
1. Basic Facts and definitions

Let S be a scheme. Recall that a group scheme over S is a group object in (Sch/S).
More precisely,we have the following definition.

Definition 1.1. — Let S be a base scheme. A group scheme G over S is a scheme
G over S with the following S-morphisms m, e, i:

m : G×G −→ G

e : S −→ G

i : G −→ G

satisfying the usual group axioms for multiplicaiton, identity, and inversion. We
also call e the neutral section of the structure map.
Equivalently, we can also describe this definition by a concise category language, that
is, we require that for any S-scheme T , the set G (T ) := HomS (T,G) is equipped
with a group structure in a way functorial in T . Thus the functor of points defines
a functor G : (Sch/S) −→ Grp.
By Yonneda lemma, we can see these two descriptions are indeed equivalent.

Definition 1.2. — An abelian scheme over S is a group scheme over S which is
proper, smooth and geometrically connected over S. When S is the spectrum of a
field, we also say abelian variety.

Remark 1.3. — One can deduce that an abelian scheme is automatically commu-
tative.

Theorem 1.4 (Rigidity). — Let A/S be an abelian scheme, and let G be a sepa-
rated group scheme over S. Any S-morphism A → G taking eA to eG is automatically
a group homomorphism.

Corollary 1.5. — The group structure of an abelian scheme A/S is commutative.

Proof. — The inverse map i : A → A is a group homomorphism, so A is commuta-
tive.

We shall always think of the group law on A as addition.

Example 1.6. — For an elliptic curve E over S (i.e. a proper smooth S-scheme
E/S such that each geometric fiber is a projective smooth connected curve of genus
1, together with a distinguished section e : S → E), there is a unique group structure
on E such that e is the neutral section. With this structure, E is then an abelian
scheme.

When S = Spec (k) , k = k̄ , the group structure is characterized by the condition:

P +Q = R ⇐⇒ [P ] + [Q]
lin∼ [R] + [e]

where P,Q,R are points in E, and e is the fixed zero point. By Abel’s theorem the
above condition indeed gives a well defined group structure (e.g., for given P,Q, such
R indeed exists). In fact, we have a group isomorphism E → Jac(E) = Div0(E)/ ∼
defined by [P ] 7→ [P ]− [e] .

Example 1.7. — Let X be a smooth projective S-scheme whose geometric fibers
are smooth projective connected curves. Then Pic0X/S = JacX/S is an abelian scheme.

When S = Spec k, k algebrically closed, we have JacX/k = Div0(X)/ ∼.
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Fact. — When S is the spectrum of a field (Weil), or more generally S is normal
(Grothendieck), all abelian scheme over S are projective, but not in general.

In this seminar, we only need projective abelian schemes (at least locally projec-
tive).

Theorem 1.8 (Hard). — Let S = Spec k, k a field, A/k an abelian variety. For
any ample line bundle L on A, L ⊗3 is very ample.

Example 1.9. — When A = E is a elliptic curve, O(e) is ample ⇒ O(3e) is very
ample. In fact, we have

dimH0(E,O(ne)) = n.

by Riemannn–Roch, so in particular dimH0(E,O(3e)) = 3. This is closely related
to the construction of the Weierstrass equation.

Sketh of the idea: Denote H0(E,O(ne)) by Vn. We know that it is the vector
space of rational functions in k(E) which have a single pole at e with order ≤ n.
We can choose functions x, y ∈ k(E) such that {1, x} is a basis of V2 and {1, x, y}
is a basis of V3. Since the dimension of Vn is n, the orders of poles of x and y at e
are exactly 2 and 3 respectively.

We have dimV6=6, and it contains the seven functions:

1, x, y, x2, xy, y2, x3

it follows that there is a linear relation:

A1 + A2x+ A3y + A4x
2 + A5xy + A6y

2 + A7x
3 = 0.

Then by some further arguments and transformation of the above equation, we will
obtain the Weierstrass equation. The fact that O(3e) is very ample means that we
indeed obtain an embedding of E into the projective plane via x, y.

2. Isogeny

Definition 2.1. — A morphism φ : A → B between abelian schemes is called an
isogeny if it is quasi-finite and surjective.

Lemma 2.2. — Any isogeny is flat and finite.

For any group morphism f : G1 → G2 between group schemes over S, the functor
Ker(f) is representable, and is a closed subgroup scheme ofG1 whenG2 are separated
over S. (The morphism Ker(f) → G1 is just the base change of eG2 : S → G2 along
f , and the latter is a closed immersion when G2 is separated over S.) In particular,
for φ : A → B an isogeny of abelian schemes, Ker(φ) is a commutative finite flat
group scheme over S since φ is finite flat. We define the degree of φ to be the order of
Ker(φ). Here, for any finite flat group scheme Z over S, locally on S, OZ is a finite
free OS-module of constant rank d. The integer d is constant on each connected
component of S, and we define it to be the rank of Z.

Definition 2.3. — For any abelian scheme A over S, any integer n, we define the
homomorphism [n] : A → A to be the multiplication-by-n map (with the group
structure on A regarded as addition).
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Example 2.4. — Let E be an elliptic curve over Fp. Take φ = [p]. This is an
isogeny with deg(φ) = p2 but each fiber of φ is a singleton (resp. has p elements)
for E supersingular (resp. ordinary).

