1. Dual abelian scheme

Let A / S be an abelian scheme. The relative Picard functor is defined as
$\operatorname{Pic}_{A / S}:(\operatorname{Sch} / S) \rightarrow \mathbf{A b}, \quad T \mapsto\left\{(\mathscr{L}, \rho) \mid \mathscr{L}\right.$ is a line bundle on $\left.A_{T}, \rho: e_{T}^{*} \mathscr{L} \xrightarrow{\sim} \mathscr{O}_{T}\right\} / \cong$, such a pair (\mathscr{L}, ρ) is called a rigidified line bundle.

Remark 1.1. $-\operatorname{Pic}_{A / S}(T) \xrightarrow{\sim} \operatorname{Pic}\left(A_{T}\right) / \pi_{T}^{*} \operatorname{Pic}(T)$, where $\pi_{T}: A_{T} \rightarrow T$ is the structure map. The isomorphism is given by

$$
(\mathscr{L}, \rho) \mapsto \mathscr{L}
$$

and the inverse is

$$
\mathscr{L} \mapsto\left(\mathscr{L}^{\mathrm{rig}}, \rho\right),
$$

where $\mathscr{L}^{\text {rig }}:=\mathscr{L} \otimes \pi_{T}^{*} e_{T}^{*} \mathscr{L}^{-1}$, so we have $\rho: e_{T}^{*} \mathscr{L}^{\text {rig }}=e_{T}^{*} \mathscr{L} \otimes e_{T}^{*} \mathscr{L}^{-1} \simeq \mathscr{O}_{T}$.
Theorem 1.2. - The functor $\operatorname{Pic}_{A / S}$ is representable by a commutative group scheme over S. There is a maximal open closed subgroup scheme $\operatorname{Pic}_{A / S}^{0}=A^{\vee}$, called the dual of A, such that each geometric fiber of A^{\vee} is connected. Moreover, A^{\vee} is an abelian scheme over S.

On $A \times{ }_{S} \operatorname{Pic}_{A / S}$, there is a universal rigidified line bundle \mathscr{P}_{A}, called the Poincaré line bundle, with a rigidification $(e \times \mathrm{id})^{*} \mathscr{P}_{A} \xrightarrow{\sim} \mathscr{O}_{\mathrm{Pic}_{A / S}}$, such that for each $T \rightarrow S$, and each rigidified line bundle (\mathscr{L}, ρ) on A_{T}, there is a unique S-map $f: T \rightarrow \operatorname{Pic}_{A / S}$ such that
(\mathscr{L}, ρ) is the pullback of \mathscr{P}_{A} along $A \times_{S} T \xrightarrow{(\mathrm{id}, f)} A \times_{S} \operatorname{Pic}_{A / S}$.
Note: Let e be the neutral section for the group scheme $\operatorname{Pic}_{A / S}$. Then we have a canonical trivialization $(\mathrm{id}, e)^{*} \mathscr{P}_{A} \xrightarrow{\sim} \mathscr{O}_{A}$ by the moduli meaning of e, where (id, e) : $A \rightarrow A \times{ }_{S} \operatorname{Pic}_{A / S}$.

2. Homomorphism attached to a line bundle

Let A / S be an abelian scheme, and let \mathscr{L} be a line bundle on A. Let $f_{1}, f_{2}: T \rightarrow$ A. Generally, $\left(f_{1}+f_{2}\right)^{*}(\mathscr{L}) \not 千\left(f_{1}^{*} \mathscr{L}\right) \otimes\left(f_{2}^{*} \mathscr{L}\right)$. We want to find the difference.

Universal case: $T=A \times_{S} A$, and f_{1}, f_{2} are the projections. Then $f_{1}+f_{2}=m$: $A \times{ }_{S} A \rightarrow A$ is the group law on A. Consider

$$
\mathscr{M}(\mathscr{L})=m^{*} \mathscr{L} \otimes f_{1}^{*} \mathscr{L}^{-1} \otimes f_{2}^{*} \mathscr{L}^{-1}
$$

which is a line bundle on $A \times_{S} A$. Consider $A \times_{S} A$ as an abelian scheme over A by the second projection f_{2}, we have $\mathscr{M}(\mathscr{L})^{\text {rig }} \in \operatorname{Pic}_{A / S}(A)$, i.e. we get a map $\Lambda(\mathscr{L}): A \rightarrow \operatorname{Pic}_{A / S}$ such that $A \times_{S} A \xrightarrow{(\mathrm{id}, \Lambda(\mathscr{L}))} A \times_{S} \operatorname{Pic}_{A / S}$ pulls \mathscr{P}_{A} back to $\mathscr{M}(\mathscr{L})^{\mathrm{rig}}$.

