1. Dual abelian scheme

Let A/S be an abelian scheme. The relative Picard functor is defined as
Picass : (Sch/g) = Ab, T {(Z,p) | &£ is a line bundle on Ar, p: €58 = Or}/ =,
such a pair (.Z, p) is called a rigidified line bundle.

Remark 1.1. — Picys(T) — Pic(Ar)/75 Pic(T), where mp : Ay — T is the
structure map. The isomorphism is given by

(Z,p) = Z,

and the inverse is
L (27, ),
where "8 := ¥ @ mher L1, so we have p: e L8 = eh L Qe L ~ Or.

Theorem 1.2. — The functor Picass is representable by a commutative group
scheme over S. There is a maximal open closed subgroup scheme Pic%/s =AY,
called the dual of A, such that each geometric fiber of AV is connected. Moreover,
AY is an abelian scheme over S.

On A xgPicys, there is a universal rigidified line bundle &4, called the Poincaré
line bundle, with a rigidification (e x id)* 22, — Opic, 5, such that for each T' — 5,

and each rigidified line bundle (.Z, p) on Ap, there is a unique S-map f : T — Pica/g
such that

(Z, p) is the pullback of &4 along A xgT M A xg Picyys.

Note: Let e be the neutral section for the group scheme Picy,s. Then we have

a canonical trivialization (id,e)*%4 — €04 by the moduli meaning of e, where
<1d7 6) A— A Xg PiCA/S.

2. Homomorphism attached to a line bundle

Let A/S be an abelian scheme, and let .Z be a line bundle on A. Let fi, fo : T —
A. Generally, (f1 + f2)" (L) # (f{ L) @ (f5L). We want to find the difference.

Universal case: T = A xg A, and f1, fo are the projections. Then f; + fo = m :
A xg A — Ais the group law on A. Consider

ML)=m'L @ [{L @ LT
which is a line bundle on A xg A. Consider A xg A as an abelian scheme over
A by the second projection fz, we have .#(£)"¢ € Pica/s(A), i.e. we get a map

A(Z) : A — Picysg such that A xg A M A xg Picysg pulls &4 back to
M (L),

One can check that A(.Z) preserves neutral sections. By rigidity, A(.Z) is then a
group homomorphism A — AY C Picy/s. (Upshot: Start on a line bundle .Z on A,
we get a group homomorphism A(Z) : A — AY).

Exercise. — A(Z) is additive in .Z, i.e. A(L @ L) = A(LA) £ A(L).



Now we study A(-Z) when S = Speck, k is an algebraically closed field. The map
AZL): A— AY is the same as last lecture, i.e.

Ak) sz 0.2 ® L' € Pic(A) = Picasu(k).

Proposition 2.1. — If L is ample on A (such an £ exists as A is projective),
then A(Z) is an isogeny of degree h°(L)? # 0. (For such £, we know that h'(£) =
0,Vi > 0) Such a A(Z) is called a polarization.

In the above case, we think that A(.Z) is the “most non-zero”.
Corollary 2.2. — dim A = dim A".

Proposition 2.3. — The following is equivalent.

1) A(Z) =0.

2) £ € Picayp(k) lies in AY.

3) L is algebraically equivalent to 0, which means that there ezists a connected k-
scheme U, two k-points u,v of U, and a line bundle L on A X U such that
the restrictions of £ on A x {u} 2 A and on A x {v} = A are L and Oy
respectively.

The equivalence of (2) and (3) is almost tautological, but the equivalence with
(1) is quite non-trivial. B
We then have an exact sequence (over k = k)

0 —— AY —— Picay — s Hom(A, AY)

Question. — What’s the image of A(-)?

Answer: It is the group of symmetric homomorphisms Hom(A, AY)™ (defined
later).

Example 2.4. — Let A = E be an elliptic curve over k, k algebraically closed.
Let £ = O(e), e the neutral element of . By Riemann-Roch, we have

W) =1—g+deg(L) = 1.

So A(Z)) has degree 1, thus it is an isomorphism, called “the canonical isomor-
phism”.

