
1. Dual abelian scheme

Let A/S be an abelian scheme. The relative Picard functor is defined as

PicA/S : (Sch/S)→ Ab, T 7→ {(L , ρ) | L is a line bundle on AT , ρ : e∗TL
∼−→ OT}/ ∼=,

such a pair (L , ρ) is called a rigidified line bundle.

Remark 1.1. — PicA/S(T )
∼−→ Pic(AT )/π

∗
T Pic(T ), where πT : AT → T is the

structure map. The isomorphism is given by

(L , ρ) 7→ L ,

and the inverse is

L 7→ (L rig, ρ),

where L rig := L ⊗ π∗
T e

∗
TL −1, so we have ρ : e∗TL rig = e∗TL ⊗ e∗TL −1 ≃ OT .

Theorem 1.2. — The functor PicA/S is representable by a commutative group

scheme over S. There is a maximal open closed subgroup scheme Pic0A/S = A∨,
called the dual of A, such that each geometric fiber of A∨ is connected. Moreover,
A∨ is an abelian scheme over S.

On A×SPicA/S, there is a universal rigidified line bundle PA, called the Poincaré

line bundle, with a rigidification (e× id)∗PA
∼−→ OPicA/S

, such that for each T → S,

and each rigidified line bundle (L , ρ) on AT , there is a unique S-map f : T → PicA/S

such that

(L , ρ) is the pullback of PA along A×S T
(id,f)−−−→ A×S PicA/S.

Note: Let e be the neutral section for the group scheme PicA/S. Then we have

a canonical trivialization (id, e)∗PA
∼−→ OA by the moduli meaning of e, where

(id, e) : A→ A×S PicA/S.

2. Homomorphism attached to a line bundle

Let A/S be an abelian scheme, and let L be a line bundle on A. Let f1, f2 : T →
A. Generally, (f1 + f2)

∗(L ) ̸≃ (f ∗
1L )⊗ (f ∗

2L ). We want to find the difference.
Universal case: T = A ×S A, and f1, f2 are the projections. Then f1 + f2 = m :

A×S A→ A is the group law on A. Consider

M (L ) = m∗L ⊗ f ∗
1L −1 ⊗ f ∗

2L −1,

which is a line bundle on A ×S A. Consider A ×S A as an abelian scheme over
A by the second projection f2, we have M (L )rig ∈ PicA/S(A), i.e. we get a map

Λ(L ) : A → PicA/S such that A ×S A
(id,Λ(L ))−−−−−→ A ×S PicA/S pulls PA back to

M (L )rig.
One can check that Λ(L ) preserves neutral sections. By rigidity, Λ(L ) is then a

group homomorphism A→ A∨ ⊂ PicA/S. (Upshot: Start on a line bundle L on A,
we get a group homomorphism Λ(L ) : A→ A∨).

Exercise. — Λ(L ) is additive in L , i.e. Λ(L1 ⊗L ±1
2 ) = Λ(L1)± Λ(L2).
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Now we study Λ(L ) when S = Spec k, k is an algebraically closed field. The map
Λ(L ) : A→ A∨ is the same as last lecture, i.e.

A(k) ∋ x 7→ t∗xL ⊗L −1 ∈ Pic(A) = PicA/k(k).

Proposition 2.1. — If L is ample on A (such an L exists as A is projective),
then Λ(L ) is an isogeny of degree h0(L )2 ̸= 0. (For such L , we know that hi(L ) =
0, ∀i > 0) Such a Λ(L ) is called a polarization.

In the above case, we think that Λ(L ) is the “most non-zero”.

Corollary 2.2. — dimA = dimA∨.

Proposition 2.3. — The following is equivalent.

1) Λ(L ) = 0.
2) L ∈ PicA/k(k) lies in A∨.
3) L is algebraically equivalent to 0, which means that there exists a connected k-

scheme U , two k-points u, v of U , and a line bundle L̃ on A ×k U such that

the restrictions of L̃ on A × {u} ∼= A and on A × {v} ∼= A are L and OA

respectively.

The equivalence of (2) and (3) is almost tautological, but the equivalence with
(1) is quite non-trivial.

We then have an exact sequence (over k = k̄)

0 A∨ PicA/k Hom(A,A∨)
Λ(·)

Question. — What’s the image of Λ(·)?

Answer: It is the group of symmetric homomorphisms Hom(A,A∨)Sym (defined
later).

Example 2.4. — Let A = E be an elliptic curve over k, k algebraically closed.
Let L1 = O(e), e the neutral element of E. By Riemann-Roch, we have

h0(L1) = 1− g + deg(L1) = 1.

So Λ(L1) has degree 1, thus it is an isomorphism, called “the canonical isomor-
phism”.

