1. Basic Facts and definitions

Let S be a scheme. Recall that a group scheme over S is a group object in $(Sch/_S)$. More precisely, we have the following definition.

Definition 1.1. — Let S be a base scheme. A group scheme G over S is a scheme G over S with the following S-morphisms m, e, i:

$$\begin{array}{c} m:G\times G \longrightarrow G \\ e:S \longrightarrow G \\ i:G \longrightarrow G \end{array}$$

satisfying the usual group axioms for multiplication, identity, and inversion. We also call e the neutral section of the structure map.

Equivalently, we can also describe this definition by a concise category language, that is, we require that for any S-scheme T, the set $G(T) := Hom_S(T, G)$ is equipped with a group structure in a way functorial in T. Thus the functor of points defines a functor $G : (Sch/_S) \longrightarrow Grp$.

By Yonneda lemma, we can see these two descriptions are indeed equivalent.

Definition 1.2. — An *abelian scheme* over S is a group scheme over S which is proper, smooth and geometrically connected over S. When S is the spectrum of a field, we also say *abelian variety*.

Remark 1.3. — One can deduce that an abelian scheme is automatically commutative.

Theorem 1.4 (Rigidity). — Let A/S be an abelian scheme, and let G be a separated group scheme over S. Any S-morphism $A \to G$ taking e_A to e_G is automatically a group homomorphism.

Corollary 1.5. — The group structure of an abelian scheme A/S is commutative.

Proof. — The inverse map $i : A \to A$ is a group homomorphism, so A is commutative.

We shall always think of the group law on A as addition.

Example 1.6. — For an elliptic curve E over S (i.e. a proper smooth S-scheme E/S such that each geometric fiber is a projective smooth connected curve of genus 1, together with a distinguished section $e: S \to E$), there is a unique group structure on E such that e is the neutral section. With this structure, E is then an abelian scheme.

When S = Spec(k), $k = \bar{k}$, the group structure is characterized by the condition:

$$P + Q = R \iff [P] + [Q] \stackrel{lin}{\sim} [R] + [e]$$

where P, Q, R are points in E, and e is the fixed zero point. By Abel's theorem the above condition indeed gives a well defined group structure (e.g., for given P, Q, such R indeed exists). In fact, we have a group isomorphism $E \to \text{Jac}(E) = \text{Div}^0(E) / \sim$ defined by $[P] \mapsto [P] - [e]$.

Example 1.7. — Let X be a smooth projective S-scheme whose geometric fibers are smooth projective connected curves. Then $\operatorname{Pic}_{X/S}^0 = \operatorname{Jac}_{X/S}$ is an abelian scheme. When $S = \operatorname{Spec} k$, k algebrically closed, we have $\operatorname{Jac}_{X/k} = \operatorname{Div}^0(X) / \sim$.

Fact. — When S is the spectrum of a field (Weil), or more generally S is normal (Grothendieck), all abelian scheme over S are projective, but not in general.

In this seminar, we only need projective abelian schemes (at least locally projective).

Theorem 1.8 (Hard). — Let $S = \operatorname{Spec} k$, k a field, A/k an abelian variety. For any ample line bundle \mathscr{L} on A, $\mathscr{L}^{\otimes 3}$ is very ample.

Example 1.9. — When A = E is a elliptic curve, $\mathscr{O}(e)$ is ample $\Rightarrow \mathscr{O}(3e)$ is very ample. In fact, we have

$$\dim H^0(E, \mathcal{O}(ne)) = n.$$

by Riemannn–Roch, so in particular dim $H^0(E, \mathscr{O}(3e)) = 3$. This is closely related to the construction of the Weierstrass equation.

Sketh of the idea: Denote $H^0(E, \mathcal{O}(ne))$ by V_n . We know that it is the vector space of rational functions in k(E) which have a single pole at e with order $\leq n$. We can choose functions $x, y \in k(E)$ such that $\{1, x\}$ is a basis of V_2 and $\{1, x, y\}$ is a basis of V_3 . Since the dimension of V_n is n, the orders of poles of x and y at e are exactly 2 and 3 respectively.

We have dim $V_6=6$, and it contains the seven functions:

$$1, x, y, x^2, xy, y^2, x^3$$

it follows that there is a linear relation:

$$A_1 + A_2x + A_3y + A_4x^2 + A_5xy + A_6y^2 + A_7x^3 = 0.$$

Then by some further arguments and transformation of the above equation, we will obtain the Weierstrass equation. The fact that $\mathscr{O}(3e)$ is very ample means that we indeed obtain an embedding of E into the projective plane via x, y.

2. Isogeny

Definition 2.1. — A morphism $\varphi : A \to B$ between abelian schemes is called an *isogeny* if it is quasi-finite and surjective.