We now compute A(.Z) for general .£. By the additivity of A, we only need to
consider . = O([P]), P € E. Then we have

ML) E—-EY, st 4L '=0(P—2)® 0(—[P))
=0([P —a] = [P]) = O(]e] = [2]) = AM(Z)(2).
For the second last equality, we used the fact that (P — x) + = = P if and only if
[P — x] + [x] ~ [P] + [¢]. So for general .Z, A(OS,”) = deg(Z)A(Z). We then have

0 sy BV > Pic(F s 0

\ lnb—)ﬂ,l\ ()

Hom(E, EY)




3. More on duality

Recall that 24 is on A x gAY, rigidified along both (e4,id) and (id, e4v). Viewing
P, as a family of line bundles on AY parameterized by A, we get f: A — AYY C
PiCAV/S.

Theorem 3.1. — f is an isomorphism.

Sketch of proof. — We may assume S = Speck, k algebraically closed. We have

dim A = dim AY = dim AYY = g. Let F : Ax AY L% AW 4Y 2 4V 5 AW where

the last isomorphism is the swapping of the two factors. Note that F*(Pav) = P4.

Fact. — We have x(Z4) = (—1)9 = x(P4v) (difficult). Here x(-) denotes the
Euler characteristic of a line bundle. In fact, h'(#24) = 0 if i # g and h9(Z) = 1.

Fact. — For any isogeny \ : B — C between abelian varieties and any line bundle
Z on C, we have xy(\*.Z) = deg(\)x(Z).

If we knew f is an isogeny, then F'is an isogeny with the same degree. By the
facts above, deg F' = deg f = 1, thus f is an isomorphism.

Thus it suffices to prove that f is an isogeny. Supposing not, then there is a finite
subgroup Z C Ker f, of order d > 2 (d coprime to char k), and f factors through
A — A/Z, which is an isogeny of degree d. Then F' also factors through an isogeny
of degree d, and by &4 = F*(---) we have d | x(Z4), a contradiction. O

Construction. — Let ¢ : A — B be any homomorphism. We have ¢" : BY — AY
by pullback of line bundles.

Lemma 3.2. — (o1 £ ¢2)" = ¢ £ ¢y,

Proof. — We may assume S = Speck, k algebraically closed, and we only need to
check the equality on k-points. Use the fact that a point x € BY(k) corresponds
to a line bundle .Z on B such that A(.Z) = 0. The last condition implies that for
any 1,02 : A — B, we have p1.Z ® 05.Z ~ (o1 + p2)* %L, ie. (p1 4+ ¢2)Y(x) =
oY () + @5 (x). Also it is easy to see that (0: A — B)Y = (0: BY — AY), so we
have the equality for the minus sign as well. O

Lemma 3.3. — For any homomorphism of abelian schemes ¢ : A — B, the fol-
lowing statements hold.

1) Under the canonical isomorphism AYY = A, BYY = B, ¢V is the same as .
2) ¢ is an isogeny if and only if ¢V is an isogeny. In this case, degp = deg p".

Proof. — We may assume S = Speck, k algebraically closed. Let Fy = (id, ¢") :
Ax BY - Ax AY, and F» = (¢,id) : Ax BY — B x BY. Then F} %, = F5 5.
This equality can be seen as a characterization of ¢ in terms of ¢Y, and vice versa.
It is then easy to see (1). To see (2), suppose " is not an isogeny. Then an
argument similar to the proof of Theorem 3.1 shows that y(F}Z4) is divisible by
arbitrarily large integers, and hence equals 0. If ¢ is an isogeny, then x(Fjy Pp) =
deg(p)x(X5) # 0, a contradiction. Similarly, if ¢ is not an isogeny, then " is not
an isogeny. L]

Lemma 3.4. — Let p : A — AV be a homomorphism. The following are equiva-
lent.



1) ¥ : A= AV — AY is equal to @, i.e. ¢ is symmetric.
2) After an f.p.p.f. localization on S, ¢ = A(L) for some line bundle £ on A.
3) After an étale localization on S, ¢ = AN(L) for some line bundle £ on A.

