1. Dual abelian scheme

Let A/S be an abelian scheme. The relative Picard functor is defined as

 $\operatorname{Pic}_{A/S} : (\operatorname{Sch}_S) \to \operatorname{Ab}, \quad T \mapsto \{(\mathscr{L}, \rho) \mid \mathscr{L} \text{ is a line bundle on } A_T, \ \rho : e_T^* \mathscr{L} \xrightarrow{\sim} \mathscr{O}_T\}/\cong,$ such a pair (\mathscr{L}, ρ) is called a rigidified line bundle.

Remark 1.1. — $\operatorname{Pic}_{A/S}(T) \xrightarrow{\sim} \operatorname{Pic}(A_T)/\pi_T^* \operatorname{Pic}(T)$, where $\pi_T : A_T \to T$ is the structure map. The isomorphism is given by

$$(\mathscr{L}, \rho) \mapsto \mathscr{L},$$

and the inverse is

$$\mathscr{L} \mapsto (\mathscr{L}^{\mathrm{rig}}, \rho)$$

where $\mathscr{L}^{\mathrm{rig}} := \mathscr{L} \otimes \pi_T^* e_T^* \mathscr{L}^{-1}$, so we have $\rho : e_T^* \mathscr{L}^{\mathrm{rig}} = e_T^* \mathscr{L} \otimes e_T^* \mathscr{L}^{-1} \simeq \mathscr{O}_T$.

Theorem 1.2. — The functor $\operatorname{Pic}_{A/S}$ is representable by a commutative group scheme over S. There is a maximal open closed subgroup scheme $\operatorname{Pic}_{A/S}^0 = A^{\vee}$, called the dual of A, such that each geometric fiber of A^{\vee} is connected. Moreover, A^{\vee} is an abelian scheme over S.

On $A \times_S \operatorname{Pic}_{A/S}$, there is a universal rigidified line bundle \mathscr{P}_A , called the *Poincaré* line bundle, with a rigidification $(e \times \operatorname{id})^* \mathscr{P}_A \xrightarrow{\sim} \mathscr{O}_{\operatorname{Pic}_{A/S}}$, such that for each $T \to S$, and each rigidified line bundle (\mathscr{L}, ρ) on A_T , there is a unique S-map $f: T \to \operatorname{Pic}_{A/S}$ such that

 (\mathscr{L}, ρ) is the pullback of \mathscr{P}_A along $A \times_S T \xrightarrow{(\mathrm{id}, f)} A \times_S \operatorname{Pic}_{A/S}$.

Note: Let e be the neutral section for the group scheme $\operatorname{Pic}_{A/S}$. Then we have a canonical trivialization $(\operatorname{id}, e)^* \mathscr{P}_A \xrightarrow{\sim} \mathscr{O}_A$ by the moduli meaning of e, where $(\operatorname{id}, e) : A \to A \times_S \operatorname{Pic}_{A/S}$.

2. Homomorphism attached to a line bundle

Let A/S be an abelian scheme, and let \mathscr{L} be a line bundle on A. Let $f_1, f_2: T \to A$. Generally, $(f_1 + f_2)^*(\mathscr{L}) \not\simeq (f_1^*\mathscr{L}) \otimes (f_2^*\mathscr{L})$. We want to find the difference.

Universal case: $T = A \times_S A$, and f_1, f_2 are the projections. Then $f_1 + f_2 = m$: $A \times_S A \to A$ is the group law on A. Consider

$$\mathscr{M}(\mathscr{L}) = m^*\mathscr{L} \otimes f_1^*\mathscr{L}^{-1} \otimes f_2^*\mathscr{L}^{-1},$$

which is a line bundle on $A \times_S A$. Consider $A \times_S A$ as an abelian scheme over A by the second projection f_2 , we have $\mathscr{M}(\mathscr{L})^{\operatorname{rig}} \in \operatorname{Pic}_{A/S}(A)$, i.e. we get a map $\Lambda(\mathscr{L}) : A \to \operatorname{Pic}_{A/S}$ such that $A \times_S A \xrightarrow{(\operatorname{id},\Lambda(\mathscr{L}))} A \times_S \operatorname{Pic}_{A/S}$ pulls \mathscr{P}_A back to $\mathscr{M}(\mathscr{L})^{\operatorname{rig}}$.

