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I N T ROD U C T ION 

This booklet consists of the notes of a seminar con­

ducted by the editors during the Wintersemester 1983/84 in 

Bonn, at the Max-Planck-Institut fUr Mathematik. The topic 

was the proof of the Mordell-conjecture, achieved recently by 

one of us, as well as some additional results about arithmetic 

surfaces. 

We hope that these notes will be useful for mathe­

maticians interestedm arithmetic algebraic geometry. We use 

Arakelov's point of view, which simplifies a lot the classical 

theory. 

The text follows closely the original proof. For a 

somewhat different point of view (i.e., French versus German 

style) the reader may consult the exposes Nr.616/19 in the 

Seminaire Bourbaki 1983, by P. Deligne and L.Szpiro. L. Szpiro 

is also conducting a seminaire in Paris, whose notes should 

be useful as well. 

The book is subdivided into seven chapters. The first 

two, written by G. Faltings, give some general information 

about moduli spaces and height.s. Their main purpose is to 

define the modular height of an abelian variety, and prove it's 

mainproperties. Here we often content ourselves with giving 

descriptions instead of proofs, because the complete details 

would require at least two additional volumes. 



The chapter III, written by F. Grunewald, deals with 

p-divisible groups and finite flat group-schemes. It's main 

topic is the relation between Galois-representations and 

differentials. After those three technical chapters the 

conjectures of Tate, Shafarevich and Mordell are shown in 

chapters IV and V, written by N. Schappacher and G. Wlistholz, 

respectively. In chapter VI G. Faltings gives some complements, 

mainly the generalization of the results to finitely generated 

extensions of ~. Finally the chapter VII, ~ U. Stuhler, 

oontains an introduction to the theory of arithmetic surfaces. 

(Arakelov's intersection theory, Riemann-Roch, Hodge index-

theorem) . 

We thank the speakers, all participants, the 

Max-Planck-Institut in general, and it's director, F.Hirzebruch. 

For the typing our thanks go to Mrs. D. Bauer ,K. Deutler and 

U. Voss. 

Bonn/Wuppertal, 

May 1984 
Gerd Faltings 

Gisbert Wlistholz 
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MODULI SPACES 

Gerd Faltings 
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§ Introduction 

§ 2 Generalities about Moduli-Spaces 
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§ 4 Metrics with logarithmic singularities 

§ 5 The minimal compactification of Ag/Q: 

§ 6 The toroidal compactification 
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§ 1 Introduction 

The purpose of this chapter is to list the necessary basic 

facts from the theory of moduli spaces and their compactifi­

cations. Giving complete proofs would require a book, and there­

fore we usually only describe what is going on. Precise details 

may be found in the appropriate books, ~nd this survey might be 

useful as an introduction to them. 

The topics we deal with are 

general properties of moduli spaces, and some examples 

logarithmic singularities 

compactification of the complex moduli-space of abelian 

varieties. 

In the next chapter this will be used to define height­

functions for abelian varieties over number-fields. I have 

profited very much from comments and advice given to me by 

P. Deligne and O. Gabber. 
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§ 2 Generalities about Moduli-Spaces 

Suppose S is a scheme. We want to represent a contravariant 

functor 

F o (Scheme/S) + sets 

If this is achieved by M + S , we call M a fine moduli-space 

for F • Dito if we work with algebraic spaces instead of 

schemes. 

In many important cases fine moduli-spaces do not exist. We 

define a coarse moduli space as an M + S , such that we have 

a mapping of contravariant functors 

with 

a) If T=Spec() + S is a m~pping, with k an algebraically 

closed field, then ~ induces a bijection 

F(T) ~ HornS (T ,M) 

b) ~ is universal for mappings F + hN ' that is, for any 

N + S : Hom (M,N)~ Hom (F,h ) 
S S -~ 

obviously b) uniquely determines M. 

There are two methods for constructing moduli-spaces,namely 

geometric invariant theory and Artin's method. We use the 

latter, and try to explain the main idea. 

Suppose first that we want to construct a fine moduli-space 

M . For any point x of M, the inclusion Spec (k (x)) + M 
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(k(x)=residue-field in x) defines an element of F(Spec(k(x))). 

The completion of the local ring of x in M must be the base 

of a formal universal deformation of this element. If S is 

of finite type over a field or an excellent Dedekind domain, 

and if F is a "functo.r of finite presentation", we can use 

Artin's approximation theorem to obtain an algebraic scheme 

T + S and a pOint yET I with k (y) =k (x) + M extend ing to an 

etale mapping from T to M. We thus obtain an etale covering 

of M 

If we do not have M in advance, we still can make these 

constructions, and under suitable hypotheses we 0btain etale 

mappings hT + F which cover F. In this way we can construct 

M as an algebraic space. As we have mentioned before, un-

fortunately in many interesting cases fine moduli-spaces do not 

exist. This usually happens if we take for F the functor of 

isomorphism classes of certain objects, like stable curves or 

principally polarized abelian varieties, and if these objects 

have nontrivial automorphisms. We then construct a coarse moduli-

space, as follows: 

Given one of the objects we want to classify, over Spec(k) 

with k an algebraically closed field, the finite automorphism 

group r acts on the versal deformation of this object. We 

algebraisize (following [AJ) and obtain an algebraic scheme 

T with r-action, together with a r-invariant object of F(T) 

The coarse moduli-space M then has an etale covering given 

by the quotients r"!! . Usually the "universal object" in 

F(T) does not descend to r\( . Thus there exists a family of 
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mappings 

with etale, finite and dominant, such that 

M U 
i 

and such that over each Ui there e~ists a "universal object" 

s €F(Ui ). This means that for any geometric point Spec (k)---+Bi , 

k algebraically closed, the pullback of s in F (Spec (k) ) 

is equal to the image of the geometric point in 

Homs(Spec(k),M)~F(Spec(k)). We shall have to deal with similar 

situations in the future, where the Pi are allowed to be 

proper, and so we make the following definition: 

Definition: 

Suppose M is a noetherian normal algebraic space. A "covering" 

of M is any finite family of mappings of algebraic spaces 

$ . :U. + M • 
~ ~ 

with Ui normal, which can be obtained by the following 

procedure: 

a) If the U. form an etale covering of M, they form a 
~ 

" covering" 

b) If there js only one Ui ' and if $i is proper anidominant, 

we have a "covering" 

c) If $.:U. + M and 
~ ~ 

compositions 

,I, V U are "coverings" , the "ij: ij + i 
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-form a "covering" • 

The »etion of "covering" has the following prop"erties: 

i ) UcJ>. (U.) = M 
i ~ ~ 

ii) If R is an excellent Dedekind-domain, K its field of 

quotients, and 

1jJ : Spec(R) -+- M 

a mapping, there exists a finite extension L of K, and 

an open covering in the Zariski-topology Spec (S) =VV. 
~ 

(S=normalization of R in L), such that we have commutative 

diagrams 

Vi ) Ui 

! 

1 
Spec(S) 

~ cJ>i 

Spec (R) 1jJ ., M 

These properties are easily shown by induction since they are 

obvious for "coverings" of the types a) and b) above. 
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§ 3 Examples 

a) Hilbertschemes 

Consider a finite type morphism of algebraic spaces X + S , 

and a finitely presented quasicoherent sheaf K on X . 

Let for T + S 

HilbX/ S eE) (T) [
quotients 

over T, 

G of F @ &S &T ' flat l 
whose support is proper/T J 

Then Hilbx/s(K) is representable by an algebraic space 10-

cally of finite presentation over S ( [A], Th. 6 . 1 ). If 

X ~ S is projective and e(1) an ample line-bundle on X, 

the space representing Hilbx / s (F) is the disjoint union of 

spaces proper over S . Such a decomposition may be obtained 

via Hilbert-polynomials. 

b) Picard-functors 

Suppose f:X + S is finitely presented, proper and flat, and 

for any T + S we have f~ (I9'XXST) =&T . Let PiCx/S(T) be the 

sheaf in the etale topology associated to T~Pic (XXST) . If 
f has a section s:s + X , we can construct Picx/S(T) as 

PicX/ S (T) ~ Ker (s* :Pic (XxST) -- Pic (T» 

Then Picx/ s can be represented by an algebraic space, lo-

cally of finite type ([A] ,Th. 7.3) • We denote it by PiCx / s 

We are mainly interested in the case that f:X +S is a semi-

stable family of curves, that is the geometric fibres are 
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l' 
reduced, connected, of dimension 1, and do not contain F s 

meeting the other components in just one pOint. We denote by 

PiC~/s~PiCx/s the subgroup classifying line-bundles whose re­

strictions to the components of the geometric fibres of f 

have degree zero. (the corresponding functor can be represented 

by the same reasons that apply to Picx / s ). We have: 

Theorem 3.1: 

i} P . 0 
l.Cx / S is sepal::'ated, smooth, and finitely presented over 

s. 

H} The fibres of P · 0 s l.Cx / S + are connected, and extensions 

Hi} 

Proof: 

of abelian varieties by tori. 

If f is smooth, P . 0 
l.Cx / s is proper over s. 

The statements are local in the etale topology, so we may 

assume that f has a section 

s S + X • 

ii} is wellknown. We only indicate that for S=Spec (k},i< an al­

gebraically closed field, and P:X + X the normalization of 

X , we have an exact sequence 

where the first term is a product of an 

abelian variety. 
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For iii) we use the valuative criterion,and may assume that 

S is tlEspectrum of a discrete valuation ring V, with quotient 

field K. But then X is regular, and the mapping 

is a bijection. (Calculate with divisors. The special fibre is 

a principal divisor). For i) we first test the separation 

property with discrete valuation rings. Let V be such a ring, 

with field of quotients K. We show that the mapping 

Pico (X)---;, Pico (X ® V K) 

is an injection: 

Assume & is a line-bundle on X, trivial on the generic 

fibre. Then ~~~(D) , with a Cartier-divisor D on X whose 

support is contained in the special fibre. If C1 ",Cr are 

the irreducible components of the special fibre, D has inter­

section product zero with each Cj (since it is in Pico ). It is 

cl~ssical that then D is a multiple of the special fibre, and 

thus a principal Cartier-divisor. 

For smoothness we show that for S=Spec(A) with an artinian 

ring A , and I~ an ideal with 1 2=0, the mapping 

Is a surjection. But its cokernel injects into 
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To show that PiCo x / S is finitely presented we may assume 

that S is noetherian. If XOCX denotes the open subset where 

f is smooth, we obtain for r big enough a mapping 

( 0) 2r . 
X --++ P1CX/ S ' 

whose image contains 

On points this mapping is given by 

( ) t<>.( ~ x 1 ,··· ,x Y1 , ••• ,y -- v ~ 
r, r i=1 

x. -
1 .~ YJ') 

J=1 

Thus P . 0 
1CX/ S is noetherian too. 

We also compute the Lie-algebra of PiC~/S: 

If in general 

P G + S 

is a smooth algebraic space which is a group, and s:S + G 

its zero-section, we let and tG/S=dual of 

and are locally free, and t G/ S is called 

the Lie-algebra of G. It can be determined via deformation 

theory, and in case that G=Pic 0 with a semi-stable curve 
xiS 

f:X + S, we obtain 

'" 1 t G/ s = R f.(&x) , 

t~/s ~ f*(wx/ s ) 
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where wX/ S denotes the relative dualizing sheaf 

c) stable curves 

For g > 2 let 

.m.(S) 
g 

[
isomorphism classes of stable curvesl 

f : X + S of genus g ~ 

there a curve is called stable if it is semis table , and if each 

smooth F1 contained in a geometric fibre meets the ~ther 

components of this fibre in at least three points. ~ has no 

fine moduli-space, but (LPM]) there exists a coarse moduli­

space Mg , proper over Spec (7) . This easily leads to 

Theorem 3.2: 

Suppose S is a noetherian normal algebraic space, V C S 

open, and 

f X + V 

a stable curve. (The genus may vary on the connected components 

of V, but it is always bigger than one). There exists a 

"covering" 

and stable curves 



- 12 -

d) principally polarized abelian varieties 

Similar TO c) we let for g ~ 1 

[
isomorphism classes of 

abelian varieties f:A 

dimension g 

principally polarized Z 
+ S , of relative J 

As before there exists a coarse moduli-space A over 
g 

Spec(~) , but it is not proper. So far we have no reasonable 

way to compactify it, and this causes a lot of difficulties in 

the sequel. The method to deal with them is to write an abelian 

variety as a quotient of a Jacobian (As it was usual in pre-

historic times). More precisely, if A/k is an abelian va-

riety over a field k, there exists a smooth complete curve 

Cover k and a surjection 

As Pico (.C) is an abelian variety, ex has an inverse up to 

isogeny, that is there exists a S:A + Pico ( C) such that 

Soex d·id is multiplication with a natural number d > 0 

If k is the generic pOint of a normal noetherian scheme S, 

and if A/k is the restriction of an abelian variety A/S , 

there exists a "covering" !/>i:Ui + S , such that the pullbacks 

of C via !/>i extend to stable curves Ci over Ui • 

Furthermore by the lemma below the pullbacks of ex and Scan 

be extended to morphisms 

PiCO(Ci ) + AxSUi ' 

AxSUi + PiCo(Ci ) with S.oex.=d·id. 
~ ~ 
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Lemma 3.3 

Suppose S is a normal noetherian irreducible algebraic space 

and A1 and A2 semiabelian varieties over S, whose generic 

fibres are abelian varieties. (The Ai are smooth and sepa­

rated over S with connected geometric fibres which are exten-

sions of abelian varieties by tori). If UeS is a non-empty 

open set, and 

a morphism over U a 
I 

can be extended uniquely to S. 

Proof: 

The lemma follows from the theory forstatle reduction and Neron 

models if dim(S)=1 , especially if S is the spectrum of a 

discrete valuation-ring. In general we immediately reduce to 

the case that S is the spectrum of a local ri~g with alge-

braically closed residue-field, and that U=S-{s} , where s 

denotes the closed point of S. We denote by Z~A1 Xs A2 the 

closure of the graph of a. We are done if we show that the 

first projection pr1 :z + A1 is an isomorphism, or that it is 

proper and injective. (Since A1 is normal). pr 1 is proper: 

We use the valuative criterion in the following form: 

Let T {~n} be the spectrum of a discrete valuation ring. 

with t the special and n the generic point. Consider a 

commutative diagram 



- 14 -

1jJ pr2 
{rd ----+- Z -

f ...... ~.~ 1 

with f0cjl (n) €: U • 

We have to show that 1jJ can be extended to T . It suffices if 

pr2°1jJ can be extended. For this we look at the diagram 

cjl xsid 
rJ 
a 

T I A1 Xs T -- - - ---+- A2 Xs T 

1 1 0( xs{n} 1 
{n} A1 Xs{n} A2 Xs{n} 

If we apply the result for discrete valuation rings as base we 

obtain an extension a ofaxs { n} . Then 

ao(cjlxs id):T 

defines a mapping~ from T to A2 ,which extends pr20 1jJ , 

since the image of 1jJ lies in the graph of a and hence 

pr2 01jJ 

pr1 is injective: 

We show that for any point X eA1 Xs {s} with k(x)=k(s) there 

exists at most one point 



- 15 -

For this. we first need some general remarks: If T={n,t} 

is the spectrum of a discrete valuation ring and ~:T + S a 

mapping with ljI (n) E. U, ljI (t) =s , we can extend a. after base-

change to an 

The induced morphism 

is already defined over k(s) , since this field is algebrai­

cally closed and since A1 @k(S)k(t) is semiabelian. (Use 

i-division points!) It is thus induced from an 

This as is independant of the choice of T and ljI, since its 

effect. on i-division points is determined by the map a. over 

U. Now we claim that with our previous notations necessarily 

y=a.s(~): There exist T as above and ~:T + Z ~ A1 Xs A2 with 

f o pr1 0 lji({n} )E.U, ~(t)=(x,y). From the commutative diagram 

T 

A1 

pr a ~r2°~ 
- - - - - ~ A2 Xs T Xs T 

~ t a t 
~ A1 xS{n} "> A2 xS{n} L-

we see that indeed y=a (x) =a. (x) 
s 
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§ 4 Metrics with logarithmic singularities 

In the sequel we shall need various hermitian metrics on vector 

bundles, which have mild singularities. To formalize the situ-

ation we make the following definition: 

Definition 

Let X be a normal complex space, Y c X a closed analytic 

subset such that U X-Y is dense in X If E is a vector-

bundle on X and <,> a hermitian metric on ~u, this metric 

has logarithmic singularities along Y if the following holds: 

For y €: Y , there exist a neighbourhood V of y in X, 

holomorphic functions f 1 , ... ,fl on V with Y as common 

set of zeroes, and sections of E over U which 

form a basis of £!/U, such that for some constants c 1 ,c2 > 0 , 

1 <ei,e j > 1 (z) < 

1 det<e.,e·>I(z)-1 < 
~ J 

for z E Uf"I V . 

Remarks: 

c 2 0, . 1 (log (max (If i (z)/) 1 

c 2 
c 1·1 (log (max (lfi (z)/) 1 

a) The extension E of ]VU is uniquely determined by this 

property, since a local section of ~/U is holomorphic on X 

if and only if its norm grows at most logarithmically near Y 

b) The definition is essentially independant of the choice of 

the and 

For another choice fi and e j , and for a neighbourhood 

WCCV of y inequalities like the one above hold for the new 

data. 
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c) If <'>1 is a hermitian metric on E (not only on ~IU) 

<,> has logarithmic singularities if and only if for any 

1 -c 2 
c 1 - Ilog (max ( I f i (z) ~) ! . fI e II 1 (z) 

< Ilell (z) 
c 2 

< C ,Ilog (max Of i (z) I ») I . II e II 1 (z) 

for any section e of ~ over U f'I V , and z E U r.V . 

(Ilell ,.lleI1 1 are the norms defined by <,>, <'>1 .) 

d) If FeE is a subbundle such that !VF is locally free 

too, a metric with logarithmic singularities on ~ induces 

such a metric on F and ~/F (Use c) ) 

e) If ~ has a metric with logarithmic singularities, so 

have E~, Sp(~) ,AP(~) , etc. 

f) If 

and 

(X1 , Y1 ) is a pair fulfilling the assumption on X 

-1 
Y , and ~:X1 + X a holomorphic map with Y1~~ (Y) , 

then the pullback of a hermitian metric on ~ru with loga-

rithmic singularities along Y is a hermitian metric on 

~*(~)/U1 with iogarithmic singularities along Y1 • 

The converse is true (i.e.,~~<,> logarithmic singularities 

=> <,> logarithmic singularities) if ~ is proper and sur-

jective, and 

Examples of metrics with logarithmic singularities arise as 

follows: 

Theorem 4.1 

Suppose (X, Y) f.ul£i,ll the assumptions of the definitiolll., 
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and let 

f C -+ x 

be a family of semistable curves, with good reduction outside 

Y , that is: 

i) f is proper and flat 

ii) The fibres of fare semistable curves of genus >2 

iii) For x E. Uf,-1 (x) i.5 a non-singular curve •. 

Let !!;:f. (wc:;x) • Then ]iU~f*U'/~:)i U , and square integration 

of differentials on the fibres defines a hermitian metric on 

~~U . This hermitian metric has logarithmic singularities along 

Y . 

Proof: 

The claim is local along Y. Choose y E Y , and let 

C(y)=f-1 ({y}) be the fibre at y. The fibration f is 10-

cally induced from a versal deformation of C(y) • We may 

assume that it is the versal deformation, and Y the ,diskrimi-

nant locus. 

Denote by g the genus of C(y) ,by 6 the unit-disk 

<izi<1) , and let X=·3g-3 (0 0) LI ,y= , ..• , , be the base of the 

versal deformation of C (0) =C (y) . \'1e assume that YcX is 

the discrimvinant locus, so that Y is a union of hyperplanes. 

From the deformation-theory of semistable curves we know that 

there is an open covering 

fiUj is smooth, and thus 

C = 0 
j=1 

1J.~6XX 
J 

Uj , such that either 

, or that 
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U j .-J {( Z , W , x) €. llx llx,·X I z . w fj (x)} , 

where f. (x) is the defining equation of one of the components 
] 

of Y. TJn.e mapping f is given by 

f«z,x)) = x resp. f«z,w,x))=x (z,wEll) 

The relative dualizing complex is generated over Uj by 

dz resp. dz/z . Thus a section a of f.(w c / x ) is given 

by 

a = .(z,x)dz resp. a = .(z,w,x~ dz/z , 

with • holomorphic. 

To get one of the inequalities necessary for logarithmic 

singularities we estimate from above 

The integral over the with 

bounded, and we come down to estimating 

f /dzZ /2 

J 

z· w=f . (x) 
] 

I~I: ~ 

Ifj (x)I<l z l<1 

2rr dr 

2 
I a I 

smooth remains 

-21tlog If. (x)l, 
] 

if Ifj (x) 15.. 1 • 
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As the zero-set of f. is contained in Y, we have one of the 
J 

necessary inequalities. The other one is quite easy: 

We may assume that the with flu. smooth meet each 
J 

irreducible component of each fibre -1 
f (X). If c'>1 is a 

hermitian metric on f. (w<l'~) on X, there is a c> 0 with 

l:: f 
flU j smooth -1 

f (x)nU. 
J 

(If 
-1 a I f (x) 1\ Uj vanishes for each j 

vanishes on f- 1 (xl) . 

Remark: 

The semiabelian g~cup algebraic space 

2 2 
I a I z. c . (I a II 

with smooth I 

A=Pico (C.) 
1 

is princi-

pally polarized over U. Any polarization induces a hermitian 

~ metric on tA/X(U, and as two polarizations can be compared we 

see that all such metrics have logarithmic singularities along 

Y . This result extends to arbitrary semiabelian varieties. 
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§ 5 The minimal compactification of Ag/~' 

We give an analytic description of the moduli-space Ag over 

the complex numbers, and of its compactification A: which 

has been constructed by Satake. The construction has been ge­

neralized by Baily-Borel [BB] , and it has the property that 

any analytic mapping 

with XO algebraic, can be extended to an algebraic mapping 

whereX~Xo is a compactification. 

We first give the analytic description of 

A principally polarized abelian variety 

A • 
g" 

A/a: of dimension 

can be given by its cohomology 1 U=H (A,~) , together with an 

unimodular sympletic form <,> : U x U + ~ and a totally 

isotropic subspace of dimension g 

v 

such that 

for v E V , v f 0 . 

g 

It is known that the pairs (U,<,» are all isomorphic. So we 

may assume that U=~2g with basis e 1 , ... ,eg , f 1 , ... ,fg , 

and 

<ei,e j > <fi,f j > 0, 

<e.,f.> =-<f.,e.> 0" 
~ J J ~ ~J 
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The automorphisms of (U, <,» then are equal to G(7) 

where G=Sp(2g) denotes the symplectic group. In the sequel 

we write for U G9 ~ IQ , and similar l1R'U<c '. G(IQ) ,G(IRf ,G. (<t) . 

We define 

D {totally isotropic complex subspaces V c U~ of 

dimension g} 

D {V E 0, 

v 

for 
v 

V 6 V, vfO} CD. 

D is a Zariski-closed subset of some Grassmannian, and homo-

geneous under G(~) D is open in 0 , and homogeneous 

under G(IR) . By the previous considerations we know that 

A (e) '""' G(~~ • 

This is in fact an isomorphism of analytic spaces. If 

reG (:if) denotes a nea.t subgroup of f ini te index (for example 

a suitable congruence subgroup) there exists a principally 

polarized abelian variety A over X=r~' whose fibre over 

the equivalence class of V E D is given by 

A = V*/u.f< 

The bundle 
~ 

tA/X is the bundle defined on X by taking the 

r-quotient of the G(IR)-equivariant bundle on D given by the 

VI s. 

For a real isotropic subspace W~l1R we define a subset 

F (W) C D by V E:-F (W) if and only if 
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i) i<v,v>2:. 0 for v6.V 

ii) Wa:= {ve-V I i<v,v> O} 

Thus F(O)=D , and the topological closure D of D in 
v 
D 

given by 

D u F (W) 

W isotropic 

F(W) is homogeneous under Sp(WL/W) and isomorphic to the 

object we obtain if we start in the definition of D with 

W~/w instead of U 

Such an F=F(W) is called a boundary component of D, and 

is 

F is defined to be rational if W can be defined over ~. To 

simplify notations we write F(W)=F(W ) 
.lR 

for an isotropic 

subspace W ~ U~ . 

We let 
p* -= U F(w) 

W~U~ 
isotropic 

D"* is stable under G (~). If r c: G (:1) is a ~ubgroup of finite 

X·--r"D~ index, "" has the structure of a normal compact complex 

space. If r=G(a) then X*=A * is as a set the disjoint 
g 

union 

Ail> AvA 1u ....... VA 
g g g- 0 

where for corresponds to the quotient 
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\ U F(W) 
dim(W)=g-j 

(All W of the same dimension are conjugate under G(a) • 

It is known that X* is a projective algebraic variety. An 

ample line-bundle can be described as follows: 

For some r > 0 , the r'th power of the GQR)-equivariant 

bundle on D defined by the AgV gives a line-bundle on 

X= ~ . (If r is neat, we may take ~=1 , and obtain 

g * A t A/ X). This line-bundle extends to X~ , and is ample. 

The proofs of these facts can be found in [BB] 
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§ 6 The toroidal compactification 

We want to construct a non-singular model X+ of X·. To 

avoid the difficulties arising from singularities of X=r"D 

we assume that r is neat. 

We first consider the realization of D is a Siegel-domain: 

Let be an isotropic subspace, F=F(W) . N(F) £ G 

denotes the parabolic subgroup of symplectic transformations 

which fix W (and hence also W.L. ). We choose a Levi-decompo­

sitio}l. of N (F), which.. amounts to choosing an isotropic sub-

space such that ° r."\ .l. Um = W ~W . This leads to an 

orthogonal decomposition 

and Wand wO are dual to each other. 

Let 

Stabilizer of (W <±> We) in G 

,.., .l. OL.-J .J.. 
Sp (W r\ W ) = Sp (W /W) 

Gl (F) { (a,ta, id) I a 6 Aut (W) } 

(Gl (F) operates trivially on W~~·p.L, 

R(F) ={a£N(F) I a operates trivially 

on um/w.L,wL;w and W} 

Then R(F) is the unipotent radical of N(F) , and 

N(F) = (Gh(F))(~(F)) )C R(Fl. 
is a Levi-deompositon. 
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R(F) exp(~(F)).U(F) 

exp (~(F).exp (:!:!. (F) ) 

~ (F) = {C , C E S. 

C (Wo) f W.L r'\ W°.L, 

C(~f"IWO ) ~ W 

C(W) = ° } 
:!:!.(F) ={HEs. I H(U) C W f 

H(W~ = ° 
(s.=Lie(G) = ~(2g)) 

~(F) is a subspace of s., and U(F) is the centre of R(F). 

Furthermore 

[
symmetric bilinear forms? 

:!:!.(F) ~ S2(WO). = on WO J 

where to HE.:!:!. (F) corresponds the quadratic form with value 

<w , H (w) > for '#II E WO. C (F) £!! (F)lR denotes the cone of 

positive definite quadratic forms, and we frequently identify 

U(F)lR via exp with :!:!.(F) 

For V € F=F (W) we have 

Define 

and 

by 

v 
A: F x ~(F)lR x :!:!.(F)a: + D 

A (V,C,A+iB) exp(A+iB)· exp(CHVO) • 
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Theorem 6.1: 

i) Im(>") = DF {v I i < v,v»O for v E; V nw.L, 

v 4= O} 

ii-) >.. induces a bijection 

F x y(F)E x ~(F)C ~ DF 

iii) >..-1 (D) = F x y(F)E x (~(F)E+iC(F)) 

Remark: >.. is a diffeomorphism. 

Example: 

If W is maximal isotropic, then y(F)=O 

and 

D -;{X+iYe M(g,a:) , 

F is a pOint, 

X,Y symmetric, Y positive definite} 

This is the classical Siegel upper half-plane llig 

Proof of the theorem: 

i) Obviously FO=F(Wo ) is contained in DF , and DF is 

stable under 

W and ~(F)E 

R(F) and exp(~~(F)m) , since R(F) stabilizes 

annihilates V f1W.1- (so exp(iB) (V"w.L) = VnW.L , 

for B e. ~ (F)E) Therefore tm (>..) QJF 

On the other hand Im(X) is stabilized by the group 

,f(F}.&tP(~F,a:)=N("".tJCf(i~F,JR) , and it suffices to show that DF 

has only one orbit under this group. As D is homo-

geneous un rer N'(F), we are done if we show that DF=exp (i~ ~ (F)~ D • 

As D £ DF ' it is clear that the right hand side is contained 

in the left one, so let us choose V e DF • We need an element 

Bc~(F)m with exp(i' B) (V)6D • This means that for v cV, v '4:0, 

the hermitian form 
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i < exp(iB)v, exp(iB)v > 

i < exp(iB)v, exp(-iB)v > 

i < v, exp(-2iB)v > 

i • <v,v> + 2<v,B·v> 

takes a positive value. 

This is the case if 
.L 

v',V";W since then B annihilates v 

On the other hand if E ~ V denotes the space of elements 

perpendicular to V f"\ w"" for the hermitian product above (or for 

if'V /v>, which leads to the same E) , then E injects into 

..I. "" ° Ua:/W = Wa: ' and for vEE <v ,B. \7> is the value of the her-

mitian scalar-product defined by the symmetric bilinear form 

B E. ~F,lR ~ 8 2 (WO) * on the image of v in WO a: . If we choose 

B te be sufficiently positive definite, we obtain what we need. 

ii) We want to recover A,Be.~(F)IR,eE~(F)lR' VE.F from 

exp(A+iB).exp(eXVO). It is easy to find V: 

V 

and V r. WLf') WO has the same image in 

exp (A+iB) exp (e) (VO)l"\w.J.. . 

.1-; ,.J J_ ° 1.. \'/ N = WnW as 

We thus may fix V and assume that exp(A+iB)exp(e) stabilizes 

vO . We want to show that A=B=e=O . 

If 

V E- VOl) WJ... = V I") W°..l.. , then 
( ) ( Iro ~ L/0).L) A (v) = B v = ° I since v w 

and 

exp (C) (v)-v C (v)e.W nvO (0) 
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so C annihilates VOn w.L . C is real, so it annihilates 

the complex conjugate VO 1\ w.l. , hence also 

J. 0...1.. O.l. O.L.. wnw = (V I") W ) (£) (V () W ) 

(if v and v lie in VOl') w..L i<v,v>=O, so v=O) 

As C is skew-symmetric for <,>, and as C(WO)~W~W04 

C (WO) =0 , a.'Tl-J. 

