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Introduction

Kodaira-Parshin’s construction is used to prove the following theorem.

Theorem 0.1. Let K be a number field, S a finite of primes of K containing dyadic primes
(i.e. primes containing 2), and C a geometrically connected complete nonsingular curve over K
of genus g. Then there exists a finite extension L/K such that for every P ∈ C(K), there exists a
geometrically connected complete nonsingular curve CP over L and a finite morphism

ϕP : CP → C ⊗K L

with the following properties:
(1) CP has good reduction outside the finite set

{w : w is a prime of L, w|v for some v ∈ S}.

(2) The genus g(CP ) P ∈ C(K) is bounded.
(3) ϕP is ramified exactly at P .

We also need the following theorem due to de Franchis.

Theorem 0.2. Let C ′ and C be connected complete nonsingular curves over an algebraically closed
field k. Suppose g(C) ≥ 2. There are only finitely many non-constant morphisms C ′ → C.

0.3. Shafarevich’s conjecture implies Mordell’s conjecture. Apply Theorem 0.1 to a curve
C of genus ≥ 2. By Shafarevich’s conjecture and the properties (1) and (2) in Theorem 0.1, the
isomorphism classes of CP (P ∈ C(K)) form a finite set. By Theorem 0.2, for each isomorphism
class X in this finite set, there are only finitely many non-constant morphisms X → C⊗K L. Thus
the set of isomorphism classes of pairs (CP , ϕP ) (P ∈ C(K)) is finite. For distinct P1, P2 ∈ C(K),
the pairs (CP1

, ϕP1
) and (CP2

, ϕP2
) are not isomorphic by the property (3) in Theorem 0.1. So

C(K) is finite.

1. Proof of Theorem 0.1

Remark 1.1. Let R be a discrete valuation ring with fraction field F and residue field κ. Suppose
charκ ̸= 2. Let f ∈ F ∗ and let π be a uniformizer. We can write f = uπr such that u is a unit
and r = v(f). We have

K[
√
f ] =

{
K[

√
u] if r is even,

K[
√
uπ] if r is odd.

One can check K[
√
u]/K is an unramified extension and K[

√
uπ] is totally ramified. So K[

√
f ] is

ramified if and only if v(f) is odd.
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Remark 1.2. Let C be a complete nonsingular curve over an algebraically closed field k with
char k ̸= 2, f a nonzero element in the function field K(C) of C, and C ′ the integral closure of C
in K(C)[

√
f ]. Write

(f) = 2D + P1 ± · · · ± Pn.

Then C ′ → C is ramified exactly over P1, . . . , Pn.

Remark 1.3. Let C = P1
Q, and let a, b ∈ Q ∼= A1(Q) be distinct rational numbers. Take

f1 =
x− a

x− b
, f2 = p

x− a

x− b
,

where p is a prime distinct from 2. We have

(f1) = (f2) = a− b

as divisors on C. Let Ci be the integral closure of C in K[
√
fi]. Then both C1 and C2 are

ramified exactly over a and b. The curve C1 has good reductions at those prime p ̸= 2 such that
spp(a) ̸= spp(b), where

spp : P1(Q) → P1(Z/p)

is the specialization map of rational points for P1
Z. But C2 does not have good reduction at p.

Remark 1.4. We always work with a smooth proper algebraic curve π : C → SpecK which is
geometrically connected. Note that we have the following equivalence:

C is geometrically connected ⇔ Γ(C ⊗K K̄,OC⊗KK̄) = K̄,

⇔ Γ(C,OC) = K,

⇔ OSpecK
∼= π∗OC .

A good integral model of C over RS is a smooth proper morphism π̃ : C → SpecRS such that its
base extension to K is π : C → SpecK. We claim that

OSpecRS
∼= π̃∗OC ,

so that by the Zariski connectedness theorem, the fibers of π̃ are geometrically connected smooth
proper algebraic curves. Since π̃ is proper, π̃∗OC is a coherent OSpecRS

-module. Let

A := Γ(SpecRS , π̃∗OC) ∼= Γ(C,OC).