One can check that $\Lambda(\mathscr{L})$ preserves neutral sections. By rigidity, $\Lambda(\mathscr{L})$ is then a group homomorphism $A \to A^{\vee} \subset \operatorname{Pic}_{A/S}$. (Upshot: Start on a line bundle \mathscr{L} on A, we get a group homomorphism $\Lambda(\mathscr{L}) : A \to A^{\vee}$).

Exercise. — $\Lambda(\mathscr{L})$ is additive in \mathscr{L} , i.e. $\Lambda(\mathscr{L}_1 \otimes \mathscr{L}_2^{\pm 1}) = \Lambda(\mathscr{L}_1) \pm \Lambda(\mathscr{L}_2)$.

Now we study $\Lambda(\mathscr{L})$ when $S = \operatorname{Spec} k, k$ is an algebraically closed field. The map $\Lambda(\mathscr{L}) : A \to A^{\vee}$ is the same as last lecture, i.e.

$$A(k) \ni x \mapsto t_x^* \mathscr{L} \otimes \mathscr{L}^{-1} \in \operatorname{Pic}(A) = \operatorname{Pic}_{A/k}(k).$$

Proposition 2.1. — If \mathscr{L} is ample on A (such an \mathscr{L} exists as A is projective), then $\Lambda(\mathscr{L})$ is an isogeny of degree $h^0(\mathscr{L})^2 \neq 0$. (For such \mathscr{L} , we know that $h^i(\mathscr{L}) = 0, \forall i > 0$) Such a $\Lambda(\mathscr{L})$ is called a polarization.

In the above case, we think that $\Lambda(\mathscr{L})$ is the "most non-zero".

Corollary 2.2. — dim $A = \dim A^{\vee}$.

Proposition 2.3. — The following is equivalent.

1) $\Lambda(\mathscr{L}) = 0.$

- 2) $\mathscr{L} \in \operatorname{Pic}_{A/k}(k)$ lies in A^{\vee} .
- 3) \mathscr{L} is algebraically equivalent to 0, which means that there exists a connected kscheme U, two k-points u, v of U, and a line bundle $\widetilde{\mathscr{L}}$ on $A \times_k U$ such that the restrictions of $\widetilde{\mathscr{L}}$ on $A \times \{u\} \cong A$ and on $A \times \{v\} \cong A$ are \mathscr{L} and \mathscr{O}_A respectively.

The equivalence of (2) and (3) is almost tautological, but the equivalence with (1) is quite non-trivial.

We then have an exact sequence (over k = k)

$$0 \longrightarrow A^{\vee} \longrightarrow \operatorname{Pic}_{A/k} \xrightarrow{\Lambda(\cdot)} \operatorname{Hom}(A, A^{\vee})$$

Question. — What's the image of $\Lambda(\cdot)$?

Answer: It is the group of symmetric homomorphisms $\operatorname{Hom}(A, A^{\vee})^{\operatorname{Sym}}$ (defined later).

Example 2.4. — Let A = E be an elliptic curve over k, k algebraically closed. Let $\mathscr{L}_1 = \mathscr{O}(e)$, e the neutral element of E. By Riemann-Roch, we have

$$h^0(\mathscr{L}_1) = 1 - g + \deg(\mathscr{L}_1) = 1.$$

So $\Lambda(\mathscr{L}_1)$ has degree 1, thus it is an isomorphism, called "the canonical isomorphism".