Remark 2.5. — Let S = Spec k, k algebrically closed. Let φ : A → B be an
isogeny. We have the following facts:

(1) The existence of φ implies that dimA = dimB.
(2) deg(φ) = [k(A) : k(B)], the extension degree of the function fields.
(3) Let d = deg(φ). Then Kerφ may have < d points when char k > 0, char k | d.

If char k = 0 or char k ∤ d, then Kerφ is finite étale over k, so Kerφ has
exactly d points.

Proposition 2.6. — Let A/S be an abelian scheme, n ∈ Z. n ̸= 0. Then [n] :
A → A is an isogeny of degree n2 dimA.

Example 2.7. — When A is an abelian variety over C, we have A ≃ Cg/Λ, where
Λ is a lattice. The proposition above is then clear since

Ker[n] ∼=
1

n
Λ/Λ ∼= (Z/nZ)2g

3. Line Bundles

Let k be an algebrically closed field, and let A be an abelian variety over k.
Let L be a line bundle over A.

Theorem 3.1 (Theorem of cube). — Let T be a k-scheme and let f1, f2, f3 :
T → A be k-morphisms. Then

f ∗
1L ⊗ f ∗

2L ⊗ f ∗
3L

⊗ (f1 + f2)
∗L −1 ⊗ (f1 + f3)

∗L −1 ⊗ (f2 + f3)
∗L −1

⊗ (f1 + f2 + f3)
∗L ≃ OT .

Corollary 3.2. — For any n ∈ Z, we have

[n]∗L = L ⊗n2 ⊗ (L ⊗ [−1]∗L −1)
−n2+n

2︸ ︷︷ ︸
Junk term.
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Proof. — For n = 0 or 1 the claim is clear. We then prove the claim by induction,
each time assuming the statement for n = k, k+1 and prove it for n = k− 1, k+2.
For this induction step, take f1 = [n], f2 = [1], f3 = [−1] in the theorem of cube.

Definition 3.3. — For a line bundle L on A, we say L is symmetric if L ≃
[−1]∗L .

For such an L , [n]∗L ≃ L ⊗n2
.

proof of Proposition 2.6. — One easily reduce to S = Spec k, k algebrically closed.
1) If we knew φ is an isogeny, take an ample line bundle L on A (recall that in

this case A is projective). Then L ⊗ [−1]∗L is ample and symmetric. Replacing

L by L ⊗ [−1]∗L , we may assume L is symmetric. Then [n]∗L = L ⊗n2
. By

some standard tools (intersection theory, or Hilbert polynomials), we deduce that
deg[n] = n2 dimA.

2) Now we prove [n] is an isogeny. It suffices to prove Z = Ker[n] is finite. With

the same notation as in 1), L ⊗n2|Z is ample. By L ⊗n2 ∼= [n]∗L , we obtain OZ

itself is ample. So Z is quasi-affine and projective over k, which means Z is finite
over k

Theorem 3.4 (Theorem of Square). — Let L be a line bundle over A. For
any a ∈ A, denote by ta : A → A the map x 7→ x+ a. For any a, b ∈ A, we have

t∗aL ⊗ t∗bL ≃ t∗a+bL ⊗ L .

Equivalently, the map

Λ(L ) : A → Pic(A), a 7→ t∗a(L )⊗ L −1

is a group homomorphism.

Proof. — We give two proofs.
1) Use the Theorem of cube. Take T = A, f1 = a, i.e., the composition A →

Spec k → A where the second map is a, f2 = b, and f3 = idA. Then

f1 + f2 + f3 = ta+b, f1 + f3 = ta, f2 + f3 = tb.

Theorem of cube immediately gives the result.
2) Pic(A) has a structure of separated group scheme over k. The map Λ(L ) :

A → Pic(A) is a map of schemes over k, preserving the neutral sections. So Λ(L )
is automatically a group homomorphism by rigidity.
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4. Dual abelian scheme

Let A be an abelian scheme over S. We define the relative Picard functor:
PicA/S : (Sch/S) → Ab,

T 7→ {(L , ρ) | L is a line bundle on AT := A×S T ,

ρ : e∗TL
∼−→ OT a“rigidification”}/ ∼=

where eT : T → AT is the neutral section.

Theorem 4.1. — The functor PicA/S is representable by a commutative group
scheme over S. Moreover, there exists a maximal open closed subgroup scheme

Pic0A/S =: A∨,

such that each geometric fiber of A∨ is connected. Moreover, A∨ is an abelian scheme
over S. We call A∨ the dual abelian scheme of A.

Remark 4.2. — 1. In Mumford’s Abelian Varieties, A∨ is constructed by dividing
A by a subgroup (only for S = Spec k).

2. In FGA, Grothendieck uses projective methods to prove the representibility of
the relative Picard functor PicX/S for arbitrary X/S flat, projective, geometrically
connected. (This works only for projective or at least locally projective abelian
schemes. For such an A, the dual A∨ is also projective).

3. Artin’s theory of representability by algebraic spaces/stacks. For any abelian
algebraic space A/S, PicA/S is representable by an algebraic space, and A∨ = Pic0A/S

is also representable by an abelian algebraic space. This combined wit the following
result of Raynaud gives the representability.

Theorem 4.3 (Raynaud). — Any abelian algebraic space A over S is automati-
cally an abelian scheme. Moreover, PicA/S is a scheme, and A∨ is an abelian scheme.

See [Faltings-Chai].