Then A is an integral domain and a finite RS-algebra. So A is integral over RS . Let η be the
generic point of SpecRS . Since the generic fiber π̃ is π : C → SpecK and C is geometrically
connected, we have

(π̃∗OC)η ∼= (π∗OC)η ∼= K.

We thus have A⊗RS
K ∼= K. So the fraction field of A is also K. But RS is integrally closed. So

we have RS = A, that is, OSpecRS
∼= π̃∗OC .

Lemma 1.5. Let C be a complete geometrically connected nonsingular curve over a number field
K, and let 2D+P1−P2 be a principal divisors on C such that P1, P2 ∈ C(K). Choose f ∈ K(C)∗

such that
(f) = 2D + P1 − P2.

Let C ′ be the integral closure of C in K(C)[
√
f ].

(i) The morphism C ′ → C is ramified exactly at P1, P2.
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(ii) Let S be a finite set of primes of K containing those v at which C has bad reduction, those
v at which

spv(P1) = spv(P2),

and those dyadic v. Extend C to a smooth proper morphism

π̃ : C → SpecRS .

Let
2D + P1 − P2

be the Zariski closure of 2D+P1−P2 in C. Regard f as a rational function on C. Then there
exists a divisor d of SpecRS such that

(f) = 2D + P1 − P2 + π∗(d).

If d = 0, then C ′ has good reduction outside S.

Proof. We have explained (i) and the last part of (ii) in the above Remarks 1.2 and 1.3. Since
(f) = 2D+P1−P2, the generic fiber of (f)−(2D+P1−P2) is the zero divisor. So (f)−(2D+P1−P2)
is a vertical divisor, that is, its irreducible components are contained in fibers of π̃ of closed points
in SpecRS . The fibers of π̃ are smooth and connected by Remark 1.4. So (f)− (2D+P1 −P2) is
of the form π∗(d). □

Lemma 1.6. Let A be an abelian variety over a number field K. There exists a finite extension
L of K such that A(K) ⊂ 2A(L). If A can can be extended to an Abelian scheme A → SpecRA,S,
then L can be taken to be unramified over S.

Proof. By the Mordell-Weil theorem, A(K)/2A(K) is a finite group. Choose a finite family
x1, . . . , xn ∈ A(K) of representatives for the group A(K)/2A(K). Choose L large enough so
that x1

2 , . . . , xn

2 are defined in A(L). □

1.7. Proof of Theorem 1. If C(K) = ∅, there is nothing to prove. Suppose C(K) is not empty.
We use a rational point to define a canonical morphism

θ : C → J,

where J is the Jacobian of C. The morphism 2 : J → J is a finite étale morphism of degree 22g.
Let ϕ : C ′ → C be the base change of 2 : J → J by θ. By Propositions 14 and 21 in Serre, Algebraic
groups and class fields theory, C ′ is geometrically connected and ϕ′ is finite étale of degree 22g.

Claim: C ′ has good reduction outside S. For any P ∈ C(K) and Q ∈ ϕ−1(P ), the residue field
κ(Q) at Q is a finite extension of K unramified outside S.

Recall that C → SpecK can be extended to a proper smooth relative curve C → SpecRS , and
2 : J → J can be extended to the a finite étale morphism 2 : J → J on the relative Jacobian J
of C. Let ϕ̃ : C′ → C be the base change of 2 : J → J via the canonical morphism C → J . Then
C′ is smooth over SpecRS and hence C ′ has good reduction outside S. Each P ∈ C(K) defines an
RS-point P̃ : SpecRS → C (valuation criterion for the proper morphism C → SpecRS). Consider
the commutative diagram

C′ ×C SpecRS C′ J

SpecRS C J .