If now 

so A+iB 

C = ° 
° v e. Wee 

(A+iB)(v) =exp (A+iB) (v) -v E:VO"W<r=(O) 

annihilates wO and A=B=O. a: 

iii) The necessary computations have already been made in i): 

If is the orthogonal decomposition 

for the scalarproduct i<v,v> used in 

denoted by E . Note that 

Thus: 

exp(A+iB) exp(C) (VO)€D 

<=> exp (iB) (vo) 6 D 

i<v,v> = ° 

<=> <v,B,,» ° for VEW~, v+O 

<=> BEC(F) 

i) , where was 

for 

We now give a local description of a smooth compactification 

x+ of X = ~ . We remind the reader that r is supposed to 

be neat. 
The construction of X· makes use of rational polyhedral de-

compositions of the cones C(F) , for all boundary components 

F . The details can be found in [AMRTJ . To give the idea we 

make the following construction. 
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Construction. 

Choose a rational boundary component F . Then rnU(F) OR) is a 

lattice in the vectorspace U(F) OR)~~(F)E . Choose vectors 

e" ... ,esEC(F) such that exp(e 1), ••• ,exp(es ) is a basis of 

the free group L'l.r"U(F)E . Identify !!(F)E with E S via this 

basis. 

Denote by T the torus 

T = L'l~ (F) (0:) 

,\a::r 
Zr '\ 

Then T operates freely on 

~F ( '\ L'l -;f L'l~ (F) 0: (Y.. (F) xF 

\.DF 
U (F) (<t)'\ and this space becomes a principal T-bundle over 

T operates also on <tr , and T=(a:x)r~a:r is a T-equivariant 

embedding. We thus may form an embedding 

x tAr 
T 

The second space is a fibre bundle over 
"DF 

U (F) (0:) '\ with fibre 

fAr. We need the following fact from [AMRTJ and [M3] : 

Fact: 

a) There exists a compact complex algebraic manifold + 
X 2.X , 

such that locally the embedding x~ X+ is isomorphic to one 

of the embeddings above. (For suitable choices of F and 

e 1 , •.. ,er ). x+ dominates X* 
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b) The vector bundle (defined by the various V's) 

extends to X+, such that its natural hermitian metric has 

logarithmic singularities along X+-X. 

c) The extension to X+ of the determinant bundle g 'Il 
A t A/X 

the pullback of the ample line-bundle on X* (These two 

bundles are already isomorphic over X, and this isomorphism 

extends) 

is 

The proofs cannot be given here. a) is essentially the content 

of ~RT], b) and c) can be found in [M3] (Th. 3.1 and 

Prop. 3.4) We just indicate the essential idea behind b) 

Choose F, e1 , •.• ,es as in the construction above. Let 

be the coordinate functions dual to 

The functions ~.=exp(2rriz.) form part of a local system of 
J J 

coordinates, and the boundary is defined by ~1""'~r=O. 

Now the singular behaviour of the metric is determined by a 

polynomial in the Zj / and the z. 
J 

are of logarithmic growth. 

Corollary 6.2: 

For arbitrary x=~, the metric on one of the ample line­

bundles on X* constructed before (corresponding to the 

r-th power of the AgV) has logarithmic singularities along 

X*-X 
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§ 1 The definition 

Let K denote a number-field. Classically the height H(x) of 

a point 

(1<,(Jll 
H (x) 

is defined by 

IT 
ve.S II(x , .. ,x )11 o n v 

The product runs over the set S of all places 

and II (x x ) II is given by! 
0"'" n v 

if v is infinite, 

where tv 1 or 2 if v is real/complex 

v of K, 

By the product formula this gives a well-defined function on 

ll?n (K) . 

For any extension K1£K2 the restriction to ~n(K1) of the 

height-function ',:on ~n (K2 ) is the height-function t.here. 

,Thus H (. ) is defined on ~n (m). We let h (x) = log (H (x» 

Theorem 1.1: 

For c > 0 is the number of xE.~n(K) with h(x).::.c finite. 
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Proof: 

Let t=[K:m] I and o" •.• ,or:K ~ ~ the different embeddings 

of K into the algebraic clmsure of ~. Then (0, (x) , ••• ,or(x~ 

defines a ~-rational point in the r-fold symmetric product 

Sr (IPn) of ]pn • Choose rolynomiah FO ••• FNem[xij] in the 

variables X,, ' 0 < i < n , , < j < r I multihomogeneous of 
~J - --

degree (d, ••• ,d) (that is homogeneous of degree d as a 

polynomial in XOj, ••• ,Xnj) and symmetric (under the action 

of tr on the j's) I which give an embedding 

There exists a constant with 

h(CP(o,tx), ••• ,o~)) < d·r·h(x) + Co 

We thus reduce to K=m. 

We may assume that xO, ••• ,xn are elements of a I and that 

their greatest common divisor is , . Then 

hex) 

and the claim is obvious. 

Arakelov has given a new formulation for this definition: 

Denote by R £ K the ring of integers. A metricized line­

bundle on Spec(R) is a projective R-module P of rank , I 

with hermitian metrics on P®R a: for any embedding 
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K~ ~ • For conjugate complex embeddings the metrics should be 

equal on P, and thus for p €. P we have norms II pi ~ for 

any infinite place v of K. 

We define 

deg{p,{llll v } log{order{p/Rop » - E EV log Ilpll v ' 
v 

where p is an arbitrary nonzero element of P. (The de-

finition is independant of the choice of p) 

To any point xC; lPn (K) there corresponds a morphism 

n cp: Spec (R) -+ lP j 

On lP~ we have the line-bundle ~(1) , the universal quotient 

of d1+1 : 

e-n +1 -+ e-( 1) • 

We thus define a hermitian metric on e (1) ®:J a: (on lP~) by 

taking the quotient of the standard metric on the constant 

bundle e-n+1 

By pullback CP·~1) becomes a metricized line-bundle on 

Spec{R) . An easy calculation shows that 

h(x) ""[K:::-:--:~""J- • deg (CP 'If&{ 1) ) 

More general, if X is a separated scheme of finite type 

over Spec{Z) , L a line-bundle on X with a hermitian 

metric IIII on ~ ®:II a: , and cp: Spec (R) -+ X a morphism defining 
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1 

~ '" deg (cjl L) 

We then have the following properties: 

i) Up to a bounded function, h~(.) depends only on the 

isomorphism class of !!. ® z rlJ , as a metricized bundle on 

X®~<.Q 

ii) If X ® a <.Q is proper over CD, hL (.) depends up to a 

bounded function only on the isomor~hism class of ~ ®~ Q 

iii) If X ® ~ <.Q is projective and k is ample on X (3) lJ g) , 

the number of xEX(K) with hL(x) < c is finite, for 

any c > 0 (Note that we consider only x E X (K) which 

extend to cjl: Spec(R) + X . If X is proper of Spec(lJ) , this 

is automatic) 

Property i) follows f~om generalities about schemes of finite 

type of over Spec(lJ) . For ii) we have to use that X(~) 

is compact and so any two hermitian metrics on L ® It ([: are 

mutually bounded. For iii) we may assume that 

~ ® zQ =t 19'( 1) I X , 

for an anbedding 
n 

X ® ZIDG+ lPtO 

and the claim holds for with 

(hL(x) is linear in L 

0'( 1) 

The main advantage of Arakelov's definition is that we may 

choose the metric on L ® to a: adapted to our problem. It is 

a coordinate-free approach. 
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We need a slight generalization: 

Suppose X is proper and normal over Spec(~), y ~ X a closed 

nowhere dense subscheme (defined over a) and L an ample 

line-bundle on X. We suppose that !:! ® a a: has a hermitian 

metric on (X-Y) G9 ~ a: , with logarithmic singularities along 

Y. 

If x EO X (K) -Y (K) we extend as usual to a <p: Spec (R) + X , 

and obtain a .metricized line..lbundle <p '# (L) on Spec (R) 

Let h!:! (x) = rhor deg (<p oJ (!:!) ) 

Theorem 1. 2 : 

The number of pOints x EO. X (K) -Y (K) with h (x) ~ c is finite. 

Proof: 

We may assume that n 
X £ lPa ' Y f. X is the intersection of X 

with a linear subspace, and L the restriction of &(1) to 

X • There exist with Y as common 

set of zeros on X. 

Let 1+ II, denote a her"mitian metric on ~ ®:i a: (on all 

of X ®:t <1:) , and hL (x) the corresponding height. 

As x ¢ Y (K) , one of the fi does not vanish at x, and thus 

<P*(f i ) is a non-zero section of <p.(~) • Thus 

.. 
log (order(<p (!:!)/ * ) 

R-<p (f i ) 

L e:v log II f i 111 , v . 
v€.S 

co 
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- E log II fill, (o(x)) 
o 

The last sum goes over all embeddings K'-+ q:: • As II f. II , (z) 
~ 

is bounded in X (a:) , there exists a (independant of i and 

x ) such that 

for all 0 and i with f. (X)fO. 
~ 

Thus 

-lOg(m~x II fi II, (0 (x))) ~ a + [K:<D] h~ (x) 

for all 0 and x €: X (K) -Y (K) • 

As II II has logarithmic singular itie s along Y ®:J ct, there 

exist constants b,c> 0 with 

Ilog II gil (z) -log Ilgll, (z) I ~ 

b + c.log{max[', -log(T !lfi'II,) (z)]} 

Hence we find d,e > 0 with 

,.J ,.J 
I hL (x) - hL (x) I ~ d+e ·log {max [, , hL (x)] } 

~ 

Thus hL(x) remains bounded if hL(x) does,and this proves 

the theorem. 



- 40 -

§ 2 Neron-Tate heights 

We want to demonstrate the use of Arakelov's ideas in a relevant 

example. Let S=Spec(R) with RcK as before, and let A be 

an abelian variety over K. We also denote by A the Neron­

model of A over S, and by AO its connected component. A 

and AO are algebraic groups over S, 

A(K) 

and AO(R) has finite index in A(R) 

If L is a line-bundle on A (over S), we have the function 

hL (.) on A(R) . We want to choose the hermitian metrics at 

the infinite places in such a way that hL () becomes a qua­

dratic function on AO(R) . The quadratic part is by definition 

the Neron-Tate-height. For any embedding cr:Kc+ ~ A~~ is ~ 

complex torus. 

If in general X/~ is a complex torus and M a line-bundle 

on X there exists a hermitian metric on M whose curvature 

is translation-invariant. This metric is unique up to scalars. 

(The curvature is a (1,1)-form, given locally by ailog(1 Ihl~), 

h a local generator of M • If we use an translation-invariant 

Kahler-metric on X, the harmonic forms are translation-in-

variant, and the metric can be chosen such that its curvature 

is harmonic). Then the metric satisfies the theorem of the 

cube: 
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For any subset I~{1,2,3}, there are morphisms 

The theorem of the cube means that 

1: (-1) I I I p ,. 'M) 0 
I I -

in Pic(X x~x x~X) , that is 

"'r.:;'o, ll' .(-1) III 
~XXXxx =~PI (~) 

I 

This isomorphism can be normalized in such a way that it is the 

identity on {e} x(X xcr.X , where eEX(a:) is the neutral 

element. (The right hand side is; canonically trivialiZ!ed lOn 

{e}x X4: x X~ . 

If we use the pullbacks by PI of our hermitian metric on ~ , 

we obtain a hermitian metric on 

Its curvature is given by 

1:(-1) IIlpI*(curvatureM) 
I -

As curvature~ is a quadratic function on the tangent space 

of X, this vanishes. We therefore have obtained a multiple 

of the standard metric on &XxXXX . Using the trivialization on 
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{e} x X x X we see that in fact we have an isometry 

We now go back to arithmetic, and apply this to our bundle L 

on A. For any cr:K'+ ~ we take a hermitain metric on 

!! 0 R <I: with translation invariant curvature, and use these 

metrics to define hL (.) 

Theorem: 

hL(x) is a polynomial function on AO(R) , of degree at most 

two. 

proof: 

The theorem of the cube gives an isometric isomorphism of 

bundles on 
o 0 0 

A Xs A XSA 

(At first the right-hand side is trivial on the fibres, hence 

induced from a bundle on S. Restrict to the zero-section!) 

Taking degrees this translates into 

for 
o x,y,zE.A (R) 

Thus hL (.) is polynomial on AO(R) 
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§ 3 Heights on the moduli-space 

As before, A denotes the coarse moduli-space of principally 
g 

polarized abelian varieties of dimension g. It is defined 

over ~, (we do not need it over ~), and there exists a 

line-bundle L on A giving the "r'th power of 
g 

W - Agt* " 
A/A - A/A r > 0 . ( As is not a fine moduli-

g g 
space, there does not exist an universal A) 

We assume that g L 2 . If we rep~ace r by a suitable multi­

ple, the sections of !!® III C give a projective embedding of 

Ag ® ~ a: , by the theory of the minimal compactification. 

By descent there is an embedding such that 

L=~(1)IA . We denote by M the Zariski-closure of A in - g g 
n F Z ' and by L the line-bundle ~(1)IM. 

Then Mr.;-. a: ';;! (A ) '" \31:1 g,a: 

The bundle on A g,a: has a natural hermitian metric, 

defined by square-integration of differentials: 

If A/rr. is an abelian variety over a:, and cxe.wA/a;=r(A,"1/a:)' 

Up to a constant factor this metric Coincides with the metric 

on (A gt* {iY r defined in Ch. I, §6. Therefore it has 
A/Ag 

logarithmic singularities at infinity. (Ch. I, Cor 6.2.) 

We thus can define a height-function A ('ij5) , such 
g 

that for number-fields K there are only finitely many 
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c (by Th. 1. 2) • 

The purpose of this chapter is to compute h~(x) in case 

x is the K-rational point defined by a semi-stable princi-

pally rolarized abelian variety A over K. More precisely, 

we define a moduli-theoretic height h(A) for such an A 

as follows: 

consider the connected component of the Neron-model of A 

over R, AO + Spec(R) . The bundle t:/R has hermitian 

metrics at tiE infinite places, and thus wA/ R =Agt:/R is a 

metricized line-bundle over Spec(R) • Let. 

h(A) 
[K: en] 

Then h(A) is invariant under extensions of K (since ~A/R 

is), and we have: 

Theorem 3.1: 

There exists a constant C I independant of K and A, such 

that 

Proof: 

There existS a "covering" 

such that 

a) Over 

A. 
1 

~i : Ui + M , with Ui schemes , 

~.-1 (A ~), there existsa universal abelian variety 
1 g,'fl 
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b) Over Ui exists a stable curve 

qi: Ci -+ Ui 

with smooth generic fibre , and morphisms 

c) There exist line-bundles 

g 
Mi ~ 11. qi''I (wc ./U .) , 

1 1 

s.o~ = d·id, d > O. 
1 i 

which are locally direct summands, such that over 

This follows, because we realize the conditions a) b) 

c) step by step by taking "cO'l.nrings": 

For a) this follows from I, § 2 for b) from I, 3.2/3.3, and 

for c) we note that M. is already defined over 
-1 

-1 <P. (A ",). 
1 g,'Iol 

This defines a mapping from into a suitable 

projective bundle, and we take the normalization of the clo-

sure of its graph. We further may assume: 

d) The isomorphism 

lit ~ @r 
<Pi (~) - wA ./U . 

1 1 

used to define 

eL M (gJr - . ,over 
-1 

extends to an isomorphism 

on Ui ® Z (2 

For this elaim we may extend from (2 to ~ . Then both 

line-bundles carry hermitian metrics with logarithmic singu-
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larities along the union of the discriminant locus of Ci 
-1 

and ~. (M~-A ~) • If we show that the isomorphism between 
l. "" g,,,,, 

them on ~.-1 (A n) , as well as its inverse, is uniformely 
l. g,,,, 

bounded, our claim follows. This comes down to the fact that 

the isomorphism 

and its inverse are uniformely bounded. Here the metric on 

is given by the polarized Hodge-structure corresponding to 

Ai ' while the metric on ~i £ Agq.(wC./u .) comes from the 
l... l. 

polarization o.n Ai induced from the polarization on PicoCCi) 

by 

As two polarizations on an abelian variety are comparable, 

we are done. 

The rest of the proof is rather easy: 

As the 

number 

ui are of finite type over 

n > 0 , such that ~.it(L) 
l. -

Spec(~) , there exis~a 

and M~ r are "Isomorphic 
-l. 

up to a factor n"·, that is, if we denote by 

~. '* (L) -;t M. ® r 
l. - -l. 
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the i.somorphism given on Ui @ 2 <1l , 

to regular mappings between ~.·(L) 
1 -

and 

M.®r 
-1 

-1 
n·y i 

on U. 
1 

extend 

Now let A/K be a principally pGllarized abelian variety over 

a number-field K, AO/R its Neron-model, XE.Ag(K) the 

corresponding moduli-point. 

We claim that 

Ih1 (X) -r.h(A)1 < log(n) + r·g·log(d) 

(d as in b) above) 

For this we may extend K. We then may assume that there 

exists a Zariski-open cover Spec (R) = U V. 
1 

and mappings 

such that 

where 

V. -+ U. 
1 1 

~ : Spec(R) -+ M 

is defined by x, and such that the pullback by ~i(K) of 

A. is isomorphic to A/K • 
1 

By pullback, we obtain stable curves 

and morphisms over Spec(K) 

s. 0 a . = d· id . 
1 1 

D.= ~.*(c.) 
111 over Vi ' 
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Furthermore there exists a direct summand 

such that over Spec (K.) 1/J ... (M. ) is the image of 
~ ~-~ 

By the theory of minimal models and 

to v. 
~ 

(Xi 
PiCO(Di ) t ~ A/Vi' 

Si 

can be extended 

and 1/J.*(M) must be the unique direct summand of 
~ -

containing the image of , so that 

Finally, there is a commutative diagram of isomorphisms 

The 
isomorphism at the top comes from A/K ~W.~(A.) , and it in-

T ~ ~ 

duces an isometry at the infinite 

with 

places (after base-change 

@r 111 
cr : K +~) • We thus may view wA/ R I~ (~) and 
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('v. If (M. ) )® r as submodules of a fixed one-dimensional vector­
T 1 -1 

space V over K, with hermitian metrics on V ® K cz: for any 

a: K -7 cz: " 

and are projective of rank over 

r·h(A) and h;6 (x) " If their degrees are 

then 1jJ. '* (M.lSY r 
1 -1 

is projective of rank over R. 
1 

We now have: 

d rg . ", .... (M. )® r ( )@r,r.*,()®r 
~1 -1 ~ WA/R Ri ~ ~i ~i ' 

n " 1jJ . *' (M . {SY r 
1 -1 

"'*(L)'R. cn-1.1jJ.*(H.)®r , ~ ~ - 1 - 1-1 

hence 

( )@rRC"'*(L)"R.Cd-rg.-1 ()®r'R n" W AIR . i ~ _ 1 _ n W AIR i 

As the Vi form a covering of Spec(R) , 

and so indeed. 

R , and 

IhL(x) - r·h(A) I < log(n) + rg·log(d) . 
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§ 4 Applications 

We shall need the following lemma (Hermite-Minkowski) 

Lemma 4.1: 

Let K be a number-field, S a finite set of places of K 

For gi~en d > 0 there exint only finitely many extensions 

L 2 K of degree <d, which are unramified outside S . 

Proof: 

We first use that a local field of characteristic o has 

o.nly finitely many extensions of degree :s.d : This is known 

for abelian extensions by localclassfield-theory,and by in-

duction one reduces to this case because the absolute Galois-

group of a local field is solvable. 

In the global case this shows that the discrnll.inant of L is 

bounded. By Hinkowski' s theorem there existsa constant C > 0 

and an integral element x EO L with I x IV1 :s. e,l x IV2 < 1 , 

Ixl < 1 , where the denote the infinite places of L 
vr 

The coefficients of the minimal polynomial of x are bounded, 

so that there exist only finitely many possibilities for this 

polynomial and for K (x) . Now [L: K (x) ] < 2 , and we may 

assume that L is a quadratic extension of K(x) By 

classfield theory there are only finitely many such extensions 

which are unrarnified outside S 

We use this lemma in the following form: 

Lemma 4.2 

Let K be a number-field, S a finite set of places of K. 
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There exis~a finite extension K'2 K , such that for any 

abelian variety A over K of dimension g, with good re-

duction outside S, the abelian variety A ® K K' is semi­

stable, and has a level-12-structure. (All its 12-division 

points are rational over K') 

proof: 

For any such A, the field K(A02]) obtained by adjoining 

the 12-division pOints is unramified over K outside Sand 

places of characteristics 2 or 3, and of degree ~ 124g 

over K. Hence there exist~ a K' containing all such K (A [12J) • 

As any abelian variety with a level-12-structure is semistable, 

we are done. 

Remark: 

We have used the following fact: Any automorphism of finite 

order of ~~(~l=l-adic integers) which is the identity mod 4 

(for 1=2) or mod 1 (for 1~3) is the identity. 

Now follows the main result of the first two exposees: 

Theorem 4.3: 

Let K be a number-field. Fix an integer g ~ 2 and a 

c>O • There exist up to isomorphism only finitely many 

principally polarized semistable abelian varieties A over 

K , such that h(A)~C 

Proof: 

Let x & Ag (K) be the moduli-point for such an A. We have 

seen that IhL(x)-rh(A) I is bounded, so that we obtain only 
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finitely many different x. If two A's give the same x, 

they become isomorphic over the algebraic closure K of K, 

hence over a finite extension of K. They then have bad 

reduction at the same places of K. 

By the previous lemma there exists a finite Galois-extension 

K' 2 K such that all the A's have rational 12-division-

points over K' Any isomorphism between them over a finite 

extension of K' then is already defined over K' itself, 

since the isomlDrphism is already determined by its effect on 

12-torsion-points, and hence equal to its Galois-conjugates. 

Thus all A's inducing the same x E A (K) 
g 

become isomorphic 

over K/. They are then parametrized by a subset of the finite 

set 

H1 (Gal (K'/K) I Aut (A/K' , polarization) . 

This proVes our claim. 

Remark: 

Theorem 4.3 holds also for isomorphism classes of abelian 

varietie.s (forgetting polarizations). See Ch. IV, LelYYl-'TYLa.. '1. f. 
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§o Introduction 

This paper discusses some results which are used in the 

contributions of Schappacher and Wlistholz to this volume. I 

have tried to explain the application of the theories of finite 

group schemes and p-divisible groups to the problems arising 

in Faltings work. 

Where it seemed necessary and where it was possible for 

me, I have given detailed proofs. I have also included many 

examples. 

Chapters one and two introduce to the theory of group 

schemes in particular finite group schemes. Most important 

are here the exactness properties of the functor * 1 sO. 

Chapter three discusses p-divisible groups, a concept 

introduced by Tate. 

In chapters four and five we study the action of the 

absolute galois group on the points of a finite commutative 

group scheme and on the Tate-module of a p-divisible group. 

I thank G. Faltings who has helped me a lot with writing 

this paper. 
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§l Generalities on group scpemes 

In this paragraph we describe certain elementary facts 

from the theory of group schemes. We shall use the language of 

schemes as set up for example in LH1. 

Let 8 be a fixed scheme, then the category of schemes 

over 8 has a categorial product which comes from the usual 

fibre product of schemes. 

xx x.------~) X 
s. 

1 1 
'i -------7) ~ 

80 we have the notion of a group object in the category of 

schemes over 8. A group scheme over 8 is then a map of 

schemes 

G 

1 
8 

together with maps of schemes over 8: 

]J : 

GX G ~ G 
Q-

1 1 
8 • 8 

8 , G 

s: 1 id 1 
8 ~ 8 
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G --------I'P G 

i: 1 1 
S --------I't S 

such that the following diagrams are commutative: 

1 ) 

idx II 
S. 

2) 

3) 

Gx Gx G - s- ,2-
tQXsG 

I 
Gx G -.s-

GX S s-

I~ 
G 

Sx G s-

llX..s.id 

j~ 
~ G 

II 

--------_p §x ~ 
id x s 

§. I~ 
id G 

I~ 
--------~. §xs§ 

sx id 
§. 

A group scheme G + S is called commutative if the following 

diagram 

GX G ----_p Gx G 
- §.- .....: S-

III III 
G id G 
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is commutative. Here cr is the map which interchanges the 

components of the product. Let G + S a group scheme and 

T + S a scheme over ~, then the structural maps of G + S 

induce On 

G 

1 
5 

a group structure. 2(!} is called the group of T - valued 

points of G. Let G + Sand H + S be group schemes over 

S. A map of schemes over S 

G----_,H 

~: 1 1 
S------+) S 

is called a homomorphism if the following diagram is commuta­

tative 

s id s 

If ~: (2 + ~) + (~ +~) is a homomorphism of group schemes, 

then the kernel of ~ is the fibre product of the following 

diagram 

K ---~, S 

1 1 s 
G ------ttH 

The structural maps of G induce on K + S a group scheme 

structure. 
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We shall mostly consider the case where the base scheme 

S is affine, that is S is of the form spec(R) for some 

commutative ring R. A scheme X + spec(R) is called a scheme 

defined over R. Consider the case where X is also affine, 

~ = spec(A). The map X + spec(R) comes from a ring homomor-

phism. R + A. Let now A be an R-algebra. The structural 

maps of a group scheme on spec(A) + spec(R) corne from 

R-algebra homomorphisms: 

s: A + R 

i: A + A. 

The maps ~,s,i make certain obvious diagrams commutative. 

Conversely given an R-algebra A and maps ~,s,i making the 

appropriate diagrams commutative one gets on ~pec(A) + spec(R) 

the structure of a group scheme. An R-algebra A together 

wi th R-A.lgebra homomorphisms ]J, s, i satisfying the appropriate 

conditions is called a bigebra in [Bo]. 

Examples: 

We shall now give some examples of group schemes over a ring R. 

They will all be affine. We shall describe them by giving the 

R-algebra homomorphisms corresponding to ~,s,i. 

Example 1 : The additive group G -a 

A = R[t] 

~ : t + 1 ®t + t«ll 

s: t + 0 

i: t + -to 
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If B is an R-algebra then there is a group isomorphism 

G (spec(B» ~ B+. 
-a 

group 
is the additive/of B. If G + spec(R) 

and B is an R-algebra we write 

Q(spec(B» =: 2(B) 

for the g~oup of B-valued points. 

Example 2: The multiplicative group G . -m 

A R[t,t- 1 ] 

jJ: t + t et 

s: t + 1 

i: t -1 + t • 

is a group scheme 

If B is an R-algebra then there is a group isomorphism 

G (B) ~ B*. 
-m 

B* is the group of units in B. 

Example 3: The group of n-th roots of unity jJn. For n Em 

put 

A 

jJ: t + tClDt 

s: t + 1 

i:t+t-1 • 

Example 4: The constant group scheme 'J<.(lI). For a group II 

put A = RlI where RlI is the ring of R valued functions on lI. 

jJ: f + ~f with jJf(g,h) = f(g·h) 

s: f+f(1) 

i: f + if with if(g) 
-1 

f(g ). 
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The schemes in example 4 are all etale over R 

Example 5: G b' -a l 
For alb E R with a·b = 2 define 

].l: t + 1 ® t + t ® 1 - bt ® t 

s: t + 0 

i: t + -to 

The R-algebra A is a two dimensional free R-modul. 

Example 6: Many.examples arise from (affine) algebraic groups 

over fields. Let R be a ring with quotient field K. A 

group scheme Gover spec(H) is called an abelian scheme 

over H if G is proper and smooth over spec(R) and if 

all fibres are connected. 

Exact seQuences: 

.§l .§2' .§3 

sequence of homomorphisms 

Definition: Let 

is called exact if 

o + G 
-1 

be group schemes over S. A 

+ o 

1) ~ is a closed immersion identifying .§1 with the kernel 

of 1/1. 

2) 1/1 is faithfully flat. 
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Assume that ~ is of finite type, then condition 2 implies 

that ~ is a strict epimorphism. That means that the sequence 

G x G-G 
-2 G -2_-2 

-3 

is exact in the category of schemes. See [Ml Theorem 2.17. 

Assume that S and ~1'~2'~3 are affine, say ~ = spec(R), 

~i = spec(Ai ), i = 1,2,3. Then the above sequence comes from 

a sequence of R-algebra homomorphisms 

$ ;p 
Al - A2 +---'--A3 . 

Condition 2 means that A2 is under ~ a faithfully flat 

A3-module. Condition 1 means that ~ is surjective and that 

there is an R-algebra isomorphism 

e: A2 ® R-A 
A3 1 

making the following diagram commutative 

The tensor product is formed viewing R as an A3-algebra 

under the zero-section s. 

Modules of differentials: 

We consider here the case where S = spec(R) and where G 

spec(A) is an affine group scheme over S. We write 
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where is the usual A-module of Kahler-differentials of 

the R-algebra A. See [Hl,LGrl for the definitions. The 

universal derivation is 

d: A 

We shall also be interested in the following R-module 

Here the tensorproduct is formed over the zero-section s: A + R. 

For later computation we need the following result. 

Proposition 1.1: Let 

sequence of affine group schemes over a ring R. 

spec(Ai ) for i = 1,2,3. Then the sequence 

of Al~modules is exact. 

be an exact 

Let G. 
-1 

Remarks: 1) From the result in proposition 1.1 it follows 

that the following sequence of R-modules is also exact: 

2) The above sequence of group schemes is exact if 

condition (1) in the definition for exactness of short 

exact sequences is satisfied. 

Proof: Consider the underlying sequence of R-algebras 
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Since ~ is a closed immersion ~ has to be surjective. But 

then the map induced by ~ 

is surjective. Next, we take the sequence 
1jJ 

A2-A3--R 

rings and get, using the second exact sequence, an exact 

sequence of A2~modules 

We tensor this sequence with Al and obtain 

Using the commutative diagram of R-algebras 

we get a commutative diagram 

E: is the usual base change isomorphism. Since 

isomorphism,proposition 1.1 is proved. 0 

of 

an 
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Remark: If Y + X is a map of schemes, then we write 

for the relative module of differentials. Using the same 

proof, one sees that the assumption in proposition 1.1 

that the Qi should be affine, is not necessary. 
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§2 Finite group schemes 

Here we shall consider finite group schemes. They arise 

for example as kernels of isogenies of abelian varieties. 

Let X be a scheme. Por an open set in the 

underlying topological space of ~, let ~X(U) be the assoc-

iated ring. A morphism ~: X + S of schemes is called affine 

if the inverse image under ~ of any affine open subset is 

affine in S. 

