedded in a nonsingular complete 
curve V, and (3.1) shows that f extends to a map 1: V x W -+ A. Now (2.1) 
shows that 1 is constant. 

In the general case, let C be an irreducible curve on V passing through Vo 
and nonsingular at vo, and let C -+ C be the normalization of C. Then f 
defines a morphism C x W -+ A which the preceding argument shows to be 
constant. Therefore f(C x W) = {ao}, and the next lemma completes the 
~~ D 

Lemma 3.5. Let Vbe an integral scheme offinite type over afield k, and assume 
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V is nonsingular at a point Vo E V(k); then the union of the integral one
dimensional subschemes passing through Vo and nonsingular at Vo is dense in V. 

PROOF. By induction it suffices to show that the union of the integral sub
schemes of codimension 1 passing through Vo and smooth at Vo is dense in V. 
We can assume that V is affine and Vo is the origin. For H a hyperpfane 
passing through Vo but not containing 'T.,o(V), V n H is smooth at Vo. Let VH 
be the component of V n H passing through vo, regarded as an integral 
sub scheme of V and let Z be a closed subset of V containing all VH. Regard 
Z as a reduced subscheme of V, and let Cvo(Z) be the tangent cone to Z at Vo 

[14, III.3]. Clearly 'T.,o(V) n H = 'T.,o(VH) = CVo(VH) C Cvo(Z) C Cvo(V) = 

'T.,o(V), and it follows that Cvo(Z) = 'T.,o(V). As dim Cvo(Z) = dim(Z) (see 
[14, III.3, p. 320]), this implies that Z = V. D 

Corollary 3.6. Every rational map f: G --~ A from a group variety to an abelian 
variety is the composite of a homomorphism h: G ~ A with a translation. 

PROOF. Theorem 3.1 shows that f is a morphism. The rest of the proof is the 
same as that of (2.2). D 

Remark 3.7. The corollary shows that A is determined by k(A) up to the 
choice of a zero element. In particular, if A and B are abelian varieties and 
k(A) is isomorphic to k(B), then A is isomorphic to B (as an abelian variety). 

Corollary 3.8. Every rational map f: 1P1 --~ A is constant. 

PROOF. The variety 1P1 - { 00 } becomes a group variety under addition, and 
/p 1 - {D, oo} becomes a group variety under multiplication. Therefore the 
last corollary shows that there exist a, bE A(k) such that 

f(x + y) = f(x) + f(y) + a, all x, YEk = /Pi(k) - {oo}, 

f(xy) = f(x) + f(y) + b, all x, YEP = 1P1(k) - {O, oo}. 

This is clearly impossible unless f is constant. D 

Recall that a variety V of dimension d is unirational if there is an embed
ding of k(V) into a purely transcendental extension k(Xi' ... , X d ) of k. Such 
an embedding corresponds to a rational map IPt --~ II whose image is dense 
in ll. 

Corollary 3.9. Every rational map from a unirational variety to an abelian 
variety is constant. 

PROOF. We can suppose k to be algebraically closed. By assumption there 
is a rational map Ad --~ V with dense image, and the composite of this with a 
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rational map f: V --. A extends to a morphism 1: [pI X ... X [pI --+ A. Ac
cording to (2.5),1 (Xl' ... , Xn) = L/;(x;) for some morphisms /;: [pI --+ A, and 
(3.8) shows that each /; is constant. 0 

§4. Review of the Cohomology of Schemes 

In order to prove some of the theorems concering abelian varieties, we shall 
need to make use of results from the cohomology of coherent sheaves. The 
first of these is Grothendieck's relative version of the theorem asserting that 
the cohomology groups of coherent sheaves on complete varieties are finite 
dimensional. 

Theorem 4.1. Iff: V --+ Tis a proper morphism of Noetherian schemes and ff is 
a coherent {!}y-module, then the higher direct image sheaves R'f*ff are coherent 
{!}T-modules for all r ~ O. 

PROOF. When f is projective, this is proved in [10, III, 8.8]. Chow's 
lemma [10, II, Ex. 4.lOJ allows one to extend the result to the general case 
[9,111.3.2.1]. 0 

The second result describes how the dimensions of the cohomology groups 
of the members of a flat family of coherent sheaves vary. 

Theorem 4.2. Let f: V --+ T be a proper flat morphism of Noetherian schemes, 
and let ff be a locally free (!}y-module offinite rank. For each t in T, write ~ 
for the fibre of Vover t and :F,for the inverse image of ff on ~. 

(a) The formation of the higher direct images of ff commutes with flat base 
change. In particular, if T = spec(R) is affine and R' is aflat R-algebra, 
then Hr(v" ff') = Hr(v, ff) ®R R', where V' = V xspec(R) spec(R') and 
ff' is the inverse image of ff on V'. 

(b) The function t ~ x(:F,) ~ L (-1)' dimk(t) W(~, :F,) is locally constant on 
T. 

(c) For each r, thefunction t~dimk(t) W(~,:F,) is upper semicontinuous (that 
is, it jumps on closed subsets). 

(d) If T is integral and dimk(t) Hr(~,:F,) is equal to a constant s for all 
t in T, then R'f*ff is a locally free {!}T-module and the natural maps 
R'f*ff ®(T)T k(t) --+ W(~, :F,) are isomorphisms. 

(e) IfHI(~,:F,) = Of or all tin T, then Rlf*ff = O,J*ff is locally free, and the 
formation of f* ff commutes with base change. 

PROOF. (a) The statement is local on the base, and so it suffices to prove 
it for the particular case in which we have given an explicit statement. In 
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[16, §5, p. 46], a complex K of R-modules is constructed such that for all 
R-algebras R', Hr(V', ji'"') = Hr(K' ®R R'). In our case, R' is flat over R, and 
so W(K' ®RR') = W(K') ®R R', which equals W(V, ji'") ®R R'. 

(b), (c), (d). These are proved in [16, §5]. 
(e). The hypothesis implies that R1f*ji'" = 0 ([10, III, 12.lla]), and it 

follows that f* ji'" ®(I)r k(t) --+ HOCVr, ~) is surjective for all t ([to, III, 12.11 b]) 
and so is an isomorphism. Now this last reference (applied with i = 0) shows 
that f*ji'" is locally free. 0 

§5. The Seesaw Principle 

We shall frequently need to consider the following situation: V is a variety 
over k, T is a scheme of finite type over k, and 2' is an invertible sheaf on 
V x T. For tE T, 2r will then always denote the invertible sheaf (1 x 1)* 2' on 
~ = lik(/) = (V x T) x T t, where I is the inclusion of t = spec(k(t)) into T. 
There is the diagram 

(V x T, 2') ~ (~, 2r). 

! 
T 

! 

It is often useful to regard 2' as defining a family of invertible sheaves on V 
parametrized by T. 

Theorem 5.1. Let Vbe a complete variety and Tan integral scheme offinite type 
over k, and let 2' and .A be invertible sheaves on V x T. If 2r ~ .AI for all 
t E T, then there exists an invertible sheaf % on T such that 2' ~ .A ® q * %. 

PROOF. By assumption, (2' ® .A-1)1 is trivial for all t E T, and so 
HO(~, (2' ® .A-I )/) ~ HO(~, lDvJ = k(t). Therefore (4.2d) shows that the 
sheaf % = q*(2' ® .A-I) is invertible. Consider the natural map q* % = 
q*q*(2' ® .A-I) ~ 2' ® .A-I. As (2' ® .A-1)1 ~ lDv" the restriction of 0( to 
the fibre ~ is isomorphic to the natural map 0(/: lDy, ® r(~, lDvJ --+ lDv" 
which is an isomorphism. Now Nakayama's lemma implies that 0( is surjec
tive, and because both q* % and 2' ® .A-I are invertible sheaves, it follows 
that 0( is an isomorphism (if R is a local ring, then a surjective R-linear map 
R --+ R is an isomorphism because it must send 1 to a unit). D 

Corollary 5.2 (Seesaw Principle). Suppose in addition to the hypotheses of the 
theorem that 2'v ~ .Avfor at least one v E V(k). Then 2' ~ .A. 

PROOF. The theorem shows that 2' ~ .A ® q* % for some % on T. 
On pulling back by T = {v} x T ~ V x T, we obtain an isomorphism 
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2'v ~ Av ® q* JV;,. As 2'" ~ Av and (q* %)v = %, this shows that % is 
~~ 0 

The next result shows that the condition !t; ~ At of the theorem needs 
only to be checked for t in some dense subset of T (for example, it needs only 
to be checked for t the generic point of T). 

Theorem 5.3. Let V be a complete variety, and let 2' be an invertible sheaf on 
V x T. Then {t E T 12r is trivial} is closed in T. 

Lemma 5.4. An invertible sheaf 2' on a complete variety is trivial if and only if 
both it and its dual 2'-1 have nonzero global sections. 

PROOF. The sections define nonzero homomorphisms s 1: (9v -+ 2' and 
S2: (9v -+ 2'-1. The dual of S2 is a homomorphism s~: 2' -+ (9v, and s~ 0 S1' 

being nonzero, is an isomorphism (note that Hom((9v, (9v) = H°(V, (9v) = k). 
Because 2' is an invertible sheaf, this implies that S1 is also an isomorphism. 

o 
PROOF OF (5.3). The lemma identifies the set of t for which 2r is trivial with 
the set of t for which both dim HO(l';, 2r) > 0 and dim HO(l';, 2r-1) > O. Part 
(c) of (4.2) shows that this set is closed. 0 

Remark 5.5. Let V, T, and 2' be as at the start of the section with V complete. 
We shall say that 2' defines a trivial family of sheaves on T if 2' ~ q* % for 
some invertible sheaf % on T. According to (5.1), in the case that T is 
integral, 2' defines a trivial family if and only if each 2r is trivial. Returning 
to the general situation, let Z be the closed subset of T determined by (5.3). 
Clearly Z has the following property: A morphism f: T' -+ T from an inte
gral scheme to T factors through Z if and only if (1 x f)* 2' defines a triv!al 
family on V. This result can be significantly strengthened: there exists a 
unique closed subscheme Z of T (not necessarily reduced) such that a mor
phism f: T' -+ T (with T' not necessarily integral) factors through the inclu
sion morphism Z c; T if and only if (1 x f)* 2' defines a trivial family on V. 
See [16, §1O, p. 89]. 

§6. The Theorems of the Cube and the Square 

Theorem 6.1 (Theorem of the Cube). Let U, V, W be complete varieties over 
k with base points uo E U(k), Vo E V(k), Wo E W(k). An invertible sheaf 2' on 
U x V x W is trivial if its restrictions to {uo} x V x W, U x {vo} x W, and 
U x V x {wo} are all trivial. 

PROOF. Because 2'1 U x V x {wo} is trivial, the seesaw principle shows that 
it suffices to prove that 2'lz x W is trivial for a dense set of z in U x V. Next 



ABELIAN VARIETIES 111 

one shows that U can be taken to be a complete curve «3.5) accomplishes 
this reduction when uo is nonsingular). This case is proved in [16, §6, pp. 
57-58] when k is algebraically closed, and the next lemma shows that we 
may assume that. D 

Lemma 6.2. Let 2 be an invertible sheaf on a complete variety Vover a field k; 
if 2 becomes trivial on 11c then it is trivial on V. 

PROOF. The triviality of 2 on 11c implies that both HO(l1c, 2') and 
HO(l1c, 2-1) are nonzero. As HO(l1c, 2±1) = HO(V, 2±1) ®k k (see (4.2a)), 
Lemma 5.4 shows that 2 is trivial. D 

Remark 6.3. At least in the caSe that k is algebraically closed, it is not 
necessary to assume in (6.1) that W is complete [16, §6, p. 55], nor even that 
it is a variety [16, §10, p. 91]. 

Corollary 6.4. Let A be an abelian variety, and let Pi: A x A x A ..... A be the 
projection onto the ithfactor; let Pij = Pi + Pi and Piik = Pi + Pi + Pk' For any 
invertible sheaf 2 on A, the sheaf 

pT232 ® pT22-1 ® p~32-1 ® pT32-1 ® pT 2 ® p! 2 ® pt 2 

on A x A x A is trivial. 

PROOF. The restriction of the sheaf to {O} x A x A (= A x A) is 

m* 2 ® P* 2-1 ® m* 2-1 ® q* 2-1 ® (DA xA ® P* 2 ® q* 2, 

which is trivial. Similarly its restrictions to A x {O} x A and A x A x {O} 
are trivial, which implies that it is trivial on A x A x A. D 

Corollary 6.5. Letf, g, h be morphismsfrom a variety Vto an abelian variety A. 
For any invertible sheaf 2 on A, the sheaf 

(f + g + h)* 2 ® (f + g)* 2-1 ® (g + h)* 2-1 ® (f + h)* 2-1 

®f*2 ® g*2 ® h*2 

on V is trivial. 

PROOF. The sheaf in question is the inverse image of the sheaf in (6.4) by 
(f, g, h): V ..... A x A x A. D 

Corollary 6.6. Consider the map nA : A ..... A equal to multiplication by n. For all 
invertible sheaves 2 on A, 

nl 2' ~ 2'(n2+n)/2 ® ( -1)* 2'(n2-n)/2. 

In particular, 

nl 2' ~ 2n2 if 2 is symmetric (i.e., 2 ~ ( -1)~ 2') 

nl 2 ~ 2 n if 2 is antisymmetric (i.e., 2-1 ~ (-1)~ 2). 
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PROOF. On applying the last corollary to the maps nA, lA, (-I)A: A -+ A we 
find that (n + Ino~J-1 ® nl2'2 ® (n - 1)~2'-1 ~ 2'-1 ® (-1)* 2'-1. This 
fact can be used to prove the corollary by induction, starting from the easy 
cases n = 0, 1, - 1. D 

Theorem 6.7 (Theorem of the Square). For all invertible sheaves 2' on an 
abelian variety A and points a, bE A (k), 

t:+b 2' ® 2' ~ t: 2' ® t: 2'. 

PROOF. Apply (6.5) with f the identity map on A and g and h the constant 
maps with images a and b. D 

Remark 6.8. When ten so red with 2'-2, the isomorphism in (6.7) becomes 

t:+b 2' ® 2'-1 ~ (t: 2' ® 2'-1) ® (t: 2' ® 2'-1). 

Thus the map CP!E, 

a f-+ t: 2' ® 2'-1: A(k) -+ Pic(A), 

is a homomorphism. Therefore, ifI?=1 ai = 0 in A(k), then 

t:,2' ® t:2 2' ® ... ® t:n 2' ~ 2'n. 

Remark 6.9. We write'" for linear equivalence of divisors, so that D '" D' if 
and only if 2'(D) ~ 2'(D'). Also, we write Da for the translate taD = D + a of 
D. Note that t: 2'(D) = 2'(t;;1 D) = 2'(D-a). The isomorphisms in (6.7) and 
(6.8) become the relations: 

n 

IDa; '" nD, 
i=1 

a, bEA(k), 

if I (Ii = 0 in A(k). 

§7. Abelian Varieties Are Projective 

For D a divisor on a variety V we write 

L(D) = {J E k(v)I(f) + D 2 O} u {O} = H°(V, 2'(D)), 

IDI = {(f) + DlfEL(D)} = the complete linear system containing D. 

A projective embedding of an elliptic curve can be constructed as follows: 
let D = Po, where Po is the zero element of A, and choose a suitable basis 1, 
x, y of L(3D); then the map A -+ 1Jll2 defined by {I, x, y} identifies A with the 
cubic projective curve 

y 2Z + a1XYZ + a3 YZ2 = X 3 + a2X2Z + a4XZ2 + a6 Z3 . 

(See [10, IV, 4.6].) This argument can be extended to every abelian variety. 
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Theorem 7.1. Every abelian variety is projective. 

PROOF. We first prove this under the assumption that the abelian variety A is 
defined over an algebraically closed field. 

Recall [10, II, 7.8.2] that a variety is projective if it has a very ample linear 
system, and that a linear system b is very ample if: 

(a) it separates points (for any pair a, b of distinct closed points on the 
variety, there is a D in b such that a E D but b ¢ D); and 

(b) it separates tangent vectors (for any closed point a and tangent vector t 
to the variety at a, there exists a DEb such that a E D but t ¢ T,,(D)). 

The first step of the proof is to show that there exists a linear system that 
separates 0 from the other points of A and separates tangent vectors at O. 
More precisely, we show that there exists a finite set {Z;} of prime divisors on 
A such that: 

(a) n Zi = {O}; and 
(b) for any t E To(A) there exists a Zi such that ti ¢ To(Z;). 

The second step is to show that if D = IZi, then 13DI is very ample. 
The existence of the set {Z;} is an immediate consequence of the observa

tions: 

(i) for any closed point a#-O of A, there is a prime divisor Z such that 0 E Z, 
a¢Z; 

(ii) for any t E To(A), there is a prime divisor Z passing through 0 such that 
t¢ To(Z). 

The proof of (ii) is obvious: choose an open affine neighborhood U of 0, let 
Zo be an irreducible component of A n H where H is any hyperplane through ° not containing t, and take Z to be the closure of ZOo The proof of (i) will be 
equally obvious once we have shown that 0 and a are contained in a single 
open affine subset of A. Let U again be an open affine neighborhood of 0, and 
let U + a be its translate by a. Choose a closed point u of U n (U + a). Then 
both u and u + a lie in U + a, and so U + a - u is an open affine neighbor
hood of both 0 and a. 

Now let D be the divisor I Zi where (Z;)l ~i~n satisfies (a) and (b). For any 
family (ai' b;)l~i~n of closed points of A, the theorem of the square (6.9) 
shows that 

I(Zi,ai + Zi,bi + Zi,-ai-b,) '" I3Zi = 3D. 
i i 

Let a and b be distinct closed points of A. By (a), for some i, say i = 1, Zi does 
not contain b - a. Choose a1 = a. Then Zl,a, passes through a but not b. The 
sets 

{b1IZl,b, passes through b}, 

{b1IZl,-a,-b, passes through b}, 
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are proper closed subsets of A. Therefore, it is possible to choose a b! that 
lies in neither. Similarly ai and bi for i ;?: 2 can be chosen so that none of 
the Zi,o" Zi,b" or Zi,-o,-b, passes through b. Then a is in the support of 
L(Zi,o, + Zi,b, + Zi,-o,-b.) but b is not, which shows that 13DI separates 
points. The proof that it separates tangents is similar. 

The final step is to show that if AI is projective, then so also is Ak • Let D 
be an ample divisor on AI; then D is defined over a finite extension of k, and 
the following statements explain how to construct from D an ample divisor 
onA. 

(a) Let D be a divisor on A; if IDII is very ample, then so also is IDI. (The 
map AI c:; IPn defined by IDII is obtained by base change from that 
defined by IDI.) 

(b) IfID!1 and ID21 are ample, then so also is ID! + D21. (See [10, II, Ex. 7.5].) 
(c) If D is a divisor on Ak " where k' is a finite Galois extension of k with 

Galois group G, then L aD, a E G, arises from a divisor on A. (This is 
obvious.) 

(d) If D is a divisor on Ak " where k' is a finite purely inseparable extension of 
k such that k'P~ c k, then pm D arises from a divisor on A. (Regard D as 
the Cartier divisor defined by a family of pairs U;, Un, /; E k'(A), and let 
Ui be the image of U: in A; then k'(A)P~ c k(A), and so the pairs (N~, Ui) 
define a divisor on A whose inverse image on A k , is pm D.) 0 

Corollary 7.2. Every abelian variety has a symmetric ample invertible sheaf 

PROOF. According to the theorem, it has an ample invertible sheaf fe. As 
multiplication by -1 is an isomorphism, (-1)* fe is ample, and therefore 
fe ® (-1)* fe is ample [10, II, Ex. 7.5] and symmetric. 0 

Remark 7.3. If fe is an ample invertible sheaf on A, then by definition fen is 
very ample for some n. It is an important theorem that in fact fe3 will be very 
ample (see [16, §17, p. 163]). The three is needed, as in the above proof, so 
that one can apply the theorem of the square. 

§8. Isogenies 

Let f: A -+ B be a homomorphism of abelian varieties. The kernel N of fin 
the sense of [22, §2] is a closed subgroup scheme of A of finite type over k. 
When k has characteristic zero, N is reduced [22, §3], and so its identity 
component N° is an abelian variety (possibly zero); in general, N will be an 
extension of a finite group scheme by an abelian variety. If f is surjective and 
has finite kernel then it is called an isogeny. 

Proposition 8.1. For a homomorphismf: A -+ B of abelian varieties, the follow
ing statements are equivalent: 
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(a) fis an isogeny; 
(b) dim A = dim B andfis surjective; 
(c) dim A = dim Band Ker(f) is afinite group scheme; 
(d) fisfinite,jlat, and surjective. 
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PROOF. As f(A) is closed in B, the equivalence of the first three statements 
follows from the theorem on the dimension of fibres of morphisms; see [14, 
1.8]. 

Clearly (d) implies (a), and so assume (a). Because f is a homomorphism, 
the translation map tb can be used to show that the (scheme-theoretic) fibre 
f-l(b) is isomorphic to f- 1 (0)k(b)' Therefore f is quasi-finite. It is also pro
jective ([10, II, Ex. 4.9]), and this shows that it is finite ([10, III, Ex. 11.2]). 
The sheaf f*(!)A is a coherent (!)B-module, and dimk(b)(f*(!)A ® k(b)) = 
dimk(f*(!)A ® k(O)) is independent of b, and so (4.2d) shows that f*(!)A is 
locally free. D 

The degree of an isogeny f: A -+ B is defined to be the order of the kernel 
of f (as a finite group scheme); equivalently, it is the rank of f*(!)A as a locally 
free (!)B-module. Clearly, deg(g 0 f) = deg(g) deg(f). Let n = deg(f); then 
Ker(f) c Ker(nA) and so nA factors as nA = go f with g an isogeny B -+ A. 

For an integer n we write nA, or simply n, for the morphism aH na: A -+ A. 

Theorem 8.2. Let A be an abelian variety of dimension g, and let n > 0 be an 
integer. Then nA: A -+ A is an isogeny of degree n29; it is hale if and only if the 
characteristic of k does not divide n. 

PROOF. From (7.2) we know there is an ample symmetric invertible sheaf ff' 
on A, and according to (6.6) nl ff' ~ ff'n 2

• The restriction of an ample inverti
ble sheaf to a closed subscheme is again ample, and so the restriction of nl ff' 
to Ker(nA) is both trivial and ample. This is impossible unless Ker(nA) has 
dimension zero. We have shown that nA is an isogeny. 

In proving that nA has degree n2g we shall use some elementary intersec
tion theory from [21, IV.1]. Clearly we may assume k is algebraically closed. 

Let V be a smooth projective variety of dimension g. If D1 , •.• , Dg are 
effective divisors on V such that n D; has dimension zero, then their inter
section number is defined by the equations 

(Dl' ... , Dg) = I(D1 , ..• , Dg)v (sum over v EnD;), 
v 

(D1,···, Dg)v = dimk((!)v,v/(fl,v,'" ,/g,v)), 

where /;,V is a local equation for D; near v. The definition is extended by 
linearity to noneffective divisors whose components intersect properly. Then 
one checks that (Dl' ... , Dg) is unchanged if each D; is replaced by a linearly 
equivalent divisor and shows that this can be used to extend the definition to 
all g-tuples of divisors (loc. cit.). In particular (Dg) = (D, D, ... ) is defined. 

Lemma 8.3. Let Vand W be smooth projective varieties of dimension g, and let 
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f: W -+ Vbe afiniteflat map of degree d. Thenfor any divisors DI , ... , Dg on V 

(f* DI , ... , f* Dg) = d(DI, ... , Dg). 

PROOF. It suffices to prove the equality in the case that the D; are effective and 
n D; is finite. Let v EnD;. Then (f*@w) ®19v @v,v = nf(w)=v @w,w, which is 
therefore a free @v,v-module of rank d. If h,v is a local equation for D; near v, 
then h,v 0 f is a local equation for f* D; near each of the points in f-I(v). 
Therefore 

We apply this theory to a divisor D on A such that D is linearly equivalent 
to (-1)* D (i.e., such that Sf(D) is symmetric). Let d = deg(nA)' Then (8.3) 
shows that ((nl D)g) = d(Dg), but (6.6) shows that nl D is linearly equivalent 
to nZ D and therefore that ((nl D»g = ((n Z D)g) = nZg(Dg). These equalities im
ply d = nZg provided we can find a D for which (Dg) -# O. Choose D to be very 
ample (see (7.2», and let A c; pN be the embedding defined by IDI. Then for 
any hyperplane sections HI' ... , Hg of A in pN, (Dg) = (HI' ... , Hg), and this 
is obviously positive. 

It remains to prove the second assertion of the theorem. For a homo
morphism f: A -+ B, let (df)o: To(A) -+ To(B) be the map on tangent spaces 
defined by f. It is neither surprising nor difficult to show that d(f + g)o = 
(df)o + (dg)o (cf. [16, §4, p. 42]). Therefore (dnA)o is multiplication by n on the 
k-vector-space To(A), and so (dnA)o is an isomorphism (and nA is etale at zero) 
if and only if the characteristic of k does not divide n. By using the translation 
maps, one shows that a homomorphism is etale at zero if and only if it is etale 
at all points. 0 

Remark 8.4. If k is separably algebraically closed and n is not divisible by its 
characteristic, then the theorem says that the kernel Aik) of n: A(k) -+ A(k) 
has nZg elements. As this is also true for all n' dividing n, it follows that An(k) 

is a free Z/nZ-module ofrank 2g. Therefore for all primes I -# char(k), T,A ~ 
lim Aln(k) is a free Zl-module of rank 2g. Note that an element a = (an) of T,A 
.+-
IS a sequence aI' az, a3' ... of elements of A(k) such that la l = 0 and Ian = 

an- I for all n. 
When k is not separably algebraically closed then we define T,A = T,Aks ' 

In this case there is a continuous action of Gal(ks/k) on T,A. 

Remark 8.5. Assume that k is algebraically closed of characteristic p -# O. 

Then Ap ~ Ker(p A) is a finite group scheme of order pZg killed by p. Therefore 
(see [22]) Ap ~ (Z/pZ)' x Jl; x ()(~ for some r, s, t such that r + s + t = 2g. It 
is known that r = sand r ::s; 9 (the inequality is a consequence of the fact that 
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(dp A)O = 0). All values of r, s, and t are possible subject to these constraints. 
The case r = g is the "general" case. For example when g = 1, then r = 0 only 
for supersingular elliptic curves and there are only finitely many of these over 
a given k [16, §22, p. 216J. 

§9. The Dual Abelian Variety: Definition 

Let ff be an invertible sheaf on A. Recall (6.8) that the map 

(fJ.!l': A(k) --+ Pic(A), 

is a homomorphism. Define 

K.!l' = {a E A I the restriction of m* ff ® q* ff- 1 to {a} x A is trivial}. 

According to (5.3), K.!l' is a closed subset of A, and we regard it as a reduced 
subscheme of A. For a in A(k), the maps 

m 
A = {a} x A c:; A x A::t A 

q 

send P 1-1 ----+ 
f---+ a + P 

(a, P) f---+ P , 

and so m* ff ® q* ff- 1 1{a} xA can be identified with t: ff ® ff- 1 on A. Thus 

K.!l'(k) = {aEA(k)lt: ff ~ ff}. 

Note that (6.2) implies that the definition of K.!l' commutes with a change of 
the base field. 

Proposition 9.1. Let ff be an invertible sheaf such that HO(A, ff) "# O. Then ff 
is ample if and only if K.!l' has dimension zero, i.e., if and only ift: ff ~ ff on 
A,Jor only afinite set of a E A(k). 

PROOF. Let s be a nonzero global section of ff, and let D be its divisor of 
zeros. Then D is effective and ff = ff(D), and so the result [16, §6, p. 60] 
applies. 0 

We shall be more concerned in this section with the ff of opposite type. 

Proposition 9.2. For ff an invertible sheaf on A, the following conditions are 
equivalent: 

(a) K.!l' = A; 
(b) t: ff ~ ff on Ai< for all a E A (k); 
(c) m*ff ~ p*ff ® q*ff. 

PROOF. The equivalence of (a) and (b) follows from the remarks in 
the first paragraph of this section. Clearly (c) implies that for all a E A, 
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m* fE ® q* fE-11{a} xA ::::; p* fEl{a} xA, which is trivial. Thus (c) implies (a), 
and the converse follows easily from the seesaw principle (5.2) because 
m*fE ® q*fE-11{a}xA and p*fEl{a}xA are both trivial for all aEA and 
m* fE ® q* fE-11A x{o} = fE = p* fElA x{o}· 0 

Define PicO(A) to be the group of isomorphism classes of invertible 
sheaves on A satisfying the conditions of (9.2). Note that if f and g are maps 
from some k-scheme S into A and fE E PicO(A), then 

(c) 
(f + g)* fE::::; (f, g)*m* fE::::; (f, g)*(p* fE ® q* fE)::::; f* fE ® g* fE. 

From this it follows that n* fE ::::; fEn all nEZ, fE E PicO(A). 

Remark 9.3. An invertible sheaf fE lies in Pico A if and only if it occurs in an 
algebraic family containing a trivial sheaf, i.e., there exists a connected variety 
T and an invertible sheaf A on A x T such that, for some to, t1 E T(k), Ato 

is trivial and At l ::::; fE. The sufficiency of the condition can be proved directly 
using the theorem of the cube [16, §8, (vi)]; the necessity follows from the 
existence of the dual abelian variety (see below). 

Roughly speaking, the dual (or Picard) variety AV of A is an abelian 
variety over k such that A v (k) = PicO(Ali); moreover, there is to be an inver
tible sheaf (the Poincare sheaf) flJ on A x AV such that for all aEAV(k), the 
inverse image of flJ on A x {a} = Ali represents a as an element of PicO(Ali)' 
One usually normalizes flJ so that gJl{o} XAV is trivial. 

The precise definition is as follows: an abelian variety A v is the dual 
abelian variety of A and an invertible sheaf flJ on A x A v is the Poincare 
sheaf if: 

(a) flJl{O}XAV is trivial and flJIAx{a} lies in PicO(Ak(a» for all aEA v ; and 
(b) for every k-scheme T and invertible sheaf fE on A x T such that 

fEl{O}XT is trivial and fEIAX{t} lies in PicO(Ak(t» for tE T, there is a unique 
morphism f: T --+ A v such that (1 x f)* gJ ::::; fE. 

Remark 9.4. (a) Clearly the pair (A v, flJ) is uniquely determined up to a 
unique isomorphism by these conditions. 

(b) On applying condition (b) with T = spec K, K a field, one finds that 
AV(K) = PicO(AK ). In particular AV(k) = PicO(Ali), and every element of 
PicO(Ali) is represented exactly once in the family (flJa)aeAV(lil: The map 
f: T --+ AV in condition (b) sends tE T(k) to the unique aEAV(k) such that 
£'; ::::; flJa· 

(c) By using the description of tangent vectors in terms of maps from the 
dual numbers to AV [10, II, Ex. 2.8J, one can show easily that there is a 
canonical isomorphism To(A V) ~ H1(A, (9A); in particular, dim AV = dim A. 
In the case that k = C, there is an isomorphism H1(A, (9A) ~ H 1(Aan, (9Aan) 
(cohomology relative to the complex topology), and one shows that exp: 
To(A V) _ A(C) induces an isomorphism H 1(Aan, (9Aan)/H1(Aan, Z) ~ A(C). 
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One expects of course that A vv = A. Mumford [16] gives an elegant 
proof of this. 

Proposition 9.5. Let r!J> be an invertible sheaf on the product A x B of two 
abelian varieties of the same dimension, and assume that the restrictions of r!J> to 
A x {O} and {O} x B are both trivial. Then B is the dual of A and r!J> is the 
Poincare sheaf if and only if X(A x B, r!J» = ± 1. 

PROOF. [16, §13, p. 131]. D 

Note that the second condition is symmetric between A and B; therefore if 
(B, r!J» is the dual of A, then (A, s* &') is the dual of A, where s: B x A ~ A x B 
is the morphism switching the factors. 

§10. The Dual Abelian Variety: Construction 

We can include only a brief sketch-for the details, see [16, §8, §§10-12]. 

Proposition 10.1. Let 2 be an invertible sheaf on A; then the image of 
CP!i': A(k) ~ Pic(A) is contained in PicO(A); if 2 is ample and k is algebra
ically closed, then CP!i' maps onto PicO(A). 

PROOF. Let bE A(k); in order to show that cp!i'(b) is in PicO(A), we have to 
check that t:(cp!i'(b)) = cp!i'(b) for all aEA(k). But 

t:(cp!i'(b)) = t:(t: 2 ® 2-1 ) = t:+ b2 ® (t: 2tl, 

which the theorem of the square (6.7) shows to be isomorphic to 

t: 2 ® 2-1 = cp!i'(b). 

This shows that CP!i' maps into PicO(A), and for the proof that it maps onto, 
we refer the reader to [16, §8, p. 77]. D 

Let 2 be an invertible sheaf on A, and consider 

2* = m*2 ® p*2-1 ® q*2-1 

on_ A x A. Then 2*I{o}XA = 2 ® 2~1, which is trivial, and for a in 
A(k), 2*IA x{a} = t: 2 ® 2-1 = cp!i'(a), which, as we have just seen, lies in 
PicO(AjJ Therefore, if 2 is ample, then 2* defines a family of sheaves on A 
parametrized by A such that each element of PicO(Aji) is represented by 2a* 
for a (nonzero) finite number of a in A(k). Consequently, if(A V , r!J» exists, then 
there is a unique isogeny cP: A ~ AV such that (1 x cp)*r!J> = 2*. Moreover 
cP = CP!i', and the fibres of A(k)~AV(k) are the equivalence classes for the 
relation "a '" at if and only if Ya ~ 2a'''. 

In characteristic zero, we even know what the kernel of cP as a finite 
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subgroup scheme of A must be because it is determined by its underlying set: 
it equals K:e with its unique reduced sub scheme structure. Therefore, in this 
case we define AV to be the quotient AIK:e (see [16, §7, p. 66 or §12, p. 111] 
for the construction of quotients). The action of K:e on the second factor of 
A x A lifts to an action on if>* over A x A, and on forming the quotient we 
obtain a sheaf f!i> on A x AV such that (1 x CfJ:e)*f!i> = if>*. 

Assume further that k is algebraically closed. It easy to check that the 
pair (A v, f!i» just constructed has the correct universal property for families 
of sheaves A parametrized by normal k-schemes. Let A on A x T 
be such a family, and let :!i' be the invertible sheaf qtzA ® qt3glJ-l on 
A x T x A V, where % is the projection onto the (i, j)th factor. Then 
:!i'IA x(t,b) ~ At ® f!i>b-l, and so if we let r denote the closed subset of 
T x AV of points (t, b) such :!i'IA x(t,b) is trivial, then r(k) is the graph of a 
map T(k) --+ AV(k) sending a point t to the unique point b such that 
f!i>b ~:!Fr. Regard r as a closed reduced subscheme of T x A v. Then the 
projection r --+ T has separable degree 1 because it induces a bijection on 
points (see [21, II, 5]). As k has characteristic zero, it must in fact have 
degree 1, and now the original form of Zariski's Main Theorem [14, 111.9, 
p. 413] shows that r --+ T is an isomorphism. The morphism f: T~ r! A V 

has the property that (1 x f)* f!i> = A, as required. 
When k has nonzero characteristic, then A v is still the quotient of A by a 

subgroup %:e having support K:e, but %:e need not be reduced. Instead one 
defines %:e to be the maximal subscheme of A such that the restriction of 
m* if> ® q* if>-l to %:e x A defines a trivial family on A (see 5.5), and takes 
A v = AI %:e. The proof that this has the correct universal property is similar 
to the above, but involves much more. 

§ 11. The Dual Exact Sequence 

Let f: A --+ B be a homomorphism of abelian varieties, and let f!i>B be the 
Poincare sheaf on B x BV. The invertible sheaf (f x 1)* f!i>B on A x BV gives 
rise to a homomorphism fV: BV --+ A v such that (1 x fV)* f!i>A ~ (f x 1)* f!i>B' 
On points f is simply the map PicO(B) --+ PicO(A) sending the isomorphism 
class of an invertible sheaf on B to it inverse image on A. 

Theorem 11.1. Iff: A --+ B is an isogeny with kernel N, thenfv: BV --+ AV is an 
isogeny with kernel N V , the Cartier dual of N. In other words, the exact 
sequence 

O--+N--+A--+B--+O 

gives rise to a dual exact sequence 

0--+ N V --+ BV --+ A V ~ O. 

PROOF. See [16, §15, p. 143]. o 



ABELIAN VARIETIES 121 

There is another approach to this theorem which offers a different insight. 
Let.!/! be an invertible sheaf on A whose class is in PicO(A), and let L be the 
line bundle associated with .!/!. The isomorphism p*.!/! ® q*.!/! - m*.!/! of 
(9.2) gives rise to a map mL : L x L - L lying over m: A x A-A. The absence 
of nonconstant regular functions on A forces numerous compatibility prop
erties of mL , which are summarized by the following statement. 

Proposition 11.2. Let G(.!/!) denote L with the zero section removed; then, for 
some k-rational point e of G(.!/!), mL defines on G(.!/!) the structure of a commu
tative group variety with identity element e relative to which G(.!/!) is an exten
sion of A by IG m • 

Thus'!/! gives rise to an exact sequence 

E('!/!): 0 - IG m - G(.!/!) - A - O. 

The commutative group varieties over k form an abelian category, and so 
it is possible to define Extl{A, IGm ) to be the group of classes of extensions of 
A by IG m in this category. We have: 

Proposition 11.3. The map.!/! t-+ E('!/!) defines an isomorphism 

PicO(A) - Ext~(A, IG m ). 

Proofs of these results can be"found in [20, VII, §3]. They show that the 
sequence 

0- NV(k) _ BV(k) _ AV(k) 

can be identified with the sequence of Exts 

0- Homk(N, Gm ) - Ext:CB, Gm ) - Ext~(A, Gm ). 

(The reason for the zero at the left of the second sequence is that 
Homk(A, IG m ) = 0.) 

The isomorphism in (11.3) extends to any base [17, 111.18]. This means 
that if we let Cxtr denote Ext in the category of sheaves on the flat site 
over spec(k) (see [13, III.1.5(e)]), then AV can be identified with the sheaf 
Cxt 1(A, Gm ), and the exact sequence 

O_Nv _Bv _Av_O 

can be identified with 

0- JlfQm(N, IG m ) - Cxt1(B, IG m ) - Cxt1(A, IG m ) - O. 

§ 12. Endomorphisms 

The main result in this section is that EndO(A) ~ End(A) ® 0 is a finite
dimensional semisimple algebra over 0. As in the classical case, the semi
simplicity follows from the existence of approximate complements for abelian 



122 J. S. MILNE 

subvarieties. If W is a subspace of a vector space V, one way of constructing 
a complement W' for W is to choose a non degenerate bilinear form on V and 
take W' = W-L; equivalently, choose an isomorphism V --+ V and take W'to 
be the kernel of V --+ V --+ W. The same method works for abelian varieties. 

Proposition 12.1. Let B be an abelian subvariety of A; then there is an 
abelian variety B' c A such that B 11 B' is finite and B + B' = A, i.e., such that 
B x B' --+ A is an isogeny. 

PROOF. Choose an ample sheaf fI' on A and define B' to be the reduced 

subscheme of the zero component of the kernel of A ~ A v --+ BV; this is an 
abelian variety. From the theorem on the dimension of fibres of morphisms, 
dim B' ;;::.: dim A - dim B. The restriction of the morphism A --+ B V to B is 
rP!fIB: B --+ B V , which has finite kernel because fl'IB is ample. Therefore B 11 B' 
is finite, and so B x B' --+ A is an isogeny. D 

Define an abelian variety to be simple if it has no proper nonzero abelian 
subvarieties. Then, as in the classical case, each abelian variety A is isogenous 
to a product n Ai' of powers of nonisogenous simple abelian varieties Ai; the 
ri are uniquely determined and the Ai are uniquely determined up to isogeny. 
Each EndO(AJ is a skew field, EndO(Ai') is equal to the matrix algebra 
MrJEndO(AJ), and EndO(A) = n EndO(Ai'). 

Lemma 12.2. For any prime I #- char(k), the natural map 

Hom(A, B) --+ HomzP1A, 7lB) 

is injective; in particular, Hom(A, B) is torsion free. 

PROOF. Let cp: A --+ B be a homomorphism such that 7lcp = 0; then 
cp(Aln(k)) = 0 for all n. For any simple abelian subvariety A' of A, this implies 
that the kernel of cpIA' is not finite and therefore must equal the whole of A'. 
It follows that cp = O. D 

A function f: V --+ K on a vector space V over a field K is said to 
be a (homogeneous) polynomial function of degree d if for every finite linearly 
independent set {e 1, ... , en} of elements of V, f(x 1 e1 + ... + xnen) is a (homo
genous) polynomial function of degree d in the Xi with coefficients in K. 

Lemma 12.3. Assume K is infinite, and let f: V --+ K be a function such that 
f(xv + w) is a polynomial in X with coefficients in K, for all v, w in V; then f is 
a polynomial function. 

PROOF. We show by induction on n that, for every subset {Vl' ... , Vn' w} of V, 
f(x 1 V1 + ... + XnVn + w) is a polynomial in the Xi. For n = 1, this is true by 
hypothesis; assume it for n - 1. The original hypothesis applied with v = VII 

shows that 

f(x1v 1 + ... + XnVn + w) = aO(x 1, ... , xn- 1) + ... + aix1,· .. , Xn-l)X~ 
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for some d, with the ai functions kn - l .... k. Choose distinct elements Co, •.• , Cd 

of K; on solving the system of linear equations 

f(xlv l + ... + Xn-1Vn- l + CjVn + w) = Lai(x l , ... , xn-l)cj, 

j = 0,1, ... , d, 

for ai' we obtain an expression for ai as a linear combination of the terms 
f(x l Vl + ... + X n- 1 Vn- 1 + cjvn + w), which the induction assumption says 
are polynomials in Xl' ... , Xn - l · 0 

Let A be an abelian variety of dimension 9 over k. For cp E End(A), we 
define deg cp to be the degree of cp in the sense of Section 8 if cp is an isogeny 
and otherwise we set deg cp = 0.· As deg(ncp) = deg nA deg cp = n2g deg cp, we 
can extend this notion to all of EndO(A) by setting deg cp = n-2g deg(ncp) if 
ncp E End (A). 

Proposition 12.4. The function cp f---+ deg cp: EndO(A) .... Q is a homogeneous 
polynomial function of degree 2g on EndO(A). 

PROOF. As deg(ncp) = n2g deg cp, the lemma shows that it suffices to prove 
that deg(ncp + t/J) is a polynomial of degree ~ 2g in n for n E Z and fixed cp, 
t/J E End(A). Let D be a very ample divisor on A, and let Dn = (ncp + t/J)* D. 
Then (see (8.3)), deg(ncp + t/J)(Dg) = (Dg), where 9 = dim A, and so it suffices 
to prove that (D~) is a polynomial of degree ~ 2g in n. Corollary (6.5) applied 
to the maps ncp + t/J, cp, cp: A .... A and the sheaf .ff = .ff(D) shows that 

Dn+2 - 2Dn+l - (2cp)*D + Dn + 2(cp*D) ~ 0, 

i.e., Dn+2 - 2Dn+l + Dn = D', where D' = 2(cp*D) - (2cp)*D. 

An induction argument now shows that 

n(n - 1) , 
Dn = 2 D + nDl - (n - 1)Do 

and so 

( n(n - 1»)g 
(D~) = 2 (D,g) + ... 

is a polynomial in n of degree ~ 2g. o 
Theorem 12.5. For any abelian varieties A and B, Hom(A, B) is a free 
Z-module of finite rank ~ 4 dim A dim B; for each prime I =I char(k), the 
natural map 

Hom(A, B) ® ZI .... Hom(1IA, 1IB) 

is injective with torsion1ree cokernel. 

PROOF. Clearly it suffices to prove the second statement. 
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Lemma 12.6. Let cP E Hom(A, B); if cP is divisible by In in Hom(YtA, YtB), then 
it is divisible by In in Hom(A, B). 

PROOF. The hypothesis implies that cp is zero on Aln(k). As Aln is an etale 
subgroup scheme of A, this means that cp is zero on Aln and therefore factors 
as cp = cp' 0 In: 

In o -+ Aln -+ A -+ A -+ 0 

\rp ! rp' 

B 

Lemma 12.7. If A is simple, then End(A) ® TLI -+ End(YtA) is injective. 

o 

PROOF. We have to show that if e1 , ••• , er are linearly independent over 7L in 
End(A), then Yt(e 1 ), ••• , Yt(er ) are linearly independent over TLI in End(YtA). 
Let P be the polynomial function on EndO(A) such that P(cp) = deg(cp) for all 
cpo Note that every nonzero element cp of End(A) is an isogeny, and therefore 
P(cp) is a positive integer. Let M be the 7L-submodule of EndO(A) generated 
by the ei • The map P: QM -+ Q is continuous for the real topology, and so 
U = {vIP(v) < 1} is an open neighborhood of o. As (QM n End A) n U = 0, 
we see that QM n End(A) is discrete in QM, and therefore is a finitely 
generated 7L-module. It follows that: 

(*) there exists an integer N such that N(QM n End A) c: M. 

Suppose that Yt(e1 ), ••• , Yt(er ) are linearly dependent, so that there exist 
ai E 7L I , not all divisible by I, such that L ai Yt(ei) = O. Choose integers ni close 
to the ai for the I-adic topology. Then Yt(L niei) = L ni Yt(eJ is divisible by a 
high power of I in End(YtA), and so L niei is divisible by a high power of I in 
End(A). This contradicts (*) when the power is sufficiently great, because 
then, for some m, (N/lm)Lniei will lie in N(QM n End A) but not M. 0 

We are now ready to prove (12.5). Because Hom(A, B) and Hom(YtA, YtB) 
are direct summands of End(A x B) and End(Yt(A x B), it suffices to prove 
(12.5) in the case that A = B. Lemma 12.7 shows that EndO(A) is finite 
dimensional over Q if A is simple, and this implies that it is finite dimensional 
for all A. It follows that End(A) is finitely generated over 7L because it is 
obviously torsion-free. Clearly now condition (*) holds, and so the same 
argument as above shows that End(A) ® TLI -+ End(YtA) is injective. Lemma 
12.6 shows that its cokernel is torsion-free. 0 

Define the N eron-Severi group NS(A) of an abelian variety to be 
the quotient group Pic(A)/PicO(A). Clearly !l?I--+CP2 defines an injection 
NS(A) 4 Hom(A, A V), and so (12.5) has the following consequence. 

Corollary 12.8. The N eron-Severi group of an abelian variety is a free 
7L-module of finite rank. 
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Proposition 12.4 shows that, for each oc in EndO(A), there is a polynomial 
P,,(X) e a [X] of degree 2g such that, for all rational numbers r, P,,(r) = 
deg(oc - rA,)' Let oc e End(A), and let D be an ample symmetric divisor on A; 
then the calculation in the proof of (12.4) shows that 

P~( - n) = deg(oc + n) = (D:V(DU), 

where Dn = (n(n - 1)/2)D' + n(oc + lA,)*D - (n - l)oc*D, with 

D' = 2D - 21D '" 2D. 

In particular, we see that P" is monic and that it has integer coefficients when 
oceEnd(A). We call P" the characteristic polynomial of oc and we define the 
trace of oc by the equation 

P,,(X) = X 2u - Tr(oc)X2U-l + ... + deg(oc). 

Proposition 12.9. For alii =1= char(k), P,,(X) is the characteristic polynomial of 
oc acting on T,A <8> 0 1; hence the trace and degree of oc are the trace and 
determinant of oc acting on T,A <8> 0 1, 

PROOF. We need two elementary lemmas. 

Lemma 12.10. Let P(X) = n (X - ai) and Q(X) = n (X - bi) be monic poly
nomials of the same degree with coefficients in 0 1; if In F(a,)11 = In F(bi)11 for 
all Fe Z:[T], then P = Q. 

PROOF. See [12, VII, 1, Lemma 1]. o 

Lemma 12.11. Let E be an algebra over a field K, and let c;: E -+ K be a 
polynomial function on E (regarded as a vector space over K) such that c;(ocP) = 
c;(oc)c;(P) for all oc, peE. Let oc e E, and let P = n (X - ai) be the polynomial 
such that P(x) = c;(oc - x). Then c;(F(oc)) = ±n F(ai) for any F eK[T]. 

PROOF. After extending K, we may assume that the roots bl , b2 , ••. of F and 
of P lie in K; then 

c;(F(oc)) = c; (0 (oc - bi)) = 0 c;(oc - bi) = 0 P(bi) = n (bi - ai) 
J J J '.J 

o 

We now prove (12.9). Clearly we may assume k = k •. For any peEnd(A) 

Ideg(p)h = I # (Ker(pm = #(Ker(p)(l)fl 

= #(Coker(T,p))-l = Idet(T,p)I" 

Consider oceEnd(A), and let al' a2"" be the roots of P". Then for any 
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In F(a;)11 = IdegF(a)11 

= Idet 1/(F(a))11 

= In F(bi)ll, 

by (12.11) 

by (12.11) 

where the bi are the eigenvalues of 1/p. By Lemma 12.10, this proves the 
proposition. 0 

Let D be a simple algebra of finite degree over 0, and let K be the centre 
of D. The reduced trace and reduced norm of Dover K satisfy 

TrD/K(a) = [D: K] TrdD/K(a), ND/K(a) = NrdD/K(a)[D:Kl, aED. 

We shall always set Trd = TrK/ooTrdD/K and Nrd = NK/ooNrdD/K. Let 
VI' ... , lj, f = [K : 0], be the nonisomorphic representations of Dover 5; 
each has degree d where d2 = [D: K]. The representation V = E8 ~ is de
fined over 0 and is called the reduced representation of D. For any a in D, 
Trd(a) = Tr(al V) and Nrd(a) = Det(al V). 

Proposition 12.12. Let D be a simple subalgebra of EndO(A) (this means D and 
EndO(A) have the same identity element), and let d, f, K, and V be as above. 
Then 2g/fd is an integer, and 0 1 ® 1/A is a direct sum of 2g/fd copies of 
0 1 ®o V; consequently Tr(a) = (2g/fd) Trd(a) and deg(a) = Nrd(a)2g/Jd for all 
CI. in D. 

PROOF. Assume 0 1 ® 1/V becomes isomorphic to E8mi ~ over 51' mi;;::: 0, 
and let (Ji be the embedding of K into 5 corresponding to ~. Then, for any 
a in K, the characteristic polynomial of a on ~ is (X - (Jia)d, and so P,,(X) = 

n (X - (Jia)dmi. As P,,(X) has coefficients in 0, it follows easily that the mi 
must be equal. 0 

Remark 12.13. The group NS(A) is a functor of A. Direct calculations show 
that ta acts as the identity on NS(A) for all a in A(k) (because CfJt~!l' = CfJ!l') and 
n acts as n2 (because -1 acts as 1, and so n*!l' = !l'n2 in NS(A) by (6.6)). 

§13. Polarizations and the Cohomology of 
Invertible Sheaves 

For many purposes the correct higher dimensional analogue of an elliptic 
curve is not an abelian variety but a polarized abelian variety. 

A polarization A on an abelian variety A is an isogeny A.: A -+ A v such that 
Ali = CfJ!l' for some ample invertible sheaf!l' on Ali' The degree of a polariza
tion is its degree as an isogeny. An abelian variety together with a polariza-
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tion is called a polarized abelian variety; there is an obvious notion of a 
morphism of polarized abelian varieties. If A has degree 1, then (A, A) is said 
to belong to the principal family and A is said to be a principal polarization. 

Example 13.1. If A has dimension 1, then NS(A) = 7L. For each integer d, 
there is a unique polarization of degree d2; it is fP.!/' where 2 = 2(D) for D 
any effective divisor of degree d. 

Remark 13.2. If A is a polarization, there need not exist an 2 on A such 
that A = fP.!/'. Suppose, for example, that k is perfect and G = Gal(k/k). By 
assumption, there is an 2 on Ak such that fP.!/' = Ak. As Ak is fixed by the 
action of G on Hom(Ak' A;j, the class [2] of 2 in NS(Ak) will also be fixed 
by G. Unfortunately this does not imply that [2] lifts to an element of 
Pic(A): there is a sequence of Galois cohomology groups 

0--+ AV(k) --+ Pic(A) --+ NS(Ak)G --+ Hl(G, AV(k)) 

and the obstruction in Hl(G, AV(k)) may be nonzero. However, if k is finite, 
an easy lemma [16, §21, p. 205] shows that Hl(G, AV(k)) = ° and therefore 
A = fP.!/' for some 2 in Pic (A). 

There is an important formula for the degree of a polarization, which it is 
convenient to state as part of a more general theorem. 

Theorem 13.3. Let 2 be an invertible sheaf on A, and write 

X(2) = IJ -l)idimk Hi(A, 2). 

(a) The degree of fP.!/' is X(2)2. 
(b) (Riemann-Roch). If 2 = 2(D), then X(2) = (D9)/g!. 
(c) If dim K.!/' = 0, then there is exactly one integer r for which H'(A, 2) is 

nonzero. 

PROOF. Combine [16, §16, p. 150] with (4.2a). D 

Exercise 13.4. Verify (13.3) for elliptic curves using only the results in [10, IV]. 

Remark 13.5. The definition of polarization we have adopted is the one that 
is most useful for moduli questions. It differs from Weil's original notion (see 
[12, p. 193], [19, §5]). 

§14. A Finiteness Theorem 

Theorem 14.1. Let k be a finite field, and let g and d be positive integers. Up to 
isomorphism, there are only finitely many abelian varieties A over k of dimen
sion g possessing a polarization of degree d 2. 



128 J. S. MILNE 

PROOF. First assume dim A = 1. Then A automatically has a polarization of 
degree 1, defined by !e = !e(P) for any P E A(k). The linear system 13PI 
defines an embedding A c; [p2, and the image is a cubic curve in [p2. The 
cubic curve is determined by a polynomial of degree 3 in three variables. As 
there are only finitely many such polynomials with coefficients in k, we have 
shown that there are only finitely many isomorphism classes of A's. 

The proof in the general case is essentially the same. By (13.2) we know 
there exists an ample invertible sheaf!e on A such that ({Jff' is a polarization 
of degree d2 • Let !e = !e(D); then, by (13.3), X(!e) = d and (Dg) = X(!e)g! = 
d(g!). As !e3 = !e(3D), X(!e 3 ) = «3D)g)/g! = 3gd. Moreover !e3 is very 
ample (see (7.3»; in particular HO(A, !e3 ) #- 0, and so (13.3c) shows that 
dim HO(A, !e3 ) = X(!e 3 ) = 3gd. The linear system 13DI therefore gives an 
embedding A c; [p3 gd-I. 

Recall [21, 1.6J that if V is a smooth variety of dimension 9 in lPN, then the 
degree of V is (D I , ... ,Dg) where DI , ... ,Dg are hyperplane sections of V. 
Moreover, there is a polynomial, called the Cayley or Chow form of V, 

associated with V, which is a polynomial separately homogeneous of degree 
deg V in each of 9 + 1 sets of N + 1 variables. If we regard each set of 
variables ag), ... , aW as defining a hyperplane, 

H(i): ag)Xo + ... + aWXN = 0, 

then Fv is defined by the condition: 

Fv(H(O), ... , H(g» = ° ¢> A 11 H(O) 11 ... 11 R(g) is nonempty. 

A theorem states that Fv uniquely determines V. 
Returning to the proof of (14.1), we see th~t the degree of A in [p3g d-I is 

«3D)g) = 3gd(g!). It is therefore determined by a polynomial FA of degree 
3gd(g!) in each of 9 + 1 sets of 3gd variables with coefficients in k. There are 
only finitely many such polynomials. 

Remark 14.2. Of course, Theorem 14.1 is trivial if one assumes the existence 
of moduli varieties. However, everything used in the above proof (and much 
more) is required for the construction of moduli varieties. 

Remark 14.3. The assumption that A has a polarization of a given degree 
plays a crucial role in the above proof. Nevertheless, we shall see in (18.9) 
below that it can be removed from the statement of the theorem. 

§15. The Etale Cohomology of an Abelian Variety 

The usual cohomology groups H'(A(C), Z) of an abelian variety are described 
by the statements: 
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(a) A representation of A(C) as a quotient A(C) = CUlL determines an iso
morphism HI (A(C), 1:) ~ Hom(L, 1:). 

(b) The cup-product pairings define isomorphisms 

NHl(A(C), 1:) ~ H'(A(C), 1:) for all r. 

To prove (a), note that C9 is the universal covering space of A(C), and that L 
is its group of covering transformations. Therefore, n1 (A(C), 0) = L, and for 
any pointed manifold (M, m), Hl(M, 1:) = Hom(n1(M, m), 1:). Statement (b) 
can be proved by observing that A(C) is homeomorphic to a product of 2g 
circles and using the Kiinneth formula (see [16, §1, p. 3]), or by using the 
same argument as that given below for the etale topology. 

Theorem 15.1. Let A be an abelian variety of dimension g over an algebraically 
closed field k, and let 1 be a prime different from char(k). 

(a) There is a canonical isomorphism Hl(Aet, 1:,) ~ Homz.(llA, 1:,). 
(b) The cup-product pairings define isomorphisms 

NHl(Aw 1:,) ~ H'(Aet' 1:,) for all r. 

In particular, Hr(Aet> 1:,) is a free 1:,-module of rank en 
PROOF. If n~t(A, 0) now denotes the etale fundamental group, then Hl(A, 1:,) = 
Homconts(n~t(A, 0),1:,). For each n, 11: A --+ A is a finite etale covering of 
A with group of covering transformations Ker(l1) = A,n(k). By definition 
n~t(A, 0) classifies such coverings, and therefore there is a canonical epi
morphism n~t(A, 0) - A,n(k) (see [13, I.5]). On passing to the inverse limit, 
we get an epimorphism nit(A, 0) -llA, and consequently an injection 
Homz,(llA, 1:,) ~ Hl(A, 1:,). 

To proceed further. we need to work with other coefficient groups. Let R 
be 1:" IF" or !Q" and write H*(A) for EBr;?>:O Hr(Aet> R). The cup-product 
pairing makes this into a graded, associative, anticommutative algebra. There 
is a canonical map H*(A) ® H*(A) --+ H*(A x A), which the Kiinneth formula 
shows to be an isomorphism when R is a field. In this case, the addition map 
m: A x A --+ A defines a map 

m*: H*(A) --+ H*(A x A) = H*(A) ® H*(A). 

Moreover, the map a f--+ (a, 0): A --+ A x A identifies H*(A) with the direct 
summand H*(A) ® HO(A) of H*(A) ® H*(A). As mo(af--+(a, 0)) = id, the 
projection of H*(A) ® H*(A) onto H*(A) ® HO(A) sends m*(x) to x ® 1. As 
the same remark applies to a f--+ (0, a), this shows that 

m*(x) = x ® 1 + 1 ® x + LXi ® Yi' deg(x;), deg(y;) > o. 

Lemma 15.2. Let H* be a graded, associative, anticommutative algebra over a 
perfect field K. Assume that there is map m*: H* --+ H* ® H* satisfying the 
above identity. If HO = K and Hr = 0 for all r greater than some integer d, then 
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dim(HI) ~ d, and when equality holds, H* is isomorphic to the exterior algebra 
on HI. 

PROOF. A fundamental structure theorem for Hopf algebras [3, Theorem 6.1] 
shows that H* is equal to the associative algebra generated by certain ele
ments Xi subject only to the relations imposed by the anticommutativity of 
H* and the nilpotence of each Xi. The product of the Xi has degree L deg(xi ), 
from which it follows that L deg(xi) ~ d. In particular, the number of Xi of 
degree 1 is ~ d; as this number is equal to the dimension of HI, this shows 
that its dimension is ~ d. When equality holds, all the Xi must have degree 1; 
moreover their squares must all be zero because otherwise there would be a 
nonzero element X I X 2 ••• xf ... Xd of degree d + 1. Hence H* is identified with 
the exterior algebra on HI. D 

When R is Q, or IF" the conditions of the lemma are fulfilled with d = 2g 
[13, VI, 1.1]. Therefore HI(A, Q,) has dimension ~ 2g. But HI(A, Q,) = 

HI(A, 1'.,) ® Q" and so the earlier calculation shows that HI(A, Q,) has 
dimension 2g. The lemma now shows that Hr(A, Q,) = N(HI(A, Q,)), and, in 
particular, that its dimension is en This implies that Hr(A, 1'.,) has rank en 
The exact sequence [13, V, 1.11] 

••• --+ H'(A, 1'.,) ~ H'(A, 1'.,) --+ H'(A, IF,) --+ H'+1(A, 1'.,) ~ H'+I(A, 1'.,) --+ ... 

now shows that dim(HI(A, IF,)) ~ 2g, and so the lemma implies that this 
dimension equals 2g and that dim(Hr(A, IF,)) = en On looking at the exact 
sequence again, we see that Hr(A, 1'.,) must be torsion-free for all r. Con
sequently, NHI(A, 1'.,) --+ Hr(A, 1'.,) is injective because it becomes so when 
tensored with Q" and it is surjective because it becomes so when tensored 
with IF,. This completes the proof. 

Remark 15.3. In the course of the above proof, we have shown that the 
maximal abelian I-quotient of n1'(A, 0) is isomorphic to 1/A. In fact, it is 
known that n1'(A, 0) = T A, where T A = lim An(k). In order to prove this 

+-
one has to show that the all finite etale coverings of A are isogenies. This is 
accomplished by the following theorem ([14, §18, p. 167]): Let A be an abelian 
variety over an algebraically closed field, and let f: B --+ A be a finite etale 
covering with B connected; then it is possible to define on B the structure of an 
abelian variety relative to which f is an isogeny. 

Remark 15.4. We have shown that the following three algebras are isomorphic: 

(i) H*(A, 1'.,) with its cup-product structure; 
(ii) A * HI (A, 1'.,) with its wedge-product structure; 

(iii) the dual of A *1/A with its wedge-product structure. 

If we denote the pairing 
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by < '1'), then the pairing 

is determined by 

See [5, §8]. 

Remark 15.5. Theorem 15.1 is still true if k is only separably closed (see [13, 
II, 3.17]). If A is defined over a field k, then the isomorphism 

A * Hom(1;, £:/) -+ H*(Aks ' £:/) 

is compatible with the natural actions of Gal(kslk). 

§ 16. Pairings 

As we discussed in Section 11, if M and N denote the kernels of an isogeny f 
and its dual f V , then there is a canonical pairing M x N -+ Gm which iden
tifies each group scheme with the Cartier dual of the other. In the case that f 
is multiplication by m, mA: A -+ A, then fV is mAy: AV -+ AV , and so the 
general theory gives a pairing em: Am X A~ -+ Gm • If we assume further that 
m is not divisible by the characteristic of k, then this can be identified with a 
non degenerate pairing of Gal(klk)-modules 

em: Am(k) x A~(k) -+ k x . 

This pairing has a very explicit description. Let a E Am(k) and let a' E A~(k) c 

PicO(AjJ If a' is represented by the divisor D on Ali, then mAl D is linearly 
equivalent to mD (see the paragraph following (9.2», which is linearly equi
valent to zero. Therefore there are functions f and g on Ali such that mD = (f) 
and mAl D = (g). Since the divisor 

(f0mA) = mAl«(f» = mAl(mD) = m(mA1D) = (gm), 

we see that gmlf 0 mA is a constant function c on Ali. In particular, 

g(x + ar = cf(mx + ma) = cf(mx) = g(x)m. 

Therefore gig 0 ta is a function on Ali whose mth power is one. This means 
that it is an mth root of 1 in k(A) and can be identified with an element of k. 
It is shown in [16, §20, p. 184] that em(a, a') = gig 0 tao 

Lemma 16.1. Let m and n be integers not divisible by the characteristic of k. 
Then for all a E Amn(k) and a' E A~n(k), 

PROOF. Let D represent a', and let (mn)Al(D) = (g) and mAl (nD) = (g'). Then 

(g' 0 nA) = nAl«g'» = nAl(mAl(nD) = n(mn)Al(D) = (gn), 
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and so gn = C(g' 0 nA ) for some constant function c. Therefore 

(g(x)/g(x + a»n = g'(nx)/g'(nx + na), 

and this equals em(na, na') for all x. D 

Regard em as taking values in Ilm = g E "I'm = l}, and let Z,(l) = lim Il,n 
for I a prime not equal to the characteristic of k. (Warning: We sometimes 
write Z,(l) additively and sometimes multiplicatively.) The lemma allows us 
to define a pairing e,: llA x llA v --+ Z,(l) by the rule 

e,((an), (a~» = (e,n(an, a~». 

For a homomorphism A: A --+ AV, we define pairings 

e!: Am X Am --+ Ilm' (a, a')~ em (a, A.a'), 

et: llA x llA --+ Z,(l), (a, a')~e,(a, A.a'). 

If A. = CP!i', ff E Pic(A), then we write e; and ef for e! and et. 

Lemma 16.2. There are the following formulas: for a homomorphism f: A --+ B, 

(a) em(a,r(b»=em(f(a),b), aEAm,bEBm; 
(b) e,(a, r(b» = e,(f(a), b), a E llA, bE llB; 
(c) e(o;'of(a, a') = e,;'(f(a), f(a'», a, a' E llA, A.EHom(B, BV); 
(d) e(!i'(a, a') = ef(f(a), f(a'», a, a' E llA, ffEPic(B). 

Moreover, 
(e) ff~ef is a homomorphism Pic (A) --+ Hom(A2 1lA, Z,(l». 

PROOF. Let a and b be as in (a); let the divisor D on B represent b, and let 
mil D = (g). Then em(f(a), b) = g(x)/g(x + f(a» for all x. On the other hand, 
f- 1D represents r(b) on A, and m;/f-1D=f-1mi1D=(gof), and so 
em(a, r(b» = g(f(x»/g(f(x) + f(a». This proves (a), and (b) and (c) follow 
immediately. Formula (d) follows from (c) because 

CPf" !i'(a) = t: f* ff ® f* ff- 1 = f* tja ff ® f* ff- 1 = f*( cP !i'(fa» 

= r 0 CP!i' 0 f(a), 

which shows that CPf"!i' = fV 0 CP!i' 0 f. Finally, (e) follows from the fact that 

cP !i' ®!i" = CP!i' + CP!i'" 

Example 16.3. Let A be an abelian variety over C. The exact sequence of 
sheaves on A(C) (here lPA denotes the sheaf of holomorphic functions on 
A(C» 

e2tti(') o --+ Z --+ lP A ------+ lP AX --+ 0 

gives rise to an exact sequence 
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As Hl(A(C), (!) X) = Pic (A) and H 1(A(C), (!)/Hl(A(C), Z) = AV(C) (see (9.4c», 
we can extract from this an exact sequence 

0--. NS(A) --. H2(A(C), Z) --. H2(A(C), (!)A)' 

Let A E NS(A), and let EA be its image in H2(A(C), Z). Then (see Section 15) 
EA can be regarded as a skew-symmetric form on H 1 (A(C), Z). It is a non
degenerate Riemann form if and only if A is ample. As was explained above, 
A induces a pairing e/', and it is shown in [16, §24, p. 237] that the diagram 

EA: H 1(A, Z) x H 1(A, Z) --. Z 

t t t 

commutes with a minus sign if the maps Hl(A(C), Z) --. T,A are taken to be 
the obvious ones and Z --. ZI(1) is taken to be mf-+(m, (= ( ... , e21tijln, ... ); in 
other words, et(a, a') = CEA(a.a'). 

In the remainder of this section, we shall show how etale cohomology can 
be used to give short proofs (except for the characteristic k part) of some 
important results concerning polarizations. Proofs not using etate cohomol
ogy can be found in [16, §§20, 23]. 

The family of exact sequences of sheaves 

1 #- char(k), n 2: 1, plays the same role for the etale topology that the ex
ponential sequence in (16.3) plays for the complex topology. As Pic (A) = 
Hl(A, Gm ) (etale cohomology), these sequences give rise to cohomology 
sequences 

0--. Pic(A,,)/ln Pic (Ad --. H2(A", J1.ln) --. H2(A", Gm)ln --.0. 

Note that PicO(Ad = AVO,) is divisible, and so Pic(A,,)/ln Pic(A:;c} = 
NS(Ad/ln NS(A,,). On passing to the inverse limit over these sequences, we 
get an exact sequence 

0--. NS(A,,) ® ZI --. H2(A", ZI(1» --. T,H2(A", Gm ) --. 0, 

where T,M for any group M is lim Min. Note that T,M is always torsion-
. +--

free. As III the above example, an element A of NS(A,,) defines a skew-
symmetric pairing Et: T,A x T,A --. ZI(1), and one can show as in the previous 
case that Et = - et (in fact, this provides a convenient alternative definition 
of et in the case that A arises from an element of NS(A,,». 

We now assume that k is algebraically closed. 

Theorem 16.4. Let f: A --. B be an isogeny of degree prime to the characteristic 
of k, and let A E NS(A). Then A = f*(A') for some A' E NS(B) if and only if, for 
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all I dividing deg(f), there exists an ez in Hom(A2T,B, Zz(I» such that ef(a, a') = 
ez(f(a), f(a'» all a, a' E T,A. 

PROOF. The necessity is obvious from (16.2c). For the converse, consider for 
each I =I- char(k) the commutative diagram 

0-+ NS(A) ® Zz -+ H2(A, Zz(I» -+ T,(H2(A, Gm » 

i i i 

The right-hand vertical arrow is injective because there exists an isogeny 
1': B -+ A such that f 0 I' is multiplication by deg(f) on B (see Section 8) and 
T,(H2(B, Gm ) is torsion-free. A diagram chase now shows that A is in the 
image of NS(B) ® Zz -+ NS(A) ® Zz for alII dividing deg(f), and the existence 
of I' shows that it is in the image for all remaining primes. This implies that 
it is in the image of NS(B) -+ NS(A) because NS(A) is a finitely generated 
Z-module. D 

Corollary 16.5. Assume 1 =I- char(k). An element A of NS(A) is divisible by In if 
and only if e/ is divisible by In in Hom(A2T,A, Zz(I». 