We now compute Λ(L ) for general L . By the additivity of Λ, we only need to
consider L = O([P ]), P ∈ E. Then we have

Λ(L ) : E → E∨, x 7→t∗xL ⊗L −1 = O([P − x])⊗ O(−[P ])

=O([P − x]− [P ]) = O([e]− [x]) = Λ(L1)(x).

For the second last equality, we used the fact that (P − x) + x = P if and only if
[P − x] + [x] ∼ [P ] + [e]. So for general L , Λ(L ) = deg(L )Λ(L1). We then have

0 E∨ Pic(E) Z 0

Hom(E,E∨)

deg

Λ(·)
n7→nΛ(L1)
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3. More on duality

Recall that PA is on A×SA
∨, rigidified along both (eA, id) and (id, eA∨). Viewing

PA as a family of line bundles on A∨ parameterized by A, we get f : A → A∨∨ ⊂
PicA∨/S.

Theorem 3.1. — f is an isomorphism.

Sketch of proof. — We may assume S = Spec k, k algebraically closed. We have

dimA = dimA∨ = dimA∨∨ = g. Let F : A×A∨ (f,id)−−−→ A∨∨×A∨ ∼−→ A∨×A∨∨, where
the last isomorphism is the swapping of the two factors. Note that F ∗(PA∨) = PA.

Fact. — We have χ(PA) = (−1)g = χ(PA∨) (difficult). Here χ(·) denotes the
Euler characteristic of a line bundle. In fact, hi(PA) = 0 if i ̸= g and hg(L ) = 1.

Fact. — For any isogeny λ : B → C between abelian varieties and any line bundle
L on C, we have χ(λ∗L ) = deg(λ)χ(L ).

If we knew f is an isogeny, then F is an isogeny with the same degree. By the
facts above, degF = deg f = 1, thus f is an isomorphism.
Thus it suffices to prove that f is an isogeny. Supposing not, then there is a finite

subgroup Z ⊂ Ker f , of order d ≥ 2 (d coprime to char k), and f factors through
A→ A/Z, which is an isogeny of degree d. Then F also factors through an isogeny
of degree d, and by PA = F ∗(· · · ) we have d | χ(PA), a contradiction.

Construction. — Let φ : A→ B be any homomorphism. We have φ∨ : B∨ → A∨

by pullback of line bundles.

Lemma 3.2. — (φ1 ± φ2)
∨ = φ∨

1 ± φ∨
2 .

Proof. — We may assume S = Spec k, k algebraically closed, and we only need to
check the equality on k-points. Use the fact that a point x ∈ B∨(k) corresponds
to a line bundle L on B such that Λ(L ) = 0. The last condition implies that for
any φ1, φ2 : A → B, we have φ∗

1L ⊗ φ∗
2L ≃ (φ1 + φ2)

∗L , i.e. (φ1 + φ2)
∨(x) =

φ∨
1 (x) + φ∨

2 (x). Also it is easy to see that (0 : A → B)∨ = (0 : B∨ → A∨), so we
have the equality for the minus sign as well.

Lemma 3.3. — For any homomorphism of abelian schemes φ : A → B, the fol-
lowing statements hold.

1) Under the canonical isomorphism A∨∨ ∼= A, B∨∨ ∼= B, φ∨∨ is the same as φ.
2) φ is an isogeny if and only if φ∨ is an isogeny. In this case, degφ = degφ∨.

Proof. — We may assume S = Spec k, k algebraically closed. Let F1 = (id, φ∨) :
A × B∨ → A × A∨, and F2 = (φ, id) : A × B∨ → B × B∨. Then F ∗

1 PA = F ∗
2 PB.

This equality can be seen as a characterization of φ in terms of φ∨, and vice versa.
It is then easy to see (1). To see (2), suppose φ∨ is not an isogeny. Then an
argument similar to the proof of Theorem 3.1 shows that χ(F ∗

1 PA) is divisible by
arbitrarily large integers, and hence equals 0. If φ is an isogeny, then χ(F ∗

2 PB) =
deg(φ)χ(PB) ̸= 0, a contradiction. Similarly, if φ is not an isogeny, then φ∨ is not
an isogeny.

Lemma 3.4. — Let φ : A → A∨ be a homomorphism. The following are equiva-
lent.
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1) φ∨ : A ∼= A∨∨ → A∨ is equal to φ, i.e. φ is symmetric.
2) After an f.p.p.f. localization on S, φ = Λ(L ) for some line bundle L on A.
3) After an étale localization on S, φ = Λ(L ) for some line bundle L on A.