2
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The leftmost morphism C′ ×C SpecRS → SpecRS is finite étale with generic fiber ϕ−1(P ). So the
residue fields of points in ϕ−1(P ) are finite extension of K unramified outside S. This finishes the
proof of the claim. To go further, we need the following:

Hermite Theorem. Let N be a positive integer, and let S be a finite set of primes of K. There
are only finitely many extensions L/K unramified outside S with [L : K] ≤ N .

Given P ∈ C(K) and Q ∈ ϕ−1(P ), we have [κ(Q) : K] ≤ 22g. By the Hermite theorem, there
exists a common finite extension L1/K unramified outside S such that points in ϕ−1(P ) have
coordinates in L1 for all P ∈ C(K). Let P1, P2 ∈ ϕ−1(P )(L1) be two distinct points. (Since
L1 contains the residue fields of all points in ϕ−1(P ), we have |ϕ−1(P )(L1)| = 22g.) Denote the
L1-point SpecL1 → C above P by PL1 . Let RS,L1 be the integral closure of RS in L1. Extend
P1, P2 and PL1

to morphisms

P̃1 : SpecRS,L1
→ C′, P̃2 : SpecRS,L1

→ C′, P̃L1
: SpecRS,L1

→ C.
Consider the commutative diagram

C′ ×C SpecRS,L1 C′ J

SpecRL1,S C J .

2

P̃L1

The leftmost morphism C′×C SpecRS,L1
→ SpecRS is finite étale with generic fiber ϕ−1(PL1

), and
P̃1, P̃2 define sections of this finite étale morphism. These section and open and closed immersions
and hence are disjoint. Thus spw(P1) and spw(P2) are distinct for all prime w lying above a prime
v in S.

By Lemma 1.6, there exists a finite extension L2/L1 unramified over S such that J ′(L1) ⊂
2J ′(L2). So there exists a divisor D of C ′ ⊗L1 L2 such that 2D + P1 − P2 is a principal divisor.
Choose f ∈ K(C ′ ⊗L1 L2) such that

(f) = 2D + P1 − P2.

Let 2D + P1 − P2 be the Zariski closure of 2D + P1 − P2 in C′ ⊗RS
RS,L2 . Then as divisors on

C′ ⊗RS
RS,L2 , we have

(f) = 2D + P1 − P2 + π∗d

for a divisor d on SpecRS,L2
. Let L be the Hilbert class field of L2. Then the divisor d in L2

becomes a principle divisor (c) in L. Replace f by c−1f . Then we have

(f) = 2D + P1 − P2

as divisors in C′ ⊗RS
RS,L. Let CP be the integral closure of C ′ ⊗K L in K(C ′ ⊗K L)[

√
f ], and let

ϕP : CP → C ⊗K L be the composite

CP → C ′ ⊗K L
ϕ→ C ⊗K L.

Then the properties (1) and (3) in Theorem 0.1 hold. Note that deg ϕP = 22g+1. By the Hurwitz
formula, we have

2− 2g(CP ) = 22g+1(2− 2g)− (eP1
− 1)− (eP2

− 1).

where ePi = 2 are the ramification indices. It follows that g(CP ) is bounded.

2. Proof of Theorem 0.2

For convenience, in this section, we work with an algebraically closed ground field k.
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2.1. Hilbert scheme. Let X be a projective k-scheme. For any closed immersion i : Y → X,
define its Hilbert polynomial PY (x) ∈ Q[x] to be the polynomial such that

PY (n) = dimkH
0(Y,OY (n))

for sufficiently large n. Let T be a connected k-scheme, and let i : Y → X ×k T be a closed
immersion such that Y is flat over T . Then the Hilbert polynomial for the fiber

it : Yt → X ⊗k k(t)

is independent of P . (See Theorem III 9.9 of Hartshorne, Algebraic Geometry).
Fix a polynomial P ∈ Q[x]. Consider the functor

HilbP : (k-schemes) → (sets)

so that for every k-scheme T , HilbP (T ) is the set of closed subscheme i : Y → X ×k T such that
Y is flat over T and that each fiber over a point in T has the Hilbert polynomial P . Grothendieck
shows that this functor is representable by a k-scheme HP of finite type, called the Hilbert scheme.