Definition: A morphism of schemes ~: ~ + ~ is called finite 

if it is affine and if for every open affine set U f st the 

~S(U) - algebra ~X(~-l(U» is a finitely generated ~S(U)­

module. The morphism ~ is called of finite order if the 

0s (U)-modules 
-1 

(9x(~ (U» are locally free of constant rank. 

If n is this rank then n is called the order of ~. One 

also says then that X is of finite order over S. 

If S is a locally noetherian connected scheme then a 

scheme X + S over S is of finite order if and only if it is 

finite and flat over S. More specifically, consider the case 

where S = spec(R) for a noetherian local ring R. Let ~: 

~ + spec(R) be a scheme over Spec(R). Then X is of finite 

order over Spec(R) if and only if X = spec(A) for some 

R-algebra A which is a finitely generated free R-module. 

A group scheme <p: G + S is called finite or of finite 

order if the map <p is finite or of finite order. The 

examples 3,6 from §l are group schemes of finite order over R. 

The constant group scheme ~(/),), this is example 4, is of 
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finite order if the group A is finite. 

A Theore·m of Oort and Tate : 

We shall report here on the construction of certain 

group schemes of prime order due to Oort and Tate [0 J. 

Let p be a prime number. Let ~ be the primitive (p-l) 

-.th root of unity in the ring of p-adic integers ?Zp which 

satisfies ~m = m mod p for m = 1, ..• ,p-l. Put 

We shall construct now certain elements w1 , .•• ,wp _1 E Ap. 

To do this let 

and define in B: 

p-l 
~-m(I_Zm))i L 

m=1 w. 
l. p-l 

( L ~ -im(I_Zm)) 
m=1 

The claim here is that the w. 
l. 

are units in Ap. Examples 

are easily computed: 

p 2: wI 1 

p 3: wI 1, w2 -1 

5 : 1, -~ (2+~) , 
2 

P wI w2 w3 (2+~) , 

>'14 -5(2+~)2. 
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Take now any 1\p - algebra R with structural map 

For any pair a,b E R with a'b = p define 

(jJ: 1\ + R. 
P 

b p-1 1 . . 
)l: t + t ® 1 + 1 ® t + 1-p l: e· ® tP-~ 

i=1 (jJ(w.w .) 
~ p-~ 

s: t + 0 

i: t + -t 

Then (A,)l,s,i) is a commutative group scheme of order p over 

R. This can be checked by computation. Let R now be a 

complete noetherian local ring of residue characteristic p. R 

is in a'natural way a ?l p-' hence 1\ -algebra. In this case, p 

we have a group scheme GP 
a,b 

for any pair of elements a,b E R 

with a·b = p. The following is proved in [ 0 1 • 

Theorem 2.1: (Oort, Tate) 

Let R be a complete noetherian local ring of residue 

characteristic p > O. For any group scheme Gover R which 

is finite of order p there are a,b E R with a'b = p such 

that G and P 
G b -a, are isomorphic as group schemes over R. 

Let a,b,c,d be elements of R with a·b = p and c·d p. 

Then and are isomorphic if and only if there is a 

unit u E R* WTth 

c 

Note that this theorem implies for certain 

scheme of prime order is commutative. This 

rest!riction on the bas-e scheme in (0]. The 

shown up in example 5 of §1. 

rings that any group 

is proved without 

G2 b have already -a, 
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Duality: 

Let R be a ring and Q = spec(A) + spec(R) a commutative 

affine finite group scheme over R. G' stands for the Cartier 

dual of G. It is defined as follows. 

G' = spec(A') 

where A' = HomR(A,R). In the Horn only R-module homomorphisms 

are considered. The structural maps ~,s,i induce maps 

~',s',i' which make G' into a commutative group scheme over 

R. If G was of finite order then G' is also of finite 

order and the orders coincide. We have 

Proposition 2.2: Let p be a prime and R an 

algebra, and let a,b E R with a·b = p. Then 

II 
P 

This can be seen by a straightforward computation, see also [OJ. 

Modules of differentials: 

We shall compute now the modules of differentials for the 

group schemes We deduce then some general results on 

the modules of differentials for group schemes of prime order. 

Proposition 2.3: Let p be a prime and R an II -
P 

algebra. For a,b E R with a·b p let G GP 
-a,b be the 

group scheme over R defined above, then 
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1) 

2) 

Proof: We have 

spec (A) , 

where 

A 

The module of differentials of a polynomial ring is a free 

one dimensional module: 

R[ xJ· dx 

with derivation: 

d: R[xJ 

d: P (x) -+ p' (x) dx 

exact 
From the second/sequence (1) follows. (2) is proved using the 

explici t description of the zero section of o 

Proposition 2.4: 

Let R be a complete noetherian local ring of residue 

characteristic p > 0 and without zero divisors. Let G be 

a group scheme of order p over R. Then: 
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Proof: By theorem 2.1 we find a,b E R with aob 

that 

G - GP 
-a,b 

G' - GP -b,a 

P such 

as group schemes over R. We know by proposition 2.3 that 

We have the exact sequence of R-modules 

o ->- R/ ->- R / b ->- R /bR ->- 0 • aR a R 

From this the result follows. 0 

A group scheme G over a ring R of finite order is of 

multiplicative type if and only if its dual G' is etale 

over R. For example the schemes ~n are of multiplicative 

type. We have 

(~ )' n 

Proposition 2.5: Let R be a complete noetherian ring of 

residue characteristic p > O. Let G be a group scheme of 

order p over R which is of multiplicative type. Then 

R 
<f'( / R)' 

P 

'proof: Since G' is etale over R we have 
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o. 

We then apply proposition 2.4. o 

Remark: Proposition 2.4 will be generalised greatly in 

theorem 2.10. 

, 
Etale qroups: 

Let R. be a complete noetherian local ring with quotient: 

field 
A 

K and residue field k. k is the separable 

algebraic closure of k and ~o is its galoisgroup. Ret is 

the maximal local etale extension of R. cao acts naturally 

on Ret. 

Let M be a finite OJO-module. Put 

for the R-algebra of ~O-invariant Ret - valued functions. 

Define the structural maps for A just as for constant groups. 

This turns A into an etale bigebra over R. We call this 

group scheme of finite order H. 

Theorem 2.6: Let R be a complete local ring. The map 

M - M is an equivalence between the category of finite 

~-modules and the category of etale group schemes of finite 

order over R. The inverse map to M i--,M is given by 

Here 

G ® k 
R 

G x (R) spec (k) . spec 
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1\ 

The fibre product is taken over the map R + k + k. For all 

of this see [G,D],section II. 

We also mention for later use that any group scheme of 

finite order G can be embedded in an exact sequence 

where GO is a connected subgroup and Get is etale. GO 

and Get are unique up to isomorphism. See [G], [Ra]. 

Finite subgroups of abelian schemes: 

If A is an abelian scheme over a ring R then one 

knows that 

* 1 
s Q~/R ~ Rg 

for some g E IN. g is the dimension of A. See [M ] . Assume 

that G is a flat subgroup of finite order in A 

Then the exact sequence,from proposition 1.1 gives some 

restriction on * 1 s QyR" 

Proposi tion 2.7: Let K be an algebraic number field of 

degree m over ~" Let A be an abelian scheme of dimension 

g over the ring of integers V in K. Let G be a flat 

subgroup of A annihilated by a prime number p. Then 

with d ~ m·g. 

Proof: That G is annihilated by p means that 
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multiplication by p factors through the zero section of G. 

See 

on 

the beginning of §3. The rnap:multiplication by p induces 

* 1 * 1 
s rlYR also the multiplication by p. So s nQ/R is 

an abelian group of e~ponent p. It is also a quotient of 

:i7,mg. o 

We shall also need the following: 

Theorem 2.8 (Raynaud): Let R be a local noetherian 

ring and let G be a finite flat group scheme over R. Then 

there is a projective abelian scheme A and a closed immersion 

o ->- G ->- A. 

For this see [Be] p. 110 and [00] chapter II for a somewhat 

weaker version. If G is a finite flat subgroup of an 

abelian scheme A then there is an exact sequence 

o ->- G ->- A ->- B ->- 0 

This is proved in [M-FJ. 

The exactness of s*rl 1 : 

II( 

~I 
G 

Here we shall improve on proposition 1.1. 

Theorem 2.9: Let R be a discrete valuation ring with 

quotient field K of characteristic O. Let 

o ->- Q1 ->- Q2 ->- Q3 ->- 0 

be an exact sequence of group schemes of finite order over R. 

Then the sequence of R-modules 

* 1 o ->- s rlG IR 
-3 

* 1 ->- SrlG IR ->-

-2 
* 1 SrlG IR ->- 0 

-1 
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is exact. 

Proof: The problem here is the injectivity on the left. 

Let the sequence 
qJ 

o + G + A + B + 0 

be exact, where G is of finite order and ~, B are abelian 

schemes. The sequence 

* 1 
q; 

* 1 * 1 0 + s Q~/R + s Q~/R + s nYR + 0 

is then also exact. This is clear apart from the injectivity 

on the left. ~ is an isogeny and 

* 1 * 1 
q): s Q~/R--s Q~/R 

has the degree of ~ as determinant. Since K is of charac­

teristic 0 the map q; is injective. By theorem 2.8 we 

embed 22 into an abelian scheme A and define 

B c 

Then we have the exact sequences 

0 
~ 

0 + 21 + A + B + 0 
~ 

0 + 22 
l 

+ A + C + 0 

0 + 23 + B + C + 0 

~ 
0 

From these we obtain a commutative diagram 
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0 
J. 

0 * 1 * 1 * 1 0 -+ s S"lYR 
-+ s S"lB/R 

-+ s S"lG /R 
-+ 

I 
-3 

II let 

0 * 1 * 1 * 1 0 -+ SS"l~/R -+ SS"lYR -+ SS"lG /R -+ 

-2 
i 

0 * 1 * 1 * 1 
0 -+ s S"l~/R -+ s S"lA/R -+ s 

S"lG /R 
-+ 

-1 

1 
0 

A diagram chase proves that the arrow et is injective. C 

We generalise proposition 2.4. If M is a module over 

a ring R we write ~(M) for the length of M. 

!heorem 2.10: Let R be a discrete valuation ring with 

quotient field of characteristic O. Let G be a finite 

group scheme over R I let G' be its Cartier dual and nits 

order. Then 
u *1 LI *1 
~ (s S"l~/R) + ~ (s S"lQ'/R) 

Proof: We embed G into an abelian scheme A and define 

A -/G. Then we have exact sequences 

o -+ G -+ A + B -+ 0 

o -+ G'-+ A' -+ B'-+ o. 

Here ~',~' are the dual abelian schemes of ~,~, see 

[00 l, [Mu]. 

We get exact sequences 

* 1 * 1 o -+ SS"l~/R -+ SS"l~/R 
* 1 0 -+ s S"lYR -+ 

o -+ * * 1 * 1 0 SS"l~I/R -+ s S"l~1 /R 
-+ s S"l~1 /R -+ 

We write g for the dimension A or B. We have 
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* I 
s (l,§/R 

* I 
Coker(s (l~/R ->- *(ll 

s ~/R) 

* I * I * I 
s (l,§'/R Coker (S(l~, /R ->- s (l~, /R) 

I 
(9 B) HI (~, (!) ))' Coker(H (~, ->-

A . 
The last identity uses 

I 
H (~, (gA.) ( * I ) , s (l~, /R .. 

So we get 

~ ( * I ) s (l,§/R 

u * I "(. (s (lg~R) 

'l (COker(r(~,(l~/R) ->- r(~,(lZ/R)) 

Ii (Coker (Hg (~, (9 B) ->- Hg (~, "A)))' 

This follows by consideration of determinants of the appropr-

iate maps. All maps are here the maps induced from the exact 

sequences at the beginning. From the Serre-duality theorem 

we get a commutative diagram 

Hg (~, "A) JC r (~, (l1/R) ->- R 

r - 1- r deg«(jl) 

Hg(~'(?B) x r (~, (l~/R) ->- R 

But the degree of the isogeny (jl coincides with the order of 

G. For the notation and for Serre-duality, see [H], chapter 

III. 0 
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§3. p-divisible groups 

Here we discuss the definition and some facts on p-divis-

ible groups. This concept is due to Tate LT]. 

Definition: R is a noetherian ring, p is a rational 

prime number and h is a nonnegative integer. A p-divisible 

group ~ over R of height h is a system 

k > 0 , 

where 

(1) each ~k is a group scheme of finite order over R. The 

order of ~k is 
kh 

P 

(2) for each k > 0 the sequence of group schemes 

is exact. 

Remarks: 

1) The map k 
P ~nder (2) is multiplication by k 

P . If 

is any group scheme over S and if n Elli then the 

composite map 

G 
diag ]l 

---~..." ~xS •••••••••• ?<S~ ----'-+~ 
~ _________ ~ ______ -~J 

n-times 

G 

is called mUltiplication by n. If G is commutative, it 

is a homomorphism of group schemes over S. 

2) Let G be a finite commutative group scheme over S of 

order n. Then multiplication by n annihilates G. That 
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means, there is a commutative diagramm: 

S 

/1s 
G A 1 G 

where A is multiplication by n. See [TJ. 

3) If Q = (§k,ik ) is a p-divisible group, we 

shall prove that the exponent of §k is exactly k 
P 

The exponent of a finite commutative group scheme G + S 

is the minimal number n such that multiplication by n 

annihilates G. 

Exactness of the sequence under (2) means that i k is.a 

closed immersion. Furthermore, i k has to induce an isomor-

phism to the kernel of 

Let .sl = (§k,ik ), H 

homomorphism 

of p-divisible groups is 

schemes over R 

such that the diagrams 

k 
P • 

= 

4> : 

a 

(l!k,jk) 

G + H 

system of 

be p-divisible groups. A 

homomorphisms of group 
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are commutative. A sequence of homomorphisms of p-divisible 

groups 

is called exact if the sequences of homomorphisms of group 

schemes over R 

are exact in the sense of §1. 

We define now for k,~ E R with k > 0, ~ > 1: 

ik,~ is a closed immersion 

We have now 

Proposition 3.1: Let £ be a p-divisible group over a 

noetherian ring R without zero divisors. 

(1) The sequences: 

are exact for all k ~ 0, ~ > 1 . 

is annihilated by 
k 

p • 

(3) There is a homomorphism of group schemes 



- 80 -

such that the following diagram is commutative 

(4) The sequence of homomorphisms of group schemes 

for 

is exact. 

o ->- G 
-k 

i jk ~ 
k ,~ ~ G ----"'--~) _G n ->- 0 

-k+~ '" 

Proof: The Qk are all affine schemes: 

Qk spec Ak 

some R-algebra ~. We write 

i k : Ak+1 ->- Ak 

i k : ~+~ ->- Ak ,~ 

k A A P ->-
~ ~ 

for the homomorphisms of R-algebras corresponding to the maps 

of group schemes with the same name. We also have R-algebra 

homomorphisms G, making the following diagrams commutative: 

~+l ®~ R~(------R 

;:1 +1 pk l' 
~~ Ak+l~f-------~------- ~+l . 
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Since the zero-sections are surjective, the maps 1jJ are 

surjective. The kernel of 1jJ is the ideal generated by the 

image under k of the kernel of p s. 

(1) This is proved by induction on 9" the beginning of the 

induction being obvious. We shall indicate the induction step 

from 9, = 1 to 9,= 2. Consider the diagram: 

The algebra B is the tensorproduct Ak+2 ® 
Ak+2 

R formed 

over the maps k and p s. Whereas C is the tensorproduct 

~+2 ® R formed over the maps k+l and The broken 
Ak+2 

p s. 

line is induced by i k+1 . A diagram chase making use of the 

preliminary remarks shows that this is an isomorphism. The 

broken line composed with e gives the identification of the 

kernel of k p with the image of 

(2) Multiplication by 2 
P commutes with every R-algebra 

homomorphism. Consider the diagram 
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8 

Ak" 
i k 

~+I • Ak+ I ®~ R 
+1 

k k \ p p 

s 
Akol' i k ~+I • R. 

It shows that the map factors through the zero section 

of ~+I. Hence factors through the zero section of 

Ak+I . Since i k is surjective,the map 

factors through the zero section of ~. 

(3) follows from (2). 

(4) The problem here is to see that jk,~ is faithfully flat, 

everything else is straightforward. 

By (1) the kernel of the homomorphism 

is a group scheme which is flat over R. From this it follows 

that pk is flat, see [Ml, p. 67. Consider now the diagram: 
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We have already proved that Ak+.Q. is under jk,.Q. a flat 

A.Q.-module. We shall prove next that jk,~ is injective. 

This is seen by proving 

To do this tensor the above sequence with the algebraic 

closure K of the quotient field of R. If K has character-

istic 0 all the above group schemes become constant and the 

claim can be checked on the explicit basis for constant group 

schemes. See §2, and [G,O], II. If the characteristic of 

K is P > 0 then one has to check the claim on the models in 

[G,D],II. 

Now is under jk· ,.Q. a finite ring extension of 

Hence by going up/condition (e) of proposition 9 in [Bou] 

chapter I is satisfied and Ak,.Q. is a faithfully flat module. 

Etale and connected: 

In this subsection we assume that R is a complete 

noetherian local ring with residue field k of characteristic 

p > o. 

Let G be a group scheme of finite order over R. Then 

there is a canonical exact sequence 

where is the connected component of 1 in G and is 
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etale over R. See [G], [Ga] for this. If §. = (~k ,ik ) is a 

p-divisible group over k, then the maps i k induce maps 

i k : GO 
-k 

These can be used to form p-divisible groups Qet 

GO (Q~,ik). From the sequences 

we get an exact sequence of p-divisible groups 

We describe here constructions for etale and connected 

p-divisible groups over R. We start off with connected groups. 

Given a natural number n we write 

.A = R [ [ xl ' .•. ,xn II 

for the ring of formal power series in n variables over R. 

Let F be an n-dimensional commutative Lie group over R. 

F can be described as a system 

F(x,y) = (f 1 (x,y), ... ,fn (x,y)) 

of n power series in 2n variables which sa~isfy the 

following axioms 

(i) F (0 ,x ) F ( x, 0) 

if x 
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(ii) F{x,F{y,z)) = F{F{x,y),z) 

(iii) F{x,y) = F{y,x) 

For examples of such see [Hal chapter 2 .. 

Taking on ~ the order topology we have a continuous 

isomorphism 

.,.q.afi+ [[ 11 ""R R xl ,···,x2n • 

Using this one sees that there is a unique R-algebra homomorph-

ism 

satisfying 

f. (xl iI, ... , x i I; I ex, ..• , I i x ). 
~ n I n 

Let 

be the unique n-tuple of power series in n variables satis-

fying 

F{x,a{x)) = O. 

There is a unique R-algebra homomorphism 

satisfying 

Define further 
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§: x ..... O. 
1 

The R-algebra A together with the maps 

in the category of cc!mtinuous R-algebras. 

" ,.. " 
~,i,s 

That is 

is a bigelilra 

,.. ~ ,.. 
~,l,S 

satisfy the commutative diagrams mentioned in §l, only the 

tensorproducmhave to be replaced by the±r continuous analogs. 

We define now inductively 

n-times 

by and 

Furthermore put 

where 

m: ~ ®R A ®R ... ~R.,q. ---_~A-
l~ _______ ~~ __________ ~) 

p-times 

is induced by the continuous multiplication. 

is an R-algebra homomorphism corresponding to multiplication 

by P in the formal Lie group. The following formula is 

easily seen from the definitions: 
k k 

~ (Xi) = p xi + terms of 

higher degree. We assume now that ~ is an isogeny, that is 

~ is under ~ a free .A -module of f ini te rank. The form al 
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group is then said to be divisible. We define a p-divisible 

group 

as follows: 

Here is the ideal in J'4 generated by the 

for i = l, ..• ,n. The bigebra-structure on ~/<~k(x.» 
" ':' II • ~ 
~,~,S. The maps ~k come from the 

is 

induced by the maps 

inclusions 

It can be proved by elementary considerations on power 

series that i is in fact a p-divisible group. Of course each 

Qk is connected since ~/ k is a local ring. 
<~ (xi» 

We have now 

Theorem 3.2 (Tate): Let R be a complete noetherian ring 

whose residue class field has characteristic p > 0. Then 

the map 

is an equivalence between the categories of divisible 

commutati ve formal Lie groups over R and the catego:ry of connec-

ted p-divisible groups over R. 

For a proof see [T]. Tate's theorem can now be used to 

define the dimension of a p-divisible group. 

Definition: Let Q. be a p-divisible group over R with 

connected component £0. Let F be an n-dimensional formal 
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-' group with F £0. Then n is defined to be the dimension 

of G. 

We shall now give a construction of etale p-divisible 

groups. Here R is again a complete noetherian ring with 

" residue field k of characteristic p > 0. k is the separabel 

algebraic closure of k and ~o is the Galois group of " k 

over k. Furthermore, let Ret be the maximal local etale 

extension of R. G}O lifts to a group of automorphisms of 

Ret over R. We start off with a continuous representation 

h 42p' :iZp 

field and the p-adic integers. 

is a natural number and are the p-adic number-

We define now from ~ a p-divisible group ~. Put 

6k is ~O-invariant. Put 

~ = MlP,*o (6k ,Ret l 

for the ring of "40 invariant Ret - valued functions on 6k . 

Ak gets a bigebra structure just as the constant group 

scheme in example 4. The inclusion maps 
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induce R-algebra homomorphisms 

We put 

§k = spec(~l. 

It is then straightforward to check that 

is a p-divisible group of height h. We have now 

Proposttion 3.3: Let R be a noetherian local ring. 

Then the map 

is an equivalence between the category of continuous represen-

tations of ~o in GL (liZ l n p 

p-divisible groups over R. 

and the category of etale 

This is proved by application of theorem 2.6. 

More Examples: 

The first example derives from the multiplicative group 

G • -m Let p be a prime number then 

the map 

There are obvious inclusions 

~ k+l 
P 

~. is the kernel of 
pk 

The system (~k,ik' is a p-divisible group of height 1 called 
p 



G (p). --rn 

- 90 -

R. 

Next, let A be an abelian scheme of dimension 

Assume that the kernel Ak of multiplication by 

g over 
k 

p on Ii 

is a flat group scheme over R. This is for example the case 

if R is a ring of integers in a number field or one of its 

corrpletians and R has good reduction modulo ~ for all 

Primes dividing. p. The obvious inclusions i· A + A k· -k =k+1 

make 

into a p-divisible group of height 2g over R. 

Let E be an elliptic curve over 

reduction modulo p. 

7l 
P 

that has good 

It is interesting to 

consider the decomposition of ~(p) into its connected and 

etale parts. One finds: 

~(p) is connected ~~ the Hasse-invariant of E 

is c. 

In case the Hasse-invariant of E is not zero one has an 

exact sequence 

o et o + !£(p) + ~(p) + §.(p) + 0 

where E(p)O is a connected p-divisible group of height 1. 

See [Se] for this. 

Modules of differentials: 

We now use Tate's theorem to compute the modules of 

differentials of the constituents of a p-divisible group. 

Proposition 3.4: Let R be a noetherian local ring with 
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residue class field of characteristic p > O. Let Q = 

(Qk,ik ) be an n-dimensional p~divisible group over R. Then 

* 1 
SrlG /R 

-k 

Proof: The differential module of an etale group is 

zero. So, using proposition 1.1 we may assume that G is 

connected. By theorem 3.2 we may choose a divisible n-dimen-

sional formal Lie group F with F = G. Let ""l- = R[ [Xl' •.. , 

X II be the ring of formal power series over R and let 
n 

w,~,i,s be as defined before theorem 3.2. The module of 

form~l differentials 

is a free module of rank n over .A-

The derivation being 

Df af af dX l + ... + dxn · aX l aXn 

From the formula 

we get: 

k P xi + terms of higher degree 

k D1J! (x.) 
1 

k P dX i + nonconstant terms. 

The homomorphism 

A --~"v4/ 
k 

<1J! (xi» 

is continuous: [Tl. Hence we get a map 



By [Gr] we get 

n 
(J) 

i=l 
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Using (*) we find the required formula. 

The Tate module: 

We assume here that R is a complete discrete valuation 

ring with quotient field K and residue field k. We assume 

that char K = 0 and char k 9 > o. K,k are the separable 

algabraic closures of K and k. ~ is the galoisgroup of 

over K. Let Q = (~k,ik) a p-divisible group of height h 

over R. Then we have maps 

These induce maps 

The limit T (Q) lim ~k(K) is called the Tate module of G. 

k 

" Since the Qk@RK are etale and hence constant the group 

T (G) gets a natural ?lop -module structure. As ?l -module 
p 

,.. 
K 

we have T (~) ?In. The galoisgroup oa. acts continuously on 
p 

T(Q.l. Ne shall describe examples of this action in §5. If 
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qJ: Q ->-!! is a homomorphism of p-divisible groups we get an 

induced homomorphism 

T(cp): T<.g) ->- T(!!). 

Clearly the image of T(cp) is a 7l -direct summand of T <Ii) • 
p 

It is also "i invariant. 

Theorem 3.5: Let ~ be a p-divisible group over R. 

Let furthermore M < T (!i) be a 0} -invariant 7lp -direct 

summand. Then there is a p-divisible group Q over Rand 

a homomorphism of p-divisible groups cp: Q ->- li such that cp 

induces an isomorphism 

A proof of this is contained in section 4.2 of [T]. 

Remark: Por the application in [Sch] note that a 

subspace 

m -p 

intersects T (11) in a ~ -direct summand. In general one 
p 

has then to go to an extension so that this summand gets 

galois-invariant. 
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§4 A theorem of Raynaud 

Here R is a complete discrete valuation ring with 

quotient field K and residue field k. We assume that 

char K = 0 and char k = P > o. ~, ~o are the galoisgroups 

where K,k are the separabde algebraic closures of K and k. 

Let G. be a commutative group scheme of finite order over 

R which is annihilated by multiplication by p. Raynaud calls 

these group schemes of type (p, ... ,p). The scheme G is 

affine, Q spec(A) for some R-algebra A. A is a free R-

module of rank r p The group scheme 

G GPRK = Gx (R)spec(K) - spec 

is reduced, since K is of characteristic 0, see [Cal, page 

109. So A ~K is a product of finite extensions of K, and 

Q8 RK is etale over K. The ring R is some order in a 

product of finite extension of K. The order of Q is a power 

of p. This follows from the general structure theorem on 

etale finite groups [G,O], II §5. 

" From this it follows that the group of K- valued points 

of Q 

is isomorphic to 
,., r 

G(K) = (,IF ) • 
- p 

Multiplication by natural numbers makes " G(K) into an IF 
p 

vectorspace of dimension r. Hence the galoisgroup ot acts 
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linearly on g(K). Ne write 

for the corresponding representation. We define 

as the determinant representation of fG' We shall be interes-

To analyse we have to ted in the representation 'X G' 

introduce the following: Knr maximal unrarnified extension of K 

Kt = maximal tamely ramified extension of K. 

R = integral closure of R in Knr' nr 

Rt = integral closure of R in Kt . 

I = ~al (:I< :Knr ) C 0( 

I = O)al(K:KtY ~ ~ p 

It = I/ = ,-\-al (Kt :Knr ) 
Ip 

The notation here is the same as in [Sel, §l. v is the 

valuation of K and e = v(p). We say that R is strictly 

henselian if R has no etale local extension. rings. This 

means that K = K. nr 

The galoisgroup ~ acts on the groups of p-th roots of 

unity in K. This defines a homomorphism 

Xo: C'd- ->- Aut()Jpd<)) = (lFp )*' 

The group of (p-l)-th roots of unity )JP_l(K) is contained 

in R. Applying the residue map we get an isomorphism 

A * )J 1 (K)-=-lF • p- p 

Let ~ be a uniformising element mar R. The field 
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is a tamely ramified Galois extension of k. For g E ~ 

we have 

with a ~ E~P_1(K). Using the above isomorphism ~p_1(K) -

F* we may extend the map g + ~ to a homomorphism 
p 

Note that both T 
p 

I p' We have 

on I. See [Sel for 

and Xo have 

e 
Xo T 

p 

this fact. 

JF* 
p 

to vanish on the pro-p-group 

If M is a finitely generated R-torsionm:xiule we define 

~(M) 

to be the length of the module M. The length has the follow-

ing properties: 

1) :L (H/ ) = v(a) 
a R for any a E R 

2) If 0 + M1 + M2 + M3 + 0 is an exact sequence of finitely 

generated R-torsimn modules then 

Examples: 

Ne shall describe here for various examples the character 

Example 1: G ~. Here G 
p spec(A) where A 
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If K contains a primitive p-th root of unity hhen A ®RK 

is a product of p copies of K. If K doesn't contain a 

primitive p-th root of unity A~RK is the product of K 

with the field K[t]/ -1 
<tP + + 1> 

" Giving a K valued point of G amounts to selecting a 

p-th root of unity for t. We get 

Example 2: Etale groups. 

We start off with a continuous representation 

The group "do = o,al(k.:k) can be identified with ~al(Knr:K), 

so we may consider the ring of C{to - invariant functions 

Define the bigebra structure on A by the same formulas as 

in case of the constant group scheme of §1 example 4. This 

defines an etale group scheme 2 = spec(A) of type (p, ••. ,p) 

over R. In our case R coincides with the maximal etale nr 

extension of R. It follows from [G,D] II, §5 that every 

etale group scheme of type (p, .•• ,p) is of the form ~ for 

some representation <p. We assert now that p (ji', Where 
~ 

;;; is <p composed with the projection ~ -+- 0(0. Not.e that 

p 
2 

is trivial on the ramification group 

Example 3: The groups G -a,b 

I . 
P 

Let a,b E R be two elements of R with a·b p. We 
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G -a,b in §2. G -a,b is of order p 

and hence annihilated by p. The galois representation ~ G 
-a,b 

can now be described as follows. The field K contains the 

(p-l)-th roots of unity From the residue map we 

have an isomorphism 

~ * x: 11 l(K)-'--?]F. p- P 

For any g E: 0( we may wri te 

with a (p-l)-th root of unity s. We define the Kummer charac-

ter 

as xa(g) = X(s). It is an interesting exercise using the 

explicit formulas for the multiplication in 

P 
G b -a, 

G -a,b to prove 

Assume for a moment that R is strictly henselian. Writing 

a = rrv(a).u with a unit u,we find that Xa = (Tp)v(a). 

* 1 From plloposi tion 2.3 we have v (a) = ':L (s riG /R) 
-a,b 

This is a special case of theorem 4.5. 