PROOF. Apply the proposition to 1;:: A -+ A. D 

Proposition 16.6. Assume char(k) =1= 2, 1. A homomorphism A: A -+ A v is of the 
form ({J!l' for some ft' E Pic (A) if and only if ef is skew-symmetric. 

PROOF. If A is in the subgroup NS(A) of Hom(.A, A V), we already know that 
e/· is skew-symmetric. Conversely, suppose et is skew-symmetric, and let 
ft' be the pull-back of the Poincare sheaf f!J by (1, A): A -+ A x AV. For all 
a, a' E T,A, 

ez(a, ((J!l'a') = e(i'(a, a') = e{"«a, Aa), (a', Aa'» (by 16.2d) 

= ez(a, Aa') - ez(a', Aa) (see the next lemma) 

= et(a, a') - et(a', a) 

= 2eNa, a') 

= ez(a, 2Aa'). 

(because et is skew-symmetric) 

As ez is nondegenerate, this shows that 2A = ({J!l', and (16.5) shows that ft'is 
divisible by 2 in NS(A). D 

Lemma 16.7. Let f!J be the Poincare sheaf on A x AV. Then 

e{"«a, b), (a', b'» = ez(a, b') - ez(a', b) 

for a, a' E T,A and b, b' E T,Av. 
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PROOF. Because 2:,(1) is torsion-free, it suffices to prove the identity for band 
b' in a subgroup of finite index in 7;A v. Therefore we can assume that b = Ae 
and b' = Ae' for some polarization A = ({J!i' of A and elements e and e' of 7;A. 
From Section 10 we know that (1 x A)*£?l> = m* 2 ® p* 2-1 ® q* 2-1, and 
so 

ef'((a, b), (a', b')) = ej1 x).)*g>((a, e), (a', e')) 

= er(a + e, a' + e') - er(a, a') - ene, e') 

= er(a, e') - er(a', e) 

= e,(a, b') - e,(a', b). 

For a polarization k A ~ A v, define 

e).: Ker(A) x Ker(A) ~ Ilm 

o 

as follows: suppose m kills Ker(A), and let a and a' be in Ker(A); choose a b 
such that mb = a', and let e).(a, a') = em(a, Ab); this makes sense because 
m(Ab) = A(mb) = O. Also it is independent of the choice of band m because if 
mnb' = a' and ne = a,'then 

and so 

(by 16.1) 

emn(a, Ab')fem(a, Ab) = em(a, A(nb' - b)) = e!(a, nb' - b) 

= e!(nb' - b, ar1 

= 1 as Aa = O. 

Let a = (an) and a' = (a~) be in 7;A. If Aam = 0 = Aa~ for some m, then 

Note that this implies that e). is skew-symmetric. 

Proposition 16.8. Let f: A ~ B be an isogeny of degree prime to char(k), and 
let k A ~ A v be a polarization of A. Then A = f*(X) for some polarization X 
on B if and only if Ker(f) c Ker(A) and e). is trivial on Ker(f) x Ker(f). 

PROOF. We will assume the second condition and construct an e, in 
Hom(A 27;B, 2:,(1)) such that et(a, a') = e,(fa,fa') for all a, a' in 7;A; then 
(16.4) will show the existence of A'. Let b, b' E 7;B; for some m there will exist 
a, a' E 7;A such that 1mb = f(a) and 1mb' = f(a'). If we write a = (aJ and 
a' = (a~), then these equations imply that f(am) = 0 = f(a~), and therefore 
that am and a~ are in Ker(A) and that e).(am, a~) = O. The calculation pre
ceding the statement of the proposition now shows that e~m(a2m' a2m ) = 0 
and therefore that e,).(a, a') is divisible by 12m. We can therefore define 
e,(b, b') = z-zme,).(a, a'). This proves the sufficiency of the second condition, 
and the necessity is easy. D 
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Remark 16.9. The degrees of A and A' are related by deg(A) = deg(A') . 
deg(f)2, because A = r 0 A' 0 f 

Corollary 16.10. Let A be an abelian variety having a polarization of degree 
prime to char(k). Then A is isogenous to a principally polarized abelian variety. 

PROOF. Let A be a polarization of A, and let 1 be a prime dividing the degree 
of A. Choose a subgroup N of Ker(A) of order 1, and let B = A/N. As e). is 
skew-symmetric, it must be zero on N x N, and so the last proposition 
implies that B has a polarization of degree deg(A)/12. D 

Corollary 16.11. Let A be a polarization of A, and assume that Ker(A) c Am 
with m prime to char(k). If there exists an element a of End(A) such that 
a(Ker(A)) c Ker(A) and a V 0 A 0 a = - A on Am2, then A x A v is principally 
polarized. 

PROOF. Let N = {(a, aa)1 a E Ker(A)} c A x A. Then N c Ker(A x A), and for 
(a, aa) and (a', aa') in N 

e).x).«a, aa), (a', aa') = e).(a, a') + e).(aa, aa') 

= em (a, Ab) + em(a, a V oA 0 a(b)) where mb = a' 

= em(a, Ab) + em(a, - Ab) 

=0. 

Therefore, (16.8) applied to A x A --+ (A x A)/N and the polarization A x A 
on A x A shows that (A x A)/ N is principally polarized. The kernel of 
(a, a') f-+ (a, aa + a'): A x A --+ (A x A)/N is Ker(A) x {O}, and so the map 
induces an isomorphism AV x A --+ (A x A)/N. D 

Remark 16.12 (Zarhin's Trick). Let A and A be as in the statement of the 
corollary. Then there always exists an a satisfying the conditions for (A4, A4) 
and therefore (A x A V)4 is principally polarized. To see this choose integers 
a, b, c, d such that a2 + b2 + c2 + d2 == -1 (mod m2), and let 

a -b -c -d 

b a d -c 
a= E M4(Z) c End(A). 

c -d a b 

d c -b a 

Clearly a(Ker(A4)) c Ker(A4 ). Moreover a V can be identified with the trans
pose aIr of a (as a matrix), and so 
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Remark 16.13. In [16, §§20, 23] there is a different and much more profound 
treatment of the above theory using finite group schemes. In particular, it is 
possible to remove the restrictions on 1 or a degree being prime to the 
characteristic in the results (16.4) through (16.12). 

Remark 16.14. Some of the above results extend to fields that are not alge
braically closed. For example, if A is an abelian variety over a perfect field, 
then (16.5) implies immediately that a polarization II. of A can be written as 1m 

times a polarization if and only if ez'· is divisible by 1m; similarly (16.11) implies 
that the same result holds over a perfect field. On the other hand (16.10) 
seems to be false unless one allows a field extension (roughly speaking, it is 
necessary to divide out by half the kernel of the polarization 11., which need 
not be rational over k). 

§17. The Rosati Involution 

Fix a polarization II. on A. As II. is an isogeny A -+ A v, it has an inverse in 
HomO(A\ A) ~ Hom(AV, A) ® Q. The Rosati involution on EndO(A) cor
responding to II. is 

This has the following obvious properties: 

for aE Q. 

For any a, a' E llA ® Q, 1 of. char(k), 

e((rxa, a') = el(rxa, lI.a') = e1(a, rxV 0 lI.a') = e((a, rxt a'), 

from which it follows that rxtt = rx. 

Remark 17.1. The second condition on rx in (16.11) can now be stated as 
rxt 0 rx = -1 on Am2 (provided rxt lies in End(A)). 

Proposition 17.2. Assume that k is algebraically closed. Then the map 

.Pf--d-1 0o/ft', NS(A) ® Q -+ EndO(A), 

identifies NS(A) ® Q with the sub algebra of EndO(A) of elements fixed by t. 

PROOF. Let rx E EndO(A), and let 1 be an odd prime of. char(k). According to 
(16.6), 1I.0rx is of the form o/ft' if and only if ez'· ° lZ(a, a') = -e/"0IZ(a', a) for all 
a, a' E llA ® Q. But 

e( OIZ(a, a') = e/'(a, rxa') = - e/'(rxa', a) = - e1(a', rxV o II. (a)), 

and so this is equivalent to II. 0 rx = rxV 0 11., that is, to rx = rxt. o 
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Theorem 17.3. The bilinear form 

(a, p) 1--+ Tr(a 0 pt): EndO(A) x EndO(A) ~ Q 

is positive definite. More precisely, if Ii = ((J!l'(D)' then 

Tr(a 0 at) = 2g (Dg- 1 . a*(D)) 
(Dg) . 

PROOF. As D is ample and a*(D) is effective, the intersection number 
(Dg-1 . a*(D)) is positive. Thus the second statement implies the first. Clearly 
it suffices to prove it with k algebraically closed. 

Lemma 17.4. Let A be an abelian variety over an algebraically closed 
field, and let "Z,(g) = "Z,(l)®g. Then there is a canonical generator /l of 
Hom(A2g(7;A), "Z,(g» with the following property: if D1, ... , Dg are divisors 
on A and ei = er(D')EHom(A27;A, "Z,(1)), then e1 /\ ... /\ eg is the multiple 
(D1' D2, ... , Dg)/l of /l. 

PROOF. See [16, §20, Theorem 3, p. 190]. (From the point of view of etale 
cohomology, /l corresponds to the canonical generator of H2g(A, "Z,(g)), 
which is equal to the cohomology class of any point on A. If Ci is the class of 
Di in H2(A, "Z,(1)), then the compatibility of intersection products with cup
products shows that (D1' ... , Dg)/l = C1 u··· U cg. Consequently, the lemma 
follows from (15.4).) D 

PROOF OF (17.3). From the lemma, we find that 

e," /\ ... /\ et = (Dg)/l, 

et /\ ... /\ et /\ efP.) = (Dg- 1 . a*(D))/l. 

It suffices therefore to show that, for some basis a1 , ••• , a2g of 7;A ® Q, 

(a /\ ... /\ a leA /\ ... /\ eA /\ ea·(A) 1 
1 2g I I I = _ Tr(a 0 at). 

(a 1 /\ ... /\ a2gle,A /\ ••• /\ e,'-) 2g 

(See (15.4).) Choose the basis a1, a2, ... , a2g so that 

otherwise. 

Let f1' ... , f2g be the dual basis; then for j =1= j', 

i = 1,2, ... , g, 

ifi =j, i' =j', 

ifi = j', i' = j, 

otherwise. 

Therefore et = 'j}f=t!2i-1 /\ f2i' and so e," /\ ... /\ et = g!U1 /\ ... /\ f2g)' 
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Thus 

(a 1 1\ ".1\ a2g let 1\ ••. 1\ et) = (a 1 1\ •.• 1\ a2g lg!(f1 1\ •.. 1\ f2g) = g!. 

Similarly, 

9 

= (g - 1)! L et(rxa2i-1, rxa2i) 
i=1 

g' 
= 2~ Tr(rxt rx), 

which completes the proof. 

Proposition 17.5. Let A. be a polarization of the abelian variety A. 

(a) The automorphism group of (A, A.) is finite. 

o 

(b) For any integer n ~ 3, an automorphism of (A, A.) acting as the identity on 
An(k) is equal to the identity. 

PROOF. Let rx be an automorphism of A. In order for rx to be an automorphism 
of (A, A.), we must have A. = rxV 0 A. 0 rx, and therefore rxt rx = 1, where t is the 
Rosati involution defined by A.. Consequently, 

rxEEnd(A) n {rxEEnd(A) <8> IRITr(rxtrx) = 2g}, 

and the first of these sets is discrete in End(A) <8> IR, while the second is 
compact. This proves (a). 

Assume further that rx acts as the identity on An. Then rx - 1 is zero on An, 
and so it is of the form np with p E End(A) (see (12.6)). The eigenvalues of rx 
and p are algebraic integers, and those of rx are roots of 1 because it has finite 
order. The next lemma shows that the eigenvalues of rx equal 1. 

Lemma 17.6. If' is a root of 1 such that for some algebraic integer y and 
rational integer n ~ 3, , = 1 + ny, then, = 1. 

PROOF. If, i= 1, then after raising it to a power, we may assume that it is a 
primitive pth root of 1 for some prime p. Then NO({J/o(l - ') = p, and so the 
equation 1 -, = -ny implies p = ±nP-1N(y). This is impossible because p 
is prime. 0 

We have shown that rx is unipotent and therefore that rx - 1 = np is 
nilpotent. Suppose that p i= O. Then p' = pt P i= 0, because Tr(pt P) > O. As 
p' = p,t, this implies that Tr(p,2) > 0 and so p'2 i= O. Similarly, p'4 i= 0, and 
so on, which contradicts the nilpotence of p. 0 
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Remark 17.7. Let (A, A) and (A', A.') be polarized abelian varieties over a field 
k, and assume that A and A' have all their points of order n rational over k 
for some n ~ 3. Then any isomorphism IX: (A, A) --+ (A', A') defined over the 
separable closure ks of k is automatically defined over k because, for all 
(F E Gal(ks/k), IX-I 0 (FIX is an automorphism of (A, A) fixing the points of order 
n and therefore is the identity map. 

Remark 17.8. On combining the results in Section 12 with (17.3), we see that 
the endomorphism algebra EndO(A) of a simple abelian variety A is a skew 
field together with an involution t such that Tr(1X 0 IXt) > 0 for all nonzero IX. 

§18. Two More Finiteness Theorems 

The first theorem shows that an abelian variety can be endowed with a 
polarization of a fixed degree d in only a finite number of essentially different 
ways. The second shows that an abelian variety has only finitely many non
isomorphic direct factors. 

Theorem 18.1. Let A be an abelian variety over a field k, and let d be an integer; 
then there exist only finitely many isomorphism classes of polarized abelian 
varieties (A, A) with A of degree d. 

Fix a polarization Ao of A, and let t be the Rosati involution on EndO(A) 
defined by Ao. The map A f--+ AOI 0 A identifies the set of polarizations of A with 
a subset of the set EndO(A)t of elements of EndO(A) fixed by t. As NS(AJ<) is 
a finitely generated abelian group, there exists an N such that all the Aol 0 A 
are contained in a lattice L = N- 1 End(A)t in EndO(A)t. Note that L is stable 
under the action 

uEEnd(A)X, 

of End(A) x on EndO(A). 
Let A be a polarization of A, and let u E End(A) x. Then u defines an 

isomorphism (A, u v 0 A 0 u) ~ (A, A), and AOI 0 (u v 0 A 0 u) = u to (ADI 0 A) 0 u. 
Thus to each isomorphism class of polarized abelian varieties (A, A), we can 
associate an orbit of End(Ar in L. Recall (12.12) that the map lXf--+deg(lX) is 
a positive power of the reduced norm on each simple factor of EndO(A), and 
so Nrd is bounded on the set of elements of L with degree d. These remarks 
show that the theorem is a consequence of the following result on algebras. 

Proposition 18.2. Let E be a finite-dimensional semisimple algebra over Q 
with an involution t, and let R be an order in E. Let L be a lattice in Et that 
is stable under the action ef--+U t eu of R x on E. Then for any integer d, 
{vELINrd(v):$; d} is the union of a finite number of orbits. 
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This proposition will be proved using a general result from the reduction 
theory of arithmetic subgroups. 

Theorem 18.3. Let G be a reductive group over Q, and let r be an arithmetic 
subgroup of G; let G --+ GI(V) be a representation of Gover Q, and let L be a 
lattice in V that is stable under r. If X is a closed orbit of G in V, then L n X 
is the union of a finite number of orbits of r. 

PROOF. See [4, 9.11]. o 
Remark 18.4. (a) An algebraic group G is reductive if its identity component 
is an extension of a semisimple group by a torus. A subgroup r of G(Q) is 
arithmetic if it is commensurable with G(Z) for some Z-structure on G. 

(b) The following example may give the reader some idea of the nature of 
the above theorem. Let G = SLn, and let r = SLn(Z). Then G acts in a 
natural way on the space V of quadratic forms in n variables with rational 
coefficients, and r preserves the lattice L of such forms with integer coeffi
cients. Let q be a quadratic form with nonzero discriminant d. By the orbit X 
of q we mean the image G· q of G under the map of algebraic varieties 
g ~ g . q: G --+ V. The theory of quadratic forms shows that X(O) is equal to 
the set of all quadratic forms (with coefficients in 0) of discriminant d. Clearly 
this is closed, and so the theorem shows that X n L contains only finitely 
many SLn(Z)-orbits: the quadratic forms with integer coefficients and dis
criminant d fall into a finite number of proper equivalence classes. 

We shall apply (18.3) with G a reductive group such that 

G(Q) = {eEEINrd(e) = ± I}, 

r = R x, V = Et, and LeV the lattice in (18.2). In order to prove (18.2), we 
shall show 

(a) there exists a reductive group Gover Q with G(Q) as described and 
having r as an arithmetic subgroup; 

(b) the orbits of G on V are all closed; 
(c) for any rational number d, l-d ~ {v E VINrd(v) = d} is the union of a 

finite number of orbits of G. 

Then (18.3) will show L n l-d comprises only finitely many r-orbits, as is 
asserted by (18.2). 

To prove (a), embed E into some matrix algebra Mn(Q). Then the condi
tion that Nrd(e) = ± 1 can be expressed as a polynomial equation in the 
matrix coefficients of e, and this polynomial equation defines a linear alge
braic group G over ~ such that G(S) = {eEE ® SINrd(e) = ±1} for all 
Q-algebras S. Over Q, E is isomorphic to a product of matrix algebras 
n Mn,(O); consequently, G(O) = {(e;)E n GLn,(O)ln det(e;) = ± 1}. From 
this it is clear that the identity component of G is an extension of n PGLn, 
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by a torus, and so G is reductive. It is easy to see that r is an arithmetic 
subgroup of G(Q). 

To prove (b), we need the following lemma from the theory of algebras 
with involution. 

Lemma 18.5. Let E be a semisimple algebra over an algebraically closed field 
K of characteristic zero, and let t be an involution of E fixing the elements of 
K. Then every element e of E such that e t = e can be written e = cat a where c 
is in the centre of E and Nrd(a) = 1. 

PROOF. Lacking a good proof, we make use of the classification of pairs (E, t). 
Each pair is a direct sum of pairs of the following types: 

(An) E = Mn(K) X Mn(K) and (e I , e2)t = (e~, eT); 
(Bn) E is the matrix algebra Mn(K) and et = elf; 
(Cn) E = M2n(K) and et = rlelf] with] an invertible alternating matrix. 

(See, for example, [25].) In the cases (Bn) and (Cn), the lemma follows from 
elementary linear algebra; in the case (An), e = (e', e'lf), and we can take 
c = d(In, In) and a = (e'ld, In), where d = det(e')l/n. 0 

From the lemma, we see that if Ge is the isotropy group at e E V, then there 
is an isomorphism g Hag: Ge ~ GI defined over 01. In particular, all isotropy 
groups have the same dimension, and therefore all orbits of G in V have the 
same dimension. This implies that they are all closed, because every orbit of 
minimal dimension is closed (see, for example, [11, 8.3J). 

It remains to prove (c). Let v, v' E ~ ® IC, and write v = cat a, v' = c' a't a' 
with c, c' and a, a' as in the lemma. Clearly v and v' are in the same orbit if 
and only if c and c' are. Note that c and c' lie in ~ ® IC. Let Z be the 
sub algebra of the centre of E ® IC of elements fixed by t. Then c and c' are in 
Z, and they lie in the same orbit of G if clc' E Z2. But Z is a finite product of 
copies of IR and IC, and so Z x IZ x 2 is finite. D 

Corollary 18.6. Let k be a finite field, and let g and d be positive integers. Up 
to isomorphism, there are only finitely many polarized abelian varieties (A, A.) 
over k with dim A = g and deg A. = d2• 

PROOF. From (14.1) we know that there are only finitely many possible A's, 
and (18.l) shows that for each A there are only finitely many A's. D 

We come now to the second main result of this section. An abelian variety 
A' is said to be a direct factor of an abelian variety A if A ~ A' x A" for some 
abelian variety A". 

Theorem 18.7. Up to isomorphism, an abelian variety A has only finitely many 
direct factors. 
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PROOF. To each direct factor A' of A, there corresponds an element e of 
End(A) defined by A ~ A' x A" L A' --+ A' x A" ~ A. Moreover e2 = e, 
and A' is determined by e because it equals the kernel of 1 - e. If e' = ueu-1 

with u in End(A) x, then u(l - e)u- 1 = 1 - e', and so e and e' correspond to 
isomorphic direct factors. These remarks show that the theorem is a conse
quence of the next lemma. 0 

Lemma 18.8. Let E be a semis imp Ie algebra of finite dimension over ilJ, and let 
R be an order in E. Then R x , acting on the set of idempotents of R by inner 
automorphisms, has only finitely many orbits. 

PROOF. Apply (18.3) with G the algebraic group such that G(ilJ) = EX; take r 
to be the arithmetic group R x, V to be E with G acting by inner auto
morphisms, and L to be R. Then the idempotents in E form a finite set of 
orbits under G, and each of these orbits is closed. In proving these statements 
we may replace ilJ by ij and assume E to be a matrix algebra. Then each 
idempotent is conjugate to one of the form e = diag(l, ... , 1,0, ... ,0), and 
the stabilizer Ge of e is a parabolic subgroup of G and so G/Ge is a projective 
variety (see [11,21.3]) which implies that its image Ge in V is closed. 0 

Corollary 18.9. Let k be a finite field; for each integer g, there exist only 
finitely many isomorphism classes of abelian varieties of dimension g over k. 

PROOF. Let A be an abelian variety of dimension g over k. From (16.12) we 
know that (A x AV)4 has a principal polarization, and according to (14.1), the 
abelian varieties of dimension 8g over k having principal polarizations form 
only finitely many isomorphism classes. The result therefore follows from 
(18.7). 0 

§19. The Zeta Function of an Abelian Variety 

Throughout this section, A will be an abelian variety over a finite field k with 
q elements, and km will be the unique subfield ofk with qm elements. Thus the 
elements of km are the solutions of cqm = c. We write Nm for the order of 
A (km ). 

Theorem 19.1. There are algebraic integers a1 , ... , a2g such that: 

. (a) the polynomial P(X) = n (X - ai ) has coefficients in Z; 
(b) Nm = n (1 - ai) for all m ~ 1; and 
(c) (Riemann hypothesis) lail = ql/2. 

In particular, INm - qml :s; 2gq m-l/2 + (2g - 2g _ 1)qm-l. 

The proof will use the Frobenius morphism. For a variety V over k, this is 
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defined to be the morphism nv: V --+ V which is the identity map on the 
underlying topological space of V and is the map ff--+ ron @v. For example, 
if V = [pn = Proj(k[Xo, ... , Xn]), then nv is defined by the homomorphism of 
rings 

Xi f--+ xt k[Xo, ... , Xn] --+ k[Xo, ... , Xn] 

and induces the map on points 

(xo : ... : xn) f--+ (xZ : ... : x:): [pn(k) --+ [pn(k). 

For any map cp: W --+ V, it is obvious that cp ° nw = nv ° cp. Therefore, 
if A 4 [pn is a projective embedding of A, then nA induces the map 
(xo : ... : xn) f--+ (xZ : ... : x:) on A (k). In particular, we see that the kernel of 
1 - nA': A(k) --+ A(k) is A(km ). Note that nA maps zero to zero, and 
therefore (see (2.2)) is a homomorphism. Clearly n always defines the zero 
map on tangent spaces (look at its action on the cotangent space), and so 
d(1 - nA')o: To(A) --+ To(A) is the identity map. Therefore, 1 - nA' is etale, and 
the order Nm of its kernel in A(k) is equal to its degree. Let P be the charac
teristic polynomial of nA" It is a monic polynomial of degree 2g with integer 
coefficients, and if we let a 1 , ••• , aZg be its roots, then (12.9) shows that 
fl (X - ai) is the characteristic polynomial of nA'. Consequently, 

Nm = deg(nA' - 1) = fl (1 - ai)· 

This proves (a) and (b) of the theorem with the added information that P is 
the characteristic polynomial of nA" Part (c) follows from the next two 
lemmas. 

Lemma 19.2. Let t be the Rosati involution on EndO(A) defined by a polariza
tion of A; then n! ° nA = qA" 

PROOF. As was noted in (13.2), the polarization will be defined by an ample 
sheaf 2' on A. We have to show that n1 ° CP!t' ° nA = qcp!t'. It follows from the 
definition of nA that n~ 2' ~ 2'Q. Therefore, for all a E A (k), 

n1ocp!t'0nA(a) = n~(t:a2' ® 2'-1) = t:(n~2') ® (n~2')-1 = qcp!t'(a), 

as required. o 

Lemma 19.3. Let ex be an element of EndO(A) such that ext ° ex is an integer r; for 
any root a of Pa , lal z = r. 

PROOF. Note that Q(ex) is stable under t. The argument terminating the proof 
of (17.5) shows that Q(ex) contains no nilpotent elements, and therefore is a 
product of fields. The tensor product Q(ex) ® IR is a product of copies of IR 
and C. Moreover t extends to an IR-linear involution of Q(ex) ® IR, and 
Tr(f3t f3) ~ 0 for all f3 =f. 0, with inequality holding on a dense subset. It fol
lows easily that each factor K of Q(ex) ® IR is stable under t and that t is the 
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identity map if K is real, and is complex conjugation if K is complex. Thus, 
for each homomorphism I of O(a) into C, I(at ) is the complex conjugate of 
la. The hypothesis of the theorem therefore states that I/al2 = r, which, in 
essence, is also the conclusion. 0 

The zeta function of a variety V over k is defined to be the formal power 
series Z(V, t) = exp(INmtm/m). 

Corollary 19.4. Let P,(t) = TI (1 - ai"t), where the ai" run through the prod
ucts ail ai2 ... ai" 0 < i1 < ... < i, ::;; 2g, ai a root of P(t). 

Then 
P1 (t) ... P2g - 1 (t) 

Z(A, t) = . 
[Po(t) ... P2g(t)] 

PROOF. Take the logarithm of each side, and use the identity 

-log(1 - t) = 1 + t + t2 /2 + t3 /3 + .... o 

Remark 19.5. (a) The polynomial P,(t) is the characteristic polynomial of n 

acting on N7;A. 
(b) Let nv, s) = Z(V, q-S); then (19.1c) implies that the zeros of ((V, s) lie 

on the lines Re(s) = 1/2,3/2, ... , (2g - 1)/2 and the poles on the lines Re(s) = 
0,1, ... , 2g. 

Remark 19.6. The isomorphism N7;A ~ H'(Aet> Olt and the above results 
show that 

and that 

Z(A, t) = TI det(1 - ntIW(Aet' ( 1))(-1)'. 

§20. Abelian Schemes 

Let S be a scheme; a group scheme n: d --+ S over S is an abelian scheme if n 
is proper and smooth and the geometric fibres of n are connected. The second 
condition means that, for all maps s --+ S with s the spectrum of an alge
braically closed field, the pull-back d. of d to s is connected. In the presence 
of the first condition, it is equivalent to the fibres of n being abelian varieties. 
Thus an abelian scheme over S can be thought of as a continuous family of 
abelian varieties parametrized by S. 

Many results concerning abelian varieties extend to abelian schemes. 

Proposition 20.1 (Rigidity Lemma). Let S be a connected scheme, and let 
n: "f/' --+ S be a proper flat map whose fibres are varieties; let n': "f/" --+ S be a 
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second S-scheme, and let f: "I'" - "1'"' be a morphism of S-schemes. If for some 
point s of S, the image of "f". in "f".' is a single point, then f factors through S 
(that is, there exists a map f': S - "1'"' such that f = f' 0 n). 

PROOF. See [15,6.1]. D 

Corollary 20.2. (a) Every morphism of abelian schemes carrying the zero section 
into the zero section is a homomorphism. 
(b) The group structure on an abelian scheme is uniquely determined by the 

choice of a zero section. 
(c) An abelian scheme is commutative. 

PROOF. (a) Apply the proposition to the map <p: d x d - f!4 defined as in 
the proof of (2.2). 

(b) This follows immediately from (a). 
(c) The map aHa-1 is a homomorphism. D 

Our next result shows that an abelian variety cannot contain a non
constant algebraic family of subvarieties. 

Proposition 20.3. Let A be an abelian variety over a field k, and let S be a 
k-scheme such that S(k) #- 0. For any injective homomorphism f: !!4 c; A x S 
of abelian schemes over S, there is an abelian subvariety B of A (defined over k) 
such that f(:ll) = B x S. 

PROOF. Let s E S(k), and let B = !!4 •. Then Is identifies B with a subvariety 
of A. The map h:!!4.£ A x S - (A/B) x S has fibre B. - A - A/B. over s, 
which is zero, and so (20.1) shows that h = O. It follows that f(!!4) = B x S. 

D 

Recall that a finitely generated extension K of a field k is regular if it is 
linearly disjoint from k. 

Corollary 20.4. Let K be a regular extension of a field k. 

(a) Let A be an abelian variety over k. Then every abelian subvariety of AK is 
d~fined over k. 

(b) If A and B are abelian varieties over k, then every homomorphism 
a: AK - BK is defined over k. 

PROOF. (a) There exists a variety V over k such that k(V) = K. After V has 
been replaced by an open subvariety, we can assume that B extends to an 
abelian scheme over V (cf. (20.9) below). If V has a k-rational point, then the 
proposition shows that B is defined over k. In any case, there exists a finite 
Galois extension k' of k and an abelian subvariety B' of Ak, such that B~k' = 
BKk, as subvarieties of AKk,. The equality uniquely determines B' as a sub-
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variety of A k,. As aB has the same property for any CTEGal(k'lk), we must 
have CTB = B, and this shows that B is defined over k. 

(b) Part (a) shows that the graph of Il( is defined over k. 0 

Theorem 20.5. Let Klk be a regular extension of fields, and let A be an abelian 
variety over K. Then there exists an abelian variety B over k and a homo
morphism f: BK -+ A with finite kernel having the following universal property: 
for any abelian variety B' and homomorphism f': B~ -+ A with finite kernel, 
there exists a unique homomorphism ({J: B' -+ B such that f' = f 0 ({JK' 

PROOF. Consider the collection of pairs (B, f) with B an abelian variety 
over k and f a homomorphism BK -+ A with finite kernel, and let A * be the 
abelian subvariety of A generated by the images the f. Consider two pairs 
(B 1 ,fl) and (B2,f2)' Then the identity component C of the kernel of 
(fl,f2): (Bl x B2)K -+A is an abelian subvariety of Bl x B2, which (20.4) 
shows to be defined over k. The map (Bl x B2/C)K -+ A has finite kernel and 
image the subvariety of A generated by fl (Bd and f2(B). It is now clear that 
there is a pair (B, f) such that the image of f is A*. Divide B by the largest 
subgroup scheme N of Ker(f) to be defined over k. Then it is not difficult to 
see that the pair (BIN, f) has the correct universal property (given f': B~ -+ A, 
note that for a suitable C contained in the kernel of (BIN)K x B~ -+ A, the 
map bH(b, 0): BIN -+ (BIN) x B'IC is an isomorphism). 0 

Remark 20.6. The pair (B, f) is obviously uniquely determined up to a unique 
isomorphism by the condition of the theorem; it is called the Klk-trace of A. 
(For more details on the Klk-trace and the reverse concept, the Klk-image, 
see [12, VIII].) 

Proposition 20.7. Let d be an abelian scheme of relative dimension g over S, 
and let n.91 be multiplication by n on d. Then n.91 is flat, surjective, and finite, 
and its kernel d n is a finite flat group scheme over S of order n2g• Moreover 
n.91 (and therefore its kernel) is etale if and only if n is not divisible by any of the 
characteristics of the residue fields of S. 

PROOF. The map n.91 is flat because d is flat over S and multiplication by n is 
flat on each fibre of dover S (see Section 8). (For the criterion of flatness 
used here, see [7, IV, 5.9] or [6, III, 5.4, Prop. 2.3].) Moreover n.91 is proper 
[10, II, 4.8e] with finite fibres, and hence is finite (see, for example, [13, I, 
1.10]). It follows that d n is flat and finite, and (8.2) shows that it has order n2g• 

The remaining statement also follows from (8.2). 0 

Corollary 20.8. Let S be an connected normal scheme, and let A be an abelian 
variety over the field of rational functions k of S. Assume that A extends to an 
abelian scheme over S, and let n be an integer which is prime to the charac
teristics of the residue fields of S. Then for any point P E A (k), the normaliza-
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tion ofS in k(n-1 P) is etale over S. (By k(n- 1 P) we mean the field generated over 
k by the coordinates of the points Q such that nQ = P.) 

PROOF. The hypotheses imply that d n is etale over S. Let k' be the composite 
of the fields of rational functions of the components of dn, and let kif be the 
Galois closure of k'. Then the normalization of S in kif is etale over Sand 
An(k lf

) has n2g elements. We may replace k with kif and so assume A has all 
its points of order n rational in k. The point P extends (by the valuative 
criterion of properness) to a section s of dover S. The pull-back of the 
covering n",,: d --+ d to S by means of the section s is a finite etale covering 
S' --+ S, and s lifts to a section in d(S'). Let So be any connected component 
of S'; then the field K of rational functions of S contains k(n-1 P), and So is the 
normalization of S in K. 0 

Remark 20.9. Let S be an integral Noetherian scheme, and let A be an abelian 
variety over its field of rational functions K. Choose a projective embedding 
A c; IPn and let d be the closure of A in IPs. Then 7t: d --+ S is projective, and 
its generic fibre is a smooth variety. As (!)s --+ 7t*(!) "" is an isomorphism at the 
generic point and (!)s and 7t*(!) "" are coherent, there will be an open subset 
over which it is an isomorphism and therefore over which 7t has connected 
fibres [10, III, 11.5]. The existence of a section implies the fibres will be 
geometrically connected there. Also there will be an open subset over which 
d is smooth [10, III, Ex. 10.2], and an open subset where the group structure 
extends. These remarks show that there is an open subset U of S such that d 
extends to an abelian scheme over U. 

When S is locally the spectrum of a Dedekind domain, we can be more 
precise. Then the projective embedding of A determines a unique extension 
of A to a flat projective scheme 7t: d --+ S (see [10, III, 9.8]). The R-module 
7t*(!) "" is finitely-generated (because 7t is proper) and torsion-free (because 7t is 
flat). It is therefore a projective R-module, and its rank is one because its 
tensor product with K is r(A, (!)A) = K. Now, as before, the geometric fibres 
of d are connected. We conclude: the choice of a projective embedding 
defines a flat projective extension d of A to S; d will be an abelian scheme 
over an open set U of S. 

It is clear from looking at the example of an elliptic curve, that the ex
tended scheme dover S depends on the choice of the projective embedding 
of A, but [2, 1.4] shows that its restriction to U does not. The purpose of the 
theory of Neron models is to replace d by a "minimal" (nonproper) exten
sion which is unique. 

Using the above results, it is possible to give a short proof of a weak form 
of the Mordell-Weil theorem. 

Theorem 20.10. Let A be an abelian variety over a number field k, and let n be 
integer such that all points of A of order n are rational over k. Then A(k)jnA(k) 
is a finite group. 
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PROOF. Let a E A(k), and let bE A(k) be such that nb = a. For (J in the Galois 
group of k over k, define CPa((J) to be (Jb - b. Then a'r-> CPa defines an injection 
A(k)jnA(k) 4 Hom(G, An(k)). 

Let spec(R) be an open subset of the spectrum of the ring of integers of k 
such that A extends to an abelian scheme .sI over spec(R) and n is invertible 
in R. Let k' be the maximal abelian extension of k of exponent n unramified 
outside the finite set of primes not corresponding to prime ideals of R. Then 
(20.8) shows that CPa factors through the group Gal(k'jk) for all a. This proves 
the theorem because k' is a finite extension of k. 0 

Remark 20.11. Using the theory of heights, one can show that for an abelian 
variety over a number field k, A(k)jnA(k) finite implies A(k) is finitely 
generated (see [23]). As the hypothesis of (20.10) always holds after a finite 
extension of k, this proves the Mordell-Weil theorem: for any abelian variety 
A over a number field k, A(k) is finitely generated. 

Remark 20.12. Let A and B be polarized abelian varieties over a number field 
k, and assume that they both have good reduction outside a given finite set 
of primes S; let I be an odd prime. If A and B are isomorphic over k (as 
polarized abelian varieties), then they are isomorphic over an extension k' of 
k unramified outside S and I and of degree ~ (order of GI2g(lFl)f. (Because 
the I-torsion points of A and B are rational over such a k', and we can apply 
(17.7).) 

In contrast to abelian varieties, abelian schemes are not always projective, 
even if the base scheme is the spectrum of an integral local ring of dimension 
one or an Artinian ring (see [18, XII]). If .sI is projective over S, then the dual 
abelian scheme.slv is known to exist (see [8]); if.sl is not projective then.slv 

exists only as an algebraic space (see [1]). In either case, a polarization of .sI 
is defined to be a homomorphism A:.sI -+.sIv such that, for all geometric 
points s of the base scheme S, As is of the form cP!£, for some ample invertible 
sheaf 2? on .sis. Alternatively, A is a polarization if As: .sis -+ .sIsv is a polariza
tion of abelian varieties for all s E S. If S is connected, then the degree of As is 
independent of s and is called the degree of A. 

For a field k and fixed integers g and d, let ~,d be the functor associating 
with each k-scheme of finite type the set of isomorphism classes of polarized 
abelian schemes of dimension g and which have a polarization of degree d2 • 

Theorem 20.13. There exists a variety M9,d over k and a natural transformation 
i: ~,d -+ Mg,d such that: 

(a) i(K): ~,AK) -+ Mg,AK) is a bijection for any algebraically closed field 
containing k; 

(b) for any variety N over k and natural transformation j: ~,d -+ N, there is a 
unique morphism cP: M9,d -+ N such that cP 0 i = j. 

PROOF. This one of the main results of [15]. o 
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The variety Mg,d is uniquely determined up to a unique isomorphism by 
the conditions of (20.13); it is the (coarse) moduli variety for polarized abelian 
varieties of dimension g and degree d2• By introducing level structures, one 
can define a functor that is representable by a fine moduli variety-see the 
article by c.-L. Chai in these proceedings. 

REFERENCES 

[I] Artin, M. Algebraization of formal moduli I, in Global Analysis. Princeton 
University Press: Princeton, NJ, 1969, pp. 21-71. 

[2] Artin, M. Neron models, this volume, pp. 213-230. 
[3] Borel, A. Sur la cohomologie des espaces fibres principaux et des espace hpmo-

gimes de groupes de Lie compacts. Ann. Math., 64 (1953), 115-207. 
[4] Borel, A. Introduction aux Groupes Arithmhiques. Hermann: Paris, 1958. 
[5] Bourbaki, N. Algebre Multilinimire. Hermann: Paris, 1958. 
[6] Bourbaki, N. Algebre Commutative. Hermann: Paris, 1961, 1964, 1965. 
[7] Grothendieck, A. Revetements Etales et Groupe Fondamental (SGA1, 1960-61). 

Lecture Notes in Mathematics, 224. Springer-Verlag: Heidelberg, 1971. 
[8] Grothendieck, A.: Technique de descente et theon!mes d'existence en geo

metrie algebrique V. Les schemas de Picard: Theoremes d'existence. Seminaire 
Bourbaki, Expose 232, 1961/62. 

[9] Grothendieck, A. (with Dieudonne, J.). Elements de geometrie algebrique. 
Publ. Math. I.H.E.S., 4, 8,11,17,20,24,28,32 (1960-67). 

[10] Hartshorne, R. Algebraic Geometry. Springer-Verlag: Heidelberg, 1977. 
[II] Humphreys, J. Linear Algebraic Groups. Springer-Verlag: Heidelberg, 1975. 
[12] Lang, S. Abelian Varieties. Interscience: New York, 1959. 
[13] Milne, J. Etale Cohomology. Princeton University Press: Princeton, NJ, 1980. 
[14] Mumford, D. Introduction to Algebraic Geometry. Lecture Notes, Harvard 

University: Cambridge, MA, 1967. 
[15] Mumford D. Geometric Invariant Theory. Springer-Verlag: Heidelberg, 1965. 
[16] Mumford D. Abelian Varieties. Oxford University Press: Oxford, 1970. 
[17] Oort, F. Commutative Group Schemes. Lecture Notes in Mathematics. Springer

Verlag: Heidelberg, 1966. 
[18] Raynaud, M. Faisceaux Amples sur les Schemas en Groupes et les Espace 

Homogenes. Lecture Notes in Mathematics, 119. Springer-Verlag: Heidelberg, 
1970. 

[19] Rosen, M. (notes by F. McGuinness). Abelian varieties over 1[;, this volume, 
pp.79-101. 

[20] Serre, J.-P. Groupes Algebriques et Corps de Classes. Hermann: Paris, 1959. 
[21] Shafarevich, I. Basic Algebraic Geometry. Springer-Verlag: Heidelberg, 1974. 
[22] Shatz, S. Group schemes, formal groups, and p-divisible groups, this volume, 

pp.29-78. 
[23] Silverman, J. The theory of height functions, this volume, pp. 151-166. 
[24] Waterhouse, W. Introduction to Affine Group Schemes. Springer-Verlag: 

Heidelberg, 1979. 
[25] Weil, A. Algebras with involution and classical groups. J. Indian Math. Soc., 24 

(1960), 589-623. 



CHAPTER VI 

The Theory of Height Functions 

JOSEPH H. SILVERMAN 

The Classical Theory of Heights 

§l. Absolute Values 

The following notations and normalizations will be used throughout this 
chapter: 

KIQ a number field. 
MK the set of absolute values on K extending the usual 

absolute values on Q. (That is, the p-adic absolute 
values are normalized so that Iplp = lip.) 

11.llv = 1·I~Kv:()vl. 

§2. Height on Projective Space 

The height of a point P = [xo, ... , xn] in IPn(K} is a measure of the "arith
metic complexity" of the point. 

Definition. The height of P (relative to K) is defined by the formula 

HK(P}= n max{llxoll v, ... , Ilxnllv}. 
veMK 

Remarks. (1) The height of P is well defined (independent of the choice of 
homogeneous coordinates for P). This is easily checked using the product 
formula. 
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(2) For a finite extension L/K, we have the formula 

HL(P) = HK(P)[L:Kl. 

This is checked using the formula L [Lw : Kv] = [L: K], where the sum is 
over the places wEML lying over a given vEMK • 

(3) Note that HK(P) ~ 1 for all points P, since we can always choose 
homogeneous coordinates for P with some Xi = 1. 

Using remark (2) above, we can define a height function which is inde
pendent of the field of definition. 

Definition. Let P E p>n(Q). The absolute height of P is defined by 

H(P) = HK(P)1/[K: Oil, 

where K is any number field with P E p>n(K). It is also often convenient to deal 
with the logarithmic height 

h(P) = log H(P). 

EXAMPLE. Let P E p>n(o). Write P = [xo, ... , xn] with Xi E 7L and 
gcd(xo, ... , xn) = 1. Then 

H(P) = max{lxol, ... , Ixnl}. 

Theorem 2.1 (Finiteness Theorem). Let C and d be constants. Then 

{PE p>n(Q): H(P) ::;; C and [O(P): 0] ::;; d} 

is a finite set. 

PROOF. From the above example, the theorem is clear if we restrict to points 
in p>n(o). We will reduce the general theorem to this case. 

Choose homogeneous coordinates P = [xo, ... , xn] with some Xi = 1. 
Then, since H([xo, ... , xn]) ~ H([I, xJ) for any i, we are reduced to the case 
that P = [1, x] E P>1(Q) and [O(x): 0] = d. Let x(l), ... , X(d) be the conjugates 
of X over 0, and let 1 = so, ... , Sd be the elementary symmetric polynomials 
in x(1), ... , X(d). Then each Sj is in 0, and X is a root of the polynomial 

d d 

F(T) = L (-I)jsj Td-j = n T - Xli) E OCT]. 
j=O i=1 

Now using the triangle inequality, one easily checks that H(s) ::;; cjH(x)j for 
certain constants cj which do not depend on x. Hence applying the above 
example to the point [so, ... , Sd] E p>d(O), we see that there are only finitely 
many possibilities for the polynomial F(T), and so only finitely many possi
bilities for x. D 
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§3. Heights on Projective Varieties 

For this section, Vwill denote a smooth projective variety defined over 0, 
and all morphisms, divisors, etc., will be assumed to be defined over 0. We 
will also use V to denote the geometric points of V (i.e. V(O». In order to 
define a height function on V, we take a map from V into projective space 
and use the height function from the previous section. 

Definition. Let F: V -. [p>n be a morphism. The (logarithmic) height on V 
relative to F is defined by 

hF(P) = h(F(P». 

As usual, such a map F: V-. [p>n is associated to an invertible sheaf (or line 
bundle) on V, namely the pull-back of the twisting sheaf, F*{Dp(1). Naturally, 
many different maps will give rise to the same sheaf. Of crucial importance is 
the next result, which says that the corresponding height functions are essen
tially the same. 

Theorem 3.1. Let 2 be a sheaf without basepoints on V, and let 

F: V -. [p>n and G: V -. [p>m 

be two maps of V which are associated to 2. Then 

hF = hG + 0(1) on V. 

Remarks. (1) The last statement means that the quantity IhF(P) - hG(P)1 is 
bounded as P ranges over V. 

(2) The condition that a map F be associated to 2 can also be phrased in 
terms of divisors. Thus choose a divisor E on V so that 2 :::::: (Dy(E), and let H 
be a hyperplane in [p>n not containing F(V). Then F is associated to 2 if and 
only if F*(H) is linearly equivalent to E. 

PROOF. Let E be a divisor in the linear system of 2. (That is, E ~ 0 and 
2 :::::: (Dy(E).) Then on the complement of E, we can write F = [fo, ... ,fn] and 
G = [go, ... , gm] with rational functions /; and gj such that 

(J;) = Di - E and (g) = Di - E for divisors Di, Di ~ O. 

(Cf. [Har, II.7.8.1].) 
Further, the fact that F has no basepoints means that the D/s have no 

point in common. Let K be a common field of definition for V, fo, ... , fn' and 
go,"" gn' 

Now pick any j, and look at the ideal" = (fo/gj, ... ,fn/gj) in the ring 
f!Jl = K[fo/gj, ... ,fn/gj]. Since (/;!gj) = Di - Di and the D/s have no point in 
common, it follows that" is the unit ideal. [Suppose not. Then there would 
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be a maximal ideal .H of &! containing /. Since Spec(&!) is isomorphic to an 
open subset of V containing the complement of Di, .H would correspond to a 
point P of Vnot in Di such that (fdgj)(P) = ° for all i. But then P would lie 
in the support of every D;, yielding a contradiction.] Hence we can find a 
polynomial (h(To, ... , T,.) E K[To, ... , T,.] having no constant term such that 

<pifo/gj, ... ,fn/gj) = 1. 

Taking the v-adic absolute value and using the triangle inequality, one easily 
finds a constant C1 = C1 (v, F, G, <Pi) > ° such that for all P in the comple
ment of Di, 

max{lfo/gj(P)lv, ... , Ifn/giP)lv} ~ C1 · 

Further, we may take C1 = 1 for all but finitely many v, independent of P. 
(Note that it may be necessary to extend K so that PE V(K).) 

Next multiply through by Igj(P)lv' Then the inequality also holds for 
gj(P) = 0, so taking the maximum over j yields 

max{lfo(p)lv,"" Ifn(P)lv} ~ Cz max{lgo(P)lv,"" Igm(P)lv} 

for a constant Cz = Cz(v, F, G) > 0, where P ranges over the complement of 
E and Cz = 1 for all but finitely many v. Now raise to the [Kv: Qv] power, 
multiply over all vEMK , and take the [K: Q]th root. This gives 

H(F(P)) ~ C3 H(G(P)), 

with C3 = C3 (F, G) > 0, as P ranges over the complement of E in V. Next, 
since 2 has no basepoints, we can choose finitely many divisors E l' ... , E, in 
the linear system for 2 so that the E;'s have trivial intersection. In this way 
we obtain the above inequality on all of V. Taking logarithms gives one of the 
desired bounds, and the other follows by symmetry. D 

Definition. The group of functions mod 0(1) on V, denoted £(V), is defined 
by 

£(V) = {functions h: V ~ IR}/{bounded functions}. 

Definition. Let 2 be a sheaf without basepoints on V. The height function 
associated to 2 is the class of functions hfi' E £(V) obtained by taking the 
height function hF for any map F associated to 2. (From Theorem 3.1, hfi' 
is well-defined.) 

Proposition 3.2. Let 2 and .H be basepointlree sheaves on V. Then 

hfi'0.A = hy + h.A + 0(1). 

PROOF. Let F = [fo, ... ,fn] and G = [go, ... , gm] be maps associated to 2 
and .H respectively. Then the map 

[ I'g] . V ~ iP>nm+n+m 
"',J; 1'''' O,,;i";n,O,,;j,,;m' 
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is associated with 2 ®.11. (This is just the composition of the map 
F x G: V x V --+ !P" x !pm with the Segre embedding !P" x !pm --+ !p"m+"+m.) 

Now the desired result follows immediately from 

max{ ... , I/;gjlv, ... } = max{ ... , I/;Iv, ... } max{ ... , Igjlv, ... }. 0 

Definition. Let 2 E Pic (V) be any invertible sheaf. Choose sheaves 21 and 
22 without basepoints such that 2 = 21 ® 221. Then the height function 
on Vassoicated to 2 is the function defined by 

h!l' = h!l'. - h!l'2 E Jf'(V). 

Note that from Theorem 3.1 and Proposition 3.2, this is independent of 
the choice of the 2;'s. The fact that any invertible sheaf is the difference of 
basepoint-free sheaves follows from standard results in algebraic geometry 
(such as [Har, 11.5.17].) 

Theorem 3.3 (Height Machine). (a) There exists a unique homomorphism 

Pic(V) --+ Jf'W), 

2 --+ h!l" 

with the property that if 2 has no basepoints and F: V --+ !P" is a morphism 
associated to 2, then 

h!l' = hF + 0(1). 

(b) Iff: V --+ W is a morphism of smooth varieties, and 2 is an invertible sheaf 
on W, then 

hf*!l' = h!l' 0 f + 0(1). 

[That is, the homomorphism in (a) isfunctorial with respect to morphisms of 
smooth varieties.] 

PROOF. (a) This follows immediately from Theorem 3.1 and Proposition 3.2. 
(b) If 2 has no basepoints, and F: W --+ !P" is associated to 2, then F 0 f 

is associated to f* 2. 0 

Corollary 3.4 (Finiteness). If 2 is an ample sheaf on V, then for all constants 
C and d, the set 

{P E V(Q): h!l' ~ C and [Q(P): 0] ~ d} 

is finite. 

PROOF. Choose some integer m so that 2®m is very ample, and let F: V --+ !P" 
be an embedding associated to 2®m. Then for P in this set, 

C ~ hAP) = (l/m)h!l'®m(P) + 0(1) = h(F(P)) + 0(1). 
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This reduces the problem to the usual height on lPn, to which we can apply 
Theorem 2.1. 0 

There are two other basic properties of height functions which we should 
mention, but we will refer the reader to the literature for their proofs. 

Proposition 3.5 (Positivity). Let Y be an invertible sheaf on Vwhose base locus 
B is not all of V. (That is, there is a rational map F: V --+ IPn associated to Y 
which is a morphism on the complement of B.) Then 

h!l' ~ 0(1) on the complement of B. 

PROOF. [La, Chap. 4, Prop. 5.2]. o 
Proposition 3.6 (Quasi-equivalence). Let Y and vi{ be algebraically equivalent 
sheaves on V, and assume that Y is ample. Then for all e > 0, 

(1 - e)h!l' - 0(1) :s; hJ( :s; (1 + e)h!l' + 0(1). 

(Here the 0(1) constants will depend on e. Notice in particular that 

PROOF. [La, Chap. 4, Prop. 5.3]. o 

§4. Heights on Abelian Varieties 

Using the height machine (Theorem 3.3), any relation between sheaves gives 
a corresponding relation between height functions. On an abelian variety, the 
theorem of the cube gives such a relation. This leads to the fundamental fact 
that on an abelian variety, a height function behaves essentially quadratically 
with respect to the group law. 

Theorem 4.1. Let A/Q be an abelian variety, and let Y be an invertible sheaf 
on A. Thenfor all P, Q, ReA, 

~~+Q+~-~~+0-~~+~-~~+~ 

+ h!l'(P) + h!l'(Q) +h!l'(R) = 0(1). 

(As usual, the 0(1) constant depends on A and Y, but is independent of P, Q, 
R. This says that up to a bounded amount, h!l' is a quadratic function.) 

PROOF. Define maps 
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by projecting onto the indicated components and then adding. For example, 

n1 (P, Q, R) = P and n23(P, Q, R) = Q + R. 

Then the theorem of the cube ([Mum, Chap. 2, §6, Cor. 2]) says that 

ni232 ® ni22-1 ® ni32-1 ® ni32-1 ® ni 2 ® ni 2 ® nj 2 

is isomorphic to the trivial sheaf. Hence using the height machine (Theorem 
3.3), we obtain (note h1[*!AP, Q, R) = hp(n(P, Q, R)) + 0(1) from Theorem 
3.3b)) 

h.!i'(n123(P, Q, R)) - h.!i'(n12(P, Q, R)) - h.!i'(n13(P, Q, R)) - h.!i'(n23(P, Q, R)) 

+ h.!i'(n1(P, Q, R)) + hp (n2(P, Q, R)) + h.!i'(n3(P, Q, R)) = 0(1). 

This is exactly the desired relation. D 

Corollary 4.2. (a) Let n be an integer, and let En]: A --. A be the multiplication
by-n map. Then 

h.!i' ° En] = ((n2 + n)/2)h.!i' + ((n2 - n)j2)h.!i' ° [ -1] + 0(1). 

(The 0(1) bound will depend on n.) In particular, if 2 is even (i.e. 
[ -1]* 2 ~ 2), then 

h.!i' ° En] = n2 h.!i' + 0(1); 

and if 2 is odd ([ -1)*2 ~ 2-1), then 

h.!i'0 En] = nh.!i' + 0(1). 

(b) If 2 is even, then h.!i' satisifies the parallogram law (modulo 0(1)), 

h.!i'(P + Q) + h.!i'(P - Q) = 2h.!i'(P) + 2h.!i'(Q) + 0(1). 

If 2 is odd, then h.!i' is linear (modulo 0(1)), 

h.!i'(P + Q) = h.!i'(P) + h!AQ) + 0(1). 

PROOF. (a) In Theorem 4.1, put Q = [n]P and R = [ -l]P. This yields the 
relation 

h.!i'([n + l]P) + h.!i'([n - l]P) 

= 2h.!i'([n]P) + h.!i'(P) + h.!i'([ -l]P) + 0(1). 

Since the desired result is clearly true for n = 0, 1, an easy induction (both 
upward and downward) using the above relation gives it for all n. Finally, the 
two cases with 2 even or odd follow immediately from 

h.!i' ° [ -1] = h[-11*.!i' + 0(1). 

(b) If 2 is even, then from (a), h.!i'([ -l]P) = h.!i'(P) + 0(1). Putting 
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R = [ -1]Q in Theorem 4.1 and using this gives the parallogram law. Simi
larly, if 2 is odd, then (a) implies that hA[ -1]P) = -h.:AP) + 0(1); so 
putting R = [ -1] (P + Q) in Theorem 4.1 gives the desired linearity. 0 

Theorem 4.1 says that the height on an abelian variety is "essentially" a 
quadratic function. Andre Neron asked whether one could find an actual 
quadratic function which differs from the height by a bounded amount. He 
constructed such a function as a sum of local "quasi-quadratic" functions. At 
the same time, John Tate gave a simpler global construction. We will state 
the main result here, and refer the reader to the literature for a proof. 

Theorem 4.3. Let A/I!) be an abelian variety, and let 2 be an invertible sheaf 
on A. 

(a) There is a unique function 

with the following properties: 
(i) h!t' is a quadratic function (i.e. the map 

( , ): A x A -+ IR, 

(P, Q) = h!t'(P + Q) - h!t'(P) - h!t'(Q) 

is bilinear.) 
(ii) h!t' = h!t' + 0(1) on A. 

(b) Assume now that 2 is ample and symmetric. Then 
(i) h!t'(P);;::: 0 for all PEA. 

(ii) hAP) = 0 if and only if P is a point offinite order. 
(iii) More generally, h!t' is a positive definite quadratic form on A(I!) ® IR. 

PROOF. See [La, Chap. 5, §3, 6, 7]. o 

§5. The Mordell-Weil Theorem 

In this section we will use the theory of height functions to deduce the strong 
Mordell-Weil theorem from the weak Mordell-Weil theorem. The properties 
of height functions which we will use are axiomatized in the following lemma. 

Lemma 5.1 (Descent Lemma). Let A be an abelian group. Suppose that there 
is a height function 

h: A -+ IR 
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with the following three properties: 

(i) Let Q E A. There is a constant C1, depending on A and Q, so that for all 
PEA, 

h(P + Q):::; 2h(P) + C1 . 

(ii) There is an integer m ;?: 2 and a constant C2 , depending on A, so that for 
all PEA, 

(iii) For every constant C3 , 

is a finite set. 

Suppose further that for the integer m in (ii), the quotient group A/rnA is finite. 
Then A is finitely generated. 

PROOF. Choose elements Ql' ... , Qr E A to represent the finitely many co sets 
in A/rnA. Now let PEA. The idea is to show that by subtracting an appro
priate linear combination of Ql' ... , Qr from P, we will be able to make the 
height of the resulting point less than a constant which is independent of P. 
Then Ql' ... , Qr and the finitely many points with height less than this 
constant will generate A. 

Write 

P = mPl + Qil 

Continuing in this fashion 

Now for any j, we have 

for some 1 :::; i 1 :::; r. 

from (ii) 

from (i), 

where we take C~ to be the maximum of the constants from (i) for Q = - Qi' 
1 :::; i :::; r. Note that C~ and C2 do not depend on P. 

Now use the above inequality repeatedly, starting from Pn and working 
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back to P. This yields 

( 2 )n [ 1 2 4 2n-1] h(Pn):5: -2 h(P) + ~ + 4 + 6 + ... + ---zn (C~ + C2 ) 
m m m m m 

since m:;::: 2. 

It follows that by takillg n sufficiently large, we will have (say) 

h(Pn) :5: 1 + (C~ + C2)/2. 

Since (from above) 

it follows that every PEA is a linear combination of the points in the set 

From (iii), this is a finite set, which proves that A is finitely generated. D 

The strong Mordell-Weil theorem is now a formal consequence of the 
weak Mordell-Weil theorem and the standard properties of height functions. 

Theorem 5.2 (Mordell-Weil). Let K be a number field and A/K an abelian 
variety. Then the group A(K) is finitely generated. 

PROOF. Let m :;::: 2 be any integer (e.g. m = 2), and let 

h: A --+ IR 

be a height function on A corresponding to a very ample symmetric line 
bundle. From the weak Mordell-Weil theorem [Mil, Theorem 20.10], we 
know that the group A(K)/mA(K) finite. Thus in order to apply the descent 
lemma (5.1) to the group A(K), we must verify the following three properties 
for the height function h. 

(i) Fix Q E A(K). Then 

(ii) 

h(P + Q):5: 2h(P) + 0(1) for all PEA(K), 

where the 0(1) constant depends only on A and Q. 

h(mP):;::: m2 h(P) + 0(1) for all PEA(K), 

where the 0(1) constant depends only on A and m. 
(iii) For every constant C, 

{PEA(K): h(P):5: C} 

is a finite set. 
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Now (i) is immediate from Corollary 4.2(b) (remember that h takes only 
non-negative values), while Corollary 4.2(a) gives something stronger than 
(ii). Finally, (iii) is a special case of Corollary 3.4. Therefore Lemma 5.1 is 
applicable, and we conclude that A(K) is finitely generated. D 

Heights and Metrized Line Bundles 

§6. Metrized Line Bundles On Spec(R) 

We fix the following notation. 

K a number field. 
R the ring of integers of K. 
MK the usual set of absolute values on K extending those on Q. 

MK'(Mf) the archimedean (respectively non-archimedean) 
absolute values in M K • 

Recall that a line bundle (or invertible sheaf) ff on Spec(R) is nothing other 
than a projective R-module of rank 1. 

Definition. A metrized line bundle on Spec(R) is a pair (ff, 1·1), where ff is a 
line bundle on Spec(R), and for each archimedean absolute value v E MK', 1·lv 
is a v-adic norm (metric) on the one-dimensional Kv vector space ff ®R Kv. 
(As usual, we let 1I·llv = 1·I~Kv:()vl.) 

The degree of a metrized line bundle (ff, 1·1) is defined as 

deg(.P, 1·1) = log # (.P/Rt) - I loglltllv, 
veM'K 

where we choose any t E ff with t #- o. 

Remarks. (1) One easily checks that deg(ff, 1·1) is independent of the choice 
of t. 

(2) If R is a P.I.D., then ff is free, so we can choose atE ff so that ff = Rt. 
Then deg(ff, 1·1) = - LVEMK' log II t Ilv. In particular, if R = 7L, then up to ± 1 
there is a unique generator t for ff, and then deg(ff, 1·1) = -log Itle". 

§7. Metrized Line Bundles on Varieties 

We set thefollowing notation. 

VjK a projective variety. 
ff a line bundle on VjK (often assumed to be very ample). 
ffp the fibre (stalk) of ff at a point P of V(it is a one-dimensional 

K(P) vector space). 
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Definition. Let v E MK • A v-adic metric on Y consists of a (non-trivial) v-adic 
norm I· Iv on each fibre Yp ® Kv such that the norms "vary continuously 
with P E V(Kv)." [That is, if f E HO(U, Y) is a section on some open set U, and 
if U(Kv) is given the v-adic topology, then the map 

is continuous.] 

Intuition. Let f E H°(V, Y) be a global section, and let D = (f) ~ 0 be the 
divisor of f Notice that 

Ifplv = 0 - fp = 0 - PESupport(D). 

This and the continuity condition on the metric means that we should think 
of Ifplv as 

Ifplv "=" the v-adic distance from P to D. 

Lemma 7.1. Let v E MK', and suppose that 1·lv and I·I~ are two v-adic metrics on 
Y. Then there exist constants c l , C2 > 0 such that 

PROOF. For each P E V(Kv), choose some fp E Yp with fp -# O. Then Ifplv!lfpl~ 
is independent of the choice of fp, so we obtain a well-defined map 

F: V(Kv) -+ (0, 00), 

But F is continuous; and since V is projective, V(Kv) is compact. Therefore 
there are constants cl , C2 > 0 such that Cl ~ F(P) ~ C2 for all PE V(Kv ), 

which is the desired result. D 

We assume now that Y is very ample, and fix an embedding V c PK 
corresponding to Y (i.e. Y ~ (9v(1).) Notice that once this is done, then any 
point P E V(K) extends uniquely to a point in PHR); or, what is the same 
thing, to a map 

P: Spec(R) -+ P~. 

Hence if we are given v-adic metrics on (9(1) for each vEMK', then by pull
back P*{9(1) becomes a metrized line bundle on Spec(R). 

Proposition 7.2. With notation as above, fix v-adic metrics on (9(1) for each 
vEMK'. Then 

deg P*{9(l) = [K: Q]h2'(P) + 0(1). 

(Note that the latter 0(1) represents a bounded function, not a line bundle.) 

PROOF. Using Lemma 7.1 and the definition of the degree of a metrized line 
bundle, we see that if the metrics on (9(1) are changed, then the degree of 
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P*(9(1) only changes by 0(1). Hence it suffices to prove the proposition for 
anyone choice ofmetrics on (9(1). 

Let xo, ... , Xn be generators for (9(1) (i.e. projective coordinates on !Pn.) 
Then for each vEMK', we define a v-adic metric on (9(1) as follows. Let 
fEHo(!P n, (9(1)) be a global section. Then for each PE V(Kv), 

If(P)lv = min {1(f/x;)(P)lv}' 
OS;iS;n 
Xi(P),cO 

Since (9(1) is generated by the global sections X o, ... , x n , one easily checks 
that this defines v-adic metrics on (9(1). We now prove Proposition 7.2 for 
this particular choice of metrics. 

Let P E !pn(K). By symmetry, we may assume that xo(P) #- O. We compute 
the degree ofthe metrized line bundle P* (9(1) using the section P* Xo = xo(P). 
First, for vEMK', 

Ixo(P)lv = min {1(xO/xi)(P)lv}' 
OS;iS;n 

On the other hand, 

so 

P*(9(1)/Rxo(P) ~ Ct RXi(P) )/RXo(P) ~ Ct R(xdxo)(P) )/R; 

# P*(9(1)/Rxo(P) = INKIQ Ct R(xdxo)(P) )r1 

= n max II(xdxo)(P)llv· 
vEM~O,:5;;i~n 

Hence for this choice of metrics on (9(1), 

deg P*(9(1) = log( # P*(9(1)/Rxo(P)) - L 10gllxo(P)IIv 
veM'K 

= log CJ!~o~~:n II(Xdxo)(P)llv) - v];/Og o~:~n lI(xo/x;)(P)lIv 

= L log max lI(xdxo)(P)llv 
veMK OS;iS;n 

= [K : Q]h([1, x1/XO(P), ... , xn/xo(P)]) 

= [K : Q]h~(P) + 0(1). o 

§8. Distance Functions and Logarithmic Singularities 

As we have seen (Lemma 7.1), any two metrics on a line bundle over a 
projective variety are essentially the same. The proof of this fact used a 
compactness argument which depends on the projectivity of the variety. 
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However, we will need to work with metrics which are only defined over a 
Zariski-open subset of the given projective variety, and it will be necessary to 
describe the behavior of the metric as one approaches the boundary of the 
open set. For this purpose, it is convenient to have a means of specifying how 
far one is from the boundary. We will use the following notation in this 
section: 

V/K a projective variety. 
XjK a Zariski-closed subset of V. 
U the complement of X. 

Definition. Let v E M:. A logarithmic distance function for X (with respect to 
v) is a map 

with the property that if f1 = ... = f,. = 0 are local equations for X, then the 
quantity 

extends to a bounded function on any open subset of V(Kv) on which the jj 
are regular. (When dealing with several absolute values, we will use the 
notation dx.v • Here log+(t) = max {log(t), O}.) 

Intuition. dx(P) "=" log (v-adic distance from P to Xr1. 

Remarks. (1) Using the fact that V(Kv) is compact, it is not difficult to 
construct a logarithmic distance function and to show that any two such 
functions differ by 0(1) (i.e. by a function which is bounded on U(Kv)). 

(2) If Yis a Zariski-closed subset of X, then it is clear that 

dx(P) ~ dy(P) + 0(1). 

We next give the fundamental relation between distance and height 
functions. 

Proposition 8.1. Let 2 be an ample line bundle on V/K. Then there exists a 
constant c > 0 such that 

h!AP) > c dx(P) + 0(1) for all Pin U(K). 

Intuition. If P is not in X(Kv ), then in order for P to be close to X in the v-adic 
topology, it is necessary for the coordinates of P to be v-adically complicated; 
and this causes h.AP) to increase proportionally. 

PROOF. If .A is any other ample line bundle, then there are integers m and n 
such that 2 n ® .A-1 and 2-1 ® .Am are both very ample. It follows that 

nh!£ ~ h.,u - 0(1) and mh.,u ~ h!£ - 0(1). 
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It thus suffices to prove the proposition for anyone ample line bundle 2. 
Therefore by choosing a very ample effective divisor D containing X, letting 
2 = @v(D), and using remark (2) above, we reduce to the case that V = lPn, 
2 = @,,(1), and X = {xo = O} is the hyperplane at infinity. 

Now XOIXi = 0 is a local equation for X (i.e. on the open set defined by 
Xi i= 0.) Since these open sets cover V = lPn, a distance function dx for a given 
absolute value v E Mf can be defined (globally) for P in U(Kv) by 

dx(P) = max 10glxolxi(P)I;;-l = max 10glxJxo(P)lv. 

But by definition of the height for 2 = @,,(1), we have for P in U(K) that 

[K: Q]h2'(P) = L max 10gllxJxo(P)IIw (note each term is ~ 1) 
wEMKO::;i~n 

~ [Kv: Qv] max 10glxJxo(P)lv 
0::;; i::;; n 

Definition. Let V, X, U be as above, let 2 be a line bundle on V, and let I'I~ 
be a v-adic metric on the restriction 2 I u. We say that I'I~ has logarithmic 
singularities along X if for any v-adic metric I' Iv defined on all of 2, there are 
constants Cl , Cz > 0 such that 

on U(Kv). 

If (2 I u, 1'1') is a metrized line bundle, then we say that it has logarithmic 
singularities along X if I'I~ has logarithmic singularities along X for each 
vEMf· 

Remarks. (1) Note that l'lvll'l~ gives a well-defined function U(Kv) -+ (0, (0). 
(See the proof of Lemma 7.1.) 

(2) From Lemma 7.1, we see that in order to check if a metric has loga
rithmic singularities, it suffices to check that it has logarithmic singularities 
when compared with anyone metric l'lv defined on all of 2. 

(3) If (2 I u, 1'1') is a metrized line bundle (regardless of the singularities 
along X), we can define a height function on U(K) by taking the degree, 

h2'.I-I'(P) = (l/[K : Q]) deg(P* 2). 

Thus if I'I~ extends to a metric on all of 2, then h2'.I-I' is the usual height 
(Proposition 7.2). 

The most important fact about metrized line bundles with logarithmic 
singularities is that the fundamental finiteness result (Corollary 3.4) remains 
true. 

Proposition 8.2 (Faltings [Fa]). With notation as above, let (2 I u, 1'1') be a 
very ample metrized line bundle with logarithmic singularities along X. Thenfor 
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any constant C, the set 

{PE U(K): h.9'.I·I'(P) < C} 

is finite. 