We now compute $\Lambda(\mathscr{L})$ for general \mathscr{L} . By the additivity of Λ , we only need to consider $\mathscr{L} = \mathscr{O}([P]), P \in E$. Then we have

$$\Lambda(\mathscr{L}): E \to E^{\vee}, \quad x \mapsto t_x^* \mathscr{L} \otimes \mathscr{L}^{-1} = \mathscr{O}([P-x]) \otimes \mathscr{O}(-[P]) \\ = \mathscr{O}([P-x] - [P]) = \mathscr{O}([e] - [x]) = \Lambda(\mathscr{L}_1)(x).$$

For the second last equality, we used the fact that (P - x) + x = P if and only if $[P - x] + [x] \sim [P] + [e]$. So for general \mathscr{L} , $\Lambda(\mathscr{L}) = \deg(\mathscr{L})\Lambda(\mathscr{L}_1)$. We then have

3. More on duality

Recall that \mathscr{P}_A is on $A \times_S A^{\vee}$, rigidified along both (e_A, id) and $(\mathrm{id}, e_{A^{\vee}})$. Viewing \mathscr{P}_A as a family of line bundles on A^{\vee} parameterized by A, we get $f : A \to A^{\vee \vee} \subset \operatorname{Pic}_{A^{\vee}/S}$.

Theorem 3.1. — f is an isomorphism.

Sketch of proof. — We may assume $S = \operatorname{Spec} k$, k algebraically closed. We have dim $A = \dim A^{\vee} = \dim A^{\vee\vee} = g$. Let $F : A \times A^{\vee} \xrightarrow{(f, \operatorname{id})} A^{\vee\vee} \times A^{\vee} \xrightarrow{\sim} A^{\vee} \times A^{\vee\vee}$, where the last isomorphism is the swapping of the two factors. Note that $F^*(\mathscr{P}_{A^{\vee}}) = \mathscr{P}_A$.

Fact. — We have $\chi(\mathscr{P}_A) = (-1)^g = \chi(\mathscr{P}_{A^{\vee}})$ (difficult). Here $\chi(\cdot)$ denotes the Euler characteristic of a line bundle. In fact, $h^i(\mathscr{P}_A) = 0$ if $i \neq g$ and $h^g(\mathscr{L}) = 1$.

Fact. — For any isogeny $\lambda : B \to C$ between abelian varieties and any line bundle \mathscr{L} on C, we have $\chi(\lambda^* \mathscr{L}) = \deg(\lambda)\chi(\mathscr{L})$.

If we knew f is an isogeny, then F is an isogeny with the same degree. By the facts above, deg F = deg f = 1, thus f is an isomorphism.

Thus it suffices to prove that f is an isogeny. Supposing not, then there is a finite subgroup $Z \subset \text{Ker } f$, of order $d \geq 2$ (d coprime to char k), and f factors through $A \to A/Z$, which is an isogeny of degree d. Then F also factors through an isogeny of degree d, and by $\mathscr{P}_A = F^*(\cdots)$ we have $d \mid \chi(\mathscr{P}_A)$, a contradiction. \Box

Construction. — Let $\varphi : A \to B$ be any homomorphism. We have $\varphi^{\vee} : B^{\vee} \to A^{\vee}$ by pullback of line bundles.

Lemma 3.2. $(\varphi_1 \pm \varphi_2)^{\vee} = \varphi_1^{\vee} \pm \varphi_2^{\vee}.$

Proof. — We may assume $S = \operatorname{Spec} k$, k algebraically closed, and we only need to check the equality on k-points. Use the fact that a point $x \in B^{\vee}(k)$ corresponds to a line bundle \mathscr{L} on B such that $\Lambda(\mathscr{L}) = 0$. The last condition implies that for any $\varphi_1, \varphi_2 : A \to B$, we have $\varphi_1^* \mathscr{L} \otimes \varphi_2^* \mathscr{L} \simeq (\varphi_1 + \varphi_2)^* \mathscr{L}$, i.e. $(\varphi_1 + \varphi_2)^{\vee}(x) = \varphi_1^{\vee}(x) + \varphi_2^{\vee}(x)$. Also it is easy to see that $(0 : A \to B)^{\vee} = (0 : B^{\vee} \to A^{\vee})$, so we have the equality for the minus sign as well.