Proof. — (1) implies (2): Let L ′ be the pullback of PA along A
δ−→ A×S A

(id,φ)−−−→
A ×S A∨. One checks that Λ(L ′) = φ + φ∨. If (1) holds, then Λ(L ′) = 2φ. As
a general fact, for any line bundle M on A and any positive integer n, if Λ(M ) ∈
n · Hom(A,A∨), then after fppf localization on S there exists an n-th root of M .
Applying this fact to our situation, we see that after fppf localization on S we may
assume that L ′ = L ⊗2 for some L . Then 2Λ(L ) = 2φ, from which Λ(L ) = φ.

(2) implies (3). By (2), the choices of L such that φ = Λ(L ) is an A∨-torsor on
S, for the fppf topology. But A∨ is smooth, so this A∨-torsor is étale locally trivial.

(3) implies (1). Whether φ is symmetric can be checked after étale localization
on the base, so we may assume that φ = Λ(L ) for some line bundle L on A. We
then leave it as an exercise for the reader to check that φ = φ∨.

In the special case S = Spec k, k algebraically closed, we have φ : A → A∨ is
symmetric if and only if φ = Λ(L ) for some line bundle L on A. In this case, L =
L1 ⊗L −1

2 , with Li ample, so φ = Λ(L1)− Λ(L2), where Λ(Li) are polarizations.
Thus symmetric homomorphisms A→ A∨ are precisely those homomorphisms that
can be written as the difference between two polarizations.

In this case, we have a short exact sequence

0 A∨ PicA/k Hom(A,A∨)Sym 0

Remark 3.5. — For any base scheme S, we have a short exact sequence of abelian
f.p.p.f. sheaves on (Sch/S)

0 A∨ PicA/k Hom(A,A∨)Sym 0

where Hom(A,A∨)Sym is the sheaf defined by T 7→ Hom(AT , A
∨
T )

Sym, and it is actu-
ally representable.

4. The isogeny category

Fix a field k (not necessarily algebraically closed). In the rest of this lecture,
everything is over k.

Denote by A the category of abelian varieties over k. It is an additive category,
Hom(A,B) is an abelian group for any A,B ∈ ObA.

Let A0 be the isogeny category of A. This means that A0 has the same objects
of A, and the morphisms between A,B in A0 are given by

Hom(A,B)0 = HomA(A,B)⊗Z Q.

Observation. — The map HomA(A,B) → Hom(A,B)0 is an injection, i.e.
HomA(A,B) is torsion-free: if the composition

A A B
φ[n]

is zero, then φ = 0 as [n] is an isogeny.
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Observation. — For φ ∈ Hom(A,B), φ is an isogeny if and only if φ becomes an
isomorphism in A0.

Fact (Poincaré Complete Reducibility). — A0 is semi-simple. In particular,
for any A ∈ ObA, End(A)0 = End(A)⊗Z Q is a semi-simple Q-algebra.

Concretely, for any abelian variety A over k, there are simple abelian varieties
A1, · · · , Ak, mutually non-isogenous, and integers n1, · · · , nk ∈ Z>0 such that A is
isogenous to A×n1

1 × · · · × A×nk
k . So

End(A)0 ≃ End(A×n1
1 × · · · × A×nk

k )0

≃Mn1(D1)× · · · ×Mnk
(Dk),

where Di = End(Ai)
0 are division algebras. We will show that Di is finite dimen-

sional over Q.

Sketch of proof. — Suppose we have i : B ↪→ A an abelian subvariety. We want to
find an abelian subvariety C ⊂ A such that B∩C is finite, and B×C → A, (b, c) 7→
b+ c is an isogeny. Take an ample line bundle L on A, with associated polarization

Λ(L ) : A→ A∨. Let C ′ be the kernel of A
Λ(L )−−−→ A∨ i∨−→ B∨, and let C = (C ′)0red.

The main point: C ∩ B ⊂ Ker(B
i−→ A

Λ(L )−−−→ A∨ i∨−→ B∨) = Ker(Λ(i∗L )), thus it
is finite since i∗L is an ample line bundle on B.

5. Tate module

Fix a prime ℓ coprime to char k. Let A be an abelian variety over k of dimension
g. For any n ≥ 1, denote by A[ℓn] = Ker[ℓn] : A → A. It is a finite étale group
scheme of order ℓ2gn. So A[ℓn](ksep) is an abelian group of order ℓ2gn.

Exercise. — A[ℓn](ksep) is a free Z/ℓnZ-module of rank 2g. (Hint: we know the
order of ℓm-torsion in this group, for all m ≤ n.)