One can check that $\Lambda(\mathscr{L})$ preserves neutral sections. By rigidity, $\Lambda(\mathscr{L})$ is then a group homomorphism $A \rightarrow A^{\vee} \subset \operatorname{Pic}_{A / S}$. (Upshot: Start on a line bundle \mathscr{L} on A, we get a group homomorphism $\left.\Lambda(\mathscr{L}): A \rightarrow A^{\vee}\right)$.

Exercise. $-\Lambda(\mathscr{L})$ is additive in \mathscr{L}, i.e. $\Lambda\left(\mathscr{L}_{1} \otimes \mathscr{L}_{2}^{ \pm 1}\right)=\Lambda\left(\mathscr{L}_{1}\right) \pm \Lambda\left(\mathscr{L}_{2}\right)$.

Now we study $\Lambda(\mathscr{L})$ when $S=\operatorname{Spec} k, k$ is an algebraically closed field. The map $\Lambda(\mathscr{L}): A \rightarrow A^{\vee}$ is the same as last lecture, i.e.

$$
A(k) \ni x \mapsto t_{x}^{*} \mathscr{L} \otimes \mathscr{L}^{-1} \in \operatorname{Pic}(A)=\operatorname{Pic}_{A / k}(k) .
$$

Proposition 2.1. - If \mathscr{L} is ample on A (such an \mathscr{L} exists as A is projective), then $\Lambda(\mathscr{L})$ is an isogeny of degree $h^{0}(\mathscr{L})^{2} \neq 0$. (For such \mathscr{L}, we know that $h^{i}(\mathscr{L})=$ $0, \forall i>0)$ Such $a(\mathscr{L})$ is called a polarization.

In the above case, we think that $\Lambda(\mathscr{L})$ is the "most non-zero".
Corollary 2.2. $-\operatorname{dim} A=\operatorname{dim} A^{\vee}$.
Proposition 2.3. - The following is equivalent.

1) $\Lambda(\mathscr{L})=0$.
2) $\mathscr{L} \in \operatorname{Pic}_{A / k}(k)$ lies in A^{\vee}.
3) \mathscr{L} is algebraically equivalent to 0 , which means that there exists a connected k scheme U, two k-points u, v of U, and a line bundle $\widetilde{\mathscr{L}}$ on $A \times_{k} U$ such that the restrictions of $\widetilde{\mathscr{L}}$ on $A \times\{u\} \cong A$ and on $A \times\{v\} \cong A$ are \mathscr{L} and \mathscr{O}_{A} respectively.

The equivalence of (2) and (3) is almost tautological, but the equivalence with (1) is quite non-trivial.

We then have an exact sequence (over $k=\bar{k}$)

$$
0 \longrightarrow A^{\vee} \longrightarrow \operatorname{Pic}_{A / k} \xrightarrow{\Lambda(\cdot)} \operatorname{Hom}\left(A, A^{\vee}\right)
$$

Question. - What's the image of $\Lambda(\cdot)$?
Answer: It is the group of symmetric homomorphisms $\operatorname{Hom}\left(A, A^{\vee}\right)^{\operatorname{Sym}}$ (defined later).

Example 2.4. - Let $A=E$ be an elliptic curve over k, k algebraically closed. Let $\mathscr{L}_{1}=\mathscr{O}(e), e$ the neutral element of E. By Riemann-Roch, we have

$$
h^{0}\left(\mathscr{L}_{1}\right)=1-g+\operatorname{deg}\left(\mathscr{L}_{1}\right)=1 .
$$

So $\Lambda\left(\mathscr{L}_{1}\right)$ has degree 1, thus it is an isomorphism, called "the canonical isomorphism".