Lemma 2.2. — Any isogeny is flat and finite.

For any group morphism $f: G_1 \to G_2$ between group schemes over S, the functor $\operatorname{Ker}(f)$ is representable, and is a closed subgroup scheme of G_1 when G_2 are separated over S. (The morphism $\operatorname{Ker}(f) \to G_1$ is just the base change of $e_{G_2}: S \to G_2$ along f, and the latter is a closed immersion when G_2 is separated over S.) In particular, for $\varphi: A \to B$ an isogeny of abelian schemes, $\operatorname{Ker}(\varphi)$ is a commutative finite flat group scheme over S since φ is finite flat. We define the *degree* of φ to be the order of $\operatorname{Ker}(\varphi)$. Here, for any finite flat group scheme Z over S, locally on S, \mathcal{O}_Z is a finite free \mathcal{O}_S -module of constant rank d. The integer d is constant on each connected component of S, and we define it to be the rank of Z.

Definition 2.3. — For any abelian scheme A over S, any integer n, we define the homomorphism $[n] : A \to A$ to be the multiplication-by-n map (with the group structure on A regarded as addition).

Example 2.4. — Let E be an elliptic curve over $\overline{\mathbb{F}}_p$. Take $\varphi = [p]$. This is an isogeny with deg $(\varphi) = p^2$ but each fiber of φ is a singleton (resp. has p elements) for E supersingular (resp. ordinary).

Remark 2.5. — Let $S = \operatorname{Spec} k$, k algebrically closed. Let $\varphi : A \to B$ be an isogeny. We have the following facts:

- (1) The existence of φ implies that dim $A = \dim B$.
- (2) $\deg(\varphi) = [k(A) : k(B)]$, the extension degree of the function fields.
- (3) Let $d = \deg(\varphi)$. Then Ker φ may have $\langle d$ points when char k > 0, char $k \mid d$. If char k = 0 or char $k \nmid d$, then Ker φ is finite étale over k, so Ker φ has exactly d points.

Proposition 2.6. — Let A/S be an abelian scheme, $n \in \mathbb{Z}$. $n \neq 0$. Then $[n] : A \rightarrow A$ is an isogeny of degree $n^{2 \dim A}$.

Example 2.7. — When A is an abelian variety over \mathbb{C} , we have $A \simeq \mathbb{C}^g / \Lambda$, where Λ is a lattice. The proposition above is then clear since

$$\operatorname{Ker}[n] \cong \frac{1}{n} \Lambda / \Lambda \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$$

3. Line Bundles

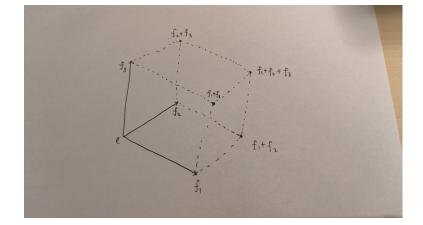
Let k be an algebrically closed field, and let A be an abelian variety over k. Let \mathscr{L} be a line bundle over A.

Theorem 3.1 (Theorem of cube). — Let T be a k-scheme and let $f_1, f_2, f_3 : T \rightarrow A$ be k-morphisms. Then

$$f_1^* \mathscr{L} \otimes f_2^* \mathscr{L} \otimes f_3^* \mathscr{L}$$

$$\otimes (f_1 + f_2)^* \mathscr{L}^{-1} \otimes (f_1 + f_3)^* \mathscr{L}^{-1} \otimes (f_2 + f_3)^* \mathscr{L}^{-1}$$

$$\otimes (f_1 + f_2 + f_3)^* \mathscr{L} \simeq \mathscr{O}_T.$$



Corollary 3.2. — For any $n \in \mathbb{Z}$, we have

$$[n]^*\mathscr{L} = \mathscr{L}^{\otimes n^2} \otimes \underbrace{(\mathscr{L} \otimes [-1]^*\mathscr{L}^{-1})^{\frac{-n^2+n}{2}}}_{Junk \ term.}$$

Proof. — For n = 0 or 1 the claim is clear. We then prove the claim by induction, each time assuming the statement for n = k, k + 1 and prove it for n = k - 1, k + 2. For this induction step, take $f_1 = [n], f_2 = [1], f_3 = [-1]$ in the theorem of cube. \Box

Definition 3.3. — For a line bundle \mathscr{L} on A, we say \mathscr{L} is symmetric if $\mathscr{L} \simeq [-1]^* \mathscr{L}$.

For such an \mathscr{L} , $[n]^*\mathscr{L} \simeq \mathscr{L}^{\otimes n^2}$.

proof of Proposition 2.6. — One easily reduce to $S = \operatorname{Spec} k$, k algebrically closed.