PROOF. Let 1'1 be a metric defined on all of 2, let PE U(K), and let I be a 
section of 2 which is defined and non-zero at P. Computing h.9'.I'I(P) as 
(l/[K: OJ) deg(P* 2) (Proposition 7.2), we see that the contributions of the 
non-archimedean places to h.9'.I'I(P) and h.9'.I'I'(P) are the same. Hence using 
the definition of degree and of logarithmic singularity, we compute 

[K: OJ I h.9'.I·I(P) - h.9'.I·I'(P)I = I v.fuK log( Illp Ilv/lllp II~)I 
.::; L log c 1(dx .v(P) + 1)<2 

veM'K 

.::; c3 10g(h.9'.I'I(P) + 1) + C4 

(Proposition 8.1). 

From this it immediately follows that 

h.9'.I·I(P),::; csh.9'.I·I'(P) + C6 

for PE U(K), so we are reduced to looking at sets where the usual height 
h.9'.I'1 is bounded. Now the desired result follows from Corollary 3.4. D 
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CHAPTER VII 

J aco bian Varieties 

1. S. MILNE 

This chapter contains a detailed treatment of Jacobian varieties. Sections 2, 
5, and 6 prove the basic properties of Jacobian varieties starting from the 
definition in Section 1, while the construction of the Jacobian is carried out 
in Sections 3 and 4. The remaining sections are largely independent of one 
another. 

The conventions are the same as those listed at the start of Chapter V, 
"Abelian Varieties" (see also those at the start of Section 5 of that chapter). 

§l. Definitions 

Recall that for a scheme S, Pic(S) denotes the group Hl(S, (9;) of isomor
phism classes of invertible sheaves on S, and that S 1-+ Pic(S) is a functor from 
the category of schemes over k to that of abelian groups. 

Let C be a complete nonsingular curve over k. The degree of a divisor 
D = L niP; on Cis L n;[k(P;): k]. Since every invertible sheaf ff on Cis of the 
form ff(D) for some divisor D, and D is uniquely determined up to linear 
equivalence, we can define deg(ff) = deg(D). Then deg(ffn) = deg(nD) = 
n' deg(D), and the Riemann-Roch theorem says that 

X(C, ffn) = n' deg(ff) + 1 - g. 

This gives a more canonical description of deg(ff): when X(C, ffn) is written 
as a polynomial in n, deg(ff) is the leading coefficient. We write PicO(C) for 
the group of isomorphism classes of invertible sheaves of degree 0 on C. 

Let T be a connected scheme over k, and let ff be an invertible sheaf 
on C x T (by which we mean C xspec(k) T). Then [14,4.2(b)] shows that 
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x(Ct , 2~), and therefore deg(2t), is independent of t; moreover, the constant 
degree of 2t is invariant under base change relative to maps T' --+ T. Note 
that for a sheaf.A on C x T, (q* .A)t is isomorphic to (!Jet and, in particular, 
has degree O. Let 

Pg(T) = {2EPic(C x T)ldeg(2t) = 0 all t}/q* Pic(T). 

We may think of Pg(T) as being the group offamilies of invertible sheaves on 
C of degree 0 parametrized by T, modulo the trivial families. Note that Pg is 
a functor from schemes over k to abelian groups. It is this functor that the 
Jacobian attempts to represent. 

Theorem 1.1. There is an abelian variety J over k and a morphism of functors 
l: Pg --+ J such that I: Pg(T) --+ J(T) is an isomorphism whenever C(T) is 
nonempty. 

Let k' be a finite Galois extension of k such that C(k') is nonempty, and let 
G be the Galois group of k' over k. Then for every scheme T over k, c(T,.,) is 
Qonempty, and so I(T,.,): Pg(T,.,) --+ J(T,.,) is an isomorphism. As 

J(T) ~ Mork(T, J) = MordT,." Jkf = J(T,.f, 

we see that J represents the functor Tf--+ pg(T,.f, and this implies that 
the pair (J, I) is uniquely determined up to a unique isomorphism by the 
condition in the theorem. The variety J is called the Jacobian variety of C. 
Note that for any field k' ::::> k in which C has a rational point, 1 defines an 
isomorphism PicO(C) ~ J(k'). 

When C has a k-rational point, the definition takes on a more attractive 
form. A pointed k-scheme is a connected k-scheme S together with an element 
s E S(k). Abelian varieties will always be regarded as being pointed by the zero 
element. A divisorial correspondence between two pointed schemes (S, s) and 
(T, t) over k is an invertible sheaf 2 on S x T such that 21S x {t} and 
2 I {s} x T are both trivial. 

Theorem 1.2. Let P be a k-rational point on C. Then there is a divisorial 
correspondence .AP between (C, P) and J such that,for every divisorial corre
spondence 2 between (C, P) and a pointed k-scheme (T, t), there exists a unique 
morphism cp: T --+ J such that cp(t) = 0 and (1 x cp)*.AP ~ 2. 

Regard .AP as an element of Pic(C x J); then the pair (J, .AP ) is uniquely 
determined up to a unique isomorphism by the condition in (1.2). Note that 
each element of PicO(C) is represented by exactly one sheaf .Aa, aE J(k), and 
the map cp: T --+ J sends tE T(k) to the unique a such that.Aa ~ 2 t • 

Theorem 1.1 will be proved in Section 4. Here we merely show that it 
implies (1.2). 

Lemma 1.3. Theorem 1.1 implies Theorem 1.2. 
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PROOF. Assume there is a k-rational point P on C. Then for any k-scheme T, 
the projection q: C x T -+ T has a section s = (t 1---+ (P, t)), which induces 
a map s* = (.PI---+.PI{P} x T): Pic(C x T) -+ Pic(T) such that s*oq* = id. 
Consequently, Pic(C x T) = Im(q*) EEl Ker(s*), and so PS(T) can be iden
tified with 

P'(T) = {.PEPic(C x T)ldeg(.Pt ) = Oallt,.PI{P} x Tis trivial}. 

Now assume (1.1). As qT) is nonempty for all k-schemes T, J represents 
the functor pS = P'. This means that there is an element .A of P'(J) (corre
sponding to id: J -+ J under I) such that, for every k-scheme T and .P E P'(T), 
there is a unique morphism <p: T -+ J such that (1 x <p)*.A ~ .P. In partic
ular, for each invertible sheaf.P on C of degree 0, there is a unique a E J(k) 
such that .Aa ~ .P. After replacing .A with (1 x ta)*.A for a suitable a E J(k), 
we can assume that .A ° is trivial, and therefore that .A is a divisorial corre
spondence between (C, P) and J. It is clear that.A has the universal property 
required by (1.2). D 

Exercise 1.4. Let (J, .AP ) be a pair having the universal property in (1.2) 
relative to some point P on C. Show that J is the Jacobian of C. 

We next make some remarks concerning the relation between pS and J in 
the case that C does not have a k-rational point. 

Remark 1.5. For all k-schemes T, I(T): PS(T) -+ J(T) is injective. The proof of 
this is based on two observations. Firstly, because C is a complete variety 
HO(C, (9e) = k, and this holds universally: for any k-scheme T, the canonical 
map (9T -+ q*(9cxT is an isomorphism. Secondly, for any morphism q: X -+ T 
of schemes such that (!J T ~ q * (!J x, the functor .A f-> q*.A from the category 
of locally free (9T-modules of finite-type to the category of locally free (9x

modules of finite-type is fully faithful, and the essential image is formed of 
those modules ff on X such that q*ff is locally free and the canonical map 
q*(q*ff) -+ ff is an isomorphism. (The proof is similar to that of [14,5.1].) 

Now let .P be an invertible sheaf on C x T that has degree 0 on the fibres 
and which maps to zero in J(T); we have to show that .P ~ q*.A for some 
invertible sheaf .A on T. Let k' be a finite extension of k such that C has a 
k'-rational point, and let.P' be the inverse image of.P on (C x T)k" Then 'p' 

maps to zero in J(11.,), and so (by definition of J) we must have 'p' ~ q*.A' 
for some invertible sheaf.A' on 11.,. Therefore q*.P' is locally free of rank one 
on 11." and the canonical map q*(q*.P') -+ 'p' is an isomorphism. But q*.P' 
is the inverse image of q*.P under T' -+ T (see [14, 4.2a]), and elementary 
descent theory (cf. (1.8) below) shows that the properties of 'p' in the last 
sentence descend to .P; therefore .P ~ q*.A with .A = q*.P. 

Remark 1.6. It is then sometimes possible to compute the cokernel to 
I: PS(k) -+ J(k). There is always an exact sequence 

0-+ PS(k) -+ J(k) -+ Br(k), 
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where Br(k) is the Brauer group of k. When k is a finite extension of O1p, 
Br(k) = 01/71, and it is known (see [11, p. 130J) that the image of J(k) in 
Br(k) is P- l 71/71, where P (the period of C) is the greatest common divisor of 
the degrees of the k-rational divisor classes on C. 

Remark 1.7. Regard p2 as a presheaf on the large etale site over C; then the 
precise relation between J and P2 is that J represents the sheaf associated 
with p2 (see [6, §5J). 

Finally, we show that it suffices to prove (1.1) after an extension of the base 
field. For the sake of reference, we first state a result from descent theory. Let 
k' be a finite Galois extension of a field k with Galois group G, and let V be 
a variety over k'. A descent datum for V relative to k'/k is a collection of 
isomorphisms ({Ja: (J V ~ V, one for each (J E G, such that ({Jta = ({Jt ° T({Ja for all 
(J and T. There is an obvious notion of a morphism of varieties preserving the 
descent data. Note that for a variety V over k, J-k. has a canonical descent 
datum. If V is a variety over k and V' = J-k., tpen a descent datum on 
an lDy.-module .A is a family of isomorphisms ({Ja: (J.A ~.A such that 
({Jta = ({Jt ° T({Ja for all (J and T. 

Proposition 1.8. Let k'/k be afinite Galois extension with Galois group G. 

(a) The map sending a variety Vover k to J-k. endowed with its canonical de
scent datum defines an equivalence between the category of quasi-projective 
varieties over k and that of quasi-projective varieties over k' endowed with 
a descent datum. 

(b) Let V be a variety over k, and let V' = J-k .. The map sending an lDy-module 
.A to .A' = lD y. ® .A endowed with its canonical descent datum defines 
an equivalence between the category of coherent lDy-modules and that of 
coherent lDy.-modules endowed with a descent datum. Moreover, if .A' is 
locally free, then so also is .A. 

PROOF. See [17, V. 20J or [19, §17]. (For the final statement, note that being 
locally free is equivalent to being flat, and that V' is faithfully flat over v.) 

o 
Proposition 1.9. Let k' be afinite separable extension ofk; if (1.1) is truefor Ck·, 

then it is true for C. 

PROOF. After possibly enlarging k', we can assume that it is Galois over k 
(with Galois group G, say) and that C(k') is nonempty. Let J' be the Jacobian 
of Ck •• Then J' represents P2k " and so there is a universal .A in p2(J'). For 
any (J E G, (J.A E p2((JJ'), and so there is a unique map ({Ja: (JJ' ~ J' such that 
(1 x ({Ja)*.A = (J.A (in P2((JJ')). One checks directly that ({Jta = ({Jt ° T({Ja; in 
particular, ({Ja ° (J({Ja-1 = ({Jid, and so the ({Ja are isomorphisms and define a 
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descent datum on J'. We conclude from (1.8) that J' has a model J over k 
such that the map Pg(Ik,) .... d(Ik,) is G-equivariant for all k-schemes T. In 
particular, for all T, there is a map Pg(T) --+ Pg(Ikf ~ J(k')G = J(k). To see 
that the map is an isomorphism when C(T) is nonempty, we have to show 
that in this case Pg(T) --+ Pg(Ikf is an isomorphism. Let s E C(T); then (cf. 
the proof of (1.3», we can identify Pg(Ik,) with the set of isomorphism classes 
of pairs (2, a) where 2 is an invertible sheaf on C x Ik' whose fibres are of 
degree 0 and a is an isomorphism (!}Tk , ~ (1, s)* 2. Such pairs are rigid
they have no automorphisms-and so each such pair fixed under G has a 
canonical descent datum, and therefore arises from an invertible sheaf on 
CxT. D 

§2. The Canonical Maps from C to its 
J aco bian Variety 

Throughout this section, C will be a complete nonsingular curve, and J will 
be its Jacobian variety (assumed to exist). 

Proposition 2.1. The tangent space to J at 0 is canonically isomorphic to 
Hl (C, (!) d; consequently, the dimension of J is equal to the genus of C. 

PROOF. The tangent space To(J) is equal to the kernel of J(k[t:J) --+ J(k), where 
k[t:J is the ring in which t:2 = 0 (see [8, II, Ex. 2.8J). Analogously, we define 
the tangent space To(pg) to Pg at 0 to be the kernel of Pg (k [t:J) --+ Pg(k). From 
the definition of J, we obtain a map of k-linear vector spaces To(Pg) --+ To(J) 
which is an isomorphism if C(k) i= <P. Since the vector spaces and the map 
commute with base change, it follows that the map is always an isomorphism. 

Let C e = Ck[e); then, by definition, P2(k[t:J) is equal to the group of in
vertible sheaves on Ce whose restrictions to the closed subscheme C of Ce 

have degree zero. It follows that To(pg) is equal to the kernel of Hl(C" (!}t)--+ 
Hl(C, (!}l). The scheme Ce has the same underlying topological space a~ C, 
but (!}e, = (!}e ®k k[t:J = (!}e EEl (!}et:· Therefore we can identify the sheaf 
(!)~ on Ce with the sheaf (!)~ EEl (!}et: on C, and so Hl(C" (!)~) = 
Hl(C, (!}~) EEl Hl(C, (!}et:). It follows that the map af---+exp(at:) = 1 + at:, 
(!}e --+ (!)~, induces an isomorphism H1(C, (!}d --+ To(pg). This completes the 
~cl 0 

Let PEC(k), and let 2P be the invertible sheaf 2(.1 - C x {P} - {P} xC) 
on C x C, where A denotes the diagonal. Note that 2P is symmetric and 
that 2 P IC x {Q} ~ 2(Q - P). In particular, 2 P I{P} x C and 2 P IC x {P} 
are both trivial, and so 2P is a divisorial correspondence between (C, P) and 
itself. Therefore, according to (1.2) there is a unique map fP: C --+ J such that 
fP(P) = 0 and (1 x fP)* .,lip ~ 2P. When J(k) is identified with PicO(C), 
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fP: C(k) -+ J(k) becomes identified with the map Q 1-+ 2'(Q) ® 2'(P)-l (or, in 
terms of divisors, the map sending Q to the linear equivalence class [Q - P] 
of Q - P). Note that the map L nQQ 1-+ L nQfP(Q) = [L nQQ] from the group 
of divisors of degree zero on C to J(k) induced by fP is simply the map 
defined by l. In particular, it is independent of P, is surjective, and its kernel 
consists of the principal divisors. 

From its definition (or from the above descriptions of its action on the 
points) it is clear that if P' is a second point on C, then fP' is the composite 
of fP with the translation map tIP-P'l' and that if P is defined over a Galois 
extension k' of k, then (JjP = f"P for all (J E Gal(k'/k). 

If C has genus zero, then (2.1) shows that J = O. From now on we assume 
that C has genus g > O. 

Proposition 2.2. The map (fP)*: nJ, OJ) -+ nC, O~) is an isomorphism. 

PROOF. As for any group variety, the canonical map hI: nJ, OJ) -+ To(Jt 
is an isomorphism [18, III, 5.2]. Also there is a well-known duality between 
nC, O~) and Hl(C, (Oe). We leave it as an exercise to the reader (unfortu
nately rather complicated) that the following diagram commutes: 

f* 
nJ, OJ) -+ nC, O~) 

hJ!~ !~ 

To(Jr ~ Hl(C, (Ocr (dual of isomorphism in (2.1)). 

Proposition 2.3. The map fP is a closed immersion (that is, its image fP(C) is 
closed and fP is an isomorphism from C onto fP(c)); in particular, fP(C) is 
nonsingular. 

PROOF. It suffices to prove this in the case that k is algebraically closed. 

Lemma 2.4. Let f: V -+ W be a map of varieties over an algebraically closed 
field k, and assume that V is complete. If the map V(k) -+ W(k) defined by 
f is injective and, for all closed points Q of V, the map on tangent spaces 
TQ(V) -+ '1fQ(W) is injective, thenfis a closed immersion. 

PROOF. The proof is the same as that of the "if" part of [8, II, 7.3]. (Briefly, the 
image of f is closed because V is complete, and the condition on the tangent 
spaces (together with Nakayama's lemma) shows that the maps (OJQ -+ (OQ on 
the local rings are surjective.) D 

We apply the lemma to f = jP. If f(Q) = f(Q') for some Q and Q' in C(k), 
then the divisors Q - P and Q' - P are linearly equivalent. This implies that 
Q - Q' is linearly equivalent to zero, which is impossible if Q =I- Q' because C 
has genus > O. Consequently, f is injective, and it remains to show that 
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the maps on tangent spaces (dfP)Q: TQ(C) --+ 7JQ(J) are injective. Because fQ 
differs from fP by a translation, it suffices to do this in the case that Q = P. 

The dual of (dfP)p: Tp(C) --+ To(J) is clearly r(J, n 1 r~ r(C, n1) ~ Tp(Cr, 
where he is the canonical map, and it remains to show that he is surjec
tive. The kernel of he is {WEr(C, n1)lw(p) = O} = r(C, n1( -P)), which is 
dual to H1(C, Sf(P)). The Riemann-Roch theorem shows that this last 
group has dimension g - 1, and so Ker(hc) i= r(C, n1): he is surjective, and 
the proof is complete. D 

We now assume that k = C and sketch the relation betwen the ab
stract and classical definitions of the Jacobian. In this case, r(C(C), n1) 
(where n1 denotes the sheaf of holomorphic differentials in the sense of 
complex analysis) is a complex vector space of dimension g, and one shows 
in the theory of abelian integrals that the map IT 1--+ (w 1--+ Jaw) embeds 
H 1(C(C), Z) as a lattice into the dual space r(C(C), n1 r. Therefore 
]Un ~ r(C(C), n1r /H1 (C(C), Z) is a complex torus, and the pairing 

H 1(C(C), Z) x H 1(C(C), Z) --+ Z 

defined by Poincare duality gives a nondegenerate Riemann form on Jan. 
Therefore ]Un is an abelian variety over C. For each P there is a canonical 
map gP: C --+]Un sending a point Q to the element represented by (WI--+ Lw), 
where Y is any path from P to Q. Define e: r(C(C), n 1 r --+ J(C) to be the 
surjection in the diagram: 

r(C(C), n1r - J(C) 

j*v!;::; jexp 

r(J, (1)V ~ To(J). 

Note that if r(C(C), n1)V is identified with Tp(C), then (de)o = (dfP)p. It 
follows that if y is a path from P to Q and I = (w 1--+ L w), then e(l) = f P (Q). 

Theorem 2.S. The canonical surjection e: r(C(C), n1r - J(C) induces an 
isomorphism Jan --+ J carrying gP into fP. 

PROOF. We have to show that the kernel of e is H 1 (C(C), Z), but this follows 
from Abel's theorem and the Jacobi inversion theorem. 

(Abel) Let P1, ... , Pr and Q1, ... , Qr be elements of C(C); then there is a 
meromorphic function on C(C) with its poles at the Pi and its zeros at the Qi 
if and only if for any paths Yi from P to Pi and Y; from P to Qi there exists a Y 
in H 1 (C(C), Z) such that 

I L W - I L W = 1 W all w. 

(Jacobi) Let I be a linear mapping r(C(C), n1) --+ C. Then there exist g 
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points PI' ... , Pg on C(C) and paths Y 1, ... , Y g from P to Pi such that 
I(OJ) = ILiOJ for all OJEqC(C), gl). 

Let IE q C(C), gl t; we may assume it is defined by g points PI, ... , Pg • 

Then I maps to zero in J(C) if and only if the divisor I Pi - gP is linearly 
equivalent to zero, and Abel's theorem shows that this is equivalent to I lying 
in HI (C(C), Z). D 

§3. The Symmetric Powers of a Curve 

Both in order to understand the structure of the Jacobian, and as an aid in 
its construction, we shall need to study the symmetric powers of C. 

For any variety V, the symmetric group Sr on r letters acts on the product 
of r copies vr of V by permuting the factors, and we want to define the rth 
symmetric power vCr) of V to be the quotient Sr \ V r. The next proposition 
demonstrates the existence of vCr) and lists its main properties. 

A morphism q>: v r -+ T is said to be symmetric if q> 0 (J = q> for all (J in Sr. 

Proposition 3.1. Let V be a variety over k. Then there is a variety vCr) and a 
symmetric morphism n: V r -+ vcr) having the following properties: 

(a) as a topological space, (V(r), n) is the quotient of v r by Sr; 
(b) for any open affine subset V of V, vCr) is an open affine subset of vCr) and 

qu(r), lDv(r» = qur, lDyr)Sr (set of elements fixed by the action ofSr)' 

The pair (v(r), n) has the following universal property: every symmetric 
k-morphism q>: V r -+ T factors uniquely through n. 

The map n is finite, surjective, and separable. 

PROOF. If V is affine, say V = spec A, define vCr) to be spec((A ®k ... ®k A)Sr). 
In the general case, write V as a union U Ui of open affines, and construct V 
by patching together the ut). See [16, II, §7, p. 66 and III, §11, p. 112J for the 
details. D 

The pair (V(r), n) is uniquely determined up to a unique isomorphism by 
the conditions of the proposition. It is called the rth symmetric power of V. 

Proposition 3.2. The symmetric power c(r) of a nonsingular curve is nonsingular. 

PROOF. We may assume that k is algebraically closed. The most likely 
candidate for a singular point on c(r) is the image of Q of a fixed point 
(P, ... , P) of Sr on cr, where P is a closed point of C. The completion @p of 
the local ring at P is isomorphic to k[[XJJ, and so 

@(P, ... ,P) ~ k[[XJJ ® ... ® k[[XJJ ~ k[[X1 ,···, XrJJ. 
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It follows that @Q ~ k[[X1 , ••• , Xr]]Sr where Sr acts by permuting the vari
ables. The fundamental theorem on symmetric functions says that, over 
any ring, a symmetric polynomial can be expressed as a polynomial in the 
elementary symmetric functions (J l' ... , (Jr. This implies that 

k[[X1 , .•• , Xr]]Sr = k[[(J 1, ... , (Jr]], 

which is regular, and so Q is nonsingular. 
For a general point Q = n(P, P, ... , P', ... ) with P occuring r' times, P' 

occuring r" times, and so on, 

@Q ~ k[[X1 , ••• , Xr,]]Sr' ® k[[X1, ••• , Xr,,]]Sr" ® ... , 
which the same argument shows to be regular. o 
Remark 3.3. The reader may find it surprising that the fixed points of the 
action of Sr on C do not force singularities on c(r). The following remarks 
may help clarify the situation. Let G be a finite group acting effectively on a 
nonsingular variety V, and suppose that the quotient variety W = G\ V 
exists. Then V --+ W is ramified exactly at the fixed points of the action. A 
purity theorem [5, X, 3.1] says W can be nonsingular only if the ramification 
locus is empty or has pure codimension 1 in V. As the ramification locus of 
vr over Vir) has pure codimension dim(V), this implies that Vir) can be 
nonsingular only if V is a curve. 

Let K be field containing k. If K is algebraically closed, then (3.1a) shows 
that c(r)(K) = Sr \ C(K)', and so a point of c(r) with coordinates in K is an 
unordered r-tuple of K-rational points. This is the same thing as an effective 
divisor of degree r on CK . When K is perfect, the divisors on CK can be 
identified with those on eg fixed under the action of Gal(.R'; K). Since the 
same is true of the points on c(r), we see again that c(r)(K) can be identified 
with the set of effective divisors of degree r on C. In the remainder of this 
section we shall show that c(r)(T) has a similar interpretation for any 
k-scheme. (Since this is mainly needed for the construction of J, the reader 
more interested in the properties of J can pass to the Section 5.) 

Let X be a scheme over k. Recall [8, II, 6, p. 145] that a Cartier divisor D 
is effective ifit can be represented by a family (Vi' g;)i with the gi in qVi' (Ox). 
Let J(D) be the subsheaf of (Ox such that J(D)I Vi is generated by gi. Then 
J(D) = 2( -D), and there is an exact sequence 

o --+ J (D) --+ (Ox --+ (() D --+ 0, 

where (0 D is the structure sheaf of the closed subscheme of X associated with 
D. The closed subschemes arising from effective Cartier divisors are precisely 
those whose shearof ideals can be locally generated by a single element that 
is not a zero-divisor. We shall often identify D with its associated closed 
subscheme. 
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For example, let T = A,l = Spec kEY], and let D be the Cartier divisor 
associated with the Weil divisor nP, where P is the origin. Then D is repre
sented by (yn, A,l), and the associated subscheme is Spec(k[y]/(yn». 

Definition 3.4. Let n: X -+ T be a morphism of k-schemes. A relative effective 
Cartier divisor on X/T is a Cartier divisor on X that is flat over T when 
regarded as a subscheme of X. 

Loosely speaking, the flatness condition means that the divisor has no 
vertical components, that is, no components contained in a fibre. When Tis 
affine, say T = spec(R), then a subscheme D of X is a relative effective Cartier 
divisor if and only if there exists an open affine covering X = U Ui and 
giEr(Ui, (1)x) = Ri such that: 

(a) D n Ui = spec(RdgiR;); 
(b) gi is not a zero-divisor; and 
(c) RdgiRi is flat over R, for all i. 

Henceforth all divisors will be Cartier divisors. 

Lemma 3.5. If Dl and D2 are relative effective divisors on X /T, then so also is 
their sum Dl + D2. 

PROOF. It suffices to prove this in the case that T is affine, say T = spec(R). 
We have to check that if conditions (b) and (c) above hold for gi and g;, then 
they also hold for gig;. Condition (b) is obvious, and the flatness of Rdgig;Ri 
over R follows from the exact sequence 

0-+ RdgiRi ! Rdgig;Ri -+ Rdg;Ri -+ 0, 

which exhibits it as an extension of flat modules. o 

Remark 3.6. Let D be a relative effective divisor on X/To On tensoring the 
inclusion J(D) c; (1)x with 5l'(D) we obtain an inclusion (1)x c; 5l'(D) and 
hence a canonical global section SD of 5l'(D). For example, in the case that T 
is affine and D is represented as in the above example, 5l'(D) I Ui is gi-l Ri and 
sDI Ui is the identity element in Ri . 

The map D H (5l'(D), SD) defines a one-to-one correspondence between 
relative effective divisors on X/T and isomorphism classes of pairs (5l', s) 
where 5l' is an invertible sheaf on X and s E r(X, 5l') is such that 

0-+ (1)x ~ 5l' -+ 5l' /s(1)x -+ 0 

is exact and 5l'/s(1)x is flat over T. 
Observe that, in the case that X is flat over T, 5l'/s(1)x is flat over T if and 

only if, for all tin T, s does not become a zero-divisor in 5l' ® (1)x, (Use that 
an R-module M is flat if Torf(M, N) = 0 for all finitely generated modules N, 
and that any such module N has a composition series whose quotients are 
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the quotient of R by a prime ideal; therefore the criterion has only to be 
checked with N equal to such a module.} 

Proposition 3.7. Consider the Cartesian square 

X+-X'. 

! ! 
T+- T' 

If D is a relative effective divisor on XIT, then its pull-back to a closed sub
scheme D' of x' is a relative effective divisor on X'IT'. 

PROOF. We may assume both T and T' are affine, say T = spec Rand T' = 
spec R', and then have to check that the conditions (a), (b), and (c) above are 
stable under the base change R -+ R'. Write U( = U x T T'; clearly D' n U( = 
spec(R;lg;R;). The conditions (b) and (c) state that 

g. 
0-+ R; -+ R; -+ Rdg;R; -+ 0 

is exact and that Rdg;R; is flat over R. Both assertions continue to hold after 
the sequence has been ten so red with R'. 0 

Proposition 3.8. Let D be a closed subscheme of X, and assume that D and X 
are both flat over T If Dt ~ D x T {t} is an effective divisor on Xtlt for all 
points t of T, then D is a relative effective divisor on X. 

PROOF. From the exact sequence 

0-+ f(D} -+ {!}x -+ {!}D -+ 0 

and the flatness of X and Dover T, we see that f(D} is flat over T The 
flatness of {!} D implies that, for any t E T, the sequence 

0-+ f(D} ®(1)T k(t) -+ {!}x, -+ {!}D, -+ 0 

is exact. In particular, f(D} ® k(t} ~ f(Dt}. As Dt is a Cartier divisor, f(Dt} 
(and therefore also f(D) ® k(t)) is an invertible {!}x,-module. We now apply 
the fibre-by-fibre criterion of flatness: if X is flat over T and fi' is a coherent 
{!}x-module that is flat over T and such that fi't is a flat {!}x,-module for all t 
in T, then fi' is flat over X [2, III, 5.4]. This implies that f(D} is a flat 
{!}x-module, and since it is also coherent, it is locally free over {!}x. Now 
the isomorphism f(D} ® k(t} ~ f(Dt } shows that it is of rank one. It is 
therefore locally generated by a single element, and the element is not a 
zero-divisor; this shows that D is a relative effective divisor. 0 

Let n: C(J -+ T be a proper smooth morphism with fibres of dimension one. 
If D is a relative effective divisor on C(JIT, then Dt is an effective divisor on C(Jt, 
and if T is connected, then the degree of Dt is constant; it is called the degree 
of D. Note that deg(D} = r if and only if {!}D is a locally free {!}T-module of 
rank r. 
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Corollary 3.9. A closed subscheme D ofCC is a relative effective divisor on CCIT 
if and only if it is finite and flat over T; in particular, if s: T -+ CC is a section to 
n, then s(T) is a relative effective divisor of degree 1 on CCIT. 

PROOF. A closed subscheme of a curve over a field is an effective divisor if and 
only if it is finite. Therefore (3.8) shows that a closed subscheme D of CC is a 
relative effective divisor on CC IT if and only if it is flat over T and has finite 
fibres, but such a subscheme D is proper over T and therefore has finite fibres 
if and only if it is finite over T (see [13, I, 1.10] or [8, III, Ex. 11.3]). D 

If D and D' are relative effective divisors on CC IT, then we write D ~ D' if 
D :::) D' as subschemes of CC (that is, f(D) c f(D')). 

Proposition 3.10. If Dr ~ D; (as divisors on Ct}for all t in T, then D ~ D'. 

PROOF. Represent D as a pair (s, .P) (see 3.6). Then D ~ D' if and only if s 
becomes zero in .P ® ~D' = .PID'. But .P ® ~D' is a locally free ~T-module 
of finite rank, and so the support of s is a closed subscheme of T. The 
hypothesis implies that this subscheme is the whole of T. D 

Let D be a relative effective divisor of degree r on CCIT. We shall say that 
D is split if Supp(D) = U si(T) for some sections Si to n. For example, a 
divisor D = L niPi on a curve over a field is split if and only if k(Pi ) = k for 
all i. 

Proposition 3.11. Every split relative effective divisor D on CC IT can be written 
uniquely in the form D = L nisi(T)for some sections Si' 

PROOF. Let Supp(D) = U s;(T), and suppose that the component of D with 
support on s;(T) has degree n;. Then Dr = (L n;s;(T))t for all t, and so (3.10) 
shows that D = L n;si(T). D 

Example 3.12. Consider a complete nonsingular curve C over a field k. For 
each i there is a canonical section Si to q: C X cr -+ C', namely, (PI' ... , Pr ) f-+ 

(P;, PI, ... , Pr)' Let D; to be s;(C') regarded as a relative effective divisor on 
C x crlcr, and let D = LD;. Then D is the unique relative effective divisor 
C x crlC' whose fibre over (PI' ... , Pr) is LP;, Clearly D is stable under the 
action of the symmetric group S" and Dean = Sr\D (quotient as a subscheme 
of C x Cr) is a relative effective divisor on C X c(r)/c(r) whose fibre over 
DE c(r)(k) is D. 

For C a complete smooth curve over k and T a k-scheme, define Divc(T) 
to be the set of relative effective Cartier divisors on C x TIT of degree r. 
Proposition 3.7 shows that Dive is a functor on the category of k-schemes. 
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Theorem 3.13. For any relative effective divisor Don C x T/Tof degree r, there 
is a unique morphism cp: T --+ c(r) such that D = (1 x cpf1(Dcan). Therefore c(r) 

represents Dive. 

PROOF. Let us first assume that D is split, so that D = I nis;(T) for some 
sections Si: T --+ C x T. In this case, we define T --+ C' to be the map 
(p 0 Sl' ... , po Sl' po S2' ... ), where Si occurs ni times, and we take cp to be the 
composite T --+ C' --+ c(r). In general, we can choose a finite flat covering 
l/J: T' --+ T such that the inverse image D' of D on C x T' is split, and let 
cp': T' --+ c(r) be the map defined by D'. Then the two maps cp' 0 p and cp' 0 q 

from T' x T T' to c(r) are equal because they both correspond to the same 
relative effective divisor 

p-1(D') = (l/Jop)-l(D) = (l/Joqf1(D) = q-1(D') 

on T' x T T'. Now descent theory [13, I, 2.17] shows that cp' factors through 
T. 0 

Exercise 3.14. Let E be an effective Cartier divisor of degree r on C, and 
define a subfunctor Div~ of Dive by 

Div~(T) = {DEDive(T)IDt "-' E all tE T}. 

Show that Div~ is representable by IP(V) where V is the vector space 
r(C, 2(E)) (use [8, II, 7.12]) and that the inclusion Div~ c:; Dive defines a 
closed immersion IP(V) c:; c(r). 

Remark 3.15. Theorem 3.13 says that c(r) is the Hilbert scheme Hilb~/k where 
P is the constant polynomial r. 

§4. The Construction of the J aco bian Variety 

In this section, C will be a complete nonsingular curve of genus g > 0, and P 
will be a k-rational point on C. Recall (1.9), that in constructing J, we are 
allowed to make a finite separable extension of k. 

For a k-scheme T, let 

P~(T) = {2EPic(C x T)ldeg(2 t ) = raIl t}/"-', 

where 2 "-' 2' means 2 ~ 2' @ q* vi( for some invertible sheaf vi( on T. 
Let 2r = 2(rP); then 2H2 ® p*2r is an isomorphism P~(T)--+PC(T), 
and so, to prove (1.1), it suffices to show that P~ is representable for some r. 
We shall do this for a fixed r > 2g. 

Note that there is a natural transformation of functors f: DiVe --+ P~ 

sending a relative effective divisor Don C x T/T to the class of 2(D) (or, in 
other terms, (s, 2) to the class of 2). 
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Lemma 4.1. Suppose there exists a section s to f: Dive --+ Pc. Then Pc is 
representable by a closed subscheme of c(r). 

PROOF. The composite cp = so f is a natural transformation of functors 
Dive --+ Dive and Dive is representable by c(r), and so cp is represented by a 
morphism of varieties. Define J' to be the fibre product, 

Then 

c(r) ~ J' 

(1, cp)! ! 
c(r) x c(r) t c(r). 

J'(T) = {(a, b)E Cr)(T) x C(r)(T)la = b, a = cpb} 

= {aECr)(T)la = cp(a)} 

= {aE Cr)(T)la = sc, some cEPc(T)} 

~ Pc(T), 

because s is injective. This shows that Pc is represented by J', which is a 
closed subscheme of C r ) because ~ is a closed immersion. D 

The problem is therefore to define a section s or, in other words, to find 
a natural way of associating with a family of invertible sheaves 2 of degree r 
a relative effective divisor. For 2 an invertible sheaf of degree r on C, 
the dimension hO(2) of HO(C, 2) is r + 1 - g, and so there is an (r - g)
dimensional system of effective divisors D such that 2(D) ~ 2. One way to 
cut down the size of this system is to fix a family y = (PI' ... ,Pr - g ) of 
k-rational points on C and consider only divisors D in the system such that 
D ~ Dy, where Dy = L Pi. As we shall see, this provides a partial solution to 
the problem. 

Proposition 4.2. Let y be an (r - g)-tuple of k-rational points on C, and let 
2 y = 2 (Lp E y P). 

(a) There is an open subvariety cy of c(r) such that,Jor all k-schemes T, 

CY(T) = {D E Dive(T)1 hO(Dt - Dy) = 1, all t E T}. 

Ifk is separably closed, then c(r) is the union of the subvarieties cY. 
(b) For all k-schemes T, define 

PY(T) = {2 E PC(T)lhO(2t ® 2;1) = 1, all t E T}. 

Then Py is a subfunctor of Pc and the obvious natural transformation 
f: cy --+ Py has a section. 

PROOF. (a) Note that for any effective divisor D of degree r on C, 
hO(D - Dy) ~ 1, and that equality holds for at least one D (for example, 
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D = Dy + Ql + ... + Qg for a suitable choice of points Ql"'" Qg; see the ele
mentary result (5.2b) below). Let Dean be the canonical relative effective divi
sor of degree r on C X c(r)/cr ). Then [14, 4.2c] applied to 2(Dean - p-1Dy) 
shows that there is an open subscheme cy of c(r) such that hO((Dean)t - Dy) = 1 
for t in cy and hO((Dean)t - Dy) > 1 otherwise. Let T be a k-scheme, and 
let D be a relative effective divisor of degree r on C x T/T such that 
hO(Dt - Dy) = 1. Then (3.13) shows that there is a unique morphism 
q>: T --+ Cr)such that (1 x q>t1 (Dean) = D, and it is clear that q> maps T into 
cY. This proves the first assertion. 

Assume that k is separably closed. To show that C = U cY, it suffices 
to show that C(k) = U cY(k), or that for every divisor D of degree r on C, 
there exists a y such that hO(D - Dy) = 1. Choose a basis eo, ... , er - g for 
HO(C, 2(D», and consider the corresponding embedding 1: C 4 [plr-g• Then 
/( C) is not contained in any hyperplane (if it were contained in I aiXi = 0, 
then I aiei would be zero on C), and so there exist r - 9 points P1 , ••• , Pr - g 

on C disjoint from D whose images are not contained in any linear subspace 
of codimension 2 (choose P1, P2 , ••• inductively so that P1, ... , Pi are 
not contained in a linear subspace of dimension i - 2). The (r - g)-tuple 
y = (P1 , ••• , Pr - g ) satisfies the condition because 

HO(C, 2(D - Il';» = {IaieiIIaiei(l';) = O,j = 1, ... , r - g}, 

which has dimension < 2. 
(b). Let 2 be an invertible sheaf on C x T representing an element of 

PY(T). Then hO(Dt - Dy) = 1 for all t, and the Riemann-Roch theorem shows 
that h1(Dt - Dy) = ° for all t. Now [14, 4.2e] shows that A ~ 
q*(2 ® p* 2;1) is an invertible sheaf on T and that its formation commutes 
with base change. This proves that Pi: is a subfunctor of P~. On tensoring the 
canonical map q* A --+ 2 ® p* 2;1 with q* A-1, we obtain a canonical map 
{!}cxT--+2 ® p*2;1 ® q*A-1. The natural map 2y--+{!}c induces a map 
p* 2;1 --+ {!}CXT, and on combining this with the preceding map, we obtain 
a canonical map Sy: {!} exT --+ 2 ® q* A-1. The pair (SY' 2 ® q* A-1) is a 
relative effective divisor on C x T/T whose image under f in PY(T) is repre
sented by 2 ® q* A-1 ~ 2 (see 3.6). We have defined a section to CY(T) --+ 

PY(T), and our construction is obviously functorial. 0 

Corollary 4.3. The functor Py is representable by a closed subvariety P of cY. 

PROOF. The proof is the same as that of (4.1). o 
Now consider two (g - r)-tuples y and y', and define Py·y' to be the functor 

such that Py,y' (T) = PY(T) (\ Py' (T) for all k-schemes T. It easy to see that 
Py,y' is representable by a variety P,y' such that the maps P,y' 4 P and 
p,y' 4 p' defined by the inclusions Py,y' 4 Py and Py,y' 4 py' are open 
immersions. 

We are now ready to construct the Jacobian of C. Choose tuples Yl"'" Ym 
of points in C(ks ) such that c(r) = U CYi. After extending k, we can assume 
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that the Yi are tuples of k-rational points. Define J by patching together the 
varieties JYi using the open immersions JYi'Yi c:; JYi, JYi. It is easy to see that J 
represents the functor P~, and therefore also the functor P2. Since the latter 
is a group functor, J is a group variety. The natural transformations Div~ --+ 

P~ --+ P2 induce a morphism c(r) --+ J, which shows that J is complete and is 
therefore an abelian variety. The proof of (1.1) is complete. D 

§5. The Canonical Maps from the Symmetric 
Powers of C to its Jacobian Variety 

Throughout this section C will be a complete nonsingular curve of genus 
g > O. Assume there is a k-rational point P on C, and write f for the map fP 
defined in Section 2. 

Let l' be the map C' --+ J sending (PI' ... , Pr) to f(PI) + ... + f(Pr). On 
points, l' is the map (PI' ... , Pr)f--+[PI + ... + Pr - rP]. Clearly it is sym-
metric, and so induces a map j<r): c(r) --+ J. We can regard fIr) as the map 
sending an effective divisor D of degree r on C to the linear equivalence class 
of D - rP. The fibre of the map j<r): c(r)(k) --+ J(k) containing D can be 
identified with the space of effective divisors linearly equivalent to D, that is, 
with the linear system IDI. The image of C<r) in J is a closed subvariety wr of 
J, which can also be written wr = f(C) + ... + f(C) (r summands). 

Theorem 5.1. (a) For all r ::; g, the morphism fIr): c(r) --+ W r is birational; in 
particular,f(g) is a birational map from C<g) onto J. 

(b) Let D be an effective divisor of degree r on C, and let F be the fibre of fIr) 
containing D. Then no tangent vector to c(r) at D maps to zero under (dj<r))D 
unless it lies in the direction of F; in other words, the sequence 

is exact. In particular, (dj<r))D: TD(c(r)) --+ 7;.(J) is injective iflDI has dimen
sion zero. 

PROOF. For D a divisor on C, we write hO(D) for the dimension of 

HO(C, 2(D)) = {jEk(C)I(f) + D;::: O} 

and hl(D) for the dimension of H 1(C, 2(D)). Recall that 

hO(D) - hl(D) = deg(D) + 1 - g, 

and that HI(C, 2(DW = HO(C, QI( -D)), which can be identified with the 
set of wEQf(Cl/k whose divisor (w) ;::: D. 

Lemma 5.2. (a) Let D be a divisor on C such that hl(D) > 0; then there is a 
nonempty open subset U of C such that hI(D + Q) = hl(D) - 1 for all 
closed points Q in U, and hl(D + Q) = hI (D) for Q ¢ u. 
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(b) For any r ~ g, there is an open subset V ofC' such that hO(Ipi ) = 1 for 
all (PI' ... , Pr ) in V. 

PROOF. (a) If Q is not in the support of D, then H1(C, !l'(D + QW = 
r(C, 01( -D - Q)) can be identified with the subspace of r(C, 01( -D)) of 
differentials with a zero at Q. Clearly therefore we can take V to be the com
plement of the zero set of a basis of H1(C, !l'(D)) together with a subset 
of the support of D. 

(b) Let Do be the divisor zero on C. Then h1(Do) = g, and on applying (a) 
repeatedly, we find that there is an open subset V of C' such that h1(I Pi) = 
g - r for all (PI, ... , Pr ) in V. The Riemann-Roch theorem now shows that 
hO(Ip;) = r + (1 - g) + (g - r) = 1 for all (PI' ... , Pr ) in V. 0 

In proving (5.1), we can assume that k is algebraically closed. If V' is the 
image in c(r) of the set V in (5.2b), then pr): c(r)(k) --+ J(k) is injective on V'(k), 
and so f(r): c(r) --+ wr must either be birational or else purely inseparable of 
degree> 1. The second possibility is excluded by part (b) of the theorem, but 
before we can prove that we need another proposition. 

Proposition 5.3. (a) For all r ~ 1, there are canonical isomorphisms 

r(C, 0 1) ~ r(C', 0 1 )Sr ~ r(c(r), 0 1). 

Let WE r( C, 0 1) correspond to w' E r( c(r), 0 1); then for any effective divisor 
D of degree r on C, (w) ~ D if and only if w' has a zero at D. 

(b) For all r ~ 1, the map pr)*: r(J, 0 1) --+ r(c(r), 0 1) is an isomorphism. 

PROOF. A global I-form on a product of projective varieties is a sum of global 
I-forms on the factors. Therefore r(C, 0 1 ) = EB pfr(C, ( 1 ), where the Pi are 
the projection maps onto the factors, and so it is clear that the map w ~ I pt w 
identifies r(C,Ol ) with r(C,Ol)Sr. Because n: C --+ c(r) is separable, 
n*: r(c(r), 0 1 ) --+ r(C, 0 1 ) is injective, and its image is obviously fixed by the 
action of Sr. The composite map 

r(J, 0 1 ) --+ r(c(r), 0 1) 4 r(C, 0 1 )Sr = r(C, 0 1) 

sends w to the element w' of r(C, 0 1) such that r*w = Ipiw'. As r = 

If 0 Pi' clearly w' = f*w, and so the composite map is f* which we know 
to be an isomorphism (2.2). This proves that both maps in the above sequence 
are isomorphisms. It also completes the proof of the proposition except for 
the second part of (a), and for this we need a combinatorial lemma. 

Lemma 5.4. Let (J 1, ... , (Jr be the elementary symmetric polynomials in Xl' ... , 
X" and let Lj = I Xl dXi• Then 

all m ~ r - 1. 

PROOF. Let (Jm(i) be the mth elementary symmetric polynomial in the variables 
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Xl"'" Xi-I, Xi+1,···, Xr. Then 

am- n = am-ii) + X iam- n- 1 (i), 

and on multiplying this by (-l)nX;and summing over n (so that the successive 
terms cancel out) we obtain the identity 

am - am- 1 Xi + ... + ( _l)m Xi= am(i). 

On multiplying this with dXi and summing, we get the required identity. 0 

We now complete the proof of (5.3). First let D = rQ. Then @Q = k[[XJJ 
and @D = k[[a1, .•• , arJJ (see the proof of (3.2); by (!)D we mean the local ring 
at the point D on c(r»). If w = (ao + a1 X + a2 X 2 + ... ) dX, ai E k, when 
regarded as an element ofOkQIk> then w' = ao'ro + a1 "1 + .... We know that 
{da 1, ... , dar} is a basis for OkDlk as an @D-module, but the lemma shows that 
"0, ... , "r-1 is also a basis. Now (w) ~ D and w'(D) = 0 are both obviously 
equivalent to ao = a1 = ... = ar - 1 = O. The proof for other divisors is 
similar. 0 

We finally prove the exactness of the sequence in (5.1). The injectivity of 
(di)D follows from the fact that i: F c; c(r) is a closed immersion. Moreover 
the sequence is a complex because f 0 i is the constant map x H a. It remains 
to show that 

dim Im(di)D = dim Ker(dj<r»)D' 

Identify 7;,(J)V with r(C, 0 1 ) using the isomorphisms arising from (2.1).Then 
(5.3) shows that w is zero on the image of TD(c(r») if and only if (w) ~ D, 
that is, WEr(C, 01( -D)). Therefore the image of (dj<r»)D has dimension 
g - hO(Ol( -D)) = g - hI (D), and so its kernel has dimension r - g + h1(D). 
On the other hand, the image of (di)D has dimension IDI. The Riemann-Roch 
theorem says precisely that these two numbers are equal, and so completes 
the proof. 0 

Corollary 5.5. For all r ~ g, j': C' -+ W r is of degree rL 

PROOF. It is the composite of n: C' -+ c(r) and fIr). o 

Remark 5.6. (a) The theorem shows that J is the unique abelian variety 
birationally equivalent to C(g). This observation is the basis of Weil's con
struction of the Jacobian. (See Section 7.) 

(b) The exact sequence in (5.1b) can be regarded as a geometric statement 
of the Riemann-Roch theorem (see especially the end of the proof). In fact it 
is possible to prove the Riemann-Roch theorem this way (see [12J). 

(c) As we observed above, the fibre of j<r): c(r'(k) -+ J(k) containing D can 
be identified with the linear system IDI. More precisely, the fibre of the map of 
functors c(r) -+ J is the functor Divg of (3.14); therefore the scheme-theoretic 
fibre of j<r) containing D is a copy of projective space of dimension hO(D) - 1. 
Corollary 3.9 of [14J shows that conversely every copy of projective space in 



JACOBIAN VARIETIES 185 

c(r) is contained in some fibre of f(r). Consequently, the closed points of 
the Jacobian can be identified with the set of maximal subvarieties of c(r) 
isomorphic to projective space. 

Note that for r > 2g - 2, IDI has dimension r - g, and so (dj<r»D is 
surjective, for all D. Therefore f(r) is smooth (see [8, III, lOA]), and the fibres 
of j<r) are precisely the copies of IP>r-g contained in c(r). This last observation 
is the starting point of Chow's construction of the Jacobian [3]. 

§6. The Jacobian Variety as Albanese Variety; 
Autoduality 

Throughout this section C will again be a complete nonsingular curve of 
genus g > 0 over a field k, and J will be its Jacobian variety. 

Proposition 6.1. Let P be a k-rational point on C. The map fP: C ~ J has the 
following universal property: for any map <p: C ~ A from C into an abelian 
variety sending P to 0, there is a unique homomorphism t/J: J ~ A such that 
<p = t/JofP. 

PROOF. Consider the map C9 ~ A, (P1 , .•. , Pg ) ~ L t/J(PJ Clearly this is 
symmetric, and so it factors through c(g). It therefore defines a rational 
map t/J: J ~ A, which [14, 3.1] shows to be a morphism. It is clear from 
the construction that t/J 0 fP = <p (note that fP is the composite of 
Q ~ Q + (g - I)P: C ~ c(g) with j<g): c(g) ~ J). In particular, t/J maps 0 
to 0, and [14, 2.2] shows that it is therefore a homomorphism. If t/J' is 
a second homomorphism such that t/J' 0 fP = <p, then t/J and t/J' agree on 
fP(C) + ... + fP(C) (g copies), which is the whole of J. 0 

Corollary 6.2. Let % be a divisorial correspondence between (C, P) and J such 
that (1 x fP)* % ~ 2 P; then % ~ J{P (notations as in Section 2 and (1.2». 

PROOF. Because of [14, 6.2], we can assume k to be algebraically closed. 
According to (1.2) there is a unique map <p: J ~ J such that % ~ (1 x <p)* J{P. 
On points <p is the map sending a E J(k) to the unique b such that 

J{PIC x {b} ~ %IC x {a}. 
By assumption, 

%IC x {JPQ} ~ 2 PIC x {Q} ~ J{PIC x {jPQ}, 

and so (<p 0 fP)(Q) = fP(Q) for all Q. Now (6.1) shows that f is the identity 

m* 0 

Corollary 6.3. Let C1 and C2 be curves over k with k-rational points P1 and P2 , 

and let J1 and J2 be their Jacobians. There is a one-to-one correspondence 
between Homk (J1, J2 ) and the set of isomorphism classes of divisorial corre
spondences between (C1 , P1 ) and (C2 , P2 ). 
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PROOF. A divisorial correspondence between (Cz, Pz ) and (C1 , P1 ) gives 
rise to a morphism (C1 , P1 ) --+ J 2 (by 1.2), and this morphism gives rise to 
homomorphism J1 --+ J2 (by 6.1). Conversely, a homomorphism t/J: J1 --+ J2 
defines a divisorial correspondence (1 x UPl 0 t/J))* J{P2 between (Cz, Pz) and 
(C1 , Pd· D 

In the case that C has a point P rational over k, define F: C x C --+ J to be 
the map (P1 , P2)f-+ r(Pl) - fP(P2). One checks immediately that this is 
independent of the choice of P. Thus, if P E C(k') for some Galois extension k' 
of k, and F: Ck, x Ck, --+ Jk, is the corresponding map, then aF = F for all 
a E Gal(k'/k); therefore F is defined over k whether or not C has a k-rational 
point. Note that it is zero on the diagonal Ll of C x C. 

Proposition 6.4. Let A be an abelian variety over k. For any map <P: C x C --+ A 
such that <p(Ll) = 0, there is a unique homomorphism t/J: J --+ A such that 
t/JoF = <po 

PROOF. Let k' be a finite Galois extension of k, and suppose that there exists 
a unique homomorphism t/J: Ck, --+Jk, such that t/JoFk, = <Pk" Then the uni
queness implies that at/J = t/J for all a in Gal(k'/k), and so t/J is defined over 
k. It suffices therefore to prove the proposition after extending k, and so we 
can assume that C has a k-rational point P. Now [14, 2.5] shows that there 
exist unique maps <Pl and <P2 from C to A such that <Pl(P) = 0 = <pz(P) 
and <pea, b) = <Pl (a) + <pz(b) for all (a, b) E C X C. Because <P is zero on the 
diagonal, <Pl = -<Pz. From (6.1) we know that there exists a unique homo
morphism t/J from J to A such that <Pl = t/J 0 f, and clearly t/J is also the 
unique homomorphism such that <P = t/J 0 F. D 

Remark 6.5. The proposition says that (A, F) is the Albanese variety of C in 
the sense of [9, 11.3, p. 45]. Clearly the pairs (J,jP) and (J, F) are characterized 
by the universal properties in (6.1) and (6.4). 

Assume again that C has a k-rational point P, and let 0 = W g - 1. It is a 
divisor on J, and if P is replaced by a second k-rational point, 0 is replaced 
by a translate. For any effective divisor Don J, write 

'p1(D) = m* .P(D) ® p* .p(Dtl ® q* .p(D)-l 

= .P(m-1(D) - D x J - J x D). 

Recall [14, 9.1 and §10], that D is ample if and only if <P!L'(D): J --+ r is an 
isogeny, and then (1 x <P!L'(D»*(&') = 'p' (D), where &' is the Poincare sheaf on 
J x r. Write 0- for the image of 0 under the map ( -1)J: J --+ J, and 0 a for 
ta0 = 0 + a, aEJ(k). Abbreviate (0-)a by 0':;-. 

Theorem 6.6. The map <P!L'(e): J --+ JV is an isomorphism; therefore, 1 x <P!L'(e) 
is an isomorphism (J x J, 'p1(0» ~ (J x r,21'). 
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PROOF. As usual, we can assume k to be algebraically closed. Recall [14, 
12.13J that ({J!l'(W) = (-W({J!l'(8) = ({J!l'(8)' and that ({J!l'(9.) = ((J!l'(8) for all 
aEJ(k). 

Lemma 6.7. Let U be the largest open subset of J such that: 

(i) the fibre of pg): c(g) -+ J at any point of U has dimension zero; and 
(ii) if a E U(k) and D(a) is the unique element of c(r)(k) mapping to a, then D(a) 

is a sum of g distinct points of C(k). 

Then f- 1(0;;) = D(a) (as a Cartier divisor) for all aE U(k), where f = 

fP:C-+J. 

PROOF. Note first that U can be obtained by removing the subset over which 
the fibres have dimension > 0, which is closed (see [18, 1.6, Theorem 7J), 
together with the images of certain closed subsets of the form L\ x 0- 2• 

These last sets are also closed because 0 -+ J is proper ([18, II, 4.8J), and it 
follows that U is a dense open subset of J. 

Let a E U(k), and let D(a) = L Pi' Pi # ~ for i # j. A point Q1 of C maps to 
a point of 0;; if and only if there exists a divisor LI=2 Qi on C such that 
f P(Ql) = - Lr(Qi) + a. The equality implies LI=1 Qi '" D, and the fact 
that IDI has dimension ° implies that L Qi = D. It follows that the support of 
f- 1(0;;) is {PI' ... , Pg }, and it remains to show that f- 1(0;;) has degree:::;; g 

for all a. 
Consider the map t/I: C x 0 -+ J sending (Q, b) to f(Q) + b. As the com

posite of t/I with 1 x r-1: C x 0-1 -+ C x 0 is r: cg -+ J, and these maps 
have degrees (g - I)! and g! respectively (5.5), t/I has degree g. Also t/I is 
projective because C x 0 is a projective variety (see [8, II, Ex. 4.9J). Consider 
a E U; the fibre of t/I over a is f-1(0;;) (more accurately, it is the subscheme 
of C associated with the Cartier divisor f- 1(0;;)). Therefore the restriction of 
t/I to t/I-1 (U) is quasi-finite and projective, and so is finite (see [8, III, Ex. 
11.2]). As U is normal, this means that all the fibres of t/I over points of U are 
finite schemes of rank :::;; g (cf. [18, II.5, Theorem 6J). This completes the 
proof of the lemma. D 

Lemma 6.8. (a) Let a E J(k), and let pg)(D) = a; thenf* 2"(0;;) ~ 2"(D). 
(b) The sheaves (f x (-lh)* 2"'(0-) and vl{P on C x J are isomorphic. 

PROOF. Note that (6.7) shows that the isomorphism in (a) holds for all a in a 
dense open subset of J. Note also that the map C -+ C x {a} -+ J x J -+ J, 

m0(f x (-l))o(Qf-+(Q, a)) = Lao J, 

and so 

(f x (-l))*m* 2"(0-)IC x {a} ~ 2"(C!0-)lf(c) = 2"(0;;)lf(c) 

~ f* 2"(0;;). 
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Similarly 

(f x (-l))*p* 2'(Er)IC x {a} ';::; f* 2'(Er), and 

(f x (-l))*q* 2'(0-)IC x {a} is trivial. 

On the other hand, vIIP is an invertible sheaf on C x J such that: 

(i) vIIPI C x {a} ';::; 2'(D - gP) if D is an effective divisor of degree 9 on C 
such that J<g)(D) = a; 

(ii) vIIPI{P} x Jistrivial. 

Therefore (a) is equivalent to (f x (-1))*m*2'(0-)IC x {a} being iso
morphic to vIIP ® p* 2'(gP)IC x {a} for all a. As we know this is true for 
all a in a dense subset of J, [14, 5.3J applied to 

vIIP ® p* 2'(gP) ® (f x (-l))*m* 2'(0-r1 

proves (a). In particular, on taking a = 0, we find that f* 2'(0-) ';::; 2'(gP), 
and so (f x (-l))*p* 2'(0-) ';::; p* 2'(gP). Now [14, 5.1J shows that 
(f x (-l))*(m* 2'(Er) ® p* 2'(0-r1 ) ';::; vIIP ® q* % for some invertible 
sheaf % on J. On computing the restrictions of the sheaves to {P} x J, we 
find that % ';::; ( -1)* 2'(0-), which completes the proof. 0 

Consider the invertible sheaf (f x 1)*&, on C x r. Clearly it is a divisorial 
correspondence, and so there is a unique homomorphism fV: JV --+ J such 
that (1 x fV)* vIIP ';::; (f x 1)*,qlI. The next lemma completes the proof of the 
theorem. 

Lemma 6.9. The maps -fv: JV --+ J and q>.:t'(9): J --+ JV are inverse. 

PROOF. Write t/J = -q>.:t'(9) = -q>.:t'(9-). We have 

(1 x t/J)*(1 x fV)* vIIP ';::; (1 x t/J)*(f x 1)*,qlI 

';::; (f x t/J)*,qlI ';::; (f x (-1))*(1 x q>.:t'(9»)*&' 

';::; (f x (-1))*2"(0-) ';::; vIIP. 

Therefore, fV 0 t/J is a map a: J --+ J such that (1 x a)* vIIP ';::; vIIP; but the only 
map with this property is the identity. 0 

Remark 6.10. (a) Lemma 6.7 shows that f(C) and 0 cross transversely at any 
point of U. This can be proved more directly by using the descriptions of the 
tangent spaces implicitly given near the end of the proof of (5.1). 

(b) In (6.8) we showed that vIIP ';::; (f x (-1))*2"(0-). This implies 

vIIP ';::; (f x (-1))*(1 x q> .:t'(9-»)*,qlI ';::; (f x (-1))*(1 x q> .:t'(9»)*,qlI 

';::; (f x (-1))*2"(0). 

Also, because DI-+q>.:t'(D) is a homomorphism, q>.:t'(-9) = -q>.:t'(9)' and so 

vIIP ';::; (f x (-1))*(1 x q> .:t'(9»)*,qlI ';::; (f x 1)*(1 x q> .:t'(-9»)*,qlI 

';::; (f x 1)*2"( -0). 
I 
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(c) The map on points r(k) -4 J(k) defined by fV is induced by 
f*: Pic(J) -4 Pic (C). 

(d) Lemma 6.7 can be generalized as follows. An effective canonical divisor 
K defines a point on C(2g-2) whose image in J will be denoted K. Let a 
be a point of J such that a - K is not in (Wg - 2 f, and write a = IJ(Pi ) 

with P1 , ... , Pg points on C. Then wr and (Wg- r );; intersect properly, and 
wr(wg - r);; = })Wi, ... i) where 

Wi, ... i, = f(Pi,) + .. , + f(Pi) 

and the sum runs over the (n combinations obtained by taking r elements 
from {1, 2, ... , g}. See [20, §39, Prop. 17]. 

Summary 6.11. Between (C, P) and itself, there is a divisorial correspondence 
2 P = 2(~ - {P} x C - C x {P}). 

Between (C, P) and J there is the divisorial correspondence ,AP; for 
any divisorial correspondence 2 between (C, P) and a pointed k-scheme 
(T, t), there is a unique morphism of pointed k-schemes (f): T -4 J such that 
(1 x (f))*,AP ~ 2. In particular, there is a unique map fP: C -4 J such 
that (1 x jP)*,AP ~ 2 P and f(P) = O. 

Between J and r there is a canonical divisorial correspondence f!J (the 
Poincare sheaf); for any divisorial correspondence 2 between J and a pointed 
k-schemes (T, t) there is a unique morphism of pointed k-schemes t/I: T -4 J 
such that (1 x t/I)*f!J ~ 2. 

Between J and J there is the divisorial correspondence 2'(0). The unique 
morphism J -4 r such that (1 x t/I)*f!J ~ 2'(0) is (f).ce(e), which is an iso
morphism. Thus (f) .ce(e) is a principal polarization of J, called the canonical 
polarization. There are the following formulas: 

,AP ~ (f x (-1))* 2'(0) ~ (f x 1)*2'(0)-1. 

Consequently, 

2 P ~ (f x f)* 2'(0f1. 

If fV: r -4 J is the morphism such that (f x 1)*f!J ~ (1 x fV)* ,AP, then 
fV = -(f)ff~8)' 

Exercise 6.12. It follows from (6.6) and the Riemann-Roch theorem [14, 
13.3] that (0g ) = gL Prove this directly by studying the inverse image of 0 
(and its translates) by the map cg -4 J. (Cf. [14,8.3], but note that the map is 
not finite.) Hence deduce another proof of (6.6). 

§7. Weil's Construction of the Jacobian Variety 

As we saw in (5.6a), the Jacobian J of a curve C is the unique abelian variety 
that is birationally equivalent to c(g). To construct J, Weil used the Riemann
Roch theorem to define a rational law of composition on C(g) and then 
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proved a general theorem that allowed him to construct an algebraic group 
out of C(g) and the rational law. Finally, he verified that the algebraic group 
so obtained had the requisite properties to be called the Jacobian of C. We 
give a sketch of this approach. 

A birational group over k (or a nonsingular variety with a normal law of 
composition in the terminology of Weil [20, V]) is a nonsingular variety V 
together with a rational map m: V x V .. ~ V such that 

(a) m is associative (that is, (ab)c = a(bc) whenever both terms are defined); 
(b) the rational maps (a, b) f--+ (a, ab) and (a, b) f--+ (b, ab) from V x V to V x V 

are both birational. 

Assume that C has a k-rational point P. 

Lemma 7.1. (a) There exists an open subvariety U of c(g) X C(g) such that for 
all fields K containing k and all (D, D') in U(K), hO(D + D' - gP) = 1. 

(b) There exists an open subset Vof C<g) x C(g) such that for all fields K 
containing k and all (D, D') in V(K), hO(D' - D + gP) = 1. 

PROOF. (a) Let Dean be the canonical relative effective divisor on 
C x C(2g)/C(2g) constructed in Section 3. According to the Riemann-Roch 
theorem, hO(D - gP) ~ 1 for all divisors of degree 2g on C, and so [14, 4.2c] 
shows that the subset U of C(2g) of points t such that hO«Dean)t - gP) = 1 is 
open. On the other hand, (S.2b) shows that there exist positive divisors D of 
degree g such that hO«D + gP) - gP) = 1, and so U is nonempty. Its inverse 
image in C(g) x C(g) is the required set. 

(b) The proof is similar to that of (a): the Riemann-Roch theorem shows 
that hO(D' - D + gP) ~ 1 for all D and D', we know there exists a D' such 
that hO(D' - gP + gP) = hO(D') = 1, and [14,4.2] applied to the appropriate 
invertible sheaf on C x C(g) X C(g) gives the result. 0 

Proposition 7.2. There exists a unique rational map m: C(g) x C(g) .. ~ C(g) whose 
domain of definition contains the subset U of (7.1 a) and which is such that for 
all fields K containing k and all (D, D') in U(K), m(D, D') '" D + D' - gP; 
moreover m makes C(g) into a birational group. 

PROOF. Let T be an integral k-scheme. If we identify C(g) with the functor it 
represents (see (3.13», then an element of U(T) is a pair of relative effective 
divisors (D, D') on C x TIT such that, for all tE T, hO(Dt + D; - gP) = 1. 
Let fe = fe(D + D' - g. P x T). Then [14, 4.2d] shows that q*(fe) is an 
invertible sheaf on T The canonical map q*q*fe --+ fe when tensored with 
(q*q*fef 1 gives a canonical global section s: (!)T --+ fe ® (q*q*fef\ which 
determines a relative effective divisor m(D, D') of degree g on C x TIT (see 
(3.6». The construction is clearly functorial. Therefore we have constructed a 
map m: U --+ C(g) as functors of integral schemes over k, and this is represented 
by a map of varieties. On making the map explicit in the case that K is the 
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spectrum of a field, one sees easily that m(D, D') ~ D + D' - gP in this case. 
The uniqueness of the map is obvious. Also associativity is obvious since 

it holds on an open subset of U(K): m((D, D'), D") = m(D, (D', D")) because 
each is an effective divisor on e linearly equivalent to D + D' + D" - 2gP, 
and in general hO(D + D' + D" - 2gP) = 1. 

A similar argument using (7.1b) shows that there is a map r: V --+ erg) such 
that (p, r) is a birational inverse to 

(a, b)H(a, ab): C<g) x erg) .. ~ C(g) x C(g). 

Because the law of composition is commutative, this shows that (a, b) H 

(b, ab) is also birational. The proof is complete. D 

Theorem 7.3. For any birational group Vover k, there is a group variety Gover 
k and a birational map f: V .. ~ G such that f(ab) = f(a)f(b) whenever ab is 
defined; moreover, G is unique up to a unique isomorphism. 

PROOF. In the case that V(k) is dense in V (for example, k is separably closed), 
this is proved in [1, §2]. (Briefly, one replaces V by an open subset where m 
has better properties, and obtains G by patching together copies of translates 
of U by elements of V(k).) From this it follows that, in the general case, the 
theorem holds over a finite Galois extension k' of k. Let a E Gal(k' /k). Then 
af: a v", .. ~ aG is a birational map, and as a v" , = v"" the uniqueness of G 
shows that there is a unique isomorphism cP,,: aG --+ G such that cP" 0 af = f. 
For any a, 't"EGal(k'/k), 

(cpt 0 't"cp,,) 0 (7:aJ) = CPt 0 7:( cP" 0 aJ) = f = CPt" 0 7:af, 

and so CPt 0 7:CP" = cp"t' Descent theory (see (1.8)) now shows that G is defined 
over k. D 

Let J be the algebraic group associated by (7.3) to the rational group de
fined in (7.2). 

Proposition 7.4. The variety J is complete. 

PROOF. This can be proved using the valuative criterion of properness. (For 
Weil's original account, see [20, Theoreme 16, et seq.].) D 

Corollary 7.5. The rational map f: C(g) --~ J is a morphism. If D and D' 
are linearly equivalent divisors on CK for some field K containing k, then 
f(D) = f(D'). 

PROOF. The first statement follows from [14, 3.1]. For the second, recall that 
if D and D' are linearly equivalent then they lie in a copy of projective space 
contained in C(g) (see (3.14)). Consequently [14, 3.9] shows that they map to 
the same point in J. D 
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We now prove that J has the correct universal property. 

Theorem 7.6. There is a canonical isomorphism offunctors I: Pg --+ J. 

PROOF. As in Section 4, it suffices to show that Pc is representable by J 
for some r. In this case we take r = g. Let .2 be an invertible sheaf with fibres 
of degree g on C x T. If dimk nCt, !t;) = 1 for some t, then this holds for 
all points in an open neighborhood Ut of t. As in the proof of (7.2), we 
get a relative effective divisor s: (!)s --+ .2 ® (q*q*.2fl of degree g on Ut • 

This family of Cartier divisors defines a map Ut --+ c(g) which when composed 
with f gives a map t/J!f: Ut --+ J. On the other hand, if dimk nCt, !t;) > 1, 
then we choose an invertible sheaf .2' of degree zero on C such that 
dim(nCI' !t; ® .2'» = 1, and define t/J!f: Ut --+ C<g) on a neighborhood of t to 
be the composite of t/J !f®p*!f' with La, where a = f(D) for D an effective 
divisor of degree g such that .2(D - gP) ~ .2'. One checks that this map 
depends only on .2 , and that the maps for different t agree on the overlaps 
of the neighborhoods. They therefore define a map T --+ J. 0 

Remark 7.7. Weil of course did not show that the Jacobian variety represented 
a functor on k-schemes. Rather, in the days before schemes, the Jacobian 
variety was characterized by the universal property in (6.1) or (6.4), and 
shown to have the property that PicO(C)'::;' J(k). See [20] or [9]. 