We now compute $\Lambda(\mathscr{L})$ for general \mathscr{L}. By the additivity of Λ, we only need to consider $\mathscr{L}=\mathscr{O}([P]), P \in E$. Then we have

$$
\begin{aligned}
\Lambda(\mathscr{L}): E \rightarrow E^{\vee}, \quad x & \mapsto t_{x}^{*} \mathscr{L} \otimes \mathscr{L}^{-1}=\mathscr{O}([P-x]) \otimes \mathscr{O}(-[P]) \\
& =\mathscr{O}([P-x]-[P])=\mathscr{O}([e]-[x])=\Lambda\left(\mathscr{L}_{1}\right)(x) .
\end{aligned}
$$

For the second last equality, we used the fact that $(P-x)+x=P$ if and only if $[P-x]+[x] \sim[P]+[e]$. So for general $\mathscr{L}, \Lambda(\mathscr{L})=\operatorname{deg}(\mathscr{L}) \Lambda\left(\mathscr{L}_{1}\right)$. We then have

3. More on duality

Recall that \mathscr{P}_{A} is on $A \times{ }_{S} A^{\vee}$, rigidified along both $\left(e_{A}, \mathrm{id}\right)$ and (id, $\left.e_{A^{\vee}}\right)$. Viewing \mathscr{P}_{A} as a family of line bundles on A^{\vee} parameterized by A, we get $f: A \rightarrow A^{\vee \vee} \subset$ $\mathrm{Pic}_{A^{\vee} / S}$.

Theorem 3.1. - f is an isomorphism.
Sketch of proof. - We may assume $S=\operatorname{Spec} k, k$ algebraically closed. We have $\operatorname{dim} A=\operatorname{dim} A^{\vee}=\operatorname{dim} A^{\vee \vee}=g$. Let $F: A \times A^{\vee} \xrightarrow{(f, \text { id })} A^{\vee \vee} \times A^{\vee} \xrightarrow{\sim} A^{\vee} \times A^{\vee \vee}$, where the last isomorphism is the swapping of the two factors. Note that $F^{*}\left(\mathscr{P}_{A^{\vee}}\right)=\mathscr{P}_{A}$.

Fact. - We have $\chi\left(\mathscr{P}_{A}\right)=(-1)^{g}=\chi\left(\mathscr{P}_{A^{\vee}}\right)$ (difficult). Here $\chi(\cdot)$ denotes the Euler characteristic of a line bundle. In fact, $h^{i}\left(\mathscr{P}_{A}\right)=0$ if $i \neq g$ and $h^{g}(\mathscr{L})=1$.

Fact. - For any isogeny $\lambda: B \rightarrow C$ between abelian varieties and any line bundle \mathscr{L} on C, we have $\chi\left(\lambda^{*} \mathscr{L}\right)=\operatorname{deg}(\lambda) \chi(\mathscr{L})$.

If we knew f is an isogeny, then F is an isogeny with the same degree. By the facts above, $\operatorname{deg} F=\operatorname{deg} f=1$, thus f is an isomorphism.

Thus it suffices to prove that f is an isogeny. Supposing not, then there is a finite subgroup $Z \subset \operatorname{Ker} f$, of order $d \geq 2$ (d coprime to char k), and f factors through $A \rightarrow A / Z$, which is an isogeny of degree d. Then F also factors through an isogeny of degree d, and by $\mathscr{P}_{A}=F^{*}(\cdots)$ we have $d \mid \chi\left(\mathscr{P}_{A}\right)$, a contradiction.

Construction. - Let $\varphi: A \rightarrow B$ be any homomorphism. We have $\varphi^{\vee}: B^{\vee} \rightarrow A^{\vee}$ by pullback of line bundles.

Lemma 3.2. - $\left(\varphi_{1} \pm \varphi_{2}\right)^{\vee}=\varphi_{1}^{\vee} \pm \varphi_{2}^{\vee}$.
Proof. - We may assume $S=\operatorname{Spec} k, k$ algebraically closed, and we only need to check the equality on k-points. Use the fact that a point $x \in B^{\vee}(k)$ corresponds to a line bundle \mathscr{L} on B such that $\Lambda(\mathscr{L})=0$. The last condition implies that for any $\varphi_{1}, \varphi_{2}: A \rightarrow B$, we have $\varphi_{1}^{*} \mathscr{L} \otimes \varphi_{2}^{*} \mathscr{L} \simeq\left(\varphi_{1}+\varphi_{2}\right)^{*} \mathscr{L}$, i.e. $\left(\varphi_{1}+\varphi_{2}\right)^{\vee}(x)=$ $\varphi_{1}^{\vee}(x)+\varphi_{2}^{\vee}(x)$. Also it is easy to see that $(0: A \rightarrow B)^{\vee}=\left(0: B^{\vee} \rightarrow A^{\vee}\right)$, so we have the equality for the minus sign as well.