1) If we knew φ is an isogeny, take an ample line bundle \mathscr{L} on A (recall that in this case A is projective). Then $\mathscr{L} \otimes [-1]^* \mathscr{L}$ is ample and symmetric. Replacing \mathscr{L} by $\mathscr{L} \otimes [-1]^* \mathscr{L}$, we may assume \mathscr{L} is symmetric. Then $[n]^* \mathscr{L} = \mathscr{L}^{\otimes n^2}$. By some standard tools (intersection theory, or Hilbert polynomials), we deduce that $\deg[n] = n^{2 \dim A}$.

2) Now we prove [n] is an isogeny. It suffices to prove Z = Ker[n] is finite. With the same notation as in 1), $\mathscr{L}^{\otimes n^2}|_Z$ is ample. By $\mathscr{L}^{\otimes n^2} \cong [n]^*\mathscr{L}$, we obtain \mathscr{O}_Z itself is ample. So Z is quasi-affine and projective over k, which means Z is finite over k

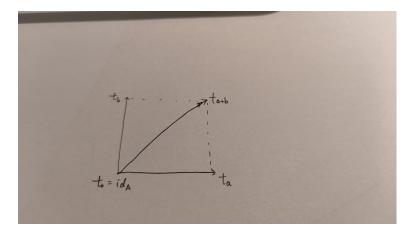
Theorem 3.4 (Theorem of Square). — Let \mathscr{L} be a line bundle over A. For any $a \in A$, denote by $t_a : A \to A$ the map $x \mapsto x + a$. For any $a, b \in A$, we have

$$t_a^*\mathscr{L} \otimes t_b^*\mathscr{L} \simeq t_{a+b}^*\mathscr{L} \otimes \mathscr{L}.$$

Equivalently, the map

$$\Lambda(\mathscr{L}): A \to \operatorname{Pic}(A), a \mapsto t_a^*(\mathscr{L}) \otimes \mathscr{L}^{-1}$$

is a group homomorphism.



Proof. — We give two proofs.

1) Use the Theorem of cube. Take T = A, $f_1 = a$, i.e., the composition $A \rightarrow$ Spec $k \rightarrow A$ where the second map is $a, f_2 = b$, and $f_3 = id_A$. Then

$$f_1 + f_2 + f_3 = t_{a+b}, f_1 + f_3 = t_a, f_2 + f_3 = t_b$$

Theorem of cube immediately gives the result.

2) $\operatorname{Pic}(A)$ has a structure of separated group scheme over k. The map $\Lambda(\mathscr{L}) : A \to \operatorname{Pic}(A)$ is a map of schemes over k, preserving the neutral sections. So $\Lambda(\mathscr{L})$ is automatically a group homomorphism by rigidity. \Box

4. Dual abelian scheme

Let A be an abelian scheme over S. We define the relative Picard functor: $\operatorname{Pic}_{A/S} : (\operatorname{Sch}_S) \to \operatorname{Ab},$

 $T \mapsto \{ (\mathscr{L}, \rho) \mid \mathscr{L} \text{ is a line bundle on } A_T := A \times_S T, \\ \rho : e_T^* \mathscr{L} \xrightarrow{\sim} \mathscr{O}_T \text{ a "rigidification"} \} / \cong$

where $e_T: T \to A_T$ is the neutral section.

Theorem 4.1. — The functor $\operatorname{Pic}_{A/S}$ is representable by a commutative group scheme over S. Moreover, there exists a maximal open closed subgroup scheme

$$\operatorname{Pic}^0_{A/S} =: A^{\vee},$$

such that each geometric fiber of A^{\vee} is connected. Moreover, A^{\vee} is an abelian scheme over S. We call A^{\vee} the dual abelian scheme of A.

Remark 4.2. — 1. In Mumford's Abelian Varieties, A^{\vee} is constructed by dividing A by a subgroup (only for $S = \operatorname{Spec} k$).

2. In FGA, Grothendieck uses projective methods to prove the representibility of the relative Picard functor $\operatorname{Pic}_{X/S}$ for arbitrary X/S flat, projective, geometrically connected. (This works only for projective or at least locally projective abelian schemes. For such an A, the dual A^{\vee} is also projective).

3. Artin's theory of representability by algebraic spaces/stacks. For any abelian algebraic space A/S, $\operatorname{Pic}_{A/S}$ is representable by an algebraic space, and $A^{\vee} = \operatorname{Pic}_{A/S}^{0}$ is also representable by an abelian algebraic space. This combined wit the following result of Raynaud gives the representability.

Theorem 4.3 (Raynaud). — Any abelian algebraic space A over S is automatically an abelian scheme. Moreover, $\operatorname{Pic}_{A/S}$ is a scheme, and A^{\vee} is an abelian scheme.

See [Faltings-Chai].