Proof. — (1) implies (2): Let £’ be the pullback of &2, along A 2 Axg A lde),
A xg AY. One checks that A(Z") = ¢ + ¢". If (1) holds, then A(Z") = 2¢. As
a general fact, for any line bundle .#Z on A and any positive integer n, if A(A#) €
n - Hom(A, AY), then after fppf localization on S there exists an n-th root of .Z.
Applying this fact to our situation, we see that after fppf localization on S we may
assume that ¢ = £%? for some .£. Then 2A(.Z) = 2¢, from which A(Z) = ¢.
(2) implies (3). By (2), the choices of .Z such that ¢ = A(Z) is an AY-torsor on
S, for the fppf topology. But AY is smooth, so this AY-torsor is étale locally trivial.
(3) implies (1). Whether ¢ is symmetric can be checked after étale localization
on the base, so we may assume that ¢ = A(Z) for some line bundle .Z on A. We
then leave it as an exercise for the reader to check that ¢ = V. O

In the special case S = Speck, k algebraically closed, we have ¢ : A — AV is
symmetric if and only if p = A(%) for some line bundle . on A. In this case, £ =
L ® %, with & ample, so o = A(Z) — A(%), where A(Z) are polarizations.
Thus symmetric homomorphisms A — A are precisely those homomorphisms that
can be written as the difference between two polarizations.

In this case, we have a short exact sequence

0 —— AY —— Picyy, — Hom(4, AY)%™ —— 0

Remark 3.5. — For any base scheme S, we have a short exact sequence of abelian
f.p.p.f. sheaves on (Sch/g)

0 —— AY —— Picyy, —— Hom(A, AY)%™ —— 0

where Hom(A, AY)%™ is the sheaf defined by T+ Hom(Ar, AY)%™ and it is actu-
ally representable.

4. The isogeny category

Fix a field k (not necessarily algebraically closed). In the rest of this lecture,
everything is over k.

Denote by A the category of abelian varieties over k. It is an additive category,
Hom(A, B) is an abelian group for any A, B € Ob A.

Let A° be the isogeny category of A. This means that A° has the same objects
of A, and the morphisms between A, B in A° are given by

Hom(A, B)? = Homy(A, B) ®z Q.

Observation. — The map Homyu(A, B) — Hom(A, B)" is an injection, i.e.
Hom 4 (A, B) is torsion-free: if the composition

A", 4_2,p

is zero, then ¢ = 0 as [n] is an isogeny.



Observation. — For ¢ € Hom(A, B), ¢ is an isogeny if and only if ¢ becomes an
isomorphism in A°.

Fact (Poincaré Complete Reducibility). — A° is semi-simple. In particular,
for any A € Ob A, End(A)? = End(A) ®7 Q is a semi-simple Q-algebra.

Concretely, for any abelian variety A over k, there are simple abelian varieties
Ay, -+, Ak, mutually non-isogenous, and integers nq,--- ,ng € Z~qo such that A is
isogenous to A;"™ x -+ x AS™. So

End(A)°? ~ End(A]™ x - x AS™)°
~ M,,(Dy) x -+ x M,, (D),
where D; = End(Ai)O are division algebras. We will show that D; is finite dimen-

sional over Q.

Sketch of proof. — Suppose we have i : B < A an abelian subvariety. We want to
find an abelian subvariety C' C A such that BNC'is finite, and B x C — A, (b, ¢) —
b+ c is an isogeny. Take an ample line bundle . on A, with associated polarization

AZL): A— AY. Let C' be the kernel of A AD, qv Ty BY, and let C' = (C")°,.

The main point: C'N B C Ker(B RN N BY) = Ker(A(i*.£)), thus it
is finite since i*.Z is an ample line bundle on B. O]

5. Tate module

Fix a prime ¢ coprime to char k. Let A be an abelian variety over k£ of dimension
g. For any n > 1, denote by A[("] = Ker[("] : A — A. It is a finite étale group
scheme of order ¢29". So A[¢"](k*P) is an abelian group of order ¢*".

Ezercise. — A[("|(k*P) is a free Z/{"Z-module of rank 2¢g. (Hint: we know the
order of ¢™-torsion in this group, for all m < n.)