§8. Generalizations 

It is possible to construct Jacobians for families of curves. Let n: ~ --+ S be a 
projective flat morphism whose fibres are integral curves. For any S-scheme 
T of finite-type, define 

P~(T) = {.2EPic(~ Xs T)ldeg(!t;) = raIl t}i''' , 

where .2 ~ .2' if and only if .2 ~ .2' ® q*.Jt for some invertible sheaf.Jt on 
T. (The degree of an invertible sheaf on a singular curve is defined as in the 
nonsingular case: it is the leading coefficient of X(C, .2n) as a polynomial in 
n.) Note that P~ is a functor on the category of S-schemes of finite-type. 

Theorem 8.1. Let n: ~ --+ S be as above; then there is a group scheme f 
over S with connected fibres and a morphism of functors P~ --+ f such that 
P~(T) --+ f(T) is always injective and is an isomorphism whenever ~ Xs T --+ T 
has a section. 

In the case that S is the spectrum of a field (but ~ may be singular), 
the existence of f can be proved by Weil's method (see [17, V]). When 
~ is smooth over S, one can show as in Section 3 that ~(,) (quotient of 
~ Xs ... xs~ by S,) represents the functor Div~/s sending an S-scheme T to 
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the set of relative effective Cartier divisors of degree r on «j Xs TIT. In general 
one can only show more abstractly that Div~/s is represented by a Hilbert 
scheme. There is a canonical map Div~/s ---+ P~/S and the second part of the 
proof deduces the representability of P~/S from that of Div~/s. (The only 
reference for the proof in the general case seems to be Grothendieck's original 
rather succinct account [4, Expose 232J; we sketch some of its ideas below.) 

As in the case that the base scheme is the spectrum of a field, the conditions 
of the theorem determine f uniquely; it is called the Jacobian scheme of «j IS. 
Clearly f commutes with base change: the Jacobian of «j Xs T over T is 
f Xs T. In particular, if~ is a smooth curve over k(t), then fr is the Jacobian 
of «jt in the sense of Section 1. Therefore if «j is smooth over S, then f is an 
abelian scheme, and we may think of it as a family of Jacobian varieties. If «j 

is not smooth over S, then f need not be proper, even in the case that S is 
the spectrum of a field. 

Example 8.2. Let C be complete smooth curve over an algebraically closed 
field k. By a modulus for C one means simply an effective divisor m = L npP 
on C. Let m be such a modulus, and assume that deg(m) ~ 2. We shall 
associate with C and m a new curve Cm having a single singularity at a point 
to be denoted by Q. The underlying topological space of Cm is (C - S) u {Q}, 
where S is the support of m. Let {9Q = k + cQ, where 

cQ = {f E k(c)lord(f) ~ np all P in S}, 

and define {9cm to be the sheaf such that qu, (9c) = n (9p, where the 
intersection is over the P in U. The Jacobian scheme Jm of Cm is an algebraic 
group over k called the generalized Jacobian of C relative to m. By definition, 
Jm(k) is the group of isomorphism classes of invertible sheaves on Cm of 
degree O. It can also be described as the group of divisors of degree 0 on C 
relatively prime to m, modulo the principal divisors defined by elements 
congruent to 1 modulo m (an element of k(C) is congruent to 1 modulo m if 
ordp(f - 1) ~ np for all P in S). For each modulus m with support on S there 
is a canonical map fm: C - S ---+ Jm, and these maps are universal in the 
following sense: for any morphism f: C - S ---+ G from C - S into an algebraic 
group, there is a modulus m and a homomorphism cp: Jm ---+ G such that f is 
the composite of fm 0 cp with a translation. (For a detailed account of this 
theory, see [17].) 

We now give a brief sketch of part of Grothendieck's proof of (8.1). First 
we need the notion of the Grassmann scheme. 

Let Iff be a locally free sheaf of (9s-modules of finite rank, and, for an 
S-scheme T of finite-type, define Grass;(T) to be the set of isomorphism 
classes of pairs ('fr", h), where 'fr" is a locally free {9y-module of rank nand h is 
an epimorphism {9T QS\ Iff - 'fr". For example, if Iff = (98', then Grass;(T) can 
be identified with the set of isomorphism classes of pairs ('fr",(e 1 , ••• , em)) 
where 'fr" is a locally free sheaf of rank n on T and the ei are sections of 'fr" 
over T that generate 'fr"; two such pairs ('fr",(e 1 , ••• , em)) and ('fr"', (e'l , ... , e~)) 
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are isomorphic if there is an isomorphism l' ~ 1" carrying each ej to e;. In 
particular, GrassfN+l(T) = [pl~(T) (cf. [8, II, 7.1J). 

Proposition 8.3. The Junctor T 1-+ Grassf (T) is representable by a projective 
variety Gf over S. 

PROOF. The construction of Gf is scarcely more difficult than that of [pl~ (see 
[7,9.7J). D 

Choose an r > 2g - 2 and an m > 2g - 2 + r. As in the case that S is 
the spectrum of a field, we first need to construct the Jacobian under the 
assumption that there is a section s: S --+~. Let E be the relative effective 
divisor on ~/S defined by s (see (3.9)), and for any invertible sheaf !l' on 
~ Xs T, write !l'(m) for !l' ® !l'(mE). The first step is to define an embedding 
of Div~/s into a suitable Grassmann scheme. 

Let D E Div~/s(T), and consider the exact sequence 

O--+!l'( -D) --+ @CCXT--+ @D --+ 0 

on ~ Xs T (we often drop the S from ~ Xs T). This gives rise to an exact 
sequence 

o --+ !l'( - D)(m) --+ @CCXT(m) --+ @D(m) --+ 0, 

and on applying q* we get an exact sequence 

0--+ q*!l'( -D)(m) --+ q*(!}CC X T(m) --+ q*(!}D(m) --+ R1q*!l'( -D)(m) --+ .... 

Note that, for all t in T, Hl(~t,!l'( -D)(m)) is dual to HO(Ct, !l'(K + D-mEt)), 
where E t is the divisor s(t) of degree one on ~t. Because of our assumptions, 
this last group is zero, and so (see [14, 4.2eJ) R1q*!l'( -D)(m) is zero and we 
have an exact sequence 

0--+ q*!l'( -D)(m) --+ q*@CCXT(m)--+q*(!}D(m)--+O. 

Moreover q*@D(m) is locally free ofrank r, and q*(@CCXT(m)) = q*@cc(m) ® @T 
(loc. cit.), and so we have constructed an element <I>(D) of Grass;*m",(m)(T). 

On the other hand, suppose a = (q*@CCXT(m) - 1') is an element of 
Grass;*m",(m)(T). If :f{" is the kernel of q*q*@CCXT(m) - q*"f/, then :f{"( -m) is 
a subsheaf of q*q*@CCXT' and its image under q*q*@CCXT --+@ccxTisanideal in 
@CCXT' Let 'I'(a) be the subscheme associated to this ideal. It is clear from the 
constructions that 'I'<I>(D) = D for any relative divisor of degree r. We have a 
diagram of natural transformations 

Div~(T) <I> Grass;*m",(m)(T) 'I' 9'(T) ::::> Div~(T), '1'<1> = id, 

where 9'(T) denotes the set of all closed subschemes of~ Xs T. In particular, 
we see that <I> is injective. 

Proposition 8.4. The Junctor <I> identifies Div~ with a closed subscheme oj 
Grass;*m,,(m). 



J ACOBIAN VARIETIES 195 

PROOF. See [4, Expose 221, p. 12J (or, under different hypotheses, [15, 
Lecture 15J). 0 

Finally, one shows that the fibres of the map Div~/s ~ P~/S are represented 
by the projective space bundles associated with certain sheaves of (Os-modules 
([4, Expose 232, p. 11J; cf. (5.6c» and deduces the representability of P~/S 
(loc. cit.). 

§9. Obtaining Coverings of a Curve from its Jacobian; 
Application to Mordell's Conjecture 

Let V be a variety over field k, and let re: W ~ V be a finite etale map. If 
there is a finite group G acting freely on W by V-morphisms in such a way 
that V = G \ W, then (w, re) is said to be Galois covering of V with -Galois 
group G. When G is abelian, then (w, re) is said to be an abelian covering of 
V. Fix a point P on V. Then the Galois coverings of V are classified by the 
(etale) fundamental group reI (V, P) and the abelian coverings by the maximal 
abelian quotient reI (V, P)3b of reI (V, P). For any finite abelian group M, 
Hom(re l (V, P), M) (set of continuous homomorphisms) is equal to the set of 
isomorphism classes of Galois coverings of V with Galois group M. If, for 
example, V is nonsingular and we take P to be the generic point of V, then 
every finite connected etale covering of Vis isomorphic to the normalization 
of V in some finite extension of K' of k(P) contained in a fixed algebraic 
closure K of K; moreover, reI (V, P) = Gal(KUnjK) where K un is the union of 
all finite extensions K' of k(P) in K such that the normalization of V in K' is 
etale over V. The covering corresponding to a continuous homomorphism 
IX: Gal(KUnjK) ~ M is the normalization of V in KKer(~). (See [13, I, 5] for a 
more detailed discussion of etale fundamental groups.) 

Now let C be a complete nonsingular curve over a field k, and let f = fP 
for some P in C(k). From a finite etale covering J' ~ J of J, we obtain an etale 
covering of C by pulling back relative to f: 

J' +- C' = C X J J' 

1 1 
f 

J+-c. 

Because all finite etale coverings of J are abelian (cf. [14, 15.3J), we only 
obtain abelian coverings of C in this way. The next proposition shows that 
we obtain all such coverings. 

Henceforth, k will be separably closed. 

Proposition 9.1. If J' ~ J is a connected hale covering of J, then C' = 

C X J J' ~ C is a connected etale covering of C, and every connected 
abelian covering of C is obtained in this way. Equivalently, the map 
reI (C, Ptb ~ reI (1,0) induced by fP is an isomorphism. 
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PROOF. The equivalence of the two assertions follows from the interpretation 
of Hom(n1(V, P), M) recalled above and the fact that n1(J, 0) is abelian. We 
shall prove the second assertion. For this it suffices to show that for all 
integers n, the map Hom(nl(J, 0), 7L/n7L) --+ Hom(nl(C, P), 7L/n7L) induced by 
fP is an isomorphism. The next two lemmas take care of the case that n is 
prime to the characteristic of k. 

Lemma 9.2. Let V be complete nonsingular variety and let P be a point of V; 
then for all integers n prime to the characteristic of k, Hom(nl (V, P), 7L/n7L) ~ 
Pic(V)n' 

PROOF. Let D be a (Weil) divisor on V such that nD = (g) for some g E k(V), 
and let V' be the normalization of V in the Kummer extension k(V)(gl/n) of 
k(V). A purity theorem [5, X.3.1] shows that V' --+ V is etale if, for all prime 
divisors Z on V, the discrete valuation ring @z (local ring at the generic point 
of Z) is unramified in k(V'). But the extension k(V')/k(V) was constructed by 
extracting the nth root of an element g such that ordz(g) = 0 if Z is not in the 
support of D and is divisible by n otherwise, and it follows from this that @z 
is unramified. Conversely, let V' --+ V be a Galois covering with Galois group 
7L/n7L. Kummer theory shows that the k(V')/k(V) is obtained by extracting 
the nth root of an element g of k(V). Let Z be a prime divisor on V. Because 
@z is unramified in k(V'), ordz(g) must be divisible by n (or is zero), and so 
(g) = nD for some divisor D. Obviously D represents an element of Pic(V)n. 
It is easy to see now that the correspondence we have defined between 
coverings of V and elements of Pic(V)n is one-to-one. (For a proof using etale 
cohomology, see [14, III, 4.11].) D 

Lemma 9.3. The map Pic(J) --+ Pic(C) defined by f induces an isomorphism 
PicO(J) --+ PicO( C). 

PROOF. This was noted in (6.10c). D 

In the case that n = p = characteristic(k), (9.2) and (9.3) must be replaced 
by the following analogues. 

Lemma 9.4. For any complete nonsingular variety V and point P, 
Hom(n1(V, P), 7L/p7L) ~ Ker(1 - F: Hl(V, @y) --+ H1(V, @y)), where F is the 
map induced by a f--+ aP: @y --+ @y. 

PROOF. See [14, p. 127] for a proof using etale cohomology as well as for 
hints for an elementary proof. D 

Lemma 9.5. The mapr: C --+ J induces an isomorphism H1(J, @J)--+H1(C, @d. 

PROOF. See [17, VII, Theoreme 9]. (Alternatively, note that the same argu-
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ment as in the proof of (2.1) gives an isomorphism H1(J, (DJ) ~ To(r), and 
we know that J ~ r.) D 

To prove the case n = pm, one only has to replace {Dc and {DJ by the sheaves 
of Witt vectors of length m, Wm{Dc and Wm{DJ. (It is also possible to use a 
five-lemma argument starting from the case m = 1.) 

Corollary 9.6. For all primes 1, the map of etale cohomology groups H1(J, Z/)-+ 
H1(C, Z/) induced byfis an isomorphism. 

PROOF. For any variety V, H 1(V.!t> ZjnZ) = Hom(n1(V, P), ZjnZ) [13, III, 4]. 
Therefore, there are isomorphisms 

H1(J, Zjlmz) ~ Hom(n1(J, P), Zjlmz) ~ Hom(n1(C, P), Zjlmz) 

~ H1(C, Zjlmz), 

and we obtained the required isomorphism by passing to the limit. D 

To obtain ramified coverings of C, one can use the generalized Jacobians. 

Proposition 9.7. Let C -+ C be afinite abelian covering ofC that is unramified 
outside a finite set L. Then there is a modulus m with support on L and an etale 
isogeny J' -+ Jm whose pull-back by fm is C - f- 1 (L). 

PROOF. See [17]. D 

Example 9.8. In the case that the curve is !p 1 and m = 0 + 00, we have 
Jm = !p 1 - {O, oo}, which is just the multiplicative group GL1 , and fm is 
an isomorphism. For any n prime to the characteristic, there is a unique 
unramified covering of !p 1 - {O, CfJ} of degree n, namely multiplication by n 
on !p 1 - {O, CfJ}. When k = C, this covering is the usual unramified covering 
Zf-+Z n : C - {O} -+ C - {O}. 

Proposition 9.9. Let C be a curve of genus g over a number field k, and let P be 
a k-rational point of C. Let S be a finite set of primes of k containing all primes 
dividing 2 and such that C has good reduction outside S. Then there exists a 
field k' of degree :s; 22g over k and unramified outside S, and a finite map 
fp: Cp -+ Ck, of degree :s; 2229(9-1)+29+1, ramified exactly over P, and such that 
Cp has good reduction outside S. 

PROOF. Sketch. Let C be the pull-back of 2: J -+ J; it is an abelian etale 
covering of C of degree 22g, and the Hurwitz genus formula [8, IV, 2.4] shows 
that the genus g' of C satisfies 

2g' - 2 = 22g (2g - 2), 

so that g' = 22g(g - 1) + 1. Let D be the inverse image of P on C. It is a 
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divisor of degree 22g on C, and after an extension k' of k of degree ::;; 22g 

unramified over S, some point P of D will be rational. Let m = D - P', and 
let C" be the pull-back of the covering 2: Jm ~ Jm (of degree ::;; 22g') by 
C - L ~ Jm , where L = Supp(D) - {P}. Then C" is a curve over k', and we 
take Cp to the associated complete nonsingular curve. 0 

This result has a very striking consequence. Recall that a conjecture of 
Shafarevich states the following: 

(9.10) For any number field k, integer g, andfinite set S of primes ofk, there are 
only finitely many isomorphism classes of curves C of genus g over k having 
good reduction at all primes outside S. 

Theorem 9.11. Shafarevich's conjecture (9.10) implies Mordell's conjecture. 

PROOF. Let C be curve of genus g 2:: 2 over k with good reduction outside a 
set S containing all primes of k lying over 2. There is a finite field extension K 
of k containing all extensions k' of k of degree ::;; 22g that are unramified out
side S. For each k-rational point P on C, Proposition 9.9 provides a map 
fp: Cp ~ CK of degree::;; a fixed bound B(g) which is ramified exactly over P; 
moreover, Cp has good reduction outside S. The Hurwitz genus formula 
shows that 

2g(Cp ) - 2 ::;; B(g)(2g - 2) + B(g) - 1. 

Therefore Shafarevich's conjecture implies that there can be only finitely 
many curves Cpo A classical result of de Franchis [10, p. 223J states that for 
each Cp , there are only finitely many maps Cp ~ C (this is where it is used 
that g 2:: 2). Therefore there can be only finitely many k-rational points on C, 
as predicted by Mordell. 0 

§ 1 O. Abelian Varieties Are Quotients of 
J aco bian Varieties 

The main result in this section sometimes allows questions concerning abelian 
varieties to be reduced to the special case of Jacobian varieties. 

Theorem 10.1. For any abelian variety A over an infinite field k, there is a 
Jacobian variety J and a surjective homomorphism J - A. 

Lemma 10.2. Let rc: W ~ Vbe afinite morphism of complete varieties, and let 
2 be an invertible sheaf on V. If 2 is ample, then so also is rc* 2. 

PROOF. We shall use the following criterion ([8, III, 5.3J): an invertible sheaf 
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!e on a complete variety is ample if and only if, for all coherent <'9v-modules 
ff, Hi(V, ff ® !en) = 0 for all i > 0 and sufficiently large n. Also we shall 
need an elementary projection formula: if JV and A are coherent sheaves of 
modules on Wand V respectively, then 

n*(JV ® n* A) ~ n*JV ® A. 

(Locally, this says that if B is an A-algebra and Nand M are modules over B 
and A respectively, then N ®B (B ®A M) ~ N ®A M as A-modules.) 

Let ff be a coherent <'9w-module. Because n is finite (hence affine), we have 
by [8, II, Ex. 4.1 or Ex. 8.2] that 

Hi(W, ff ® n* !en) ~ Hi(v, n*(ff ® n* !en)). 

The projection formula shows that the second group equals Hi(V, n*ff ® !en), 
which is zero for all i > 0 and sufficiently large n because !e is ample and 
n*ff is coherent ([8, 4.1]). The criterion now shows that n*!e is ample. D 

Lemma 10.3. Let V be a nonsingular projective variety of dimension ;::: 2 over a 
field k, and let Z be a hyperplane section of V relative to some fixed embedding 
V c:; IP'n. Then, for any finite map n from a nonsingular variety W to V, n-t(Z) 
is geometrically connected (that is, n-t (Z);c is connected). 

PROOF. The hypotheses are stable under a change of the base field, and so we 
can assume that k is algebraically closed. It then suffices to show that n-t(Z) 
is connected. Because Z is an ample divisor on V, the preceding lemma shows 
that n-t(Z) is the support of an ample divisor on W, which implies that it is 
connected ([8, III, 7.9]). D 

We now prove the theorem. Since all elliptic curves are their own Jacobians, 
we can assume that dim(A) > 1. Fix an embedding A c:; IP'n of A into pro
jective space. Then Bertini's theorem [8, II, 8.18] shows that there exists an 
open dense subset U of the dual projective space IP'r of lP'e such that, for all 
hyperplanes H in U, Ali (l H is nonsingular and connected. Because k is 
infinite, U(k) is nonempty (consider a line L in lP'e V ), and so there exists 
such an H with coordinates in k. Then A (l H is a (geometrically connected) 
nonsingular variety in IP'n. On repeating the argument dim(A) - 1 times, we 
arrive at a nonsingular curve C on A that is the intersection of A with a 
linear subspace of IP'n. Now (10.3) applied several times shows that for any 
nonsingular variety Wand finite map n: W -+ A, n-t(C) is geometrically 
connected. 

Consider the map J -+ A arising from the inclusion of C into A, and let 
At be the image of the map. It is an abelian subvariety of A, and if it is 
not the whole of A, then there is an abelian subvariety A2 of A such that 
At x A2 -+ A is an isogeny (see [14, 12.1]); in particular, At (l A2 is finite. As 
C c At, this implies that C (l A2 is finite. Let W = At X A2 and take n to 
be the composite of 1 x nA2 : At x A2 -+ At X A2 with At x A2 -+ A, where 
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n > 1 is an integer prime to the characteristic of k. Then n-1 (C) is not 
geometrically connected. This is a contradiction, and so A1 must equal A. 

Remark 10.4. (a) Lemma 10.2 has the following useful restatement: let V be a 
variety over a field k and let D be divisor on V such that the linear system IDI 
is without base points; if the map V --+ IPn defined by IDI is finite, then D is 
ample. 

(b) If some of the major theorems from etale cohomology are assumed, 
then it is possible to give a very short proof of the theorem. They show that, 
for any curve C on A constructed as in the above proof, the map H1 (A, 1:1) --+ 

H1(C, 1:1) induced by the inclusion of C into A is injective (see [13, VI.S.6]). 
But H 1(A, 1:1) is dual to 7;A and H1(C, 1:1) is dual to 7;J, and so this says that 
the map 7;J --+ 7;A induced by J --+ A is surjective. Clearly this implies that J 
maps onto A. 

Open Question 10.5. Let A be an abelian variety over an algebraically closed 
field k. We have shown that there is a surjection J - A with J a Jacobian 
variety. Let A1 be the subvariety of J with support the identity component 
of the kernel of this map. Then A1 is an abelian variety, and so there is a 
surjection J1 - A 1 • Continuing in this way, we obtain a sequence of abelian 
varieties A, A 1 , A 2 , ••• and a complex 

... --+ J2 --+ J1 --+ A --+ O. 

Is it possible to make the constructions in such a way that the sequence 
terminates with O? That is, does there exist a resolution (up to isogeny) of an 
arbitrary abelian variety by Jacobian varieties? 

§ 11. The Zeta Function of a Curve 

Let C be a complete nonsingular curve over a finite field k = IFq • The best way 
to prove the Riemann hypothesis for C is to use intersection theory on C x C 
(see [8, V, Ex. 1.10J), but in this section we show how it can be derived 
from the corresponding result for the Jacobian of C. Recall [14, §19J that the 
characteristic polynomial of the Frobenius endomorphism nJ of J acting on 
7;J is a polynomial P(X) of degree 2g with integral coefficients whose roots 
ai have absolute value q1/2. 

Theorem 11.1. The number N of points on C with coordinates in k is equal to 
1 - Lai + q. Therefore, IN - q - 11 :s; 2gq1/2. 

The proof will be based on the following analogue of the Lefschetz trace 
formula. A map C(: C --+ C induces a unique endomorphism C(' of J such that 
roC( = C(' 0 fP for any point Pin C(k) (cf. (6.1)). 



JACOBIAN VARIETIES 201 

Proposition 11.2. For any endomorphism r:J. ofC, 

(ra . L1) = 1 - Tr(r:J.') + deg(r:J.). 

Recall [14, §12J that if Pa,(X) = TI (X - ai), then Tr(r:J.) = L ai' and that 
Tr(r:J.') = Tr(r:J.'1 7;J). We now show that the proposition implies the theorem. 
Let 1tc: Ck --+ Cli be the Frobenius endomorphism of C (see [14, §19J). 

Before proving (11.2) we need a lemma. 

Lemma 11.3. Let A be an abelian variety of dimension 9 over a field k, and let 
H be the class of an ample divisor in NS(A). For any endomorphism r:J. of A, 
write DH(r:J.) = (r:J. + l)*(H) - r:J.*(H) - H. Then 

(Hg- 1 • DH(r:J.)) 
Tr(r:J.) = 9 (Hg) . 

PROOF. The calculation in [14, 12.4J shows that 

(r:J. + n)*(H) = n(n - l)H + n(r:J. + 1)* H - (n - 1)r:J.*(H) 

(because (2A )* H = 4H in NS(A)), and so 

(r:J. + n)* H = n2 H + nDH(r:J.) + r:J.*(H). 

Now the required identity can be read off from the equation 

Pa( - n) = deg(r:J. + n) = «(r:J. + n)* H)g)/(Hg) 

because Pa( - n) = n2g + Tr(r:J.)n2g- 1 + .... 
(see [14, 8.3J) 

We now prove (11.2). Consider the commutative diagram 

CxcELJxJ~JxJ 

f 
----> 

o 

where f = fP for some rational point P of C. Consider the sheaf 2"(0) ~ 
2'(m*0 - 0 x J - J x 0) on J x J (see Section 6). Then 

«1 x r:J.')(f x 1))*2"(0) = «(f x 1)(1 x r:J.))* 2"(0) 

~ (1 x r:J.)*(f x 1)* 2"(0) ~ (1 x r:J.)*(2'Pt 1 

by a formula in (6.11). Now 

L1*(1 x r:J.)* 2'P = 2'(ra' (L1 - P x C - C x P)), 

which has degree (ra' L1) - 1 - deg(r:J.). We next compute the sheaf by going 
round the diagram the other way. As (1 x r:J.) 0 L1 = (1, r:J.), we have 

«1 x r:J.) 0 L1)* 2'(m*0) ~ (1 + r:J.)* 2'(0) and 

degf* 2'«1 + r:J.)*(0)) = degf*(1 + r:J.)*0. 
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Similarly degf*((1 x oc) 0 A)* 2(0 x J) ~ degf*0 and 

degf*((1 x oc) 0 A)* 2(J x 0) = degf*(oc*O), 

and so we find that 

1 - (ra . A) + deg(oc) = degf*(D9(oc)). 

We know (6.12) that (09 ) = g!, and it is possible to show that f*(D9(OC)) = 
(f(C) . D9(OC)) is equal to (g - 1)!(09 - 1 • D9(OC)) (see [9, IV, §3J). Therefore 
(11.3) completes the proof. 0 

Corollary 11.4. The zeta function of C is equal to 

P(t) 
Z(C, t) = (1 _ t)(1 _ qt) 

Remark 11.5. As we saw in (9.6), H1(Cet , Zl) = H1(Jeto Zl) = (1/J)\ and so 
(11.2) can be rewritten as . 

(ra· A) = L (_I)i Tr(ocI Hi(Cet , Zl)). 

§12. Torelli's Theorem: Statement and Applications 

Torelli's theorem says that a curve C is uniquely determined by its canonically 
polarized Jacobian (J, A). 

Theorem 12.1. Let C and C' be complete smooth curves over an algebraically 
closedfield k, and letf: C --+ J and/,: C' --+ J' be the maps ofC and C' into their 
Jacobians defined by points P and pi on C and C'. Let p: (J, A) --+ (J', ,1,') be an 
isomorphismfrom the canonically polarized Jacobian ofC to that ofC'. 

(a) There exists an isomorphism oc: C --+ C' such that /' 0 oc = ± P 0 f + c, for 
some c in JI(k). 

(b) Assume that C has genus ~ 2. If C is not hyperelliptic, then the map oc, the 
sign ±, and c are uniquely determined by p, P, P'. If C is hyperelliptic, the 
sign can be chosen arbitrarily, and then oc and c are uniquely determined. 

PROOF. (a) The proof involves complicated combinatorial arguments in the 
wr -we defer it to the next section. 

(b) Recall [8, IV, 5J that a curve Cis hyperelliptic if there is a finite map 
n: C --+ !p1 of degree 2; the fibres of such a map form a linear system on C of 
degree 2 and dimension 1, and this is the unique such linear system on 
C. Conversely if C has a linear system of degree 2 and dimension 1, then 
the linear system defines a finite map n: C --+!p1 of degree 2, and so C is 
hyperelliptic; the fibres of n are the members of the linear system, and so the 
nontrivial automorphism I of C such that no I = n preserves these individual 
members. 
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Now suppose that there exist IX, IX', c, and c' such that 

f'OIX = +[3of + C 

f'0IX' = +[3of + c' 

203 

(12.1.1) 

Then f'(IX(Q)) - f'(IX'(Q)) = c - c' for all Q E C(k), which is a constant. Since 
the fibres of the map Divg(k) --+ J(k) defined by f' are the linear equivalence 
classes (see Section 2), this implies that for all Q and Q' in C(k), 

IX(Q) - IX'(Q) ~ IX(Q') - IX'(Q'), or 

IX(Q) + IX'(Q') ~ IX'(Q) + IX(Q'). 

Suppose IX #- IX'. Then IX(Qo) #- IX'(Qo) for some Qo E C(k) and, for a suitable 
Q~, IX(Qo) #- IX(Q~). Therefore IIX(Qo) + IX'(Q~)I is a linear system of dimen
sion ~ 1 (and degree 2) on C. If C (hence C) is nonhyperelliptic, there is no 
such system, and we have a contradiction. If C is hyperelliptic, then there is 
a map n: C --+ IP' of degree 2 such that n(IX(Q)) = n(IX'(Q')) for all Q, Q'. Again 
we have a contradiction. We conclude that IX = IX', and this implies that 
c = c'. 

On the other hand, suppose that the equations (12.1.1) hold with different 
signs, say with a plus and a minus respectively. Then the same argument 
shows that 

IX(Q) + IX'(Q) ~ IX(Q') + IX'(Q'), all Q, Q' in C(k). 

Therefore {IX(Q) + IX'(Q)I Q E C(k)} is a linear system on C of dimension ~ 1, 
which is impossible if C is nonhyperelliptic. (In the case C is hyperelliptic, 
there is an involution I of C such that 10 IX = IX'.) 

The case that the equations (12.1.1) hold with minus signs can be treated 
the same way as the first case. 

Finally let C be hyperelliptic with an involution I such that I Q' + lQ'1 is a 
linear system and f'(Q') + f'(IQ') = constant. Then if f' 0 IX = [30 f + c, we 
havef'olIX = -[3of + c'. 0 

Corollary 12.2. Let C and C be curves of genus ~ 2 over a perfect field k. If the 
canonically polarized Jacobian varieties ofC and C are isomorphic over k, then 
so also are C and C. 

PROOF. Choose an isomorphism [3: (J, A) --+ (J', A.') defined over k. For each 
choice of a pair of points P and P' in C(k) and C(k), there is a unique 
isomorphism IX: C --+ C such that 

fP' OIX = ±[3ofP + c 

for some c in J'(k) (in the case that Cis hyperelliptic, we choose the sign to be 
+ ). Note that if (P, P') are replaced by the pair (Q, Q'), then fQ = fP + d and 
fQ' = f P' + e for some dEJ(k) and eEJ'(k), and so 

fQ'oIX=fP'oIX+e= ±[3ofP+ c + e = ±[3ofQ+[3(d)+c+e. 
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In particular, we see that (X does not depend on the choice of the pair (P, P'). 
On applying a E Gal(k/k) to the above equation, we obtain an equation 

afP' 0 a(X = ± P 0 afP + ac. 

As afP' = faP' and afP = f aP, we see that a(X = (x, and so (X is defined over k. 

D 

Corollary 12.3. Let k be an algebraic number field, and let S be a finite set of 
primes in k. The map C 1-+ (lc, A) sending a curve to its canonically polarized 
Jacobian variety defines an injection from the set of isomorphism classes of 
curves of genus ~ 2 with good reduction outside S into the set of isomorphism 
classes of principally polarized abelian varieties over k with good reduction 
outside S. 

PROOF. Let R be the discrete valuation ring in k corresponding to a prime of 
k not in S. Then C extends to a smooth proper curve ~ over spec(R), and (see 
Section 8) the Jacobian" of~ has generic fibre the Jacobian of C and special 
fibre the Jacobian of the reduction of C. Therefore Jc has good reduction at 
the prime in question. The corollary is now obvious. D 

Corollary 12.4. Suppose that for any number field k, any finite set S primes of 
k, and any integer g, there are only finitely many principally polarized abelian 
varieties of dimension g over k having good reduction outside S. Then M ordell' s 
conjecture is true. 

PROOF. Combine the last corollary with (9.11). D 

Remark 12.5. Corollary 12.2 is false as stated without the condition that the 
. genus of C is greater than 1. It would say that all curves of genus zero over k 
are isomorphic to pi (but in general there exist conics defined over k having 
no rational point in k), and it would say that all curves of genus 1 are 
isomorphic to their Jacobians (and, in particular, have a rational point). 
However, it is obviously true (without restriction on the genus) that two 
curves over k having k-rational points are isomorphic over k if their canon
ically polarized Jacobians are isomorphic over k. 

§13. Torelli's Theorem: The Proof 

Throughout this section, C will be a complete nonsingular curve of genus 
g ~ 2 over an algebraically closed field k, and P will be a closed point of C. 
The maps fP: C ~ J and P,): C(,) ~ J corresponding to P will all be denoted 
by f Therefore f(D + D') = f(D) + f(D'), and if f(D) = f(D'), then 

D '" D' + rP where r = deg(D) - deg(D'). 

As usual, the image of C(,) in J is denoted by W'. A canonical divisor K on C 
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defines a point on C(2g-2) whose image in J will be denoted by K. For any 
subvariety Z of J, Z* will denote the image of Z under the map x ~ K - X 

Lemma 13.1. For all a in J(k), (w"g-1)* = W!1;1. 

PROOF. For any effective divisor D of degree 9 - 1 on C, 

hO(K - D) = h1(K - D) = hO(D) ~ 1, 

and so there exists an effective divisor D' such that K - D '" D'. Then 
K - f(D) - a = f(D') - a, which shows that (Wr1)* c W!1;1. On replacing 
a by - a, we get that (W!1;1)* C w"g-1, and so W!1;1 = (W!1;1 )** C (W!1;1 )*. 

o 
Lemma 13.2. For any r such that 0 ~ r ~ 9 - 1, 

W; C w"g-1 <=> aE w"g-1-r. 

PROOF. <=: If c = f(D) + a with D an effective divisor of degree r, and 
a = f(D') + b with D' an effective divisor of degree 9 - 1 - r, then c = 
f(D + D') + b with D + D' an effective divisor of degree 9 - 1. 

~: As a E w"g-I, there is an effective divisor A of degree 9 - 1 such 
that a = f(A) + b. Let D be effective of degree r. The hypothesis states 
that f(D) + a = f(D) + b for some D effective of degree 9 - 1, and so 
f(D) + f(A) = f(D) and 

D + A '" D + rP. 

Choose effective divisors A' and D' of degree 9 - 1 such that A + A' and 
D + D' are linearly equivalent to K (cf. the proof of (13.1)). Then 

D + K - A' '" K - D' + rP, and so 

D + D' '" A' + rP. 

As the D's form a family of dimension r, this shows that hO(A' + rP) ~ r + 1. 
(In more detail, lA' + rPI can be regarded as a closed subvariety of c(r+g -1), 

and we have shown that it projects onto the whole of c(r).) It follows from 
the Riemann-Roch theorem that hO(K - A' - rP) ~ 1, and so there is an 
effective divisor A of degree 9 - 1 + r such that 

A' + A + rP '" K. 

Therefore A + rP '" K - A' '" A, and so f(A) = f(A') and a = f(A) + bE 
Wr 1- r • 0 

Lemma 13.3. For any r such that 0 ~ r ~ 9 - 1, 

wg-1- r = n {W!;1IaE wr} and (wg-1-r)* = n {w"g-1IaE wr}. 

PROOF. Clearly, for a fixed a in J(k), 
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and (13.2) shows that both hold if a E W'. Therefore 

wg-I-, en {W!;l/aE W'}. 

Conversely, c E W!;I ¢> a E W!;I, and so if c E W!;I for all a E W', then 
W' c W!;I and w,,' c wg- I. According to (13.2), this implies that c E wg-I-" 
which completes the proof of the first equality. The second follows from the 
first and the equation 

nuv,,9-1/aEW'} = n{(W!;l)*/aEW'} =(n{W!;l/aEW'})*. 0 

Lemma 13.4. Let r be such that 0::;; r ::;; g - 2, and let a and b be points of J(k) 
related by an equation a + x = b + Y with x E WI and y E wg-I-,. If W;+1 cj;. 
w.g- I then W'+1 II w.g- I = W' uS with S = W,+I II (wg- 2)* b, a b a+x a y-a· 

PROOF. Write x = f(X) and y = f(Y) with X and Y effective divisors of 
degree 1 and g - 1 - r. If Y ;;:: X, then, because f(X) + a = f(Y) + b, we will 
have a = f(Y - X) + b with Y - X an effective divisor of degree g - 2 - r. 
Therefore a E It/,g-2-,, and so W;+I c It/,9-1 (by (13.2)). Consequently, we 
may assume that X is not a point of Y. 

Let c E W;+1 II It/,g-I. Then c = f(D) + a = f(D') + b for some effective 
divisors D and D' of degree r + 1 and g - 1. Note that 

f(D) + y = f(D) + a + x - b = f(D') + x, 

and so D + Y ~ D' + X. 
If D + Y = D' + X, then D ;;:: X, and so c = f(D) + a = f(D - X) + x + a; 

in this case c E W;+X. 
If D + Y #- D' + X, then hO(D + Y) ;;:: 2, and so for any point Q of C(k), 

hO(D + Y - Q) ;;:: 1, and there is an effective divisor Q of degree g - 1 such 
that D + Y ~ Q + Q. Then 

c = f(D) + a = f(Q) + a - y + f(Q), 

and so CE n {Jv,.g_-;,l+d/dE WI} = (wg-2):_y (by (13.3)). As (wg- 2):_y = 
(W,g--/)* and C is in W;+I by assumption, this completes the proof that 
W;+1 II It/,g-I C W;+x U S. 

The reverse inclusion follows from the obvious inclusions: 

W' - w.' w.g - I. a+x - b+y C b , (W9 - 2 )* C (W9 - I )* = w.g - I y-a y-a-x b· 
o 

Lemma 13.5. Let a E J(k) be such that WI r;j. Jv,.g-I; then there is a unique 
effective divisor D(a) of degree g on C such that 

f(D(a)) = a + K (13.5.1) 

and WI . Jv,.g-I, when regarded as a divisor on C, equals D(a). 

PROOF. We use the notations of Section 6; in particular, e = wg- I • For 
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a = 0, (13.1) says that (e-)K = e. Therefore, on applying (6.8), we find that 
WI. W:- I = f(C)· (e-)a+K ~ f-I((e-)a+K) = D, where D is a divisor of 
degree g on C such that f(g)(D) = a + K. This is the required result. 0 

We are now ready to prove (12.1a). We use f3 to identify J with J', and 
write v r for the image of C'(r) in J. As wg- I and vg-I define the same 
polarization of J, they give the same element of NS(J) (see [14, §12]), and 
therefore one is a translate of the other, say wg-I = Ycg-r, C E J(k). To prove 
(12.1a), we shall show that VI is a translate of WI or of (WI )*. 

Let r be the smallest integer such that VI is contained in a translate of 
Wr+1 or (wr+l )*. The theorem will be proved if we can show that r = O. 
(Clearly, r < g - 1.) Assume on the contrary that r > O. We may suppose 
(after possibly replacing f3 by -f3) that VI c W;+I. Choose an x in WI and 
a y in Wg- I - r, and set b = a + x - y. Then, unless W;+I c W"Y-I, we have 
(with the notations of (13.4)) 

VI n W,;-I = VI n W;+l n W,;-I = (VI n W;+x) u (VI n S). 

Note that, for a fixed a, W;+x depends only on x and S depends only on y. 
Fix an x; we shall show that for almost all y, VI '* It/,9-1, which implies 

that W;+I '* It/,9-1 for the same y. As y runs over wg-I - r, - b runs over 
W!;;;~~)' Now, if VI c W,;-I for all -b in W!;;;~~)' then VI c W;+x (by (13.3)). 
This contradicts the definition of r, and so there exist b for which VI '* It/,9-1. 
Note that VI c It/,9-1 (= V"Y-kI) ¢> - b E Yc9 - 2 (by (13.2)). Therefore v"g-2 '* 
W!;;;~~)' and so the intersection of these sets is a lower dimensional subset 
of W!;;;~~) whose points are the - b for which VI c W';-I. 

We now return to the consideration of the intersection VI n W,;-I, which 
equals (VI n W;+x) u (VI n S) for almost all y. We first show that VI n W;+x 
contains at most one point. If not, then as - b runs over almost all points of 
W!;;;~~) (for a fixed x), the element D'(b) ~ f'-I(V' .It/,9-1) (cf. (13.5)) will 
contain at least two fixed points (because W:+x c W:+-;_y = It/,9-1), and 
hence f(D'(b)) will lie in a translate of yg-2. As f'(D'(b)) = b + K', we would 
then have (wg- I - r)* contained in a translate of vg- 2, say V:-2, and so 

n {Ycl!..-~}IUE Y.tg- 2} c n {W!;lluE(wg-I-r)*}. 

On applying (13.3) to each side, we then get an inclusion of V in a translate 
of (wr)*, contradicting the definition of r. 

Keeping y fixed and varying x, we see from (13.5.1) that VI n W;+x must 
contain at least one point, and hence it contains exactly one point; according 
to the preceding argument, the point occurs in D'(b) with multiplicity one for 
almost all choices of y. 

It is now easily seen that we can find x, x' in WI and y in wg-I-r such 
that (D'(b) =) D'(a + x - y) = Q + 15 and (D'(b') =) D'(a + x' - y) = Q' + 15 
where Q, Q' are in C' and 15 is an effective divisor of degree g - 1 on C' not 
containing Q or Q'. By equation (13.5.1), f(Q) - f(Q') = x - x', and hence 
WI has two distinct points in common with some translate of VI. Now, if x, 
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x' are in Wi, then W!;i II W!;.l = wg-2 u (W:;;')* (by 13.4)). According to 
(13.3), we now get an inclusion of some translate of vg- 2 in wg- 2 or (wg- 2 )*. 
Finally (13.3) shows that 

Vi = n {V-eleE p-2} 

which is contained in a translate of Wi or W i* according as vg- 2 is con
tained in a translate of wg- 2 or (wg- 2 )*. This completes the proof. 0 

Bibliographic Notes for Abelian Varieties and 
Jacobian Varieties 

The theory of abelian varieties over C has a long history. On the other hand, 
the "abstract" theory over arbitrary fields, can be said to have begun with 
Weil's famous announcement of the proof of the Riemann hypothesis for 
function fields [Sur les fonctions algebriques a corps de constantes fini, Compo 
Rendu. 210 (1940), 592-594]. Parts of the projected proof (for example, the 
key "lemme important") can best be understood in terms of intersection 
theory on the Jacobian variety of the curve, and Weil was to spend the next 
six years developing the foundational material necessary for making his 
proof rigorous. Unable in 1941 to construct the Jacobian as a projective 
variety, Weil was led to introduce the notion of an abstract variety (that is, a 
variety that is not quasi-projective). He then had to develop the theory 
of such varieties, and he was forced to develop his intersection theory by 
local methods (rather than the projective methods used by van der Waerden 
[Eirifuhring in die algebraische Geometrie, Springer-Verlag, 1939J). In 1944 
Weil completed his book [Foundations oj Algebraic Geometry, AMS ColI., 
XXIX, 1946J, which laid the necessary foundations in algebraic geometry, 
and in 1946 he completed his two books [SUI les Courbes algebriques et les 
Varietes qui s'en deduisent, Hermann, 1948J and [20J, which developed the 
basic theory of abelian varieties and Jacobian varieties and gave a detailed 
account of his proof of the Riemann hypothesis. In the last work, abelian 
varieties are defined much as we defined them and Jacobian varieties are 
constructed, but it was not shown that the Jacobian could be defined over the 
same field as the curve. 

Chow ([Algebraic systems of positive cycles in an algebraic variety, Amer. 
J. Math., 72 (1950),247-283] and [3]) gave a construction of the Jacobian 
variety which realized it as a projective variety defined over the same ground 
field as the original curve. Matsusaka [On the algebraic construction of the 
Picard variety, Japan J. Math., 21 (1951),217-235 and 22 (1952), 51-62J 
gave the first algebraic construction of the Picard and Albanese varieties 
and demonstrated also that they were projective and had the same field of 
definition as the original varieties. Weil showed that his construction of a 
group variety starting from a birational group could also be carried out 
without making an extension of the ground field [On algebraic groups of 
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transformations, Amer. J. Math., 77 (1955), 355-391], and in [The field 
of definition of a variety, Amer. J. Math., 78 (1956), 509-524] he further 
developed his methods of descending the field of definition of a variety. 
Finally Barsotti [A note on abelian varieties, Rend. Circ. Mat. di Palermo, 2 
(1953),236-257], Matsusaka [Some theorems on abelian varieties, Nat. Sci. 
Report Ochanomizu Univ., 4 (1953), 22-35], and Weil [On the projective 
embedding of abelian varieties, in Algebraic geometry and topology, A sympo
sium in Honor oJS. LeJschetz, Princeton, 1957, pp. 177-181] showed that all 
abelian varieties are projective. In a course at the University of Chicago, 
1954-55, Weil made substantial improvements to the theory of abelian 
varieties (the seesaw principle and the theorem of the cube, for example), and 
these and the results mentioned above together with Chow's theory of the 
"k-image" and "k-trace" [Abelian varieties over function fields, Trans. Amer. 
Math. Soc., 78 (1955),253-275] were incorporated by Lang in his book [9]. 
The main lacuna at this time (1958-59) was a satisfactory theory of isogenies 
of degree p and their kernels in characteristic p; for example, it was not 
known that the canonical map from an abelian variety to the dual of its dual 
was an isomorphism (its degree might have been divisible by p). Cartier 
[Isogenies and duality of abelian varieties, Ann oj Math., 71 (1960), 315-351] 
and Nishi [The Frobenius theorem and the duality theorem on an abelian 
variety, Mem. Coli. Sc. Kyoto (A), 32 (1959), 333-350] settled this particular 
point, but the full understanding of the p-structure of abelian varieties required 
the development of the theories of finite group schemes and Barsotti-Tate 
groups. The book of Mumford [16] represents a substantial contribution to 
the subject of abelian varieties: it uses modern methods to give an compre
hensive account of abelian varieties including the p-theory in characteristic p, 
and avoids the crutch of using Jacobians to prove results about general 
abelian varieties. (It has been a significant loss to the mathematical community 
that Mumford did not go on to write a second volume on the topics sug
gested in the introduction: Jacobians; Abelian schemes: deformation theory 
and moduli; the ring of modular forms and the global structure of the moduli 
space; the Dieudonne theory of the "fine" characteristic p structure; arithmetic 
theory: abelian schemes over local, global fields. We still lack satisfactory 
accounts of some of these topics.) 

Much of the present two articles has been based on these sources. We now 
give some other sources and references. "Abelian Varieties" will be abbreviated 
by A V and "Jacobian Varieties" by JV. 

The proof that abelian varieties are projective in AV, Section 7 is Weil's 
1957 proof. The term "isogeny" was invented by Weil: previously, "iso
morphism" had frequently been used in the same situation. The fact that the 
kernel of mA has m2g elements when m is prime to the characteristic was one 
of the main results that Weil had to check in order to give substance to his 
proof of the Riemann hypothesis. Proposition 11.3 of A V is mentioned briefly 
by Weil in [Varietes Abeliennes. Colloque d'Algebre et Theorie des Nombres, 
1949, pp. 125-128], and is treated in detail by Barsotti [Structure theorems 
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for group varieties, Annali di Mat., 38 (1955), 77-119]. Theorem 14.1 is 
folklore: it was used by Tate in [Endomorphisms of abelian varieties over 
finite fields, Invent. math., 2 (1966), 134-144], which was one of the starting 
points for the work that led to Faltings's recent proof of Mordell's conjecture. 
The etale cohomology of an abelian variety is known to everyone who knows 
etale cohomology, but I was surprised not to be able to find an adequate 
reference for its calculation: in Kleiman [Algebraic cycles and the Weil con
jectures, in Dix Exposes sur la Cohomologie des Schemas, North-Holland, 1968, 
pp. 359-386] Jacobians are used, and it was unaccountably omitted from 
[13]. In his 1940 announcement, Weil gives a definition of the em-pairing (in 
our terminology, em-pairing) for divisor classes of degree zero and order m on 
a curve which is analogous to the explicit description at the start of Section 16 
of A V. The results of that section mainly go back to Weil's 1948 monograph 
[20], but they were reworked and extended to the p-part in Mumford's book. 
The observation (see (16.12) of AV) that (A x A V)4 is always principally 
polarized is due to Zarhin [A finiteness theorem for unpolarized Abelian 
varieties over number fields with prescribed places of bad reduction, Invent. 
math., 79 (1985), 309-321]. Theorem 18.1 of A V was proved by Narasimhan 
and Nori [Polarizations on an abelian variety, in Geometry and Analysis, 
Springer-Verlag (1981), pp. 125-128]. Proposition 20.1 of AV is due to 
Grothendieck (cf. Mumford [Geometric Invariant Theory, Springer-Verlag, 
1965,6.1]), and (20.5) of AV (defining the K/k-trace) is due to Chow (reference 
above). The Mordell-Weil theorem was proved by Mordell [On the rational 
solutions of the indeterminate equations of the third and fourth degrees, 
Proc. Cambridge Phil. Soc., 21 (1922), 179-192] (the same paper in which he 
stated his famous conjecture) for an elliptic curve over the rational numbers 
and by Weil [L'arithmetique sur les courbes algebriques, Acta Math., 52 
(1928), 281-315] for the Jacobian variety of a curve over a number field. 
(Weil, of course, stated the result in terms of divisors on a curve.) 

The first seven sections of JV were pieced together from two disparate 
sources, Lang's book [9] and Grothendieck's Bourbaki talks [4], with some 
help from Serre [17], Mumford [15], and the first section of Katz and Mazur 
[Arithmetic Moduli of Elliptic Curves, Princeton, 1985]. 

Rosenlicht [Generalized Jacobian varieties, Ann. of Math., 59 (1954),505-
530, and A universal mapping property of generalized Jacobians, ibid. (1957), 
80-88], was the first to construct the generalized Jacobian of a curve relative 
to a modulus. The proof that all abelian coverings ofa curve can be obtained 
from isogenies of its generalized Jacobians (Theorem 9.7 of JV) is due to Lang 
[Sur les series L d'une variete algebrique, Bull. SMF, 84 (1956), 555-563]. 
Results close to Theorem 8.1 of JV were obtained by Igusa [Fibre systems of 
Jacobian varieties I, II, III, Amer. J. Math., 78 (1956), 171-199, 745-760, and 
81 (1959), 453-476]. Theorem 9.11 is due to Parshin [Algebraic curves over 
function fields, I, Math. USS.F,-Izvestija, 2 (1968), 1145-1169]. Matsusaka 
[On a generating curve of an abelian variety, Nat. Sc. Rep. Ochanomizu Univ., 
3 (1952), 1-4] showed that every abelian variety over an algebraically closed 
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field is generated by a curve (cf. (10.1) of JV). Regarding (11.2) of JV, Hurwitz 
[Math. Ann., 28 (1886)] was the first to show the relation between the number 
of fixed points of a correspondence on a Rieman surface C and the trace of a 
matrix describing its action on the homology of the surface (equivalently that 
of its Jacobian). This result of Hurwitz inspired both Lefschetz in his proof of 
his trace formula and Weil in his proof of the Riemann hypothesis for curves. 

Proofs of Torelli's theorem can be found in Andreotti [On a theorem of 
Torelli, Amer. J. Math., 80 (1958), 801-821J, Matsusaka [On a theorem 
of Torelli, Amer. J. Math., 80 (1958), 784-800J, Weil [Zum Beweis des 
Torellischen Satzes, Gott. Nachr., 2 (1957), 33-53J, and Ciliberto [On a proof 
of Torelli's theorem, in Algebraic Geometry-Open problems, Lecture Notes 
in Math., 997, Springer-Verlag, 1983, pp. 113-223]. The proof in Section 13 
of JV is taken from Martens [A new proof of Torelli's theorem, Ann. Math., 
78 (1963),107-111]. Torelli's original paper is [Sulle varieta di Jacobi, Rend. 
R. Acad. Sci. Torino, 50 (1914-15), 439-455J. Torelli's theorem shows that 
the map from the moduli space of curves into that of principally polarized 
abelian varieties is injective on geometric points; a finer discussion of the map 
can be found in the paper by Oort and Steenbrink [The local Torelli problem 
for algebraic curves, in Algebraic Geometry Angers 1979, SijthofI & NoordhofI, 
1980,pp.157-204]. 

Finally, we mention that Mumford [Curves and Their Jacobians, University 
of MichJ provides a useful survey of the topics in its title, and that the 
commentaries in Weil [Collected Papers, Springer-Verlag, 1979J give a fasci
nating insight into the origins of parts of the subject of arithmetic geometry. 
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CHAPTER VIII 

Neron Models 

M. ARTIN 

This is an exposition of the main theorem of Neron's paper [2J, and of 
Raynaud's subsequent work on the problem. 

Notation and Terminology 

(1) R: a Dedekind domain with field of fractions K. Often R is local (a 
discrete valuation ring), and then Rip = k. 

(2) S: a normal scheme, with function field K. All schemes are assumed 
locally noetherian. 

(3) Subscripts indicate the base scheme (or ring). Thus XR is a scheme over 
Spec R, etc. Products are over the base. 

By model XR (or Xs) of a variety XK , we mean a reduced irreducible 
scheme whose general fibre is XK • If XK is projective, XK C lPic, then one 
can obtain a projective model Xs as the Zariski closure of XK in IPs. 

(4) Sometimes R or S will be assumed strictly local, meaning henselian, with 
separably closed residue field k. 

A smooth scheme Xs over a strictly local base has a dense set of 
sections, i.e., Xs(S) is dense. This allows many arguments involving points 
to be carried over. 

(5) An extension R --+ R' of discrete valuation rings is called smooth if R' is a 
localization of a smooth R-scheme. This is equivalent with the three 
conditions (i) pR' = p', (ii) k' separable over k, and (iii) tr degK K' = 
tr degk k'. 

(6) By nonsingular scheme X, we mean one whose local rings are regular. 
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§1. Properties of the Neron Model, and Examples 

Let R be a Dedekind domain, with field of fractions K, and let AK be an 
abelian variety over K. A Neron model AR = N(AK) for AK is a smooth group 
scheme over R whose general fibre is AK , which satisfies the following uni
versal property: 

(1.1) Let XR be smooth (over R), and let rPR: XR --~ AR be a rational map. 
Then rP extends uniquely to a morphism XR tAR. 

Clearly, this universal property characterizes the Neron model. Our object 
is to prove 

Theorem (1.2) (Neron [2]). The Neron model N(AK) = AR exists, and is of 
finite type over R. 

The closed fibre AK of the Neron model may have several components, so 
it will be an extension of a finite group by an algebraic group over k. 

One should keep in mind that the Neron model does not have particularly 
strong functorial properties. It is true, and trivial from the definition, that 
N(A x B) = N(A) x N(B). However the Neron model is not compatible with 
closed subgroups or with extensions of abelian varieties. It is obviously stable 
under smooth extensions R ---+ R' of discrete valuation rings, but not under 
ramified extensions R ---+ R'. For instance, an elliptic curve may have bad 
reduction over R, but smooth reduction over a ramified extension. This 
implies that the Neron model changes. 

The universal property (1.1) characterizing Neron models is made plausi
ble by the following extension of We iI's theorem on rational maps into group 
varieties. 

Proposition (1.3) (Weil [6]). Let Gs be a group scheme over S, and let Xs be 
smooth over S. Let fs: Xs --~ Gs be a rational map which is defined generically 
on each fibre of Xs. The set of points where fs is not defined has pure codimen
sion 1 in Xs. 

PROOF. We will use point notation, but the argument is scheme-theoretic. 
Define a rational map F: X x X --~ G by F(x, y) = f(x)f(yt 1• Clearly, F 

is defined at a diagonal point (x, x) if f is defined at x, and then F(x, x) = e 
is the identity of G in the fibre containing x. Conversely, if F is defined at 
(x, x) then there is a generic point '1 of the fibre so that F is defined at (x, '1). 
This is because the domain of definition of F is open in X x X. By assump
tion, f is defined at '1, so the formula 

f(x) = F(x, '1)f('1) 

defines f at x. Thus f is defined at x iff F is defined at (x, x). 
Let L be the function field of the scheme X x X. The rational map F 
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defines a map of the local ring of G at e to L: 
if! 

(!)G,e --+ L. 

215 

Since F sends (x, x) to e if defined, it follows that F is defined at (x, x) if and 
only if 

im ,p c: (!)x XX,(X,x) (c: L). 

Now X x X is smooth over S, hence is a normal scheme. Therefore the 
local ring (!)XXX,(X,X) can be characterized as the set of functions rxEL* whose 
polar divisor (rx)oo = Da does not contain (x, x), together with the element O. If 
F is not defined at (x, x), then (x, x) E Da for some rx E im,p. Since Da has 
codimension 1 and the diagonal A c: X x s X is a complete intersection, 
Da n A = Ca has codimension 1 in A = X. Clearly, F is not defined for 
(y, Y)EDa, hencefis not defined for YECa. 0 

Corollary (1.4). If AR is an abelian scheme over R, then AR is the Neron model 
of its generic fibre AK. 

PROOF. Valuative criterion and Proposition (1.3). o 

Exercise (1.5). This corollary does not extend to As abelian over S. Explain 
what goes wrong with the proof, and give an example. 

Corollary (1.6). Assume R strictly local. Let AR be a smooth group scheme of 
finite type extending the abelian variety AK. Then AR is the Neron model of AK 
iff every K-valued point extends uniquely to an R-valued point: 

PROOF. That every K-valued point extends uniquely is Neron's property (1.1), 
with X = Spec R. Conversely, given a rational map XR "1~ AR , X smooth, 
we know it is defined on the general fibre (R = K in Corollary (1.4)). So if ,p 
is not everywhere defined, then it must be undefined on one of the irreducible 
closed subsets of codimension 1 which do not meet the general fibre XK • 

These are the components C of the fibre X k • Let f be the closure of the 
graph of ,p in X x A. The projection f --+ X is birational, and its image is 
constructible. If the generic point 11 of a component C of X k is in the image of 
f, then ,p is defined at 11 because (!)x,,, is a discrete valuation ring, and hence 
on all of C by Proposition (1.3). If 11 is not in the image of f, then there is a 
rational point Xo of X k not in that image, and if x is any section of X through 
xo, ,p is not defined at x. We interpret x as a point of X with values in R, and 
let XK be the corresponding K-valued point. Then ,p(XK)EAK(K) does not 
extend to AR(R). 0 

Example (1.7). The Neron model of the multiplicative group GmK • Let R be 
a discrete valuation ring. The Neron model of GmK is obtained from the exact 
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sequence 
v ° --+ R * --+ K* --+ 7L --+ 0, 

where v is the valuation of R. It is not hard to find a corresponding extension 
of group schemes, in which R* is replaced by GmR and K* by a union G of 
countably many translations of G mR by rational sections: 

to obtain an exact sequence 

G = U pnG mR , 

ne"Z. 

° --+ Gm --+ GR --+ i* 7L --+ 0, 

where i* 7L denotes the nonseparated scheme representing the extension over 
R of 7Lk by zero. 

Of course, rational maps into G need not be everywhere defined because 
GmK is not proper. Also, the reasoning of Corollary (1.6) does not apply here 
because G is not of finite type. Nevertheless, it can be shown that the follow
ing weaker version of (1.1) holds: 

(1.8) Let XR be smooth over R, and let XK ~ GK be a morphism. Then 
,pK extends uniquely to a morphism ,pR: XR --+ GR' 

Theorem (1.9) (Raynaud [3J). A Neron model AR = N(AK) satisfying (1.8) 
exists whenever AK is semi-abelian, i.e., an extension of an abelian variety by a 
torus. 

We are not going to prove Raynaud's extension of Neron's theorem (1.2) 
here. 

Example (1.10). A smooth group scheme GR which is not a Neron model. 
Such an example can be obtained from any smooth group by blowing up the 
origin in its closed fibre. The closed fibre gets replaced by its tangent space. 
We will work this out for the multiplicative group Gm = Spec R[t, C 1 ]. 

Translate the identity t = 1 to the origin by the substitution x + 1 = t: 

k[t, C 1 J = k[x, (x + 1)-1]. 

The multiplication rule in Gm is 

t.- t ® t, or 

x.-x ® 1 + 1 ® x + x ® x. 

We now blow up the ideal (p, x) in Gm • We only need the affine piece of the 
blow-up generated by z = x/p: 

R[x, (x + 1)-1 J [zJ/(pz - x) = R[z, (pz + 1)-1]. 
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The multiplication rule over K extends to 

z~ z ® 1 + 1 ® z + p(z ® z), 

and gives Spec R[z, (pz + 1)-1] a group structure whose closed fibre is 
Spec k[z], with law z ~ z ® 1 + I ® z: the additive group. Obviously, the 
rational map R[z, (pz + It1] --~ R[t, t-1] contradicts (1.8) and (1.1). 

Before continuing with examples of Neron models, we will review a method 
of Weil [6]. He showed how to reconstruct a group variety of G from a 
birationally equivalent variety V, if the law of composition is given as a 
birational map. The strategy of proof is to identify an open subset U of V 
which is also open in G, and then to construct G as a union of translates of 
U. In order to have enough translations, we assume the base scheme S strictly 
local. The descent to other base schemes can often be done by projective 
methods, using the theorem of the square (cf. Section 4 and [4]). 

Let Vs be a smooth scheme of finite type with nonempty fibres, and let 
ms: V x V --~ V be an S-rational map. Following Weil, we call m a normal law 
if it is an associative law of composition, i.e., (ab)c = a(bc) whenever both 
sides are defined, and if the following condition holds as well: 

(1.11) The domains of definition of the rational maps </J, ljI: V 2 --~ V 2 de
fined by </J(a, b) = (a, ab), ljI(a, b) = (b, ab) are dense in each fibre of 
V 2, and their restrictions to each fibre are birational. 

Theorem (1.12) (Weil [6]). Let m be a normal law on V. Assume that the 
Zariski-local sections of VIS are dense in each fibre, and that one of the follow
ing conditions holds: 

(i) The geometric fibres of V are connected. 
(ii) S = Spec R, where R is a Dedekind domain, and the general fibre VK is 

geometrically connected. 

There is a smooth group G of finite type over S and a scheme U which is open 
and dense in each fibre, both in V and G, such that the laws of composition on 
V and G agree on U. The group G is unique up to unique isomorphism. 

This theorem is proved in Section 2. The connectedness assumptions and 
the normality of S are actually unnecessary. See [8] for a more general 
formulation. 

Note that the hypothesis on sections is satisfied by global sections if S is 
strictly local. 

Note: Suppose that S = Spec R where R is a discrete valuation ring, and 
that a normal law m is given on the general fibre VK of YR' In order for m to 
be a normal law on V, it is not enough that each of the maps </J, r 1, ljI, ljI-1 of 
(1.11) have a domain of definition which is dense in the closed fibre Jtk2. In 
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fact, if V is proper then this is automatic, by the valuative criterion. A little 
extra is needed to insure that the graphs of rPk, rP;1 (and I/Ik' 1/1;1) agree. It is 
sufficient that rPk' I/Ik be generically surjective. Zariski's Main Theorem then 
implies that (1.11) holds. Of course, associativity carries over automatically 
from the general fibre. 

Exercise (1.13). Work out an example with VR = lPi to illustrate this point. 

Example (1.14). The Neron model of an elliptic curve, i.e., dim AK = 1, when 
R is local and k = k. It is known that there is a proper nonsingular model VR 

of VK = A K • If V is also chosen to be a minimal proper nonsingular model, 
then it is unique, and so every automorphism of AK , such as translation by a 
rational point, extends to an automorphism of V. The closed fibres of V have 
been classified by Kodaira [1] and Neron [2] into a standard list of types: 

Proposition (1.15). Let VR be the minimal nonsingular model of an elliptic curve 
AK, and let A c V denote the open subset of points where V is smooth. Then A 
is the Neron model N(AK). 

PROOF. Everything is preserved by passage to the strict localization of R, so 
we may assume R strictly local. D 

Each point of AK(K) extends to V(R) by the valuative criterion. Since V is 
nonsingular, any section a E V(R) lies in the smooth locus of V, which is A. 
(For, if ((9, m) is the local ring of V at a, then the homomorphisms R-+ 
(9 .!!. R show that P ¢ m2, hence that the fibre ~ is nonsingular at Pk• Since 
ak is a rational point, ~ is smooth, and also V is smooth, at ak .) This shows 
that AK(K) = A(R), and by Corollary (1.6) that A is the Neron model, pro
vided it is a group scheme. 

Next, we claim that the law of composition m on AK is a normal law on A: 
If R -+ R' is any smooth extension of discrete valuation rings, then AK(K') = 

A(R') too, because the construction of A is compatible with such an exten
sion. Applying this fact to the case that R' is the localization of A 2 at a 
generic point of Af shows that the rational maps rP, 1/1 of (1.11) are defined at 
generic points of the closed fibre. Since the map rP is 1-1 for a fixed rational 
point a, the fibres of rP are not all positive dimensional. Therefore rjJ is generi
cally surjective, and (1.11) holds. By Theorem (1.12), there is a group scheme 
B over R and a common dense open set U of A, B. 
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Consider the rational map B: B --+ A extending the identity on U. Trans
lation by a section x E B(R) is everywhere defined on B, and also on A, 
because BK = AK and translation by any point in AK(K) extends to A. There
fore B can be defined at any point bE B by the rule B = Lx 0 B 0 tx, where x is 
chosen so that tAb) = b + XE U. Hence B is everywhere defined, and being a 
dense subgroup of A, B(B) = A. 0 

Lemma (1.16). Let Gs be a smooth group scheme. There is an open subgroup 
G~ c Gs, called the connected component, such that the geometric fibres 
GR of GO are the connected components of the fibres G". 

The proof of this lemma is not difficult, and we omit it. One way is to 
prove the more general "Stein factorization" below: 

Lemma (1.17). Let X .£ Y be a smooth map of schemes. Then f factors uniquely 
as 

x:C Y'!!. Y, 

where f' is smooth, with geometrically connected, nonempty fibres, and g is 
eta Ie. 

Unfortunately, the factorization Y' exists only as algebraic space, i.e., it has 
an etale covering by a scheme, and it is not a separated algebraic space. 
Lemma (1.16) follows from (1.17) with X = G, Y = S, because f'(es) (es the 
identity section) is locally closed in Y', and GO = f'-lf(es). 

Exercise (1.18). Describe the factorization (1.17) when X = G. 

Example (1.19) (The Neron Model of a Jacobian). Let VK be a smooth curve 
of genus g ~ 2, with rational point, and let AK be the Jacobian of VK. Assume 
that K is the field of fractions of a discrete valuation ring R. Let V = VR be a 
regular proper model for VK • It is known that the relative Picard functor 
[ljJ6'C VIR is representable as algebraic space. 

Proposition (1.20). The connected components ([ljJic VIR)O and N(AK)O are 
canonically isomorphic. 

This is not difficult to show, assuming the existence of f!1>ic VIR, but we 
will not do it. The key point is that f!1>ic VIR has a property analogous to (1.6), 
i.e., every class IX in [ljJic VK(K) extends to f!1>ic V(R). 

To get a canonical extension, one simply chooses a divisor D representing 
IX, and takes its Zariski closure 15 in V. Then 15 is a Cartier divisor because V 
is nonsingular. 

The exact relation of [ljJ6'C VIR and A = N(AK) is described as follows. We 
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assume k algebraically closed. The closed fibre J-k of V is a Cartier divisor 
which can be written as a linear combination J-k = L riCi, where ri are posi
tive integers, and {Ct , ... , Cn} are the irreducible components of J-k. Let 
D = 7Lnj7LJ-k denote the group of divisors supported on J-k, modulo J-k. Its 
dual D* = Homz(D, 7L) is the subgroup (J-k)1- of 7Ln. Let P c &>6'C VIR denote 
the subgroup of bundles of total degree zero, so that f!iJic VIR ~ P EB 7L. 
There is an exact diagram 

AO AO 

! ! 
0 1 i*D 

cl 
1 P 

Ner 
1 A 10 

(1.21) !deg ! 
0 1 i*D 

(Ci ' Cj ) • * 
II*D 1 i*F 10 

! ! 
0 0 

where cl sends a divisor to its class, Ner is the canonical map (1.1), deg sends 
a bundle L to the vector (deg Llc" ... , deg Llc), (Ci . C) is the intersection 
matrix, and i* is the extension by zero outside of the closed point Spec k. 
Thus the finite group F of components of AK is identified as the cokernel of 
(Ci ' Cj ). 

Definition (1.22). A group scheme As is semi-abelian if it is smooth, and if 
every geometric fibre is semi-abelian, i.e., is an extension of an abelian variety 
by a torus: 

0-+ G:;',i( -+ Ai( -+ (abeliank -+ O. 

Proposition (1.23). Assume A = AR semi-abelian, and AK abelian. Then AR is 
the connected component of the Neron model N(AK)' 

PROOF (Assuming Existence of N(AK))' The proof reduces immediately to 
the case that R is strictly local. The universal property (1.1) defines a map 
At N(AK) which is a homomorphism, and an isomorphism on the general 
fibre. It suffices to show that its kernel on the special fibre is finite, for then ¢J 
is quasi-finite and birational, hence an open immersion by Zariski's Main 
Theorem, etc ..... 

To show ker ¢Jk finite, we use points of order IV, I prime to char k. The 
scheme of points of order ZV in A is closed and etale, and similarly the 
corresponding scheme in N(AK) is etale. Hence this scheme does not meet 
ker ¢Jk' On the other hand, points of order IV(v = 1, ... ) are dense in any 
semi-abelian scheme Bk, hence in the connected component of ker ¢Jk' Thus 
the connected component has dimension O. Since ker ¢Jk is closed in A, it is 
fu~ 0 
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§2. Weil's Construction: Proof 

We will now prove Theorem (1.12). Suppose first that Vhas connected (non
empty) fibres. We may as well assume S local, and then the assumption on 
local sections implies that the global sections are dense in each fibre. 

By assumption, there are open sets X tP , YtP C V 2 , dense in each fibre, such 
that the rational map rjJ defines an isomorphism X tP ~ YtP . Let X be the 
intersection of the four sets X tP , YtP , X"" Y"" where X"" Y", are defined analog
ously. This set X is also dense in each fibre. 

Lemma (2.1). Replacing V by an open subset dense in each fibre if necessary, 
we may assume that the two projections pri: X --+ V(i = 1, 2) are surjective. 