Group schemes with F*-action· q • 

In addition to the previous assumptions we assume in this 

subsection that R is strictly henselian. Otherwise we use 

the same notation. Let q = pr for some natural number r. 

Since R is strictly henselian it contains the group of (q-l)-th 
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roots of unity. 

Let now G = spec(A) be a commutative group scheme of 

finite order over R. An F -compatible syscem of endomor­
q 

phisms of G is a map 

such that 

[1] = id 

[ a ] • [b] = [ab] 

mo(ta] ~ [b])o)l = [a+b] 

for all a,b ElF. Here m: A ®RA .... A is the multiplication q 

of A •. For example, the multiplications by a natural number 

define an ~p-compatible system of endomorphisms on any 

commutative group scheme. 

Definition: A group scheme G with an ~*-action is a 
q 

commutative group scheme of order q together with an F -
q 

compatible system of endomorphisms. Note that G is then 

already annihilated by p. 

Gi ven a group scheme with an ~~ - action one can decompose 

the augmentation ideal, that is the kernel of 8 4 of A accord-

ing to the orthonogal idempotents: 

Here 

as in [0] : 

is a character of ~*. 
q 

One gets 
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Proposition 4.1 (Raynaud): Let § = spec(A) be a 

group scheme over R with an JF*-action for 
q 

r 
q = p . Then 

there are elements al, ... ,a r such that 

A = R[Xl,···,xr )! 
<xi-alX2,x~-a2X3,···,x~-orxl> 

We call 0l, ... ,or the parameters of G. A proof is contain­

ed in [R ], mind the assumptions on R that we have made 

here. In [R ] one also finds a formula for the comultipli-

cation V of A. The above formula can now be used to prove 

ProEosi'tion 4.2: Let G = spec(A) be a 

R with IF*-action for r 
Let over an q = p 

q 

the parameters of G. Then 

* I 
1) s ~Q/R -

Proof: We have for B = R[Xl, ... ,xr ] 

where the derivation is 

D: B 

Df 

Let A 

+ •.• +3£ dx 
aXr r 

then 

group scheme 

°l,···,or 

is I 
QB/R divided by the submodule generated by the 

o 

be 
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We can now prove the result 

Pr?position 4.3: Let ~ = spec(A) be a group scheme 

R with an 11"* - action for 
q 

d = 

d 
(T ) • 

p 

r 
C] = p . Let 

Proof: Let 01' ... ,or be the parameters of G. Then 

finds easily that 

XG = ( ) d Tp 

d = v(ol) + ... + v(or) . See [ R] section 3.4. By 

proposition 4.2 we have 

d o 

Generalization: 

In this sUbsection R is again a strictly henseiian 

local ring of unequal characteristic. Otherwise the notations 

from the beginning of this chapter are valid. We quote from 

[R], Corollary 3.3.7. 

Theorem 4.4: Let R be a strictly henselian ring with 

e < p-l. Let G be a group scheme over R which is 

commutative, of finite order and annihilated by a power of p. 

Then G has a decomposition series ~i' i = O, .•. ,k such that 
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has an JF*-action for some q 
q 

r 
p • 

Remark: A decomposition series of G is a sequence 

2 0 , ... ,9k of group schemes with 2k 

together with closed immersions 

G and 20 = spec(R), 

By [GJ, [Raj the faithfully flat quotient exists. 

Theorem 4.5: Let R be a strictly henselian ring with 

e < p-1. Let G be a group scheme over R which is commu-

tative, of finite order and annihilated by p. Let 

Then 

Proof: 

2.9 

d. 

We use here the exactness of * 1 s S"l from theorem 

together with the multiplicativity of ~. The 

result then follows by an obvious induction argument along a 

decomposition series from theorem 4.4. Note that if 

o -+ 21 -+ 22 -+ 23 -+ 0 

" rrodules is exact, then the C-alois G. (K) satisfy 
-l. 

2 2 <I<) .; 21 (K) x 2 3 (K). 

Remark: This is more or less theorem 4.11 from [RJ. 
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Globalization: 

We apply theorem 4.5 to a global situation. We fix the 

following notations 

K is a finite extension fie~d of ~ of degree m. 

(J is its ring of integers. 

Kv is the completion of K at the place v. 

is the ring of integers in K . 
v 

P is a prime number and K is assumed to be unramified at p. 

v1, ... ,vr are the places extending p. 

m. 
1 

is the degree of the extension 

"-

iUp ~ Kv. 
1 

K 
v 

are the algebraic closures of the 
fields. 

various 

<!K S Olq;) are the absolute Galois groups of K and ill. 

Given a representation P of a group G on a IF -

vectorspace and a subgroup H S G we write P IH for 

restriction of P to H. If H is of finite index 

denote by G IndH(p) the induction of a representation 

to G. Given two characters 
It. 

xl,x2: G->-lF we write p 

for their tensorproduct. 

C}p is the decomposition group at p; ~p S; OfiU • 

I is the ramification group at 
p P · - , I c en. p - -op 

~l, .. ·,"dr are the decomposition groups at 

P 

the 

in 

of 

G 

H 

we 

E: : ~ ->-~* is the determinant character of the permutation 
q;) p 

representation of ~Q on ~~/~K. 

Given a character X: lX ->- ~* we define 
IfK p 

X * I\I'hrrl~ (X)) 
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for the determinant character of the induced representation. 

Given a finite group scheme G over ~ which is commu-

tative and annihilated by multiplication by p we again have 

G(!<) = (IF ) t 
- P 

for some t. The C-alois group C}K acts linearly on G (K). We 

denote this representation again by and its determinant 

representation by XG • Similarly, we have the representations 

P G . and xG . 
-~ -~ 

'" ~ (K) , we have 

if G. 
-~ 

Identifying G. (I< ) 
-~ v. 

~ 

with 

is here identified with the absolute Calois group of 

Xo is as before the cyclotomic character x • 
IIp 

Theorem 4.6: Let G be a finite commutative group scheme 

over (J annihilated by p. Assume that each G. 
-~ 

is flat over (!) 
vi 

We then have 

d * 1 P = .jf-(s rly(9 ) 

for some nonnegative integer d. The character 

is unramified at p, that is, it is trivial on Ip. 

proof: The group 
a 

order is/power of p. 

* 1 s rlQ/19 is annihilated by p 

This settles the first claim. 

base change isomorphism we have 

so its 

By the 



Putting 

we have 
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* 1 
s rl G ./(9 

d. 
1. 

d 

-1. v. 
1. 

r 

i:l mi d i · 

(J 
V. 

1. 

Let 0. be the ring of integers in the maximal unrarnified 
1. 

extension l..;re have a natural identification 

I C}al (K : (K ) ) 
vi v i vi nr • 

The ring 0i is strictly henselian. We have 

Since 

d. 
1. 

,.., 
G. 
-1. 

{J * 1 
.;{" (s riG ;;; j- ). 

®/~ Vv CJv . 
'" 1. 1. 

G. ® Gv 
-1. (Jv. i 

1. 

is by assumntion flat over {3 
V. 

1. 

we may apply theorem 4.5 and 

we get: 

1 

We may apply theorem 4.5 since the valuation of p in the 

local rings 0v . is always l. This also has Xo = T as 
1. 

p 

consequence. 

The following is a standard identity from the represen-

tation theory of groups (see [Ser]) 

r 
al 

i=l 
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The result now follows by taking determinants of both sides. 0 

Remarks: 1) Theorem 4.6 is applied in [wul in the 

situation where one already knows (from stable reduction) that 

the character 

* t -d 
X G 4D £; • Xo 

is unramified at all primes different from p. Then it has to 

be trivial by class field theory. In the application G is the 

kernel of an isogeny between abelian schemes having good red-

uction at all places extending p. From this follows that G 
is flat at these places. 

2) If G is already flat (of finite order) over ~ then the 

sarre argument shows that the above character is trivial. 
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§5 A theorem of Tate 

Here we discuss a theorem of Tate on the action of the 

Galois group on the Tate module of a p-divisible group. R is 

again a complete discrete valuation ring of unequal charac-

teristic. K is the quotient field of R and k is the 

residue field of R. 0&-, OJ- o are the Gabis groups of the 

separable algebraic closures K,k over K and k respec-

tively. Let 

Q. = (~k' i k ) 

be a p-divisible group of height hover R. Then the 

Galois group ~ acts ~ -linearly on the Tate module 
p T (Si) 

of Q. We call this representation ~Q: 

-+ Aut(T(~)) 

The corresponding determinant character is called 

Examples: 

~. 
p 

We shall describe the character XG for two examples. 

Example 1: 

The p-divisible group Qm(p) has height 1 and dimension 

1 and 

is called the cyclotomic character of "K . Let ~* -+ IF'* 
P P 

be the canonical quotient map. Following Xo by this map we 

get a character of 

the character X = o 

0} with values in IF';, 

Xv defined in §4. 
p 

it coincides with 
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Example 2: Etale groups: 

Given a continuous representation 

we have defined a p-divisible group .! in §3 • .! has height 

h and dimension O. We have a canonical map ~ -+- ~O' so by 

composition ~ defines a homomorphism 

It can be checked easily that 

(j) = P2, 

and 

Ah-X = ~. 
~ 

Note that both Pie and X2 vanish on the ramification group, 

that is on the kernel of oa -+- "} O· 

Tate I s theorem: 

" Let C be the completion of the algebraic closure K of 

K. The Galois group 0( acts continuously on '" K, hence this 

action extends to an action on C: 

oa- -+- Aut (C) • 

The p-adic integers are naturally embedded in R hence in C. 

So we may for any character 1jJ: define the follow-

ing action of 0( on C: 

cr()..) ljJ(cr)'cr(A) 
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This module for the group ~ is denoted by C (lji) and is 

called the Tate twist of the Galois module C by lji. For an 

integer t we also introduce the notation 

Given a p-divisible group G, Tate describes in [TJ the 

structure of the Galois module 

T (G) ®?Zj C. 
p 

In the application, [SchJ, we need only information on the 

determinant-character We have 

Theorem 5.1: Assume that R is a strictly henselian 

complete discrete valuation ring with quotient field of 

characteristic 0 and residue field of characteristic p. Let 

£ be a p-divisible group of height h and dimension dover R. 

Then 

d 
XSi! = Xo 

This formulation is due to Raynaud, a proof is contained in 

[RJ. First of all, the p-divisible group Q can be supposed 

to be connected since both the dimension and the determinant 

character X coincide for G and its connected component. g 
Then G comes, as is explained in §3, from a formal group F. 

Raynaud then uses. the deformation theory of formal groups 

together with a purity argument to prove the result. Another 

formulation is 

Theorem 5.2: Let R be a complete discrete valuation 
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ring with ~ient field of characteristic 0 and residue 

characteristic p. Let Q be a p-divisible group of dimen­

sion d and he~ght hover R. Then there is an isomorphism 

of ~ -modules: 

Ah{T{G» ~ C=C{d). 
p 

Proof: Let K be the algebraic closure of K and Knr 

the maximal unramified extension of K in 
,.. 
K. is the 

integral closure of R in K nr R is a complete discrete nr 

valuation ring, it is strictly henselian. So, we may apply 

theorem 5.1 to the p-divisible group 

Let I be the absolute ('-alois group of Knr I is a normal 

subgroup of ~. We have a natural identification: 

" where k is the residue field of Rand k its algebraic 

closure. Clearly we have 

II denotes the restriction of Ag to I. By application of 

theorem 5.1 we find that 

xGII 
d 

= xolI· -
There is a character 0: "d-+ 2Z which is trivial on I and p 

satisfies 

x ·0 
Q 



- 111 -

8 has to have a finite image in 'll* Its 
p 

image has to be 

in 'll Let L by the p 
then in the (p-l)-th roots of unity 

fixed field of the kernel of 8. By Kummer-theory, [e,F] , 

there is an element a E L with a(a) = 8(a)·a for all 

a E~. Define now 

cp: e (X • 8) .... C ( Xo) 
Q 

by 

cp: c .... a'c 

cp is an isomorphism of Galois modules, as is seen by the 

following computation: 

cp(a(c» cp ( XQ' 8 ( a) • a ( c) ) 

a'8(a)'X (a)·a(c) 
Q 

a ( a' X@ ( a) • c) 

acp (c) • a 

Remark: Theorem 5.2 can directly be read off from [T] 

§4, corollary 2, at least if the residue field is perfect. 

But theorem 5.2 does not quite imply theorem 5.1. Here one 

would have to restrict both sides to an open subgroup. 
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IV 

TATE'S CONJECTURE ON THE ENDOMORPHISMS 

OF ABELIAN VARIETIES 

Norbert Schappacher 

Contents: 

§1 Statements 

§2 Reductions 

§3 Heights 

§4 Variants 

Following Faltings and using older arguments due to Tate 

and Zarhin, we shall deduce, from the diophantine result 

[F2],II 4.3, Tate's conjectural description of the endo­

morphisms of abelian varieties over number fields, in 

terms of !-adic representations. 
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§ 1 Statements 

Let K be a number field (of finite degree over ~), and let 

A be an abelian variety defined over K . Put g = dim A 

For a prime number 9, , and n ~ 1 , denote by A[9,n] the 

kernel of multiplication by 9,n on A, and write, as usual, 

n -
T9,(A) =~A[t ](K)i 

n 

where K is a fixed algebraic closure of K. 

T9, and V9, actually define covariant functors in an obvious 

way. The absolute Galois group n= Gal(K/K) acts on T9,(A) 

resp. V9,(A) , by ~9,-linear, resp. ~9,-linear, continuous 

transformations. 

The object of this article is to prove the following theorem, 

known as Tate's conjecture on the endomorphisms EndKA of 

A defined over K 

1.1 Theorem. (i) 

(ii) The natunal map 

Remark: The following facts can be found, e.g., in [Mu1]: 
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(i) Since K has characteristic 0, T~(A) is a free 

Z~-module of rank 2g. 

(ii) If B is another abelian variety over K , the homo-

morphisms HomK (A,B) always form a free Z-module of finite 

type, and the funct or T ~ induces an inje.ctioY! 

whose image has to be in the submodule 

fixed by TI ,because u(x)g = u(xg ) , for all g E TI , 

x EA[~""], if uEEndA is defined over K. So, the 

essential claim of 1.1 (ii) is .6CI.1lje.ctivily. 

1.2 Corollary. Folt A,B a.6 above., ~he. natultat map 

i.6 an i.6omoltphi.6m. 

Proof: Apply 1. 1 to the abelian variety A x 'B. - See ['1'1], 

lemma 3. 

The following corollary used to be known as the i.6oge.ny 

eoY!je.~e. for abelian varieties over K. 
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1 .3 Corollary. The 60UouUng -6ta;tement.6 Me equiva1.ent. 

(i) A and B Me -U,ogenow., oveJz. K 

(ii) V.Q, (A) ';; V.Q, (B) , M 1f-meJdu.tu. 

(iii) Foft a.tmo-6.t aU pJUmu v 06 K, Lv(A,s) = Lv(B,s). 

(iv) 

(v) 

(vi) 

rOlt aU v , Lv(A,s) = Lv(B,s). 
Iv 

Foft a1.mM.t aU v, tr (F v I V.Q, (A) ) 
I 

FOlt aU v, tr(Fvlv.Q,(A) v) = tr 

Here, Lv(A,S) is the Euler factor at v of the Hasse-Weil 

L-function of A over K : 

L(A/K,s) (for 3 
Re (s) > "2 ) • 

Let Iv C 'If be an inertia subgroup at v , and F E'lf/I 
v v I 

a Frobenius element at v. Then the action of 

is well-defined, and we put 

LV (A, s) 

lNv being the 

det ( 1 - IN v -s . F 
v 

cardinality of the 

This definition of L does not v 

prime number .Q, tJNv, and I v 

almost all v Cf. [ST] . 

!:esidue class 

depend on the 

acts trivially 

F 
v 

on T.Q, (A) v 

field at v . -

choice of the 

on T.Q, (A) for 

Corollary 1.3 asserts in particular that .the L-6u.nilion L (A/K, s) 

-U, a c.ompie.te -U,ogeny invaJUant 06 A/K. 
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proof of 1.3: (i) <===> (ii). f € Hom(A,B) is an isogeny if 

and only if Ti (f) has full rank, i.e., det Ti (f) ;z! O. This 

already implies (i) ==>(ii). On the other hand, suppose 

~: Vi(A)+ Vi(B) is an isomorphism of TI-modules. Choose n 

such that in. ~ € Hom(Ti(A), Ti(B)).This homomorphism comes 

from HO~(A,B) ~~~i ' and can therefore be approximated by 

elements of Hom(A,B) . Since det(in~) * 0 , the same will be 

true for good approximations. This way one finds the required 

isogeny. 

Remark: Note that, for an isogeny f:A + B , Ti(f) is an 

isomorphism Ti(A) + Ti(B) if and only if ifdeg(f) • 

(v)===} (ii) : A semi-simple representation of a mi - algebroa 

in a finite-dimensional mi-vector space is determined by its 

character 1 [Boul, § 12, n01. In our case, the character is 

eontinuous and therefore determined by its values on a dense 
v 

subset of TI. By Cebotarev's theorem (cf. [Sel, chap. I), 

such a subset is provided by the Frobenius elements of a set 

of places ~f density 1. 

The rest of the proof of 1.3 is logic. Note in particular that 

any quantifier may be used with i in (ii). 

1.4 Remark Since all higher ·~tale cohomology groups 

of the abelian variety A are given by exterior powers of 
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the semi-simplicity asserted in 1.1 implies that: 

rOJ1. £LU n;;; 0 , the. action 06 'IT on 

.6 e.mi -.6,bnp.te. • 

In fact, since the representations of TI in question are in 

finite dimensional vector spaces over a field of characteris-

tic 0, this follows by passing to Lie-algebras; see [Hum], 

13.2; [BoL], chap. I, § 6 nOS; cf. [BoL], chap. III, §9 n08. 

1.5 Tate's general conjecture 

Let k be a field which is of finite type over its prime 

field, k a fixed algebraic closure of k, TI = Autk(k) 

and t a prime number different from the characteristic of 

k . Let X be a smooth projective geometrically connected 

variety over k , and write X x xkk- . Every closed 

irreducible subvariety Z of X of codimension r defines 

an t-adic cohomology class 

namely the image of 1 E ~t under the natural map from 

relative cohomology 
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Cf. [Mil], chap. VI. 

Call~(X) the free abelian group on subvarieties Z of X 

of codimension r deM-ned ovVt k , and 

6lr (X) ~(X)/kernel (Z ~ cl(Z)). 

Then the general form of Tate's conjecture related to our 

theorem is: 

Conjecture: 

Cf. [T3]. 

We shall now indicate how theorem 1.1(ii) can be seen to be a 

special case of this conjecture. In fact, "':hings become more 

transparent when we deduce corollary 1.2 instead. So, suppose 

A and B are abelian varieties over k , and consider tha 

diagram 

Horn (A,B) 

( 6) 

Pic O (A x B*) 

1 (2) 

H2(AX B*,iJl~) (1) 

1 (3) 

H1 (A,iJl£)0(f! H1 (B*,iJl£) (1) 
£ 

(5) l(4) 

V £ (A) *®V £ (B) 
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where B*/k is the dual of B, and the maps are given as 

follows. 

(1) For ~ E Hom(A,B) , pullback of the Poincare bundle 

BXB* via ~ x id: AxB* +BXB*. 

(2) First Chern class. 

(3) Projection onto the (1,1) - component in the Ktinneth-

decomposition. 

(4 ) Use that 1 H (A'~2) = V2 (A)* (dual), and that the Weil-

pairing on V£(B) induces a duality 

and thus an isomorphism 

H1 (B*,<J)£) (1) 7;; H1 (B,~£)* V2 (B) 

( 5 ) :\ 0 b 1+ (a 1+ :\ (-a) • b) 

(6) Our natural map, induced by the functor V2 . 

It is easy to see that this diagram commutes. All maps are 

TI-equivariant, and from the definition of the Poincare 

bundle, it is clear that the image of HO~ (A,B) under 

(3)°, (2) ° (1) is precisely cJt~1(A x B*) c [H 1 (A)0H1 (B) (1)]TI, 

the 1 1 . t' f H ~ H -proJec lon 0 or (AxB'*). So, assuming Tate I s con-

jecture, the surjectivity of (6) follows from the fact that (4) 

and (5) are isomorphisms. 
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1.6 A glance at the history 

Elliptic curves over finite fields have lots of endomorphisms. 

This phenomenon was systemtically perused by Deuring in [Deu], 

and, as Tate points out in [T1], -oeuring's results allow one 

to deduce the analogue of Corollary 1.2 for A,B elliptic 

curves over a 6J-rU.te field K (of charCicteristic "R,). In 

[T1], Tate generalized this to abelian varieties over finite 

fields. In this case, the semi-simplicity of the n-action can 

be shown directly, but the pattern of proof developed by Tate 

turned out to be adequate even for the number field case. In 

a sequence of papers - [Z1] through [Z5] - Zarhin proved the 

analogu.e of 1.1 for most function fields of finite transcen­

dence degree over a finite field. For this, he had to refine 

Tate's way of reducing 1.1 to a diophantine statement, and 

some of our reduction steps are inspired by Zarhin's re­

finements. 

There have been partial results in the number field case be­

fore Faltings' general proof of 1.1, of which we mention 

Serre's results on elliptic curves (see [Se]), the case of 

complex multiplication (see [Shim], cf. [ZZ]), and the Jacobian 

of modular curves ([ Ri] ) . 
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§2 Reductions 

In this section, theorem 1.1 will be seen to be a consequence 

of a diophantine result on abelian varieties over K . Using 

the finiteness theorem [F2], II 4.3, this diophantine 

statement is seen to result from the behaviour of the modular 

height under certain isogenies. These height calculations will 

be performed in § 3. 

The notations are those of the beginning of § 1. 

(2.11 To pIWve 1. 1 (ii), ,u .6~'6.i.c.e.& to .6hcw tfuU: :the na.:tUll.al 

.vrjemon 

In fact, this map is still tnjective since ~£ is flat over 

~£' Furthermore, the cokernel of the ~£-linear map is 

torsion-free: an endomorphism of A vanishing on A[£] is 

divisble by £. 

oveJt K', :the.n i:t ho.td.6 wo' oveJt K • 

L~t TI'= Gal(K/K'), TI" Gal (K/K" ), where K" is a finite 

Galois extension of K containing K' . Since TI" is normal 

in TI', the semi-simplicity of V £ (A xK K ') = V £ (A) as a 

TI'-module implies that of the 'fill-module V~(A). 'fI acts on 
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the decomposition of this TI"-module into simple factors~ and 

adding up these TI-orbits decomposes V£(A) as a TI-module. 

Any ~ E End(T£(A)) fixed by TI is also fixed by TI'; 

therefore comes from an f E EndK,(A XKK') ~~£. But f is 

again fixed under TI, and thus lies in EndK A~~£. 

IYl plWviYlg 1.1, we may M.6ume.tha.-t A hM .6emi-.6.tab1.e Jte-

duc.tio Yl a v ell .th e JtiYlg a 6 irt.teg eM ()I a 6 K. 

This is a consequence of 2.2 and Grothendieck's semi-stable 

reduction theorem-[Groth], thm. 3.6 - which asserts that 

there is a finite (separable) extension K' of K Such 

that A XKK' acquires semi-stable reduction over ~K' . 

We shall recall the definition and various properties of 

abelian varieties with semi-stable reduction in § 3. 

To pJtove 1.1, i.t .6u66ic.e.6 .to .6how .the 601.1.owiYlg: 

{
Fait eVellY 'fT -irtvaltiart.t .6ub.6pac.e W c: V£ (A), .theJte if.. 

(* ) 
u E En<1< A 61122:<11£ .6uc.h .tha.t u. V£(A) = W. 

A reduction step of this kind is already essential in Tate 

[T1]. Cf. also [Z4], lemma 3.1. First note that the right 

ideal 

like any right ideal in a semi-simple algebra, is generated 
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by some projector U o • If u exists as in 

(*), it follows that uo·Vl(A) = W. So every TI-invariant sub­

space of Vl(A) is a direct factor, which implies the semi­

simplicity of the TI-action. 

Let C be the commutant of EndKA ® m~ in Endm (Vl(A)). The 
11, 

commutant CO of C equals EndK AS m~ , by the theorem of 

bicommutation - [Bou], § 5,no4 -, again because EndAfi)\2l~ 

is a semi-simple algebra. 

Assume we know (*) for all abelian varieties over K , in 

particular for A x A • Then the graph 

W {(x,tp(x)) I x E Vt(A)} C Vl (A)2 V l (A x A) 

of any tp E Endm~[TI] (Vl (A)) is a TI-invariant subspace, so 

there is u E EndKA2 ® ml such that u. V l (A x A) W 

It will be enough to show that tp E Co . So take a E C. Then 

( ao ~) 2 .... E End(Vl (A) ) commutes with EndKA2 <8> ml ' in particu-

lar with u. Consequently 

atp = tpa , i.e., tp E Co. 

(a 0) W cW, which means that o a 

Given a ml-linear subspace We Vl(A), put U W n T~(A) • 

Then, for n:':: 1 , 
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defines the levels of an ~-divisible subgroup G of A(~)/K 

with height(G) = dim<l! W. (e£. [Grun].) If 
L 

G is defined over K • 

W is 'IT-invariant 

Over K, we can divide A by Gn (for n~ 1), obtaining 

abelian varieties A/G n over K , together with isogenies 

A/Gu. 

of degree ~n.dim W , such that 

-n 
~ U + T~ (A) 

u + ~nT~(A) =:Tn 

~ Give.n a n-invMia.nt .oub.opac.e. WcV~ (A) ,c.onrLLti..on (*) 06 (2.4)i;., 

.oa;tU,Me.d, i6 inMnUe.ly many 06 the. abeLian va./Ue;Uu A/Gn(n ~ 0) 

Me. i.oomoJtphic. to eac.h othe.Jt ove.Jt K. 

The proof of 2.6 is the essential step which enabled Tate to 

prove the analogue of 1.1 for abelian varieties over finite 

fields; see [T1], Proposition 1. 

To prove 2.6, let I be an infinite subset of N , with 

smallest element io , such that, for all i E I , there are 

isomorphisms defined over K , 

A/G. 
10 

In EndK A ~ <.D ~ , consider the element u i composed of 
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A A 

Viewed in End V~(A), u i maps onto T. c T. 
1 10 

in the 

notations of 2.5. But End T. is compact. So, selecting a 
10 

smaller I if necessary, we may assume that the sequence 

(ui)i E I converges to a limit u which still comes from 

EndK A ~ ~~ since this set is closed in End Vi(A). 

Consider u = n T. 
iEI 1 

Since u. (T. ) 
1 10 

Ti , every x E U 

is a limit lim u. (y.) , for certain Y1' E T. . Passing to an 
iEI 1 1 10 

accumulation point y of the y.~s we see that U = u(T. ). 
1 10 

Thus, u. V~(A) = W , as required. 

Taking into account (2.3), it is now obvious that we will be 

done with the proof of Theorem 1.1, once we have obtained the 

following two results. 

2.7 ProEosition: In ~he notation 06 (2.5), ~~uming A, and ~hene-

60Jte a.U ~he A/Gn ,~o have ~emi-~wble JteducUon, ~he modulaJt hug~ 

h (A/Gn ) ,u., independe~ 06 n, 60Jt n M66iuenUy .taJtge. 

2.8. Theorem: Given g and c, ~hene ewt-. up ~o ,u.,omOJtph,0,m, only 

6inite.ty many abe.tian vaJti~e~ A w~h ~emi-~wble Jtedu~~on oveJt K 

J.>u~h ~hM dim A =g and h (A) :;; c . 

The proof of (2.7) and the reduction of (2.8) to the analogous 

statement for principally polarized abelian varieties which 

was proved in [F2] will be the subject of the next section. 
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§ 3 Heights 

Before turning to the proofs proper of (2.7) and (2.8), let us 

recall some basic facts about abelian varieties with semi-

stable reduction. The reference for this is [Groth]. 

Given an abelian variety AK over the number field K , recall 

that there exists the Nvwn-model A of AK which is a smooth 

group scheme over the ring of integers R of K , and is 

uniquely characterized by the fact that 

for every smooth group scheme S over R with generic fibre 

SK . FJc.om now on, we wl.Lt aiway.6 deno.te by A .the c.onnected c.omponen-t 06 

A with fibres the connected components of 0 of the fibres 

of A. 

AK is said to have .6emi-~.ta.b.te Jc.eduction ovM K , if for every 

s E Spec R , the fibre As sits in an exact sequence 

1~T~A~B~O 
s s s 

with an abelian variety B s 

Equivalently, [Groth], 3.2, 

and a torus Ts over k(s) 

~ has semi-stable reduction, if 

there exists some smooth separated group scheme G of finite 

type over Spec R whose fibres are all extensions of an 

abelian variety by a torus as above, and whose generic fibre 
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Assume now that AK and BK are abelian varieties with semi­

stable reduction over K. Suppose an isogeny 

over K is given. By the universal property of the (connected) 

Neron model, ~ certainly extends to a morphism over Spec R: 

Semi-stability implies furthermore that this morphism is 6aith-

6tLUy 6fu;t , and that the kernel 

~ 
G ker ( A ~ B) 

is a quasi-finite, flat group scheme over Spec R. ( Cf.[Groth] , 

2.2.1, or [Mu2], lemma 6.12 : the typical bad case ruled out 

by semi-stability is multiplication by p: ~ a~ Ca 

over a field of characteristic p.) Note that G u., ywt 

nec.IUM.!Lily a 6-<-nd:e gltoup .6c.heme ove!t Spec R (unless A and B 

have good reduction everywhere) its fibres will have varying 

orders in general. 

At any rate, one obtains the exact sequence 

o~ s* ( ~ 1 ) 
B/R 

Here, s denotes the zero-sections of the group schemes in 

question. The exactness at the centre follows from that of the 

well-known sequence of relative differentials, 
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---i>-> 0 

Now, the order of the finite group equals 

# coker( "g <p* 

where wX/R denotes the maximal exterior power of s*(~~/R)' 

This is shown by localizing and applying a well-known corollary 

of the theorem of elementary divisors. 

Recall the definition of the modu1.aJz. hught 06 a (f.,e.mi- )abeLi.aYl 

h (A) 

with: 

deg (wA R) = log #( W AR/p . R) - L €v' log II p "v ' 
I I vloo 

p being a non-zero element of W AIR' and €v= 1 or 2, 

according as v is real or complex. 