Lemma 3.3. - For any homomorphism of abelian schemes $\varphi: A \rightarrow B$, the following statements hold.

1) Under the canonical isomorphism $A^{\vee \vee} \cong A, B^{\vee \vee} \cong B, \varphi^{\vee \vee}$ is the same as φ.
2) φ is an isogeny if and only if φ^{\vee} is an isogeny. In this case, $\operatorname{deg} \varphi=\operatorname{deg} \varphi^{\vee}$.

Proof. - We may assume $S=\operatorname{Spec} k, k$ algebraically closed. Let $F_{1}=\left(\mathrm{id}, \varphi^{\vee}\right)$: $A \times B^{\vee} \rightarrow A \times A^{\vee}$, and $F_{2}=(\varphi, \mathrm{id}): A \times B^{\vee} \rightarrow B \times B^{\vee}$. Then $F_{1}^{*} \mathscr{P}_{A}=F_{2}^{*} \mathscr{P}_{B}$. This equality can be seen as a characterization of φ in terms of φ^{\vee}, and vice versa. It is then easy to see (1). To see (2), suppose φ^{\vee} is not an isogeny. Then an argument similar to the proof of Theorem 3.1 shows that $\chi\left(F_{1}^{*} \mathscr{P}_{A}\right)$ is divisible by arbitrarily large integers, and hence equals 0 . If φ is an isogeny, then $\chi\left(F_{2}^{*} \mathscr{P}_{B}\right)=$ $\operatorname{deg}(\varphi) \chi\left(\mathscr{P}_{B}\right) \neq 0$, a contradiction. Similarly, if φ is not an isogeny, then φ^{\vee} is not an isogeny.

Lemma 3.4. - Let $\varphi: A \rightarrow A^{\vee}$ be a homomorphism. The following are equivalent.

1) $\varphi^{\vee}: A \cong A^{\vee \vee} \rightarrow A^{\vee}$ is equal to φ, i.e. φ is symmetric.
2) After an f.p.p.f. localization on $S, \varphi=\Lambda(\mathscr{L})$ for some line bundle \mathscr{L} on A.
3) After an étale localization on $S, \varphi=\Lambda(\mathscr{L})$ for some line bundle \mathscr{L} on A.

Proof. - (1) implies (2): Let \mathscr{L}^{\prime} be the pullback of \mathscr{P}_{A} along $A \xrightarrow{\delta} A \times_{S} A \xrightarrow{(\mathrm{id}, \varphi)}$ $A \times_{S} A^{\vee}$. One checks that $\Lambda\left(\mathscr{L}^{\prime}\right)=\varphi+\varphi^{\vee}$. If (1) holds, then $\Lambda\left(\mathscr{L}^{\prime}\right)=2 \varphi$. As a general fact, for any line bundle \mathscr{M} on A and any positive integer n, if $\Lambda(\mathscr{M}) \in$ $n \cdot \operatorname{Hom}\left(A, A^{\vee}\right)$, then after fppf localization on S there exists an n-th root of \mathscr{M}. Applying this fact to our situation, we see that after fppf localization on S we may assume that $\mathscr{L}^{\prime}=\mathscr{L}^{\otimes 2}$ for some \mathscr{L}. Then $2 \Lambda(\mathscr{L})=2 \varphi$, from which $\Lambda(\mathscr{L})=\varphi$.
(2) implies (3). By (2), the choices of \mathscr{L} such that $\varphi=\Lambda(\mathscr{L})$ is an A^{\vee}-torsor on S, for the fppf topology. But A^{\vee} is smooth, so this A^{\vee}-torsor is étale locally trivial.
(3) implies (1). Whether φ is symmetric can be checked after étale localization on the base, so we may assume that $\varphi=\Lambda(\mathscr{L})$ for some line bundle \mathscr{L} on A. We then leave it as an exercise for the reader to check that $\varphi=\varphi^{\vee}$.

In the special case $S=\operatorname{Spec} k, k$ algebraically closed, we have $\varphi: A \rightarrow A^{\vee}$ is symmetric if and only if $\varphi=\Lambda(\mathscr{L})$ for some line bundle \mathscr{L} on A. In this case, $\mathscr{L}=$ $\mathscr{L}_{1} \otimes \mathscr{L}_{2}^{-1}$, with \mathscr{L}_{i} ample, so $\varphi=\Lambda\left(\mathscr{L}_{1}\right)-\Lambda\left(\mathscr{L}_{2}\right)$, where $\Lambda\left(\mathscr{L}_{i}\right)$ are polarizations. Thus symmetric homomorphisms $A \rightarrow A^{\vee}$ are precisely those homomorphisms that can be written as the difference between two polarizations.