PROOF. Clearly, pri X is open and dense in each fibre of V. So we will try to 
replace V by V' = pr 1 X n pr 2 X. Let C = V - V' and Z = (C x V) u 
(V x C). The subset X~ of V '2 corresponding to X tP is the complement in X tP 
of S = (XtP n Z) u rl(ytP n Z). It is easily seen that the only fibres of pr 1: 
X tP --+ V which are contained in S are in C x V. Thus pr 1: X~ --+ V'is surjec
tive. Similarly, pri: W' --+ V'is surjective for each of the sets W' = X~, Y;, X~, 
Y~ and for i = 1, 2. Since the fibres of pri: V '2 --+ V' are connected, any open 
subset which is nonempty in each fibre is dense in each fibre. Hence, denoting 
by X' the intersection of the four sets W', the maps pri: X' --+ V' are also 
~~ 0 

Having replaced Vas in the lemma, the theorem will now be proved with 
V = U. We can state the conclusion of the lemma this way: 

(2.2) For every aE V, the rational maps rjJ±l, I/I±l are defined at (x, a) and 
at (a, x), provided x is generic (i.e., lies in a dense open set) in the fibre 
of V containing a. 

Lemma (2.3). Assume that (2.2) holds. Let r denote the closure in v 3 of the 
graph of the law of composition. Then the three maps prij: r --+ V2(1 ::; i < 
j::; 3) are open immersions, dense in each fibre of V 2. 

This lemma asserts that each of the rational maps v 2 --~ V obtained from 
r is defined at a point, or else the correspondence is empty there. 

We can write this symbolically as follows: If (ao, bo, co) E r, then the three 
maps 

(a, b)-- ab = c, 

(a, c) __ a-1c = b, 

(b, c) __ cb-1 = a, 

are defined at (ao, bo, co). It follows that rjJ is also defined at (ao, bo), etc ..... 
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PROOF. By Zariski's Main Theorem, it suffices to show that the maps prij : 

r -+ V 2 are set-theoretically injective. Let x be a section of V. The two ra
tional maps r .. ~ V defined by 

(a, b, c) .... (xa)b 
.... xc 

are equal, and so they agree whenever both terms are defined. This follows 
from the associative law for m. Let (a, b, c), (a, b, c') E r and choose x generic. 
Then xc = (xa)b = xc', and xc is generic. Hence t/J(x, c) = t/J(x, c'), and so 
c = c'. This shows that pr 12 is injective. The other projections are treated in 
the same way. D 

We will now expand V by gluing translations, to get the group we want. 
Let s be a section of V, and let V. be another copy of V, thought of as the 
"translate" V. = {as I a E V}. The subset 

w.=VxsxVnr 

is closed in V x s x V ~ V2, and the two projections W. -+ V are open im
mersions. This follows from the previous lemma. Therefore W. defines gluing 
data and yields a scheme 

V' = VUws V.. 

Lemma (2.4). V is dense in each fibre of V', and V' has property (2.2). 

PROOF. We omit the verification that V is dense in each fibre of V'. To show 
(2.2), we have to show that for a' E V' and x generic in the fibre, t/J is defined 
at (a', x), etc ..... This is clear if a' E V. If a' E V., then choose y generic so that 
S-1 y and ay are defined. Let x = S-1 y. Then the rule 

(a', x) .... (a', ay) 

defines t/J at (a', x), as required. D 

The above lemma allows us to replace V by V', hence to expand V when
ever there is a section s such that s is not defined for all a E V. Let V' be the 
result of finitely many such expansions, and let We V 2 X V' be the closure 
of r. By Lemma (2.3) applied to V', pr12: W-+ V 2 is an open immersion. Its 
image is the set of points (a, b) E V 2 such that m: V 2 -+ V' is defined at (a, b). 
If V x s ¢ W for some sections s of V, then replacing V' by V' u V; increases 
V' and W. By noetherian induction, we may assume V x seW for all sec
tions s of V. Then W = V 2. Namely, given (a, b) E V2, C = a(bx-1) is defined 
for generic x, (c, x) E V X X C W, and (a, b) .... ex defines m: V 2 .. ~ V' at (a, b). 

Lemma (2.5). Let V, V', W be as above. If W = V2, then the law of composi
tion is defined everywhere on V', and V' is a group scheme. 
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PROOF. Let (ai, b') E V '2 , and let x be a generic section. Then a'x and x-1b' are 
both defined and in the dense open V, so 

(ai, bl)'-(alx)(x-1b' ) 

defines m at (ai, b'). Similarly, 

(b ', c' )'- (b'-lX)(X-1C ' ), 

(ai, c' ).- (C'X-1 )(xa-1), 

define the laws b-1c, ca-1 at any point of V'2. This shows that ifJ, l/I extend to 
automorphisms of V'2. 

We leave the verification of the group axioms and the uniqueness of the 
group G as an exercise. For example, to find the identity element, let a be any 
section of V'. Then ifJ defines an isomorphism a x V' -+ a x V'. Hence ae = a 
for some section e, and for every b, be = (ba-1 )(ae) = (ba-1)a = b, etc ..... 

It remains to consider case (ii) of (1.12). We use the Stein factorization 
(1.17): 

so that l' has connected, nonempty fibres, and g is etale. Since V is assumed 
to have a dense set of local sections, S' is actually a prescheme, and the 
normal law on V induces a structure of etale group on S'/S. The identity 
section e of S' is open, and 1'-1 (e) = VO is an open subset of V with connected 
fibres, and with a normal law induced by m. By what has been shown, VO is 
birational to a group GO, and the required group G is easily constructed as a 
union of translates of GO. D 

§3. Existence of the Neron Model: R Strictly Local 

We will first construct N(AK) in case R is strictly local. Then we can use 
Weil's construction (1.12) of a group from birational data and the character
ization (1.6) of N(AK) in terms of sections. 

If we had N(AK) = A, then the components Ci of the closed fibre Ak would 
provide us with a finite set of prime divisors (see §5) of the function field 
F = fract(A K ), namely 

(3.1) '1i = general point of Ci . 

These prime divisors are smooth extensions of R; let us call such prime 
divisors smooth. 

Conversely, if we knew the prime divisors R;, then we would have the 
Neron model birationally, and could use Weil's construction (1.12). 

Lemma (3.2). Assume R strictly local. Let R~, ... , R~ be smooth prime divisors 
of F = fract (AK). Assume that the finite set {R;} is permuted by every rational 
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translation AK ~ AK, aEAK(K). Then the Neron model N(AK) = A exists, and 
the R; are the local rings (3.1) of the components of A k • 

PROOF. Choose a model J.-R for AK on which R; are of the first kind (cf. (5.2)). 
Let Ci be the corresponding components of ~. Since R; is smooth, V is 
generically smooth along Ci • So, replacing V by an open subset if necessary, 
we may assume V smooth and that ~ = U Ci . 

Let a be a section of V. Translation by aK permutes {R;}, and therefore 
defines a birational map V -+ V whose domain of definition is dense in ~. 
Since V is smooth, its sections are dense in ~, and from this one concludes 
that the rational map ifJ: V 2 -+ V 2 (1.11) has a domain of definition which is 
dense in ~2. It is generically surjective because translation by a permutes the 
generic points of~. Thus (1.11) holds, and the law of composition on AK is a 
normal law on V. By (1.12), there is a smooth group A realizing this law, and 
the components of Ak are the centers of the prime divisors R;. 

Since translation by a E AK(K) permutes {Ra, it is defined generically on 
each fibre of A, hence everywhere defined by (1.3). So a = ta(e) is in A(R), and 
A is the Neron model by (1.6). 0 

We now have to find the finite set of prime divisors {R;} as in (3.2). 
Following Neron, we choose a nonzero holomoprhic g-form oc on AK , where 
g = dim A K • This form oc is unique up to constant factor, is translation
invariant, and is nowhere zero. Given any smooth prime divisor R' of F, 
choose a model V = VR on which R' is of the first kind and such that V is 
smooth (restrict to an open neighborhood of Spec R'). Then oc can be viewed 
as a rational section of 0t/R, and we set 

(3.3) vR,(oc) = order of zero of oc at R'. 

Lemma (3.4). Assume R local. Among all smooth prime divisors R' of AK, the 
integer vR,(oc) takes on its minimum value finitely often. The corresponding 
prime divisors are called O-minimal. If R -+ Rl is an hale local extension, then 
the R 1 -minimal prime divisors of R 1 ® R F are the extensions of the O-minimal 
prime divisors of F. 

The last assertion will be clear from the proof, and so we will not mention 
it further. 

Lemma (3.4) will complete the proof, because since oc is translation
invariant, the set of O-minimal prime divisors is translation-invariant, and 
(3.2) applies. 

A FALSE START AT THE PROOF. Assume for the moment that there is a proper 
nonsingular model V = VR for AK = VK. Then the O-minimal prime divisors 
are of the first kind on V, hence form a finite set. This is because differentials 
acquire zeros on the exceptional divisor of a blowing-up, and we can make 
any prime divisor of the first kind by blowing up (5.2). This is seen as follows: 
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The center y of a smooth prime divisor R' on V exists because V is proper, 
and it has these properties: 

(3.5) (i) The residue field k(y) is separable over k; and 
(ii) V is smooth at y. 

The first is because R' is smooth, hence k' = R'/p' is separable over k, and 
k(y) c k'. The second follows from (i) because p is a local parameter at the 
(nonsingular) point y, since pR' = p' and m; R' = (myRY 

We now study the effect of blowing up the closure Y of y. Locally for the 
etale topology, we put the pair V, Y into standard position: 

etale 
V -- A~, coordinates (Xl'···, x r ; Yl' ... , y.) 

U etale U 
Y -- AL the locus {p = X = O}. 

Blowing up {p = X = O} in A~ induces the blowing-up of Y in V by pull
back, and is defined (on an affine piece) by the substitution pz = x. Hence 

dx A dy~pr dz A dy (dx = dX l A ... A dx" etc.). 

Our differential rx, being hoI om orphic and nonzero on VK , has the form 

rx = (unit)p' dx A dy, 

where v = order of zero of IX along the component of Vrc which contains Y. 
Therefore by induction, 

vR,(rx) ~ v + r, 
which shows that R' is not !i-minimal unless r = 0, i.e., R' is of the first kind 
on V. 

This argument provides the proof of Lemma (3.4), assuming resolution of 
singularities. Unfortunately, resolution is not known in general, and so 
Neron proved what he needed: 

Lemma (3.6). Let X K be proper and smooth over K. There is a finite set VAil of 
models of XK such that every point x' of XK(K'), where K' is the fraction field 
ofa smooth extension of discrete valuation rings R -+ R', extends to a smooth 
point of V(i)(R') on at least one model V(i). 

The proof is similar to Zariski's proof of (5.2), but must be done carefully 
so as to give a uniform bound for all points. We first introduce Neron's 
measure I of singularity along a point x' of a model with values in R'. Choose 
an affine presentation of a neighborhood of x' in V: 

(3.7) R[x]/(f), 

Let M run over (n - g)-rowed minors of the Jacobian matrix 8fJ8xj' where 
g = dim XK. The elements let M generate the unit ideal in K[x]/(f) because 
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XK is smooth. Let us denote the coordinates of the point x' by x~, ... , x~. 
Then 

(3.8) I(x') d=f min {vR,(det M(x'»}. 
en M 

It is easily seen that I(x') is independent of the presentation (3.7), and is 
bounded above for all points x' (with R' smooth). Moreover, I(x') = 0 if and 
only if V is smooth at x'. 

Lemma (3.6) follows by induction on I together with noetherian induction 
on v,., from the following lemma of Raynaud. This lemma is a significant 
simplification of Neron's original proof. 

Lemma (3.9) (Raynaud [3]). Let V = VR be a model of the smooth scheme 
VK = XK • Let Y c v,. be an irreducible closed subset such that the points x' of 
V with values in smooth extensions R' of R, which pass through Y, are dense in 
Y. Let VI be the blowing-up of Y in V. There is an open dense set U c Y, so that 
if x' passes through U and x~ is the lifting of x' to VI' then 

I(x~) < I(x'). 

PROOF. (a) The existence of a dense set of points x passing through Y implies 
that Y is generically smooth over k. Therefore if we work locally at the 
generic point of Y, we can put the pair V, Y into standard position: 

(3.10) V: {f(x, y) = O}, x = Xl' ... , x" Y = Yl' ... , Y., f=fl' ... ,fm, 

Y: {p = x = O}. 

Actually, this is a local description in the etale topology, which means that the 
equations f(x, y) = 0 are defined implicitly: f(x, y) solves a polynomial equa
tion F(x, y, u) = 0 with nonzero partial derivative iJF/iJu, i.e., V is the locus 
{F = u = O}, and Y is the pull-back of {p = x = O} to V. This modification 
will not change our computation, so we suppress it. Think analytically. 

(b) If some partial derivative ofdoxj or ofdoYj does not vanish identically 
on Y, then we can eliminate a variable and an equation. Hence we may 
assume that 

(3.11) ( of Of) 
ox' oY == 0 (mod (p, x». 

(c) Next, we may work with a particular minor M whose determinant has 
minimal valuation on a dense set. We may assume that M involves the partial 
derivatives ofdoxj only. This can be achieved locally by a change of variable 
x = x, y = y + eX, which results in 

of of 

oy oy' 

So, re-indexing, we assume M is the minor ofJoxj, 1 :::;; i,j :::;; n - g. 
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(d) The equations fn-g+1, ... ,fm could help lower I after blowing-up, but 
we do not need them. So, assume V = {II = .. .fn-g = O}. 

(e) By Taylor expansion, 

of 
f(x, y) = f(O, y) + ox (0, y)x + (9(x2). 

We have a dense set of points of V passing through Y, i.e., whose coordinates 
(x', y') have the property x' == 0 (mod p). For these points, f(x', y') = 0, and 
(of/ox)(O, y') == 0 (mod p) by (3.11). Hence 

0= f(O, y') + (9(p2). 

Using (3.11) again, we can conclude that 

(3.12) f(O, y) == 0 (mod p2) 

for all y, i.e., identically. This is because a dense set of values y" of y (mod p2) 
can be written in the form y" = y' + ph, where (x', y') is as above. Then 

f(O, y") = f(O, y') + :~ (0, y')ph + p2(9(h2) == 0 (mod p2), 

by (3.11). 
(f) Blow up Y by the substitution pz = x. The points (x', y') with x' == 0 

(mod p) lift, and 

of 
f(pz, y) = f(O, y) + ox (0, y)pz + p2(9(Z2) == 0 (mod p2). 

Write f(pz, y) = p2g(Z, y). Then 

og of 
p oz = ox' 

which shows that I decreases by blowing-up. This completes the proof of 
Lemma (3.9), and of the existence of the Neron model when R is strictly local. 

D 

§4. Projective Embedding 

Proposition (4.1). (a) Let A = AR be a smooth group scheme of finite type, with 
abelian general fibre AK • Let D be a divisor on A such that: 

(i) DK is ample on AK, and D is the closure of DK. 
(ii) There are only finitely many points ao E Ak(k) such that translation by 

ao in Aj( carries Dj( to itself. 
(iii) D = D-. 

Then D is ample on A. 
(b) For any bundle L on A, HO(A, L) is a finite R-module. 
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PROOF. We may assume R strictly local (flat base change) and also that DK is 
very ample. Let a E A(R). By the theorem of the square, E = Da + D -a - 2D 
is linearly equivalent to zero on AK , hence EK is the divisor ofa function ifJ on 
AK • Therefore the divisor of ifJ on AR has the form 

(4.2) 

where ri E Z and Ci are the components of Ak • If a E AO(R) (is in the connected 
component), then it follows by continuity that the ri are all equal, and that 

(4.3) Da + D -a - 2D '" 0 on A, 

Since sections a can be found through any rational point of Ak , it follows that 
the linear system 12D I has no base points. 

To show that 12DI separates points of A k , assume bo "# Co E A(k). Then 
using (ii), (iii), one can find a section a E A O(R) such that bo E Da but 
Co ¢; Da + D -a' This shows that 12D I separates rational points. That it sep
arates algebraic points follows by pull-back to a (ramified) finite extension 
R-+Rl' Thus the map AtlPR defined by 12DI is quasi-finite, and an em
bedding on the general fibre. 

Let V be the closure of the image of ifJ, and let V ~ V be the normalization 

of V. Then ifJ lifts to A 1. V because A is normal, and (jj is an open immersion 
by Zariski's Main Theorem. The line bundle I = n*(Dv(1) is ample on V, and 
if I0n is very ample on V, it follows easily that 12nDI defines a (locally 
closed) embedding A -+ IPR . 

We omit the proof that HO(A, L) is a finite R-module. It is done by 
reduction to dimension 1, but we will not really need it, since in any case only 
finitely many sections are needed to define an embedding. 0 

PROOF OF THEOREM (1.2). Using Proposition (4.1), we can derive the existence 
of the Neron model over an arbitrary Dedekind domain R, as follows. 
Clearly, we may assume R local. Since the Neron model exists over the strict 
localization of R, it also exists over some etale local extension R. Also, the 
Q-minimal prime divisors exist over R (3.4). So, there is a smooth model VR 

for AK such that the birational correspondences Vi - Ai are generically 
defined on each fibre. 

Lemma (4.4). There is a divisor DK on AK, such that the closure [j of Di in 
Ai satisfies (i)-(iii) of Proposition (4.1). 

PROOF. We first note that if Do is a positive divisor on Ali which is stabilized 
by only finitely many translations, then the same thing is true for any 
D~ ~ Do. For, let G be the stabilizer of D~. The subgroup of G which sta
bilizes every component of D~ has finite index in G, and it stabilizes Do. Using 
this fact, it is easy to see that there exist divisors on Ali whose stabilizer is 
finite. 

Next, let Do be any divisor on Ali. There exists a rational functionf on Ai 
which vanishes on Do but does not vanish on any component of Ali' Replac-
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ing f by a norm, we may assume that it is a rational function on AK • Thus 
there exists a divisor D~ such that D' satisfies condition (ii). 

Since very abelian variety is projective, it is clear that a divisor EK may be 
found so that E satisfies (i). Then for large n, D = nE + D' satisfies (i), (ii), and 
D + D- satisfies (iii) as well. 0 

Now choose a divisor DK as in Lc;mma (4.4). Let n be an integer such that 
InDI is very ample on Ai, and let Dl be the closure of DK in VR. 

Lemma (4.5). (i) InDll has no base points. 
(ii) Let WR C iP'R denote the closure of the image of the map VR ~ iP'R defined 

by InDll. Then InDI defines an open immersion Ai ~ Wi, and its image is 
the set of smooth points of Wi. 

(iii) Let A R be the set of smooth points of WR. Then A R is the N eron model of 

AK • 

PROOF. We can describe H°(VR, (9(nD1 )) as the submodule of sections of 
HO(AK' (9(nDK)) which are regular at every smooth prime divisor of the 
first kind on VR . A similar description works for H°(Vi, (9(nD1 )) and 
HO(Ai, (9(nD)). Hence 

(4.6) H°(Vi, (9(nDd) = HO(Ai, (9(nD)). 

By assumption, the left side defines an embedding of Ai. Since Vi is smooth, 
the resulting map Vi --~ Ai is everywhere defined, which shows that I nDll has 
no base points. By flat base change, I nDll has no base points. This proves (i), 
and most of (ii). That the image of Ai in Wi is the set of smooth points 
follows again from the universal property (1.1). Finally, (iii) follows easily 
~~ D 

§5. Appendix: Prime Divisors 

Let «(9, m) be a local domain with field of fractions F. A prime divisor of (9 
is a discrete valuation ring (R', p') of F such that (9 c R', p' n (9 = m (i.e., 
Spec R' ~ Spec (9 is a local map), and one of the following equivalent con
ditions holds: 

(5.1) (i) tr deg(1J/m R'/p' = dim (9 - l. 
(ii) R' is a localization of an (9-algebra of finite type. 

If X is an integral scheme with function field F, then a prime divisor R' of 
X is by definition a prime divisor of the local ring (9 X,x at a point x E X, which 
is called the center of R'. This means that Spec R' maps to X, the map sends 
Spec R'/p' to x, and in addition (5.1) holds. A prime divisor is said to be of the 
first kind on X if (9x,x = R', i.e., R' is the local ring of X at the general point of 
a closed subset of codimension 1, and X is normal at x. 
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Suppose that XR is proper over R, with function field F. Then a prime 
divisor of X is also called a prime divisor of the function field F. By the 
valuative criterion, this notion depends only on F, and not on X. 

Assume that the prime divisor R' is not of the first kind on X, and let Z be 
the closure of its center x. Let Xl ~ X be the blowing-up of Z in X. Then 
R' has a center Xl in Xl by the valuative criterion for properness. Also, 
dimension theory shows that (5.1) (i) holds at (9X 1 ,Xl if and only if it holds at 
(9 x,x hence that R' is a prime divisor of Xl if and only if it is a prime divisor 
ofX. 

The following is a classical result, which as a corollary proves the equi
valence of (5.1) (i) and (ii): 

Theorem (5.2) (Zariski [7J). Let R' be a prime divisor of X in the sense of(5.1) 
(i). If R' is not of the first kind on X, replace X by the blowing-up Xl' as above. 
After finitely many repetitions of this procedure, R' will be of the first kind. 

PROOF. Let X, Xl be the centers of R' on X, Xl' and let (9 = (9x,x, (91 = (9X 1,Xl' 

Then (91 is a localization of the ring (9[xdxo, ... , xJxoJ, where {xo, ... , xn } 

is a minimal set of generators of mx and Xo is chosen so that vR,(XO) is 
minimal. Since xilxo rj:. (9, the blowing-up is not an isomorphism at X unless 
n = 0, in which case (9 is a discrete valuation ring, necessarily equal to R'. 

If dim (9 = 1, then R' is the normalization of (9 and R'I(9 has finite length. 
The theorem follows by induction from (9 ~ (91 C R'. 

Assume dim (9 > 1, and choose exER' whose residue in R'lp' is transcen
dental over (9lm. Write ex = alb, where a, bE (9. Since ex has a transcendental 
residue, exrj:.(9, hence bEm c p. We use induction on vR(b). In the ring (91' 

we can factor Xo out of a and b: a = xOa l , b = xob l . Then ex = adb l , and 
vR,(bd < vR,(b). So eventually ex will become algebraic. Induction on dim (9 

completes the proof. 0 
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CHAPTER IX 

Siegel Moduli Schemes and Their 
Compactifications over C 

CHING-LI CHAI* 

The purpose of this chapter is to give a brief introduction to the moduli 
spaces of abelian varieties and their compactification. Only the geometric 
aspects of the theory are discussed. The arithmetic side is left untouched. 
The Satake and toroidal compactification are described within the realm 
of matrices. Although the theory looks more elementary and explicit, this 
approach also tends to obscure its group-theoretic nature (see [B-B], [SC] 
for the general case). The readers interested in a deeper pursuit of this subject 
may find more references in [GIT] and [FrJ. 

§o. Notations and Conventions 

0.1. Z, ([), ~, C denote integers, rational numbers, real numbers, and complex 
numbers respectively. N = Z:?o, N+ = Z>o' 

0.2. All rings are commutative with identity, all schemes are locally noethe
rian, unless otherwise stated. 

0.3. For any ring R, m, nE N+, Mm,n(R) = m x n matrices with entries in R, 
Mn(R) = Mn,n(R), GLn(R) = invertible elements in Mn(R). Thus Mm,n, Mn, 
GLn are all schemes over Z. For any A E Mm,n(R), 1,4 E Mn,m(R) denotes the 
transpose of A. 

0.4. For all 9 E N+, SP29 is a subgroup scheme of GL29 over Z, such that for 

* Supported in part by NSF grant MCS-8108814 (A03). 
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any ring R, 

where 

19 = (~ ". ~)EGL2iR). 
For any YEM29(R), YESP2iR) if and only if tYESP2iR). Thus we get an 
equivalent set of identities in A, B, C, D characterizing SP29' 

0.5. For all g, nE ~+, rin):= {YESp2i-~)IY == 12g (mod n)} is the principal 
congruence subgroup of level n. rg(1) = Sp2l~) is also denoted by r g, called 
the full modular group. 

0.6. For all rE~+, Cr:= {AEMr(IR)IA =~, A positive-definite}, Cr := 
"rational closure" of Cr in Mr(lR) = {A E Mr(IR)IA =~, A positive, semi
definite radical of A is defined over Q}. 

0.7. For all g ~ 1, gE7L, ~g = {nEMg(c)ln = tn, 1m n» 0 (i.e. imaginary 
part of n is positive-definite)}. SP2g(lR) acts on ~g via 

Y = (~ ~} nr--+(An + B)' (Cn + D)-I. 

0.8. Gm = GL1 . For any n E 7L, n # 0, tln = the finite flat subgroup scheme of 
Gm consisting of nth root of unity = Cartier dual of the constant group 
scheme 7L/n7L. 

0.9. Schemes = the category of (locally noetherian) schemes. Sets = the 
category of sets. Given a scheme X, let hx be the contravariant functor from 
Schemes to Sets defined by hx(S) = the set of all morphisms from S to X for 
any scheme S. 

§l. The Moduli Functors and Their 
Coarse Moduli Schemes 

1.1. We first recall some basic definitions. All schemes here are locally 
noetherian. 

1.1.1. An abeilan scheme is a smooth, proper group scheme X !!J S of finite 
E 
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type with connected geometric fibres. (We can delete the adjective 
"geometric".) For any nElL, denoted by [nJx the morphism "multiplication 
by n", and let Xin) = Ker[nJx. X[n) is a finite flat group scheme over S, and 
is etale over S[l/n]. 

1.1.2. A polarization of an abelian scheme X !!J S is an S-homomorphism 
A: XIS --+ XV IS = PicO(XIS) such that for any geometric point s of S, the 
induced homomorphism between fibres As: Xs --+ Xsv is of the form As = ¢J!t'. 
for some ample invertible sheaf 2. on Xs (notation as in [MiJ). 

1.1.3. Let A: XIS --+ XV IS be a polarization as above. Then A*@x is a locally 
free @xv-module. Its rank is constant over each connected component of S, 
and is always a perfect square. Call it the degree of A. A is a principal 
polarization if deg A = 1, i.e. if A is an isomorphism. 

1.1.4. Given a polarization A as above, we can produce a relatively ample 
invertible sheaf 2'd(A) on X by setting 2'd(A) = (idx, A)* P, where P is the 
Poincare sheaf on X Xs Xv. It follows from the theorem of cube that 
r/J :e"o.) = 2A. 

1.2. The basic problem we address here is to classify polarized abelian 
varieties, especially principally polarized ones. The right way to formulate 
this problem is to use categorical language. Let us first introduce the 
most important moduli functor Ag classifying principally polarized abelian 
varieties. 

1.2.1. Define Ag: Schemes --+ Sets to be the contravariant functor which 
assigns to any scheme S the set Ay(S):= the set of isomorphism classes of 
principally polarized abelian schemes over S of relative dimension g. 

1.2.2. Remark. In more sophisticated terms, the category PPA Vg of principally 
polarized abelian schemes of relative dimension 9 has a natural structure as 
a fibred category over Schemes. It turns out that PPA Vg is an algebraic stack, 
and one can use M. Artin's method (see [Ar lJ, [Ar 2J) to study the moduli 
problem. Here we use only moduli functors to keep things simple. But there 
is no doubt that algebraic stacks are the right thing to consider when there 
are nontrivial isotropy subgroups. 

1.2.3. We can define similarly contravariant functors Ag,d,n: Schemes --+ Sets 
to take degree of polarization and level structure into account. For any 
(locally noetherian) scheme S, Ag,d,n(S) is by definition the set of isomorphism 
classes of triples (X IS, A, (J), where X IS is an abelian scheme, A is a polari
zation of degree d2, and (J = ((J 1, ... , (J 2g) consists of 2g elements of X[n)(S) 
which induce an isomorphism Xin) ~ (lLlnlL)2gIS. Note that A9.1,1 = Ag. Since 
every abelian variety over an algebraically closed field is isogenous to a 
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principally polarized variety, Ag,l,n is of special importance. Observe that if 
some point of S has residue characteristic p dividing n, then Ag,d,n(S) = <p; 

There is a variant A:'n of Ag,l,n' By definition, for any scheme S, A:'n(S) = 
isomorphism classes of tiples (X/S, A, O(), where XIS is an abelian scheme, 
A is a principle polarization, and 0( is an isomorphism X[n) Ti (7L/n71)9 x J1~ 

such that 0(* (standard symplectic pairing) = Weil pairing. If k is a field, 
char(k) = pin, A:'n(k) consists of ordinary abelian varieties. Note that 
A:'l =Ag • 

1.3. Given a contravariant functor A:= Schemes ~ Sets, a natural question 
is whether it is representable or not, i.e. whether it is isomorphic to hA for 
some scheme A. 

1.3.1. A is representable by A means that there exists a E A(A) such that for 
any scheme S, x E A(S), there is a unique morphism f: S ~ A with f*(x) = a. 
A is unique up to isomorphism in this case, and is called the fine moduli 
scheme of A. 

1.3.2. It is a fact oflife that many of the moduli functors we encounter are not 
representable, e.g. Ag • But they are "almost representable" in the following 
sense: there is a scheme A and a morphism F: A ~ hA offunctors such that 

(a) any morphism G: A ~ hx for some scheme X factors through F via a 
unique morphism g: A ~ X. 

(b) for any algebraically closed field k, F(spec k): A(k) ~ A(k) is a bijection. 

In this case, A is unique up to isomorphism, and is called the coarse moduli 
scheme of A. 

1.4. Theorem. (a) For any g, d, nE N+, the coarse moduli scheme dg,d,n of 
Ag,d,n exists. It is faithfully flat over Spec 7L[l/n] and quasi-projective 
over Spec 7L[l/np] for any prime number p. Furthermore, if n ~ 3, then 
dg,d,n actually represents Ag,d,m and is smooth over Spec 7L[l/nd]. 

(b) Similarly, the coarse moduli scheme dg~n of A:'n always exists, It is 
faithfully flat over Spec 7L and quasi-projective over Spec 7L[l/p] for any 
prime number p. Ifn ~ 3, dg~n is a fine moduli scheme, and is smooth over 
Spec 7L[l/n]. 

1.4.1. Exercise. (i) Use the existence of the fine moduli scheme dg~n to prove 
the nonexistence of a fine moduli scheme for Ag • (Hint: Use a principally 
polarized abelian variety with nontrivial group of automorphisms.) 

(ii) For any automorphism 't ofe, let x t be X x(SpecC,t) Spec C. If there are 
only finitely many isomorphism classes among all Xt's, then X is defined over 
a number field. 
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1.5. One way to prove the existence theorem is to use geometric invariant 
theory (another way is to use Artin's method in [Ar 1J, [Ar 2J). Roughly, the 
problem reduces via the theory of Hilbert schemes to the problem of taking 
the quotient of a quasi-projective scheme (actually, a locally closed sub
scheme of some Hilbert scheme) by PGLN for some N. As Hilbert and 
Mumford taught us, in general, one has to throwaway some "bad points", 
and take only the so-called "stable points", in order to get good quotients. In 
practice, this amounts to checking some stability conditions using explicit 
geometric information. The quasi-projectivity is a by-product of this method. 
See ([GIT, Chap. 7J) for details. [GJ contains a nice short exposition of 
geometric invariant theory. 

1.6. There is a very concrete approach to moduli of abelian varieties via theta 
constants. Anticipating the transcendental uniformization in the next section, 
the right level structure to use is given by the subgroups 

rg(n, 2n):= {( ~ ~) E SP2g(1')IA == D == 19 (mod n), 

B == C == 0 (mod n), diag B == diag C (mod 2n)}, 

n == 0 (mod 2). 

The classical theta constants were extensively studied by Igusa, see [I 1J, 
[12]. In [Mu 1J, algebraic theta functions were introduced and used to 
construct moduli schemes. See also [Mu 3J, [Mu 4J, [Ch]. The algebraic 
theta constants are also useful for compactification (cf. 4.3.1.). 

§2. Transcendental U niformization 
of the Moduli Spaces 

2.1. As we saw in [RJ, the isomorphism classes of {X, (lXi)oSiS2g} of abelian 
varieties X over e of dimension g together with a symplectic basis lXi E 

H1(X(C), 1') are parametrized by points of ~g. Here IXj · IXk = IXg+j · IXg+k = 0, 
IXj · IXg+k = -lXg+ j . IXk = bj •k for all 0 ~ j, k ~ g. Now we reformulate it: Con
sider the space ~g x eg• 1'2g acts on ~g x eg via 

(::): (il, z) ~ (il, z + iln1 + n2 ), V (::) E 1'2g, V(il, z) E ~g X eg• 

Let [1£g = 1'2g\~g x U. The natural projection [1£g ~ ~g defines a "universal" 
holomorphic family of principally polarized varieties with symplectic basis 
of H 1 . 
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2.2. SPzg(£:) acts on t)g x ICY via 

(~ ~): (n, z) -+ ((An + B) . (cn + Drl, t(cn + D)-I z), 

\1'(~ ~)ESPzg(£:), \1'(n, Z)Et)g x ICY. 

The action of SPzi£:) and £:Zg on t)g x ICY do not commute, but we put them 
together and get an action of a semi-direct product SpZg(£:) I>< £:Zg on t)g I>< 

ICY, in which £:Zg is a normal subgroup and SPzlZ) acts on £:Zg by matrix 
multiplication. The SpZg(£:) action on t)g x Cg descends to f!Cg, and the map 
f!Cg -+ t)g is clearly SPZg(£:)-equivariant. From the formula 

( tA tc) 
((An + B)' (Cn + D)-I, 19) = t(Cn + D)-I. (n, 19 )' tB tD ' 

we see that the action of Y E SPzy(£:) on t)g corresponds, up to the conjugation 

by ( 0 19), to changing symplectic basis of HI by y via the description of 
-1g 0 

t)g in 2.1 above. 

2.3. Let r s; SPZg(Z) be a subgroup of finite index (which necessarily contains 
some congruence subgroup if g ~ 2) acting freely on t)g. For instance, this is 
the case if r s; rg(n) for some n ~ 3. Then the holomorphic family f!Cg -+ t)g 
descends to f!Cg,r = r\f!Cg -+ nt)g' 

2.4. From the discussion above, we see easily that for all n EN +, dg*.n(C) ~ 
rg(n)\t)g as analytic spaces, In particular, dg(C) ~ rg\t)g. Note that dg,l,n(C) 
is a disjoint union of copies of rg(n)\t)g. 

Actually, we can do even better. In fact, the theory of Satake compactifica
tion, to be discussed later, gives rg(n)\t)g the structure of a (unique) quasi
projective variety, Ag,r(n)' Furthermore, results in [Bo] shows that for any 
scheme S over C, any holomorphic family of polarized abelian variety over 
S(C) is algebraic, It follows that dg*.n xSpecZ Spec C ~ dg,rg(n) for all 
nE N+. In particular, d g XSpecl' Spec C ~ dg,rg. 

2.5. We now define Siegel modular forms. 

2.5.1. The isotropy subgroup K at .j=t 19 E t)g is isomorphic to the unitary 
group Ug(IR), Actually, 

K = { ( _ ; ~) E M zg(lR) I A IJ1 = B~, A ~ + B IJ1 = 19}, 

and the isomorphism is given by ( A B) -+ A + .j=tB. K is a maximal 
-B A 

compact subgroup of SPzilR), and its complexification Kc is isomorphic to 
GLy(C). Clearly, Spzg(IR)/K ~ t)g, 
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2.5.2. Let p: GLg(C) = Ke -+ GL(Vp) be a finite-dimensional representation 
of K. There is a natural one-to-one correspondence between {COO-functions 
f: f>g -+ ~} and {COO -functions <ft: Sp2g(1R) -+ Vp I <ft(gk) = p(ktl <ft(g), Vk E K, 
Vg E G}. Note that the latter is the space of COO-sections of the vector bundle 
Ep = SP2g(1R) X(K,p) Vp. The correspondence is given by 

ff-+<ftf' <ftAg) = p(cJ=1 + D)-lf(gJ=11g ), Vg = (~ ~)ESP2g(1R)' 
fkf-+ f",,!tp(n) = p(cJ=1 + D)<ft(go) 

for any n E f>g and any 

go = (~ ~) E SP29(1R) such that go(J=11g ) = O. 

2.5.3. Let p: GLg(C) = Ke -+ GL(~) be a finite-dimensional represenation 
of K e, and r c SP29(Z) be a subgroup of finite index. We define a (vector 
valued) Siegel modular form of type p with respect to r to be a holomorphic 
function f: f>g -+ ~ such that: 

(i) f(yO) = p(Cn + D)f(n), Vy = (~ ~)Erg, VnEf>g; 

(ii) f is holomorphic at all cusps if g = 1. 

The condition (i) means that f defines a r-invariant holomorphic section of 
the homogeneous vector bundle IEp = SP29(1R) X(K.p) ~ on f>g. When g ~ 2, 
Koecher's principle says that (i) already implies that f is holomorphic at all 
cusps, so we do not need the second condition. 

2.5.4. In the special case p = (det)k for some kEN, the transformation law 
becomes 

f(yO) = det(CO + D)kf(n), Vy = (~ ~)Erg, VnEf>g. 

Any such f is called a Siegel modular form of weight k with respect to r. The 
C-vector space of such f's will be denoted Rk(r). 

2.6. Theorem. For any subgroup r of finite index in SP2g(Z): 

(i) the graded C-algebra R(r) = EBkE f'Ij Rk(r) is finitely generated over C; 

(ii) trans. dege R(r) = (g; 1) + 1 = t(g + l)g + 1; 

(iii) dim Rk(r) < + 00, Vk, and dime Rk(r) = O(k(9j:l)); 

(iv) R(r) embeds r\f>g in Proj(R(r))(C) as an open dense subvariety in 
Zariski topology. 

Note that (iii) is a consequence of (i) and (ii). 
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2.6.1. Siegel proved (iii) by estimating Fourier coefficients of nonzero cusp 
forms. The theory of compactification and Eisenstein series gives (i)-(iv) 
simultaneously. 

2.7. The Siegel modular forms are defined function-theoretically. Now we 
discuss their geometric meaning. 

2.7.1. Let PIg -& ~g be the universal family of principally polarized abelian 
• 

varieties defined in 2.1. The rank g vector bundle IHIg = 1t*(O}./il) = 
6*(0}./il) can be canonically identified with ~g x (C dZ I Ef) ... Ef) C dzg ). The 
action of SP29(£') on the holomorphic sections dz I, ... , dZg is given by 

y = (~ ~} (0, (dz l , ... , dzg» = (yO, (dz l , .•• , dzg )' (CO + D». 

If std is the standard representation of GLy(C) on cg, we see that the vector 
bundle IHIg is just IEstd ' 

2.7.2. Let Wg = NlHIg. This is a holomorphic line bundle on ~g isomorphic to 
IEdet • For any subgroup r c SP29(£') of finite index, we see that Rk(r) is 
canonically isomorphic to r-invariant holomorphic sections of W~k. When 
r has no fixed point on ~g, we have a holomorphic family of principally 
polarized abelian varieties PIg.r~r\~g. Define IHIg,r = 1tr .(0.t.r/(r\il.» = 
e1(n} •. rI(r\il.»; then we see that wg,r:= AglHlg,r ~ r\Wg. Thus Rk(r) is 
canonically isomorphic to the space of holomorphic sections of w~; over 
r\~g. 

2.7.3. Let y = (~ ~) e SP29(1R), 0 e ~g, and identify the holomorphic tan

gent space at 0 with'{WeMy(CWW = W}. Then the Jacobian of y at n is 
given by Wf--+t(CO + D)-I. W· (CO + Dri. From this we deduce that the 
cotangent bundle of ~g is canonically isomorphic to IES 2(std)' where S2(std) is 
the second symmetric product of the standard representation. Easy linear al
gebra then shows that the canonical bundle Kilg is isomorphic to IEdet®(g+I). 

Thus if r is a torsion-free discrete subgroup of SP29(1R), the space of holo
morphic sections of K1f.~il.) is identified with R(9+I)k(r). 

§3. The Satake Compactification 

3.1. Given a subgroup r s;; SP29(£') of finite index, the quotient r\~g is 
always noncompact. As stated in 2.6, r\~g is canonically embedded in 
Proj R(r)(C). Thus Proj R(r) is a natural compactification of r\~g, and will 
turn out to be the Satake compactification to be discussed in this section. But 
the structure of R(r) is hard to analyze. Finding generators of R(r) and their 
relations is still largely an open question. Thus it is not easy to understand 
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Proj R(r) algebraically. The theory of Satake compactification provides a 
description of Proj R(r)(C). This is good enough for most purposes by 
GAGA. 

Some History. Sa~ake ([Sa]) first introduced the topological compactification 
and defined analytic structures. Then Baily ([Ba 2]) proved projectivity. 
Finally, Baily and Borel ([B-B]) extended the theory to any arithmetic 
quotient of bounded symmetric domains. 

3.2. The Siegel Subsets 

3.2.1. Any n E ~g can be written uniquely as n = X + J=1 Y, with X, Y E 
Mg(IR), X = IX, Y = IY, Y» 0. Any such Y can be uniquely expressed as 

Y = IBDB, where D = (~ ". ~J is a diagonal matrix, each di > 0, and 

(1 bij) .. . 1 I . 11 B = ° ". 1 E Mg(IR) IS umpotent upper tnangu ar. Y = BDB IS ca ed 

the Jacobi decomposition of Y. 

3.2.2. For each u > 0, define the Siegel subset ~(u) c ~g by 

~(u) = {X + J=1YE~gllxijl < u, Vi,j, Ibijl < u, VI ~ i <j ~ g, 

1 < ud1 , di < udi+l> Vi, 1 ~ i ~ g - I}. 

These Siegel subsets have the following properties: 

(a) Uu>o ~(u) = ~g. 
(b) Sp2g(Z)~(u) = ~g if u is sufficiently large. 
(c) For all u > 0, the set {y E Sp2iZ)ly~(u)!l ~(u) = 1ft} is finite. 

3.3. How we choose and fix a sufficiently large Uo such that 3.2.2(b) is satisfied. 
The Satake topology will not depend on the choice of uo. Let ffg*:= ~(uo)II 
~_l(uo)II"'IIffo(uo), where ~(uo) is the closure of ~(uo) in ~r for each 
r ~ 1, ffo(uo) denotes a point, and II means set-theoretic disjoint union. We 
will define a topology for fft 

3.3.1. FiFst we introduce some auxiliary subsets. For any rE N, any open 
subset U ~ ~(uo), any sEN with ° ~ r ~ s ~ g, and any C E lR>o 

and dr+1 > C in the Jacobi decomposition 

Y = IBDB of Y. D = (d t '. a)} , 0' ds • 
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3.3.2. Now we can define a topology on :#'t For each nE§,:(Uo) c :#'g*, a 
fundamental system of neighborhoods ofn is given by {Us,r!>s!>g w,.,s(U, en, 
where U ranges through neighborhoods of n, and e runs through 1R>0. 

In other words, a sequence 

in ~(uo) converges to a point no E §,:(uo) if and only if limn ... 00 nl,n = no and 
limn ... oo dr+I,n = 00, where d r+1 is the (r + l)st diagonal entry of D in the 
Jacobi decomposition 1m nn = tBDB. 

3.4. We will define a topological space i>; extending i>g, such that SP2iilJl) 
acts on it extending the action on i>g. Then the Satake compactification of 
r\i>g will be r\i>; as a topological space. 

3.4.1. For any rE N, 0:5: r :5: g, let Nr,g C SP2g be the parabolic subgroup 
scheme such that for any ring R 

There is a natural homomorphism Pr.g: Nr,9 -. SP2" which sends a typical 
element as above to 

3.4.2. We define i>; set-theoretically as follows: i>; = {(y, n)ly E Sp2iilJl), 
nE i>r for some r EN, 0 :5: r :5: g} modulo an equivalence relation R, where 
(YI,nl ) "'R(Y2,n2) for nIEi>" n 2Ei>r' if and only if r=r' and n 2 = 
Pr,h;-Iydni' SP29(iIJl) acts on i>; by multiplying the first component of any 
representative. For any r EN, 0 :5: r :5: g, i>r is embedded in i>; by n M (1, n) 
for n E i>r. This gives a set-theoretic embedding :#'g* C i>;. The image of an 
embedded i>r under some y E Sp2iilJl) is called a (rational) boundary compo
nent of i>;. 

3.4.3. We can now define the Sa take topology on i>;. For any point x E i>;, 
a fundamental system of neighborhoods of x is given by the family consisting 
of subsets U c i>; such that: 

(a) For all y E SP2iilJl), yU n :#'g* is an open neighborhood of x in :#'g*. 
(b) For all y E Sp2iZ) such that yx = x, we have yU = U. 
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3.5. Proposition. Given any subgroup r of finite index in SPZg(1':), the Satake 
topology can be characterized as the unique topology fI extending the usual 
metric topology of ~g which satisfies the following properties: 

(i) fI induces on ;;;g* the topology defined in 3.3.2. 
(ii) Any y E SPZg(Q) acts on ~: as a homeomorphism with respect to fl. 

(iii) If x, x' E~: are not equivalent with respect to r, then there exists a 
neighborhood V, V' of x, x' such that r . V n V' = ,po 

(iv) For all x E ~:, there exists afundamental system of neighborhoods {Vi}iEI 
of x such that yVi = Vi if yx = x, and yVi n Vi = ,p if yx -# x. 

3.6. Theorem. For any subgroup r of finite index in SP29(1':): 

(i) r\~: is a compact Hansdorff space. 
(ii) (r\~n ........ (r\~g) has a natural finite stratification. Each stratum is a 

quotient of some ~r (0 :::;; r :::;; g) by some subgroup of finite index in ~r. 
(iii) Each stratum of r\~: has a natural structure of normal (complex) 

analytic space. 

3.7. In view of 3.6(iii), in order to give r\~: the structure of a normal 
analytic space, we only have to "piece the strata together". There is a theorem 
of H. Cartan on prolongation of analytic spaces which is exactly what we 
need. So we digrees to discuss it in some detail. 

3.7.1. Theorem. Let V be a locally compact, second countable Hausdorff space, 
which is a set-theoretical diSjoint, locally finite union of countably many sub
spaces Vo, VI' ... ' such that each V; is an irreducible normal analytic space. Let 
@v be the sheaf of germs of analytic functions on V, where restriction to each 
stratum (as continuous function on that stratum) is again continuous. Assume 

(1) dim V; < dim Vo for all i > 0, and Vo is dense in V. 
(2) For all dEN, Udim Vi:<>d V; is closed in V. 
(3) @vlvi = @vi ' the structure sheaf of V;. Here @vlvi is the restriction of 

continuous functions on V to continuous functions on V;. 
(4) For all x E V there exists a fundamental system of open neighborhoods {Va} 

of x such that each Va n Vo is connected. 
(5) For all XE V there exists an open neighborhood Vx of x such that qvx, @v) 

separates points of Vx. 

The (V, @v) is an irreducible normal analytic space, and for every d :::;; dim Vo, 

UdimVi:<>d V; is a closed analytic subspace of V with dimension equal to 
maXdim Vi:<>d dim V;. 

3.7.2. Let us try to explain why the theorem is true for the case where there 
are only two strata: V = Voll VI. Obviously, if V has the structure of normal 
analytic space, the sheaf @v defined above is the structure sheaf of V. 

The main tool to prove the theorem is the following theorem of Remmert 
and Stein: 
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(*) Let Y be an analytic subset of an open subset D in eN with dimension:$; p. 
Suppose W is a closed analytic subset of D\ Y purely of dimension n. If n > p, 
then the closure W of Win D is an analytic subset of D, purely of dimension n. 

For any point XE V1 , the assumptions allow one to find a small neighbor
hood U of Zo in V, and a proper continuous map f: U -+ U', where U' is open 
in eN, such that: 

(a) the coordinate functions f1' ... ,fN of f are in qu, (!Jv). 
(b) f- 1 (0)n U = {x}. 
(c) f induces an isomorphism of the reduced analytic subspace V1 n U to its 

image Z in U'. 
(d) K:= f-1(Z') nUn Vo is an analytic subset of U n V, and dimx K < n for 

all xEK. 

Now, W:= f(U n Vo \K) is an analytic subset of U'\Z because f is proper. 
f: (U n Vo)\K -+ W is a finite morphism because f is proper and qu, (!Jv) 
separates points of Un Vo. Thus dim W = dim Vo and one can apply the 
theorem of Remmert-Stein to conclude that f(U) is an analytic subset of U'. 
Then it is easy to see that f induces an isomorphism from U to the normali
zation of f(U). 

3.8. We would like to apply Theorem 3.7.1. to give r\f>; the structure of a 
normal analytic space. Conditions (1), (2) are obviously satisfied. Condition 
(4) is topological and not hard to verify. In order to check the analytic condi
tions (3) and (5), we need the Poincare-Eisenstein series and <I>-operator. The 
theory of Poincare-Eisenstein series produces enough modular form, but we 
will not give any details here. 

3.8.1. The Spzg(OI)-equivariant line bundle w on f>g extends to an Spzg(OI)
equivariant line bundle w; on f>;. A modular form f of weight k with 
respect to r extends to a r-invariant sectionf* of W*®k. Let F be a boundary 
component of f>;, i.e. the image of {(y, !l)I!lEf>r} for some YESPzg(OI) and 
o :$; r :$; g. The <I>-operator <l>F sends f to the restriction of f* on F. These 
operators help one to verify condition (3) of 3.7.1, and projectivity. 

3.8.2. Theorem. (i) r\f>; has the structure of compact normal analytic space. 
The strata of r\f>; are all (locally closed) analytic subspaces, where are all of 
the form r'\f>" 0 :$; r :$; g. 
(ii) R(r) defines an isomorphism r\f>; ~ Proj R(r)(C) as analytic spaces. 
Thus r\f>; is projective. 

3.8.3. Remarks. (a) It is not always possible to descend w* to a line bundle 
w:' r on r\f>;. In fact, if YEr fixes xEf>:, then Y acts on the fibre of w:'r 
by a root of 1. If we raise w; to some power n which kills all such roots of 1, 
then w;®n descends to r\f>;' 
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(b) If 9 ~ 2, the "boundary" (r\~:)\(r\~g) has codimension 9 ~ 2. This 
explains, a posteriori, why Koecher's principle is true. 

(c) One can show that R(r) is spanned by the subspace R(r)1(J! of modu
lar forms with all Fourier coefficients in ill. Thus R(r) = R(r)1(J! ® C, and 
Proj(R(r)I(J!) gives a ill-structure on r\~g. When r = rg(n), the q-expansion 
principle says that this ill-structure coincides with the one given by 
dg*,n XSpecz Spec ill. 

§4. Toroidal Compactification 

The Satake compactification r\~: is in some sense the minimal compactifi
cation of r\~g. Although it is a natural object to study, its complicated 
singularities at the boundary present severe obstacles. In ESC], Mumford and 
his coworkers constructed an explicit desingularization of the Baily-Borel 
compactification of an arithmetic quotient of bounded symmetric domains. 
We will describe this construction in the Siegel case. 

4.1. The local coordinates of toroidal compactification are very easy to 
describe. It suffices to do so for the standard rational boundary components 
.1F,. = image of 1 x ~, in ~:, 0 :$; r < g. 

4.1.1. Given r, 0 :$; r < g, write an element n E ~g in (r, 9 - r)-block form: 

n = (: :) 9 ~ r. 
r g-r 

Let 

D, = {(: :)EMy(C)I tE~" rEMg_,(C), tr = r}, 

~g = {(: :)ED,llm r - t(lm w)(lm t)-l(lm w)>> o}. 
4.1.2. Let U, £ SP2g be the ill-subgroup scheme such that 

~(1' 0 
U,(IJ) ~~ ~ y 

Clearly U, is a vector group, and can be identified with its Lie algebra. We 
give U, the Z-structure such that U,(Z) = r n U(.1F,.)(iIl). Let U,(Z)*:= 
Homz(U,(Z), Z). 
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4.1.3. Inside U,(IR) lies the positive cone Cg_, and its closure Cg_,. Let (J E Cg_, 
be a top-dimensional cone generated by a Z-basis g 1, ... , en} of U,(Z), n = 

( g-r+ 1) . -
2 ,t.e. (J = L:i'=I IR ;O>:Oei' Let el' ... , ej ECg_" ej +l' ... , enECg-, "-

Cg _,. Let {II, ... , In} E U,(Z)* be the dual basis of g;}. 

4.1.4. U,(Z) ®z C* = Homz(U,(Z)*, C*) is an algebraic form isomorphic to 

(C*t A coordinate system of U,(Z) ®z C* is given by Zi = exp(2n.j=ll;). 
Let exp: U,(C) --+ U,(Z) ®z C* be the exponential map. 

4.1.5. Identify M,.9-1 (C) with C\ k = r(g - r), and D, with U,(C) x Ck x $',.. 
Let (r, w, t) be the coordinates on D" (z, w, t) be the coordinates on 
(U,(Z) ® C)* X Ck X $',.. We have 

i)g C U,(C) X Ck x $',. 

! ! exp x id x id 

U,(Z)\i)g C (U,(Z) ® C*) X Ck x $',. 

! 
r\i)g 

(T, W, t) 

T 
(exp(2n.j=lli(T)), w, t) 

4.1.6. Define (U,(Z)\i)gf = {XE(U,(Z) ® C*) x Ck x $',.)1 there exists a 
neighborhood U of x such that U (l (U,(Z) ® C*) X Ck x$',.£; U,(Z)\i)g} = 
interior of closure of U,(Z)\i)g in (U,(Z) ® C*) x Ck x $',.. Note that 
Ul=1 {(z, W, t)lzi = O} is contained in (U,(Z)\i)gf. (U,(Z)\i)gf determines a 
local coordinate system of a typical toroidal embedding (r\i)g)' (If r £; ry(n) 
for some n ~ 3, there is a natural etale map (U,(Z)\i)gf --+ (r\i)g)' ) 

4.2. We give a very rough description of the toroidal compactification. 
Assume that r c rin) for some n ~ 3. As we saw in the above construction, 
given a boundary component $',. and a rational polyhedral cone (J in some 
cone C($',.) naturally attached to $',., there is a space X~ .• = (U,(Z)\i)gf 
giving a "partial completion". The theory of toroidal embeddings [TEJ tells 
us that if we fix $',., a systematic way to produce compatible X?, 's for gluing 
is to take a decomposition of C, = C($',.) into polyheral cones (;;-. LeI.' 
4.2.1. Let G,($',.) be the Q-subgroup scheme of SPZg whose Q-points are 

{(

I, 0 0 
o u 0 
o 0 1, 
000 

which acts trivially on $',., and acts on U, and C, via conjugation. Explicitly, 
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U E G,(3";.)(Q) sends bE Ur(Q) to ubtu. Since r (l G,(3";.)(Q) acts on C" we had 
better choose {u!,r} to be invariant under r (l G,(3";.)(Q) (requiring {u~} to 
be invariant under GLg_r(Z) will guarantee this). The classical reduction 
theory for positive definite quadratic forms says that such r-invariant poly
hedral cone decompositions {u!,r} always exist, and modulo r (l G,(3";.)(Q) 
there are only finitely many cones. Using such a ''r-admissible'' rational 
polyhedral cone decomposition ~F = {u,,} for C(3";.), we can glue the 
XF,..,,:s together to form a space X~F. and a map X~F. -+ UF.(Z)\i>:' (The 
assumption in 4.1.3 that u is top-dimensional and is generated by a Z-basis is 
not essential. The theory of toroidal embeddings tells us what to do for a 
general rational polyhedral cone.) 

4.2.2. Let Nr be the Q-subgroup scheme of SP29 whose Q-points are 

C' 
0 Bll . ) , A22 * * g - r 

Cll 0 Dll * r E SP29(Q) 
0 0 0 tA2"i g - r 

r g-r r g-r 

Let r F,. = r (l Nr. A basic fact is that r F,./Ur(Z) acts properly discontinuously 
on X~ . Let Xl: be the quotient. Thus we have a diagram 

'r 'r 
r F,. \i>g -+ r\i>g 

4.2.3. We can do the same thing for any rational boundary component. So 
we choose a r-admissible rational polyhedral cone decomposition ~F = 
{u!,} of C(jO) £: UF(IR) for each rational boundary component jO of i>:. 
We require this collection of~F's to be compatible with the natural r-action, 
and call such a collection again a r-admissible polyhedral cone decomposi
tion. 

Let W = UF Xl:, (disjoint union). There is a natural r action on W. Also, 
for any two boundary components jO, jO' with jO c jO', there is an etale map 
Xl:,. -+ Xl:,. Together with the r-action, we get an equivalence relation R 
on W. R is in fact represented by a closed graph ~ c W x W. 

Passing to the quotient, we get a Hausdorff analytic variety Xl:' This is the 
toroidal compactification. 

4.3. Theorem (Notation as above). 

(i) Xl: is the unique Hausdorff analytic space containing r\i>g as an open 
dense subset such that: 
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(a) for every rational boundary component ff of f>:, there is an open 
analytic morphism n~ making the following diagram commutative 

V ~(Z)\f>g c. X~, 

~ ~1t, 

r\f>g c. Xl: 

(b) every point of Xl: is the image of at least one of the maps n~. 
(ii) Xl: is a compact normal algebraic space. 

(iii) there exists a natural morphism from X I: to r\f>: inducing the identity 
morphism on r\f>g. 

4.3.1. Remark. X I: is not a projective variety in general. However, a theorem 
of Y. S. Tai shows that if ~ has certain convexity properties, then XI: is 
projective. In fact, X I: is the blowing-up of r\f>: along the coherent sheaf of 
ideals defined by cusp forms vanishing along the boundary to sufficiently 
divisible order. Of course, the order of vanishing is defined in terms of~. In 
[Ch] this blowing-up is carried out over Z[!], via algebraic theta constants, 
to construct an arithmetic version of the toroidal compactification over Z[!]. 

4.4. Now we have two compactifications: Satake and toroidal. A natural 
question is: What is the moduli-theoretic meaning of the boundary points? 
We will indicate a (partial) answer via degeneration. 

4.4.1. Let.t\ = {tEClltl < 1}, .t\* = .t\\{0}. Let f:.t\ --+ rg\f>: be a holomor
phicmap such thatf(.t\) c rg\f>g. After a base change tl-+tn, we may (and do) 
assume that: 

(a) there is a family of principally polarized abelian variety f[* ~.t\* giving 
rise to fldo. 

(b) f[* --+.t\* has semi-stable reduction, i.e. we can extend f[* (uniquely) to a 
holomorphic family of algebraic groups f[ ~.t\, such that Xo = n-1(0) is 
a semi-abelian variety, i.e. an extension of an abelian variety Bo of dimen
sion r by an algebraic torus T of dimension g - r. 

It turns out that Bo inherits a principal polarization, and the correspond
ing point in rr \f>r is just f(O). This gives an interpretation of boundary points 
of rg \f>:' In other words, principally polarized semi-abelian varieties with 
isomorphic abelian parts are identified under the Satake compactification. 

The rg(n)\f>:'s can be treated similarly. The precise formulation is left to 
the reader. 

4.4.2. It is not easy to give a really satisfactory modular interpretation for the 
toroidal compactifications. After all, they depend on a choice of the combina-
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torial data 'T -admissible rational polyhedral come decomposition", hence 
are far from been canonical. But one can construct a family of semi-abelian 
varieties over the toroidal compactification, and this can actually be done 
over 71. (cf. [Fa 2]). We will try to give some idea about the relation between 
the toroidal coordinates and degeneration of abelian varieties. For a Hodge 
theoretic point of view, see [C-C-K]. 

4.4.3. We use the notation in 4.4.1. Let !![* ::.: A* and !![ ~ A satisfy 4.4.l{a), 
(b). There exists a family of semi-abelian varieties fi ~ A of constant tori rank 
9 - r such that: 

(i) ft- 1 (0) is (canonically identified with) n-1(0); 
(ii) there is a family of discrete subgroups A c filA" A{t) ~ 71.g- r for all tEA, 

such that !![* -+ A* is the quotient of filA' by A. 

The semi-abelian family :!t -+ A fits uniquely into an exact sequence 0 -+ 

T -+ fi -+ B -+ 0, where B is an abelian family and T is a family of algebraic 
torus. Clearly, the fibre of B over 0 E A is the Bo in 4.4.1. Since an algebraic 
torus has no moduli, T is isomorphic to G;!,-r over A. Thus :!t is determined 
by the abelian family B and an extension of B by G;!,-r. 

4.4.4. It is now easy to relate the above data and toroidal coordinates. We 

( t w) r 
use the expression Q = tw r 9 - r as in 4.1. The variable t E ~r corre-

r g-r 
sponds to the moduli of B. The variable w gives the extension class. Finally, 
the variable r gives the "periods" A. How about the cone (J? Well, it deter
mines the "direction" of degeneration. 

4.4.5. Remark. A naive illustration: take a family of 9 periods Al (t), ... , Ag(t) 
in (C*)9, tEA*, such that (C*n<Ai{t) is a (principally polarized) abelian 
family !![*. Assume that exactly 9 - r periods Ar+l (t), ... , Ag{t) degenerate. 
Then (C*n<A 1 (t), ... , Al(t) extends to a semi-abelian family X of constant 
tori rank 9 - r over fl. Ar+1 (t), ... , Ag(t) determine 9 - r periods of!![* IA" and 
the quotient(!![* IA.)j <Ar+1' ... , Ag) is !![*. 

§5. Modular Heights 

5.1. Let us first recall Faltings' definition of height of an abelian variety 
defined over a number field. Let XK be an abelian variety of dimension 9 over 
a number field K, and let N(XK ) -f; Spec (9K be its Neron model. Let (()xK = 

t 

e*(Q~(XK)/(!)J (()xK is an invertible sheaf on Spec (9K' i.e. a projective rank 1 
(9K-module. (()xK Q9(!)K K is canonically isomorphic to r(XK' Q1-K1K). For each 
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infinite prime v, put a metric on W XK ® Kv by Iiall; = r g ho(e) la /\ al for all 
a E Wx K ® K. The general theory of heights [SiJ then allows us to define 
h(wxJ The height of XK is by definition equal to h(wxJ Explicitly, pick 
a E wXK ' a #- 0, then 

h(XK) = 1/[K:!OJ {log # (wXK/a{!JK) - L Cv log Iiall v }, 
00 Iv 

where Cv = 1 or 2 according to whether Cv is real or complex. 

5.1.1. Remark. Since the operation of forming Neron models does not com
mute with base change of number fields in general, we cannot expect h(XK ) to 
be invariant under base change. However, for any finite extension L of K, we 
have h(XL) s h(XK), where XL = XK xSpecK Spec L. The reason: by the uni
versal property of Neron model, there is a canonical map N(XK ) xSpecl!J 

Spec (!JL .L N(XL). Thus we obtain an injection W XK C W XK ®l!JK {!JL of pro~ 
jective rank-l (!Jcmodules. The inequality h(Xd s h(XK) follows. 

5.1.2. Remark. If XK has semi-stable reduction over (!JK' then for any finite 
extension L of K, N(XK)O XSpecl!JK Spec (!JL is canonically isomorphic to 
N(XL)O, see [Ar 3]. Hence h(XL) = h(XK). 

5.1.3. Let XK be an abelian variety over a number field. By the semi-stable 
reduction theorem, there is a finite extension L of K such that XL := 
XK X Spec K Spec L has semi-stable reduction. Then we can define the geo
metric height (or modular height) of XK to be hgeom(XK):= h(Xd. This defini
tion is independent of the choice of L by 5.1.2. 

5.2. Theorem 1 of [Fa IJ asserts that given any number field K, any number 
C E IR, there are only finitely many isomorphism classes of principally 
polarized abelian varieties X over K with hgeom(X) S C. By 5.1.1, the above 
statement remains true if we change hgeom(X) to h(X). 

Faltings used moduli of stable curves and abelian varieties to prove this 
theorem. A more natural proof would not involve the moduli of curves. What 
is needed is a nice compactification theorem over 7L. Since such results were 
not available at the time, Faltings resorted to the compact moduli of stable 
curves. More recently Faltings has described a way to compactify the moduli 
stack of principally polarized abelian varieties, together with a semi-abelian 
family over it (cf. [Fa 2J). 

We will show later in this section that the metric of the invertible sheaf W 

on slg (defined by integration as in 5.1) has only a logarithmic singularity 
along the boundary. (Actually, W is not defined on slg(C), only some power 
w®n of w is defined on slg(C). So we really should say that the metric of any 
such w®n has a logarithmic singularity.) 

We would like to explain the nice compactification theory and logarithmic 
singularity which imply the finiteness theorem. 
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5.3. We first summarize what we need from the theory of arithmetic com
pactification. Since we do not want to scare the general readers away with 
algebraic stacks, we will pretend that we have: 

(a) A proper scheme ~ over Spec 71, containing .9Ig as a dense open sub
scheme. (Actually, ~ is an arithmetic version of toroidal compactifica
tion. In particular, ~(IC) = XI: for some rg-admissible polyhedral cone 
decomposition. But we do not need this here.) 

(b) A semi-abelian scheme fIg ~ ~ (i.e. each fibre is an extension of an 
• 

abelian variety of a torus) extending the universal family over .9Ig • 

Let w = e*(NO,b."z). The global sections of powers of w define a mor
phism ~ 1. d g = gPr~j(EBke I\J r(~, W®k)). Note that d g(1C) = r\~:. 
Thus d g is a 71-model of the Satake compactification. As before, although w 
does not descend to d g, some power w®n does descend to an invertible sheaf 
2n on d g (i.e. f* 2n = w®n). 2n is ample on d g. 

Let XK be a principally polarized abelian variety over a number field K 
with semi-stable reduction over (!)K' XK defines a K-point [XKJ of .9Ig. Because 
~ is proper, [Xd extends to an (!)k-valued point (XK): Spec (!)K --+~. The 
pull-back of ?rg by (XK ) is a semi-abelian scheme extending XK • Hence it is 
just N(XK)O (see [Ar 3J). Thus W XK = (XK)*w. Since f is defined by w, we 
deduce that hgeom(XK) = (l/n)(h2'J[XKJ)). Since 2n has only logarithmic sin
gularity, Proposition 8.2 of [SiJ concludes the finiteness theorem. 

5.4. We come back to the logarithmic singularity of 2n .• 

5.4.1. First, we make a general remark. Let Z be a closed subvariety of an 
analytic space V such that U = V\Z is smooth. Let 2 be a line bundle on V 
with a hermitian metric h on U. Let V be another analytic space and f: V be 
a morphism inducing an isomorphism over U. Then (2, h) has logarithmic 
singularity along Z if and only if (f* 2, h) has logarithmic singularity along 
f-l(Z). 

5.4.2. The remark above says that we only have to check logarithmic singu
larities on the toroidal compactifications. (This is a big advantage. Otherwise, 
how can we find defining equations for the boundary of (rg \~:)?) Also, it is 
clear that we only have to check for standard cusps (i.e. images of standard 
boundary components). Let rEN, 0::;; r < g, X Eimage of $',. in rg\~:. We 
use the notation in 2.1. The basic observation is that (dz 1 1\ ... 1\ dzg)®n 
extends to an invertible analytic section near x. This is a fact we mentioned 
in Section 3, and is essentially a consequence of the theory of Poincare
Eisenstein series. A direct way to prove this is to use a degenerating family of 
abelian variety over a neighborhood of a, see [Mu 3J, [ChJ, [Fa 2]. 
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5.4.3. Now we compute 

rgl Idz A··· A dz A dz A··· A dz I 1 9 1 9 en (lL9 Ell llZ9 

= area of fundamental domain of zg E9 Qzg 

= det{Im Q). 

Looking at the toroidal coordinates described in 4.1, one sees visibly that 
.!l'n has logarithmic singularities along the boundary. 
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CHAPTER X 

Heights and Elliptic Curves 

JOSEPH H. SILVERMAN 

Many of the deep results involving heights of abelian varieties become quite 
transparent in the case of elliptic curves. In this chapter we propose to prove 
some of these theorems for elliptic curves by using explicit Weierstrass equa
tions. We will also point out how the height of an elliptic curve appears in 
various other contexts in arithmetical geometry. 

We start in Section 1 by giving a formula for the height h(E/K) of an 
elliptic curve E/K in terms of the minimal discriminant of E/K and the 
various periods of E. Next, in Section 2, we give an estimate for h(E/K) in 
terms of the j-invariant of E. This allows us to show that there are only 
finitely many elliptic curves with bounded height. Section 3, as a change of 
pace, deals with strong Wei! curves E/o.. In particular, we relate the height of 
E/o. to the degree of its Weil parametrization Xo(N) --+ E; and then using the 
results from Section 2, we show that this degree grows fairly rapidly as E is 
varied. Finally, in Section 4, we show how a conjecture of Serge Lang can be 
formulated using the notion of the height of an elliptic curve; and we reprove 
a special case of this conjecture using arithmetic intersection theory. 

We have not felt it necessary to give extensive references for "standard" 
facts about elliptic curves. The reader might profitably consult any (or all) of 
[3], [4], [11] and [13]. A nice introduction to Weil curves is given in [12]. 

§l. The Height of an Elliptic Curve 

We set the following notation for this section and the next: 

K/o. a number field with ring of integers R. 
MK a complete set of inequivalent absolute values on K, normalized 

as usual (cf. [10, §1]). 
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the archimedean (respectively non-archimedean) absolute values 
inMK • 

an elliptic curve. 
the j-invariant of E. 

ElK 
jE 
I1E/K the minimal discriminant of ElK (this is an integral ideal of K). 

1 00 

= (2 )12 qt n (1 - q~)24, where qt = e21tit. 
n n=l 

l1(r) 

j(r) = 1728(4g2(r»3/11(r) = 1728{q;1 + 744 + ... } the modular j
function. 

For each v E M;, choose a rv E IHI (IHI = the upper half-plane) so that 

E(Kv) ~ C/(lL + lLrv)' 

Proposition 1.1. With notation as above, the height of ElK is given by the 
formula 

[K: QJh(EIK) = l2{logINK/o I1E/KI- L nv 10g(ll1(rv)l(lm rv)6)}, 
veM; 

where 

nv = [Kv: QvJ = 1 (resp. 2) if v is real (resp. complex). 