Lemma 3.3. — For any homomorphism of abelian schemes $\varphi : A \to B$, the following statements hold.

1) Under the canonical isomorphism $A^{\vee\vee} \cong A$, $B^{\vee\vee} \cong B$, $\varphi^{\vee\vee}$ is the same as φ . 2) φ is an isogeny if and only if φ^{\vee} is an isogeny. In this case, deg $\varphi = \deg \varphi^{\vee}$.

Proof. — We may assume $S = \operatorname{Spec} k$, k algebraically closed. Let $F_1 = (\operatorname{id}, \varphi^{\vee}) : A \times B^{\vee} \to A \times A^{\vee}$, and $F_2 = (\varphi, \operatorname{id}) : A \times B^{\vee} \to B \times B^{\vee}$. Then $F_1^* \mathscr{P}_A = F_2^* \mathscr{P}_B$. This equality can be seen as a characterization of φ in terms of φ^{\vee} , and vice versa. It is then easy to see (1). To see (2), suppose φ^{\vee} is not an isogeny. Then an argument similar to the proof of Theorem 3.1 shows that $\chi(F_1^* \mathscr{P}_A)$ is divisible by arbitrarily large integers, and hence equals 0. If φ is an isogeny, then $\chi(F_2^* \mathscr{P}_B) = \operatorname{deg}(\varphi)\chi(\mathscr{P}_B) \neq 0$, a contradiction. Similarly, if φ is not an isogeny, then φ^{\vee} is not an isogeny.

Lemma 3.4. — Let $\varphi : A \to A^{\vee}$ be a homomorphism. The following are equivalent.

- 1) $\varphi^{\vee} : A \cong A^{\vee \vee} \to A^{\vee}$ is equal to φ , i.e. φ is symmetric.
- 2) After an f.p.p.f. localization on S, $\varphi = \Lambda(\mathscr{L})$ for some line bundle \mathscr{L} on A.
- 3) After an étale localization on $S, \varphi = \Lambda(\mathscr{L})$ for some line bundle \mathscr{L} on A.

Proof. — (1) implies (2): Let \mathscr{L}' be the pullback of \mathscr{P}_A along $A \xrightarrow{\delta} A \times_S A \xrightarrow{(\mathrm{id},\varphi)} A \times_S A^{\vee}$. One checks that $\Lambda(\mathscr{L}') = \varphi + \varphi^{\vee}$. If (1) holds, then $\Lambda(\mathscr{L}') = 2\varphi$. As a general fact, for any line bundle \mathscr{M} on A and any positive integer n, if $\Lambda(\mathscr{M}) \in n \cdot \operatorname{Hom}(A, A^{\vee})$, then after fppf localization on S there exists an n-th root of \mathscr{M} . Applying this fact to our situation, we see that after fppf localization on S we may assume that $\mathscr{L}' = \mathscr{L}^{\otimes 2}$ for some \mathscr{L} . Then $2\Lambda(\mathscr{L}) = 2\varphi$, from which $\Lambda(\mathscr{L}) = \varphi$.

(2) implies (3). By (2), the choices of \mathscr{L} such that $\varphi = \Lambda(\mathscr{L})$ is an A^{\vee} -torsor on S, for the fppf topology. But A^{\vee} is smooth, so this A^{\vee} -torsor is étale locally trivial.

(3) implies (1). Whether φ is symmetric can be checked after étale localization on the base, so we may assume that $\varphi = \Lambda(\mathscr{L})$ for some line bundle \mathscr{L} on A. We then leave it as an exercise for the reader to check that $\varphi = \varphi^{\vee}$.