In this case, we have a short exact sequence

$$
0 \longrightarrow A^{\vee} \longrightarrow \operatorname{Pic}_{A / k} \longrightarrow \operatorname{Hom}\left(A, A^{\vee}\right)^{\text {Sym }} \longrightarrow 0
$$

Remark 3.5. - For any base scheme S, we have a short exact sequence of abelian f.p.p.f. sheaves on $\left(\mathrm{Sch} /{ }_{S}\right)$

$$
0 \longrightarrow A^{\vee} \longrightarrow \operatorname{Pic}_{A / k} \longrightarrow \underline{\operatorname{Hom}}\left(A, A^{\vee}\right)^{\text {Sym }} \longrightarrow 0
$$

where $\underline{\operatorname{Hom}}\left(A, A^{\vee}\right)^{\mathrm{Sym}}$ is the sheaf defined by $T \mapsto \operatorname{Hom}\left(A_{T}, A_{T}^{\vee}\right)^{\mathrm{Sym}}$, and it is actually representable.

4. The isogeny category

Fix a field k (not necessarily algebraically closed). In the rest of this lecture, everything is over k.

Denote by \mathcal{A} the category of abelian varieties over k. It is an additive category, $\operatorname{Hom}(A, B)$ is an abelian group for any $A, B \in \operatorname{Ob} \mathcal{A}$.

Let \mathcal{A}^{0} be the isogeny category of \mathcal{A}. This means that \mathcal{A}^{0} has the same objects of \mathcal{A}, and the morphisms between A, B in \mathcal{A}^{0} are given by

$$
\operatorname{Hom}(A, B)^{0}=\operatorname{Hom}_{\mathcal{A}}(A, B) \otimes_{\mathbb{Z}} \mathbb{Q}
$$

Observation. - The map $\operatorname{Hom}_{\mathcal{A}}(A, B) \rightarrow \operatorname{Hom}(A, B)^{0}$ is an injection, i.e. $\operatorname{Hom}_{\mathcal{A}}(A, B)$ is torsion-free: if the composition

$$
A \xrightarrow{[n]} A \xrightarrow{\varphi} B
$$

is zero, then $\varphi=0$ as $[n]$ is an isogeny.

Observation. - For $\varphi \in \operatorname{Hom}(A, B), \varphi$ is an isogeny if and only if φ becomes an isomorphism in \mathcal{A}^{0}.

Fact (Poincaré Complete Reducibility). - \mathcal{A}^{0} is semi-simple. In particular, for any $A \in \operatorname{Ob} \mathcal{A}, \operatorname{End}(A)^{0}=\operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q}$ is a semi-simple \mathbb{Q}-algebra.

Concretely, for any abelian variety A over k, there are simple abelian varieties A_{1}, \cdots, A_{k}, mutually non-isogenous, and integers $n_{1}, \cdots, n_{k} \in \mathbb{Z}_{>0}$ such that A is isogenous to $A_{1}^{\times n_{1}} \times \cdots \times A_{k}^{\times n_{k}}$. So

$$
\begin{aligned}
\operatorname{End}(A)^{0} & \simeq \operatorname{End}\left(A_{1}^{\times n_{1}} \times \cdots \times A_{k}^{\times n_{k}}\right)^{0} \\
& \simeq M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{k}}\left(D_{k}\right),
\end{aligned}
$$

where $D_{i}=\operatorname{End}\left(A_{i}\right)^{0}$ are division algebras. We will show that D_{i} is finite dimensional over \mathbb{Q}.

Sketch of proof. - Suppose we have $i: B \hookrightarrow A$ an abelian subvariety. We want to find an abelian subvariety $C \subset A$ such that $B \cap C$ is finite, and $B \times C \rightarrow A,(b, c) \mapsto$ $b+c$ is an isogeny. Take an ample line bundle \mathscr{L} on A, with associated polarization $\Lambda(\mathscr{L}): A \rightarrow A^{\vee}$. Let C^{\prime} be the kernel of $A \xrightarrow{\Lambda(\mathscr{L})} A^{\vee} \xrightarrow{i^{\vee}} B^{\vee}$, and let $C=\left(C^{\prime}\right)_{\text {red }}^{0}$.