As ~ changes the volume by Ideg ~ at every infinite place 

of K, we see that we have the 

(3.1) Isogeny Formula: UYldVt :.the. above. Mf.,wnpUOY!f.., 

1 
h(B) - heAl = 2" log (deg~) -

[K ~l 

(3.2) For the application of this isogeny formula in the proof 

of (2.7) we shall need the theory of the 6J..xe.d aYld :.tOltM paJr..:.tf.. 

of T~(AK)' for an abelian variety AK with semi-stable 
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reduction. See [Groth], esp. § 5. Let us recall the basic.s of 

this theory in the situation we shall encounter. 

Let v be a place of K dividing t, and Rv the completion 

of R at v. As over the spectrum of any Henselian local 

ring, every quasi-finite scheme X over Spec Rv decomposes as 

X = X .1.1. Y , 

where X is 6i~e over Rv' and Y has no special fibre, 

cf. [EGA,Ir]6.2.6. Given AK with semi-stable reduction as be­

fore, we can apply this to the quasi-finite group scheme 

A[tV ], the kernel of multiplication by tV on the connected 

Neron model of AK , considered over the completion Rv' thus 

obtaining i ts M~e paJL.t ATi V] over Rv . These finite parts 

make up a strict (i.e.,t:A + A is surjective) projective 

system which then defines what is called the 6ixw paJL.t of the 

Tate-module of A 

T t (A) f C T t (A) 

We shall make use of this submodule in the geneJtic. MblLe (Le. , 

the only Tate-module we ever considered in §§ 1 and 2) which 

may be written all explicitely 

Henceforth, we shall simply write 

T t (AK ) f C T t (AK ) , 
v v 
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even if we think only of the ~-adic Galois-representation 

given by the Kv-rational points. 

/\ 
Let A over Spf(R ) v be the formal completion of A/Rv 

along its special fibre Ao . Now, in the decomposition above 

A[~V] ---' A[~ v] . .11 C (v ~ 0) 
v 

we have 

1\ ~ 
A [~v] A[~ v] 

because Cv has no special fibre. Therefore, 

" T~(A) T~(A)f 

if we agree to ~dentify finite schemes over Spec Rv with 

finite formal schemes over Spf (Rv ). (Cf. [EGA 111],4.8.) 

Furthermore, by semi-stability, the special fibre Ao sits in 

an exact sequence 

1 - To - Ao ---> Bo - 0 

for some abelian variety Bo and torus To over kv 

For every n a 1 , there is a unique torus Tn over 

with special fibre To ([Gro], 3.6 bis). Being 

unique, the Tn fit together to define a formal torus 
i\ 

which injects into A. This torus gives us a submodule 

1\ 
T~(T) c 

" T/R v 
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Here too, we can consider the generic fibre. So we have a 

two-step filtration 

f 
c T 9, (AK ) 

v 
c T9, (AK ) 

v 

of the Tate-module of the semi-stable abelian variety AK 

over K. 

Likewise, for the dual abelian variety 

submodules 

T 9, (AK *) t C T 9, (AK *) f C T 9, (AK *) 
v v v 

A * K 
over 

The vleil pairing provides all alternating duality 

K , we get 

The Of1..thogonaLLty TheM.em - [Groth], 5.2 - asserts that, with 

respect to this paring, 

and, of course, the other way around: 

T (A *)t 
9, K 

v 

As a first consequence of this, let us note right away the 
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3.3 Lemma: Cill D = Gal (i< /K ) c 7T the dec.ompo-6-Ui..on gJtoup and v v v 

leD v v the ineJttia -6ubgJtoup 06 v . Then 

TR,(~ )/TR,(~ )f , and ad;., via a 6inile quotient. 
v v 

Proof: By the orthogonality theorem, 

-" 
So, the lemma follows from the fact that T is split by a 

finite unramified extension of Kv (in fact, To is split 

by the algebraic closure of the residue field kv) 

We can now return to the situation envisaged in (2.5), 

with a view to proving (2.7). Rewriting (2.5) in our present 

notation, we are given an abelian variety AK with semi­

stable reduction over K, an R,-divisible group (GnK)n~O I 

and the quotients 

Pn 
> 

Passing to connected Neron models, call 

of the isogeny of connected Neron models 

A 
n 

over R 

Gn now the kernel 

Fixing a place viR, , decompose, as in (3.2) above, 

.--..J 

G .J.L H n n over R v 
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with finite over Spec Rv ' and 

fibre. - Thus, 

Now, our problem is that 

H 
n 

without special 

In fact, consider first the Galois representation in the 

generic fibre : Yo G (K). Being an intersection of two 
n~ n v 

£-divisible groups over Kv ' this is of the form: 

( Kv-rational points of an
K 

) 

£-divisible group over v 

The finite group is contained in some 

r -= G~ + Ie (n~O), we find that n no n no 

£-divisible DvM Kv 

( finite abelian) 

group 

But need not be an £-divisible group DVM R v 

In fact, the sequences 

O~ ------.;>. rn+m m 
------.;>. 0 

may not be exact DvM RV . This problem is discussed on the 

last page of [T2] , and we are going to apply Tate's trick to 

get around it: Look at the maps induced by multiplication by £ 

£ 
------.;>. r n + 1 I r n (n~O) 
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Let En be the affine algebra of r n +1/ r n • Since n~O rn 

is an t-divisible group oveJt is a finite-

dimensional Kv-algebra which does not depend on n. So, the 

En form an increasing sequence of orders in F. Such a sequence 

has to become stationary. In other words, the maps (*)n are 

isomorphisms for, say, n ~ n 1 • We claim that the 

r : = r Ir 
n 1 +n n,1 

(n~O) 

constitute an t-divisible group over Rv .- We have to show 

that the long rows of the following commutative diagram are 

exact, for all n. 

r Ir 
n1+n+1 n 1+n 

o 
l' t t ,..., 

~r1 ~ 'i'" ---+ 'i"'n+1 

II 
n+2 

l' t (I 

---+ 0 

~'i"'1 ) r ---+ r n+1 n o ---+ 0 

This follows from this very diagram by induction. 

(3.5) We can now begin to .6how thcd 

h(An +n +n) 
o 1 

nolta.li. n~O, which gives (2.7) 

To simplify notations, let us pretend that no=n1=O , so that 



Gn . Recall that An 

- 137 -

A/G (connected semi-abelian 
n 

scheme over R,. From 3.1, we get: 

; log (deg Pn) - [K;~] log #(s*Q~ /R)· 
n 

Recall (3.2) that, for all places v of K dividing t, 

where Hn is concentrated in the generic fibre, and G:n is 

finite over RV • Completing along the special fibre, one 

Al 
finds Gn ' over Rv. - Taking differentials commutes 

with completion, so we get successively: 

# (s*Q~ /R) =lr # (s*Q~ /R ) =T # (s*Q~ /R ) =T # (s*Q~ /R ) 
n vie n v vIR. n v vIR. n v 

By [Grun], 3.4 , we have 

# (s*Q~ /R 
n v 

d 
#(R /tnR ) v 

v v 

where is the cii.me.IU-ton of the t-divisible group 

over Rv (we have assumed for simplicity that this ~ 

t-divisible) . 

Call h = dim~ (W) = ran~ (U) 
t t 

(see 2.5) the hugh,t of the 

t-divisible group n~O GnK OVe!L K 

We find: 
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We have :to .6how :that :the expJc.eMion. in. cUl!1.y b!ta.c/z.e:t.6 i.6 ZVLO! 

~ 

~ Put 'IT Gal(~/~), and consider the induced Galois-re-

presentations (recall that U = Tj/,(HGnK ), see 2.5) 

'" 'IT 

Ind U c 
'IT 

where B~ = ResK/~(AK) is the abelian variety over ~ ob­

tained from AK by Weil-restriction from K to ~. We are 

going to more or less evaluate the character 

det U 

in two different ways! 

First, it is well-known (cf"e.g.,[Mar], 3.2, which is easily 

generalized to our situation) that 

det U 

where £: i~ {±1} is the signature of the permutations 

induced by 
~ 

'IT on the homogeneous space , and 

is the transfer map : nab _~ 'lT ab To compute det U at a 

place v of K dividing j/" up to an unramified crharacter of 

finite order, we may replace this 

follows from (3.3) since 
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where n is the 
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~.2 , we have 

® C '" Cv(dv ) 
Zt v v 

hugh-t of the £,-divisible group UG over n n 

is the completion of ~ with Galois­v 

action given by the restriction to Gal(C /K ) ~ v v 

the character X dv , with £, 
~ 

7T --l> the cycloto.mic 
~ 

of 

character giving the action of 7T on T£'(~m). Composing with 

Ver 7T , and adding up the results for all vi£' , we see that 
7T 

(det U 0 ver7T ) 
7T 

• x£, 

- U Kv : <Il £, ] dv 
vi£, 

is unramified at £'. (The transfer map does not introduce any 

new ramification because it corresponds to the natunal map of 

ideles ~* ----~~ ~* , via class field theory.) On the other 

hand, at each finite place w of K not dividing £', the in-

ertia Iw acts unipotently on u since AK has semi-stable 

reduction: [Groth], 3.8. As unipotent matrices have determin~ 

ant 1, we conclude that the character 

det U 

But <Il has no (abelian) extensions that are unramified at all 

finite places (use Minkowski or class field theory). So, by 
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class field theory, lP has to be the tJUvia1. c.haJr.ac:tVt. 

Thus for any rational prime P'" t where BOl has good re-

duction, if F f TI ab is a Frobenius element at 
p p , then, 

on the one hand, we certainly have lP(p) = 1 . On the other 

hand, by the part of the "Weil-conjectures" proved by Weil 

himself, the eigenvalues of Fp 

purely of absolute value p1/2 , 

on U 

since 

are algebraic numbers 

det U(Fp ) 
h[K:0l}/2 

p 

is an algebraic ~umber purely of absolute value 

(recall that h = rank (U)!). As X (F ) = pOZ * 
-7£ t t P t 

we conclude that 

h [K:(i)] 
2 

TIUA pJtove-6 (3:.5) ,artd .thVtenoJte (2.7) • 

We still have to deduce the diophantine result 2.8 from the 

corresponding assertion, proved in [F2] , about p~nc.ipa1£y 

po.talUzed abelian varieties. We claim it will be enough to 

establish the following two results: 

3.7 Proposition: Fait a.ny a.be.tia.n valUe:ty AK avVt K wdh -6emt­

.6:ta.b.te Iteduc.tian, c.a..t.ting AK * i:t.6 dua..t a.belian ValUe:ty, we ha.ve 

3 .8 Lemma [Z ar hin ] : Fait a.ny a.be.tia.n v~e:ty ~ avVt K, c.a..t.ting 

~* i:t.6 dua1., AK 4 x AK*4 c.~e.6 a. p~nc.ipa..t pa.t~za.tian. 
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In fact, given 3.7 and 3.8, we find 

and of course, 

So, the number of K-isomorphism classes of (even 

equipped with a principal polarization) is finite. But the 

ring EndK (AK 4 x AK *4) is f ini tely genera ted over 7l , 

and b ~ ~ is a semi-simple algebra. Therefore there are, up 

* to conjugation by E ,only finitely many idempotents in 1::. 

(In fact: e and e' are conjugate if and only if E. e ~ t e' and 

c (1-e) ~ C. (1-e'). But the number of subspaces (t ~ ~) e and 

('6"~~) (1 -e) is finite, and the theorem of Jordan and Zassen-

haus implies there are only finitely many choices of a lattice 

in each of these spaces.) Thus, 2.8 follows from 3.7 and 3.8. 

Proof of 3.7: In computing h, we are free to make finite 

extensions of the base field. Also, the proposition is trivial 

if AK is principally polarizable, because then A ~ A* . Now, 

over a suitable extension field, A is isogenous to a princi-

pally polarized abelian variety. So, it is enough to show that 

h(A*) - h(A) is an isogeny invariant. Since every isogeny can 

be factored (over an extension field) into steps of prime 

degree, we are reduced to showing that 

h(A*) - h(B*) + h(B) - h(A) 0 
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provided there is an isogeny ~: A ~ B of degree ~. 

By our isogeny formula 3.1, applied to ~ and to the dual 

isogeny 

B* --;.. A* (also of degree ~) 

with respective kernels G Y A and G* ~ B* , we have 

to prove that 

[K:O!] • log (~) 

Using the localisation and completion process as in (3.5), it 

suffices to show that, for every place v of K dividing ~, 

(3.9) #(s*n! 
u/Rv 

# (s*n'" 
G*/Rv 

#(R /~R) • v v 

To prove 3.9, we shall break up ~ and ~* according to the 

two-step filtrations of T~ ddscussed in 3.2. - T~(~) and its 

dual T~(~*) induce three pairs of dual maps (the duality 

following from the orthogonality theorem quoted in 3.2) : 

(I) 

T~ (A) f /T~ (A) t __ ----;;:> T~ (B) f /T~ (B) t 

(II) 
T (A*) fIT (A*) t «::<: __ _ 
~ ~ 

T (B*)f/T (B*)t 
~ ~ 
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TR,(A)/TR,(A)f 

T (A*)t R, 
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T (B*)t R, 

Considering the decompositions of the formal completions of 

our semi-stable abelian varieties over R: v 

~(A) ~ 
.1\ ,1\ 

1 ~ A ---t Ab(A) ----'> 0 

1~1.) 1· lAb I.) 
.r(B) ---} 

,J\ 1\ 

1 ~ B- ----7 Ab(B) -~ 0 

the maps between the torus parts of the Tate-modules in (I) 

" and (III) are induced by the map T(~) between the completed 

" tori (resp. by T(~*», and the maps in (II) are derived from 
A /\ 

the pair of dual mappings Ab(~), Ab(~*) between formal 

abelian schemes over Spf(Rv ) 

a and G~ have order or R" so pltewe1y OYle of the three 

pairs of dual maps will have non-trivial kernels. More 
A 1\ 

precisely: Suppose a kernel sits in (I). Then G c: T(A), and 

forcibly G\ = 0 . As 

- just as for /}J.. R, , see 
A I' 1\ 

G ¢ T(A) , and G* '*' 0 
I' 

phisms, whereas Ab(~) 

1\ 
G is of multiplicative type, 

[Grun] , 2.5 . Next, suppose 
1\ A 

Then T(~) and T(~*) are isomor-
.1\ 

and Ab(~*) are dual isogenies of 
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;\ A 
degree £, with kernels G and G* , respectively. Applying 

l\ 
the functor Hom(., ~m) to the short exact sequence 

!\ 1\ A 

o ~ G- ~ Ab (A) -----} Ab (B) ---7 0 

we obtain the exact sequence (of fppf-sheaves) 

1 1\ A 
---} Ext (Ab (B) ,<tm) 

.A 1\ 

I r 
A 

Ab(B*) 

1.'\ A 
~ Ext (Ab (A) '~m) 

II 
A 

Ab(A*) 

This shows that G and G* are dual to each other, and 

consequently (see [Grun], 2.4 

as required. 

) : 

#(R/£R) v v 

Finally, if the maps in (I) and (II) are all bijective, then 
;\ ;\ A 

we must have G = 0 and G*c T(B*). This case is exactly dual 

to the first one we treated. 

q.e.d. 

To complete this section, we still have to do the 

Proof of lemma 3.8: 

There is always some polarization on AK over K, so let i: 
be an ample line bundle on AK defined over K, giving rise 

to the symplectic form 
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<,> ----7) 7l R, (1) 

for any prime R,. Choose an integer N> 0 such that,for all 

R, , 

where TR,(AK)* is the dual lattice of TR,(AK) with respect 

to <,>. (E.g., N = deg(L). ) There are a,b,c,d E 7l with 

(In fact, 22 + 12 + 12 + 12 55 -1 (mod 8) , and if -1 tt (f' *) p 

then 1 (_(F*)2 U1 + (F *) 2 , p p so that -(F *)2n 1+(F *)2*16 
p p 

From there, one goes with Newton.) Put 

( 
a -b -c -d 

b a d -c 
a. = E M4 (71) 

c -d a b 

d c -b a 

so that t -1 (mod N) For each R, , consider the a. • a. 55 . 
lattice 



- 146 -

It is easily checked that, by its very construction, this 

lattice is selfdual and integral-valued with respect to the 

8 8 form <, > on Vt(AK) . (Note that, as a has rational-

integral entries, the Rosati involution of on a is 

simply the transpose.) As the lattice is clearly Galois-

invariant, there is a quotient BK of AK over K, such 

that Tt(BK) is the above lattice. BK is obviously 

isomorphic to A4 x A*4 , and from the properties of 
K K 

we see that it admits a principal polarization. 

q.e.d. 

This completes the proof of the Tate conjecture. 
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§ 4 Variants 

In this section, we collect some variants of Theorem 1.1 , 

and indicate a possible variation of its proof. 

Let us start with the following obvious consequence of Theorem 

1.1 and Corollary 1.2. The notations are those of the be-

ginning of § 1. 

4.1 Variant Let T be a Mnde -6et 06 JUt.:ttOnM plUme;.,. Then: 

(i) The ailiort 06 'IT art Q, 'T V Q, (A) A.-6 -6emi..--6imp.te. 

(ii) The rta.tuJta.t map 

There is a less trivial and more interesting way to pass from 

one 
1\ 

to ?l lim -nElN 

(ZI;/n ZI;) : -'-I ?lQ, 
all Q, 

4.2 Theorem (See last remark of[F1 ]icf .[De],2.7) Let 

T(A) artd 

/\ 
p: ~['IT1- End ~ (T(A» 

be .the homomoJtphAAm givert by .the ailiort 06 'IT art T(A) . Thert .the 

-6uba-tgebtta 
A 

P ( 7l[TI]) 06 End ?l (T (A) ) A.-6 06 6inde irtdex irt .the 

c.ommutart.t 06 
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End K (A) C- End ~ (T(A)) 

in End ~ (T(A)) . 

Note that 4.2 implies 1.1. In fact, 4.2 implies that, for all 

primes i, the image of 

is the commutant of the semi-simple <lli -algebra EndK A~7l <lli' 

So, this image is itself a semi-simple <lli-algebra, whence (i) 

of 1.1. Furthermore, by the theorem of bicommutation,EndKAe <lli 

is the commutant of Pi(<lli[n])in End Vi(A), which implies (ii) 

of 1.1 - cf.2.4 above. 

But 4.2 is much more precise: It says that, for almost all i, 

Pi ( 7l i [n]) is exactly the commutant of EndK(A) in 

Proof of 4.2: All we have to show is the last-mentioned 

equality of Pi ( ~i[n]J and EndK(A)O , for almost all i. 

We proceed by a reduction very much ~eminiscent of 2.4. 

(4.3) 1.t.6u66,lc.e.6 :to .6how :that, 601l. ai.mo.6:t aU plUme numbvu, i, i6 W 

i.6 a n-invaM.ant .6ub.6pac.e 06 :the F i -ve.c.:toIt. "pac.e A [i] (K), then :the.Jt.e. ill 

u E EndKA .6uc.h:that W = A[i] (K) n kerlu) 

In fact, assuming the condition of 4.3, one immediately gets 

the semi-simplicity of the n -action on theFi - vector space 

A[i] (K) . So, the algebra Fi generated by the elements of 
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TI in End F (A[~] (K» is a semi-simple F~-algebra. Thus, 
~ 

letting 

C End F (A[~] (1<» 
~ 

and denoting commutants by 0, the theorem of bicommutation 

tells us that 

the condition of 4.3 for A x A implies F ° 
~ 

the same argument as in 2.4. So, we have F~ E ° 
~ 

by exactly 

for al-

most all primes £. Finally, calling EndK AO the commutant 

of EndK A in End 2Z ~ (T ~ (A) ), we have mappings 

So, by Nakayama's lemma, F~ 

This proves 4.3. 

In order to prove 4.2, we have to use a result which will only 

be established in the following article: 

4.4 Theorem (see [Wlist], 3.5). Fo/t A wah hemi-h.table /te-

v.,ogeny A ---+ B ove!t K 06 deg/tee tJlt-<-me .to all .t' E T , one hah 

h(A) = h(B) 

Like in 2.2 , 2.3 , we have to prove 4.2 only for semi-stable 

A Suppose then that the condition of 4.3 fails to be true. 

Then there is an infinite set M of prime numbers such that 

for all ~ E M there is a TI-invariant subspace W~ C A[~] (1<) 

which does not corne from an endomorphism u as required in 
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4.3. Then 4.4 and 2.8 imply that there is an infinite subset 

such that for all £,£'c Mo, A/W ~ 
£ A/W£, 

Taking £ f £' in Mo , call f the composite map 

~ 

A ---+ A/W£ ---+ A/W£, ---+ A 

Since the degree of the last map is a power of £' , the endo-

morphism f E EndK A satisfies indeed 

W = A[£] (1<) n ker (f), 
£ 

contradicting our initial assumption on M. This proves 4.2 . 

.l!.:2l To conclude, let us recall (cf. [T1] and (F1]) that we 

could have used the weaker diophantine result on p~ncipaLey 

poR..attizid abelian varieties,[F2],II 4.3, instead of 2.8, in the 

proof of Theorem 1.1, at the expense of working a little harder 

on the reduction steps of § 2. Refining 2.4, we would have 

had to reduce to showing that any maxhnal. .u,otJtopic. subspace 

W c:.v£ (A) - with respect to the .R.-adic Riemann form of some fixed 

principal polarization on A - is the image of some global 

endomorphism. This is done by an argument quite similar to the 

one we had to use here in the proof of 3.8 in order to get 2.8. 

See [Z4], 2.6, for this reduction. Incidentally, in this 

approach, it is legal to assume A principally polarized be-

cause, over a field extension (see 2.2) A is isogenous to 

some principally polarized abelian variety B; and 1.1 is in-

variant under isogeny, thanks to 2.1, because isogenous 

varieties have isomorphic n-representations V£ • 
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§1 Introduction 

In this chapter we shall state the finiteness theorems of 

Faltings and give very detailed proofs of these results. In the 

second section we shall beg inn with the finiteness theorem 

for isogeny classes of abelian varieties with good reduction 

outside a given set of primes. Here we use in an essential 

way the Tate conjecture which is proved in much detail in 

[Sch] . 

In the third section we give then the proof of the finiteness 

theorem for isomorphism classes of abelian varieties with 

prescribed good reduction. Here we use deeply the results of 

Raynaud on finite group schemes of typ (p~ .. ,p). Again very 

detailed proofs of the results which are used are given in 

[Gru] 

In section 4 we shall use the results of the preceeding two 

sections in order to give Faltings' proof of the Mordell con­

jecture. Sere we use the construction of Parshin [Pa] which 

associates to a rational point a certain curve with good re­

duction outside of a finite set of primes which does not de­

pend on the point. This makes it possible to apply the finite­

ness theorem on isomorphism classes. 

In the last section we give then a proof of Siegel's theorem 

on the finiteness of integer points on curves. This proof 

does not use diophantine approximations. 
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This paper profited very much from the Exposes given by 

Deligne [De] and Szpriro [Sz] in the Seminaire Bourbaki. 
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§2 The finiteness theorem for isogeny classes 

2.1 E,igenvalue6 06 .the Fltobe.rUuLI au.tomOftphi.-6m 

Let K be an algebraic number field, S a finite set of finite 

places of K and i a prime number. Suppose that A is an 

abelian variety defined over K with good reduction outside 

of S. Let further v be a finite place of K not in S 

and not deviding i, Fv the Frobenius automorphism at the 

place v acting on the Tate module T i (A) of A. Th'en we can 

define the characteristic polynomial Ph (T) for 0:£ h:£ 2g 

(g = dim A) by 

det(T'id - F v 

h 
A Ti (A)) • 

If we denote by Nv the number of elements of the residue 

field Kv of v, then the following theorem is a consequence 

of a result of Weil. 

Theorem 2. 1 . Folt 0:£ h ::; 2g .the poR.y/Ulmi.o.l.6 Ph (T) h4ve .i.n.teg eft 

coe6Mc.ient6 and do no.t depend on R. • FWLthe.JtmOfte .the..i.Jt compR.ex ze.JtOe6 

have ab-60R.u.te valUe6 equal .to N h / 2 
v 

We shall use this result later on in a modified form. For this 

let p be a prime number (replacing v) not deviding i and 

7T= Gal (K/K) , 

7T= Gal UD/(D) • 
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Then denoting by ResK/ W A the Weil restriction of A (see 

[we] ) we obtain an abelian variety defined over W that has 

good reduction outside the set of primes which are divisible by 

the places contained in S or ramify in K • Furthermore we 

have 

Now we can apply Theorem 2.1 to 

have 

dim [K:W] . dim A 

and F • Here we 
p 

and therefore we obtain the following corollary. 

Corollary 2.2. Folt O:>h;;;2[K:W]·g :the. polynomia..e.t, 

h 1f 

det (T·id - Fp A IndTI' (TJI, (A))) 

have in:tege.Jt coennic.ient6 a.nd do no:t depe.nd on l. The ab60ltLte vaiue.6 On 

:thUJt complex ze.JtOe.6 Me equal.:to ph/2 • 

... 
2.2 The density Theorem of Cebotarev. 

Let K,S,!/' be as before, LK the set of all finite places of 

K and SJI, the set of finite places of K consisting of S 

and those places which divide JI, . Now let P be a subset of 

LK and for each integer n let an(p) be the number of 
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yEP with NV ~ n , where N 
v 

is equal to the number of 

elements of the residue field k of v. v 

Then one says that P has density alP} if 

a (P) lim a (P}/a ('K) n~oo n n L 

exists. Since by the prime number theorem 

one gets 

alP) ·n/log n + o(n/log n} . 

v 
Now we can state the density theorem of Cebotarev (see [Se 1]). 

Theorem 2.3. LeX L be a MrU.te Galo-w ertefUioYl 06 the YlumbeJt Mad K 

with Galo-w gll.OUp G. LeX x be a .6Ub.6eX 06 G that -w .6table UYldeJt 

e.OYljugatiOYl. VeYlote by Px the.6eX 06 plae.e.6 v E LK UY!Jr.amiMed iYl L 

.6ue.h that the e.oYljugae.y e.la.6.6 06 the Fll.obeYliU.6 automoll.ph-i..6m F -w e.OYl-v 

taiYled iYl X . TheYl 

We shall use later on the following version of the density 

theorem. 
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Corollary 2.4. Lu K' == K be a 6.i.nUe Ga.i0.i.6 C!.UC!.I1.6.i.on ()~ K /UJJUlIIti-