In the special case $S = \operatorname{Spec} k$, k algebraically closed, we have $\varphi : A \to A^{\vee}$ is symmetric if and only if $\varphi = \Lambda(\mathscr{L})$ for some line bundle \mathscr{L} on A. In this case, $\mathscr{L} = \mathscr{L}_1 \otimes \mathscr{L}_2^{-1}$, with \mathscr{L}_i ample, so $\varphi = \Lambda(\mathscr{L}_1) - \Lambda(\mathscr{L}_2)$, where $\Lambda(\mathscr{L}_i)$ are polarizations. Thus symmetric homomorphisms $A \to A^{\vee}$ are precisely those homomorphisms that can be written as the difference between two polarizations.

In this case, we have a short exact sequence

 $0 \longrightarrow A^{\vee} \longrightarrow \operatorname{Pic}_{A/k} \longrightarrow \operatorname{Hom}(A, A^{\vee})^{\operatorname{Sym}} \longrightarrow 0$

Remark 3.5. — For any base scheme S, we have a short exact sequence of abelian f.p.p.f. sheaves on $(Sch/_S)$

$$0 \longrightarrow A^{\vee} \longrightarrow \operatorname{Pic}_{A/k} \longrightarrow \operatorname{\underline{Hom}}(A, A^{\vee})^{\operatorname{Sym}} \longrightarrow 0$$

where $\underline{\text{Hom}}(A, A^{\vee})^{\text{Sym}}$ is the sheaf defined by $T \mapsto \text{Hom}(A_T, A_T^{\vee})^{\text{Sym}}$, and it is actually representable.

4. The isogeny category

Fix a field k (not necessarily algebraically closed). In the rest of this lecture, everything is over k.

Denote by \mathcal{A} the category of abelian varieties over k. It is an additive category, Hom(A, B) is an abelian group for any $A, B \in Ob \mathcal{A}$.

Let \mathcal{A}^0 be the isogeny category of \mathcal{A} . This means that \mathcal{A}^0 has the same objects of \mathcal{A} , and the morphisms between A, B in \mathcal{A}^0 are given by

$$\operatorname{Hom}(A,B)^0 = \operatorname{Hom}_{\mathcal{A}}(A,B) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

Observation. — The map $\operatorname{Hom}_{\mathcal{A}}(A, B) \to \operatorname{Hom}(A, B)^0$ is an injection, i.e. $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is torsion-free: if the composition

$$A \xrightarrow{[n]} A \xrightarrow{\varphi} B$$

is zero, then $\varphi = 0$ as [n] is an isogeny.

Observation. — For $\varphi \in \text{Hom}(A, B)$, φ is an isogeny if and only if φ becomes an isomorphism in \mathcal{A}^0 .

Fact (Poincaré Complete Reducibility). — \mathcal{A}^0 is semi-simple. In particular, for any $A \in Ob \mathcal{A}$, $End(A)^0 = End(A) \otimes_{\mathbb{Z}} \mathbb{Q}$ is a semi-simple \mathbb{Q} -algebra.

Concretely, for any abelian variety A over k, there are simple abelian varieties A_1, \dots, A_k , mutually non-isogenous, and integers $n_1, \dots, n_k \in \mathbb{Z}_{>0}$ such that A is isogenous to $A_1^{\times n_1} \times \dots \times A_k^{\times n_k}$. So

$$\operatorname{End}(A)^{0} \simeq \operatorname{End}(A_{1}^{\times n_{1}} \times \cdots \times A_{k}^{\times n_{k}})^{0}$$
$$\simeq M_{n_{1}}(D_{1}) \times \cdots \times M_{n_{k}}(D_{k}),$$

where $D_i = \text{End}(A_i)^0$ are division algebras. We will show that D_i is finite dimensional over \mathbb{Q} .

Sketch of proof. — Suppose we have $i: B \hookrightarrow A$ an abelian subvariety. We want to find an abelian subvariety $C \subset A$ such that $B \cap C$ is finite, and $B \times C \to A$, $(b, c) \mapsto b + c$ is an isogeny. Take an ample line bundle \mathscr{L} on A, with associated polarization $\Lambda(\mathscr{L}): A \to A^{\vee}$. Let C' be the kernel of $A \xrightarrow{\Lambda(\mathscr{L})} A^{\vee} \xrightarrow{i^{\vee}} B^{\vee}$, and let $C = (C')^{0}_{red}$.