Definition 5.1. — The Tate module of A is

Tℓ(A) := lim←−
n

A[ℓn](ksep),

with the transition map A[ℓn+1](ksep)→ A[ℓn](ksep) given by x 7→ [ℓ]x. Then Tℓ(A)
is a finite free Zℓ-module of rank 2g.

The Galois group Gal(ksep/k) = Gk acts continuously on Tℓ(A). There is a natrual
map

Φ : Hom(A,B)⊗Z Zℓ → HomZℓ[Gk](Tℓ(A), Tℓ(B)).

Conjecture 5.2 (Tate). — If k is a finitely generated field, Φ is an isomorphism.

Theorem 5.3. — Let k be an arbitrary field, and let ℓ be a prime coprime to char k.
Let A,B be abelian varieties over k. Then

Φ : Hom(A,B)⊗Z Zℓ → HomZl
(Tℓ(A), Tℓ(B))

is injective. In particular, Hom(A,B) is a finite free Z-module, of rank ≤
4 dimA dimB.
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Sketch of proof. — Step 1. Suppose M ⊂ Hom(A,B) is a finitely generated Z-
submodule (so M is free of finite rank). Suppose M is saturated, i.e. QM ∩
Hom(A,B) = M . We will know Φ|M⊗ZZℓ

is injective.

Proof. — Take a Z-basis e1, · · · , er of M . Suppose
∑

i ei ⊗ ai ∈ Ker(Φ|M⊗ZZℓ
),

ai ∈ Zℓ. For each i, let a
(k)
i ∈ Z be a sequence converging to ai in the ℓ-adic

topology, as k → ∞. Then
∑

i a
(k)
i Φ(ei)

ℓ-adic−−−→ Φ(
∑

i ei ⊗ ai) = 0. For k large
enough, LHS ∈ ℓmax vℓ(ai)+1 HomZℓ

(TℓA, TℓB).

Observation. — If f ∈ Hom(A,B) is such that Φ(f) : TℓA → TℓB lies in
ℓN HomZℓ

(TℓA, TℓB), then f ∈ ℓN Hom(A,B). (Proof: f kills A[ℓN ].)

For k >> 0, we have
∑

i a
(k)
i ei ∈ ℓmaxi(vℓ(ai)+1)Hom(A,B), or equivalently∑

i a
(k)
i ei ∈ ℓmaxi(vℓ(ai)+1)M since M is saturated. But vℓ(a

(k)
i ) = vℓ(ai) for k >> 0,

a contradiction.

Step 2. We show that Hom(A,B) is finitely generated. (Then we can take M =
Hom(A,B) in Step 1 and finish the proof.) By Poincaré complete reducibility, we
can reduce to the case where A = B, and A is simple. To prove End(A) is finitely
generated, we only need to show that Φ : End(A)⊗Zℓ → EndZℓ

(Tℓ(A)) is injective.
Suppose not,then there is a finitely generated submodule M of End(A) such that
Φ is not injective on M ⊗ Zℓ. We then take M ′ to be the saturation of M inside
End(A), i.e. M ′ = QM ∩ End(A).

Fact. — There is a unique function deg : End(A)0 = End(A)⊗Z Q→ Q such that
on every finite dimensional Q-subspace of End(A)0 (of course, after the proof, we
will know that End(A)0 is finite dimensional), deg is a homogeneous polynomial of
degree 2g, and moreover if φ ∈ End(A) is an isogeny, then deg(φ) is as before. (The
proof of this fact is similar to the proof of deg([n]) = n2g, using Theorem of Cube
+ Intersection theory or Hilbert Polynomial).

Now
M ′ ∩ {v ∈ QM | | deg(v)| < 1} = {0},

because any non-zero φ ∈ End(A) is an isogeny (A simple) and hence satisfies
deg(φ) ≥ 1. So M ′ is a discrete subgroup of the Euclidean space RM , and so M ′ is
finitely generated.

Applying Step 1 to M ′, we have Φ is injective on M ′ ⊗ Zℓ, a contradiction with
the choice of M .

Remark 5.4. — In the notation of the above proof, for any fixed φ ∈ End(A),
the function Pφ : Z → Z, n 7→ deg([n] − φ) is a monic polynomial Pφ(T ) ∈ Z[T ] of
degree 2g, and we have the following “independence of ℓ” result: For every prime
ℓ coprime to char k, Pφ(T ) is equal to the characteristic polynomial of φ acting on
Tℓ(A) (which is a priori a polynomial in Zℓ[T ]). In particular, the determinant of φ
acting on Tℓ(A) is equal to deg(φ). Note that the determinant function on the 4g2-
dimensional Qℓ-vector space EndZℓ

(Tℓ(A))⊗Zℓ
Qℓ
∼= M2g(Qℓ) is indeed a polynomial

of degree 2g.