Before giving the proof, we make several remarks. 

Remark 1.2. (1) The height h(EIK) in Proposition 1.1 is not the stabilized 
height obtained by going to an extension over which E has everywhere 
semis table (i.e. good or multiplicative) reduction. 

(2) Since l1(r) is a modular form of weight 12 for SL2(lL), one easily checks 
that the quantity I l1(r) I (1m r)6 is SL2(lL) invariant. Hence the expression in 
Proposition 1.1 is independent of the choice of the rv's. 

(3) Given a Weierstrass equation for ElK, one can use Tate's algorithm 
[14J (or [6J if K has class number 1) to calculate I1E/K ; and numerical integra
tion (or, more rapidly, Gauss' arithmetic-geometric mean) to compute the 
periods rv. Thus it is quite feasible to compute h(EIK) numerically to any 
desired accuracy. 

(4) The intuition is that h(EIK) measures the "arithmetic complexity of 
ElK." Thus NK/OI1E/K gives information about the primes of bad reduction 
and how "bad" the reduction is. On the other hand, 1m rv is the area of a 
fundamental parallelogram for EIKv. 

PROOF OF PROPOSITION. 1.1. Let 

E: y2 + a1 xy + a3Y = x3 + a2x2 + a4x + a6 (1) 

be any Weierstrass equation for ElK, and let 11 = l1(a1' ... , a6) be the dis
criminant of the equation. For each v E M~, choose a minimal Weierstrass 



HEIGHTS AND ELLIPTIC CURVES 255 

equation 

E: y; + al,vxvYv + a3,vYv = x; + a2,vX; + a4,vxv + a6,v (2) 

for E at v, and let ~v be its discriminant. (So v(~v) = V(~E/K)') Finally, for each 
vEM~, we take for E the Weierstrass equation 

E: y"2 = 4X': - g2(rv)Xv - g3('v) 

parametrized by the Weierstrass g;J-function, 

C/(7L + Zov) ~ E(Kv), 

Z -+ (g;J (z, 'v), g;J'(z, 'v)). 

We note that the discriminant for this equation is 

~v = g2('v)3 - 27g3(,y = M,v)' 

(3) 

The height h(E/K) is defined as 1/[K: Q] times the degree of the metrized 
line bundle WS/R, where cff/R is a Neron model for E/K. It is more convenient 
to work instead with the line bundle (WS/R)®12, so our final answer will be 
12h(E/K). To compute its degree, we choose the (meromorphic) section 

f3 = ~ . ( dx )®12 

2y + a1 x + a3 ' 

where x, y, a 1 , a3 , ~ are the quantities associated with equation (1). The 
advantage of working with f3 is that it is invariant under the usual change of 
coordinates for a Weierstrass equation. (Cf. the formulas in [14].) 

Now let v E M~. Then equation (2) gives a model for the connected com
ponent of the Neron model of E of v. (More precisely, (2) gives a scheme over 
Spec(Rv) whose smooth part is a model for ,go /Rv.) Hence the bundle WS/Rv 

has the holomorphic, non-vanishing section 

(Xv = dxv/(2yv + al,vxv + a3,v); 

so we can compute 

W®12 R (X®12 R 
I/Rv v v v 

Rvf3 ~ Rvf3 ~ Rv~v' 

(Note that since f3 is invariant under change of coordinates, we have f3 = 

~v(X~12.) Hence the contribution from v to deg(w~l/) is 

log #(Rv/Rv~v) = 10gIINKv/ov~vIIv = 10gIINK/o~E/Kllv' 

Adding these up over all vEM~ gives 10gINK/Cl~E/KI, so the contribution to 
h(E/K) is 

It remains to compute the archimedean contribution. Let v E Mit and, to 
ease notation, let, = 'v.Using the change of variable formula, we have as 
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above 

and now the uniformization Xv = ,f<J(z, T), Y" = ,f<J'(z, T) lets us write 

{3 = ~(T)(dz)®12 

on C/(Z + b). Letting 

0( = ~(T)1/12 dz, 

the contribution to h(E/K) is then 

nv 10g(~ r 0( 1\ ~)1/2. 
[K: 0] 2 JCf(Z+Zt) 

We compute the integral: 

~ f 0( 1\ ~ = ~ fl~(T)ll/6 dz 1\ d-z 

= 1~(T)ll/6 f dx 1\ dy 

= 1~(T)ll/6 Im(T), 

since the last integral is just the area of a fundamental parallelogram for 
C/(Z + b). Hence the contribution to h(E/ K) from v E M~ is 

-(nv/12[K: 0])log(I~(Tv)IIm(Tv)6); 

and adding over v E M~ completes the proof of Proposition 1.1. 0 

§2. An Estimate for the Height 

We now turn to estimating h(E/K) in terms of more readily calculable quan
tities. For this purpose, we choose our Tv'S in the usual fundamental dOIpain 
~ for IHI/SL2 (Z), so in particular Im(Tv) ~ .)3/2. Then for any such T, Iqtl ::;; 
e-".j3 so , 

is bounded above and below (away from 0). Hence ifrE~, then 

10gl~(T)1 = loglqtl + 0(1), (4) 

where here and in what follows the 0(1) constants are absolute. 

EXERCISE 

Show that for r:E~, iogl~(r:)1 = ioglq,/(2n)12 1 + At with IAtl ::::; 1/9. 
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Next, from the q-expansion for j(r), we would like to say that for r E Ji', 

10glj(r)1 = logl1/qrl + 0(1). 

This is alright as r ~ ioo, but of course j(e21ti /3 ) = O. So we split Ji' by a 
horizontal line (such as y = 1), and then 

I I·()I = {IOgI1/qrl + 0(1) for r E Ji', Im(r) ;::::-: 1, 
ogJ r 0(1) for r E Ji', Im(r) :$ 1. 

Hence for all r E Ji', we have the relation 

10g(max{lj(r)l, 1}) = logl1/qrl + 0(1). 

Combining equations (4) and (5) yields 

-logl~(r)1 = 10g(max{lj(r)l, 1}) + 0(1). 

Further, since loglqrl = - 2n Im(r), from equation (5) we obtain 

log (1m r) = log log max{lj(r)l, e} + 0(1). 

(5) 

(6) 

(7) 

We are now ready to calculate h(E/K). We use equations (6) and (7) 
to evaluate the archimedean terms in Proposition 1.1. Remembering that 
j(rv) = jE, we obtain 

12[K: QJh(E/K) = 10gINK/iQI~E/KI + L nv(log max {ljElv, 1} 
VEMC: (8) 

- 6 log log max {ljElv, e} + 0(1)). 
Next write 

(jE) = 21:D-1 

as a quotient ofrelatively prime integral ideals 21 and :D. We note that if E/K 
has everywhere semistable reduction, then 1) = ~E/K; and in all cases :D 
divides ~E/K. Let us define the unstable minimal discriminant of E/K by 

lE/K = ~E/K:D-1, 

where (jE) = 21:D-1 as above. Then we can rewrite equation (8) as 

12[K: QJh(E/K) = 10gINK/iQI:D1 + L nv log max {ljElv, 1} 
veM; 

+ 10g1NK/iQI lE/KI 

+ L n.( -610g log max {ljElv, e} + 0(1)). (9) 
veMx 

Now if aEK* and (a) = 21!8-1 with 21 and!8 relatively prime integral ideals, 

then one easily checks ([5, p. 53J) that 

HK(a) = (NK/iQI!8) n max{lal~v, 1}. 
veMK 

Thus the first two terms in equation (9) give precisely 

10gINK/iQI:D1 + I nv log max {ljElv, 1} = log HK(jE) = [K: QJh(jE). (10) 
veM'K 
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Next, we must estimate the log log terms. Letting d = [K: 0] and using 
the arithmetic-geometric inequality, we compute (all sums and products are 
over vEM':.; note Inv = d) 

o ~ Inv log log max{ljElv, e} 

= log n (log max {ljElv, e} tv 
~ 10g(I log max{ljElv, e}ld)d 

~ d 10g(1 + (lid) I log max {ljE lv, I}) 

~ d 10g(1 + hUE)). 

Finally, we note that 

I nvO(l) = [K: 0]0(1). 
veMK 

(11) 

(12) 

Now combining equations (9), (10), (11), and (12), and dividing by [K : 0], we 
have proven the following result. 

Proposition 2.1. Let K be a number field and ElK an elliptic curve. Then 

1 
0(1) ~ {hUE) + [K: 0] log NK /CI YE/d - 12h(EIK) 

~ 6 log(1 + hUE)) + 0(1), 

where Y E/K is the unstable minimal discriminant of ElK as defined above and 
the 0(1)'s are absolute constants. In particular, if ElK is semis table (i.e. no 
additive reduction), then 

IhUE) - 12h(EIK) I ~ 610g(1 + hUE)) + 0(1). 

EXERCISE 

Normalize v E M2 so that v(K*) = 7L. Prove that 

V(YE/K ) < 12 + 12v(2) + 6v(3). 

Remark 2.2. Note that Proposition 2.1 is an explicit version (for elliptic 
curves) of Faltings' theorem [2], that the height of a semis table abelian 
variety is a multiple of the height of the corresponding point in moduli space, 
up to a logarithmic error term. 

For elliptic curves over 0, the estimate in Proposition 2.1 can be rewritten 
(slightly weakened) as follows: 

Corollary 2.3. Let EIO be an elliptic curve with j-invariant j. Take a minimal 
Weierstrass equation for EIO, and let A, c4 , C6 E 7l.. be the associated quantities. 
Then for any e > 0, 

h(EIO) + 0(1) ~ l210g max{ljl, IAjl} ~ (1 + e)h(EIO) + 0.(1). 
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Similarly, 

h(EIO) + 0(1):s; l210g max{lc413, Ic6 12} :s; (1 + e)h(EIO) + 0.(1). 

(Here the O(l)'s are absolute constants, and the O.(l)'s depend only on e.) 

259 

PROOF. Write j = aid E 0 in lowest terms. Then by definition of unstable 
minimal discriminant, Y = INdl. Hence 

hU) + log Y = log max{lal, Idl} + 10giNdi = log max {ljA I, IAI}. 

Now Proposition 2.1 gives the estimate 

0(1) :s; log max{ljAI, IAI} - 12h(EIO) :s; 610g(1 + hU» + 0(1). 

Since 
hU) :s; log max{ljAI, IAI}, 

this is stronger than the first inequality in Corollary 2.3. (That is, we are using 
the easy estimate 

610g(1 + log t) :s; e log t + 0.(1) for t ~ 1.) 

Finally, since 
A = (c~ - c~)j1728 and j = ellA, 

the second inequality in Corollary 2.3 follows immediately from the first. D 

Remark 2.4. From Corollary 2.3 it is immediate that there are only finitely 
many elliptic curves with bounded height. Indeed, if h(EIO) is bounded, then 
there are only finitely many possible values for C4 and C6 . The analogous 
statement for arbitrary number fields follows from Proposition 2.1 in a simi
lar fashion, as we now prove. 

Corollary 2.5. Fix numbers d and C. Then there are only finitely many pairs 
(K, E) consisting of a number field K and a K-isomorphism class of elliptic 
curves ElK satisfying 

[K: OJ :s; d and h(EIK):S; C. 

PROOF. From Proposition 2.1 one sees that bounding h(EIK) has the effect of 
bounding hUE)' Now [10, Theorem 2.1J says that 

{j E Q: [OU) : OJ :s; d and hU):s; C} 

is a finite set. Hence our pairs (K, E) give only finitely many j-invariants, and 
so only finitely many Q-isomorphism classes of elliptic curves. 

We are now reduced to the following problem. Fix a number field KIO 
and an elliptic curve ElK. Then up to K-isomorphism, there are only finitely 
many elliptic curves E'IK satisfying 

jE' = jE and h(E'IK):S; C. 
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But again using Proposition 2.1, this time for a fixed field andj-invariant, we 
see that bounding h(E'/K) is the same as bounding NK/Q lE'/K' 

We now choose a finite set of places ScM K containing the following: 

(i) M'K; 
(ii) all v E M~ at which E has bad reduction; 

(iii) all v E M~ with v(6) #- O. 

We further enlarge S so that 

(iv) the ring of S-integers Rs is a P.I.D. 

Then we can find a Weierstrass equation 

E: y2 = x 3 + Ax + B 

for E/K with A, BERs and ~ = -16(4A3 + 27B2)ERt. (We will now as
sume that jE #- 0, 1728, so AB #- 0 and Aut(E) = {± I}. The other cases are 
done similarly.) The elliptic curves over K isomorphic over K to E are the 
twists given by equations 

DEK*; 

and ED ~ ED' over K if and only if (D/D')E(K*)2. Further, for viS, ED has 
additive reduction at v if and only if v(D) = 1 (mod 2). Thus 

NK/Q lED/K ~ TI NK/Qv, 
VEMK-S 

v(D) = 1(2) 

so bounding NK/Q lED/K has the effect of bounding the set of vEMK - S for 
which v(D) = 1 (2). Hence enlarging S yet again, we may restrict attention to 
those twists ED/K for which v(D) = 0(2) for all VE MK - S. It thus remains to 
show that 

{DEK*: v(D) = 0(2) for all vEMK - S}/(K*)2 

is a finite set. But this follows immediately from the finiteness of the class 
number and Dirichlet's unit theorem. D 

§3. Wei! Curves 

We now turn our attention to elliptic curves defined over O. More precisely, 
we let E/O be a strong Weil curve of geometric conductor N, and let 

<PE: Xo(N) -+ E 

be the corresponding Weil parametrization. Take a minimal Weierstrass 
equation for E/O, and let 
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be the usual Neron differential. Then 

~:'rJ.E = CdE(Z) dz, (13) 

where fE(Z) is a normalized weight 2 newform for r o(N), and CE E 0*. 
Note that since rJ.E is defined using a minimal Weierstrass equation, it 

generates the sheaf of I-forms on every fibre of the Neron model of E/O. 
Hence the height of E/O is given entirely by the archimedean term: 

1 i I h(E/O) = -2 log 2 rJ.E /\ aE· 
E(C) 

We also recall that the Petersson norm of fE(Z) is defined by 

lifE 112 = -2i f fE(Z) dz /\ fE(Z) dz. 
Xo(N) 

(14) 

(15) 

We now integrate both sides of equation (13), using equations (14), (15), and 
the change of variable formula: 

IcEI2 11fEI1 2 = ~f ~:'rJ.E /\ ~:'rJ.E 
Xo(N) 

= (deg ~E)~ r rJ.E /\ rJ.E 
JE(C) 

= (deg ~E)e-2h(E/CI). 

Taking logarithms gives the following result. 

Proposition 3.1. With notation as above, 

! log deg ~E = h(E/O) + log lifE II + 10glcEI· 

Of the four terms in Proposition 3.1, the least interesting is the one in
volving CE ; in fact, one guesses that it is negligible. 

Conjecture 3.2 (Manin). CE = ± 1. 

In any case, one has the following. 

Theorem 3.3. (a) (Mazur and Swinnerton-Dyer [7]). If N is square1ree, then 
IcEI is a power of 2. 

(b) (Raynaud). If N is square-free, then 10gicEI is bounded. 

For any particular curve E/O, the quantities h(E/O) and II IE II can be 
computed numerically to any desired degree of accuracy, each being essen
tially the integral of a certain 2-form over a Riemann surface. In this way one 



262 J. H. SILVERMAN 

can use Proposition 3.1 (and the assumption that IcEI = 1) to compute the 
more intractable quantity deg rPE' This has been done by Zagier [15], who 
also proves a result similar to the following proposition. 

Proposition 3.4. Let rPE: Xo(N) ---. E be a strong Weil parametrization, and let 
c4, C6 E Z be the usual quantities associated to a minimal Weierstrass equation 
for E/O. Assume the quantity CE in equation (13) satisfies ICEI ~ 1. Then for 
everye > 0, 

deg rPE ~ C. max{lc411/4, Ic611/6}2-' 

for a constant C. > 0 depending only on e. [That is, deg rPE grows "polynomially 
with weight 2" in the coefficients of the minimal Weierstrass equation for E.] 

PROOF. From Corollary 2.3 we have the estimate 

h(E/O) ~ (1 - e) log max{lc411/4, IC611/6} + 0.(1); (16) 

and by assumption 

(17) 

It remains to estimate the Petersson norm II fE II. To do this, we note that for 
any N, one can choose a fundamental domain for X o(N) containing the 
region 

[Jt = {ZEC: Ixl < 1/2 and y > I}. 

Hence writing fE(z) = Ln;;?; 1 ane21l;nz, we have 

IIfEI12 ~ t IfE(zW dx dy 

f 1/2 fOO = Laman e21l;(m-n)x dx e- 21l(m+n)y dy 
m,n;::1 -1/2 1 

= L lanI2e-41ln/(4nn). 
n;;?;1 

But fE(z) is a normalized cusp-form (i.e. a1 = 1), so just using the n = 1 term 
of this sum gives 

(18) 

Now using the lower bounds provided by equations (16), (17), and (18) in 
the equation for deg rPE given in (3.1) yields 

2 log deg rPE ~ (1 - e)log max{lc411/4, Ic611/6} + 0.(1), 

which is the desired result. o 
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§4. A Relation with the Canonical Height 

We return now to the case of a number field K and an elliptic curve ElK, and 
let 

h: E(K) -+ (0, (0) 

be the canonical height on E relative to the divisor (0). (See e.g. [4, Chap. IV] 
or [11, VIII, §9].) Then for P E E(K), h(P) ;?: 0, with equality if and only if P 
is a torsion point. Serge Lang has conjectured a uniform lower bound for the 
height of non-torsion points; the following is a slight generalization. 

Conjecture 4.1 (Lang, [4, p. 92]). There is a constant c > 0, depending only on 
K, such that for any elliptic curve ElK and any non-torsion point P E E(K), 

h(P) ;?: c h(EI K). 

The following special case, originally proven in [8] using other methods, 
can now be given a short demonstration by adapting an analogous argument 
for function fields due to Tate. (But it is worth mentioning that the argument 
in [8] shows that the constant c in Conjecture 4.1 may be chosen depending 
only on the degree [K: Q], and not otherwise on K. This added uniformity 
is important in some applications.) 

Theorem 4.2. Lang's Conjecture 4.1 is true if one restricts attention to elliptic 
curves with integral j-invariant. 

PROOF. Let glR be a Neron model for ElK, and let PEE(K) be a non-torsion 
point. Then P induces a map P: Spec R -+ g; and we identify P with its image 
P(Spec R), which is a divisor on g. Since jE is integral, the group of com
ponents of every fibre of g has order dividing 12 (cf. [14]). Thus replacing P 
by 12P, we may assume that P E gO(R). (That is, P hits the identity com
ponent of each fibre.) Since h(12P) = 144h(P), we need merely divide our final 
answer by 144. 

Now for P E gO(R), the canonical height can be computed using Arakelov 
(arithmetic) intersection theory as follows. (See [1, Theorem 5.1 (ii)]. We take 
D = (P) - (0), and note that P . P = 0 . 0.) 

[K: Q]h(P) = p. 0 - O' O. 

(Here 0 E gO(R) is the identity section.) Since P "# 0, we have 

p. O;?: -c1 [K: Q] 

(19) 

(20) 

for an absolute constant c1 [1, §5]; and the adjunction formula [1, Prop. 4.1] 
reads 

(21) 
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where (W.s'/R) is the canonical (metrized) divisor class on cfflR and DK/Q is the 
absolute discriminant of KIQ. But by definition, 

(W.s'/R) . 0 = deg O*W.s'/R = [K: Q]h(EIK). 

Combining equations (19), (20), (21), and (22) yields 

1 
h(P);;::: h(EIK) - [K: Q] log DK/Q - Cl· 

(22) 

Since there are only finitely many curves ElK with bounded h(EIK), this 
gives the desired result. D 

A lower bound such as (4.2) has many applications in Diophantine geo
metry. For example, it is one of the tools used in the proof of the following 
result, which gives a quantitative relationship between the Mordell-Weil 
theorem and Siegel's theorem. 

Theorem 4.3 ([9]). Let K be a number field, ElK an elliptic curve with integral 
j-invariant, and 

E: y2 = x 3 + Ax + B 

a "quasi-minimaf' equation for E. (That is, INK /Q (4A 3 + 27B2)1 is minimal 
subject to A and B being integral.) Let Rs be the ring of S-integers of K for 
some finite set of places S. Then 

# {PEE(K): x(P)ERs } ::::; crankE(K)+#S+l 

for a constant C depending only on K. 
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CHAPTER XI 

Lipman's Proof of Resolution of 
Singularities for Surfaces 

M.ARTIN 

§1. Introduction 

This is an exposition of Lipman's beautiful proof [9] of resolution of singu
larities for two-dimensional schemes. His proof is very conceptual, and there
fore works for arbitrary excellent schemes, for instance arithmetic surfaces, 
with relatively little extra work. (See [4, Chap. IV] for the definition of 
excellent scheme.) 

We want to thank Lipman for a number of helpful comments on our 
manuscript. 

We will call a noetherian, normal, connected and excellent scheme X of 
dimensional 2 a surface. By point of X we mean a point of codimension 2, 
necessarily a closed point. A surface X has finitely many singular points, at 
which the local ring is not regular [4, IV, 7.8.6 (iii)]. 

Define a sequence 

of surfaces Xi inductively as follows: Let Si C Xi be the (reduced) singular 
locus. Then X H1 is the normalization of the blowing-up of Si in Xi' or 
equivalently, the normalization of the scheme obtained by blowing up the 
maximal ideals of the points of Si in succession. Each Xi is a surface, and the 
maps Ii are proper. 

The main result of [9] is 

Theorem (1.1). The scheme Xn is nonsingular, ifn is sufficiently large. 

We will prove it under the following additional hypothesis, which can, 
however, be removed [9]. 
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(1.2) If X is a scheme of characteristic p > 0, then the residue fields k = k(p) 
at points of X have the property [k: kP] < 00. 

Let us reserve the notation 

(1.3) 

for a birational map of surfaces, such that X' is projective over X. The 
structure sheaves of X and X' will be denoted by {!} = {!}x and {!}' = {!}x'. We 
will call such a map a modification of X. For example, the maps/; appearing 
in ( * ) are modifications. A modification will be an isomorphism outside of a 
finite set of points of X, often except at a single point p. Its fibre over p will 
be a connected scheme of dimension 1, for which we use the notation 

i = 1, ... , n, 

where the Ci are the irreducible components. Each of them is a projective 
curve over the residue field k = k(p). 

A point p E X is called a rational singularity if for every modification (1.3), 
the stalk of R 1f* {!}' at p is zero. 

Theorem (1.1) will be proved in the following three steps: 

Step 1. Reduction to rational singularities. 
Step 2. Assuming rational singularities, reduction to rational double points. 
Step 3. Resolution of rational double points. 

The first two steps are done using the dualizing sheaf w = Wx. Since a normal 
surface is Cohen-Macaulay, the dualizing complex consists of a single sheaf 
w, which is a rank 1, reflexive {!}-module. If a point p is not a rational 
singularity of X, then there is a local section rx of w, and a modification (1.3), 
such that rx has poles along some component Ci of E (cf. (3.5), [7]). Roughly 
speaking, the first step consists in blowing-up so that all such polar divisors 
appear, and what is required is to show that there are only finitely many of 
them. Once this has been done, step 2 consists in blowing up the module w, 
so that it becomes locally free. Among rational singularities, only the points 
of multiplicity Jl :::; 2 have locally free dualizing sheaves (5.3), i.e., are Goren
stein. The main difficulty here is to prove that if X' L X denotes the blowing
up of w, then the {!}' -module generated by w is the dualizing sheaf Wi = Wr 

(cf. (5.1)). The proof of the final step 3 is the least conceptual one, but rational 
double points are very special, and the explicit analysis is not too unpleasant. 

For reference, we recall the basic duality theorem [5] for a proper map 
y L X. Let F be a bounded complex of sheaves on Y. Then in the derived 
category 

(1.4) 

We need to expand this duality in the case thatfis the modification (1.3) 
at a point p E X and that F consists of a single reflexive ( = Cohen-Macaulay) 
module M'. For this purpose, we recall the following facts: 
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(1.5) (a) For any coherent lV-module M', R'lj*M' = ° if q > 1 and R1f*M' 
is a finite length (O-module concentrated at p. 

(b) If M' is reflexive, then iffxt~,(M', w') = ° for q "# 0, and M'D = 

Yf'o'»t(1),(M', w') is reflexive. 
(c) For any finite length (O-module e, iffxt~(e, w) = ° if q "# 2, and 

iffxt~(e, w) has the same length as e. 

Entering this information into (1.4), we obtain an exact sequence 

(1.6) ° --+ f*(M,D) --+ U*M/)D --+ iff x4(R If*M', w) --+ R If*(M,D) --+ 0, 

Which expresses the essential content of (1.4). In this sequence, the second 
term is reflexive and the last two have finite length. 

Our assumption that the surface X is an excellent scheme is used at several 
places. Mainly, it enables us to replace X by its completion at a singular 
point p, which is permissible because of the following proposition. Of course, 
substitutes for this unaesthetic operation can be found in various special 
cases. 

Proposition (1.7). Let X be a surface and let X = Spec @p be its completion at 
a point p. 

(i) The sequence (*) for X induces the analogous sequence for X by base 
change: Xn ~ X X X X n • 

(ii) Let X' .4 X be a modification (1.2). Then X' = X x x X' is a modification 
of X, and X' is nonsingular above p if and only if X' is. 

(iii) Every modification X' --+ X arises by base change from a modification 
X' --+X. 

The proof is an exercise, starting with [4, IV, 7.8.3]. 
As a consequence, we may assume that (O is a quotient of a regular local 

ring R. Then the dualizing module is w ~ iffxt;'-2({O, R), which shows that w 
exists. 

Another technical point is that at some places general position arguments 
require a sufficiently large residue field at a point p E X. This can be accom
plished if we replace X by a suitable etale extension. Let k be a finite separable 
extension of k = k(p). There exists an etale map X --+ X and a point p of X 
lying over p, such that k(P) = k [4, IV, 18.1.1]. The following proposition 
allows us to replace X by X, and we will do this when necessary, without 
further comment: 

Proposition (1.8). With the above notation, the sequence ( * ) induces the analo
gous sequence for X by base change: Xn ~ X Xx X n • 

For it shows that Xn is etale over X n • Therefore Xn is nonsingular (or 
rational, etc .... ) at a point ij if and only if Xn is nonsingular (rational, ... ) at 
its image q [4, IV, 18.4.1OJ. 

We omit the proof of (1.8). 



270 M. ARTIN 

Proposition (1.9). (i) Any two modifications!; (1.3) are dominated by a third one. 
(ii) Any modification X' L X is dominated by a sequence of normalized 

blowings-up. 

Here domination of X' by X" .! X means, of course, that the birational 
correspondence X" ~ X' determined by f and g is regular. Note that the 
sequence ( * ) does not dominate every modification, because one can blow up 
nonsingular points. 

To prove (i), it suffices to take for X" the normalization of the join of X~, 
X~, i.e., of the unique component of X~ x x X~ which maps birationally to X. 

For (ii), let Ci be the one-dimensional components of the fibres off The 
local ring Ri of X' at the general point of Ci is a discrete valuation ring. We 
will show that there is a sequence of normalized blowings-up so that, on the 
modification X" .! X obtained from the sequence, every such valuation ring 
Ri is a local ring. Then the birational correspondence X" ~ X' is an isomor
phism at every point of X' of codimension 1, and Zariski's Main Theorem, 
together with the fact that X" is a surface, shows that 11: is regular. 

Since there are finitely many fibre components, it suffices to treat a single 
one, say, withf(C) = p. The following proof is due to Zariski [13]. Let M be 
the maximal ideal of R. Note that R/M = k(C) is of transcendence degree 1 
over (!) p/mp = k. Choose an element r E R which has a transcendental residue 
over k, and write it as r = a/b, where a, bE (!) p. Since its residue is transcen
dental and M n (!) p = mp ' the element r is not in (!) po Therefore b is not a unit, 
i.e., bE mp c M. Similarly, r- l ¢ (!) p' and so a E M. We use induction on the 
orders of zero v(a), v(b), where v denotes the valuation of R. They are positive 
integers. 

Let Xl !i X denote the normalized blowing-up of P in X. Since fl is 
proper, the valuative criterion shows that Spec R maps to Xl. Its closed point 
will have an image in Xl which is either the general point 1'/ of a fibre 
component, or else is a closed point PI of the fibre. In the first case (!)Xl'~ is a 
discrete valuation ring contained in R. Therefore it is equal to R and we are 
done. In the second case, choose a standard affine of Xl containing Pl. If 
Xl' ... , Xn generate mp ' then the affine coordinate ring A 1 will be the normal
ization of a ring A[x~, ... , x~], where A is some affine ring of X, and say 
x; = xJxn• In AI' we can write a = alxn, b = blxn. Then r = adb l . Since 
xnEM, v(ad < v(a) and v(b l ) < v(b). This completes the proof. D 

§2. Proper Intersection Numbers and 
the Vanishing Theorem 

By divisor on a surface X', we mean Weil divisor, i.e., a linear combination 
Z = L ri Y; of irreducible closed subsets Y; of X' of codimension 1. The notions 
of divisor of a rational function and of linear equivalence are the usual ones. 
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Also, the sheaf {9' (Z) of functions with pole ::; Z is a rank 1 reflexive {9'

module. It is locally free if and only if Z is a locally principal (Cartier) divisor. 
Similarly, if M' is a reflexive (9'-module, then M'(Z) denotes the sheaf of 
sections of M' with pole::; Z, which is the reflexive hull of M' <8>&, (9'(Z). 

Let X' .4 X be a modification, and let C = Ci be a one-dimensional com
ponent of some fibre f-1(p). Denote by C the normalization of C. Given a 
divisor Z on X', we consider the sheaf 

(2.1) (9c(Z) = [(9'(Z) <8>&, (9c]j(torsion). 
defn 

Since C is a nonsingular curve, this sheaf is locally free, of rank 1. We define 
the proper intersection number of Z and C to be 

(2.2) [Z . C] = degree (9c(Z), 

the degree (or Chern class) being computed with respect to the ground field 
k = k(p). This symbol is not symmetric. 

As justification for the terminology, we will describe a method of calcu
lating this number, which is however not needed elsewhere. If q E X' is a point 
at which a positive cycle Z is locally principal, for example, a nonsingular 
point of X', and if C is not a component of Z, then (Z . C)q denotes the usual 
local intersection number: Let {tft = O} be a local equation for Z at q. Then 

(2.3) 

Proposition (2.4). Suppose that (9'(Z) is generated by global sections. Thenfor 
a sufficiently general divisor Zl linearly equivalent to Z and positive in a 
neighborhood of C, 

[Z . C] = L (Zl' C)q. 
qnonsing. 

onX' 

In other words, intersections of Z and C which are forced by the fact that 
Z is not locally principal at some singular point do not count in [Z . C]. If 
(9'(Z) is not generated by global sections, this description can be modified by 
allowing divisors Z' which are not positive. 

PROOF OF (2.4). A generating set of global sections of (9'(Z) will induce a 
generating set for (9c(Z). Localizing X and X' in a neighborhood of p and 
applying (1.8) if necessary, we may choose a generic global section Sl such 
that the induced section s of (9c(Z) does not vanish at any point whose 
image in X' is singular. Then the divisor Zl of Sl is the required one. For, on 
the one hand the degree of (9c(Z) is the degree of the zero-cycle {s = O} on 
C, and on the other hand, this degree can be calculated locally as the intersec
tion number (Z . C)q, provided q is nonsingular: 

(2.5) 
qoverq 

The proposition follows. o 
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Several formal properties of the symbol [Z' C] are summed up in the 
proposition below: 

Proposition (2.6). (i) [Z' C] = [Z' . C] ifZ and Z' are linearly equivalent. IfZ 
is locally principal, then [Z' C] is equal to the usual intersection number 
(Z' C). 

(ii) Positivity. Assume that Z ~ 0 and that C is not a component of Z. Then 
[z· C] ~ O. lfin addition Z n C contains a nonsingular point of X', then 
[Z' C] > O. 

(iii) Sublinearity. [A, C] + [B' C] ~ [A + B . C], with equality if B is lo
cally principal . 

. These properties are very elementary. We will only indicate the proof of 
(iii), which results from consideration of the diagram 

(91(A) ®r (91(B) ~ (91(A + B) 

t t 
(9c(A) ®c (9c(B) ! (9c(A + B). 

The top arrow IX is multiplication; and it induces f3 functorially. Since IX is an 
isomorphism except at singular points of X', the map f3 is not zero. It follows 
from the existence of this map that 

[A' C] + [B' C] = deg ((9c(A) ® (9c(B)) ~ deg (9c(A + B) = [A + B· C]. 
D 

Let C1 U'" U Cn = E be the fibre of our map X ' .4 X over p. If X' is 
nonsingular, the intersection matrix II (C; . C) II is negative definite. The fol
lowing proposition extends that fact to the singular case. 

Proposition (2.7). Let A = L a;C; be a positive divisor supported on E. Then for 
some indexj, [A . Cj ] < O. 

PROOF. Choose a rational function 9 on X' whose divisor has the form 
(g) = Z + D, where 

(2.8) (i) Z = Lr;C;, and r; > 0 for all i. 
(ii) D > 0, and for all i, D n C; contains a nonsingular point of X'. 

It is clear that such a function exists. Namely, choose any positive divisor Do 
meeting each C; at a regular point, and take for 9 any nonzero element of (9x,p 
which vanishes onf(Do). 

The only property of the configuration E we need is the existence of the 
function g. Note that the hypotheses (2.8) carryover to subsets of 
{C1 , ••• , Cn}. So we can proceed by induction on the number of components 
C;. Choose positive integers I, m so that IA - mZ = B ~ 0, but that 
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Supp B < C1 u ... U Cn. Sublinearity implies that for every C = Ci , 

lEA . C] ::;; [IA . C] = [B + mZ· C] < [B + mZ . C] + [mD . C] 

::;; [B + m(g) . C] = [B . C]. 

By induction, [B . CJ ::;; 0 for some j. Therefore [A . CJ < O. o 

Theorem (2.9) (Vanishing Theorem [3]). Let X'.£ X be a modification and let 
E = f-1(p) be the fibre off at p. 

(i) Let OJ' be the dualizing sheaf on X'. Then 

R'1*OJ' = 0 if q ¥- O. 

(ii) For every positive divisor Y with support on E, the map R 1f* {!}' --+ R 1f* {!}' (Y) 
is injective. 

PROOF. (ii). By Proposition (2.7), [Yo C] < 0 for some C = Cj • It follows, in 
the notation of (2.2), that HO(C, (!}c(Y)) = 0, hence HO(C, (!}dY)) = 0 too, 
where (!}dY) is the restriction of (!}'(Y) to C, which is defined by the exact 
sequence 

(2.10) 0--+ (!}'(Y - C) --+ (!}'(Y) --+ (!}dY) --+ O. 

Hence the map H 1(X', (!}'(Y - C)) --+ H1(X', (!}'(Y)) is injective. By induction 
on y, H1(X', (!}') --+ H1(X', (!}'(Y)) is injective. This is equivalent with (2.9) (ii). 

(i) We may assume that f is a modification at p. Consider the sequence 

o --+ OJ' ( - Y) --+ OJ' --+ OJ' ® {!} y --+ 0, 

and the associated sequence 

(2.11) R1f*OJ'(- Y)~R1f*OJ' --+R1f*(OJ' ® (!}y)--+O. 

By the Holomorphic Functions Theorem and the fact that R1f*OJ' has finite 
length, 

............... 
(2.12) R1j'*OJ';:::; R1f*OJ';:::; projlimR1f*(0J' ® (!}y). 

y 

The maps in the inverse system on the right are surjective (vanishing of R 2f*). 
It follows that the map tPy of (2.11) is zero for large Y. 

Now substitute {!}' and (!}'(Y) for M' into the sequence (1.6), to obtain a 
diagram 

(2.13) 0 --+ f*OJ' --+ OJ --+ Ext2(R 1f*{!}', OJ) ---+ R1f*OJ' --+ 0 

t 
0--+ f*OJ'( - Y) --+ OJ --+ Ext2(R1f*{!}'(Y), OJ) --+R If* OJ' ( - Y) --+ O. 

Being dual to the injective map (2.9) (ii), ljJy is surjective (cf. (1.5) (c)). Since tPy 
is zero for large Y, it follows that R 1f*OJ' = 0, as required. 0 
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For future reference, we note the adjunction formula: 

Proposition (2.14). Let Y be a positive divisor on X. The dualizing module Wy 

fits into an exact sequence 

0--+ w --+ w(Y) --+ Wy --+ o. 

This follows by duality from the exact sequence 

0--+ (9( - Y) --+ {9 --+ (9y --+ 0, 

which also shows that Wy = @"xt1({9y, w). 

§3. Step 1. Reduction to Rational Singularities 

Let X be a surface, and consider a diagram 

(3.1) X"~X' 

~f 
X 

of modifications of X. 

Proposition (3.2). (i) There is a natural exact sequence 

0--+ R1f*{9x' --+ R 1g*{9X" --+ f*R1n*(!)X" --+ o. 

(ii) If X has rational singularities, so does X'. 
(iii) N onsingular points p E X are rational singularities. 

o 

(iv) To prove step 1, it suffices to show that for every singular point p E X, the 
length of R1f*{9x' at p is bounded independently of the modification! 

PROOF. (i) This follows from an analysis of the spectral sequence 
RPf*Rqn*{9X" => Rp+qg*{9x" and (1.5) a. 

(ii) This follows from (i). 

(iii) By (1.9) and (ii), it is enough to show that R1f*{9x' = 0 when X'.4 X 
is the blowing-up of p. Since p is nonsingular, the maximal ideal mp c {9 P is 
generated by two elements uo, u1 , and.the construction of the blowing-up 
represents it locally as a subscheme X' ch lPi = IP. (In fact, X' can be defined 
by the equation UOZ1 - u1ZO = 0.) Thus i*{9x' is a quotient of {91J>. Let 1 
denote the projection IP --+ X. The relative dimension of IP over X is 1, and so 
R 1l*R is a right exact functor of (91J>-modules F. Also, R1'*{91J> = O. Therefore 
R1h(i*{9x') = R1f*{9X' = 0 too. 

(iv) Assume the length bounded, and let X' .4 X be a modification such 
that the maximum is achieved. Then the sequence (i) shows that for any 
diagram (3.1), f*R 1n*{9X" = O. Since R 1n*{9X" has zero-dimensional support, 
it follows that R 1n*{9X" = O. This being true for every n, X' has rational 
singularities. Now we apply (1.9) to dominate X' --+ X by a sequence of 



LIPMAN'S PROOF OF RESOLUTION OF SINGULARITIES FOR SURFACES 275 

normalized blowings-up, say by X""::' X'. Then (ii) implies that X" has 
rational singularities. Nonsingular points may have been blown up in this 
process, but by (iii) their blowing-up was not necessary to reduce to rational 
singularities. Therefore the sequence (*), which dominates any sequence of 
normalized blowings-up of singular points, leads to rational singularities too. 

D 

We begin the proof of step 1 by applying the vanishing theorem (2.9) (i). 
Substitution of {!}' for M' in (1.6) yields the exact sequence 

(3.3) 0 --+ f*w' --+ w --+ Iffxt2(R1f*{!}', w) --+ O. 

Since e~ Iffxt2(e, w) is a duality for finite length {!}-modules (1.5) (c), we 
obtain 

Corollary (3.4). (i) The finite length (!}-modules R 1f* {!}' and w/f* w' are dual, via 
Iff xt2 (., w). 

(ii) The point p is a rational singularity if and only if for every modification 
(1.2) at p, f*w' = w. 

(iii) To complete step 1, it suffices to show that the length of w/f*w' is bounded 
independently off, or equivalently, that some fixed power of the maximal 
ideal m annihilates w/f*w'. 

The last assertion follows from (3.2)(iv) and (3.4)(i). 
Suppose that X is of finite type over a perfect field k. Then w is the 

reflexive hull of Q2 = A 2Qh. This is because Q2 and ware isomorphic at 
smooth points of X, and w is reflexive. 

Thus Q2 maps to w, and the map is an isomorphism except at singular 
points of X. 

Proposition (3.5). If X is of finite type over a perfect field k, then for any 
modification (1.3) the canonical map Q2 --+ W factors through f*w'. Therefore 
w/f*w' is bounded by w/im Q2. 

This follows from the fact that Q2 is contravariant, so that Qi --+ f*Qi, --+ 

f*w', and completes the proof of step 1 in that case. A similar argument can 
be given if X = Spec R, where R is a complete local k-algebra with residue 
field k, and k is perfect. 

In general, Lipman presents X as finite over a two-dimensional regular 
scheme Y. This can always be done if X = Spec Rand R is a complete local 
ring, which we may assume (1.7). Let qE Y be the image of the singular point 
p E X. If Y' ! Y is a modification of Y, we will use the notation 

X'Lx 
(3.6) 

where X' denotes the normalization of Y' x y X. 
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We omit the proof of the following lemma, which is similar to that of (1.9) 
(ii). 

Lemma (3.7). The modifications f which arise in the above way are co final 
among modifications of X at p. 

To prove it, let R be as in the proof of (1.9) (ii), and apply the method used 
there to R n K(Y). 

Let us drop the symboln* when regarding (Dx-modules as sheaves on Y. 
Note that (Dx has depth 2, hence is locally free over (Dy. By duality (1.4), 
wx >:::: £Qnty«(Dx, Wy). Since Yis nonsingular, Wy >:::: (Dy locally, and we choose 
such a local isomorphism. Then 

(3.8) 

Also, consider the trace from (Dx to (Dy. It defines a pairing 

(3.9) (Dx ® (Dx --+ (Dy 

a ® b--tr abo 

This pairing and (3.8) define a map 
r/J (3.10) (Dx --+ Wx· 

which vanishes at points of Y where the discriminant d of the trace pairing is 
(3.9) is zero. 

Lemma (3.11). For any modification (1.3), d annihilates w/f*w'. 

PROOF. The point is that the trace pairing is contravariant. Since a nonsin
gular point is a rational singularity, there is an injection f*w y c Wy, adjoint 
to (3.4)(ii). Combining it with the chosen isomorphism (Dy ~ Wy gives us an 
injection (Dy' c Wy,. We now replace Y by Y' in (3.0), to obtain a pairing 

(Dx' ® (Dr --+ (Dr' C WY" 

hence a map (Dr --+ Wx,. Applying g*, we find (Dx = f*(Dr C Wx. Thus 
¢J«(Dx) C f*wx" On the other hand, dwx c ¢J«(Dx)· 0 

If X is generically separable over Y, so that d =I- 0, we can complete the 
proof now. This includes the cases that X has unequal characteristic, or (by 
suitable choice of n) that the residue field k is perfect [11]. Choose an element 
uE(Dx which vanishes on {d = O}, but which generates a radical ideal. Lem
ma (3.14) below shows that this is always possible locally, and then d divides 
some power U v of u. 

Given a modification (1.3), define D to be the locus of zeros of u on X', and 
D' to be the locus of zeros of u on X'. Then the normalization 15 of D lies over 
D', i.e., there are natural maps 15 --+ D' --+ D. So, viewing WD as an (DD-module, 

(3.12) 
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Therefore wD/f.wD, has length bounded independently of f, and is annihi
lated by a fixed power mN of the maximal ideal of p in X. 

We construct a diagram 

(3.13) 0-+ f*w' 
u 
-+ f*w' -+ f*wD, -+0 

! ! ! 
0-+ w 

u 
-+ w -+ WD -+0 

! ! ! 

w/f*w' ~ w/f*w' -+ wD/f*WD' -+ 0 

with exact rows and columns. The middle row comes from (2.14) and the fact 
that u = 0 defines D, and the top row from (2.14) and (2.9)(i). Since U V is 
divisible by d, Lemma (3.14) shows that UV annihilates w/f*w'. The bottom 
row implies that mvN annihilates w/f*w', which therefore has bounded length. 

Lemma (3.14). Let X = Spec (9, where (9 is a normal local ring, and let Y < X 
be a closed subscheme. There exists a nonzero element u E (9 which vanishes on 
Y and generates a radical ideal. 

PROOF. First of all, if u #- 0 is an element of m, there is an integer N so that 
the multiplicity /1((9/(u'» [14, p. 294] is bounded for every u' == u (modulo mN ). 

This is because /1 = /1((9/(u'» is bounded by 1 = length ((9/(u, x», where x = 
{Xl' ... , Xd-d are elements chosen so that the ideal (u, x) is m-primary. This 
length will not change if u is replaced by u' and N » O. 

Now choose any nonzero u vanishing on Y. Write its divisor in the form 
(u) = V + V, where V is the sum of those prime divisors having multiplicity 
1. If V = 0 we are done. In any case, /1 = /1(V) + /1(V), and we proceed by 
induction on /1(V). By the Chinese Remainder Theorem we may choose 
wEmN (N as above), so that its divisor is 2V + Vo + W, where Vo = Vred 

and where W has no component in common with V + Vo. Then u' = 

u + w vanishes to order 1 on each component of V and Vo. Since /1(V) < 
/1(V + Vo) :=; 1, induction completes the proof. D 

To complete step 1, it remains to consider the c~se that no generically 
separable map n (3.6) exists. We have to show that Rlf*(9' is bounded in this 
case too, and we may assume (1.7) that X = Spec R, where R is a complete 
normal local ring of characteristic p > O. Then R is a quotient of a power 
series ring: 

(3.15) 

Let us call such a 'quotient separable if it is finite and generically etale over a 
power series ring in d variables, d = dim R. It is known [11] that this is true 
if and only if Fract R is a separable field extension of k, but we will not use 
that fact. 
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We now use the hypothesis (1.2) that [k: kP] is finite. Choose any repre
sentation of R as a finite algebra over k[y] = k[Yl' Y2]' Let kv = pIP', and 
yr = yIIP'. Then k[y]lIP, = kv[YV] is a finite k[y]-algebra. It follows from 
field theory that the normalization Rv of (k[y] lip' ®k[Y] R)red is separable 
over k[y]lIP' for large v, and so (3.2) (iv) has already been shown for those 
rings. Also, Rv is a finite, purely inseparable R-algebra. 

Denote by (l)v the coherent sheaf of (I)-module defined by R" and by U the 
complement of the closed point of X. By Lemma (3.17) below, the kernel ,I 
of the map 

is a finite-dimensiomil k-vector space. 
Now, given a modification f: X' -+ X, we construct a modification 

I.: X~ -+ Xv = Spec Rv by letting X~ be the normalization of (X' x x Xv)red' 
Since Hl(X~, (I)~) is bounded, we may assume that f is "large enough" so that 
this group is maximized, at least among modifications fv arising in the above 
way. Consider the sequence 

(3.16) 

where:ff is the kernel. We may assume that X' dominates the blowing-up of 
p in X, so that (I)'m = I is a locally principal ideal. Then the inclusionj; U -+ 

X is an affine map, and so 

Hl(U, (l)u) ~ H l(X',j*(I)u) ~ inj limH l (X', (I)'(Y)). 
y 

By (2.9) (ii), H l(X', (I)') c Hl(U, (I)). So :ff is contained in ,I, hence is bounded, 
and we may assume f large enough so that :ff is maximized. Then the 
sequence (3.16) shows that H l(X', (I)') is maximized too. Therefore Hl(X', (I)') 
is bounded, as required. D 

Lemma (3.17). Let M -+ N be an injective map of finite R-modules. Then the 
kernel of the map 

is a finite-dimensional k-vector space. 

PROOF. Let P = N/M. The kernel is a quotient of P, and also it is m-torsion. 
Therefore it has finite length. D 

§4. Basic Properties of Rational Singularities 

This section contains background material and should be skipped by people 
familiar with rational singularities. Most of it is taken from [8]. 

We assume throughout this section that p is a rational singularity and 
X' .£ X is a modification of X at p. 
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Proposition (4.1). Let M' be an (9'-module generated by global sections. Then 
Rqf*M' = 0 for all q > O. 

PROOF. The only question is q = 1. To say that M' is generated by global 
sections means that M' is a quotient of a free module F. Since p is a rational 
singularity, R1f*F = O. Also, R1f* is right exact. Thus R1f*M' = O. D 

Proposition (4.2). Let L be a reflexive (9-module, and denote by (9' L the torsion
free (9' -module it induces, i.e., (9' L = (9' ® (!J L/( torsion). Then (9' L is reflexive. 

PROOF. The point to note is that (9' L is generated by sections above any affine 
open of X. Therefore R1f*(9'L = 0, by (4.1). Let L' denote the reflexive hull of 
(9'L, so that there is an exact sequence 

o ~ (9' L ~ L' ~ B ~ 0, 

where B has support of dimension zero. Applying f* gives an exact sequence, 
since R1f*(9'L = o. Also, f*(9'L = f*L' = L because L is reflexive. Therefore 
f*B = 0, and since B has zero-dimensional support, B = O. D 

Now suppose that X' dominates the blowing-up of the maximal ideal m at 
p. This is equivalent with saying that I = (9'm is locally principal. Let Z = 
V(l) be the divisor defined by I, so that I = (9'( - Z). The ideal I is generated 
by global sections, namely by elements of m, locally above p. Also the relative 
dimension of X' over X is 1, and I is locally principal. Therefore one or the 
other of two generic local sections x, y E m will generate I at any point of Z. 
We may localize X so that x, y generate everywhere: I = (x, y)(9'. 

Proposition (4.3). With the above notation, let M be a reflexive (9'-module. 
There is an exact sequence 

IX P o ~ M(Z)~ M EB M ~ M( - Z) ~ 0, 

the maps are defined by 

a: = (y, -x): a--(ya, -xa), 

p = e} (u, v) --xu + yv. 

PROOF. P is surjective because M( -Z) = 1M = (x, y)M. The only part which 
is not obvious is exactness in the middle. Let q be a point of X', and say that 
x generates I there, so that y = zx locally. Let (m', m) E ker p, i.e., xm' = - ym. 
Cancel x to obtain m' = -zm. Let a = x-1m. This is a local section of M(Z), 
and a:(a) = (m', m) as required. D 

Proposition (4.4). With the equation (4.3), f*1' = mr and RQf*1' = 0, for all 
r ~ 0, q > O. 
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PROOF. The vanishing of R Qf*1' for q > 0 follows from (4.1). Also, the equality 
f*1' = m' is clear for r = 0, 1. Ifr ~ 1, set M = l' = (9'( -rZ) in (4.3), to obtain 

(4.5) 0 .... 1'-1 .... 1' EB l' ~1'+1 .... 0. 

Apply f* and vanishing of R1f*1'-1 to conclude that 

f*1'+1 = (x, y)f*1' c mf*1'. 

Since also m,+l c f*1'+1, it follows by induction that f*1' = m' for all r, and 
that m,+1 = (x, y)m' if r ~ 1. The assertions for 1'/1'+1 follow immediately. 

o 
Proposition (4.6). Let p be a rational singular point of X of multiplicity fl. Then 
dimk m'/m'+1 = rfl + 1. 

PROOF. Let d, = dimk m'/m'+1. Proposition (4.4) shows that 

(4.7) f*(1'/1'+1) ~ m'/m'+1 and R1f*1'/1'+1 = O. 

The sequences (4.5) form a nested family. Taking sucessive quotients and 
applyingf*, we obtain the relation 

d,+1 + d,-1 - 2d, = O. 

This relation, with do = 1, d1 = d, has the unique solution d, = r(d - 1) + 1. 
By definition [14, p. 294J, d - 1 = fl is the multiplicity of X at p. 0 

Corollary (4.8). With the notation of (4.3), let Z = Spec {9'/1 be the scheme
theoretic fibre of f. Then X(Z, (9z) = 1, and (Z . Z) = - fl· 

PROOF. By (4.7), f*{9'/1 = {9/m, and R1f*{9'/1 = O. In other words, HO(Z, (9z) = 
k and Hl(Z, (9z) = 0, which shows that X(Z, (9z) = 1. Next, -(Z' Z) = 
degree (9z( -Z), and by Riemann-Roch on Z, X(Z, (9z( -Z)) = 1 - (Z' Z). 
On the other hand, (9z( -Z) ~ 1/12. By (4.7), HO(Z, (9z( -Z)) = m/m2 has 
dimension fl + 1, and H1(Z, (9z( -Z)) = O. Thus -(Z' Z) = fl· 0 

Theorem (4.9) (Lipman [8J, Mattuck [10J). Let Xl ~ X denote the blowing
up of the maximal ideal m at a rational singular point p of X. Then Xl is a 

normal surface. 

PROOF. We may assume that X = Spec R is affine. Let A = R[mtJ = R EB 
mt EB m2t2 EB ... be the subalgebra of R[tJ generated by mt. This is a graded 
ring, and Proj A = Xl' 

The integral closure A of A is a graded subring of R[tJ, and an element 
st VERt v is in A if and only if it satisfies a homogeneous integral equation. 
Canceling powers of t, we obtain an equation 

(4.10) 

where Cj E m vi. Now by definition, an ideal I is called integrally closed if every 
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element s E R satisfying an equation (4.10) in which cj E Ii, lies in I. Thus in our 
case, s lies in the integral closure Mv of the ideal m v, and A = R EB Ml EB .... 
To show X normal, it suffices to show that each m v is integrally closed. 

Let X' be the normalization of Xl' and let IV = {I}'m v. Since r is locally 
principal and X' is normal, r is an integrally closed ideal sheaf. Thus 
(I}'Mv = r. By Proposition (4.4), HO(X', r) = mV. Since mV c Mv c HO(X', r), 
we have m v = M v , as required. 0 

§5. Step 2: Blowing Up the Dualizing Sheaf 

In this section we consider a surface X with rational singularities. The reduc
tion to rational double points is done by the following three propositions: 

Proposition (5.1). Let p E X be a rational singularity of multiplicity j), > 1, and 
let X' .L X be the blowing-up of p. Then w' = (!)' w. 

Proposition (5.2). Consider the sequence (*) of Section 1. If n is large, then 
(!}x w is locally free. 

n 

Proposition (5.3). Let p be a rational singularity of X of multiplicity j),. If w is 
locally free at p, then j), ~ 2. 

We will prove (5.3) in a more general form due to Wahl [12]. 

Proposition (5.4). Let p be a rational singularity of multiplicity j), > 1. Then 
with the usual notation, dimk(w/mw) = j), - 1. 

Since dim(w/mw) is the number oflocal generators, (5.3) follows from (5.4). 

PROOF OF PROPOSITION (5.4). Let x, y be generic elements of m. Then the 
multiplicity j), of X at p is the multiplicity of the zero-dimensional ring 
ift = (!}p/(x, y), which is just its length (cf. [14, p. 296]). Let iii be the maximal 
ideal of ift, i.e., iii = m/(x, y). Note that since dimk m/m2 = j), + 1 (4.6), we have 
dimk iii/iii2 ;;:: j), - 1. Therefore there is no room in ift for iii 2 , so iii2 = 0 and 
dim iii = j), - 1 > O. 

Next, the dualizing module ill of iff is isomorphic to w/(x, y)w because 
{x, y} is a regular sequence in (!}p. Since iff is zero-dimensional, the func
tor N -- N D = Homm(N, ill) is a perfect duality on finite length iff-modules. 
Therefore kD = Socle(ill) has length 1, and so the dual of the sequence 

O-+iii-+iff-+k-+O 

has the form 

o -+ k -+ ill -+ kl'-l -+ O. 

It follows that kr1 ;::::: ill/mill ;::::: w/mw, as required. o 
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PROOF OF PROPOSITION (5.1). We know that X' is normal, by (4.9). Also 
w :::: f*w' (3.5). This isomorphism is adjoint to a map f*w --+ Wi, hence 

(5.5) {!J'WCW'. 

Assume that {!J'W < Wi. Then since both modules are reflexive, Wi = (!Jlw(Y) 
for some positive divisor Y = L aiCi supported on E. We revert to the nota
tion of the previous section, in which Z = Y'/tec (!JIll is the scheme-theoretic 
fibre. The proof will be completed by contradiction, using the inequality 

(5.6) 

together with induction and 

Lemma (5.7). Let L be any reflexive module on X', and let C be a component of 
Z. Then 

To prove (5.6), we compute x(Z, Wi ® (!Jz) using the adjunction formula 
Wz = W'(Z) ® (!Jz (2.14), and (4.8). Riemann-Roch on Z gives 

X(Z, Wi ® (!Jz) = X(Z, wz ) - (Z2) = j1 - 1. 

Next, consider the exact sequence 

0--+ l{!J'w --+ {!J'W --+ {!J'W ® (!Jz --+ O. 

The middle term is reflexive by (4.2), and so is the one on the left, because I 
is locally principal. By (4.1), R1f* vanishes for the first and second terms, 
hence for the third as well. Also f*({!J'mw) ::2 mw. Applying (5.4), we find 

X(Z, {!J'W ® (!Jz) = hO(Z, (!J'W ® (!Jz) s dimk wlmw = j1- 1, 

as required. 

PROOF OF LEMMA (5.7). Consider the diagram 

0--+ 

0--+ 

0 

! 
L(-Z) 

! 
L(C -Z) 

! 

o 
! 
L 

! 
--+ L(C) --+ L(C) ® (!Jz --+ 0 

! 
L(C - Z) ® (!Je --+ L(C) ® {!Je 

! 
o 

! 
O. 

o 
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It shows that 

x(Z, L(C) ® (Dz) - X(Z, L ® (Dz) = X(C, L(C) ® (Dc) 

- X(C, L(C - Z) ® (Dc). 

Also, since Z is locally principal, the right-hand side of this equation is easily 
identified as (Z . C), and (Z . C) < 0 because (D'( - Z) is ample on the blowing
up X'. This proves the lemma. 0 

PROOF OF PROPOSITION (5.2). Th~re exists a modification X' L X such that 
{D'w is locally free. Namely, one can blow up the module w, for instance by 
realizing w locally as an ideal, and then normalize. (It can be shown a 
posteriori that the blowing up of w is already normal, and that its singulari
ties are rational double points.) By (1.9), this modification X' can be domi
nated by a sequence of blowings-up. Now since the dualizing sheaf (or any 
reflexive module) is locally free at a nonsingular point, it is not necessary to 
blow such a point up. Therefore the sequence (*) leads to a locally free sheaf 
~w=~. 0 

§6. Step 3: Resolution of Rational Double Points 

Now suppose that the only singularities of X are rational double points. At 
this point the dualizing sheaf has done most of its work, and a closer analysis 
is required. We will consider only those modifications X' .4 X which are ob
tained by a sequence of blowings-up at singular points. Then (5.1) w' = {D'w, 
hence w' is locally free, and is in fact free above a neighborhood of any 
point p of X. By (3.2)(ii) and (5.3), the singularities of X' are rational double 
points. 

Lemma (6.1). Let Y c: X be a nonsingular closed subscheme of codimension 1, 
and let p be a point of Y. Then p is a nonsingular point of X if and only if the 
ideal (D( - Y) of Yin X is locally principal at p. 

PROOF. The maximal ideal of {Dy,p is locally principal. Therefore, if (D( - Y) is 
locally principal, then the maximal ideal of (Dx,p is generated by two elements, 
and so X is nonsingular at p. The converse follows from the unique factori
zation property of regular local rings. 0 

The following lemma is proved at the end of the section. 

Lemma (6.2). Let Y c: X be a nonsingular closed subscheme of codimension 1. 
Let Y" denote the proper transform of Y on the surface Xn of the sequence (*). 
Then Xn is nonsingular at every point of Y", if n » O. 
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Now consider the case of a single blowing-up Xl ~ X of a double point 
p. The scheme-theoretic fibre Zl is the projectivized tangent cone to X at p. 
Since the multiplicity is 2 and dimk m/m2 = 3 (4.6), Zl is represented as a 
divisor of degree 2 in p~. We will use the following lemma without proof. 
(Caution: the case of characteristic 2 needs to be considered carefully.) 

Lemma (6.3). Let k be afield and Z c p~ a divisor of degree 2. Then Z is of 
one of the following types: 

(i) A reduced nonsingular scheme. 
(ii) A cone ofk-degree 2 over a reduced subscheme ofPf; the vertex of the cone 

is its unique singular point. 
(iii) A double line: Z = 2C. 

Lemma (6.4). Let Xl ~ X be the blowing-up of X at p, and let Zl be the fibre 
over p. 

(i) If a point P1 is nonsingular on Zl' it is also nonsingular on Xl. 
(ii) Assume that there is some nonsingular subscheme Y c X of codimension 1, 

passing through p. Let Y' be its proper transform on Xl' and let P1 = 

Y' n Zl. Ifp1 is singular on Zl' then it is singular on Xl. 

PROOF. (i) The scheme Zl is defined by the locally principal ideal I = (!) 1 m in 
Xl. So we may apply Lemma (6.1). 

(ii) It follows from the fact that Y is nonsingular, that Y' meets Zl trans
versally, i.e., that the scheme-theoretic intersection Y' n Zl is the reduced 
point Pl. If P1 is singular on Zl' then the tangent space to Y' u Zl at P1 has 
dimension ~ 3. Therefore so does the tangent space to Xl at P1' and so Xl is 
singular at Pl· 0 

Lemma (6.5). Let Xl be the blowing-up ofp in X, and suppose that the fibre has 
the form Zl = 2C, where C is a line. Let P1' ... , Pn be the points and infinitely 
near points which must be blown up on Xl and its blowings-up to remove the 
singularities from C, as in (6.2). Then 

LJk(Pi): k] = 3. 
i 

PROOF. By conormal bundle to C in Xl we mean the locally free sheaf 
(!)e( - C) = (!)x, (- C)/(!)x, (- 2C). Its degree is, by definition (2.2), [ - C· C]. In 
our case, since 2C is isomorphic to a double line in p2, the degree is the same 
as for such a line, i.e., [ - C . C] = - 1. 

Next, blowing up a point q on C has the obvious effect on the conormal 
bundle. That is, if C denotes the proper transform of C, then 

[ - C· C] = [ - C· C] + [k(q): k]. 
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This is because blowing up q leads to an exact sequence 

o ---? (Dc( - C) ---? (Dd - C) ---? k(q) ---? 0 

for the conormal bundles. 
Finally, let X"'£ Xl denote a modification so that X" is nonsingular 

along the proper transform C", and obtained by a sequence of blowings-up 
at singular points. Since C" is a fibre component of X" over X, ro" is free 
along C". Therefore the genus formula !(C"· C") + 1 = 0 (which follows 
from (2.14)) shows that [ - C"· C"] = (- C". C") = 2. The lemma follows. 0 

We now proceed with the proof that the sequence (*) leads to a resolution 
of rational double points. We may assume that X has one singular point p. 

Let Xl !i X denote its blowing-up. 

Case 1. The fibre Zl is a nonsingular curve (6.3) (i). In this case, Xl is 
nonsingular by (6.4) (i), and we are done. 

Case 2. Zl is a reduced cone (6.3)(ii). Then the vertex Pl of the cone is 
the only point which may be singular on Xl' by (6.4)(i). Assume that it is 

singular, and let X2 ~ Xl be the blowing-up of Pl. It induces a blowing-up 
Z~ ---? Zl of the cone. The fibre P' of Z~ ---? Zl is a reduced, zero-dimensional 
subscheme of iP'2 of degree 2, which lies on the line L determined by the 
two-dimensional tangent space to Zl at Pl. Let Z2 denote the fibre of X2 
over Xl. Then Z2 II L = P' scheme-theoretically. This shows that Z2 is non
singular at P'. Therefore Z2 is reduced. Thus, by (6.4), X2 has at most one 
singular point P2' and it is not on P'. If P2 is singular we blow it up and repeat 
the argument. 

Suppose that this process were to continue indefinitely. Then we would 
obtain a sequence Pl' P2' ... of points infinitely near to p. Since Pl is the 
vertex of a cone defined over k(p), k(Pl) = k(p), and similarly k(Pn) = k(p) for 
all n. Also, P2 does not lie on the proper transform Z~ of Zl' i.e., is not a 
satellite point [15, p. 8], and the same is true of each Pn- Such a sequence of 
infinitely near points, defines a nonsingular branch Y, i.e., a closed codimension 
1 subscheme of the completion of X at p. (We leave the proof of this fact to 
the reader.) Replace X by its completion, and apply Lemma (6.2). A finite 
sequence of blowings-up separates Y from the singular locus. This contradicts 
the construction of the sequence {Pn}, and completes the proof in case 2. 

It remains to consider the possibility that Z is a double line, and we split 
this up into cases according to the degree of the singular locus of Xl. Define 
<5 = Lq [k(q) : k], where q runs over the singular points of Xl. So, <5 ~ 3 by 
Lemma (6.5). 

Case 3. Zl = 2C and!J = 3. Let X2 be the result of blowing up the singular 
locus. Lemma (6.5) shows that X2 is nonsingular at every point of the proper 
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transform C' of C. Therefore by (6.4) (ii) the exceptional fibres of X2 --+ Xl are 
reduced, and we are back to case 1 or 2. 

Case 4. Zl = 2C and [) = 2. Let X2 --+ Xl denote the blowing-up of the 
singular locus. By (6.5), one more blowing-up at a rational point is required 
to separate the proper transform C' from the singular locus. This implies that 
the singular locus on C consists of two rational points, and that the exceptional 
fibre of X2 over one of them is reduced (cases 1, 2). Let Pl denote the other 
point. We need only consider the case that the fibre Z2 of X2 over Xl at Pl is 
not reduced. Also, we know that blowing up X2 at Z~ (') Z2 leads to a reduced 
exceptional fibre, by (6.4)(ii), hence back to cases 1,2 again. The only situation 
which does not lead back to previous cases is that Z2 contains precisely one 
rational singular point P2 besides Z~ (') Z2' Then we may repeat the above 
considerations to construct a sequence Pl' P2 ... of infinitely near points, 
which is settled as in case 2. 

Case 5. Zl = 2C and [) = 1. Let X2 --+ Xl be the blowing-up at the unique 
rational singular point p. This reduces to previous cases unless Z2 = 2C2 , and 
X2 has a unique rational singular point P2 at Z~ (') Z2' If so, let X3 --+ X2 
denote the blowing-up at P2' Then (6.5) predicts that X3 has at least two 
singular points, namely at Z~ (') Z3 and Zi (') Z3' where Z;' are the proper 
transforms of Zi on X3 • Thus we are back to a previous case, and the proof is 
complete. D 

PROOF OF LEMMA (6.2). This argument is due to Giraud. Note that by (4.9) the 
blowings-up are automatically normal, and so normalization is not needed in 
the construction of the sequence (*). The proof given here makes no further 
use of rationality. It applies to any local scheme X and nonsingular subscheme 
Yof dimension 1 such that X is nonsingular at the generic point of Y. 

Let (!) --+ (!)' denote the map of local rings given by the blowing up of X at 
some point P E Y. Denote by P the ideal of Yin (!) and by P' the ideal of its 
proper transform Y' in (!)'. Let t E (!) be an element whose residue in (!)/P 
generates the maximal ideal and let grp (!) denote the graded ring (!)/P EB 
P / p 2 EB .... Giraud constructs a surjective homomorphism 

(6.6) 

whose kernel contains all elements killed by t. If tP is also injective, then gr p (!) 
is torsion free, and P/P2 is a free module over the discrete valuation ring (!)/P. 
It has rank d - 1 (d = dim (!) because X is nonsingular at the generic point 
of Y. Therefore m = (P, t) is generated by d elements, and X is nonsingular at 
p. In any case, gr p (!) is noetherian, and so the kernel will be zero after a finite 
sequence of blowings-up. Thus Xn is nonsingular at Pn if n » 0, as required. 

It remains to construct the map (6.6). Choose generators so that m = 

(y 1, ... , Yn-l; t), where P = (y 1, ... , Yn-l)' Let yi = t-l Yi' Then (!)' is the locali
zation of (!)[y'l, ... , Y~-l] at (y', t) = m'. Note that P' = (y'l' ... , Y~-l) = 
C l P(!)'. Therefore we can define, for all r ~ 0, (!)-linear maps pr --+ P", by 
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x ~ t-rx. These maps send pr+1 --+ p,,+l. Therefore they define the required 
homomorphism <fJ (6.6). Since Yis normal and of dimension 1, (!)jP ~ (!)'jP'. 

This, together with the fact that P' = C 1 P(!)', implies that Pjp2 ~ p'jP,2 is 
surjective. Therefore <fJ is surjective. Its kernel contains all elements/killed by 
t. For, if (say) x E pr and tx E pr+\ so that the residue x of x in gr p (!) is 
annihilated by t, then crx = Cr-1(tx) EP,,+1, hence <fJ(x) = O. This completes 
the proof of Lemma (6.2). D 

REFERENCES 

[1] Abhyankar, S. S. Resolution of singularities of algebraic surfaces, in Algebraic 
Geometry. Oxford University Press: London, 1969, pp. 1-11. 

[2] Abhyankar, S. S. Quasirational singularities. Amer. J. Math., 101 (1979), 
267-300. 

[3] Grauert, H. and Riemenschneider, O. Verschwindugssatze fur analytische 
Kohomologiegruppen. Invent. Math., 11 (1970), 263-292. 

[4] Grothendieck, A. and Dieudonne J., Elements de geometrie algebrique, Publ. 
Math. I.H.E.S., 8,11,17,20,24,28,32 (1961-67). 

[5] Hartshorne, R. Residues and Duality. Lecture Notes in Mathematics, 20. 
Springer-Verlag: Heidelberg, 1966. 

[6] Hironaka, H. Desingularization of excellent surfaces. Seminar in Algebraic 
Geometry, Bowdoin, 1967 (mimeographed notes). 

[7] Laufer, H. On rational singularities. Amer. J. Math., 94 (1972),597-608. 
[8] Lipman, J. Rational singularities, Publ. Math. I.H.E.S., 36 (1969), 195-279. 
[9] Lipman, J. Desingularization of two-dimensional schemes. Ann. Math., 107 

(1978),151-207. 
[10] Mattuck, A. Complete ideals and mono ida I transforms. Proc. Amer. Math. 