The main point: $C \cap B \subset \operatorname{Ker}(B \xrightarrow{i} A \xrightarrow{\Lambda(\mathscr{L})} A^{\vee} \xrightarrow{i^{\vee}} B^{\vee}) = \operatorname{Ker}(\Lambda(i^*\mathscr{L}))$, thus it is finite since $i^*\mathscr{L}$ is an ample line bundle on B.

5. Tate module

Fix a prime ℓ coprime to char k. Let A be an abelian variety over k of dimension g. For any $n \geq 1$, denote by $A[\ell^n] = \text{Ker}[\ell^n] : A \to A$. It is a finite étale group scheme of order ℓ^{2gn} . So $A[\ell^n](k^{\text{sep}})$ is an abelian group of order ℓ^{2gn} .

Exercise. — $A[\ell^n](k^{\text{sep}})$ is a free $\mathbb{Z}/\ell^n\mathbb{Z}$ -module of rank 2g. (Hint: we know the order of ℓ^m -torsion in this group, for all $m \leq n$.)

Definition 5.1. — The Tate module of A is

$$T_{\ell}(A) := \varprojlim_{n} A[\ell^{n}](k^{\operatorname{sep}}),$$

with the transition map $A[\ell^{n+1}](k^{\text{sep}}) \to A[\ell^n](k^{\text{sep}})$ given by $x \mapsto [\ell]x$. Then $T_{\ell}(A)$ is a finite free \mathbb{Z}_{ℓ} -module of rank 2g.

The Galois group $\operatorname{Gal}(k^{\operatorname{sep}}/k) = G_k$ acts continuously on $T_{\ell}(A)$. There is a natrual map

$$\Phi: \operatorname{Hom}(A, B) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \to \operatorname{Hom}_{\mathbb{Z}_{\ell}[G_k]}(T_{\ell}(A), T_{\ell}(B))$$

Conjecture 5.2 (Tate). — If k is a finitely generated field, Φ is an isomorphism.

Theorem 5.3. — Let k be an arbitrary field, and let ℓ be a prime coprime to char k. Let A, B be abelian varieties over k. Then

 $\Phi: \operatorname{Hom}(A, B) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \to \operatorname{Hom}_{\mathbb{Z}_{\ell}}(T_{\ell}(A), T_{\ell}(B))$

is injective. In particular, $\operatorname{Hom}(A, B)$ is a finite free \mathbb{Z} -module, of rank $\leq 4 \dim A \dim B$.

Sketch of proof. — Step 1. Suppose $M \subset \text{Hom}(A, B)$ is a finitely generated \mathbb{Z} -submodule (so M is free of finite rank). Suppose M is saturated, i.e. $\mathbb{Q}M \cap \text{Hom}(A, B) = M$. We will know $\Phi|_{M \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}}$ is injective.

Proof. — Take a \mathbb{Z} -basis e_1, \dots, e_r of M. Suppose $\sum_i e_i \otimes a_i \in \operatorname{Ker}(\Phi|_{M \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}})$, $a_i \in \mathbb{Z}_{\ell}$. For each i, let $a_i^{(k)} \in \mathbb{Z}$ be a sequence converging to a_i in the ℓ -adic topology, as $k \to \infty$. Then $\sum_i a_i^{(k)} \Phi(e_i) \xrightarrow{\ell \operatorname{-adic}} \Phi(\sum_i e_i \otimes a_i) = 0$. For k large enough, LHS $\in \ell^{\max v_\ell(a_i)+1} \operatorname{Hom}_{\mathbb{Z}_{\ell}}(T_\ell A, T_\ell B)$.