The main point: $C \cap B \subset \operatorname{Ker}\left(B \xrightarrow{i} A \xrightarrow{\Lambda(\mathscr{L})} A^{\vee} \xrightarrow{i^{\vee}} B^{\vee}\right)=\operatorname{Ker}\left(\Lambda\left(i^{*} \mathscr{L}\right)\right)$, thus it is finite since $i^{*} \mathscr{L}$ is an ample line bundle on B.

5. Tate module

Fix a prime ℓ coprime to char k. Let A be an abelian variety over k of dimension g. For any $n \geq 1$, denote by $A\left[\ell^{n}\right]=\operatorname{Ker}\left[\ell^{n}\right]: A \rightarrow A$. It is a finite étale group scheme of order $\ell^{2 g n}$. So $A\left[\ell^{n}\right]\left(k^{\text {sep }}\right)$ is an abelian group of order $\ell^{2 g n}$.

Exercise. - $A\left[\ell^{n}\right]\left(k^{\text {sep }}\right)$ is a free $\mathbb{Z} / \ell^{n} \mathbb{Z}$-module of rank $2 g$. (Hint: we know the order of ℓ^{m}-torsion in this group, for all $m \leq n$.)

Definition 5.1. - The Tate module of A is
with the transition map $A\left[\ell^{n+1}\right]\left(k^{\text {sep }}\right) \rightarrow A\left[\ell^{n}\right]\left(k^{\text {sep }}\right)$ given by $x \mapsto[\ell] x$. Then $T_{\ell}(A)$ is a finite free \mathbb{Z}_{ℓ}-module of rank $2 g$.

The Galois group $\operatorname{Gal}\left(k^{\text {sep }} / k\right)=G_{k}$ acts continuously on $T_{\ell}(A)$. There is a natrual map

$$
\Phi: \operatorname{Hom}(A, B) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \rightarrow \operatorname{Hom}_{\mathbb{Z}_{\ell}\left[G_{k}\right]}\left(T_{\ell}(A), T_{\ell}(B)\right)
$$

Conjecture 5.2 (Tate). - If k is a finitely generated field, Φ is an isomorphism.
Theorem 5.3. - Let k be an arbitrary field, and let ℓ be a prime coprime to char k. Let A, B be abelian varieties over k. Then

$$
\Phi: \operatorname{Hom}(A, B) \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell} \rightarrow \operatorname{Hom}_{\mathbb{Z}_{l}}\left(T_{\ell}(A), T_{\ell}(B)\right)
$$

is injective. In particular, $\operatorname{Hom}(A, B)$ is a finite free \mathbb{Z}-module, of rank \leq $4 \operatorname{dim} A \operatorname{dim} B$.

Sketch of proof. - Step 1. Suppose $M \subset \operatorname{Hom}(A, B)$ is a finitely generated \mathbb{Z} submodule (so M is free of finite rank). Suppose M is saturated, i.e. $\mathbb{Q} M \cap$ $\operatorname{Hom}(A, B)=M$. We will know $\left.\Phi\right|_{M \otimes_{\mathbb{Z}} \mathbb{Z}_{\ell}}$ is injective.
Proof. - Take a \mathbb{Z}-basis e_{1}, \cdots, e_{r} of M. Suppose $\sum_{i} e_{i} \otimes a_{i} \in \operatorname{Ker}\left(\left.\Phi\right|_{M \otimes \mathbb{Z}_{\ell}}\right)$, $a_{i} \in \mathbb{Z}_{\ell}$. For each i, let $a_{i}^{(k)} \in \mathbb{Z}$ be a sequence converging to a_{i} in the ℓ-adic topology, as $k \rightarrow \infty$. Then $\sum_{i} a_{i}^{(k)} \Phi\left(e_{i}\right) \xrightarrow{\ell \text {-adic }} \Phi\left(\sum_{i} e_{i} \otimes a_{i}\right)=0$. For k large enough, LHS $\in \ell^{\max v_{\ell}\left(a_{i}\right)+1} \operatorname{Hom}_{\mathbb{Z}_{\ell}}\left(T_{\ell} A, T_{\ell} B\right)$.