Soc., 26 (1970), 555-560. 
[11] Nagata, M. Note on complete local integrity domains. Mem. Coli. Sci. Univ. 

Kyoto. Ser. A Math., 28, no. 3 (1954), 271-278. 
[12] Wahl, J. Equations defining rational singularities. Ann. Sci. Ecole Norm. Sup., 

10 (1977),231-264. 
[13] Zariski, O. Introduction to the problem of minimal models, in Collected 

Papers, Vol. II. M.I.T. Press: Cambridge, MA, 1973, p. 325. 
[14] Zariski, O. and Samuel, P. Commutative Algebra, Vol. II. Van Nostrand: 

Princeton, NJ, 1960. 
[15] Zariski, O. Algebraic Surfaces, 2nd edn. Springer-Verlag: Berlin, 1971. 



CHAPTER XII 

An Introduction to Arakelov 
Intersection Theory 

T. CHINBURG 

In this chapter we review the basic definitions of Arakelov intersection 
theory, and then sketch the proofs of some fundamental results of Arakelov, 
Faltings and Hriljac. Many interesting topics are beyond the scope of this 
introduction, and may be found in the references [2], [3], [8], [12], [20] and 
their bibliographies. 

We do not know of a correct proof in the literature of the general Arake10v 
adjunction formula. Because of this, we give a proof of the formula in Section 
4 based on Falting's Riemann-Roch formula. Thanks go to P. Hriljac for 
showing us a correct statement of the adjunction formula; a different proof of 
it will appear in his forthcoming paper [13]. 

§1. Definition of the Arakelov Intersection Pairing 

Throughout this chapter, K will be a number field with ring of integers .oK 
and !!l' will be a regular curve over S = Spec(DK). We will assume that K is 
algebraically closed in K(!!l'). By [14], [7, Lemma 7.1(c)], the fibre of!!l' over 
the generic point of S is geometrically irreducible. 

Let Sinf denote the set of infinite places of K. An Arake10v divisor (cf. [2]) 
of!!l' is a finite formal linear combination 

D = Dfin + D inf = 'IkiCi + 'I A.ooFoo, 
i ooeSinf 

in which the ki are integers, each Ci is an irreducible closed subscheme of !!l' 
of codimension one in !!l', the A.oo are real numbers, and Foo is a symbol 
standing for the fibre of!!l' above 00. If n:(Ci ) = S, then Ci is called horizontal. 
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Otherwise, n(Ci) is a closed point of Sand Ci is called vertical. The fibres Foo 
for 00 E Sinf will be called vertical and irreducible. 

For 00 ESinf, let ds~ be a hermitian metric on the Riemann surface:roo = 
X(Roo ), where Roo ~ C. Let duoo be the volume element associated to ds~. We 
assume that ds~ has been normalized so that 

f duoo = 1. 
JfToo 

The Arakelov divisor of a function IE K(:r) is 

(f) = (f)fin + L Voo (f) Foo , 
00 eSjnf 

where (f) is the usual Weil divisor of I, and where 

voo(f) = f -log 11100 duoo 
JfToo 

is a real number. Here I 100 is the Euclidean absolute value on Roo ~ C. (In [2J 
Arakelov uses the embeddings of K into C rather than Sinf' To translate 
between places and embeddings, one should view Foo as the sum of the fibres 
of:r over the embeddings of K into C which correspond to the place 00.) 

The Arakelov intersection [D1 , D2 J of two distinct irreducible Arakelov 
divisors Dl and D2 is defined in the following way. 

Suppose first that D2 = F 00 for some 00 E Sinf' Let eoo = 1 (resp. 2) if 00 is 
real (resp. complex). Define [Db FooJ = [Foo' D1J to be 0 (resp. eoom) if Dl is 
vertical (resp. if Dl is horizontal and of degree m on the fibre of!'£ over the 
generic point of S). 

Suppose now that Dl and D2 are distinct, finite irreducible divisors. We let 

[Db D2J = [Dl' D2 Jfin + [Dl' D2 Jinf' 

where [Dl' D2J is the usual intersection multiplicity of Weil divisors on :r, 
and where [Dl' D2 Jinf will be defined below. (Recall that 

[Dl' D2 Jfin = L log # (@fT.p/(fl,p,I2,p», 

where the summation is over the points P of:r such that dim @fT,p = 2, and 
h,p is a local equation for Di at P. Compare [14, §I.1J and [7, Prop. 4.1].) 

Define [Dl' D2 ];nf = 0 if either Dl or D2 is a component of a vertical fibre. 
Suppose now that Dl and D2 are irreducible and horizontal. The function 

field K(D;) of Di is then a finite extension of K. The generic point of Di 
determines a point Pi on :r(K(D;). Fix 00 E Sinf and an embedding 'too of 
K into C inducing 00. Each Pi determines a collection {P;'J: j = 1, ... , 
[K(D;): KJ} of points on :roo corresponding to the various embeddings of 
K(Di) into C which extend 'too' Define 

[Dl' D2 Jinf = L eoo L -log Goo(pl,j, P2,k)' 
ooeSinf j,k 
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where Goo(P, z) is the unique function specified by the following proposition 
for the Riemann surface flloo and the hermitian metric ds~. 

Proposition 1.1 (Arakelov [2]). Let X be a Riemann surface and let P be a 
point on X. Let ds 2 be a hermitian metric on X with associated volume form duo 
There is a unique function G(P, z) of z E X having the following properties: 

(1.1) G(P, z) is a smooth nonnegative real-valued function of z which has a 
unique zero at z = P, this zero being of first order. 

(1.2) 

(1.3) 

1 [) [) 
----;~ ~_log G(P, z) dz /\ d-z = du 
m uZ uZ 

Ix log G(P, z) du = O. 

for z #- P. 

One has G(P, z) = G(z, P) for all z and P on X. 

The existence and uniquencess of G(P, z) is shown in [2, §2]; the function 
g(P, Q) = log G(P, Q) will be called Green's function of X with respect to ds 2 • 

The first main result of [2] is 

Theorem 1.1 (Arakelov). The pairing [Dl' D2 ] extends in a unique way to a 
symmetric, bilinear pairing on all Arakelov divisors which depends only on the 
linear equivalence classes of Dl and D2 . 

EXERCISE 

Let K = Q and let f!{ be Pi. Let ds~ have volume form 

d i dz /\ dz 
Uoo = 2n(1 + Iz12)2 . 

Verify that 

e1/2 1P - zl 
G(P, z) = (1 + IPI2)1/2(1 + IzI2)1/2' 

where 1 1 is the Euclidean absolute value. Let D( 00) (resp. D(a) for a E A~) be the 
irreducible horizontal divisor on f!{ which is the Zariski closure of the point at infinity 
(resp. at a) on the general fibre P~ of f!{. Show 

[D(a), D(oo)] = Lmax(O, loglalp ) + 10gl1 + la1 21- 1/2, 
p 

where 1 Ip is the usual normalized absolute value at the prime p. 

Remark 1.1 (cf. [6]). The expression [D(a), D( 00)] + 1/2 above is the capacity, 
in the sense of Cantor [5] and Rumely [18], of the adelic points of fll which 
are as close to D(a) as to D( 00) in every adelic fibre of f!l', where the distance 
function on each adelic fibre is the spherical one defined in [5], [18] and [6]. 
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A useful technique for studying [Dl' D2 ] is to pass to a finite extension L 
of the base field K. Let S(L) = Spec(.od and let :?rL = :?r XS(K) S(L). In [11, 
p. 7], Hriljac shows that :?rL is a curve over S(L), which amounts to checking 
that :?rL is integral. If L/K is ramified at some places of K over which the 
fibres of :?r are reducible, it is possible that :?rL is not regular. By results of 
Abhyankar [1] and Lipman [15], [4], one may perform a finite sequence of 
blow-ups and normalizations to arrive at a regular curve :?rleg over S(L) 
together with a proper birational S(L)-morphism :?rleg -+ :?rL. Let 0": :?rleg -+ :?r 
be the induced S(K)-morphism. Suppose 00' is an infinite place of L, and that 
00 is the place of K under 00'. We may identify Loo' in a natural way with Koo ' 
and in this way :?rl:~ = :?rleg(Loo') may be identified with :?rOO" Let {duoo'} 00' be 
the set of hermitian metrics on the :?rl:~ which result from the metrics {duoo} 
on the :?rOO" Let 0"* be the linear map on Arakelov divisors which is induced 
by the pull-back of Weil divisors from :?r to :?rleg and by O"*(Foo) = Loo'ioo Foo' 
for 00 an infinite place of K. 

The following result is proved by Hriljac in [11, Prop. 10]. 

Proposition 1.2. Let L/K, 0": :?rleg -+ :?r and {duoo'} 00' be as above. Then 

[O"*(Dd, 0"*(D2)]L = [L : K] [Db D2] 

for all Arakelov divisors Dl and D2 on :?r, where [, ]L is the Arakelov inter
section pairing on :?rleg. 

Remark 1.2. A finite irreducible horizontal divisor D on :?r has the form 
8(Spec(.oK(D»)) for some morphism 8: Spec(.oK(D») -+:?r over S(K). If K(D) = K 
then 8 is a section of n: :?r -+ S(K) and D is nonsingular; otherwise D may be 
singular. Let L be the Galois closure of K(D) over K. The divisor n!(D) on 
:?rleg will be a sum of sections of the projection nL : :?rleg -+ S(L) and of irre
ducible components of the fibres of nL' 

§2. Metrized Line Bundles 

A hermitian line bundle L on a Riemann surface X is a line bundle together 
with a hermitian inner product on the fibre of L over each point x of X, these 
inner products varying smoothly with x. Let I I be the induced norm on the 
fibres of L. Let s be a meromorphic section of L, and let z be a local coordi
nate on X. The (1, I)-form 

iJ2 
curv(L) = GZ G-Z log(lsI2) dz 1\ d-z 

is independent of the choice of sand z, and is called the curvature form of L. 
This form satisfies 

L curv(L) = 2ni deg(L). 
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Definition 2.1. The hermitian line bundle L on X is admissible with respect to 
the hermitian metric ds2 on X if curv(L) = 2ni deg(L) du, where du is the 
(1, I)-form which is the volume form of ds 2• 

Proposition 2.1 (Arakelov [2]). Each line bundle on X has an admissible her
mitian metric with respect to ds2 , which is unique up to multiplication by a 
scalar. 

The admissible metric of this proposition is connected in the following 
way to the Green's function g(P, Q) of X with respect to ds2 • Let Q be a point 
of X. The constant function 1 is a distinguished section of the line bundle 
lDx(Q) on X. We can put a unique hermitian metric I I on lDx(Q) by letting 

111 (P) = G(P, Q) = exp(g(P, Q», 

where 111 (P) is the norm of the section 1 at the point P of X, and where 
G(P, Q) is the function of Proposition 1.1. This I I is admissible because of 
(1.1) and (1.2); property (1.3) distinguishes I I from its positive scalar multiples. 
By tensoring we arrive at an admissible metric on lDx(C) for each divisor C of 
X, which we will call the Green's metric on lDx(C). 

Suppose now that :!{ is a curve over the ring of integers .oK of a number 
field K, and that for each r:tJ E Sinf, we have a hermitian metric ds~ on the 
Riemann surface :!{oo- A metrized line bundle on :!{ is a line bundle 2, 
together with a hermitian metric I 100 on the line bundle 200 induced by 2 on 
:!(oo for each 00 E Sinf. We will call 2 admissible if each 200 is admissible with 
respect to ds~. 

An admissible line bundle lD.qr(D) may be associated to each Arakelov 
divisor 

D = Dfin + L AooF 00 
00 E Sinf 

of Pl" in the following way. Define lD.qr(D) to have lD.qr(Dfin) as its underlying 
bundle, and to have the metric at 00 E Sinf which is the Green's metric on the 
induced line bundle on Pl"oo multiplied by the factor exp( - Aoo). Note that 
lD.qr(D) has the distinguished merom orphic section 1. 

Suppose now that 2 is any admissible metrized line bundle on :!(, and 
that s is a meromophic section of 2. The divisor of s is defined to be 

div(s) = (S)fin + L voo(s)Foo' 

where (S)fin is the usual divisor of s on Pl", and where 

voo(s) = f -log Isloo duoo-
.qroo 

From the uniqueness of admissible metrics on 2 up to scalar multiples, we 
conclude that 2 is isometric to the line bundle lD.'l"(div(s» constructed above, 
with the merom orphic section s of 2 corresponding to the meromorphic 
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section 1 of (Dq-(div(s)). The finite divisor (s}fin determines s up to multiplica
tion by a unit of .oK' while div(s) determines s up to multiplication by a root 
of unity. If fe' is another admissible metrized line bundle on f!£, and s' is a 
section of fe', then fe and fe' are isometric iff div(s} - div(s') is a principal 
Arakelov divisor. Thus we may unambiguously define 

[fe, fe'] = [div(s), div(s')] 

if sand s' are any sections of fe and fe', respectively. One also concludes 
that the group of isometry classes of admissible metrized line bundles on !!£ is 
naturally isomorphic to Div"(!!£)/P"(f!£), where Div"(!!£) (resp. P"(!!£)) is the 
group of Arakelov divisors (resp. principal Arakelov divisors) on f!£. (Since we 
have used infinite places rather than embeddings of K into C, these groups 
are different than the ones appearing in [2].) 

Suppose that s: S = Spec('oK) ~!!£ is a section of the projection n: !!£ ~ S. 
Let DI = s(S), and let D2 be any Arakelov divisor on !!£. The hermitian 
metrics of L2 = {Dq-(D2} make S*(L2) a metrized line bundle on S. We recall 
from [19] that s*(L2) therefore corresponds to a projective rank one .oK 
module P, together with hermitian metrics at the infinite places of K. The 
degree of s*(L2} is defined to be 

deg(P) = log( # (P/'oKP)) - L e", log Ipl", 
00 E Sinf 

if P is any nonzero element of P, where I l:!Ooo is the norm on K", ®.oK P which 
corresponds to the normalized absolute value of K at 00. If the finite part of 
D2 is effective, the following formula for [D!, D2] results on letting P = s*(I). 
The formula holds for arbitrary D2 because [DI' D2] and deg(s*(L2)) are 
linear in D2 • 

Proposition 2.2. Let s: S ~!!£ be a section of n: !!£ ~ S, and let DI = s(S). Then 

[DI' D2] = deg(s*({Dq-(D2))} 

for all Arakelov divisors D2 • 

§3. Volume Forms 

In this section X will be a Riemann surface of genus g > O. Let ill be the 
sheaf of holomorphic I-forms on X. There is a natural hermitian inner 
product on nx, ill) given by 

<WI, W2) = (i/2) Ix WI " w2 · 

Let WI' ... , W g be an orthonormal basis for nx, ill) with respect to this inner 
product. We will fix a hermitian metric ds2 on X by requiring it to correspond 
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to the (1, I)-form 

(3.1) 
9 

du = (i/2g) L wi /\ Wi 
i=l 

on X. Viewing du as a volume form, one has Ix du = 1. Choosing a basepoint 
Po on X, we have the usual embedding 

of X into its Jacobian J(X) = C9/A, where A is the period lattice of X. The 
metric on J(X) induced by the usual Euclidean metric on Cg will be called the 
flat metric on J(X). This metric induces the (1, I)-form g du on X. 

The metric ds2 has the following useful property. Let P be a point of X. 
Give C the canonical hermitian metric, and give @x(P) Green's metric defined 
in the paragraph following Proposition 2.1. The residue of a differential at P 
gives an isomorphism from the fibre at P of the line bundle 

ill(P) = ill ® @x(P) 

to C. We give ill the hermitian metric such that for all P, this residue map is 
an isometry. 

Proposition 3.1 (Arakelov [2]). The above metric on ill is admissible if ds2 is 
determined by equation (3.1). 

Let L be a line bundle on X. The classical Riemann-Roch formula gives 
an expression for the Euler characteristic 

X(L) = dime HO(X, L) - dime Hl(X, L) 

of L. Suppose now that 5£ is a metrized line bundle on a curve fIl' over a 
number field. To develop an analogous metrized Euler characteristic X(5£), 
one would like to replace dime Hi(X, L) for j = 0 and 1 by the negative of 
the logarithm of the co volume of the lattice Hi(fIl', 5£) in the vector space 
Hj(fIl', 5£) ®z IR with respect to some natural volume form on Hi(f!l', 5£) 
®z IR. 

The object of this section will be to discuss volume forms due to Faltings 
[8] on the formal difference HO(X, L) - Hl(X, L) when L is an admissible 
metrized line bundle on a Riemann surface X. In the next section we discuss 
how these volume forms give rise to an Euler characteristic X(5£) with desir
able properties, e.g. for which one has a Riemann-Roch formula. 

If V is a complex vector space of dimension d, define A(V) = N(V). To 
give a volume form on V is the same as giving a hermitian metric on V. For 
L a line bundle on a Riemann surface X, let 

A(Rr(X, L)) = HomdA(Hl(X, L)), A(HO(X, L))). 

We will also denote A(Rr(X, L)) by A(HO(X, L)) ® A(Hl(X, L))I8>(-o. A her-
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mitian metric on A(Rr(X, L)) will be called a volume form on the formal 
difference HO(X, L) - Hl(X, L). 

Let D and Dl be divisors on X such that D = Dl + P for some point P on 
X. One then has an exact sequence 

(3.2) 

in which C9(D)[P] is a skyscraper sheaf supported on P. The previously 
defined Green's metrics on C9x (Dl) and C9x (D) give rise to a Green's metric on 
C9(D)[P]. On identifying C9(D)[P] with the fibre of C9x (D) over P, this metric 
is simply the restriction of the metric on C9x (D) to the fibre over P. 

One has Hl(X, C9(D) [P]) = 0, and HO(X, C9(D) [P]) may be identified with 
C9(D)[P]. The long exact sequence in cohomology of (3.2) now gives an 
isomorphism 

The following result is Theorem 1 of [8]. 

Theorem 3.1 (Faltings). There is a unique way to assign to each admissible 
hermitian line bundle L on X a hermitian metric on A(Rr(X, L)) such that the 
following properties hold. 

(i) An isometry of hermitian line bundles induces an isometry of the corre
sponding A(Rr(X, L». 

(ii) If the metric on L is changed by a factor rx > ° then the metric on 
A(Rr(X, L)) is changed by rxx(L), where X(L) = deg(L) + 1 - g. 

(iii) The metrics on the A(Rr(X, L)) are compatible with the Green's metrics 
on the C9(D) [P], in the following sense. Suppose Dl and D are divisors on 
X such that D = Dl + P for some point P of X. Then the isomorphism 

A(Rr(X, C9x (D))) = A(Rr(X, C9x (Dl))) ® C9(D) [P] 

is an isometry. 
(iv) The metric on A(Rr(X, nl)) = N(r(X, nl)) is the one determined by the 

canonical scalar product on r(X, nl). 

SKETCH OF THE PROOF. We first claim that metrics may be put on the 
A(Rr(X, L)) in a unique way so that properties (ii), (iii) and (iv) hold. Let D 
be a divisor on X such nl and C9x (D) are isomorphic as line bundles. The 
Green's metric on C9x (D) is a scalar multiple of the metric we have fixed on 
nl. Conditions (iv) and (ii) now determine the metric on A(Rr(X, C9x (D))). 
Condition (iii) shows how one may determine the metric on A(Rr(X, C9x (D'))) 
for any divisor D' by adding or subtracting points from D. This may be done 
explicity by writing the norm of the image of the meromorphic section 1 of 
C9x (D") in C9x (D")[P] for the appropriate divisors D" and points P in terms of 
the Green's function of X. One sees in this way that the equality G(P, Q) = 
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G(Q, P) for P and Q on X implies that the order in which one adds or 
subtracts points does not alter the resulting metric on Jc(Rr(X, @x(D'))). This 
implies our first claim, since every admissible L is isometric to the line bundle 
obtained by multiplying the Green's metric on @x(D') for some D' by a 
positive scalar. 

One must now show that an isometry @x(D) ~ @x(D') induces an isometry 
Jc(Rr(X, @x(D))) ~ Jc(Rr(X, @x(D'))). By adding or subtracting points, one 
may reduce to the case in which D and D' both have degree g - 1 and are of 
the form 

E - (Pl + ... + Pr ) 

for some fixed divisor E and some points P1 , ••• , Pr on X. 
For f!J> = (Pl, ... , Pr ) E X' define L(;?1J) to be the line bundle @x(E - (Pl + 

... + Pr))' We wish to construct a line bundle N on xr whose fibre at ;?1J is 
naturally identified with Jc(Rr(X, L(f!J>))). 

Define Y = X' and Z = Y x c X. Let Dj be the divisor on Z which is the 
graph of the morphism Y ~ X sending f!J> = (Pl, ... , Pr ) to ~. The sum of the 
Dj is a divisor [D on Z whose intersection with the fibre Z&' of Z over f!J> E Y is 
just (P1 + ... + Pr)' The line bundle F = @z(Y Xc E - [D) on Z is flat over Y 
([9, p. 261J) and the fibre F&, over Z&' is isomorphic to L(;?1J) when we identify 
Z&' with X. 

We are interested in the cohomology groups Hj(Z&" F&,) as f!J> varies over 
Y. Let V = Spec(A) be an affine open neighborhood of a fixed point f!J> of Y. 
Hartshorne shows in [9, Chap. III, Prop. 12.2 and Lemma 12.3J how to 
construct a bounded complex of A-modules 

with the following properties. Each Li is a finitely generated free A-module. 
For all A-modules M, let hi(L* Q9A M) be the ith cohomology group of the 
complex L * Q9A M obtained by tensoring L * with M. Then 

hi(L * Q9A M) = Hi(Z, F Q9A M). 

The relevant M for us is the residue field k(f!J» = C of the point f!J> of Y. 
Then 

(3.3) 

Let r(i) = rankA(Li ). Define B to be the free rank 1 A-module 

n . 
B = Q9(N(i)(V))0(-1l' 

i=O 

Over V = Spec(A), define N to be the line bundle associated to B, and then 
patch to define N over all of Y. From (3.3) and the fact that Hi(X, L(f!J>)) = 0 
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if i > 1 we find that the fibre of N over f!J is 

B ®A k(f!J) = ®(N(i)(Li ®A k(f!J)))®<-ni 
i=O 

= N(O)HO(X, L(f!J)) ® (Ad(l)Hl(X, L(f!J)))®-l 

= A(RnX, L(f!J))), 

where d(i) = dime Hi(X, L(f!J)). 
We now determine the isomorphism class of N, using the following dis

tinguished meromorphic section of N. Let K(A) be the fraction field of the 
ring A above. Define rank lJi = dimK(A) lJi(Li) ®A K(A), where lJi is the ith 
boundary map in the complex L *. Let ¢J: Y -+ Picg - l (X) send f!J to L(f!J). The 
divisor 8 in Pic9- l (X) consists of those line bundles having global sections. 
Suppose ¢J(f!J)¢:8. By Riemann-Roch, HO(X, L(f!J)) = Hl(X, L(&,)) = 0. The 
complex 

induced by tensoring L * with k(f!J) is then exact, and this is clearly necessary 
and sufficient for ¢J(f!J) to not be in 8. By Riemann-Roch, we may assume r 
has been taken large enough so that ¢J is surjective. Then ¢J(&') ¢: 8 for a 
Zariski-dense set of f!J, and we conclude that these f!J are precisely those for 
which rank lJi = ranke lJi(f!J) for all i, where ranke lJi(f!J) = dime image(lJi(f!J)). 
Thus we have a meromorphic section 

of the bundle N over U = Spec(A), where s is a finite nonzero section over all 
f!J' E U for which ¢J(f!J') ¢: 8. For such f!J', one can view the image s&, of s in the 
fibre N&, as the constant section 1 of A(RnX, L(&,'))). 

With respect to the Zariski topology on rl(8), there is a dense open set 
of points f!J" E r l (8) such that 

dime HO(X, L(f!J")) = dime Hl(X, L(f!J")) = 1. 

Suppose that f!J' E U - rl(8) tends toward such a f!J", Since ranke lJo(f!J") = 

ranke lJo(f!J') - 1 and ranke lJ l (f!J") = ranke lJ l (f!J') if i > 0, we conclude that 
s&, has a first-order pole as f!J' tends toward f!J". We may now conclude that 
there is an isomorphism of line bundles 

N = ¢J*@(-8) 

in which the constant meromorphic section 1 of @( - 8) goes to the mero
morphic section s of N. 

Since the fibre N& has been identified with A(RnX, L(f!J))), the metrics we 
have put on the A(RnX, L(f!J))) give a metric I IN on N. Let I Ie be the metric 
on N which is the pull-back via ¢J of the canonical metric on @( - 8). Suppose 
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we show there is a positive scalar rx such that 

(3.4) I IN = rxl Ie· 
It will then follow that the metric on A.(RnX, L(gl»))) depends only on the 
image of gl) in Picg - 1 (X), i.e. only on the isometry class of L(.o/'). This will 
complete the proof. To show (3.4), it is sufficient to show that the curvature 
forms of(N, I IN) and (N, I Ie) agree. 

This calculation is carried out in [8, p. 397] and will not be repeated here. 
As in [8, pp. 400-401], one can give an explicit normalization of I Ie via 
classical theta functions. The constant rx = rx(X) in (3.4) is a new invariant of 
the Riemann surface X; some properties of it are discussed and conjectured 
by Faltings in [8, pp. 401-403]. 

§4. The Riemann-Roch Theorem and 
the Adjunction Formula 

As in Section 1, let K be a number field and let f!{ be a regular curve over 
S = Spec(.oK) such that K is algebraically closed in K(!?{). We assume, unless 
stated otherwise, that the general fibre of f!{ has genus 9 > O. For each infinite 
place 00 of K, fix the metric ds~ on the Riemann surface !!loo to be the one 
determined by equation (3.1). Define Wf'fjS to be the relative dualizing sheaf of 
!!l over S. On f!{oo, wf'fjS induces the sheaf nt. Hence we may give Wf'fjS the 
admissible metrics at the infinite places Sinf of K which are specified in 
Proposition 3.1. 

Suppose M is a finitely generated Z-module for which we have a Haar 
measure on M ®z IR. Define 

X(M, Z) = -log(vol(M ®z IR/M)/#MtoJ 

There is a natural isomorphism 

.0 K ®z C = n K ®.,. C, 
.,.:K--+C 

where the product is over the distinct embeddings of K into Co The normal
ized Haar measure on .oK ®z C is defined to be the one induced by this 
isomorphism and by Euclidean Haar measure on each factor K ®.,. C = Co 
The normalized Haar measure f.1K on .oK ®1 IR is defined to be one which 
induces the normalized Haar measure on.oK ®1 C = .oK ®1 IR + .oK ®1 lRi. 

EXERCISE 

Show that IlK(DK ®z [R/DK) = IdK /oI1/2• Conclude that 11K is the Haar measure on 

DK ®z [R = K ®o [R = TI K v , 
veS1nf 

which results from ev time Euclidean Haar measure on Kv for each VESinf • 
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Suppose now that M is a finitely generated .oK module. Define 

X(M, .oK) = X(M, £:) - rankoK(M)X(.oK' £:). 

The Euler characteristics X(M, £:) and X(M, .oK) are additive on exact se
quences of modules which are also volume exact, in the sense of having 
compatible Haar measures when tensored with IR. It is also clear that 

(4.1) 

if K' is a finite extension of K and we give M ®OK .oK' ®z IR the Haar 
measure induced by the one on M ®z IR and by the normalized Haar mea
sure on .oK' ®z IR. 

Let .2' be a metrized line bundle on !!l such that the metric on the induced 
bundle .2'00 on !!loo for 00 E Sinf is admissible with respect to the (1, I)-forms of 
equation (3.1). We will call such .2' admissible with respect to the Jacobian 
metrics of!!l at infinity. The metric on A(Rr(!!loo, .2'00)) specified in Theorem 
3.1 gives Haar measures on HO(!!l,,,, .2'00) and Hl(!!loo, .2'00) which are defined 
up to a common factor. As in Section 3, we view these measures as a measure 
on the formal difference 

HO(!!loo, .2'00) - Hl(!!loo' .2'00)' 

One has Hi(!!loo, .2'00) = Hi(!!l, .2') ®OK Koo, where Koo = C. Since the metrics 
of Theorem 3.1 are compatible with bundle isomorphisms, the Haar mea
sures above are compatible with complex conjugation if Koo = R. Hence we 
obtain a Haar measure on the formal difference 

HO(!!l, .2') ®OK Koo - Hl(!!l, .2') ®OK Koo. 

This gives rise to a Haar measure on 

= n HO(!!l,.2') ®OK Koo - n Hl(!!l,.2') ®OK Koo· 
00 E Sinr 00 E Sinr 

Definition 4.1 (Faltings [8]). Let .2' be an admissible metrized line bundle on 
!!l with respect to the Jacobian metrics on !!l at infinity. Define 

X(.2') = X(HO(!!l, .2'), .oK) - X(H1 (!!l, .2'), .oK)' 

Remark 4.1. Suppose that K' is a finite extension of K, and that !!l' is a 
regular model over .oK' of !!l Xs Spec(.od. Let n: !!l' --t!!l be the induced 
morphism over S. Define n*.2' = @x,(n*(D)) if.2' = @x(D). By flat base change 
[9, Prop. 9.3], we have a natural isomorphisms 

Hi(!!l', n*.2') = Hi(!!l, .2') ®OK .oK' 

for all i. Thus (4.1) shows 

x(.2") = [K' : K]X(.2')· 

Theorem 4.1 (Faltings [8]). For.2' an admissible metrized line bundle on!!l one 
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has the following Riemann-Rochformula: 

x(.!t') = (1/2) [.!t', .!t' - w,q-/s] + x «(I),q-). 

SKETCH OF THE PROOF. Let D be an Arakelov divisor such that .!t' is isometric 
to (I),q-(D). Let K' and n: f![' -+ f![ be as in Remark 4.1, and let S' = Spec(K'). 
We wish to show that both sides of the Riemann-Roch formula are multi
plied by [K' : K] if f![, Sand D are replaced by f![', S' and n*(D). In view of 
Proposition 1.1 and Remark 4.1, it will suffice to show [n*(D), C] = 0 if Cis 
the divisor of f![' which is the difference of the divisors of n*w,q-/s and w,q-'/s" 
But n(C) is a finite set of points of f![ (cf. [10]), so D is linearly equivalent to 
a divisor of f![ disjoint from n(C). Hence [n*(D), C] = 0, and to prove the 
Riemann-Roch formula we may change the base field from K to K'. The 
formula holds when D is the trivial divisor. By passing to a suitable extension 
K', we are reduced to checking that both sides of the formula change by the 
same amount when we add to D a divisor of the following kinds; (i) a real 
multiple of an infinite fibre of f![, (ii) an irreducible component of a fibre of 
f![ -+ S over a closed point of S, or (iii) the image of a section s: S -+ f![ of 
f![ -+ S. One checks case (i) using Theorem 3.1 (ii), while case (ii) is shown in 
[8, p. 405] using the Riemann-Roch and adjunction formulas for curves over 
a finite field. Case (iii) results from Proposition 3.1 and the isometry 

s*(w,q-/s ® (I),q-(s(S))) ~ .oK 

induced by the residue map; we refer the reader to [8, pp. 405-406] for 
details. 0 

In [2, Theorem 4.1] Arakelov gives an adjunction formula which is valid 
for sections of f![ -+ S but not in general for other horizontal divisors. The 
following correct statement of the adjunction formula was shown to me by 
Paul Hriljac; see also [13]. 

Proposition 4.1 (Adjunction Formula). Let D be an irreducible horizontal 
Arakelov divisor on f![. The field L of functions on D is a finite extension of 
K, and D = f(S') for some morphism f: S' = Spec(.oL) -+ f![. For 00 E Sine, fix 
an embedding 'r '" of K into K"" and let {Pi"': i = 1, ... , [L : K]} be the set of 
points on f![", = f![(K",) which are determined by D and the extensions of 'r", to 
L. Then 

[D + w,q-/s, D] = log( # wD/S ) - L 8", L log G",(Pi"', ~"'). 
ooeSinr i#:i 

Here #wD/s = NormK/Q(disc(j*«(I)D)/.oK))' where f*«(I)D) is an .oK order in 
.ou and disc denotes the relative discriminant over .oK' 

PROOF. Let S(L) = Spec(L), and let 0': S(L) -+ D be the inclusion of the generic 
point of D into D. One has an exact sequence 

0-+ (l)D -+ 0'* (l)S(L) -+ F -+ 0 

of sheaves on D, where HO(D, F) = Llf*«(I)D) when one views f*«(I)D) as an 



302 T. CHIN BURG 

,oK order in ,oL' On taking cohomology, one has 

(4.2) 

Consider now the exact sequence of sheaves on f!l 

(4.3) 

By Faltings' theorem, one has volume forms on the formal difference 

HO(f!l,2) ®,l ~ - Hl(f!l, 2) ®,l ~ 

for 2 = (DE( - D) and 2 = {DE(. In view of (4.2) and (4.3), these volume forms 
induce a Haar measure /1' on 

HO(D, (DD) ®,l ~ = L ®o ~ 

with respect to which the cohomology of (4.3) is volume exact. We will show 
below that 

(4.4) 

where /1L is the normalized Haar measure on L ®,l ~, and where G is the 
constant 

G = TI TI (Goo(Pr', Ptn-'oo. 
00 E Sine i<j 

Let us first complete the proof from this. 
Since Hl(D, (9D) = 0, the cohomology of (4.3) gives 

X({D,qr) - x ({D,qr ( -D» = X(f*({DD), ,oK), 

where f*({DD) is a projective ,oK module of rank [L : K] with Haar measure 
/1' on f*({DD) ®,l ~ = L ®o ~. By Riemann-Roch, the left-hand side is 

The right-hand side is 
/ 

- [D, D + w,qr/s]/2. 

-log /1'(L ®o ~/f*({DD» + [L: K](log dK/O )/2 

= -log G -log /1dL ®o ~/f*({DD» + [L: K](log dK/O)/2 

= -log G - (log NormK/o disc(f*({DD)j,oK»/2. 

Since 210g(G) is the Green's function term in the right-hand side of the 
adjunction formula, the proof will be complete once we demonstrate (4.4). 

Fix 00 E Sinf' For simplicity, we will write ~ for the point ~oo of f!loo. Define 
Do to be the trivial divisor on f!loo. For 1 :5: j :5: n, let Dj be the divisor 

PI + ... + ~ 
on f!lw For 0 :5:j < n we have an exact sequence 

0--+ (D,qrJ -Dj +1 ) --+ (D,qrJ -D) --+ {D( -Dj)[~+I] --+ 0 
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of sheaves on fiE(m where (9( - Dj ) [~+ll is a skyscraper sheaf supported on 
~+l' Theorem 3.1 (iii) now gives an isometry 

(4.5) )'(Rr(fiEoo, (9f£J) = )'(Rr(fi£oo, (9f£J -Dn))) ® ( ® (9( -Dj)[~+1])' 
O,,;)<n 

The metric on {9( -D)[~+l] results from identifying {9( -D)[~+1] as the 
fibre of (9f£j - Dj) at ~+1' In particular, the norm of the image in {9( - Dj)[~+1] 

of the merom orphic section 1 of {9f£oo ( - Dj ) is 

G(oo,j) = TI Goo(Pi , ~+d-l. 
l,,;i,,;j 

Another way of saying this is that by identifying the images of the merom or
phic section 1, we have an isomorphism 

{9( -Dj)[~+l] ~ (9(DO)[~+l]' 

which is an isometry once we multiply the metric on the right-hand side by 
G(oo,j). Hence from (4.5) we have the following conclusion: 

(4.6) The isomorphism 

)'(Rr(fiEoo' (9f£J) = )'(Rr(fiEoo' (9f£j - Dn))) ® C~n (9(Do) [~+1] ) 
is an isometry once the metric on the right is multiplied by G( (0) = 
TIl";j<n G(oo,j). 

We now return to metrized line bundles on fiE. Recall that the normalized 
Haar measure ilL on HO(D, (9D) ®z IR = L ®o IR is the one which induces on 

HO(D, (9D) ®z c = L ®o C = TI L ® .. C 
u:L-+C 

the Haar measure IlL.C coming from Euclidean Haar measure on each 
L ®u C = C, where (j runs over the distinct embeddings of L into C. Here 

HO(D, (9D) ®z C = TI HO(D, (9D) ®OK'< C, 
<:K--+C 

where the product is over the distinct embeddings of K into C. Let 00 E Sinf be 
the place associated to 'r: K ~ C. Evaluation of functions in HO(D, (9D) at the 
points ~"':-l induces a natural isomorphism 

HO(D, (9D) ®OK'< C = TI {9f£jDO')[~"':-l]' 
O,,;j<n 

where DO' is the trivial divisor on fiEOO' The metric on (9f£jDO') [~"':-l] is just the 
Euclidean absolute value on the fibre of {9f£oo at ~"':-l' Thus the metrics on the 
{9f£JDO')[~"':-l] give rise to the measure IlL.C on HO(D, (9D) ®z C, and hence 
also to the measure ilL on HO(D, (9D) ®z IR. 

Fix 00 E Sinf' If we multiply the tensor product metric on 

® {9f£JDO')[~"':-l] 
O,,;j<n 
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by the positive scalar G( (0), this multiplies the Haar measure on the real 
vector space HO(D, (1)D) ®.oK Koo in 

HO(D, (1)D) ®.oK Koo = TI (1)~jDg')[~~l] 
O:::;j<n 

by the factor G( 00 )'00. The isometry in (4.6) now shows that the measure /i 
for which (4.3) is volume exact is 

fl.' = ( TI G(oo),oo)fl.L. 
00 ESinf 

This is exactly the equality (4.4), so the proof is complete. o 

§5. The Hodge Index Theorem 

Throughout this section, !!l will be a regular curve over S such that K = K(S) 
is algebraically closed in K(!!l) and the general fibre of !!lK of!!l has positive 
genus. 

Let DK be a divisor of degree zero on !!lK. Then DK determines a point 
[(1)(DK)] on the Jacobian Jac(!!lK) of !!lK. Let Height([(1)(DK)]) be the Neron
Tate height of this point. The central part of the Hodge index theorem 
connects Height([(1)(DK)]) to intersection theory. This was done by Hriljac in 
[11]-[12] by comparing Neron local heights to Arakelov theory. The same 
result was proved by Faltings in [8] using the Riemann-Roch theorem; we 
will sketch this approach below. 

To apply results of Raynaud [17] on Picard functors, we make the fol
lowing technical assumption: 

(5.1) Let!!lx be the fibre of!!l at the closed poi,:1t x of S. Let {)x be the greatest 
common divisor of the multiplicities in !!lx of the prime Weil divisors 
of!!l which lie over x. Then tJx = 1 for all closed points x of S. 

If, for example, there is a section s: S ~ !!l of the projection !!l ~ S, then !!l 
will satisfy (5.1). 

Theorem 5.1 (Hirljac [11]-[12], Faltings [8]). Let !!l be a regular curve over 
S with general fibre of positive genus which satisfies (5.1), and for which K is 
algebraically closed in K(!!l). If v is a finite or infinite place of K, let !!lv be the 
fibre of !!l over v. Let V. be the real vector space having basis the irreducible 
components of !!lv, where fibres over infinite v are defined to be irreducible. 

(i) For each plac.e v, [ , ] induces a negative semi-definite bilinear form on 
V.. The scalar multiples of !!lv are the only elements of V. having self
intersection zero. 

(ii) Let D be an Arakelov divisor of!!l which is perpendicular to every element 
of V. for all v. Then D determines a degree-zero divisor DK on the generic 
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fibre f!l'K of f!l'. One has 

[D, D] = -2[K: Q] Height([(lJ(DK)]). 

(iii) Define Div~(f!l') to be the group of finite real linear combinations of 
Arakelov divisors. Let Div~n(f!l') be the subgroup of C E Div~(f!l') which are 
numerically equivalent to 0, i.e. for which [C, C'] = 0 for all Arakelov 
divisors C'. Let n(v) be the number of components of the fibre Xv. The 
bilinear form induced by [ , ] on the real vector space Num(f!l') = 

Div~(f!l')/Div~n(f!l') is nondegenerate. This form is equivalent over IR to a 
diagonal form having one positive eigenvalue and t negative ones, where 

t = L(n(v) - 1) + rankz(Jac(f!l'K(K))), 
v 

the sum being over all places v of K. 

SKETCH OF THE PROOF. Part (i) is proved by the argument of Mumford in 
[16], which is recalled in [8] and [7, Lemma 7.1(b)]. Before proving (ii), let 
us see how (iii) follows from (i) and (ii). 

Let C be an effective finite horizontal Arakelov divisor, and let f!l'x be the 
fibre of f!l' over a closed point x of S. For large enough n, Cn = C + nf!l'x has 
positive self-intersection, so [ , ] has at least one positive eigenvalue on 
Num(f!l'). By (i), every Arakelov divisor C' is equal modulo Div~n(f!l') to the 
sum of a real multiple of C and a real linear combination of components of 
reducible fibres of f!l' and divisors D as in part (ii). As discussed in [19], 
Height is a positive definite quadratic form on Jac(f!l'K)(K) modulo torsion, 
which is a finitely generated abelian group. This fact together with (i) and (ii) 
imply (iii). 

To prove (ii), Faltings uses the construction of the Riemann-Roch theo
rem, working over S rather than over C. Raynaud shows in [17] that because 
of assumption (5.1), the set of line bundles of degree g - 1 over f!l' forms a 
scheme Picg _ 1 (f!l') which is locally of finite type over S. Suppose x is a closed 
point of S, and that C and C' are two Weil divisors on f!l' of degree g - 1. The 
points on the fibre of Picg _ 1 (f!l') over x which are determined by (lJEr(C) and 
(lJEr(C') are equal iff (lJEr(C) and (lJEr(C') induce isomorphic invertible sheaves 
on f!l'x; these points lie on different connected components of the fibre of 
Picg - 1 (f!l') over x if C and C' have different intersection numbers with some 
irreducible component of f!l'x. (From this one sees that there are an infinite 
number of connected components in the fibres of Pic9 - 1 (f!l') over closed 
points x of S for which f!l'x is reducible. Thus Picg _ 1 (f!l') need not be of finite 
type over S.) Let P be the open subscheme of Picg _ 1 (f!l') obtained by re
moving, for each XES such that f!l'x is reducible, all connected components of 
fibres of Pic9 - 1 (f!l') over x except for those containing (lJEr(C). Then by [17], P 
will be of finite type over S. Let D be an Arakelov divisor perpendicular to 
every element of v., for all places v of K. For this to be true for archimedean 
v, D must have degree zero on the generic fibre f!l'K. From the above discus-
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sion, we see that @fl'(C + nD) determines a point [@fl'(C + nD)] on P for each 
natural number n. 

Define 0 to be the divisor on P defined by those line bundles having 
global sections, and let 2 be the universal bundle on P. For a given point 
p of P, the cohomology groups of the fibre 2(p) are finitely generated 
'oK modules. Taking the tensor Euler characteristics of the highest exterior 
powers of these 'oK modules, we arrive by the construction of the proof of the 
Riemann-Roch theorem at an isomorphism 

(5.2) 

of line bundles on P. The divisor 0 determines the usual 0-divisor on the 
general fibre of Picg _ 1 (g{), and @( - 0) is a metrized line bundle on P in this 
way. In the proof of the Riemann-Roch theorem, it was shown that (5.2) 
becomes an isomorphism of metrized line bundles if for each archimedean 
place 00 of K, one multiplies the metric on A(Rr(g{",,, 2 00 )) which comes from 
Theorem 3.1 by a positive scalar IX;} depending only on g{oo. 

For each integer n, let Sn: S -+ P be the section of P -+ S determined by 
the point [@fl'(C + nD)] of P. We pull back the isometry (5.1) via Sn and 
take the degrees of the resulting metrized line bundles on S. The degree 
of s:(A(Rr(g{, 2))) is the sum of the Euler characteristic X(@fl'(C + nD)) of 
@fl'(C + nD) and a constant c independent of n which depends on the scalars 
IXoo' By the Riemann-Roch theorem, this degree is 

n2[D, D]/2 + an + b 

for some constants a and b. Let he be the absolute logarithmic height func
tion on P(K) which is determined by 0. (See [19], noting that a multiple of 
o is very ample.) By the argument of [19, Prop. 7.2], the degree of s:(@(0)) 
differs from 

[K: Q]he([@fl'(C + nD)]) 

by an amount which is bounded independently of n. By the quadratic property 
of the Neron-Tate height, we have 

Height([@(DK)]) = lim h([@fl'(C + nD)]))/n2, 

where [@(DK)] is the point on Jac(g{K)(K) determined by D. The isometry 
(5.2) now shows 

[K : Q] Height([@(DK )]) = - [D, D]/2, 

which completes the proof. o 

EXERCISE 

Suppose that the general fibre of f!l' has genus 1. Show that there is a (possibly 
negative) constant c depending on f!l' and K such that 

[D1' D2 ] > c 
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for all sections Dl and Dz of !!( --+ S. (Hint: Show that there is an integer m > 0 such 
that for all Dl and Dz, one can find a finite Arakelov divisor T supported on the 
reducible fibres of!!( for which D = m(Dl - Dz) + T satisfies the conditions of Theo
rem 5.1 (ii).) 
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CHAPTER XIII 

Minimal Models for Curves over 
Dedekind Rings 

T. CHINBURG 

In this chapter we review the construction by Lichtenbaum [8] and Shafare
vitch [11] of relatively minimal and minimal models of curves over Dedekind 
rings. We have closely followed Lichtenbaum [8]; some proofs have been 
skipped or summarized so as to go into more detail concerning other parts 
of the construction. Since the main arguments of [8] apply over Dedekind 
rings, we work always over Dedekind rings rather than discrete valuation 
nngs. 

§1. Statement of the Minimal Models Theorem 

All rings and schemes will be assumed to be excellent and Noetherian; k will 
denote a field, .0 will denote a Dedekind ring and S will denote Spec(.o). A 
curve over k is a scheme F of finite type over k such that dim {!)F,x = 1 for all 
closed points x of F. A curve f!{ over .0 is a connected normal scheme 
together with a morphism n: f!{ ~ S which is proper, flat and of finite type, 
and whose fibres are curves. By results of Abhyankhar [2] and Lipman [9], 
[3], one may perform a finite sequence of blow-ups and normalizations to 
arrive a regular curve f!{' over .0 together with a proper birational morphism 
f: f!{' ~ f!{ over S. In what follows we will be concerned with regular curves 
over (!). 

Theorem 1.1 (Lichtenbaum [8]). A regular curve f!{ over.o is projective over S. 

Theorem 1.1 is proved essentially by constructing an effective Weil divisor 
on f!{ which has no components lying in the fibres of f!{ over S, and which 
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meets every irreducible component of every fibre of f1£ positively. Such a 
divisor may be shown to be ample over S; the details may be found in [8, 
Section 2]. 

Definition 1.1. A regular curve !1jj over .0 is a relatively minimal model of its 
function field K(!1jj) if every proper S-birational morphism f: !1jj --+!1jj' to a 
regular curve !1jj' over .0 is necessarily an isomorphism. If all relatively mini
mal models in the birational equivalence class of!1jj are isomorphic over S, we 
say !1jj is a minimal model of K(!1jj). 

Definition 1.2. A surface is an integral scheme of dimension 2. 

If f1£ is an integral curve over .0, and .0 has dimension 1, then f1£ is a surface 
in the sense of Definition 1.2. 

Definition 1.3. A prime divisor E on a regular surface f1£ is exceptional if there 
exits a proper birational morphism n: f1£ --+ !1jj to a regular surface!1jj such that 
n is an isomorphism outside of E, and n(E) is a point P of !1jj such that 
dim (()w,p = 2. In this case we say that n is a blow-down of E on f1£. 

It is shown in Corollary 2.1 below that that !1jj and P determine f1£ 
and E up to isomorphism over !1jj, and that f1£ and E determine !1jj up to 
isomorphism. 

Our main object is the following result of Lichtenbaum [8, Theorem 4.4J 
and Shafarevitch [11, Chap. II]. 

Theorem 1.2 (Minimal Models Theorem). Let .0 be a Dedekind domain, and 
let f1£ be a regular curve over S = Spec(.o). Assume that the fraction field K(S) 
of.o is algebraically closed in K(f1£). Construct a sequence of regular curves 
{f1£(n)}n over S in the following way. Let ,q'(0) = f1£. If f1£(n) has been defined, 
and there is an exceptional curve on f1£(n), let n(n): f1£(n) --+ f1£(n + 1) be a blow
down of this curve. Then the sequence {f1£(n)}n must be finite. The final curve 
!1jj in this sequence is a relatively minimal model of the common function field 
K(f1£) of the f1£(n). Let W be the fibre of f1£ over the generic point of S. If 
Hl(w, (()w) #- 0, then!1jj is a minimal model of K(,q'). 

If Hl(W, (()w) = ° then the construction of [7, p. 416] produces examples 
in which !1jj is not minimal and W is isomorphic to pi(s)' 

As in the case of complex surfaces, the proof of the Minimal Models 
Theorem involves giving a factorization theorem for birational morphisms 
between surfaces and a numerical characterization of exceptional curves 
(Castelnuovo's criterion). The key step in showing that !1jj is minimal if W has 
genus greater than zero is to show (cf. Lemma 7.2 below) that in this case, the 
exceptional curves on f1£(n) are disjoint for each n, and if n: ,q'(n) --+ ,q'(n + 1) 
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is a blow-down of one such curve, the other exceptional curves on ~(n) are 
sent by n to isomorphic exceptional curves on ~(n + 1). 

§2. Factorization Theorem 

Let ~ and CiJI be regular surfaces over a base scheme So. We recall that an 
So-rational map f: ~ ~ CiJI is an equivalence class of So-morphisms from open 
dense subsets of ~ to CiJI, where two such morphisms are equivalent if they 
agree on the intersection of their domains. By [6, EGA I, Prop. 7.2.2], there 
is a largest dense open set Uo of ~ where an element in the equivalence class 
of f is defined; Uo will be called the domain of definition of f. In particular, f 
is a morphism if and only if f is defined at each x E~, by which we mean that 
an element in the equivalence class of f has x in its domain. By [6, EGA II, 
Prop. 7.3.5], the co dimension of ~ - Uo in ~ is at least two. If f induces an 
isomorphism between the function fields of ~ and CiJI, then f is called an 
So-birational map. 

Let P be a closed point of ~ for which dim (!):r,p = 2. We refer the reader to 
[7, §§1I.7, V.3] and [6, EGA II, §1I.8] for an account of the basic properties 
of the blow up n: ~' ~ ~ of ~ at P. By definition, ~' = Proj(Ln;?:o r), where 
I is the (!):r ideal defining the closed subscheme (P, Spec(k(P)) of ~. The 
natural morphism n: ~' ~ ~ is called the locally quadratic transformation of 
~ with center P, or simply a locally quadratic transformation, By [6, EGA II, 
Defin. 8.1.3 and Prop. 8.1.4], n is projective, surjective and an isomorphism 
outside of In-1(P)I, In [8, Cor. 1.5] ~' is shown to be regular. One can 
describe ~' in an open neighborhood of n-1(p) in the following way. Let x 
and y be generators of the maximal ideal of (!):r,p, Let U be an affine open 
subset of ~ containing P such that x and y generate the maximal ideal of 
Pin qu, (!)u) = A. Then ~" = n-l(U) is isomorphic to the closed subscheme 
of pJ defined by ty - ux, taking t and u as homogenous coordinates of pJ. 
In particular, ~" is covered by the affine patches V1 = Spec A [y/x] and 
Vz = Spec A [x/y]. 

Theorem 2.1 (Factorization Theorem [8, Theorem 1.15] and [11, Chap. I, 
§2]). Let ~ and ~' be regular surfaces and let fo: ~' ~ ~ be a proper birational 
morphism. Then ~' is isomorphic to the scheme obtained from ~ by a finite 
number of successive locally quadratic transformations. 

PROOF. Since fo induces an isomorphism between the function fields of ~ and 
~', there is a birational map go: ~ ~ ~' induced by fo. Define ~o = ~ and 
assume by induction on n ~ 1 that ~n-l is a regular surface for which we 
have a birational map gn-l: ~n-l ~ ~', Since ~n-l is regular, the set of points 
where gn-l is not defined is of codimension at least 2 in ~n-l' and is thus a 
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finite set of closed points of codimension 2 in ~n-l' Suppose that Pn-l is such 
a point. Let nn: ~n --+ ~n-l be the blow-up of ~n-l at Pn- 1, and let gn: ~n --+~' 
be the birational map induced by gn-l' 

1.-1 

We will prove the following facts: 

(2.1) Suppose In-l:~' --+ ~n-l is a proper birational morphism which 
induces the isomorphism between the function fields of ~' and ~n-l 
which is the inverse of the isomorphism induced by gn-l' Then 
fn-l factors through nn' i.e. there is a proper birational morphism 
fn: ~' --+ ~n such that fn-l = nn 0 In· 

(2.2) The sequence of {~n' gn} constructed inductively as above is neces
sarily finite, i.e. there is an N such that the birational map gN: ~N --+~' 

is defined everywhere. 

Since the birational map gN in (2.2) is defined everywhere, it is a birational 
morphism. Each In constructed inductively in (2.1) is a birational morphism. 
Hence (2.1) and (2.2) will imply ~' is isomorphic to ~N' thus proving the 
Factorization Theorem. 0 

To prove (2.1) we will need the following criterion of [8, Cor. 1.13] for a 
birational map between integral schemes to be defined at a given point. This 
criterion follows readily from [6, EGA I, Prop. 6.5.1]. 

Proposition 2.1. Let .fi' and '§ be integral schemes over a base scheme So, with 
'§ separated and of finite type over So. Let n be an So-birational map from .fi' 
to '§. Identify K(.fi') with K('§) via n. Then n is defined at a point x of .fi' iff 
there is a point y of'§ such that (!)~,x dominates (!)rs,y' 

PROOF OF (2.1). Since ~', ~n-l and ~n are regular and all have the same 
function field, In: ~' --+ ~n exists as a birational map, and the codimension of 
the set of points where In is not defined is at least two. Hence to show that In 
is a birationai morphism, it will suffice to show In is defined at all points z of 
~' such that dim (!)!¥",z = 2. 

Suppose first that In-I (z) is not Pn-l' Then n;;1 is defined in an open 
neighborhood U of z. Let V = fn-=-1 (U). Then V is dense and open in ~', and 
n;;1 0 In-I: V --+ ~n is in the class of In. Hence fn is defined at z. 
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Now suppose that fn-1 (z) = Pn- 1. To simplify notation, let CfY = ~n-1 and 
P = Pn- 1• By Proposition 2.1, (!);J£'.z dominates (!)r1J/,p. Since gn-1 is by assump
tion not defined at P, (!);J£',z must properly contain (!)r1J/,p. Let x and y be 
generators for the maximal ideal of (!)r1J/,p. By a Theorem of Zariski and 
Abhyankar [1, Theorem 3], if (!);J£',z and (!)r1J/,p are two-dimensional regular 
local rings with the same fraction field, and (!);J£',z dominates and properly 
contains (!)r1J/,P, then (!);J£'.x must contain a local ring of either (!)r1J/,p[Y/x] or 
(!)r1J/,p[x/y]. Now the local rings of (!)r1J/,p[Y/x] and (!)r1J/,p[x/y] are exactly the 
local rings of the inverse image of P under the blow-up 7Cn: PEn --+ CfY of CfY at P. 
Therefore (!);J£',z dominates the local ring of a point of ~n' We conclude from 
Proposition 2.1 that fn is defined at z. Since 7Cn 0 fn = fn-1, f,,-1 is proper and 
7Cn is separated, one concludes that fn is proper (cf. [7, p. 107]). 0 

PROOF OF (2.2). Suppose that (2.2) is false, so that the sequence {~n' gn}n is 
infinite. Since each PEn is regular, the set of points Sn where gn is not defined is 
finite and of codimension two in ~n' Hence for each n, there is a point of Sn 
which has infinitely many of the points Pm for m ~ n lying over it. Therefore 
we can find an infinite subsequence {Pm(n)} of the {Pn} such that the local ring 
(!)m(n+1) of Pm(n+1) dominates (!)m(n)' By another result of Zariski and Abhyankar 
[1, Lemma 12 and Theorem 3], the union C = U (!)m(n) of an ascending 
sequence of two-dimensional local rings with the same fraction field, and for 
which each (!)m(n+1) dominates the previous (!)m(n), is the valuation ring of a 
valuation v of the common field of functions K of ~' and the ~m(n)' The 
birational morphism fm(o): ~' --+ PEm(O) constructed in the proof of (2.1) is 
proper. Hence by the valuative criterion of properness, C dominates the local 
ring (!);J£',x of some point x of PE'. Because (!);J£'.x is the localization of a ring of 
finite type over (!)m(O)' there is an n such that (!)m(n) dominates (!);J£',x' But now 
by Proposition 2.1, gm(n) is well defined at Pm(n), which is a contradiction. D 

We now observe that to construct the ~n and the birational maps gn: 
PEn --+ PE', we made use only of the original birational map go: PE = ~o --+ PE', 
and not of the morphisms fn. The only point at which of fn entered into the 
proof was in showing that a valuation ring C of K(~) = K(PE/) which domi
nates the local ring of a point of PE must also dominate the local ring of a 
point of ~/. Suppose now that both ~ and PE' are regular surfaces which are 
proper over a base scheme So, but that we are given only the existence of an 
So-birational map go: ~ --+ PE' and not of a proper birational morphism fo: 
PE' --+~. Then a valuation ring C of K(~) which dominates the local ring of 
a point of PE also dominates the local ring of a point of So. Since we have now 
assumed that ~' is proper over So, C must dominate a local ring of a point 
of PE' by the valuative criterion of properness. Thus the argument used in 
showing (2.2) also proves the following result. 

Proposition 2.2. Let go: ~ --+ ~' be a proper So-birational map between regular 
surfaces which are proper over a base scheme So. Then there is a regular 
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surface f!{N and proper birational So-morphisms nN: f!{N -+ f!{ and gN: f!{N -+ f!{' 
such that gN = go 0 nN. 

Using the Factorization Theorem, we can now clarify the uniqueness of 
blow-downs of exceptional curves on regular surfaces. 

Lemma 2.1. Let f!{ (resp. qy) be a regular (resp. normal) surface. Sup
pose n: f!{ -+ qy is a proper birational morphism. which blows down a prime 
divisor E on f!{ to a point P of qy, and which is an isomorphism off of lEI. Then 
n*({9~) = {9qy. 

PROOF. By [5, Chap. VI, §1, no. 3, Theorem 3, p. 92J, the integral closure of 
(9qy.P in its quotient field K = K(qy) = K(f!{) is the intersection of all the 
valuation rings of K which contain {9qy,p. Now {9qy,p is integrally closed 
in K since qy is normal, and since In-1(P)1 = lEI, {9qy,p is a subring of {9~,x 
for each x E E. By the valuative criterion of properness applied to n, each 
valuation ring of K containing {9qy,p has a unique center x on E. Hence 
{9qy,p = () {{9~,x: X E E}. Therefore 

n*({9~) = {9qy, 

since these sheaves on qy are equal on all stalks. o 

Corollary 2.1. With assumptions of Lemma 2.1, suppose further that qy is 
regular. Then qy and P determine f!{ and E up to isomorphism over qy, and f!{ 
and E determine qy up to isomorphism. 

PROOF. Since E is a prime, the Factorization Theorem shows n is the blow up 
of qy at P, so f!{ and E are determined up to an isomorphism over qy. The 
second assertion is a consequence of n* ({9 ~) = (9qy. 

§3. Statement of the Castelnuovo Criterion 

Definition 3.1. Let F be a complete connected curve over a field k. Let 2 be 
an invertible sheaf on F. Let n: F -+ F be the canonical morphism from the 
normalization F of F to F. The invertible sheaf n* 2 corresponds to a divisor 
D = L npP of F. Define the degree degk(L) of L with respect to k to be 
L np[k(P) : k]. 

Definition 3.2. Let i: E -+ f!{ be a closed immersion of a complete integral 
curve E over a field k into a scheme f!{. A positive Cartier divisor on f!{ is a 
closed subscheme F of f!{ such that the sheaf of ideals I which defines F is 
invertible. Define ik(E, F), the intersection of E and F with respect to k, to be 
degk(i* r 1 ), where i* r 1 is the induced invertible sheaf on E. If E is a positive 
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Cartier divisor on fl{ and k = HO(E, (DE)' the self-intersection E(2) of E is 
defined to be ik(E, E). A Cartier divisor on fl{ is a formal integral combination 
of positive Cartier divisors. 

This terminology differs slightly from [7, §II.6]. If fl{ is a regular scheme, 
then [7, Prop. II.6.ll] shows that the notions of Cartier divisors and Wei! 
divisors on !![ coincide. 

Theorem 3.1 (Castelnuovo Criterion [8, p. 399], [11]). Let .0 be a Dedekind 
ring and let !![ be a regular curve over S = Spec(.o). A prime divisor E of!![ is 
exceptional in the sense of Definition 1.3 if and only if (a) E is contained in a 
fibre of fl{ over a closed point of S, (b) Hl(E, (DE) = 0, and (c) E(2) = -1. In this 
case E is isomorphic to Plover the field k = HO(E, (DE)' 

In the next section we develop the results from intersection theory needed 
to prove that if E is exceptional on !![, then E has the properties stated in 
Theorem 3.1. We also prove certain results about the infinitesimal neighbor
hoods of prime divisors E' satisfying conditions (a), (b) and (c) of Theorem 3.1. 
These results are needed to show that such divisors may be blown down 
to points on regular curves over Spec(.o). This blown-down surface is con
structed (as in the case of complex surfaces) as the normalization of the image 
of a morphism from fl{ to projective space over .0, this morphism being 
associated to the tensor product of a very ample line bundle on !![ with a 
power of the line bundle associated to E'. 

§4. Intersection Theory and Proper and 
Total Transforms 

We will omit the proof of the following standard result, which is given in [8, 
Prop. 1.6]. 

Proposition 4.1. Let E be a complete integral curve over a field k. Suppose that 
E is a positive Cartier divisor on a surface !![. Let F be a positive integral 
Cartier divisor on fl{, and define En F = E Xx F. Suppose that E and F meet 
properly, i.e. that IE n FI is a finite set {Pl , ... , Pn } of closed points of fl{. Let 
.oi be the local ring of Pi on !![, and let ei and /; be local equations for E and F 
at Pi' Then 

Definition 4.1. Suppose D is an arbitrary Cartier divisor on !![, and that C is a 
Cartier divisor such that each component E' of C satisfies the following con
dition: HO(E', (DE') is a field of finite degree over k, and E' is a complete curve 
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over HO(E', (!)E')' Extend the definition of ik(E, F) to one of ik( C, D) for all such 
C and D via bilinearity in C and D. 

The symmetry of the formula in Proposition 4.1 has the following 
corollary. 

Corollary 4.1. Let !!( be a regular curve over a Dedekind ring .0. Let k be the 
residue field of.o at a closed point x of Spec(.o). Then ik(E, F) is defined for 
all divisors E and F of f!( such that E has support in the fibre f!(x of f!( over x. 
One has 

(a) ik(E, F) = degk 2'(F) ® (!)E if E is a prime divisor in f!(x, where 2'(F) is the 
invertible sheaf on f!( defined by F. 

(b) ik(E, F) = 0 if F is a principal divisor. 
(c) ik(E, F) = ik(F, E) if F has support in a fibre of f!(. 

Definition 4.2. Let f: f!( --+ OJ! be a proper birational morphism between regu
lar surfaces. Suppose C is a prime divisor on OJ! corresponding to an invertible 
sheaf 2'. The total transform f- 1(C) of C is the divisor on f!( associated to 
f* 2'. Let y be the generic point of C. Define the proper transform f- 1 [C] to 
be the Zariski closure of f-1(y) with the induced reduced scheme structure. 
(Since f- 1 is a morphism outside a set of codimension two on OJ!, f- 1 [C] is a 
divisor of f!(.) Extend the definition of total and proper transforms to all 
divisors on I1.Y by linearity. 

Proposition 4.2. Let 9 be a local equation for the prime divisor C of Definition 
4.2 at the point y of 11.Y. Then 9 is also a local equation for f-1(C) at any point 
x of!!( such that f(x) = y. 

PROOF. By the definition of a local equation for C, (!)c,y = (!)qy,y/g. Now 
(!),-I(C),X = (!):r,x ® (!)c,y is equal to (!):r,x/g since (!):r,x is an integral domain 
containing (!)qy,y' D 

Corollary 4.2. The total transform from divisors on OJ! to divisors on f!( preserves 
linear equivalence. If k is a field and C and D are divisors on I1.Y for which 
ik(C, D) is well defined, then ikU-1(C), f-1(D» is well defined and equal to 
ik(C, D). 

PROOF. Suppose C and D are divisors on OJ! satisfying the conditions of 
Definition 4.1. Then f-1(C) and f-1(D) satisfy the same conditions for f!( 
because f is proper. Since the birational map f- 1: OJ! --+ f!( is defined out
side of a set of codimension two on 11.Y, we can find a divisor D' linearly 
equivalent to D such that f- 1 is defined at all points of D'. Now ik(C, D) = 
ik(C, D') may be computed by local equations; by Proposition 4.2, ik(C, D) = 

ikU-1 (c),f-1 (D». D 
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§5. Exceptional Curves 

SA. Intersection Properties 

Throughout Section 5A we will assume that :Y: and i1jj are regular surfaces, 
that f: :!( --+ i1jj is a birational morphism which is an isomorphism outside of 
the prime divisor E of :Y:, and that f(E) = P is a point of i1jj such that 
dim (!)o/I,p = 2. By the Factorization Theorem, f must then be the blow-up of 
i1jj at P. 

Lemma 5.1. Let D be a divisor of i1jj and let k = k(P). Then ik(E, f-1(D)) = O. 

PROOF. We can find a divisor D' on i1jj which is linearly equivalent to D such 
that D' does not contain P. Then f-1(D') and E are disjoint, so ik(E, f-1(D)) = 
ik(E, f-1(D')) = O. 

Lemma 5.2. Let D be a prime divisor of i1jj passing through P. Then D has a 
regular point at P iff f-1(D) = f- 1 [D] + E and ik(p)(E, f- 1 [D]) = 1. If D is 
regular at P then f induces a isomorphism between f- 1 [D] and D. 

PROOF. Let 9 be a local equation for D at P. We first suppose f-1(D) = 

f-1[D] + E and ik(p)(E,f- 1[D]) = 1. By Proposition 4.1, there is a unique 
point Q on :!( where f- 1 [D] and E intersect. Let y be a local equation for E 
at Q. Because 9 is a local equation for f-1(D) in (!)[l£,Q' ik(p)(E, f- 1 [D]) = 1 iff 
(!)[l£,Q/(g, y) = k(P). This implies 9 cannot be in the square of the maximal 
ideal mp S (!)o/I,p of P on i1jj. But 9 must be in mp, since E is a component of 
f-1(D). Now because (!)o/I,p is regular, the local ring @D,P = @o/I,p/(g) of P on D 
must be regular. Hence (!)D,P is one dimep.sional and normal, so f must induce 
an isomorphism between the local ring of P on D and the local ring of Q on 
f- 1 [D]. Since f is an isomorphism off of E, and Q is the unique point of 
f- 1 [D] over P, f induces an isomorphism between f- 1 [D] and D. 

We now suppose D has a regular point at P and that, as above, 9 is a local 
equation for D at P. We may choose a y in (!)o/I,p so that {g, y} is a system of 
local parameters for P. Let U = Spec(A) be an open affine neighborhood of 
P such that {g, y} is a set of generators for the maximal ideal of Pin U. Let 
t and u be a set of homogeneous coordinates for pJ. Then f-1(U) is the closed 
subset of pJ defined by ty - ug = O. On the affine patch where u = 1, f- 1(U) 
is thus defined by 9 = ty. On this patch, y is a local equation for E = f- 1(P), 
9 is a local equation f-1(D) by Proposition 4.2, and t does not vanish on E. 
Hence on the patch u = 1, f-1(D) = (t) + E, where the divisor (t) of t intersects 
E in the single point Q of:Y: where t = Y = 0 in the residue field of Q. Now 
f-1(D) and f- 1 [D] differ by at most a multiple of E, since f is an isomor
phism off of E and E is prime. Since (t) does not contain E, we conclude that 
(t) = f- 1 [D] on the patch u = 1. Taking the Zariski closure of (t), we con-
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elude that f-1(D) = f- 1 [D] + E. We have also shown that f- 1 [D] and E 
intersect in the single point Q, which has residue field (9~.p[y, g/y]/(y, g/y) = 
k(P). Hence ik(p)(E, f- 1 [D]) = 1 D 

Proposition 5.1. The divisor E is isomorphic to the projective line over 
HO(E, (9E) = k(P). One has H1(E, (9E) = 0 and E(2) = ik(p)(E, E) = -1. 

PROOF. By the construction of the blow-up of!flf at P, E = f-1(p) is a com
plete curve over k(P) covered by two copies of the affine line over k(P). 
Hence E is isomorphic to the projective line over k(P) = HO(E, (9E), and 
H1 (E, (9E) = o. 

To show E2 = -1, choose a divisor D of!flf having a regular point at P. 
By Lemmas 5.1 and 5.2, 

0= ik(p)(E, f-1(D)) 

= ik(p)(E, f- 1 [D] + E) 

= 1 + ik(p)(E, E). 

Hence ik(p)(E, E) = -1, so HO(E, (9E) = k(P) implies E(2) = -1. o 

The following proposition is used in the proof of Lemma 7.2, which under
lies the proof that relatively minimal models of curves over Dedekind rings 
are minimal if the general fibre of the curve has genus greater than zero. 

Proposition 5.2. Let C' be a complete integral curve on f1£ over k' = HO(C', (9d. 
Assume C' -# E. Then C = f(C') is a prime divisor on!flf. The degree of k' over 
the field k = HO(C, (9d is finite, and C is a complete integral curve over k. 