6.[ed otLt6.i.de 06 sf. Then thvr.e ewu a 6.i.nUe iJU on plac.e!J T 06 K 

iJuc.h that T n S I = f/l and the c.onjugac.y ~iJe!J 06 the FlWben.i.M au..to-

mOJl.ph.i.6m6 Fv(V ET) c.ovvr. aU 06 Gal(K'jK). 

~~~. For effective versions of the density theorem of 

Cebotarev see [Se 2] . 

2.3 The Theorem of Hermite-Minkowski 

Let K be as before an algebraic number field and Sc l.K a 

finite set of finite places of K. Then we have the following 

well-known result of Hermite-Minkowski. 

Theorem 2.6. Thvr.e ewt onty 6.i.nUety many Ga.to.i.6 extenil.i.onil L=>K 

unnami6.i.ed ou..t6.i.de 06 S and 06 deg4ee at mOiJt equal to a g.i.ven nu.mbvr. d. 

S~etc.b. 06 the. p4006.. The set S of finite places determines the 

prime factors of the discriminants of the extensions which are 

unramified outside of S. It remains to bound the exponents 

of these prime factors. 

This is done by well-known estimates of the exponent in terms 

of the ramification indices at the places in question. These 

can be bounded in terms of the degree and consequently by d. 

Therefore there are only finitely many possibilities for the 

discriminant. 
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Rema~Q. The number of such extensions L ~ K which are un-

ramified outside of S and of degree at most equal to d 

can be effectively determined (see ESe 2]). 

2.4 The finiteness theorem for isogeny classes. 

Let K be an algebraic number field, S a finite set of 

finite places and ~ a prime number. 

Lemma 2.6. Lu A/K be an abe1h.n vaJUuy de6-{.ned ov~ K wilh 

good ~educ:Uon olLt6ide 06 S. Then 6M any Mxed pfuc.e v l/. S plUme 

:to l :th~e Me only MrU;tely many pOM.i..bilitiu, 6M :the. loc.at L-6ac.:to~ 

P~006. Consider the polynomial 

P(T) det (T'id - Fv I T~(A)). 

By Theorem 2.1 this polynomial has integer coefficients and 

1 12 its zeroes have absolute values equal to Nv . Hence there 

are only finitely many possibilities for the coefficients and 

the number of the polynomials P(T) is bounded. Now the 

statement follows directly. 

Re.maJrk. This number of possibilities for the local L .... factor 

can be effectively determined in terms of N 
v 

and g = dim A. 
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We denote by K a finite Galois extension of K which 

contains all Galois extensions K'~ K with 

2 
[K' :KJ < ~2d 

and which are unramified outside of S. Let T be the set of 

finite places constructed in Corollary 2.4 for Sand 

L = K ,d a positive integer. 

Proposition 2.7. 

Trace p 2 (F v) (v EO T) 

S • Then and 

P~OOb. It is a well-known fact in representation theory that 

semi-simple representaEions are isomorphic if their traces are 

equal. In order to prove that P1 and P2 are isomorphic 

it suffices therefore to show that 

Trace P1 (0) 

for all o:f. Gal (i</K) • 

Consider the image M of the algebra Z~[Gal(K/K)] under the 

homomorphism 
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and define the function f 

f (m ,m I ) Trace m - Trace m' 

for (m,m') EM. We have to show that f is identically zero. 

For this it suffices to show that f vanishes on a set of 

generators. We shall show that M is generated over z~ 

by the images of the conjugacy classes of the Frobenius auto­

morphisms F v for vET . Since 

o (v E T) 

by hypothesis the function will then be identically zero. 

In order to show that the images of the conjugacy classes 

of the F v (v E T) genera te the module Mover Yl ~ it 

suffices to show that they generate M/~M. This follows from 

the Lemma of Nakay.ama since z~ is local and M finitely 

generated. 

The representation P=P1 X P2 induces a representation 

p: Gal (K/K) ---* (M/~M)* 

of the Galois group Gal (K/K) into the group of units in 

M/~M and the image of P generates M/~M. Since 
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and since the representations are unramified outside of S 

the representation p factorizes over Gal (K/K) . The 

conjugacy classes of the Frobenius automorphisms F v for 

vET cover Gal (K/K) by construction so that their images 

under p generate M/ R,M over Z R, . This completes .. the proof 

of the Proposition. 

We are now a~le to prove the Main Theorem of this section. We 

use two more facts which are proved in [Sch] , namely 

1. the action of n Gal (R/K) on 

is semi-simple (Theorem 1.1 in [Sch]), 

2. two abelian varieties A,A' both defined over K are 

isogenous over K if and only if the n- Modules VR,(A) and 

V R, (A') are isomorphic (Cor. 1.3 in [Sch]). 

To an abelian variety A defined over K one associates an 

L-series in the following way. For 

inertia subgroup of n = Gal (K/K) 

v E IK let 

and T (A)Iv R, 

I be the v 

the fixed 

part under the action on Iv of TR,(A). Then the action of 

F En/I is well-defined on Tn(A)IV and we put v v Iv 
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Note that for v rt. sJI, one has TJI,{A) = TJI, (A) Iv , where S 

the set of places v E >-K wheire A has bad reduction and 

SRI is defined as in 2.2. Then L{A,s) is defined as 

L (A,s) 

This function is defined for Re s> 3/2 • 

Theorem 2.8. Lei: S be. a 6irri;te. -6ei: 06 6irLUe. pfa.ce.-6 06 K, g e 

an -iYLte.geJL. The.n :theJLe. e.W:t oniy 6irLUe1.y many -l-6oge.ny c.fu-6-6e.-6 06 

abe1.-Lan v~e.:t-Le.-6 de.6-ine.d oveJL K 06 d-Lme.n-6-ion g and with good ~e.­

duc.:ti.on oLLt6-«J.e 06 s. 

P~006. We call two such abelian varieties A,A' equivalent 

if for all vET 

Here T is defined as in Proposition 2.7.{It would indeed 

is 

suffice to call A,A' equivalent if the traces of the Fro­

benius are equal). Thel1 we deduce from Lemma 2.6 that there are 

only finitely many equivalence classes. We proceed to show 

that equivalent abelian varieties are isogeneous. Since two 

abelian varieties A and A' as above are isogeneous if and 

only if the n-modules VJI,{A) and VJI,{A') are isomorphic 

(this is 2. above) we need only to show that A and A' are 

equivalent if and only if VJI,{A) and VJI,{A') are isomorphic 
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as 1T-modules. 

Suppose first that A and A' are equivalent. Then the 

1T-modules VilA) and VilA') correspond to representations 

These representations are semi-simple and unramified outside 

of S and satisfy 

LV(A' .. S) (vE T) 

From this it follows that 

Trace p' (F v) 

for all vET. By Proposition 2.7 the. representations p and 

p' are isomorphic and therefore VilA) and VilA') are 

isomorphic as 1T-modules. 

Next suppose that VilA) and VilA') are isomorphic 

1T-modules. Then the corresponding representations p and p' 

are isomorphic and therefore 

for all v ,i.e. A: .... and A' are equivalent. It follows that 

the number of isogeny cl·asses is equal to the number of 

equivalence classes. Since this number is finite the theorem 
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follows. 

Rem~~. Theorem 2.8 is completely effective: it is possible 

to establish an upper bound for the number of isogeny classes 

effectively in terms of S,g,~ and K. 
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§3 The finiteness theorem for isomorphism classes 

3.1 S.ta.tement 06 the theOlLem and 6fut Jc.educ.:ti..oru. 

Let K,S,g he as before and d> 0 an integer., R the ring of 

integers of K. The following theorem was conjectured by 

Shafarevich. 

Theorem 3.1. TheILe Me only 6~ely many .u,omOlLphMm cla.6.6U 06 

d -60id pofuJUzed abe.li.a.n. viVUetiu de6.i..ned oveIL K 06 cUmeru.ion g 

with good Jc.educ.:ti..on ou:t6ide 06 S • 

Rema.Jc.k. It can be shown that this remains true even without 

polarisation. We shall establish in this section a Theorem 

(Theorem 3.5) and show how Theorem 3.1 will follow from this 

result. It will be proved then in the next section. But first 

we shall make some simple reductions. 

Reduc.:ti..oru.: 1. Without loss of generality we can assume that 

d = 1 , i.e the abelian varieties are principally polarized. 

This is obtained with Zarhin's trick (see Lemma 3.8 of [Sch]). 

2. Because of Theorem 2.8 it suffices to prove that there are 

only by finitely many isomorphism classes within a given 

isogeny class. Let A 

variety defined over 

reduction outside of 

isogeny class of A. 

be a prinicpally polarized abelian 

K , of dimension g and with good 

S Then we denote by cHA) the 
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3. We may assume without loss of generality that all B in 

cl(A) can be extended to semi-abelian varieties over spec R. 

This can be obtained by a finite galois extension K' ~ K for 

which the torsion points of order 4 and 3 of A become 

K'-rational. We replace then K by K', R by R' , the inte­

gral closure of R in K' , and A by A xKK' This is the 

theorem on semi-stable reduction (see [SGA 7.1] , Expose IX). 

Then if BE cl (A) and A is semi-stable the abelian variety 

B is also semi-stable. 

Let N be a finite set of prime numbers, A a principally 

polarized abelian variety defined over K,t as usual. Then 

we denote by A[t n] for integers n ~ 0 the set of torsion 

points of A with order dividing tn. 

Lemma 3.2. Suppo-6e .tha.t A' -L6 -L6ogen.,eoU-6 .to A an.d 

60ft aLe. tEN all 7T-moduie-6. Then. .the.Jte ew.t-6 an. -L6ogen.y 

<P A' ~ A 

06 degfl.ee pJUme :to aLe. t in. N • 



- 170 -

RemMk. If the degree deg <p of <p is prime to each R, in N 

we shall denote this by (deg <p,N) = 1. 

PMo6. Since Hom(A' ,A) is dense in 

it follows (see Theorem 4.1 of [Sch]) that 

Hom (A,A') QJ n 
R,EN 

Hom 
'IT 

Let now <PR, for R, EN be the given isomorphisms 

Then there exist ~1E Hom (A' ,A) and '¥2 E Hom (A' ,A) & ~ R, 

such that 

satisfies 

for R, EN. From this we deduce that the kernel of '¥ and 

hence that of '¥1 is finite. It follows that 

isogeny and it remains to show that 
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(deg '1'1 ,N) = 1 • 

Suppose that the prime number i divides 

(deg 1J'1,N) 

Then there exists an element x in A' of order i such 

that '1'1 (x) = 0 • Hence 

and therefore 

!Pi(X) o • 

But !Pi is an isomorphism and we may conclude that x = 0 

Since we have assumed that the order of x is equal to i 

we have obtained a contradiction. It follows that 

(deg 1J'.1,N) 

as claimed. This concludes the proof of Lemma 3.2. 

The next Lemma is an important step towards the proof of 

Theorem 3.1. 

Lemma 3.3. TheJLe. Me. cmly 61.YLUety many ,u,omolLphMm d/U.6e..6 06 :Ii [7f]-

-LnvaJUa.nj; f.a.:tti.c.e..6 i.n T i (A) ~z m i 
i 
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PhOOn. This follows directly from the Jordan-Zassenhaus Theorem 

(for a proof see [Rei]). For if M~ denotes the Z~-sub­

algebra generated in En~ (T~(A)) by TI then the algebra 
~ 

M~ ®~ W~ is semi-simple by Theorem 1.1 in [Sch] 
~ 

3.3 Heights on isogeny classes 

Let N denote again a non-empty set of prime numbers, A a 

prinOipally polarized abelian variety defined over K and 

cl(A) the isogeny class of A . 

Proposi tion 3.4. TheJ1.e. e.wt- aYl in..te.geJ1. ~J de.pe.Ylc:UYlg oYl1.Y OYl • N 

BEcl(A) 

be. My abiliaYl vMiUy 'u'oge.IW.OUA to A. The.Yl ;theJ1.e. e.w:a aYl in..tegeJ1. 

B ~ A. 
1 

wilh (deg (jJ ,N) 

According to Lemma 3.3 there exist an integer n 

depending only on N andA1 , •.. ,An E cl (A) with the follow~ 

ing property. 

Let B E cl (A) be any abelian variety isogeneous to A • Then 

there exists an integer i = i (B) with 1 ~ i ~ n such that 
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for all t EN as 'IT-modules. By Lemma 3.2 it follows that 

there exists an isogeny 

with (deg ~,N) = 1 . This proves the Proposition. 

Now we come to the main step in the proof of Theorem 3.1. 

This is the following theorem. 

Theorem 3.5 LeX A be a p~n~pally po~zed abelian v~eXy 

deMned oveJl K wdh f..emi-J."tab.te fteduction. Then ;theJle ew;tf.. a Mnde 

f..eX N 06 pJUmef.. wdh ;the 60Uowing pftOPeJ[.;ty. LeX ~: A' ~ A 

be an i40geny wdh (deg 41 ,N) =1 • Then one hM 

h(A') = h(A) 

C.orollary 3.6. One hM 

i6 A1 ' ••• ,An Me ;the abelian v~ilief.. eOnf..;tJtuc;ted in Pftopof..ilion 3.4 

60ft ;the N given by TheOftem 3. 5. 

f!ftOO 6 . Obv iou s • 
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Corollary 3. 7 . TheJLe ewt.6 a c.oru.ta.n.:t c > 0 depencii.rtg on 

A1 ' •.• ,An (a.6 in COflOU.o.JLlj 3.6) .6uc.h t.ho.;t nOll BE cl (A) one ha.6 

h(B):£ c . 

PIt00o. Obvious. 

Rem~k. The constant c can be effectively determined in 

terms of K,N,h(A1 ) , .•• ,h(An). But it is not possible to give 

an effective bound for the h (Ai) (1:;; i::; n) • 

We shall prove Theorem 3.5 in the next section. Since Theorem 

3.1 follows very easily from Theorem 3.5 we shall give the 

proof now. For this we need the following result which is 

proved in [Fa II] , Theorem 4.3. 

Theorem 3.8. Let K be a nu.mbeJL Me..td. F'{'x Iln .{.n;tegeJL g"~ 1 

Ilnd a Jte.o.1. nu.mbelt c > 0 • Then .thelte ~e up .to .<..6omoJtPh.<..6m on..ty 

Mnae..ty many pJtinupa..Uy polaJUzed .6 em.<..6ta.b.e.e abe..e..<.an v~eUe.6 A 

ovelt K 00 cUmen6.{.on g .6uc.h .tha.t h(A) :£c. 

PItOOo 00 TheoJtem 3. 1. From Theorem 2.8 it follows that the 

number of isogeny classes is bounded. In each isogeny class 

the height is bounded by Corollary 3.7. By Theorem 3.8 there 

are only finitely many isomorphism classes of principally 

polarized abelian varieties of bounded height. Together with 

reduction 1 and ~eduction 3 Theorem 3.1 follows now. 
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3.4 Gii.i;o-iA tc.e.ptc.eAe.nta.UO/1,6 and the. The.otc.e.m 06 Ragna.nd 

The arguments in this section are very similar to those used 

in [Sch], 3.6. Since we are working here mod £, the 

£-divisible groups are replaced by finite group schemes. 

Let K be a number field as usual, R its ring of integers 

and m = [K:W] , 7T = Gal (K/K) and 7T = Gal(W/W) . We fix 

some prime number £ and denote by E£ the finite field with 

£ elements. Let V be a finite dimensional E£-module with 

dim V = h. Suppose that 

P:7T _ GL(V) 

is a Galois representation. Then the module V becomes a 

7T-module and we can define the module 

7T 
V = Ind V 

7T 

This is a TI-module and to it corresponds the representation 

P:7T _ GL(V) 

where 

7T 
p Ind 7T P 

To each such representation we can associate the 
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one-dimensional determinant representation. It follows that 

we obtain two further representations 

and 

Both induce representations of ab 
TI and ---ab 

TI of the 

abelianized Galois groups. We denote by 

TI ab 
Ver~ : TI _ TI 

TI 

the canonical projection 

fer map nab ~ TIab . We put 

and 

x 
TI 

(det p) 0 (Ver ~) 
TI 

---ab 
TI followed by the trans-

X and X are characters of TI with values in r~. If we 

denote by 
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the signature of the permutations induced by the elements of 

N 

'Ii on then x and x are linked as follows. 

Proposi tion 3.9. We have 

h 
X g X 

PIWo6. See [Ma], Proposition 3.2. 

We apply this in the following situation.Let A be an abelian 

variety as usual (principally polarized, defined over K, 

semistable reduction over K), 

(j): A' ~ A 

an isogeny with kernel G that is annihilated by ~ and 

h deg (j)=t • Then G is a quasi-finite and flat group scheme 

over R If v is a place of K with vl~ and if A has 

good reduction at v then 

G G :gR 
v v 

is a finite and flat group scheme over R . Associated to v 

A I and G are several-modules over Jr ~ , namely 

and 
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Then both V2 and W2 are n-modules and we can apply the 

foregoing to V = W2 . For this we put 

and 

and these are both n-modules. We have then the representation 

p :n ~ GL(W 2) and the induced representation 

p Ind n p: 
n 

. We have further associated to 
n 

and p the characters X = det p 0 vern and X = det p. 

Since h = dim W2 we obtain from Proposition 3.9 that 

h 
X = E X 

Let 

X 0 

p 

be the cyclotomic character and by abuse of notation we denote 

also by Xo its reduction mod 2 , 
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i.e. the compositum with the canonical projection z~~ x~ . 

Lemma 3.10. The. c.ha.M.c.,teJI. X .u, a POWeJI. 06 XO' 

P~06. Since A' has semi-stable reduction outside of vl~ 

it follows that p operates unipotently ([SGA 7]) on Iw' 

wi- ~ . Hence X is unramified outside of ~. But then it 

follows that X is a power of the character Xo (using the 

theorem of Kronecker-Weber and the fact that W does not 

possess any unramified extensions). This proves the Lemma. 

We are going now to compute the exact power of Xo • This is 

done using a result of M. Raynaud on finite group schemes. 

Let as before G be the kernel of an isogeny <1>: A' ~ A 

annihilated by ~ and assume that for each place v dividing 

(i) A' has good reduction at v, 

(ii) K .is unramified at v. 

Let n~/R be the module of differentials of G , s : R ~ A 

the zero section and the non-negative integer d defined by 

Then d satisfies (see tiGru],Proposition 2.7) 

O~d:>m'g (m [K:W],g dim A ') • 
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We have then the following theorem. 

Theorem 3.11. One hM 

~06. See [Gru], Theorem 4.6. 

RemaJtR.. The condition (ii) on the place v implies that the 

ramification index ev is equal to 1 and this implies that 

ev ~ t -1 for every v dividing t . The condition (i) implies 

that Gv is a finite and flat group scheme over Rv. 

3.5. PlL006 06 TheoJtem 3.5 

Let A I , K be the same as in the preceeding section, p and t 

two different prime number such that K is unramified at p 

and t, and for each place. v of K such that vlp·t 

abelian variety A' has good reduction at v. Let F 
P 

the 

be 

the Frobenius automorphism at the prime p and for each in-

teger h with 1 ~ h ~ 2mg def ine the polynomial s Ph (T) as 

det(T·id - F 
P 

~ Ind~ T t (A ') ) . 

Then define the finite set N of primes as follows: 

A prime number p' is in N if and only if one of the 

following conditions is satisfied: 
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(i) p' = p , p' = 2, 

(ii) K is ramified at p' , 

(iii) for some place v of K wi th v I,p I the abelian 

variety has bad reduction at v, 

(iv) for 0;;; j;;; gm, 0 S h;;; 2gm such that j + h/2 the 

prime p' divides one of the numbers Ph(:pj) 

number is non-zero by Theorem 2.1). 

(this 

This is a finite set of prime number which can be determined 

effectively. We saIl show now that the set N has the desired 

property. Note that the set N does not depend on i (Theorem 

2.1). Therefore we may choose i such that i ~ N. 

Now let 

<p A' --+ A 

be an isogeny such that (deg <p,N) = 1 . We may assume with-

out loss of generality that deg <p is a power of a prd.me 

number i not contained in N • Furthermore we may assume 

that i annihilates the kernel of <p. All this can be 

achieved by simple reductions. Let the notations be as in 

section 3.4. 

p we obtain from Theorem 3.11 

modulo i. It follows that 

d s±p 
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is a zero of the congruence 

Thus 

and because of the definition of N 

d 
mh 
T 

Now apply the height formula for isogenies ([Sch] ,Theorem 3.1) 

and obtain 

h(A) - h(A') ~ log (deg~) - [K~W] 

h d "2 log ~ - m log ~ 

o 

This proves the Theorem. 
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§4 Proof of Mordell's conjecture 

4 • 1 The. :the.OJte.m 06 T Ofte.£.U. 

Let again K be a number field, S a finite set of finite 

places of K. Then we have the following Lemma. 

Lemma 4.1. K' :::J K , .6uch :tfuU: 

60ft any a.belian vaJvi..e:t1j A oVVt K 06 cUme.nl>J..on g ,wah good Jte.-

duw.on ou;t6J..de. 06 S :the Q.beLi.o.n vaJvi..e.:tlj 

Pftoo6. See [Fa], II, Lemma 4.2. 

The general reference for the following is [Mu], chapter 

V, VI, VII. Let B be a noetherian scheme and g:1 2 be an 

integer. By a curve X of genus g over B we understand 

a morphism p X ----7 B which is smooth, proper and 

whose geometric fibres are irreducible curves of genus g. 

Let now B any given noetherian scheme. Then we denote by 

M (B) the set of curves X of genus g over B modulo 
g 

isomorphisms. 

By an abelian scheme A over B of dimension g we under-

stand a group sch.eme p : A --+ B for which p is smooth, 

proper and has geometrically connected fibres. For integers 
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n,d ::: 1 denote by A d (B) g, ,n the set of triples consisting 

of 

(i) an abelian scheme A over B of dimension g, 

(ii) a polarization of A of degree d 2 , 

( iii) a level n structure of A over B 

up to isomorphism. If n = d 

A (B) 
g 

A (B) 
g , 1 ,1 

we simply write 

and A g,d,n are functors which associate to a 

noetherian scheme a set. There exists a functor 

j Mg ---;.. A g , 1 ,1 

which associates to a curve X over B of Mg(B) its 

Jacobian J(X/B) (see [Mu] , VII 4) • 

From now on we let B be spec K for the number field 

at the beginning and Mg(spec K)S the subset of M (spec g 

consisting of the curves X over K with good reduction 

K 

outside of S In the same way we define Ag(spec K)S as 

K) 

the subset of A (spec K) consisting of the abelian varieties g 

A over K with good reduction outside of S . Then it can 

be shown that the restriction j(spec K)S of j(spec K) 

to Mg(spec K)S maps into Ag(spec K)S (use [Mu], Prop. 6.9~ 
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Theorem 4. 2 • T he map 

j(spec K)S 

h.aA 6W;te MblLe-6 and ;the numbeIL 06 e.lemeYLt6 in ea.c.h MblLe .iA uni60lUnf.y 

bounded. 

P1L006. 9.lppose that X and Yare in Mg(spec K) S such that 

j (spec K) sIX) j(spec K)S(Y) 

Then 

j (spec K)s'XtaK) j (spec K) S (Y0K) • 

It follows from Torelli's Theorem ([Mu] ,VII.4) that 

Let K' ~ K be the field constructed in Lemma 4.1 and 

7T = Gal(K'/K'). If (j) denotes the above isomorphism then for 

o E 7T 

Consider 

one gets isomorphisms 

X ~K' ---+- ye K' 
K 
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a -1 
(j)) 0 (j). 

is an automorphism of X@ If' , hence of finite K 

order (since for curves X of genus g ~ 2 the group Aut (X) 

is finite). 

The automorphism cjJ(a) induces the identity on the 12-divi~ 

sion points on the Jacobian of X @KK' and therefore by the 

subsequent Lemma the identity on the Jacobian of X ®KK'. It 

follows that (j)= (j) a for a E n. 

This implies that 

over K' . Finally the set of curves X over K which be-

corne isomorphic over K' is parametrized by a subset of the 

finite set 

by Galois cohomology. This proves the Theorem. 

In the proof of Theorem 4.2 we have used the following Lemma 

of Serre. 

Lemma 4.3. Le;t A/K be. an a.be.Ltan vOv'Ue;ty ove.tL K • Suppa;., e. tha.:t 

(j) :A ~.A it; a.n. e.n.domoltphi6m wruc.h in.duc.e.;., the. ide.n..td.y on. the. 12-di-

ilii..on. poin.U 06 A (K). The.n. (j) if.> .the. ide.n..td.y on. A 
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PJUJo6. See sem. Cartan, 1960/61, Expose 17, ([scll. 

4.2 The. Sha.6aJl.e.vic.h c.onje.c..twte. 60Jt ClUtVeA 

Let K be a number field as in the preceeding section and S 

a finite set of finite places, g ~ 2 as integer. Then the 

following result was conjetured by Shafarevich. 

Theorem 4.4. The.M Me. only 6iiUte-ty marty ..L6omoJtphMm UMf.JeA 06 

f.Jmoo;th c.onne.c.:te.d c.WtVe.-6 ove.Jt K wilh good Jte.duction ocd.6ide. 06 S 

PJtoo6. ~e know by Theorem 3.1 that there are only finitely 

many isomorphism classes of principally polarized abelian 

varieties defined over K with good reduction outside of S. 

Now Theorem 4.4 follows from Theorem 4.2. 

4 .3 CoveJUngf.J 

For the proof of the Mordell conjecture we need some facts 

about ramified coverings of curves. In this section we give 

a short account of these facts. 

As usual let K be an algebraic number field and R its 

ring of integers and S a finite set of finite places of K. 

We denote by U the open set 

U spec R - S 

We shall also need the Hilbert class field K' ~ K of K. 
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Its ring of integers is denoted by R' and S' is the set 

of primes of R' lying over S, 0' = spec R' - S'. Finally 

we let p x --;.. 0 be a curve (see section 4.1). The 

basic tool is the following construction. 

Proposition 4.5. Le.t A be. a qucu,.{.-e.oheJle.n..t f..he.a6 06 0x- a.lge.-

bltcu,. The.rt :theJle. e.x.MU art urtJ..que. f..e.heme. Y oveJl 0 artd a moltphlf..m 

f : Y ~ X oveJl o ;.,ue.h :that 601t e.VeJlfj ope.rt a6Mrte. vc X 

we. have. 

spec A (V) , 

o ~ V 06 ope.rt a66J..rtu 06 Y :the. moltphlf..m 

e.o!t!tUpOrtdf.. to the. ltu:t/t.{.c.t.{.Ort homomoltphlf..m A (V) -+ A(o) • 

See [Ha], II, Ex. 5.17. 

Re.maJtk. The scheme Y is denoted by f..pe.e. A. 

W£ shall also make use of the following result of Grothendiec~o 

Proposition 4.6. Le.t 0 be. art e.66e.c.t.{.ve. div.{.f.,olt Ort :the. ge.rte.Jt.{.e. 

Mblte. ~ 06 x. The.rt :theJle. e.WU art urtJ..que..tfj de.teJtmJ..rte.d c.1Me.d 

f..ubuheme. D 06 X 6W oveJl 0 f..ue.h that 0 = DK ' the. ge.rte.Jt.{.e. 
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P~oo6. See Proposition 2.8.5 in [EGA Ivl. 

Now let D be an effective divisor on x K and Ox (-D) 
K 

the corresponding invertible sheaf and suppose that 

Ox (-D) 
K 

for some invertible sheaf Lx on 
K 

xK and some integer 

n ~ 1. By Proposition 4.6 the sheaves OX (-D) and Lx 
K K 

extend to invertible sheaves 

and obtain for its restriction Mx to xK 
K 

° (-D) ® (L -1) 4'n 
XK XK 

Hence the invertible sheaf MX is trivial on the generic 

fibre and can therefore be written as 

MX p* ( F) 

for some F E Pic U . We make now the base extension 

U' ~ U and obtain the curve p':x' )U 
, and the 

invertible sheaves Mx"L',Ox' (-15') Since K' is the 

Hilbert class field of K the sheaf FEPic U becomes trival 
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in Pic U ' . Denote the resulting sheaf in Pic U' by F'. 

Then 

and we have proved the following result. 

Proposition 4.7. Let X,K ,XK,D be a..6 above and MppO-6e thlLt 

60ll .6Ome .tnve.Jt:ttb.te -6he.a.6 ~ on 
K 

~ and -60 me 

• Then the.fl.e e~~ an abe..t.ta.n unJta.m.t6.ted exten-6.ton 

K' :::l K (the Hilbe.fl.t ctll.M Meld) 06 6inile deg!te.e wah fl..tng 06 .tntegeM 

R' and U' = U ~spec R spec R',a MV-u'Ofl. 0 6.t1Lt ove.fl. U on 

X' = X~UUI , and an .tnve.Jt:ttb.te -6hea6 L'on X -6uQh thlLt 

Thv.,e -6he.a.vv., Me obta..<.ned by ba..6e exten-6.ton U ,----+ U 6Mm the 

-6heave-6 Ox (-D), L X extended .to aU 06 U I • 

K K 

Next consider the situation of Proposition 4.7 and define the 

Ox I -algebra A' on X I by putting 

(0::: i::: n) 

and 

A -1 
Ox I dl L I dl ••• dl 

L,-(n-1) 
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and defining the multiplication on A as 

{L '-(i+ j ) 
L,-i L,-j 

~ L' -(i+j-n) 
if i + j < n 

otherwise 

for 0;;; i, j ;::; n-1 using the isomorphism 

L ,em 

which gives us a homomorphism 

-n 
L" ~ OX' 

By Proposition 4.5 we get then a curve '-'pee. A' over U'. 

This curve is a ramified covering of X' . Denote it by Y'. 

Then Y' is a curve over U' which is smooth at the places 

where D' is smooth and n invertible. This can be easily 

verified by local considerations. So if the generic fibre 

Y'K' of Y' is smooth the curve Y'K' has good reduction 

outside a fixed set of places which depends only on the 

set of bad places of X, the divisor 'D and n. 

4.4 The e.OMbtuc.tion 06 KodiUJr.a.-Po.MfUn 

The main step in the deduction of the Mordell conjecture 

consists of the construction of Kodaira-Parshin (see [Pa]). 

For this fix a number field K , a finite set of finite places 

of K that e.on;l;tUM aii pfuc.e;., v 06 K wilh v 12 and a smooth 
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curve X defined over K with good reduction outside of 

s . A rational point 

P spec K ~ X 

determines an embedding of X into the Jacobian J(X) of X. 

Henceforth we assume that the genus g of X is at least 

two. The Jacobian J(X) is also defined over K and the 

embedding X ~ J(X) is given by sending a point Q of X 

to the sheaf 0x(Q - P). The Jacobian J(X) has good re­

duction outside of S. Consider now the unramified covering 

X induced by the multiplication by 

i.e. defined by the commutative diagram 

X ) 

J (X) 

I 2 
t 
J (X) 

2 on J (X) , 

such that x(2) is the pull-back. Then the curve x(2) is 

defined over K and has good reduction outside of S (note 

that by definition v E S for v 12). Its genus g (X (2» can 

be easily determined: First the degree of the covering is 

equal to 22g. By Hurwitz (see [Ha])we get 

g(2):= g(x(2» 2 2g (g - 1) + 1 • 

Let D be the inverse image of the divisor P on X. This 
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is a divisor of degree 22g which is rational over K . Note 

that it depends on P. In order to apply the results of the 

last section we need a simple Lemma. 

Lemma 4.8. 

on P E X (K) 

ThVte ew.t6 a Mnile erten.6-i.on K (2) ~ K 

,6 u.:.h:tha-t K (2) -t.6 u.rrJtaJni. Med 0 uU-i.de 0 6 

no:t depencU.n.g 

s wUh :the 

6oUow-i.n9 p!topeJt:ty: Let 60lt P E X (K) be 0 c.on.6:t/tuc;ted a..6 above. 

Then :thVte ew.t6 an e66ec.tive d-tV-t.601t 0 I on X (2) de6-i.ned ovVt 

,6uc.h :that 0 -t.6 UneaJl1.y equ-tva..ten:t:to 20 ' • 

( 2) 
K 

Pltoo6. For a given P E X (K) let Kp be the smallest field 

containing K such that each point in the fiber over P of 

the covering X(2) ~ X becomes Kp-rationa~. This is 

an extension of degree at most equal to 22g and unr~ified 