Observation. - If $f \in \operatorname{Hom}(A, B)$ is such that $\Phi(f): T_{\ell} A \rightarrow T_{\ell} B$ lies in $\ell^{N} \operatorname{Hom}_{\mathbb{Z}_{\ell}}\left(T_{\ell} A, T_{\ell} B\right)$, then $f \in \ell^{N} \operatorname{Hom}(A, B)$. (Proof: f kills $A\left[\ell^{N}\right]$.)
For $k \gg 0$, we have $\sum_{i} a_{i}^{(k)} e_{i} \in \ell^{\max _{i}\left(v_{\ell}\left(a_{i}\right)+1\right)} \operatorname{Hom}(A, B)$, or equivalently $\sum_{i} a_{i}^{(k)} e_{i} \in \ell^{\max _{i}\left(v_{\ell}\left(a_{i}\right)+1\right)} M$ since M is saturated. But $v_{\ell}\left(a_{i}^{(k)}\right)=v_{\ell}\left(a_{i}\right)$ for $k \gg 0$, a contradiction.

Step 2. We show that $\operatorname{Hom}(A, B)$ is finitely generated. (Then we can take $M=$ $\operatorname{Hom}(A, B)$ in Step 1 and finish the proof.) By Poincaré complete reducibility, we can reduce to the case where $A=B$, and A is simple. To prove $\operatorname{End}(A)$ is finitely generated, we only need to show that $\Phi: \operatorname{End}(A) \otimes \mathbb{Z}_{\ell} \rightarrow \operatorname{End}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(A)\right)$ is injective. Suppose not,then there is a finitely generated submodule M of $\operatorname{End}(A)$ such that Φ is not injective on $M \otimes \mathbb{Z}_{\ell}$. We then take M^{\prime} to be the saturation of M inside $\operatorname{End}(A)$, i.e. $M^{\prime}=\mathbb{Q} M \cap \operatorname{End}(A)$.

Fact. - There is a unique function deg : $\operatorname{End}(A)^{0}=\operatorname{End}(A) \otimes_{\mathbb{Z}} \mathbb{Q} \rightarrow \mathbb{Q}$ such that on every finite dimensional \mathbb{Q}-subspace of $\operatorname{End}(A)^{0}$ (of course, after the proof, we will know that $\operatorname{End}(A)^{0}$ is finite dimensional), deg is a homogeneous polynomial of degree $2 g$, and moreover if $\varphi \in \operatorname{End}(A)$ is an isogeny, then $\operatorname{deg}(\varphi)$ is as before. (The proof of this fact is similar to the proof of $\operatorname{deg}([n])=n^{2 g}$, using Theorem of Cube + Intersection theory or Hilbert Polynomial).

Now

$$
M^{\prime} \cap\{v \in \mathbb{Q} M| | \operatorname{deg}(v) \mid<1\}=\{0\},
$$

because any non-zero $\varphi \in \operatorname{End}(A)$ is an isogeny (A simple) and hence satisfies $\operatorname{deg}(\varphi) \geq 1$. So M^{\prime} is a discrete subgroup of the Euclidean space $\mathbb{R} M$, and so M^{\prime} is finitely generated.

Applying Step 1 to M^{\prime}, we have Φ is injective on $M^{\prime} \otimes \mathbb{Z}_{\ell}$, a contradiction with the choice of M.

Remark 5.4. - In the notation of the above proof, for any fixed $\varphi \in \operatorname{End}(A)$, the function $P_{\varphi}: \mathbb{Z} \rightarrow \mathbb{Z}, n \mapsto \operatorname{deg}([n]-\varphi)$ is a monic polynomial $P_{\varphi}(T) \in \mathbb{Z}[T]$ of degree $2 g$, and we have the following "independence of ℓ " result: For every prime ℓ coprime to char $k, P_{\varphi}(T)$ is equal to the characteristic polynomial of φ acting on $T_{\ell}(A)$ (which is a priori a polynomial in $\mathbb{Z}_{\ell}[T]$). In particular, the determinant of φ acting on $T_{\ell}(A)$ is equal to $\operatorname{deg}(\varphi)$. Note that the determinant function on the $4 g^{2}$ dimensional \mathbb{Q}_{ℓ}-vector space $\operatorname{End}_{\mathbb{Z}_{\ell}}\left(T_{\ell}(A)\right) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell} \cong M_{2 g}\left(\mathbb{Q}_{\ell}\right)$ is indeed a polynomial of degree $2 g$.