(a) If C does not contain P, then C and C' are isomorphic and C(2) = C'(2). 
(b) If C contains P, then 

C(2) ~ [k': k](C'(2) + 1), 

with equality iff C' is isomorphic to C via f and C has a regular point at P. 

PROOF. Since f is proper and an isomorphism off of E, C is an irreducible 
curve on !fIf over k. Because f is of finite type, [k' : k] is finite. Clearly C is 
isomorphic to C' if P is not on C, and C(2) = C'(2) in this case by Corollary 
4.2. Suppose now that C contains P. Then f-1(C) = C' + mE for some 
integer m ~ 1. Therefore C(2) = ik(C, C) = ikU-1(C), C') + ikU-1(C), mE) = 

ikU- 1 (C), C') by Lemma 5.1. Now 

ikU-1(C), C') = ik(C', C') + ik(mE, C') 

= [k': k](ik,(C', C') + midC', E)), 

since C' is a curve over k' and ik(E, C') = ik(C', E). Because C' and E intersect 
properly and nontrivially, ik,(C', E) ~ 1, and so the inequality in part (b) 
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holds. This inequality is an equality iff m = 1 and ik(E, C) = 1. Lemma 5.2 
now completes the proof. 0 

5B. Prime Divisors Satisfying the Caste1nuovo Criterion 

In this section we no longer make the assumptions of Section 5A. In particu
lar, we no longer assume that E is an exceptional curve on f!£. 

Proposition 5.3. Let f!£ is a regular surface. Let E be a prime divisor of f!£ which 
is a proper curve over the field k' = HO(E, (DE)' Suppose that H 1(E, (DE) = 0 and 
E(2) = -1. Then E is isomorphic to Pk~ over k'. 

PROOF. Let E be the normalization of E, and let f: E --+ E be the natural 
morphism. Let i be the closed immersion of E into f!£, and let I be the sheaf 
of ideals of E on f!£. From E(2) = degk, i*(r1), we conclude that f*i* I is an 
invertible sheaf on E which corresponds to an effective divisor on E of degree 
lover k'. Hence there is a point Q on E which has residue field k' on E. Since 
E is normal, k' must be algebraically closed in the common field of functions 
K(E) of E and E. We also conclude that Q = f(Q) must have residue field k' 
on E, since k' = HO(E, (DE)' Therefore Q is a nonsingular point of E defined 
over k'. 

We now show that E is nonsingular. Consider the sequence 

o --+ (DE --+ f* (DE --+ F --+ 0 

of sheaves on E. In cohomology this gives 

0--+ k' = HO«(DE) t H°(f*(DE) --+ HO(F) --+ H 1 (E, (DE) = o. 

Now k' is algebraically closed in K(E), and H°(f*(DE) = HO(E, (DE), so rP is an 
isomorphism. Since F is supported on a finite number of closed points of E, 
F must be trivial, so E is nonsingular. By descent from k' to k', a nonsingular 
curve of genus 0 which is proper over k' and which has a rational point over 
k' is isomorphic to Pk~ over k'. 0 

Proposition 5.4. With the hypotheses and notations of Proposition 5.3, let I be 
the (Dq: ideal defining E, and let E(n) = Spec«(Dq:/I") be the closed subscheme of 
f!£ defined by 1". Then 

(a) HO(f!£, 1/12) = HO(E, 1/12) is a vector space of dimension two over k'. Let 
To and T1 be generators of this vector space. Then 'i,HO(f!£, 1"/1"+1) is 
isomorphic to the polynomial algebra on To and T1 over k'. 

(b) H 1(E, 1"/1"+1) = 0 for n 2': O. 
(c) The natural maps HO(f!£, (Dq:/I"+1) --+ HO(f!£, (Dq:/I") and HO(f!£, Im/l"+1)--+ 

HO(f!£, 1m/I") are surjective for all n 2': m 2': 1. 
(d) HO(f!£, 1/1")2 = HO(f!£, 12/1") for all n 2': 2. 
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(e) HI (X, (9:r/1n) = HI(E(n), (9E(n») = 0 for all n ;;:-: 1. 
(f) HI(E(n), (9:(n») = Pic(E(n)) = 7L for all n ;;:-: 1. 

PROOF. Let i: E -+ (9:r be the closed immersion of E into x. Since i* 1 = 1/12 
as sheaves on E, the sheaf r/r+1 = (i*l)®n on E has degree n degk, i*l = 

n( - E(2») = n ;;:-: O. By Proposition 5.1, E is isomorphic to Pf. over k'. Now (a) 
and (b) follow from Riemann-Roch on E. 

Consider the sequences 

(5.1) 

(5.2) 

0-+ r/r+ I -+ (9:r/r+1 -+ (9:r/r -+ 0, 

0-+ r/r+1 -+ I m/r+1 -+ r/r -+ 0, 

for n ;;:-: m ;;:-: 1. On taking cohomology, we see that (b) implies (c). In particu
lar, we have an exact sequence 

(5.3) 0 -+ HO(X, rjr+I) -+ HO(X, r/r+1) -+ HO(X, rjr) -+ O. 

In part (d) it is clear that 

(5.4) 

if n ;;:-: 2, with equality if n = 2. Suppose now by induction that 

HO(X, l/rf = HO(X, 12jr) 

for some n ;;:-: 2. Since HO(X, l/r+I) -+ HO(X, 1/12) is surjective, we have from 
part (a) that 

HO(X, Ijr+1)2 ;2 HO(X, Ijr+I r = HO(X, rjr+I). 

The induction hypohtesis and (5.3) with m = 2 now imply 

HO(X, Ijr+1)2 ;2 HO(X, 12 jr). 

Since (5.4) holds with n replaced by n + 1, the induction holds for n + 1, and 
part (d) is proved. 

To show (e), we have from (b) and the cohomology of(5.1) that the natural 
map HI(X, (9:r/r+1) -+ HI(X, (9:r/r) is an isomorphism for all n;;:-: 1. Since 
E = Pk~' one has HI(E, (9E) = HI(X, (9:r/1) = 0, and (e) follows. 

It remains to prove Pic(E(n)) = 7L if n ;;:-: 1. From the surjection of sheaves 
(9E(n) -+ (9E on E(n), one has exact sequences 

o -+ N -+ (9E(n) -+ (9E -+ 0, 

o -+ M -+ (9:(n) -+ (9: -+ 0, 

for some sheaves Nand M on E(n). Since HO(E(n), (9E(n») -+ HO(E, (9E) is 
surjective, HO(E(n), (9:(n») -+ HO(E, (91') is surjective. Thus on taking coho
mology, we have exact sequences 

0-+ HI (E(n), N) -+ HI (E(n), (9E(n») -+ HI(E, (9E) -+ 0, 

0-+ HI (E(n), M) -+ HI(E(n), (9:(n») -+ HI(E, (91') -+ O. 
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In this situation, Artin proved in [4] that Hl(E(n), N) and HI (E(n), M) have 
isomorphic Jordan-Holder series as finitely generated abelian groups. Be
cause we have already shown Hl(E(n), (DE(n») = 0 for all n, it follows that 
HI (E(n), N) = HI (E(n), M) = O. Therefore Hl(E(n), (Dl'(n») = Hl(E, (DI) = 
Pic(Pk~) = 7L. 

§6. Proof of the Castelnuovo Criterion 

Let D be a Dedekind ring, and let !!l' be a complete regular curve over 
S = Spec(D). Suppose E is an exceptional curve on !!l'. A proper birational 
morphism of !!£ to another regular curve !ljj over S must induce an isomor
phism on the fibres of!!l' and !ljj over the generic point of S. Hence f(E) does 
not contain the generic point of S. Since E is irreducible, E lies in the fibre of 
!!£ over a closed point of S. Proposition 5.1 now shows that E satisfies all the 
conditions of the Castelnuovo criterion. 

We now suppose that E is an irreducible divisor contained in a fibre of !!l' 
over a closed point of S, that Hl(E, (DE) = 0 and that E(2) = -1. We are to 
show that there is a proper S-morphism n: !!l' -+ !ljj to a regular curve !ljj over 
S which is an isomorphism off E, and which blows down E to a point. 

By Theorem 1.1, there is a divisor Don !!£ which is very ample over S. By 
Serre's theorem, we may replace D by a suitably high multiple of D to be able 
to assume that Hl(!!£, (Dq;(D)) = O. 

Let i be the immersion of E into !!l', and let k' be the field HO(E, (DE)' Define 
r = degk, i*{Dq;(D). Let Z be the divisor rEo Our object is to show that if!ljjo is 
the image of the rational map into projective space defined by the divisor 
D + Z, then the normalization !ljj of!ljj ° is the regular curve desired. 

Step 1. We first show that the rational map no: !!£ -+ !ljj ° defined by D + Z 
is defined everywhere. Clearly no is defined and regular off of IZI since 
!!£ is regular and D is very ample. By [6, EGA II, Cor. 4.4.9], a sufficient 
condition for no to be defined on IZI is that there exist an element s of 
HO(!!£, (Dq;(D + Z)) which is nonzero at every local ring of Z. 

To find such an s, let j be the natural injection of Z into !!l'. Since 
E(2) = -1, we have ik,(E, D + Z) = O. Therefore idZ, D + Z) = O. Because 
the natural map Pic(Z) -+ Pic(E) = 7L is an isomorphism by Proposition 
5.4(f), we conclude that j*({Dq;(D + Z)) is isomorphic to {Dz. Now tensor 
the exact sequence of sheaves 

0-+ (Dq;( - Z) -+ {Dq; -+ {Dz -+ 0, 

with (Dq;(D + Z) to obtain 

0-+ (Dq;(D) -+ (Dq;(D + Z) -+ j*({Dq;(D + Z)) = {Dz -+ O. 

Since Hl(!!£, (Dq;(D)) =0, restriction to Z induces a surjection HO(!!l', (Dq;(D + Z)) 
-+ HO(Z, (Dz). We may thus chose s to be any element of HO(!!£, (Dq;(D + Z)) 
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which restricts to the identity element of HO(Z, (l)z) = HO(Z,j*((I)q'(D + Z))). 
(Notice that this s will not in general be the identity.) We have now shown 
that no: f!£ ~ il.Yo is a projective birational morphism and an isomorphism off 
oflZI· 

Step 2. Suppose Zo = no(IZI) is a curve on il.Yo. The restriction of (l)q'(D + Z) 
to Z would then be ample. This contradicts the fact proved above that this 
restriction is isomorphic to (l)z, which has degree zero and is thus not ample. 
Since IZI is connected, and no is an isomorphism off of IZI, no must map IZI 
to a point Po of il.Yo. Since f!£ is normal, no factors through the normalization 
il.Y of il.Yo of il.Y via a morphism n: f!£ ~ il.Y. Because Ino1 (Po)1 = IZI, it follows 
that there is a unique point P of il.Y over Po, and that n(IZI) = P. 

Step 3. We must show il.Y is regular to complete the proof. For this it will 
suffice to prove that (l)dJJ,p is a regular local ring. 

Let mp be the maximal ideal of (l)dJJ,p. By the Theorem on Formal Func
tions [6, EGA II, Cor. 4.2.4], one has an isomorphism 

((n*(I)q')p)" = limr(n-l(p), (l)q'/m'P(I)q'), 
+
n 

where the left-hand side is the mp-adic completion of the stalk. Recall that 
I denotes the ideal sheaf of E. The sets of ideals {m'P(I)q'}n and {r}n are co
final in the collection of all (l)q' ideals J for which (l)q'jJ has support on 
lEI = In-1(P)I. By Lemma 2.1, (l)dJJ,p = (n*(I)q')p, Therefore 

(l)w,p = ((n*lDq')p)" = 1~r(E, lDq'/r). 
n 

It will be enough to show (l)w.P is a regular local ring. Let E(n) = 
Spec((I)q'/r). The following was shown in Proposition 5.4(c): 

(6.1) The natural map from An = HO(E(n), (l)E(n» = r(f!£, (l)q'W) to An- 1 is 
surjective for all n ~ 1. 

Since (l)w,p = l~ An, this gives for each n an exact sequence 

(6.2) 

for some (I)~,p ideal Bn. Here if m :::;; n then 

Bm/Bn = ker{An ~ Am} 

(6.3) = ker{ HO(f!£, (l)q'W) ~ HO(f!£, (l)q'/Im)} 

= HO(f!£, ImW)· 

By (6.3) and Proposition 5.4(d), we have 

(6.4) 

if n ~ 2. Since (I)~,p = l~ (l)dJJ,p/Bn, we conclude that 

(6.5) 
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Because Al = HO(E, l!!E) = k' is the residue field of P on ifY, Bl = mp. Thus 
(6.5) and (6.3) give 

mplm~ = BdBi = BdB2 = HOUl£, 1112). 

By Proposition 5.4(a) the last cohomology group in this equality is a vector 
space of dimension two over the residue field k' of P in l!!~.p. Hence l!!~.P is 
regular, and the proof is complete. 

§7. Proof of the Minimal Models Theorem 

Lemma 7.1. Let .0 be a Dedekind ring and let fiE be a regular curve over 
S = Spec(.o). Assume that the fraction field K(S) of.o is algebraically closed 
in K(f!l} Then f!{ has the following properties. 

(a) The fibres of fiE are connected. 
(b) Let x be a closed point of S, with residue field k = k(x). Let V be the real 

vector space with basis the set {Fi} of irreducible components of the fibre 
f!{x of fiE over x. One has ik(f!{x, D) = ° for all DE V. The pairing on V l~fiEx 
which is induced by ik(, ) is negative definite. 

(c) The fibre of f!{ over the generic point of S is geometrically irreducible. 
(d) The exceptional divisors on fiE lie in reducible fibres of f!{. The number J(fiE) 

if irreducible divisors of f!{ which lie in reducible fibres of f!{ is finite. 

PROOF. By the definition of a regular curve over S, fiE is connected, and there 
is a flat proper morphism n: f!{ -+ S which is of finite type. By Grothendieck's 
Connectedness Theorem [6, EGA III, Cor. 4.3.2], to show that fiE has con
nected fibres, it will suffice to show that n*(l!!~) = l!!s. Since n is flat, n*l!!~ is 
the sheaf on S which is associated to the torsion-free .o-module HO(f!{, l!!~). 
Thus it will suffice to prove that HO(fiE, l!!~) is a rank one .o-module. Since f!{ 
is integral, HO(fiE, l!!~) is a submodule of HO(fiE, K(fiE)), so it will be enough to 
show HO(fiE, K(fiE)) is a rank one K(S)-module. Now n is proper and fiE is 
normal, so HO(fiE, K(fiE)) is the algebraic closure of K(S) in K(f!{). By assump
tion, this closure is K(S), so (a) is proved. 

With the notations of part (b), let fiEx = L miFi in the vector space V for 
some positive integers mi' Suppose D = L rjmjFj is an element of V for some 
real numbers rj. To prove (b), we must show ik(D, D) :::;; 0, with equality iff all 
of the rj are equal. 

Since some multiple of fiEx is principal, we have ° = ik(mjFj, fiEx) for all j. A 
short calculation using this and the bilinearity of ik(, ) shows 

(7.1) ik(D, D) = -(1/2) L (rj - r;)2ik(mjFj, miF;). 
i,j 

If i # j, then ik(mjFj, miFf) ~ 0, with equality iff Fj and Fi do not intersect. 
Hence (7.1) shows ik(D, D) :::;; 0, with equality iff ri = rj whenever Fi and Fj 
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intersect. Since f!{x is connected, ik(D, D) = 0 implies all the rj are equal. 
(Compare Mumford [10].) 

Let f!{K = f!{ xs Spec(K(S)) be the fibre off!{ over the generic point 
of S. Since K(S) is algebraically closed in K(f!{), it follows from [12, 
Theorem 40, p. 197 and Cor. 2, Theorem 38, p. 195] that every zero-divisor of 
K(X) Q9K(S) K(S) is nilpotent. Therefore f!{K is geometrically irreducible. 

Since an irreducible fibre of f!{ has self-intersection 0, the exceptional curves 
on f!{ must lie on reducible fibres. By [6, EGA IV, p. 9.7.8], the set of points 
x of S where the fibre of f!{ over x is geometrically irreducible is a closed 
set. Hence there are only finitely many such x, since .0 is a Dedekind ring. 
Therefore t5(f!{) is finite. 0 

Corollary 7.1. Let f!{ and S be as in Lemma 7.1. Construct a sequence {f!((n)}n 
of regular curves over S in the following way. Let f!{(0) = f!{. If f!{(n) has been 
defined, and there is an exceptional curve on f!{(n), let 1l:n: f!{(n) -+ f!{(n + 1) be a 
blow-down over S of one such curve. Then the sequence {f!{(n)} n is necessarily 
finite. If ifY is the last term in the sequence, then ifY is a relatively minimal model 
for K(f!{). 

PROOF. The number t5(f!{(n)) of irreducible divisors of f!{(n) which lie in re
ducible fibres must decrease as n increases. Since t5(f!{(0)) is finite, the sequence 
{f!((n)}n must be finite. The final term ifY in this sequence can have no excep
tional curves, so ifY is a relatively minimal model of K(f!{) by the Factorization 
Theorem. D 

The key to showing that the ifY of Corollary 7.1 is a minimal model if the 
generic fibre of f!{ has genus greater than 0 is the following lemma, which is 
Proposition 4.3 of [8]. 

Lemma 7.2. Let f!{ and S be as in Lemma 7.1. Let f: f!{' -+ f!{ be a birational 
S-morphism from a regular curve f!{' over S to f!{ which is the blow-down of an 
exceptional curve E on f!{'. Let W be the generic fibre of f!{, and assume that 
Hi (w, (i)w) i= O. Suppose that C is an exceptional curve on f!{'. Then either 
C = E, or C = f(C) is an exceptional curve in f!{ which does not contain P. 

PROOF. Suppose that C i= E. Then C is a curve on f!{ which is birational to 
C.1f C does not contain P, then C and C are isomorphic, and C(2) = C(2) by 
Proposition 5.2. Therefore C is exceptional in this case by the Castelnuovo 
criterion. 

Suppose now that C contains P. Because C(2) = - 1, Proposition 5.2 
shows C(2) ~ O. Therefore C must be a rational multiple of a fibre of f!{ over 
a closed point of S by Lemma 7. 1 (b). Hence C2 = O. From Proposition 5.2(b), 
we conclude that f induces an isomorphism between C and C. Because C is 
an exceptional curve, C is thus isomorphic to pl, where k = HO(C, (i)d = 
HO(C, ([Jd. 
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Let Ie be the sheaf of ideals defining C on f![. From the sequence 

0-+ I'C/I'C+1 -+ {!}p£/I'C+1 -+ {!}p£/Im -+ 0 

and the fact that C is isomorphic to Pk1, one has by induction on m that 
Hl(f![, (!}p£/I m ) = 0 for all m > O. Since C is a rational multiple of a fibre of f1£ 
over a closed point of S, there is an m and a nonzero tED such that r = t{!}p£. 
From the exact sequence 

Hl(f1£, (!}p£).!.. Hl(f![, (!}p£) -+ Hl(f![, (!}p£/Im) = 0, 

we conclude that Hl(f1£, (!}p£) is a torsion D-module. Let K be the quotient 
field of D. Then Hl(W, (!}w) = Hl(f![, (!}p£) 0.0 K = 0, contradicting the as
sumption that W has nonzero genus. D 

COMPLETION OF THE PROOF OF THE MINIMAL MODELS THEOREM. Suppose oy 
and oy' are relatively minimal models of K(f1£), where we now assume that the 
general fibre of f![ has positive genus. In view of Proposition 2.2, there is a 
regular curve f![' over S for which there are proper S-birational morphisms 
n: f![' -+ oy and n': f![' -+ OY'. We may further suppose that f![' has been chosen 
so that the number t5(f1£') or irreducible divisors contained in reducible fibres 
of f![' is minimal. We will now show that f1£' can have no exceptional curves. 
It will then follow from the Factorization Theorem that nand n' are isomor
phisms, which will complete the proof. 

Suppose that f1£' contains an exceptional curve E. By the Factorization 
Theorem, we can factor each of nand n' into products n 1 ••• nn and n'l ... n~ 
of locally quadratic transformations. By Lemma 7.2, each ni and each nj 
either blow down E to a point or send E to an isomorphic exceptional curve, 
which we will identify with E. Since oy and oy' contain no exceptional curves, 
E must be the exceptional curve associated to some ni and to some nj • The 
exceptional curves associated to n l' ... , ni - 1 are disjoint from E by Lemma 
7.2. Hence we may rearrange the n 1, ... , ni to be able to assume that E is the 
exceptional curve of n 1. Similarly, we can assume E is the exceptional curve 
Om'l. But now nand n' factor through the range f1£(1) of n 1 • Since t5(f1£(1)) < 
t5(f!['), this contradicts the assumption that f1£' was chosen to minimize t5(f!['), 
so the proof is complete. 
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CHAPTER XIV 

Local Heights on Curves 

BENEDICT H. GROSS 

In this paper we will review the theory of local heights on curves and describe 
its relationship to the global height pairing on the Jacobian. The local results 
are all special cases of Neron's theory [9], [10]; the global pairing was 
discovered independently by Neron and Tate [5]. We will also discuss exten
sions of the local pairing to divisors of arbitrary degree and to divisors which 
are not relatively prime. The first extension is due to Arakelov [1]; the second 
is implicit in Tate's work on elliptic curves [12]. I have also included several 
sections of examples which illustrate the general theory. 

I would like to thank R. Rumley, J. Tate, and D. Zagier for their help. 

§1. Definitions and Notations 

Let k be a field, and let X be a complete, non-singular, geometrically irreduc
ible curve of genus 9 which is defined over k and has a k-rational point. Let 
Div(X/k) denote the subgroup of divisors on X which are rational over k. If 
a = LmAx) is a divisor, we let lal = {x: mx of:. O} denote its support and 
deg a = L mx denote its degree. Let DivO(X/k) denote the subgroup of divi
sors of degree zero and P(X/k) the subgroup of principal divisors-those of 
the form a = div(f) withfEk(X)*. 

Let J be the Jacobian of X; this is an abelian variety of dimension 
9 which is defined over k. For any extension field H of k we have J(H) = 

DivO(X/H)/P(X/H). 
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§2. Neron's Local Height Pairing 

In this section, we assume that k = kv is a locally compact field. Let dx be a 
Haar measure on k; and define the valuation homomorphism I Iv: k: -+ R! 
by ex*(dx) = lexl v· dx. If kv is archimedean, we have 

lexl = {ex. sign ex = lexl if kv = R, 
(2.1) vex. a = lexl 2 if kv ~ C. 

If kv is non-archimedean, let (9v denote the ring of integral elements and 1tv a 
uniformizing parameter in (9v. Normalize the valuation v on k: so that 
v(1tv) = 1. The residue field Fv = (9v/(1tv) is finite, with qv elements, and 

(2.2) 

If X is a curve over kv, the set of kv-rational points X(kv) has the natural 
structure of a topological space, which we will assume is non-empty. We let 
ZO(X/kv) be the elements of degree zero in the free abelian group on X(kv), 
viewed as a subgroup of DivO(X/kv). We say two divisors a and b are rela
tively prime if lal n Ibl is empty. 

Suppose f is a function on X over kv whose divisor is relatively prime to 
a = L mAx) in ZO(X/kv). We define f(a) in k: by the formula f(a) = TIf(x)mx ; 

this depends only on b = div(f), as a has degree zero. The following basic 
result is due to Neron [10, Chap. II, Theorems 3 and 4]; we will give a 
different proof in Section 3. 

Proposition 2.3. There is a unique function <a, b)v on relatively prime divisors 
aEZO(X/kv), bEDivO(X/kv) with values in R which satisfies thefollowingfour 
properties: 

(1) <a, b)v + <a, c)v = <a, b + c)v. 
(2) <a, b)v = <b, a)v whenever bEZO(X/kv). 
(3) <a, div(f»v = 10glf(a)lv. 
(4) Fix b and a point xoEX(kv)-lbl. Then the function X(kv)-Ibl-+R, 

defined by x -+ «x) - (xo), b)v is continuous. 

If H is a finite extension of k = kv and a and b are relatively prime divisors 
of degree zero over k with aEZO(X/kv), we have 

(2.4) <a, b)H = [H: k] <a, b)k. 

If a and b are pointwise rational over Hand (J is any automorphism of Hover 
k, we have 

(2.5) 

This suggests an extension of the pairing <a, b)v to relatively prime divisors 
in DivO(X/kv ); we choose a finite extension H where a becomes pointwise 
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rational and define 

The local pairing is functoral for morphisms in the following sense. Let Y 
be another curve and T c X x Ya correspondence which is rational over kv. 
Then for a E DivO(X/kv ) and bE DivO(Y;'kv ) we have 

(2.6) <a, T*b)x = <T*a, b)y, 

whenever both sides are defined. 

§3. Construction of the Local Height Pairing 

In this section, we will present a proof of Proposition 2.3 which does not use 
the theory of Neron models for abelian varieties, but works directly on the 
curve. To show a local pairing exists, we will construct if explicitly by using 
potential theory at the archimedean places and intersection theory at the 
non-archimedean places. The uniqueness is much easier to demonstrate. 
Indeed, the difference of any two local pairings satisfying the four properties 
of (2.3) would give a symmetric, bilinear pairing J(k.) x J(kv) --+ R which is 
continuous in the first variable when the second is fixed. This must be the 
trivial pairing, as J(kv) is compact and R contains no non-trivial compact 
subgroups. 

We begin with the archimedean case; by (2.4) there is no loss in generality 
in assuming that kv = C. Then M = X(Kv) is a Riemann surface. A mero
morphic differential w on M is said to be of the third kind if ordAw) ~ -1 
for all x E M. The divisor Res(w) = Lx resAw) . (x) with complex coefficients 
has degree zero by the global residue theorem. Conversely, every a in 
DivO(X/kv ) has the form a = Res(w) for a differential w of the third kind on 
M; this is a simple consequence of the Riemann-Roch theorem. The differen
tial w is unique up to the addition of differential which is holomorphic on M; 
since the real parts of the periods of a holomorphic differential determine it 
precisely and may be chosen arbitrarily, we may normalize w = Wa uniquely 
by insisting that its periods be purely imaginary. If a = div(f) is principal, 
then Wa = dflfis the associated normalized differential of the third kind. 

The differential Wa arises naturally in the theory of mixed Hodge struc
tures on open curves. Let S = lal and put U = M - S. We have an exact 
sequence 

(3.1) 0 --+ Hl(M) --+ Hl(U) --+ HO(S)( -1) --+ H2(M) --+ 0 

in the rational (Betti) cohomology, as well as in the complex (de Rham) 
cohomology theory HDR = H ® c. This gives the weight filtration on Hl(U), 
where WI = HI (M). The Hodge filtration of H6R(U) is given by taking Fill 
to be the image of the merom orphic differentials 01(U) of the third kind on 
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M with poles contained in S. Clearly Q 1 (U) 11 H6R(M) = Ql(M) consists of 
the differentials of the first kind on M; the desired splitting of the sequence 

(3.2) 0 -+ Ql(M) -+ Q 1(U) -+ DivO(S) -+ 0 
Res 

is obtained by taking a to the unique element OJa in Q 1(U) 11 Q 1(U) which 
maps to a in DivO(S). We emphasize that complex conjuation ofQ 1(U) takes 
place in H6R(U) = Hl(U) ® c. This is the canonical real splitting ofa mixed 
Hodge structure with two weights [2, pp. 36-37]. 

Since the periods of OJa are purely imaginary, the differential 

(3.3) 

is exact. Here ga is a harmonic function on M - lal which is well determined 
up to the addition of a constant function. This is the Green's function associ
ated to the divisor a; if a = div(f) is principal then ga = 10gl!lv. In general, if 
mx is the order of x in a, then ga - mx loglzlv is harmonic near x, where z is 
any uniformizing parameter there. In the sense of distributions and (1, 1) 
currents, ga is the solution of the differential equation: 

(3.4) 

where ba is the (1, I)-current which represents the evaluation of (0, O)-forms 
at a. 

Now assume b = L my(Y) is a divisor of degree zero on X(k v ) which is 
relatively prime to a. We define 

(3.5) 

This is independent of the choice of ga, as L my = o. It satisfies the four 
properties of Neron's local pairing; for example, the symmetry <a, b>v = 
<b, a>v follows from Green's theorem. 

We now consider the non-archimedean case. Let @v denote the ring of 
integers of kv and let f!{ be a regular model for X over @v; this exists by the 
desingularization theory for arithmetic surfaces. For an account of that 
theory, and proofs of the results we will need below, see Lichtenbaum [7] 
or Shafarevitch [11]. Let ff = Laig;; denote the special fibre f!{ ® Fv, 
where the g;; are the irreducible components over Fv and ai ~ 1 are their 
multiplicities. 

x 

spec kv spec t\ 
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It is well known that we may define an intersection product (A . B) for two 
divisors A and B which intersect property on f!l'. For divisors I mi$'; con
centrated in the special fibre, we can also define a self-intersection using the 
rule: (ff . $';) = 0 for all i. On the quotient group Ii Z$';jZff this pairing is 
negative definite. 

Let a be a divisor of degree zero in ZO(Xjkv ), and let A be an extension to 
a rational divisor on f!l' which satisfies 

(3.6) (A . $';) = 0 for all i. 

This exists by the non-degeneracy of the pairing (over Q) on the special fibre, 
which also shows that A is unique up to the addition of a rational multiple of 
ff. Let Ii be a divisor of degree zero which is relatively prime to a, and B any 
extension of b to f!l'. We define 

(3.7) <a, b)v = -(A· B)logqv, 

where qv = Card(Fv). This pairing satisfies the four properties of Neron's 
local pairing. 

§4. The Canonical Height 

In this section, we assume k is a global field, and for each place v we normal
ize the valuation I Iv on the completion kv as in Section 2. For any exEk* we 
have the product formula 

(4.1) n lexl v = 1. 
v 

Assume that the genus g of X is positive, and let W be the image of Symg - 1 X 
in Picg - 1 (X). Let K E Pic9- 1 (X) be a theta-characteristic; that is, a divisor class 
of degree g - 1 over k with 2K linearly equivalent to the canonical class of X. 
The theta-divisor 0 = W - K is symmetric and ample in J; furthermore, the 
class of the divisor 2(0) in Pic(J) is independent of the choice of K and is 
defined over k. The sections of the associated line bundle L on J give rise to 
the Kummer embedding 

(4.2) r/J: J j ± 1 -+ P(H°(J, L». 

The image has degree 29 - 1 g! in a projective space of dimension 29 - 1. 
To define the height function h = hL : J(k) -+ R, we fix an isomorphism: 

P(H°(J, L» = p 29 - 1 and for any point z = (Zl' ... , Z29) in p 29 - 1(k) define the 
naive height of Z by 

(4.3) h(z) = Imax {loglzdv}. 
i 

Tate [4, Chap. 5] proved that for ex E J(k) the limit 

(4.4) h(ex) = lim h 0 r/J!nex) 
n--+oo n 
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exists, is independent of the basis of sections chosen for L, and defines a 
positive-definite quadratic form h: J(k) ® R -+ R. 

In particular, the function ( , ): J(k) x J(k) -+ R defined by 

(4.5) (ct, P) = !(h(ct + P) - h(ct) - h(P» 

is bi-additive. To prove this, one identifies this pairing with the canonical 
height associated to the Poincare divisor on J x ]V using the isomorphism 
J -;::j]V defined by ctl-+c1ass of(0 - ct) - (0) [4]. Neron [10, Chap. II, Theo
rems 8 and 10] gave a formula for this pairing in terms of his local symbols, 
which we now recall. 

Suppose that ct = c1ass(a) and P = c1ass(b), where a and b are relatively 
prime divisors of degree zero over k. For each place v we let (a, b)v denote 
the value of the local pairing described in Section 3. These values are zero for 
all but a finite number of places of k, and their sum depends only on ct and p, 
by property 3 of (2.3) and the product formula (4.1). Neron's formula is 

(4.6) L (a, b)v = (ct, P)· 

Finally, we remark that the functorial properties of the local pairing all 
hold for the global height pairing. If H is a finite extension of k and (J is any 
automorphism of Hover k, we have 

(4.7) 

(4.8) 

(ct, P)H = [H: k] (ct, P)k' 

(cta,pa)H= (ct,P)H' 

If T c X x Yis a correspondence over k and t*: Jx -+ J y, t*: J y -+ Jx are the 
corresponding homomorphisms of the Jacobians we have 

(4.9) 

§5. Local Heights for Divisors with Common Support 

In view of (4.6) it is desirable to have an extension of the local pairing to 
divisors a and b of degree zero on X which are not relatively prime. At the 
loss of some functorality, we may accomplish this as follows. 

At each point x in the common support, chose a basis a/at for the tangent 
space and let z be a uniformizing parameter with az/at = 1. Any function 
f E kv(X)* then has a well-defined "value" at x: 

(5.1) f[x] = ~(x) in k:, 
z 

where m = ordxf. This depends only on the choice of a/at, not on z. Clearly 
we have 

(5.2) fg[x] = f[x] . g[x]. 
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To pair a with b, we may find a function f on X such that b = div(f) + ai, 
where a' is relatively prime to a. We then define 

(5.3) <a, b)v = log I f[a] Iv + <a, a')v, 

where f[a] = nf[x]mx is defined via (S.I) and <a, a')v as in Section 3. By 
property 3 of (2.3), this definition is independent of the choice of f used to 
move b away from a. The pairing (S.3) depends on the choice of tangent 
vectors, but is unchanged if a/at is multiplied by any II.Ek: with IlI.lv = 1. 

The formulas given in Section 3 for Neron's local pairing can be modified 
to give the extension defined by (S.3). Formula (S.3) continues to hold, pro
vided we define ga(x) to be the value of ga - mx loglzlv at x, where z is a local 
parameter with laz/atlv = 1. In the non-archimedean case, it is convenient to 
fix a/at up to a unit by insisting that it be a generator of the {Dv-module TAX, 
where A is the section corresponding to the point x. Formula (3.7) continues 
to hold, provided we adopt the convention that (A . A) = O. 

Finally, the global formula (4.6) holds for any choice of global tangent 
vector a/at, by the product formula. 

§6. Local Heights for Divisors of Arbitrary Degree 

Arakelov has described an extension of the archimedean local pairing to 
relatively prime divisors of arbitrary degree. Again, this is only accomplished 
at the loss of some functorality. Assume kv ~ C and let dJ-l be a positive real 
analytic 2-form on M = X(C) with fM dJ-l = 1. We remark that the choice of 
such a volume form is equivalent to the choice of a Riemannian structure in 
the conformal equivalence class determined by the complex structure on M. 

Proposition 6.1. For each divisor a on X there is a unique real analyticfunction 
ga: M -Ial--+ R such that: 

(1) ga - mx loglzlv is real analytic near x, where z is any uniJormizing para
meter at x and mx is the multiplicity of x in a, 

(2) ga satisfies the differential equation: 

aaga = 2ni(deg(a) . dJ-l - ba), 

where ba is the (1, I)-current which represents the evaluation of (0,0) forms 
at a. 

(3) fMga dJ-l = O. 
The system of functions {ga}aEDiv(x) satisfy the further identities: 

(4) ga+b = ga + gb' 
(S) ga(b) = gb(a) whenever a and b are diSjoint. 

When a has degree zero, ga is the unique solution of (3.3) which satisfies 
condition (3). In general, the existence of a function ga satisfying (1) and (2) 
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follows from the theory of elliptic partial differential equations on M. Such a 
function is unique up to a global harmonic function on M, which must be a 
constant, and this constant is normalized by condition (3). Condition (4) is 
immediate, and condition (5) follows from Green's theorem. 

We now define the function of two variables by 

(6.2) G(x, y) = g(X)(Y) = g(y)(x). 

This is symmetric with a logarithmic pole on the diagonal and satisfies the 
differential equation 

(6.3) 

as a function of x. We have the formula 

(6.4) 

for the local height pairing on relatively prime divisors of degree zero. 
In many cases, it is convenient to permit the measure 11 to have singulari

ties on M; then (6.4) must be interpreted in the limit if G has a singularity at 
x or y. Condition (3) must also be dropped if ga is not integrable on M. 

§7. Local Heights on Curves of Genus Zero 

We will now illustrate the ideas of Sections 5 and 6 when X has genus zero. 
Let Xoo be a fixed point on X(kv) and let %t be a non-zero tangent vector at 
Xoo' Choose an isomorphism 

f: X -;:? Pi, 

Xoo 1--+ 00, 

such that the uniformizing parameter z = l/f at Xoo satisfies oz/ot = 1. Then 
f is determined up to the addition of a constant and has the "value": 
f[x oo ] = 1. Let x :f. y be two points of X which are not equal to Xoo and put 
a = (x) - (x oo ) and b = (y) - (x oo ). We then find 

(7.1) <a, b)v = loglf(x) - f(y)lv· 

Indeed, 9 = f - f(y) is a function on X with div(g) = b, and g(a) = 
g(x)/g[xo] = f(x) - f(y)· 

Now suppose kv is archimedean, and fix a uniformization 

kv'; X(kv) - {xoo} 

such that n(z) = x and n(w) = y. Then 

(7.2) G(x, y) = loglz - wl v 

is a Green's function associated to the (1, I)-current dll = bxoo ' The height 
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pairing of a = (x) - (x') with b = (y) - (y') is then 

I(Z - w)(z' - w') I 
<a, b)v = log (z _ w')(z' - w) v 

independent of the uniformization n. 

§8. Local Heights on Elliptic Curves 

335 

We will now illustrate the ideas of Sections 5 and 6 when X has genus 1 and 
a rational point xo, so X is an elliptic curve with Xo taken as the origin. We 
begin with the pairing of divisors of degree zero with common support; note 
that once we choose a non-zero tangent vector a/at at xo, it determines (by 
parallel translation) a non-zero tangent vector at every point of X. 

First suppose kv is non-archimedean, and let !l£ be the minimal regular 
model for X over (1)v (so !l£ is the compactification of the Neron minimal 
model over (1)J. Fix a basis a/at for the (1)v-module Tl1o !l£, where ~ is the 
identity section; this is dual to a Neron differential w. Let x of- x' be two 
points on X whose associated sections L\ and L\' reduce to the identity com
ponent ffo in the special fibre. Then for the divisors a = (x) - (xo) and b = 

(y) - (xo) we have the formulas 

(8.1) 
<a, b)v = {(L\x·~) + (L\.~) - (L\x· L\)}log qv, 

<a, a)v = 2(L\x . ~)log qv, 

in agreement with Tate [12]. 
Now suppose kv is archimedean, and fix a uniformization: 

(8.2) 

Then n*(a/az) = a/at is a non-zero tangent vector at Xo. Let a(z) be the 
Weierstrass a-function of the lattice A, and let u(z) be the R-linear map taking 
the periods (W1' ( 2 ) of f<J(z) to the quasi-periods (111,112) of nz). The Klein 
function 

(8.3) 

is real analytic with a simple zero at each lattice point. It is not periodic, but 
its multipliers k(z + w)/k(z) all have absolute value 1. Let z and w be points 
in C with n(z) = x and n(w) = y; then 

(8.4) G(x, y) = loglk(z - w)lv 

is the Green's function associated to the unique multiple e dx dy = dtt 
of Lebesque measure on C such that the volume of any fundamental do
main for A with respect to dtt is equal to 1. (If A = ZW 1 + ZW2 we have 
IW 1 W2 - W 2 w1 1 = 2/e.) 
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§9. Green's Functions on the Upper Half-Plane 

We now discuss the Green's function G(x, y) on complex curves X uniformed 
by the upper half-plane ~ = {z = x + iy: y > O}. Fix a uniformization 

(9.1) n~'; X(C) - S, 

where r is a discrete subgroup of PSL2 (R) and S is a finite set of cusps on X 
corresponding to the parabolic conjugacy classes in r. For each XEX(C) - S, 
let z be a point in ~ with n(z) = x, and let ex = Card(rz) be the order of the 
cyclic stabilizer subgroup. For XES we let ex = 00. The rational number 
X = 2 - 2g - L (1 - (ljeJ) is negative, and - 2nx is the volume of n~ with 
respect to the invariant (1, 1)-form d/1 = dx dyjy2. 

The function 

(9.2) Iz- wi gl(Z, w) = log -_-
Z-Wv 

is harmonic on ~ x ~ minus the diagonal, with a logarithmic pole as z f--+ w 
and satisfies gl(YZ, yw) = gl(Z, w). Unfortunately, the average of this function 
over the group r gives a divergent series. Instead, it is best to look for a 
real-analytic function gs(z, w) on ~ x ~ minus the diagonal which satisfies 

(9.3) {

gs(YZ' yw) = gs(z, w) 

gs(z, w) ~ loglz - wlv 

Llgs(z, w) = s(s - l)gs(z, w) 

for all y E PSL2(R), 

as Zf--+W, 

where Ll = y2(ojox2 + ojoy2) is the 
hyperbolic Laplacian in the z 
variable and w is fixed. 

The first property implies that gs(z, w) is a function of the hyperbolic 
distance 

( Iz - Wl2 ) 
r = d(z, w) = cosh -1 2 + 1 . 

1m z 1m w 

Writing gs(z, w) = f(cosh r) we find that f satisfies the Legendre differential 
equation 

(9.4) 
2 d2f df 

(1 - u )- - 2u- + s(s - 1)f = O. 
du2 du 

The unique solution with the correct pole on the diagonal and slow growth 
at infinity is the function 

f(u) = -2Qs-1(U) = -2 LX) (u + p--=-t cosh t)-Sdt for u> 1 

[6, Chap. 7]. 
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Hence we may take 

g.(z, w) = - 2Qs-1 (cosh d(z, w)) 

(9.5) 
= -2Qs-1(2i~~;~ w + 1} 

then gl (z, w) is the function in (9.2). The advantage in using this generality is 
that for Re(s) > 1, the series 

(9.6) Gs(z, w) = Lgs(z, I'w) 
r 

is convergent and defines a symmetric bi-r-invariant function with a logari
thmic pole on the diagonal which satisfies L\Gs(z, w) = s(s - 1)Gs(z, w) for 
fixed w. It can be meromorphically continued to the half-plane Re(s) ~ t, and 
has a simple pole at s = 1 with residue 2/X independent of z and w [3]. 

The function 

(9.7) . { Residue Gs } 
G(x, y) = hm Gs(z, w) - ( 1) 

s-l S S -

is the Green's function associated to the measure dll/ - 2nx on X, where 
n(z) = x and n(w) = y. When X has cusps, the height pairing for divisors with 
cuspidal support must be computed via a limiting procedure, as dll has 
singularities on S. 

§10. Local Heights on Mumford Curves 

In this section, we will describe the local height pairing on Mumford curves 
over the non-archimedean local field kv' Our basic reference for the function 
theory used below is Manin and Drinfel'd [8]. 

Let r be a Schottky group in PGL2 (kv ), and let ~ denote its limit set
the closure of its fixed points on P1(kv)' The space Q = p 1(k.) - ~ 
admits a property discontinuous, rigid analytic action of r and we have a 
uniformation 

(10.1) 

for some Mumford curve X over kv' The number of independent generators 
for the free group r is equal to the genus of X. 

Let a and b be relatively prime divisors of degree zero on X over kv, and 
let A and B denote any liftings of these divisors to divisors on Q. Let WA be a 
function on p1 with div(wA ) = A; for any z not in the r-orbit of A in Q and 
any g E r we define 

(10.2) 
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This product converges to a limit in k: which is independent of z, and the 
resulting map IlA: [' --+ k: is a group homomorphism. 

The fundamental theorem on the positive-definiteness of the polarization 
pairing < , ): [,ab x [,ab --+ Z allows one to choose a rational divisor A repre
senting a such that IlA takes values in the units of k:. Such a representative 
A will be called unitary; for unitary A we have the formula 

(10.3) 

as the sum on the right-hand side defines a pairing satisfying all the proper
ties of Proposition 2.3. 

For X of genus zero, [' = (1) and (10.3) gives the logarithm of the cross
ratio, as in Section 7. For X of genus one, [' is a free group on one generator; 
conjugating by an automorphism of pi, we may assume [' is generated by 
Y = (6 ?) with Iqlv < 1. Then ~ = {O, oo}, 0 = k:, and (10.1) is Tate's para
metrization: k:/qZ ~ X(kv) taking 1 (mod qZ) to the origin for the group law 
on X. Let 

(10.4) 8(t) = (1 - t) n (1 - qn t)(l - qn C i ) 
n~i 

and suppose A and B are two divisors of degree zero on 0 with images a and 
b on X. If A = I mi(ai ), then A is a unitary representation for a if and only if 
a = n af" is a unit in k:. Since the function 

(10.5) 
8A (t) = n 8(t/aJm, satisfies 

we see that logI8A (t)lv is a function on X(kv) if A is unitary. In this case, some 
elementary manipulation shows that (10.3) is equivalent to Tate's formula 
[12J: 

(10.6) 

We remark that a will have an integral unitary representatiave A if and only 
if the class of a lies in the connected component of the origin in J(kv). 

For general Mumford curves of genus g 2': 2, the unitary representatives A 
may be hard to find. But the following case seems interesting. Assume [' has 
limit set ~ = Pi(kv), but view it as a subgroup of PGL2 (Kv ) where Kv is a 
separable quadratic extension of kv. Then 0 = Pi(Kv) - Pi(Kv) and ['/0;:;: 
X(Kv); such groups might be considered of Fuchsian type. Let Z H Z denote 
the non-trivial automorphism of Kv over kv; for any divisor A on 0 of the 
form A = Al - Al we find IlA(g) = IlA(g)-l, so A is unitary. For example, if 
a = (x) - (x) and b = (y) - (y) we find 

(10.7) Iz -YWI <a, b)v = 2Ilog -_ - , 
r Z - YW v 

where Z and ware points of 0 with n(z) = x, n( w) = y. 
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CHAPTER XV 

A Higher Dimensional 
Mordell Conjecture 

PAUL VOJTA 

Faltings' long awaited proof of the Mordell conjecture completes, roughly 
speaking, the question of whether a given curve has only finitely many inte
gral or rational points. Indeed, if a complete curve has genus g ;?: 2, then it 
has finitely many rational points; any affine curve whose projective closure is 
a curve of genus at least two will, afortiori, have only finitely many integral 
points. A curve of genus 1 is an elliptic curve; it will have infinitely many 
rational points over a sufficiently large ground field, but no affine subvariety 
has an infinite number of integral points. Finally, a curve of genus zero is, 
after a base change, the projective line, which has an infinite number of 
rational points; affine subvarieties omitting at most two points will have 
infinitely many integral points over a sufficiently large ring; but affine sub
varieties omitting at least three points will have only finitely many integral 
points. Thus the answer to the finiteness question is given entirely by the 
structure of the curve over the complex numbers. 

A natural next step, then, is to ask whether such a classification holds for 
higher dimensional varieties. The purpose of this paper is to present a conjec
tural answer to this question. The motivation for this conjecture comes from 
the field of complex analysis: all of the above theorems for curves have analo
gues for holomorphic maps to Riemann surfaces. For example, there are 
nonconstant meromorphic maps to the Riemann sphere which omit n points 
if and only if n < 3 (the Borel lemma), and no nonconstant hoi om orphic 
maps to a Riemann surface of genus at least two (Picard's theorem). Thus a 
curve admits infinite sets of integral or rational points if and only if the 
corresponding complex manifold admits at least one nonconstant holomor
phic map. 

On the analytic side, the proofs of the theorems all use Nevanlinna theory, 
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which we will introduce in Section 1. On the number-theoretic side, the 
statements on integral points can be proved by diophantine approximations, 
using Roth's theorem. Although they come from entirely different fields of 
mathematics, Osgood observed [9J, that these two fields have a startling 
similarity. This similarity will be described in Section 2. 

Section 3 presents the main conjecture. It presents a description of Nevan
linna theory in the higher dimensional case, due to Stoll and Griffiths. The 
main theorem, when translated into number theory, will be the conjecture of 
this paper. 

This conjecture implies many outstanding conjectures regarding integral 
and rational points. This includes two conjectures of Lang, Shafarevich and 
Hall, and a question posed by Bombieri. Except for Hall's conjecture, we 
show how these follow in Section 4. The deduction of Hall's conjecture is 
fairly lengthy; details will be published elsewhere. 

In Section 5 we compare methods in Griffiths' proof of the theorem in 
Nevanlinna theory, with the methods of Faltings' proof. 

lowe many thanks to Serge Lang and Joe Silverman for their helpful 
comments during the preparation of this paper. 

§l. A Brief Introduction to Nevanlinna Theory 

Nevanlinna theory is a generalization of the observation of Hadamard that, 
for a holomorphic function J, 

(1.1) (number of zeros in Izl < r) ~ log max(IJ(z)l: Izl ~ r) + 0(1), 

where the constant in 0(1) depends on J but not on r. This inequality is less 
than ideal in two ways. Although it is still true for meromorphic functions, it 
does not give an upper bound for the number of zeros, since the right-hand 
side is infinite. Moreover, it is necessarily a strict inequality even for entire 
functions; e.g. J(z) = e Z has no zeros but grows rapidly as Izl increases. 

Nevanlinna improved (1.1) by eliminating both of the deficiencies men
tioned above. He did this by defining the characteristic functions to replace 
each side of (1.1). The counting function is a weighted sum of the number of 
zeros: if n(a, r) is the number of zeros of J(z) - a inside the circle of radius r 
(counted with multiplicity), then the counting function is 

ir dr 
N(a, r) = (n(a, r) - n(a, 0»-

o r 

,,+ r 
= L.. ordz (f - a) log -I I' 

Izl<r z 

In the second equation, ord is the order of vanishing of J - a at z; the symbol 
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ord + means max(O, ord). If n( 00, r) counts the number of poles inside the 
circle ofradius r, then one can define N( 00, r) similarly. 

To replace the right-hand side of (1.1), Nevanlinna defined the character
istic function of f, T(r), as 

T(r) = ~f2" log+ If(re iO ) I dO + N(oo, r). 
2n 0 

A simple calculation shows that T(r) is defined even when f has a pole on 
the circle Izl = r. With these definitions (1.1) now becomes the Nevanlinna 
inequality N(O, r) ~ T(r) + 0(1), which is valid (and nontrivial) for mero
morphic functions in general. 

Still, this inequality is strict for functions such as eZ • To eliminate the 
strictness, we note that while eZ has no zeros, it does have many values 
very close to zero. With this in mind, we define the proximity function 

1 f2" I 1 I m(a, r) = 2n 0 log+ f(rei8) _ a dO. 

Adding this term to the left-hand side of the Nevanlinna inequality turns it 
into an equality, called the First Main Theorem of Nevanlinna theory: 

(1.2) m(a, r) + N(a, r) = T(r) + 0(1). 

This is actually a fairly straightforward consequence of Jensen's formula: 

1 f2" logiCAl = 2n 0 loglf(re i8 )ldO + N(oo, r) - N(O, r). 

where C A is the leading coefficient in the Laurent expansion of zero. 
Thus the First Main Theorem gives an upper bound for the number of 

zeros of a function. The much deeper Second Main Theorem gives an upper 
bound for N(a, r). Because of functions such as eZ , such a theorem must 
consider several values of a: 

n 

L m(ai, r) < 2 T(r) - Nt (r) + O(log(rT(r))). II 
i=t 

Following Weyl, the symbol II means that the inequality holds except for a 
set of r of finite measure. The term Nt (r) counts ramification of f in the same 
manner as N(a, r) counts zeros: in particular, it is nonnegative and can be 
dropped. Dividing this equation by T(r) and taking lim infr_ oo gives 

(1.3) 

where 

L b(a) ~ 2, 
aeC 

b(a) = lim m(a, r). 
r-oo T(r) 
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The number t5(a) is called the defect of a; equation (1.3) is called the Nevan
linna defect relation. 

By the First Main Theorem, 0 ::;; t5(a) ::;; 1; by the Second Main Theorem, 
t5(a) is almost always zero. What this means is that, for almost all a, f- 1 (a) is 
as large as (1.2) allows it to be; other values of a are called deficient; and t5(a) 
measures how deficient they are. Iff never attains the value a, then t5(a) = 1. 

§2. Correspondence with Number Theory 

In this section we set up a dictionary with which to translate the theorems 
and definitions of the previous section into number theory. Under this cor
respondence, all of the theorems of the last section translate into well-known 
theorems or conjectures of number theory. 

To fix notation, let k be a number field and let S be a finite set of places v 
containing the set SOC) of infinite places. We use the normalized absolute value 

II Ilv, defined as in [10]: 

Ilzllv = Izl if kv = IR; 

Ilzllv = Izl2 if kv = C; and 

Ilpllv = p-ef if v is p-adic and [kv: OJ p ] = ef 

The product formula can then be written without multiplicities: 

(2.1) Illlbli v = 1. 
v 

Now, as suggested in the introduction, let a meromorphic function corres
pond to an infinite set {b} ~ k. This is done by letting the function f para
metrize an infinite family of functions on the unit disk, parametrized by r, by 
contraction. On the boundary of the disk, we can take the absolute value, 
giving an archimedean absolute value If(re i9 )1 which can correspond to the 
absolute values II b II v for v E S. On the interior of the disk, one can take the 
order of vanishing of a function ordAf), which can correspond to the order, 
relative to a prime ideal, of b E k: ordp(b). Finally, it will soon be clear that the 
term log(r/lzl) should correspond to [kv: OJp]log p if v is a finite place lying 
over a rational prime p. Table 1 summarizes these identifications. 

Having made these identifications, it is now possible to translate the 
definitions and theorems of the preceding section. We start with the counting 
function: let a E k; then 

N(a, b) = )' [kv: OJp]log p. ord;(b - a) 
v¢s 

II 1 II L log+ --
v<ls b - a v 
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Table 1. The Dictionary in the One-Dimensional Case. 

Nevanlinna Theory 

f: C --> C nonconstant 
r 
a 
ZEC, Izi < r 
If(reiO)1 
ordJ 

r 
log

Izi 
Characteristic function 

T(r) = ~f.2X log+ If(reiO)lda + N(oo, r) 
2n 0 

Proximity function 

m(a, r) = ~f.2X log+ If .: Ida 
2n 0 (re' ) - a 

Counting function 

r 
N(a, r) = LIog-1 1 

Zk Zk 

First Main Theorem 

N(a, r) + m(a, r) = T(r) + 0(1) 

Defect 

m(a, r) 
b(a) = lim inf-

r-oo T(r) 

Defect relation L b(a) ~ 2 
aEC 

Jensen's theorem 

logicli = - log If(reiO)1 da 
1 f.2X 

2n 0 

+ N(oo, r) - N(O, r) 

Roth's Theorem 

{b} s k infinite 
b 
VES 

vrtS 
Ilbll v , VES 

ordv!, vrts 

log Nv 

Logarithmic height 

h(b) = [k: OJ] pog+ Ilbll v 

N(a, b) + m(a, b) = h(b) + 0(1) 

b() r . f mfa, b) 
a = 1m 1~ h(ii) 

)' bra) ~ 2 Roth's theorem 
a'eO 
Artin-Whaples product formula 

LIogllbll v = 0 
v 

For the proximity and characteristic functions, the integrals correspond to 
the sums: 

m(a, b) = v~/Og+ lib ~ at 
h(b) = Ilog+ IIbll v • 

v 
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Notice that the characteristic function has been written h(b) instead of T(b); 
this is because it is the height function defined in [10]. 

Now consider Jensen's formula. The term 10glc;,1 cannot be translated, but 
the right-hand side becomes 

L logllbll v + L log+ Ilbll v - L log+ II-b1 11 ' 
VES v¢s v¢s V 

which reduces to the left-hand side of the product formula 

Llogllbll v = o. 
v 

Similarly, the First Main Theorem reduces to 

h(b ~ a) = h(b) + 0(1), 

which is an exercise using the definition of height, the product formula (giving 
h(1jx) = h(x) for x ¥- 0), and the triangle inequality (giving h(x + y) ~ h(x) + 
h(y) + log 2). 

This leaves the Second Main Theorem and the defect relation. We 
claim that the defect relation is equivalent to Roth's theorem, which is the 
following. 

Theorem 2.2. Let k, S, and II II be as above. For each v E S let IXv be an algebraic 
number in kv: let B > 0 and c > 0 be constants. Then only finitely many bE k 
satisfy 

(2.3) Il min(1, lib - IXvIIv) < (~2+£' 
VES H 

Expressing (2.3) logarithmically and taking the contrapositive, this theorem 
is equivalent to saying that for all infinite sets of elements bE k 

L log+ 112-11 < (2 + e)h(b) + 0(1). 
VES IXv v 

By enlarging k, we may assume the IXv to lie in k; then a few more manipula
tions place this in the form 

n 

(2.4) L m(ai' b) < (2 + e)h(b) + 0(1). 
i=1 

Defining as before, J(a) = lim m(a, b)jh(b), this is equivalent to the defect 
relation 

L J(a) ~ 2. 
aEk 

From (2.4) it follows that the Second Main Theorem corresponds to a 
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conjectural refinement of Roth's theorem which uses the condition 

Il min(1, lib - Clvll v) < H(b)~h(bY' 
instead of (2.3). This conjecture is due to Lang [7], with c' = 1 + B. 

§3. Higher Dimensional Nevanlinna Theory 

In this section we introduce higher dimensional Nevanlinna theory and con
sider how it relates to number theory. The higher dimensional analogue of 
the defect relation gives a new conjecture which generalizes Roth's theorem 
to higher dimensions. The relation is due to Stoll [11]; this section follows 
Griffiths [4]. 

One of the major advances in Nevanlinna theory since its appearance has 
been the introduction of differential-geometric methods. In particular, both 
the proximity function m(a, r) and the characteristic function T(r) have new 
expressions in terms of metrics defined on line bundles. This corresponds well 
with the use of metrics in Arakelov theory. 

To fix notation, let V be a projective algebraic variety of dimension nand 
let D be an effective divisor on V, with associated line bundle [D]. Let s be a 
section of [D] whose divisor is D. On the analytic side, assume f: en ~ V is 
an equidimensional holomorphic map which is nondegenerate (i.e. its Jaco
bian determinant does not vanish identically). The domain can again be 
written in polar coordinates, using r = IZll2 + ... + IZnl2 and BEOB[1] the 
boundary of the ball of radius 1. On the number-theoretic side, let Sand k be 
as before; assume V, D, etc. to be defined over k. Then let P = {P} £; V(k) be 
a set of points which is non degenerate; i.e. dense in the Zariski topology. 

The easiest definition is the proximity function. Instead of being defined 
relative to an element a E e, it is defined relative to a divisor D of V. Letting 
I I be a metric on [D], we have 

m(D, r) = f -log Is(f(z)) I dO", 
aB[r] 

where da is a rotationally invariant measure on oB [r] normalized to have 
JaB!r] dO" = 1. In the number-theoretic context, this translates into 

m(D, P) = L -loglls(P)llv 
VES 

= L dD,v(P), 
VES 

where dD,v is the logarithmic distance function defined in Section VIII of 
[10]. (These distance functions are also known as Weil functions.) If S = S"'" 
then the above is the component of the height at infinity in the definition of 
Arakelov theory. 
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As before, the counting function can be written as a sum over the compo
nents of f* D. The exact formula appears in [4]; its number-theoretic equiva
lent is 

(3.1) N(D, P) = L dD,JP). 
vl{;s 

The Nevanlinna characteristic function also has a fairly complicated defini
tion, using Chern classes; it seems to have no obvious translation as in 
Section 2. Therefore we merely define the height to be 

hD(P) = LdD,v(P), 
v 

so that it automatically satisfies the First Main Theorem and, by [10, Theo
rem 3.1], is independent of the choice of D within its linear equivalence 
class. This is consistent with the picture in Nevanlinna theory, in which the 
characteristic function (height) is defined in terms of the line bundle [D], so 
that it is automatically independent of linear equivalence; then by the First 
Main Theorem, the sum N(D, r) + m(D, r) is independent of the choice of D 
within its linear equivalence class, up to a bounded function. 

As in the one variable case, there is a simple expression for the defect: 

beD) = lim m(D, -) . 
- hD(-) 

As before, 0 ::;; beD) ::;; 1. In the number-theoretic case this limit is taken with 
respect to Zariski-open subsets of V. In other words, we let beD) = A, where 
A is the smallest real number such that for all a > 0 and all Zariski-open 
subsets V of V, there is a point P E {P} 11 V for which m(D, P)lh[D)(P) < A + a. 

Theorem 3.2 (Second Main Theorem). Let D be a normal crossings divisor on 
V (i.e. it is locally of the form Z l Z2".Zi = 0). Let K denote the canonical 
bundle on V. Then: 

(a) If D is ample, then beD) ::;; lim (T_K(r)/TD(r». 
(b) IfD is effective, A is ample, and a> 0, then 

m(D, r) + TK(r) ~ aIA(r). II 

This leads naturally to 

Conjecture 3.3. In the number field case, with V, D, K, and {P} S;;; V(k) as above 

(a) If D is ample, then 
. h_K(P) 

beD) ::;; hm hD(P) 

::;; inf{plqEQlq > 0, pD + qK ample + effective}. 

(b) If D is effective, A is ample, and a < 0, then m(D, P) + hK(P)::;; a hA(P) for 
all P outside of some Zariski-closed subset Z(a) of V. 
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Remarks. (a) In case V = !pi and D has n distinct points, then D '" O(n) and 
K = O( -2), so the right-hand side is 2/n. Multiplying by n and writing 
D = L [a;], we have 

~ ~( .) = "1. m(a;, b) ;ft u a, ~ 1m h(b) 

1. "m(a;, b) 
:5: 1m ~ 
- - hO(1)(b) 

_ 1. m(D, b) 
- n 1m hD(b) 

= nJ(D) :5: 2. 

Thus the above conjecture contains Roth's theorem. 
(b) In general, (3.3) reduces to a statement in diophantine approximations. 

However, because of the "Zariski limit" used in defining J(D), the conclusion 
will always be that the inequality holds outside of some Zariski-closed subset. 
This exceptional set can sometimes be eliminated in special cases, but exam
ples in the next section will show that in general it is necessary. 

§4. Consequences of the Conjecture 

Conjecture 3.3 implies many conjectures in number theory that have already 
been posed. In this section we examine conjectures of Shafarevich, and Lang, 
and Hall, and a question posed by Bombieri. 

Consider first the question posed by Bombieri: On a variety V of general 
type, are all sets of rational points degenerate? Conjecture 3.3 implies that the 
answer is "yes." To see this, we need a definition and a lemma. 

Definition. Let L be a line bundle on V. Then the dimension of L is 
the smallest integer i such that I(L®n) = O(n;). If L®n never has any 
global sections, we set i = -00. If i = dim V, then we say that L is maximal 
dimensional. 

Remarks. (a) By [6], we always have dim L:5: dim V. 
(b) If K is the canonical bundle on V, then dim K is the Kodaira dimen

sion of V. 
(c) If D is a divisor, then dim[D] is independent of the multiplicities of the 

components of D. 
(d) If f: V -+ W is a morphism and L is a line bundle on W, then 

dimf* L = dim L. 

Lemma 4.1 (Kodaira). Let L be a maximal dimensional line bundle on V, let A 
be an ample line bundle on V. Then for some n > 0, hO(L®n ® A-I) > O. 
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In particular 

nhL(P) > hA(P) + 0(1) 

outside of some Zariski-closed subset of V. 

Now let V be of general type. Then K is of maximum dimension and 
Lemma 4.1 applies with L = K. But this contradicts Conjecture 3.3b when 
D = 0 and 8 < lin, unless V(k) is degenerate. This implies that the answer to 
Bombieri's question is yes. In general, a variety of general type may contain 
rational curves, so the condition on the exceptional subset is necessary. 

For curves, the above discussion implies that if a curve has genus g ~ 2, 
then deg K = 2g - 2 > 0, so K is ample, hence of maximal dimension. Then 
V(k) is degnerate, hence finite since V is a curve. This is Mordell's conjecture. 

Before discussing the conjectures of Shafarevich and Lang, it is necessary 
to digress momentarily to define integral points. Naively, assure that an 
affine variety is given by equations /;(Xl' ... , Xn) = 0, 1 ::;; i ::;; m. In the lan
guage of schemes, an integral point is a map, 

~Spec Z[Xl' ... , Xn]/(/;) 

specz~ ! 
SpecZ 

of schemes over Spec Z. In the present case, however, we are considering 
complete varieties defined over a field k. Therefore let U be the variety 
Spec k[X]I(f) and let V be its completion, with D the divisor V - U. The 
functions {I, Xl' ... , Xn} form a basic for .!l'(D), a point PE V(k) is integral if 
its images under these functions are integers. This is the definition used by 
Lang [8]. For our purposes, we note that 

dD.JP) = -log max(l, IIXlll v, ... , IIXn Ilv) 

is a distance function for D at any valuation v; therefore, if P is an integral 
point relative to the above situation, then 

N(D, P) = L -logmax(l, IIXl(P)llv,"" IIXn(P)llv) 
v,s 

=0. 

since all Xi(P) are S-integers. In particular, this means that: 

Lemma 4.2. If f?J = {P} is a set of D-integral points of V, then c5(D) = 1. 

This is similar to the analytic situation in which the image of f misses D. 
Then again N(D, r) = 0 and c5(D) = 1. 

Conjecture 3.3, as it relates to integral points, can best be stated with a few 
definitions. 

Let D be a normal crossing divisor on a complete nonsingular variety V. 
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Definition. The logarithmic canonical divisor of the variety V\D is the sheaf 
of maximal degree differential forms on V\D which have at most simple poles 
at D; i.e. in an affine open set U, a form has logarithmic singularities along D 
if it can be written as fdx 1 /\ ... /\ dXn with XiE O(U), n = dim V, and f has 
at most simple poles along D. Thus KY\D = Ky ® [D]. 

Definition. A quasi-projective variety is of logarithmic general type if it can 
be written as V\D (as above), and KY\D is of maximal dimension on V. 

The above definition is independent of the representation of the choice of 
V and D (which may vary by blow-ups on D) (see [6J). 

Now Conjecture 3.3 implies 

Conjecture 4.3. If V\D is a variety of logarithmic general type, then all sets of 
D-integral points of V are degenerate. 

This follows from part (b) of Conjecture 3.3 and from Lemma 4.1 in the 
same manner as before, i.e. since N(D, P) = 0, then (3.3b) becomes, 

hD(P) + hK(P) :s; ehA(P); 

yet D + K > (l/n)A by Lemma 4.1. 

Now Ag,n classifies principally polarized abelian varieties and S-integral 
points correspond to abelian varieties with good reduction outside S. But 
since Ag,n is of logarithmic general type [1J, we have the fact that S-integral 
points lie in some Zariski-closed subset of Ag,n' The Shafarevich conjec
ture is that this subset has dimension zero; thus it is partially implied by 
Conjecture 4.3. 

Consider now 

Conjecture 4.4 (Lang). Let D be an ample divisor on an abelian variety A. Then 
all sets of D-integral points on A are finite. 

The conclusion of this conjecture is stronger than that of Conjecture 4.3; 
however, disregarding this discrepancy, the above conjecture follows even 
when D is not a normal crossings divisor. Indeed, let n: V ~ A denote a 
blowing-up of A such that n* D has normal crossings. Then since D is ample, 
it is of maximum dimension; thus V\n* Dis oflogarithmic general type. Thus 
Lang's conjecture follows from Conjecture 4.3 up to Zariski-closed subsets 
(as above). 

Finally, we consider Hall's conjecture [5]. In its original form (over Z), it 
was posed as 

ly2 - x31 »X1/2-., if y2 =1= X3. 

Work over function fields has suggested that the correct formulation over 
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number fields should be 

(4.5) 

where x and yare integers. This latter formula is a consequence of Conjecture 
3.3. Let D be the divisor (y2Z - X 3 ) on !P2 . The support of this divisor has 
two singular points. When sufficiently blown-up, the pull-back of D has 
normal crossings. Applying the conjecture to the support of D on the blow
up then gives an inequality which implies (4.5) when x and yare integers. The 
exceptional Zariski-closed subset Z can be eliminated in this case that Gm 
acts on !p 2 by 

u' (x, y) = (u2 x, u3 y), 

preserving (4.5) up to a constant (depending on u). Thus any curve in Z must 
be fixed by Gm, and Gm-orbits obey (4.5). Any point of Z can be absorbed 
into the 0(1) term. The explicit details of the blowings-up are rather lengthy; 
they will be published elsewhere. 

§5. Comparison with Faltings' Proof 

Since the statements of the theorems become so similar when viewed in this 
way, it is natural to ask whether the proof of Mordell's conjecture is at all 
similar to the proof of Picard's theorem. The answer is no: the proof of 
Picard's theorem makes no reference to abelian varieties. However, the Sha
farevich conjecture is also a consequence of the conjecture, and some aspects 
of Griffiths' proof of Theorem 9 appear also in Faltings' proof. 

Indeed, let V be the toroidal compactification Ag.n and let Ag.n = V\D. 
Then D is a normal crossings divisor and Kv + D is of maximal dimension. 

The first step in Griffiths' proof is to construct a metric on this line bundle, 
which has at most logarithmic singularities at D. Later he shows that the 
characteristic function relative to this "pseudo-metric" does not differ sub
stantially from the characteristic function relative to any metric defined on 
all of V ([2, Lemma 5.15]). 

Faltings does the same procedure for a line bundle which is not the same 
as Kv ® [D], but is proportional. Indeed, using the notation of [3], the 
height of an abelian variety is defined relative to a hermitian metric on 

w = AgW. 

As is shown in [3], the second symmetric power of W is isomorphic to the 
sheaf of differential forms with logarithmic poles at D: 

S2(W) == nHD]. 

But Kv ® [D] is the bundle of top degree differential forms with logarithmic 
singularities at D, so 

N(g+1)/2nHD] = Kv ® [D]. 
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Thus, a little linear algebra shows that 

W9+1 ;;; Ky ® [D]. 

The metric on w that Faltings uses also has logarithmic singularities at D; he 
also uses an equivalent of Carlson-Griffiths' Lemma 5.15, which appears 
implicitly in Proposition 8.2 of [10]. 
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