outside of S (note that the places dividing 2 are in S). 

Apply now Hermite-Minkowski (Theorem 2.5) to obtain K(2). 

In order to obtain 0' we proceed as follows. The support 

\0\ of 0 in the Jacobian J(X) is isomorphic to the group 

(Z/2Z)2g. Find subsets y' and y" of the latter such that 

yIn y" ~ , 

Y I U y" (Z/27l) 2g 

# y' # y" 

L x' L x" 
x'Ey' X" E y" 

This decomposition induces a decomposition 
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D D' + D" 

where D' cOrJ;ssponds to y , and D" to y". 

The last property in the definition of y' and y" implies 

that 

D' - D" '" 0 

or equivalently 

D' "'-D" • 

Hence 

as desired. Obviously the divisor D' is K(2)-rational. 

This proves the Lemma. 

We maEe now the following base change: 

spec K'~ 
I 

spec K(2) ~ spec K 

l' 

where spec K(2)~ spec K is defined by Lemma 4.8 and 

spec K' ~ spec K(2) is defined by Proposition 4.7. We 

shall now replace everything by its corresponding object 

after this base change and in order to simplify the 

notations we still write for them P,D,D',X,J(X) ,x(2)etc. 
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They are schemes over spec R'. Since by Lemma 4.8 

for 

L= 0 I-D') x(2 

we can apply the techniques of section 4,3 to obtain a curve 

over U' which is a covering of degree 2 of x(2) and 

ramifies exactly at D . Furthermore it has bad reduction at 

most at those places where x(2) has bad reduction and those 

dividing 2. Hence it is a covering 

fp 
Yp ----+- X 

of X of degree 22g+1 which ramifies only at P. We have 

therefore proved the following result. 

Proposition 4.9. Lel; K be. a nwnbVt Me1.d, R Lt6 lUng 06 i.n;te.geJL6, 

S a 6i.rU;te. ,6 el; 06 MYLi.:te. pla.Ce.-6 co n;tai.ni.ng aU. pla.Ce.-6 v wUh v I 2 

U = spec R - S and X +U a cWtve. ovVt U 06 genU6 g ~ 2 • 

Then :thVte. e.xL6u a MYLi.:te. e.x:te.YL6Mn K' ~ K wUh :the. 60UowUtg 

PlI.opeJLty: 16 :&.' 1.11 the. ILi.ng 06 i.n;te.geJL6 06 K', S' the.,6el; 06 pla.c.e.-6 

lyi.ng oVVt S and U' = spec R' -S' :the.n 6011. each Jta.:t.[onai poi.n;t 
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P € x (K) .theJLe eili:a a c.UlLve Yp oveJL u' .6uc.h .tha..t .the 9 eneM.c. 

QibJc.e Yp ,K' 06 Yp . .M a c.ove/U.ng 06 xK' = X·® K' 06 

degJc.ee 2 2g +1 .tha..t .u Il.ami.Qied exac.Uy a..t P. The genu.6 06 Yp 

.u equ.a.l to 22g-1 (4 g - 3) + 1. 

4.5 MoJc.de.U'.6 c.onjec..tWte 

We are now able to prove the following result conjectured by 

Morde11. Let K be as usual a number field. 

Theorem 4.1 O. Le.t X/K be a .6moo.th c.UlLve 06 genU.6 g l1: 2. 

Then X (K) .u QinUe. 

Rema.Jc.~.1.Let S be the set of places of K at which X has 

bad reduction together with the places which divide 2 or 3. 

2. Without loss of generality we may assume that the 12-di-

1II.ision points in the Jacobian are K-rationa1. 

PlL006 06 TheOlLem A.l0. By Theorem 4.4 the set of curves Yp,K 

constructed in Proposition 4.9 is finite up to isomorphism. 

It remains to show that there are only finitely many coverings 

Y 

X 

which are ramified exactly at a fixed pOint P of given 

degree and fixed genus g(Y) of Y. But this follows from 
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the fact that there are only finitely many dominant morphisms 

f : Y ~ X if the genus X is at least equal to two. 
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§5 Siegel's Theorem on integer points 

Suppose that, as usual, K is a number field, S a finite 

set of finite places and RS the ring of S-integers of K. 

Let X/K be a smooth curve and D an ample divisor on X. 

Then let Y = X - ID I and Y(RS) be the set of S-integer 

points on Y. Then Siegel proved for S = ~ the following 

result which was extended later on ~y Mahler to arbitrary S. 

Theorem 5.1. Sl1ppou.thai: Y(~) -u, inMnile. Then .the genlL6 06 X 

-u, equat .to zeJto IlYl.d Y -U, -U,omol1..phic..to <&a ,.the adcLi.tive gJtOup, 

olr. Gm ,.the mu.ttiplic.a.tive gJtOup. 

We shall give now a proof of this result using only Mordell's 

conjecture. We consider first the case that the genus g of 

X is zero and IDI consists of at least and then without loss 

of generality exactly 3 different points. Then 

Let u 1 
F '{0,1 ,oo} and 

X' 

be a co~ering of degree 3 fully ramified at 0,1,00. Then the 

genus X' can be calculated and one obtains by Hurwitz 
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2g (X') - 2 3(g(X) - 2) + 6 

Hence 

g (X') 1. 

Let V = p-1 (U). Then V ~ U is proper and etale and 

an_~nteger point a: spec RS ~ U lifts to a point 

a : spec RS ) V over a finite extension Ka of K 

unramified outside a set of places T independent of a 

(T contains the places of bad reduction of X 

places where D has bad reduction) . 

and. the 

The degree of K a over K is at most equal to 3. So we find 

a finite extension K' ~ K that contains all the fields Ka 

for (by Theorem 2.5). Hence we may assume that 

K' K. It remains to show that X'(RS) is finite. But V 

is an elliptic curve with 3 points missing. Therefore it is 

sufficient to show that on an elliptic curve E with one point 

P missing the set of S-integral points is finite. Let P = 0, 

the point at infinity of E, and E' = E ...... O. Then as in the 

last section one constructs a smooth curve X over K which 

is a covering of E of degree 8 and which ramifies at 0 

and which has genus g(X) = 3 (see Proposition 4.9) 

an integer point 

d: spec RS - E' 

Again 
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lifts to a point 

a: spec RS ~ X 

after an eventually finite extension of K as before. Since 

g(X')~ 2 we may apply Theorem 4.10 and find that 

finite. 

E' (R ) 
S 

is 
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§ 1 INTRODUCTION 

The purpose of this chapter is to give some additional 

results, mainly about generalizations to finitely generated 

extensions of ~. Similar results have been obtained by 

other people, and on occasion I have used their arguments 

instead of my original ones. More precisely, we obtain the 

following facts: 

Choose a finitely generated extension field K of ~ 

and let R ~ K denote a finitely generated smooth ~-algebra, 

with field of quotients K. As before, n=Gal(K/K) is the 

absolute Galois-group of K. 

For an abelian variety A over K, n acts continu-

ously on the Tate-module Tl(A) (1 a prime). We have: 

Theorem 1 (Tate-Conjecture) 

a) T 1 (A) ® lI' ~l is a semisimple n-module 
1 

b) The map 

EndK(A) ®a ~l ~ Endn(Tl(A» 

is an isomorphism 

c) Except for finitely many primes 1, the image of the 

mapping 

Z'l [n] ~ EndZ' (Tl (A) ) 
1 

is the full commutator of EndK(A) 
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Theorm 2: (Shafarevich-conjecture) 

Up to isomorphism, there exist only finitely many abelian 

varieties of a given dimension g over K, which have 

good reduction at all primes £ c R of height one. The 

same holds if we consider d-fold polarized abelian varieties, 

for some integer d > 0 • 

Theorem 3: (Mordell-conjecture) 

Any curve over K of genus bigger than one has only finitely 

many rational pOints. 

Theorem 4: 

If A is an abelian variety over a field L of characteristic 

zero, and X c A a curve of genus bigger than one, then for 

any finitely generated subgroup rcA (L), r n X is finite. 

Theorem 5: 

The mapping 

is an isomorphism 

We also describe some ideas of A.N. Par shin and J.G. Zarhin, 

which give an effective bound for the number of rational pOints 

on a curve of genus bigger than one. 

Most results are proven by reduction to the case of number­

fields. This is achieved via complex Hodge-theory. In the 

next paragraph we give the necessary preliminaries. 
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§ 2 PRELIMINARIES 

1 • ) The Cebotarev-densi ty theorem 

Let 5=5pec(R) with RcK as before, R smooth over ~. 

Let n 1 (5) be the etale fundamental group of 5. (with 

respect to some geometric point). If x E 5 is a closed 

pOint, its residue field k(x) is finite with N(x) elements, 

and we obtain a con~ugacy class F x in n 1 (5) containing the 

-- " canonical generator of Gal(k(x)/k(x»~~. By abuse of 

notation we will often speak just of the element Fx~n1(5) , 

which is determined up to conjugation. 

v 
Theorem: (Cebotarev) 

The conjugacy classes of the F are dense in x n 1 (5) . 

sketch of pr'oof: We may replace 5 by an open subscheme, 

hence assume that a fixed prime 1 is invertible in R. 

We have to show that for any continuous surjec~ion of n 1 (5) 

onto a finite group G the images of the Fx meet any 

conjugacy class of G. Following the proof in the numberfield 

case it suffices it for any irreducible representation X on 

G over a finite extension E of ~,th~ L-series 

L(s,X) 

is holomorphic for Re (s) > d = dim (5) , 

can be continued meromorphically to 1 
Re (s) ~ d - '2 ' and has 

at s=d either a pole of first order (if X = trivial represen-

tation), or neither a pole nor a zero (If x~ trivial) • 
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Using Brauer's induction theorem ore reduces to abelian 

characters 

X: 7T .... ".L roots of unity. 

By Grothendieck's formula, if F denotes the etale l-adic 

sheaf associated to X • 

L(s,X) 
2(d-1) , i+1 

1,UO ( II det(1-p-s,F [H1(S@F,F))(-1) 
pcp 

p 

It is known that the factors for i ~ 2(d-1) are holomorphic 

and non-zero for Re(s) > d - ~ , and that H~(d-1) (S~Fp,F) 

is dual to HO (S @'lFp ' F-) (d-1) , hence we have to worry 

only about 

This is essentially the L-series for the representation of 

Gal (~/ID) on the dual of HO (S ® ij5,1f.) , with a shift d-1 

in the variable s. If L denotes the algebraic closure of 

ID in K, this representation is induced from the Gal (L/L) 

representation on 
o - v 

H (S ® L,F) • But o ~- v 
H (S \3J L,F) vanishes, 

unless 
v 
F is trivial on S ® L , that is, unless X is given 

by a character of Gal (L/L) . In this case we have to consider 

the L-series of this character, and its behaviour is known. 

2.) Decomposition groups 

Suppose X is an geometrically irreducible normal algebraic 

variety over a numberfield L, of dimension at least one. 

The fundamental group TI1 (X) of X is then an extension of the 

geometric fundamental group TI 10 (X) = TI1 (X ® LL) by the Galois-
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group Gal (L/L) : 

0 __ Tt10 (X) -+ Tt1 (X) -+ Gal (L/L) ---'10 

To any L-valued pOint p €: X (L) of X corresponds a 

decomposition group 

The mapping from D 
P 

to Gal(L/L) is an injection, and 

gives an isomOl::phism of D with some Ga1oisgroup p 

where L1 £ L is the field of definition of p . Hence the 

semidirect product Tt1o(X)~Dp has finite index in Tt1 (X) • 

3.) Complex Hodge-Theory 

Consider a smooth geometrically irreducible algebraic 

variety X over a number-field L, similar as in 2.) If 

we choose an embedding is the profinite 

completion of the topological fundamental group Tt1 (X((:». 

This gives us valuable information, for example that it is 

finitely generated. 

Furthermore, if 

<P A + X 

is an ab e1ian variety over X, and p e- X (L)£X (~) a 

geometric pOint, the action of Tt1o (X) on T1 (A) (1 a prime) 

is induced from the representation of Tt1 (X(<E» on 

H 1 (A(p),:.J) = T(A) • 
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This representation has the following wellknown properties: 

(Deligne, Hodge II) 

a) T(A) ® z IJ2 is a semisimple Tt, (S(It) I-module. 

b) Consider the injection 

EndX ® Lit (A) <=+ EndTt, (S (<1:) ) (T (A) ) ~ 

An endomorphism of T(A) commuting with Tt,(S(C)) is already 

in the image if it induces an endomorphism of one fibre of 

~/for example the fibre at p. 

Thus: 

EndX ® La: (A) 

4.) Hermite-Minkowski 

Let S=Spec(R) be as in '.), R smooth and finitely 

generated over ~. 

Theorem: (Hermite-Minkowski) 

Suppose G is a finite group. Then there exist only finitely 

many continuous homomorphism 

P Tt, (S) + G 
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sketch of proof: 

Let L be the algebraic closure of ~ in K (K quotient-

field of R). Then 

is geometrically irreducible over L, and n1 (X) surjects 

onto n, (S) • 

Choose a geometric pOint PE. X(t) . Then 

has finite index in n, (X) , so that it suffices to show 

that the various p'S restrict to finitely many morphisms 

from n,o(x) ~ Dp to G. But their restrictions to Dp 

give only finitely many different elements by the classical 

Hermite-Minkowski-theorem, and the same is true for the 

restricions to n,o(x) ,because this group is topologically 

finitely generated. 
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§ 3 THE TATE-CONJECTURE 

Theorem 1: 

Suppose that K is a finitely generated extension of ~, 

A an abelian variety over K, Tl(A) its Tate-Module 

(for some prime 1), 

Pl:rr=Gal(K/K) 4 Aut(Tl(A)) 

the corresponding representation. 

Then 

a) Tl (A) ®a \D l is a Semisimple rr-module 
1 

b) EndK(A) ®:" Z'l ';f End rr (T l (A)) 

c) For almost all 1 , the subalgebra of Endz (Tl (A) ) 
1 

generated by Pl(rr) is the full commutator of EndK(A) 

Corollary: 

Up to isomorphy, there exist only finitely many abelian 

varieties B over K which are isogeneous to A . 

Proof: 

We start by some general remarks. Properties a) and b) 

imply that for any prime 1 the subalgebra of End z (Tl(A)) 
1 

generated by rr has finite index in the commutator of 

EndK(A) . To prove c), we may restrict ourselves to primes 

1 for which EndK(A) ®z ~/lZ is a semisimple ~/l~-algebra. 

For those 1, property c) holds if and only if Tl(A)/l'Tl(A) 

is a semisimple rr-module, whose rr-endomorphisms are given 

by EndK(A) ®a a/l~ . If rrcrr is a closed subgroup with 

G:rr~ finite and prime to 1 , it suffices to show this 



- 2'2 -

property for IT' instead of IT . This also applies to a) and 

b), and we thus may assume the following hypotheses: 

Let LcK denote the algebraic closure of ~ in K . Then 

there exists a smooth, geometrically irreducible scheme X 

over L, with function field K, such that A extends to 

an abelian variety over A. Furthermore, X has a rational 

pOint p E X(L) • 

Thus IT acts on Tl(A) via its quotient IT, (X) • If we choose 

an embedding L'+ ~, IT, (X) decomposes as a semidirect 

product 

IT, (X) 

where o IT, X) is the profinite completion of the topological 

fundamental group IT, (X(~» . 

If A(p) denotes the fibre of A over p, properties 

a) , b) and c) are known for A(p) (with the action of 

Dp~Gal(E/L». We let T(A)=H, (A(p) (~) ,7) , so that 

Tl (A) =T (A) ®7 71 and the action of IT~ on Tl (A) is derived 

from the action of IT, (X) (e» on T(A) . The rest is easy: 

a) Tl(A) ®~ ~l is a semisimple IT-module: let ~,~o and i 
1 

denote the Lie-algebras of the compact l-adic groups 

and We have to show that tff is 

reductive in Tl(A) ®z ~l We know that this already holds 

for ~o(bY complex HOd~e-theOry) and f (Tate-conjecture for 
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A(p» • But ~ 0 is an ideal in ff ' and ff = ~o+! . 
The claim follows. 

b) EndK(A) ®~ ~l ~ Endrr(Tl(A»: We have an injection of 

left into right. Furthermore, we know that EndK(A) =EndX (A) 

Endx® ~(A) n EndL(A(p» 
L 

End rr1 (X(a» (T(A» n EndL(A(p» 

Tensoring with 71 and applying the Tate-conjecture to A(p) 

gives: 

EndK(A)®Zll=Endrr10(Tl(A»n Endop (Tl(A) 

End rr (T l (A» . 

c) For almost all 1, Pl(rr) generates the full commutator 

of End" (A) : 

Taking into account a) and b) we have to show that there 

exists a subalgebra M~End~(T(A» (of finite index in the 

commutator of 

1 M ®,l; 7.1 

EndK(A)=EndX(A» , such that for all 

is the subalgebra generated by P1 (rr) . 

If we replace rr 1 by rr~, such an algebra is yiven by the 

image of ~ [rr 1 (X «(1;) ) J. The same can be said about 0p~rr 1 (X) 

by using the case of number-fields. We take for M the algebra 

generated by those two subalgebras. The corollary follows, 

because M ®~ ~ is semisimple, and abelian varieties B 

isogeneous to A correspond to M-lattices in T(A) ®~ Q 

By the Jordan-Zassenhaus-theorem, there are only finitely 

many isomorphism classes of such lattices. 
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§ 4 THE SHAFAREVICH-CONJECTURE 

Theorem 2: Let S be an integral scheme, smooth and of infinite 

type over ~. For any g, there exist up to isomorphism only 

finitely many abelian varieties A of dimension g over the 

function~field K of S, which extend to abelian varieties 

over some open set U c S with codim (S-U):::2 . 

The same holds for isomorphism classes of d-fold polarized 

abelian varieties, for any integer d 

Proof: The two statements are equivalent, so we only show the 

first one. The corollary to the Tate-conjecture (Th.1) im-

plies that it suffices to prove finiteness up to isogeny, 

and by the Tate-conjecture we only need to consider the iso-

morphism-classes of the Galois-representations T1(A) ~~l ~l 

We may assume that I is invertible on S • If A extends to 

an abelian variety over S, we know that IT1 (S) acts semi­

simple on TI (A) ®a ~l ' and that this representation is pure 
1/ I 

of weight 2 (that is, for xES a closed point, the 

Frobenius F has eigenvalues of cbsolut value N (x (a. ) . x 

We show that these properties also hold if A has only good 

reduction up to codimension 2: By purity of the branch-locus, 

the representation of Gal (K/K) on TI(A) factors over its 

quotient IT1 (S) • This representation is also pure of weight 

1/2 , because for any closed point xES we can find a 

proper birational morphism 
,..I 

cp:S -+ S such that 
r-

is regular , S 

and -1 is a divisor in 
,.J 

(take blow-up cp (x) S the in x , 

for example) • • unramified "" cp II (A) As cp (TI(A)) is on S , 
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extends to an abelian variety over some open set IT c s, 
whose complement has CO dimension at least two. Thus there 

exists a closed point 
~ -1 

y E U n ~ (x) , and the eigenvalues of 

Fy have the correct absolute value. As Fy is a power of F., 

we are done. 

Now the original proof of the finiteness of isogeny classes 

applies (Ch.1T, Th.. J.i'), since we only need 

a) Hermite-Minkowski 

b) ~ebotarev 

c) The Tate-conjecture. 

Thus the proof of theorem 2 is complete. 

By the Parshin-construction, we obtain the Mordell-conjecture 

Theorem 3: 

Let X be a curve of genus g~2, defined over a finitely 

generated extension K of ~. Then X(K) is finite. 

Remark: 

Another way to show this is to make use of the Mordell-con-

jecture for function-fields (Manin, Grauert) and reduce to 

number-fields. 

The Mordell-conjecture is equivalent to the following old 

conjecture: 

Theorem 4: 

Let L be a field of characteristic zero, A on abelian 

variety over L, and X c A a curve of genus bigger than 
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one. If rCA{L) is a finitely generated abelian group, 

reX (L) is finite. 

proof: 

There exists a finitely generated extension of ~ contained 

in L, K C L , such that A and X are defined over K, 

and rCA{K) . Then rnX{L)~X{K) , and this is finite. 

Remark: 

By results of M. Raynaud, this also holds if we assume that 

r has only finite rank. 
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§ 5 ENDOMORPHISMS 

Again K is a finitely generated extension of Q, 

K its algebraic closure/ TI=Gal(K/K). TI operates 

continuously on the divisible group A (K) , and \'£ have an 

exact sequence 

with 

A(K)tors 

A(K)ntors 

A (K) ntors is a vectorspace over Ql, and it's the union of 

finite-dimensional TI-modules. More precisely, if ~ f: TI 

is a closed subgroup of finite index, the sp~ce of TI~invariant! 

in A(K)ntors is finite-dimensional (by the Mordell-Weil 

theorem) 

There is a natural injection 

and we want to prove that it is an isomorphism. We proceed 

by several lemmas. 
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Lemma 1: 

Let M be a TI-module which is a subquotient of A(K)tors' 

Then 

proof: 

If TI'CTI is a normal subgroup of finite index, we show 

that 

Choose a subring R~K, smooth over ~ etc. (as always), 

such that the normalization R' of R in the field 

K=KTI ' is etale over R, such that A extends to 

S=Spec(R) , and such that the A(K)-valued points of A 

extend to R'-valued pOints. We furthermore may assume that 

M is an I-torsion group, for some prime I, and that I 

is invertible in R. 

Then the TI-operation on A (K) TI' 
ntors and M is induced 

from a TI1 (S)-operation. For this operation A(K)~~ors 

is pure of weight zero (each Fx has roots of unity as 

eigenvalues, because A(K)TI' is a finite-dimensional 
ntors 

~-vectorspace), while M is pure of weight t. (F 
1/ x 

. I fbI t I N(x) 2). So there e1genva ues 0 a so u e va ue 

has 

cannot 

exist a nontrivial TI 1 (S)-morphism. 
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Lenuna 2: 

o 

proof: 

By lemma1, this injects into EndTI(A(K)tors) , and by 

the Tate-conjecture we may assume that A is simple, 

hence that 

is a skew-field. 

Let 1 - -
C €.Ext TI (A (K) ntors,A (K) tors) denote the class 

of the extension 

o -~ A (K) -->- A (K) -->- A (1<) -->- 0 tors ntors 

From the usual proof of the Mordell-Weil theorem one 

knows that for any prime 1 and any finite extension 

K=i<TI' of K, the cup-product with c gives an injection 

Now suppose that HomTI(A(K),A(K)tors)+O 

non-zero element ~ in this group. 

By lenuna 1, ~(A(K»=~(A(K)tors) , hence 

hence c goes to zero under the mapping 

Choose a 
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Ext1 (A(K) A(K)) + Ext lT
1 (A(K)ntors,A(K)tors /Ker·1.) IT ntors' tors ~ 

Thus for some prime I there exists a IT-invariant sublattice 

W ~ TI (A) , such that c goes to zero· in 

We show that this cannot happen: 

is a subspace of TI(A) ~ ~l' invariant 
I 

under IT • By the Tate-conjecture, it thus must be the 

image of an idempotent e of D ® ~ ~l There is a 

natural number n with n·e E e® ~ ~l ' and n(1-e) 

annihilates the image of c in 

and hence also 

for each finite extension K~K. If we choose K' in such 

a way that A(K~ contains a non-torsion element, A(K~ contains 

as a submodule of finite index a free ~module of positive 

rank. Thus A (K') Q9 ~]/a can be annihilated by n (1-e) 
. I 

only if e=1 , hence W=TI(A) • This is a contradiction. 

end of proof of theorem 4: 

We have a diagram 

EndK(A) + End (A(K))~ End (A(K) t ) 
IT J" IT n ors 

End (A (K) t ) = EndK (A) ®., 2 
IT ors '" 



- 221 

It suffices if 

is an isomorphism for each 1, and we are ready if 

we show that the mapping 

is injective, for each 1 • 

As End (A(K)) is torsion-free, we have to show: 
1f 

Claim: 

If f 1 , ••• ,f E End (1'(K)) are linearly independant over 
r 1f 

lr , they are 

linearly independant over lrl as endomorphisms of Tl(A) 

proof of claim: 

As End (A (K) ) 
1f 

injects into End (A(K) t ), we can 
1f n ors 

find a finite extension K' of K such that the f. are 
1 

linearly independant as endomorphisms of A(K'). As 

End (A(K')) us a finitely generated abelian group, there 

exists a constant d, such that 

for n > d . (Artin-Rees) 

If the fi are not lrl-independant as endomorphisms of 

Tl(A) , there is a sequence 
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such that 

a) 

b) 

not all components of n, 
J 

are divisible by 1 
r 
E n ji fi E 1j End 1l (T1 (A)) 

i=1 

Hence 

of 

hence 
r 
E 

i=1 

hence 

f n f annihilates the 1 j -torsion-points 
i=1 ji i 

, so 
r 
E 

i=1 

j -n" f, EO. 1 • End (A (K)) , 
J 1 1 11 

, d 
n ji 61 J - .~. For j >d; This is a contradiction. 
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§ 6 EFFECTIVITY 

A.N. Parshin and J.G. Zarhin have found a method which 

leads to an effective bound for the number of rational pOints 

on a curve of genus bigger than one, over a numberfield K . 

We intend to give a sketch. 

Let K denote a numberfield, X a curve of genus g ::': 2 

over K. The Par shin-construction associates to any rational 

point x E X(K) an abelian variety A(x) , whose dimension 

is independant of x. 

Let us suppose that there exists a rational paint Xo E X(K) 

We let h (x) =hL (x) denote the height of x E X (K) , measured 

by the line-bundle L=~X(X ) 
- 0 

Then h(x) is related to 

the height of A(x), h(A(x)) , by 

h (A (x) ) c 1 · h(x) + O(Vlh(x)I+1') 

whith some constant c 1 > 0 . 

We already know that there exist only finitely many isogeny-

classes of A(x)' s , and we can bound their number if we usefue 

v 
effective Cebotarev-theorem. ( [LOJ) 

It is thus sufficient to bound the number of points x€X(K) 

for which A(x) is isogeneous to a fixed abelian variety A 

If we show that for two such rational points x 1 ,x2 E X(K) , th~ 

difference in heights Ih(A(x 1 ))-h(A(X2)) I can be bounded 
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effectively, we may use an old result of Mumford ([M]): The 

maFPing "-:»+'11. (x) =O'(x-x) embeds X (K) into the MJrdell-weill group J (K) t 
o 

The Neron-Tate height makes J(K) ®7m=v an euclidean vector-

space, and for a pair of reals o < r,s the number of 

rational points x E X(K) with r :'0 II,,-(x) 11:'0 r(1+s) is 

effectively bounded, with the bound depending only on s 

As 11"- (x) II is related to h(x) just as h{A(x)) by a 

relation 

11"- (x) II 

we see that for any x E X (K) with A (x) isogeneous to A, 

we have either II,,-(x) 11:'01 , or r :'01,,-(x)Ii:'Or(1+s) with 

constants r,s independant of x, and such that s can be 

effectively determined. Thus the number of those x is 

bounded. 

We thus a~e reduced to bounding the difference of heights 

in one isogeny-class. 80 let us consider abelian varieties 

B isogeneous to a fixed A, and with good reduction outside 

a given set 8 of places of K. We may assume that A and 

all B's are semistable. The Weil-conjectures give an 

effective number N, such that for any l-isogeny ~:B1 ~ B2 ' 

with 1 a prime bigger than N, the heights h(B 1 ) and 

h(B 2 ) are equal. 

We are thus reduced to consider l-isogenies for 1 :'0 N , or 

for just one fixed prime 1 . 

(J=Jacobian of X) 
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By a series of reduction steps one shows that ~ can be 

factored into a product of finitely many isogenies 

~1""'~r ' with the number r independant of ~ , and each 

~i having one of the following properties: 

Either 

or 

b) For each place v of K dividing 1 , the kernel G. 
1. ,v 

of the extension of ~i to the Neron-models over the local 

ring 0v is a truncated l-divisible group of some exponent 

s ~ 2 . This means that the Tate-module of G. 
1., v is of the 

form (:1/ s ) hv , and G. satisfies the axioms for an 
1 :l 1., v 

l-diviSible group "up to order sIt • Furthermore, the Tate-

module of Gi(over K) is of the form (a/ s )h 
l·Z 

~i of type a) we know that 

For isogenies 

1 s 2" log(l) , 

so we may assume that ~=~i is of type b) 

Grothendieck the truncated l-divisible group 

By a theorem of 

G =G. over v 1.,V 

the completion 
A 
15' v may be extended to a full l-divisible 

group. It thus has invariants dv and h~ , and we have to 

show that for s big 

The left hand side can be determined by considering the 

action of rr=Gal(K/K) and TI=Gal(~)/~) on the Tate-modules. 

We obtain that the determinant of the action of n on the 
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on the induced Tate-module is d h 
*0· E , where Xo is the 

cyclotomic character, and E the permutation character. 

Here these characters take values in 

The Weil-conjectures show that either the equality above holds 

ore lS divides a certain number M > 0 which can be 

effectively determined. Thus either ~i does not change 

heights, or its degree is effectively bounded. 

This finishes the argument of Par shin and Zarhin. 



B I BLI OGRAPHY : 

[L] 

[LO] 

[M] 

S.Lang: 

J.C. Lagarias/ 

A.M. Odlyzko: 

D. Mumford: 

M. Raynaud: 

- 227 -

Division pOints on curves 

Annalli di Maternaticce Pura ed 

Applicata, 

ser. 4, 70(1965),229-234. 

Effective versions of the Chebotarev 

density theorem 

Proc. Syrnpos. Univ. Durham 1975, 

409-464. 

Academi~ Press, London 1977. 

A ll'emark on Mordell J s conj ecture 

Arner. J. Math. 87( 1965), 1007-1016. 

Courbes sur une variete abelienne 

et points de torsion. 

Invent. Math. 21(1983), 207-233. 



VII 

INTERSECTION THEORY ON ARITHMETIC SURFACES 

Ulrich Stuhler 

Contents: 

§ 0 Introduction 

§ Hermitian line bundles 

§ 2 Arakelov-divisors and intersection theory 

§ 3 Volume forms on lRr(X,:e) 

§ 4 Riemann-Roch 

§ 5 The Hodge index theorem 



- 229 -

§ 0 INTRODUCTION 

The purpose of this part is to give an introduction to 

intersection theory on arithmetic surfaces, a theory initiated 

by S.Yu Arakelov in [A1,2,3) and further developped by 

G. Faltings in [F)*). The idea, propagated during the last years 

in prrticular by L. Szpiro, is roughly to replace or better to 

enrich algeb~-geometric structures at the infinite primes in-

volved by hermitian structures as for example hermitian line 

bundles, curvatures, volumes etc. 

We describe the approach more detailed: Suppose X ~ B 

is a semistable curve over B=Spec(R) R the ring of algebraic 

integers in the field K Suppose, 01 and 02 are divisors 

(in the usual sense) on X. We want to associate an intersection 

number <°1 ,°2>. This is easy if by chance one of the divisors, 