Observation. — If $f \in \operatorname{Hom}(A, B)$ is such that $\Phi(f) : T_{\ell}A \to T_{\ell}B$ lies in $\ell^{N} \operatorname{Hom}_{\mathbb{Z}_{\ell}}(T_{\ell}A, T_{\ell}B)$, then $f \in \ell^{N} \operatorname{Hom}(A, B)$. (Proof: f kills $A[\ell^{N}]$.)

For $k \gg 0$, we have $\sum_{i} a_i^{(k)} e_i \in \ell^{\max_i(v_\ell(a_i)+1)} \operatorname{Hom}(A, B)$, or equivalently $\sum_i a_i^{(k)} e_i \in \ell^{\max_i(v_\ell(a_i)+1)} M$ since M is saturated. But $v_\ell(a_i^{(k)}) = v_\ell(a_i)$ for $k \gg 0$, a contradiction.

Step 2. We show that $\operatorname{Hom}(A, B)$ is finitely generated. (Then we can take $M = \operatorname{Hom}(A, B)$ in Step 1 and finish the proof.) By Poincaré complete reducibility, we can reduce to the case where A = B, and A is simple. To prove $\operatorname{End}(A)$ is finitely generated, we only need to show that $\Phi : \operatorname{End}(A) \otimes \mathbb{Z}_{\ell} \to \operatorname{End}_{\mathbb{Z}_{\ell}}(T_{\ell}(A))$ is injective. Suppose not,then there is a finitely generated submodule M of $\operatorname{End}(A)$ such that Φ is not injective on $M \otimes \mathbb{Z}_{\ell}$. We then take M' to be the saturation of M inside $\operatorname{End}(A)$, i.e. $M' = \mathbb{Q}M \cap \operatorname{End}(A)$.

Fact. — There is a unique function deg : $\operatorname{End}(A)^0 = \operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbb{Q}$ such that on every finite dimensional \mathbb{Q} -subspace of $\operatorname{End}(A)^0$ (of course, after the proof, we will know that $\operatorname{End}(A)^0$ is finite dimensional), deg is a homogeneous polynomial of degree 2g, and moreover if $\varphi \in \operatorname{End}(A)$ is an isogeny, then $\operatorname{deg}(\varphi)$ is as before. (The proof of this fact is similar to the proof of $\operatorname{deg}([n]) = n^{2g}$, using Theorem of Cube + Intersection theory or Hilbert Polynomial).

Now

$$M' \cap \{ v \in \mathbb{Q}M \mid |\deg(v)| < 1 \} = \{ 0 \},\$$

because any non-zero $\varphi \in \text{End}(A)$ is an isogeny (A simple) and hence satisfies $\deg(\varphi) \geq 1$. So M' is a discrete subgroup of the Euclidean space $\mathbb{R}M$, and so M' is finitely generated.

Applying Step 1 to M', we have Φ is injective on $M' \otimes \mathbb{Z}_{\ell}$, a contradiction with the choice of M.

Remark 5.4. — In the notation of the above proof, for any fixed $\varphi \in \operatorname{End}(A)$, the function $P_{\varphi}: \mathbb{Z} \to \mathbb{Z}, n \mapsto \operatorname{deg}([n] - \varphi)$ is a monic polynomial $P_{\varphi}(T) \in \mathbb{Z}[T]$ of degree 2g, and we have the following "independence of ℓ " result: For every prime ℓ coprime to char k, $P_{\varphi}(T)$ is equal to the characteristic polynomial of φ acting on $T_{\ell}(A)$ (which is a priori a polynomial in $\mathbb{Z}_{\ell}[T]$). In particular, the determinant of φ acting on $T_{\ell}(A)$ is equal to deg (φ) . Note that the determinant function on the $4g^2$ dimensional \mathbb{Q}_{ℓ} -vector space $\operatorname{End}_{\mathbb{Z}_{\ell}}(T_{\ell}(A)) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} \cong M_{2g}(\mathbb{Q}_{\ell})$ is indeed a polynomial of degree 2g.