Definition 5.1. — The Tate module of A is
T(A) = lim A["] (),

with the transition map A[("1]|(k*P) — A[¢"](k*P) given by x + [¢(]z. Then T;(A)
is a finite free Z,-module of rank 2g.

The Galois group Gal(k*P /k) = G, acts continuously on T;(A). There is a natrual
map

P . HOIIl(A, B) Kq Lo — HOHlZZ[Gk](Tg(A), Tg(B))
Conjecture 5.2 (Tate). — If k is a finitely generated field, ® is an isomorphism.

Theorem 5.3. — Let k be an arbitrary field, and let ¢ be a prime coprime to char k.
Let A, B be abelian varieties over k. Then

b : HOI’Il(A, B) X7z Zz — HOHlZl<Tg(A>,Tg(B))

is ingective.  In particular, Hom(A, B) is a finite free Z-module, of rank <
4dim Adim B.



Sketch of proof. — Step 1. Suppose M C Hom(A, B) is a finitely generated Z-
submodule (so M is free of finite rank). Suppose M is saturated, i.e. QM N
Hom(A, B) = M. We will know ®|y¢,z, is injective.

Proof. — Take a Z-basis ey, -+ ,e, of M. Suppose > ., e; ® a; € Ker(®|mg,z,),
a; € Zy. For each i, let agk
topology, as k — oo. Then iagk)@(ei) Ladie, Q> e ®a;) = 0. For k large
enough, LHS € ¢m&xve@)+1 Homy, (T, A, T, B).

Observation. — If f € Hom(A, B) is such that ®(f) : T;,A — T;B lies in
¢~ Homg, (T, A, T;B), then f € ¢~ Hom(A, B). (Proof: f kills A[¢V].)

) € Z be a sequence converging to a; in the f-adic

For k >> 0, we have ), agk)ei ¢ (maxi(ve(@)+D) Hom(A, B), or equivalently

iagk)ei € maxi(ve(@)+) AT since M is saturated. But W(az(k)) = vy(a;) for k >> 0,
a contradiction. O

Step 2. We show that Hom (A, B) is finitely generated. (Then we can take M =
Hom(A, B) in Step 1 and finish the proof.) By Poincaré complete reducibility, we
can reduce to the case where A = B, and A is simple. To prove End(A) is finitely
generated, we only need to show that ® : End(A) ® Z, — Endy, (Ty(A)) is injective.
Suppose not,then there is a finitely generated submodule M of End(A) such that
® is not injective on M ® Z,. We then take M’ to be the saturation of M inside
End(A), i.e. M’ = QM NEnd(A).

Fact. — There is a unique function deg : End(A4)° = End(A) ®z Q — Q such that
on every finite dimensional Q-subspace of End(A)® (of course, after the proof, we
will know that End(A)° is finite dimensional), deg is a homogeneous polynomial of
degree 2¢g, and moreover if ¢ € End(A) is an isogeny, then deg(y) is as before. (The
proof of this fact is similar to the proof of deg([n]) = n*, using Theorem of Cube
+ Intersection theory or Hilbert Polynomial).

Now
M'0{v e QM | |deg(v)| <1} = {0},
because any non-zero ¢ € End(A) is an isogeny (A simple) and hence satisfies
deg(p) > 1. So M’ is a discrete subgroup of the Euclidean space RM, and so M’ is
finitely generated.
Applying Step 1 to M’, we have ® is injective on M’ ® Z,, a contradiction with
the choice of M. O

Remark 5.4. — In the notation of the above proof, for any fixed ¢ € End(A),
the function P, : Z — Z,n +— deg([n] — ¢) is a monic polynomial P,(T") € Z[T] of
degree 2¢g, and we have the following “independence of ¢” result: For every prime
¢ coprime to chark, P,(T) is equal to the characteristic polynomial of ¢ acting on
Ty(A) (which is a priori a polynomial in Z,[T]). In particular, the determinant of ¢
acting on Ty(A) is equal to deg(y). Note that the determinant function on the 4¢>-
dimensional Q-vector space Endy, (T;(A)) ®z, Q¢ = M,(Qy) is indeed a polynomial
of degree 2g.