Let i : Y → X be a closed immeresion of X with the Hilbert polynomial P . It can be regarded
as an element in HilbP (Spec k), and hence a k-point in HP . Denote by y the k-point in HP

corresponding to i. Let TyHP be the Zariski tangent space of HP at y, and let I = ker(OX → i∗OY )
be the ideal sheaf of i.

Proposition 2.2. Notation as above. We have an isomorphism

TyHP
∼= HomOY

(i∗I/I2,OY ),

Proof. Let k[ϵ] be the k-algebra generated by ϵ with the relation ϵ2 = 0. Then Ty can be identified
with the set of closed subschemes Y → X⊗kk[ϵ] such that Y is flat over k[ϵ], and the base extension
of Y → X ⊗k k[ϵ] by

k[ϵ] → k, ϵ 7→ 0

can be identified with i : Y → X.
We study the affine version of this problem. Assume i : Y → X is given by

SpecA/I → SpecA,

where I is an ideal of a ring A. Then Ty is the set of ideals J of A[ϵ] such that A[ϵ]/J is flat over
k[ϵ] and

A[ϵ]/J ⊗k[ϵ] k ∼= A/I.(2.2.1)

Let’s prove this set is in one-to-one correspondence with the set HomA/I(I/I
2, A/I).

We have an exact sequence
0 → k

ϵ→ k[ϵ] → k → 0,

where the arrow k
ϵ→ k is the map a 7→ aϵ. Applying A[ϵ]/J ⊗k[ϵ] − to the above short exact

sequence, the resulting sequence is still exact since A[ϵ]/J is flat over k[ϵ]. Taking into account of
(2.2.1), we get a short exact sequence

0 → A/I
ϵ→ A[ϵ]/J → A/I → 0.

We have a commutative diagram

0 A A[ϵ] A 0

0 A/I A[ϵ]/J A/I 0.

ϵ

ϵ
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By the five lemma, it gives rise to an exact sequence

0 → I
ϵ→ J → I → 0.

Given x ∈ I, choose x + aϵ ∈ J lifting x, where a ∈ A. The lift is not unique. Other lifts are of
the form x+ (a+ b)ϵ with b ∈ I. We thus get a well-defined homomorphism

I → A/I, x 7→ a+ I.

One can check it induces a homomorphism

I/I2 → A/I.

Conversely, given a homomorphism ϕ : I/I2 → A/I, define

J = {x+ ϵy : x ∈ I, y ∈ A, ϕ(x) ≡ y mod I}.

Then J is an ideal of A[ϵ], A[ϵ]/J is flat over k[ϵ], and A[ϵ]/J ⊗k[ϵ] k ∼= A/I. □

Proposition 2.3 (Adjunction formula). Let C be a complete nonsingular curve embedded in a
complete nonsingular surface X. Then

2g(C)− 2 = C.(C +KX),

where KX is the canonical class of X.

Proof. Let i : C → X be the closed immersion and let I be the ideal sheaf of C. We have a short
exact sequence

0 → i−1(I/I2) → i∗Ω1
X → Ω1

C → 0.

Let ωX = ∧2Ω1
X . Then we have

i∗ωX
∼= i∗I ⊗OC

Ω1
C .

We thus have

i∗(L(C)⊗OX
ωX) ∼= Ω1

C ,(2.3.1)

where L(C) ∼= I−1 is the invertible OX -module corresponding to C considered as a divisor on X.
Taking degree on both sides of (2.3.1), we get C.(C +KX) = 2g(C)− 2. □

2.4. Proof of Theorem 2. Let ϕ : C ′ → C be a nonconstant morphism, let X = C ′ ×k C, and
let

Γϕ : C ′ → X, x 7→ (x, ϕ(x))

be the graph of ϕ. For any closed point P of C and any closed point P ′ of C ′, we have

Γϕ.(P
′ × C) = 1, Γϕ.(C

′ × P ) = |ϕ−1(P )| = d,

where d = deg(ϕ). It follows that for any divisor d of C and any divisor d′ of C ′, we have

Γϕ.(p
∗
1d

′) = deg(d′), Γϕ.(p
∗
2d) = ddeg(d),(2.4.1)

where p1 : C ′ ×k C → C ′ and p2 : C ′ ×k C → C are the projections. We have

Ω1
X

∼= p∗1Ω
1
C′ ⊕ p∗2Ω

1
C , ωX

∼= p∗1Ω
1
C′ ⊗ p∗2Ω

1
C .

So we have
KX = p∗1KC′ + p∗2KC .

Hence

Γϕ.KX = Γϕ.(p
∗
1KC′ + p∗2KC) = degKC′ + ddegKC = (2g′ − 2) + d(2g − 2),(2.4.2)
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where g and g′ are the geni of C and C ′, respectively. By the adjunction formula applied to the
curve Γϕ in X, we have

2g′ − 2 = Γϕ.(Γϕ +KX).

Combined with (2.4.2), we get

Γ2
ϕ = d(2− 2g).(2.4.3)

Since g ≥ 2, we have Γ2
ϕ < 0. Let I be the ideal sheaf of the closed immersion Γϕ : C ′ → X. Recall

that the normal bundle of Γϕ in X is defined to be

N = HomOC′ (Γ
−1
ϕ (I/I2),OC′) ∼= HomOC′ (Γ

∗
ϕI,OC′) ∼= Γ∗

ϕ(I−1).

We have
Γ2
ϕ = deg Γ∗

ϕ(L(Γϕ)) = deg Γ∗
ϕ(I−1) = degN .

So N is an invertible sheaf on C ′ of negative degree. It follows that Γ(C ′,N ) = 0. (Suppose D
is a divisor on C ′ on such that N ∼= L(D). If we have a nonzero f ∈ Γ(C ′,N ), then (f) +D ≥ 0
and deg(D) = deg((f) +D) ≥ 0.) Let P be the Hilbert polynomial of the closed subscheme Γϕ in
X, and let y be the k-point in the Hilbert scheme HP corresponding to Γ. By Proposition 2.2, we
have

TyHP
∼= HomOC′ (Γ

∗(I/I2),OC′) ∼= Γ(C ′,N ) = 0.

Those y is an isolated point in the Hilbert scheme HP . But as a k-scheme of finite type, HP

has only finitely many isolated points. Thus there are only finitely many nonconstant morphism
ϕ : C ′ → C such that Γϕ has a given Hilbert polynomial P .

Next we prove there are only finitely many possibilities for the Hilbert polynomial of Γϕ. Let
H be a very ample divisor on X so that OX(1) = L(H). By the Riemann-Roch theorem for the
surface X, we have

χ(X, (Γϕ,∗OC′)(n)) = χ(X,OX(n))− χ(X, I(n))

= χ(X,OX(n))−
(1
2
(nH − Γϕ)(nH − Γϕ −KX) + 1 + pa

)
From the last expression, to prove there are only finitely possibilities for the Hilbert polynomial,
it suffices to show there are only finitely many possibilities for

Γϕ.H, Γϕ.KX , Γ2
ϕ.

We can choose a very ample divisor of the form H = p∗1d
′ + p∗2d for some very ample divisors d′

on C ′ and d on C. By (2.4.1), (2.4.2) and (2.4.3), to prove there are only finitely many choice for
the Hilbert polynomial of Γϕ, it suffices to show there are only finitely many possibilities for the
degree d of ϕ. This follows from the Hurwitz formula. Indeed, we have

(2− 2g′) = d(2− 2g)−
∑
Q

(eQ − 1) ≤ d(2− 2g),

where the summation is over the points Q in C ′ where ϕ is ramified. Since g ≥ 2, we must have
d ≤ 2g′−2

2g−2 .
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