say 01 ' is vertical with respect to rr, 
-1 

01 So rr (v) ,vE B , 

and 01 irreducible. We consider the line bundle ex (02) 

on X and obtain 

the degree of the restriction of ~X(02) to 01 ' multiplied 

qv=*k(v) , the order of the residue field at 

v. It is this definition which can be made to work in general. 

*) 
See also P. Hriljac [H]. 
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Suppose D1=S(B) is a section - this is the critical case. The 

idea is to put hermitian structures on all the line bundles 

~X(D2).Then we can consider the hermitian line bundle 

on B. We have a degree map for these and can define 

in perfect coincidence with the definition above. 

The problem is to find a consistent system of hermitian 

metrics on the line bundles & (D) on B. This will be 

done in §1 and once this is achieved the elementary properties 

of an intersection product can be easily developped. This will 

be done in §2. The next task would be to prove the analogues 

of the main theorems of classical surface theory as Riemann-Roch, 

Hodge index theorem and Noether's formula. 

For example the Riemann-Roch theorem chassically for the case 

of an algebraic surface says: 

X(e-X(D» - xeS-x) 

1 = '2 <D,D-w X> 

the canonical class. 

Now the intersection number on the right in our case involves 

the infinite primes veS 
00 

of B , so should the left side. 

We consider the cohomology groups Hi (X,\9'X(D», i=0,1 , which 
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are finitely generated R-modules. 

Now suppose for a moment, we are in the classical situation 

of a fibration n:X + B of a surface over a curve Band 

would extend everything to the complete curve B, 

8",,=8\B the primes at infinity. If nE'.B is the generic pOint 

of the generic fibre, ~his would induce on 

the K-vector spaces Hi(X ,~ (D) I ) v-adic structures using 
n X Xn 

the (canonical) isomorphisms 

for 

Therefore, making use of the general philosophy, we could expect 

hermitian structures on the (Hi (X,~X (D) ) ® R K) in our situ­

ation at all the infinite primes v EO 8"" . Actually this seems 

to be hoping to much. What can be done is only to construct 

volume forms for v E S "" , not even on the Hi (Xv,Ox (D) I Xv), but on 

HO(X ,ffX(D) Ix )-H1 (X ,0 (D) Ix ) , that is, more precisely, 
v. v v}li v 

a hermitian metric on 

where A always denotes the highest non trivial exterior 

product. 
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Using this Faltings is able to prove in [FJ all the analogues 

of the mentioned results of classical surface theory 

In this paper we will do the following: We will introduce 

the intersection theory as well as the volume forms on 

x(~x(D» in complete detail. Hopefully this is of help to 

algebraists which had so far not much experience with hermitian 

"analytic geometry". Afterwards we prove the Riernann-Roch 

as well as the Hodge index theorem, which both are fairly 

easy to obtain. We omit the proof of M.Noether's theorem, which 

is substantially deeper. We also omit the interesting consider­

ationsconcerning the Arakelov Zeta functions as well as the 

explicit computations in the case of an elliptic curve. For 

all of this we refer the reader to Falting's paper [FJ. 

One final comment: It would be nice to have volume forms also 

in the case of vector bundles E on X, that is volume forms 

on 

A JR r (X,E) A (Ho (X,E) ® A (H 1 (X/E) )-1 

Apparently D. Quillen has results in this direction working 

in a more analytic context with Selberg's Zeta function, analytic 

torsion etc. We discuss this pOint a little bit at the end of 

§3 • 

I would like to thank G. Faltings for explaining to me a number 

of pOints concerning his work. 
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§ 1 HERMITIAN LINE BUNDLES 

(general reference for things not made explicit is the 

book of Griffiths and Harris, ~-HJ). 

We consider a Riemann surface X with genus g > 0 . 

On the space of ho:lomorphic differentials we 

have the hermitian form 

Denote an orthonormal basis of X . 

We have the volume form 

g 
L W. A w. 

j=1 J J 

such that in particular d~ is independent of the 

ortho·normal basis ch .... osen. 

Suppose, ~ is a hermitian line bundle on X, with metric II II. 

Canonically attached to ;t is its curvature form 

curv 
(/. ,II ~ 

aa log IIsl12 

a2 12 azaz log II s I dz /\ dz 

in local coordinates, where s is a meromorphic section of ~ 

Apparently, the 1-1-form curvi is independent of the chosen 

section and therefore in particular well defined, because to 
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any point P E X one can choose a section s, generating '£. 

in a neighborhood of P and compute curv£ using this section 

there. 

Remark: The definition of course makes sense for any complex 

manifold with hermitian line bundle on it. 

The folIo-wing is well known or can be easily derived using 

S tokes theorem. 

Theorem 1: One has 

f curv (2ni) deg(t) 
X cl9 

Therefore not any 1-1-form w can occur as curvature form of 

a specified line bundle £ . On the other hand we will see 

below, that this relation above is the only obstruction to 

solving the equation 

curv.r, II II = w 

We have to make use of 

Proposition 1: Suppose, X is a Kahler manifold, n a 

1-1-form, such that 

a) dn = 0 

b) n is perpendicular to the harmonic 

1-1-forms with respect to the pairing given by the Kahler 

structure. 
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Then n = aa(v) can be solved with a COO-function v. 

F.urthermore v is uniquely determined up to a constant. 

Proof: Using Hodge theory (with respect to d) , we can 

write 

.. 
n= h + dn + d n2 

1 

an orthogonal decomp0sition, with h harmonic, d'" adjoint to 

d . 

Because dn=O , we obtain dd~(n2)=0, therefore 

Using 

° =(n,h) (h,h) by b) 

we have h=O. 

Write n1=n 1 ,0 + nO,1 ' n 1 ,0 a 1-0-form, a 0-1-form. 

But because a(n1,0) would be a 2-0-form, which could not 

cancel in 

n dn 
1 

we obtain a(n 1 ,0)=0, as well as 

a (no, 1 ) =0 

Using Hodge theory again (this time with respect to 

a, a *) , we can write 

n1 , ° 

*'" a,a resp. 
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where h is harmonic with respectto a and 
1,0 

. - - iii tt . ( + - (1) ) w~th respect to a,a . Pu ~ng v:= -no,o no,o 

aa{v)=n as a solution. 

II 
a 

, we obtain 

The uniqueness up to ~ eonstant follows (with a little care) 

from the maximum principle for harmonic functions. 

Proposition 1 has several applications .. 

I) Theorem 2: Given a 1-1-form w on the Riemann surface X 

which satisfies 

f w (2rr i) deg (~) 
X 

Then there exist a hermitian metric II II on t , such that 

curv,t, II II = w • II II is determined up to a positive constant 

factor. 

Proof: Choose an arbitrary hermitian metric II 111 on ~; 

Suppose 

curv It II II = w1 
I " 

By theorem 1 we have f {w-w )=0 
X 1 

(w-w 1) certainly is 

closed. The space of harmonic 1-1-forms is 1-dimensional, 

generated by d~ , furthermore 

f {w-w 1 )=0 
X 
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By Propos./ition 1 we can solve aa(v)=(w-w 1) . Putting 

exp(v/2 )=:u , we can define 

II II = u II 111 

and obtain a hermitian metric with curvature form W • The 

uniqueness up to aconstant factor follows as above. q.e.d. 

As an immediate application of this we obtain a uniquely de­

termined hermitian metric on any line bundle ~ on the Riemann 

surface X as follows: 

i) Suppose first, Q EX, .t=&x(Q) . Then there is a uniquely 

determined metric II II on ~ , such that for 

G(p,Q):=11 1 11e- (Q)(P), 
X 

the length of the constant section 1e. r (X,e-x (Q)) at P, we 

have 

a) 

b) f 
X 

a a logG2 (P,Q) 
p p 

TT (i w.,w) g j=1 ] ] 

log G(P,Q) d)l(P)=O 

ii) Writing an arbitrary line bundle as a tensor product of 

~X(Q)I S , we obtain a uniquely determined hermitian metric 

on any 't on X. 
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We call a hermitian metric II lion :e , with curvt,ll Irc d~ 

c=oonstant, admissible. Making use of the extra condition 

b) we have specified a unique admissible metric. 

Remarks: 1) We pose g(P,Q):=logG(P,Q). g is a C~-function 

far all P+Q. The behavior at P=Q is as follows: locally 

around Q we can write 

z·s 

s a generating section of e'x(Q) in 

around Q. Therefore II 111 = I z I· II s II 

Q , z a local coordinate 

, where lis (Q)II +0, 

he,nce 

g(P,Q) log Iz(p)(", logll s(p) II 

and g(P,Q) has a logarithmic singularity at P=Q. 

Remark: -g(P,Q) gives an inverse (Green function) for the 

positive elliptic differential oparator ~ defined by 

~ (f) 
- ----·n . ~ W AW 

2g j=1 j j 

g 

For details, see [F] 

2) One should remark, that J g(P,Q) d~(P) exists, the 
X 

singularity in Q causes no difficulties (IE r log r dr 
o 

exists! ) 
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More generally we have 

Theorem 3: Suppose, X is a Kahler manifold, w a 

1-1-form on X, £ a line bundle on X. Then the equation 

curve, II II = w 

can be solved, iff 

1) dw = 0 

2) [w] , the cohomology class represented by w , 

satisfies 

[w] = 2TIi c 1 (i) 

The proof is similar to the proof of theorem 2 and can be found 

in IG-HI ,po 139-144. (But caution: Griffith uses 

curvt =~alog I I···· I I , hence a (-) sign!) There are other 

possibili ties to express prcperty 2) • For example, suppose 

~=~X(D) , D = L ni Y i ' where the 

subvarieties. Then 

Y. 
1 

211i ( L nl. 

i 

are (n-1)-dimensional 

f h) 
Y. 

1 

should hold for all harmonic (n-1)-(n-1)-forms h. 

We can apply this in the following case: Consider (for a 

Riemann surface X ) the Kahler manifold XxX and the line 

bundle !t =6'XXX (ll ()() ) ll(X) the diagonal. 
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Take 

- 11 

P1,P2 of course the projections. 

Checking against a generating system of harmonic 1-1-forms, 

as for example P~ d~, P~ d~ , P;(wi)A P;(w j ), P~(wi)AP;(Wj) 

condition b) (or better the equivalent version) above, 

we easily obtain. 

T.heorem 3: There is a unique hermitian metric II lion If 

such that a) curv Je, II II 
b) J log II 1 II 

y 
for Q=Qo E X 

= W 

(P,Q) d]l (P) = 0 

a specified point. 

II) We determine the relation of the function II 111 (P,Q) on 

(XxX) to our previously considered function G(P,Q) . 

As W is symmetric, we have 

II 111 (p,Q) = c·11 111 (Q,P) , 

O<c;.E.JR • 

Therefore c=1 , applying this twice. 

We will show in a moment, that <P (Q):= J log II 111 (P ,Q) d]l (P) 
X 

is a constant function. Therefore <P(Q)=O by b). 

But then, by restricton, we obtain 
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Supplement to TheDrem 3: One has 11111 (P,Q)=G(P,Q) , in 

particular G(P,Q) and g(P,Q) are symmetric functions 

It remains to show 

Lemma1: The function 

is constant. 

Proof: We compute 

~(Q) f logl1111 (P,Q)dll(P) 
X 

logl1111 (P,Q)dll(P) I Q ' 
1 

Q1 an arbitrary point of X 

Suppose UE (Q1) is a small E -neighborhood in X around 

Q1' U€,/2 (Q1}C.~(Q1) and <1. 1 ,<1. 2 real valued 20sitive 

e-functions on X, such that 

Therefore 

i) supp (a 1 ) CU'E.(Q1) 

ii) a 1=1 on UE/ 2 (Q1) 

<1.2=1 on X\U€ (Q1) 

iii) a 1+a 2=1 on X . 

dQ dQ ~ (Q) I Q 
1 

, 

lim dQd Q J log 11111 (P ,Q) dll (P) I 
~->-O X\UE/ 2 {Q1) Q1 

We obtain for the first term 
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f (- 2~ 
X 

For the second term we can introduce local coordinates 

(t,z) for (P,Q) around Q1 and obtain 

where 

f loglz-tl 1jJ(t)dll(t) Iz=o ' 
!tl':::'E 

dll (t) = the standard measure on <I: , 

1jJ (t) dll (t) = dll (P) on U E/ 2 (Q1) 

corresponding some open neighborhood of t=O, finally 

1jJ(t) with compact support in Itl<e 

We can write 

=3 3 z z 

=3 3 z z (t-z=:u) 
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(lim J (loglul) t~u(w(U» d~(u» dzAdz 
0+0 o~lul~R 

(lim J 1 :n (loglul) w(u) ds 
0+0 lul=& 4 

- J t log lui 
lul=o 

dW.(U) ds 
d n dz /\ dz 

using Green's theorem. 

Therefore 

(lim J 
0+0 lul=o 

1 4TiiT w (u) ds) dz 1\ dz 

~ w (0) dZl\dz 

- 7fi w(O) d~(z) 

and $(Q) has to be constant. q.e.d. 
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§ 2 ARAKELOV-DIVISORS AND INTERSECTION THEORY 

Suppose B=Spec(R) ,where R is the ring of alge-

braic integers in the number field K, TT: X -+ B a semi-

stable curve over B, n EO: B the generic point, Sf the 

set of closed points of B (finite places of K), Soo the 

set of infinite places, S=S vS , 
:E 00 

X v X @ 
n K 

/'> 

K 
v 

for V E Soo 

the associated Riemann surfaces for the infinite primes. 

Definition 1: The group of Arakelov.divisors is 

,....-

Div(X) Div(X)(±) (±)JR(X) 
v"" Soo v 

So, any Arakelov-divisor has a unique decomposition 

where D 
00 

l: 
vE.S 

00 

r (X ) v v 

Now using the results of §1 , we can associate with any 

Arakelov-divisor D a set of hermitian line bundles for the 

v€: 8 00 • For a fixed v, the line bundle itself will be the 

on X to X v 

This line bundle has a canonical hermitian metric by the 

results of §1 . To take into account the infinite part D~ 

of D, the hermiit-1an metric has to be rescaled by the factor 
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Definition 2: By a hermitian line bundle on the arithmetic 

surface X, associated to the Arakelov-divisor D we 

understand the line bundle ~(Df) , enriched with the 

hermitian metrics at the v~ S", ' explained above. 

We remind the reader that a hermitian line bundle on 

B=Spec (R) has a degree, given as follows. The line bundle 

is given by a projective module P of rang 1 over R, 

suppose p £: P , Flo 0 : Then we have 

deg (P) log #= (p/Rp ) - L Ev log II p II v 
v E.S", 

where 

v f 1, if 

2, if 

/' 
K = lR v 
A 
K = a: 

v 

Definition of the intersection product: 

This will be uniquely determined by the following properties 

of the intersection pairing 

,..,J 

Div(X) x Div(X) +lR 

1.) <D 1 ,D2 > is biadditive 

2.) Suppose, D1 is an irreducible vertical (~ n- 1 (v) ,YES) 

divisor . 
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Then 

, where ~=ttk(v) the order of the residue field. 

3.) Suppose L~K is a finite field extension, XL a 

semistable regular model of (Xn~K L) , ~ : XL + XK the 

projection. Then one has 

4.) Suppose O,=(P), P ~Xn(K) a rational point. P defines 

a section s:B + X • ~X(02) is a hermitian line bundle on 

X , therefore 1(&X(02)) is a hermitian line bundle on B 

and one has 

Remarks: It is easy to check, that properties ,.) - 4.) 

uniquely determine the intersection pairing. 

We now have to establish the usual properties of an inter-

section pairing, that is: 

Theorem' : 
1.) If °,,°2 have no COmmon components, <°,,°2 > can be 

determined by computing local intersection numbers 

3.) Suppose fEK(X) is a function, (f) the associated 

divisor on X, 
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log II f II dll v 

the Arakelov-divisor associated to f 

Then one has 

«(f)-, D > 0 

for all D~Div(X) . 

for v E S 
co 

Proof: It is enough to show 1.) and 3.) , because using 3.) 

we can always assume D1 ,D2 without common components. Be­

cause we will see that the local intersection numbers are 

symmetric, 2.) follows. 

We show 1.) , but only for the typical cas e (P) =D1 , P E Xn (K) 

a rational point. We can assume, that D2 is an e.ffective 

divisor on X. We consider the section p=1~r(X,ex(D2» 

We have 

<D 1 , D2 > deg (e'X(D 2 ) I (P) 

log* (<9'X(D 2 ) I (P) / R 1 I - L ~ log II 1 II 
ves v v 

co 

Suppose x GD 1nD2 ' 1T(X) =v 6 B , t=o and z=o local 

equations for D"D2 in x. We have 

e'X(D2 ) (x) z -1 e: :::> 1 • x,x e:: X,x 
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furthermore 

o +(t) + O':x + e:: + 0 
,x D"x 

Using the isomorphism 

-, ~ 
(z O'::D x /,.~ )04 e: / 

" D"x X,X (t,~) 

we obtain for the local contributions 

(D"D2 ) (x) the usual intersection multiplicity Qf D"D2 

at x • 

As x and n{x)=v uniquely determine each other, we will 

write also <D"D2 >v for these contributions. There remain the 

contributions at v € Sec. 

Write h v D2=D2 +D2 ' a sum of horizontal and vertical divisors. 

On Xv' v E Sec , we have 

D (h) 
2 

Therefore we obtain for these v E Sec 

- logll '11 (P) 

- EnQlogG{V){P,Q) 

as a local expression. We see again, that <D"D2 >v 
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is symmetric, because the functions G(v) (P,Q) on the X are v 

symmetric. 

Altogether we obtain 

v~s 

a decomposition of the intersection number in local inter-

section numbers. 

We next show 3.) of theore.m.1: It suffices again to do the 

case D1=(P), P~Xn(K) a rational pOint. T.hat is, we have to 

show 

<P, (f(> 0 

COnsider the hermitian line bundle 0x((f)~) on X. We take 

f- 1=p as a section and obtain 

,.., lit N 

< (P), (f) > = deg(s O'X( (f) » 

~ iI ,..J 

log1J s (8"x((f) ) / -1 
f R 

log II f- 1 II v 

As (f)=LnQ(Q) on Xv' we can write 

n 
If I = II G(p,Q) Q u(P) , 

Q 

L Ev log II f- 1 II 
v£Soo v 

u{P) a COO-function on X, u(P)+O on X. 
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Therefore we obtain 

0 a3log If I 

I.: nQ ahog G{P,Q) + adlog u{P) 
Q 

aalog u{P) , because I.: nQ = 0 

It follows, that u{P)=cv is constant. 

Because 

Finally 

flog G{P,Q) d~{P) = 0 , 
X 

we obtain 

flog u{P) d~{P) 
X v 

f d~{P) 
X 

logll f- 1 11 v logll f-1. 111 v 

log If-1 t + logl1111v 

= (I.: -nQ log G{P,Q) - log u{P)) 
Q 

+ I.: nQ log G{P,Q) + (-rv ) 
Q 

o q.e.d. 
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§ 3 VOLUME FORMS ON IR rex ,~) 

A§ explained in the introduction to be able to formulate 

theorems like the Riemann-Roch theorem for arithmetic surfaces 

it is necessary to have at least a volume form on the virtual 

R-module 

that is, more precisely, a hermitian structure on the 

~v-vector spaces 

where A denotes the highest non trivial exterior product of 

A 0" 
the Kv -vektorspace H (X,,tl ® R Kv for example (v E Sa,l 

We will handle this problem in the context of Riemann surfaces, 

so let X be again a Riemann surface of genus g > in this 

paragraph and we use the same notations as §1 

Definition 1: We put formally 

for a line bundle ~ on X . 

We consider only such hermitian metrics on a line bundle ~ 

such that the curvature form curv l, II II is a multiple 

of d)J=(2~) l: (wj',wj l . 

Denote ~ the category of all such hermitian line bundles on 

X LUL-I:h csorne.+., .... ? 
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Theorem 1: There is a functor :ll-+A lRf (x,~) on the category 

~ to the category of hermitian (1-dimensional) complex vector 

spaces, such that the following properties hold: 

i) Any isometric isomorphism ~1 -+ 1 in t induces an 

isometric isomorphism X1Rf(X,t1 )-+ AlRf(X,t2 ) that is, saying 

again, A lR r(X,?) is a functor. 

ii) If one changes the metric on a line bundle ~ by a factor 

a> 0 , the metric on XIR (f (X, t) ) changes by the factor 

X(t) h O (.t)-h1 (t) i i a =a , h (t) :dima:H (X,t) (i=1 ,2). 

iii) Suppose, D is a divisor on X, P E X, D1=D-P and 

~X(D1) I 0 x (D) are equipped with the hermitian structure 

introduced in §1. T.he one-diIrensional fibre of e"x (D) at 

P, ~X(D) [pJ inherits the hermitian vector space structure of 

e"X(D). Then the canonical map 

ARf(X'S'X(D)) ) 

~ A (IIU (X,~ (D 1 ) )) ®a:O'x (D) [p] 

is an isometric isomorphism. The functor AJRf(X,) is 

uniquely determined by i) - iii) up to a factor > 0 

Remark: Suppose 0 -+ V1 -+ V2 -+ •• -+ Vn -+ 0 is an exact 

sequence of vector spaces~ Then there is a canonical 

homomorphism 

A(V1 ) ® A(V3 ) ® 

A(V2 ) ® A(V4 ) ® ] 
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This ismorphism is the one meant above. 

Proof: A) We first construct an assignment 

D -+ XIIU (X,\9'x (D) ) 

associating to any divisor D with a specified admissible 

hermitian: metric on \9'x (D) a volume form on lR r(X,l.'9'x (D)) , 

such that this map by construction fullfills ii) and iii): 

This is in fact easy . Fix any volume form on ~ f(X,l.'9'x)) , 

that is for D=O. Next build up 9 x (D) by adding and sub­

tracting pOints. Property iii) (and ii)) say how to define 

~f(X,gX(D)) in general. The fact, that the functions 

G(P,Q) are symmetric, guarantees, that it plays no role, 

how D is build up from nothing. There remains to show, that 

the map D~ ~(X,gX(D)) in fact induces a functor on e 

that is to prove i) 

B) Proof of i): Suppose we have two divisors D,D' and 

an isometry ~x(D) -+ \9'X(D') To show: The induced map 

:\.:ffi f (X,e'x (D)) -+:\.lR f(X,e'x (D' ) ) 

is an isometry itself. 

It suffices to show this for divisors with a specified degree, 

making use of iii) again. 

Suppose therefore, 

deg(D) deg(D') (g-1 ) 
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We can write 

with an effective divisor E, if r is large enough. 

Consider the map 

~: Xr ~ Pic 1 (X) g-

The study of this map ~ will enable us to prove i) 

Using the standard properties of base change, it is easy 

to see, that we have a (hermitian) line bundle ~ on Xr , 

the fibre at beeing 
r 

AIRf(X'~X(E- Z P.» 
i=l 1 

On the other hand, on Pic 1 (X) we have the theta-divisor g-

e = image(Xg - 1 ~ Pic 1 (X» . The associated line bundle g-

~(-e) on Pic 1 (X) will obtain a hermitian structure and g-

we will show, that the pull-back of ~(-e) as a hermitian 

line bundle will be ~ up to a constant factor. Therefore it 

follows, that the volume element on IRf(X'&'X(E 

depends in fact only on the isomorphism class of 
r 

~ P.» 
i=l 1 

e' (E -
X 

Z P.) . Using this, i) of theo r em 1 follows. 
i=l 1 

We therefore have to fullfill the following program: 

a) Construct a hermitian metric on ~(-e) 

b) To show: ~*(&(-e» and n are isometric up to a factor. 

To see this, it suffices to show: 

~,IE (curv&(_ 8) ) curv7f.. 
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Ad a): Using an embedding X --7 Picg _1 (X) , we can identify 

the differential forms with forms on Pic 1 (X) g-

which we also denote by 

oo 1 ,···,oog 

00 1 ' ••• ,oog and which are translation-

invariant. 

proposition 1: There is a hermitian metric on ~(-e) 

such that the curvature form is 

g 
rr 6 

j=1 
Yj 

Indication of proof: Of course we want to use theorem 

3 of §1 • That is, we have to show for h an arbitrary hrrmonic 

(g-1,g-1) form, that 

f (Yjl\h) 
Pic 1 (X) g-

-(2rri) f h 
e 

That is, the 1-1-form (-2rriYj) represents the cohomology 

class associated to e. It is enough to check this for 

a generating system of harmonic (g-1) - (g-1) forms, for 

example for the forms 

Finally one should evaluate the integrals involved as follows. 

Using the canonical map 

Xg- 1 ! ecpic 1 (X) g-

we have, because generically the map is 
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finite of degree (g-1) ! , 

J h 
e (g-1) ! 

but the pull-backs on are easily determined. 

Similarly one proceeds with J (Yjl\h) and the map 

covering 

t 
Xg -+ Pic 1 (X) g-

g 
( Q 1 ' • • • ,Qg ) ~ ( 2: 

j=1 

such that 

Pi/ 1 (X) (Yj 1\ h) 
g-

Pic 1 (X) g-

Q.-P ) 
J 0 l Po a fixed 

point on X, 

It is an easy exercise now to complee the proof of 

proposition 1 

Ad b1): To show ~·(e(-e))~~ as line bundles (without 

hermitian structure for the moment) : 

Onehas to go back to the construction of the line bundles 

involved. On respectively (Xx Pic 1 (X)) g-
,-oJ 

we have the obvious universal line bundles, say 1f. and :? • 

We have the diagram 

X X Xr (id,~) 
X)(Pic 1(X) -1 IT2 
1 IT 2 g-

Xr - Pic 1 (X) 
~ g-
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Obviously 

with some line bundle to on Xr • Furthermore it is known, 

that 

l' ';;t B'(-e) • 

One should remark for this, that ~ is trivial on 

<p- 1 (Pic 1 (X)\e). g-

'We obtain 

A.lR ( Tf 2 ) If (P) 

"" A.lR(Tf 2 ). (('t) 

B'(-e) ( 

'It J 

Using base change, we finally have the isomorphisms 

<plIEA. (IR (Tf 2) 'IE (0') =.. 

II 
"* <p (B'(-e)) 

b1) follows. 

We .have 

at ~A.lRr(X,B'(E)) 

® ( ~ 
i=1 

q.e.d. 
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curv 
'IL 

But we have 

and 
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r 
L 

i=1 

r .. 
L . Pi (curve: (E» 

i=1 X 

L 2ITi (P: (dIJ.) + p~(dIJ.) 
1<k<1<r 

IT 

Taking this together, one obtains, us'ing b 1 ), by a short 

computation: 

curvll 

(see [F1 ' if necessary) 

• <P ( curve ( - e) ) 

Therefore the hermitian metrics on 'It and ",*(e'(-e»-=='t 

differ only by a constant. Theorem 1 follows. q.e.d. 
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Remark: As already mentioned in the introduction, it would be 

be interesting to do a similar thing for vector bundles on 

a Riemann surface X. If one wants to use the same method 

as followed here, one has the following problems: 

(1) Specifying a curvature form for all bundles E of 

rang d in 

should use 

restrictions 

perhaps. 

(A1 ,1® End{E» up to a multiple. Probably one 
g 
L (ro. 1\ 00.) ® Id), but perhaps this puts 

j=1 J J 
on the bundles E , indecomposable or stable 

(2) How to define the volume form 

E -+ "A 1R r{X,E) ? 

Even if one starts with a matrix divisor instead of a bundle 

it is not clear how to define "A1Rr (X, - ) , because a matrix 

divisor can be build up in many different ways. 
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§ 4 RIEMANN-RoCH 

We consider again the arithmetic situation, that is, 

rr:X ~ B our semistable curve over B=Spec(R) R the ring 

of algebraic integers in K. 

Suppose, D is an Arakelov-divisor, t =<9'x (D) a hermitian 

line bundle on X; Then Hi(Xit)=O for i~2 , using the Leray 

spectral sequence and, using the results of §3, we have a 

volume form on t:l:J.e virtual (R ® :llR) -module 

(HO(X;t)-H' (X;~) 

= lRr(x,~) ® zlR 

To be able to make computations, we develop the following 

formalism: 

Definit~on": Suppose, M is a finitely generated R-module, 

vol a Haar measure on (M ® :a' lR) (over R ®:llR ';;t 

Then one poses 

X (M) : = _ lOgrOl (M®.pl M) ) 

\.. -:Ir Mtors 

X(M):= X(M)-X(R).Rang(M) ,where R obtains 

the standard Haar measure on (R ®ZlR) • 

,.J 

Ko(R) should be the Grothendieck group generated by the 

fini tely generated R-modules wi.rt·b volume form on 

(M,vol) 
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The. relations are given by the exact sequences 

such that A. (M ®a IR)';;" A. (M 1 ® a lR) ® A. (M2 ® :llR) as hermitian 

line bundles. (under the canonical map) 

It is easy to check, that one has a mapping 

Therefdre we define 

x :Ko (R) -+ lR 

(M,vol) ........ X (M) 1 

Definition 2: If t is a hermitian line bundle on X. Then 

we pose 

X (le): x (IRr(X,~)) 

The main result of this section is 

Theorem 1: (Riemann-Roch) One has X(t)= ~~,~-oox>+ X(~x) , 

where is the relative dualizing sheaf of X over 

B. 

Proof. We proceed as in [FJ 

i) The formula holds for t=~x . Suppose, the formula is true 

for ~~X(D) • We have to show, it remains true, if one adds 

an arbitrary divisor Do 

We obtain (writing X (D) instead of 
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XeD + av Fv 

a «ho(D) 
v 

av (deg (D) IF 
v 

+ 1-g 

okay. 

iii) Suppose, Do=C is an irreducible component of a fibre. 

We have to compute X (D+C)-X (D) • But we have the exact sequence 

o -+ O"x (D) -+ O"x (D+C) -+ I5'x (D+C) Ie-: (D) -+ 0 
X 

We obtain the following equation in Ko(R): 

lRr(e"X(D» + J{r(frx(Dt-C)/ex(D» 1 
= Rr (S'x (D+C» ) J 

Using property iii) of the volume forms, defined in §3. 

Therefore 

because 

X (D+C) -X(C) = X(&x(D+C)/~ (D» 
X 

log '(&x (D+C) I&. (D» 
X 

1 + 

using the adjunction formula. 
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iv) 00=S(B) , where s:B ~ X is a section for rr:X ~ B , 

given by 

We have 

P E X (K) 
1] 

X (0+ s(B))-X (0) 

X (l9"x (0+ s(B) ) / e: (0)) 
X 

lIf 
X (s (l9"x (O+.s(B) )) 

<0+ S(B) , s(B) > 

But we have the following 

Lemma 1: One has an isomorphism 

Proof: One can define amp using residues. The surjectivity 

of the map can be tested locally. 

Therefore we obtain 

<0 + s(B), s(B) > 

1 2" <0+ s(B), 0+ s(B) -wX> 

- 1. <0 o-w > 
2 ' X 

q.e.d. 
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§ 5 THE HODGE INDEX THEOREM 

We have the same notations as in §4. 

Theorem (HOdge index theorem) 

Denote Vv for v E S , the set of places of R, the set of 

Arakelov divisors, which are generated by irreducible compo-

nents of the fibre Fv Then the following holds 

1) The intersections pairing <,> is negativ semidefinit on 

Vv . The same is 
---./ 

true for ev 
v 

2) Suppose DEDiv(X) and 0.1. V for all v E S • Then v 

E Jac (X ) (K) . 
Tl 

One has: 

(as an element of 

<0,0> = -2 (K:q,}) 1 
• Neron Tate height (l9'x (D) I X ) J 

Tl 
Jac (X ) (K) 

Tl 

3) The signature of <,> on the group Div(X)/{(f)~lfEK(X) liS 

sign « » = (+,-, .•• ,-) and the number of -signs is 

-it" (-) = v~S « .f of components of Fv) -1) + Rang Jac (X ) (K) 
Tl 

For 1.) one can proceed exactly as in the classical 

situation. The reader can consult [FJ if necessary. 

3.) follows from 1.) and 2.) It remains to show 2.): 

Because <D,Fv > = 0 , we can conclude: deg(~x(D) Ix )=0 
Tl 

Therefore we obtain a class 

(9'X (D) I X ) E Jac (X ) (K) • 
Tl Tl 

The line bundles of degree (g-1) on X give a scheme 

Pic (X/B) over B, locally of finite type over B . 
g-1 
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There exists an open sub scheme 

P ePic 1 (X/B) , g-

where we have removed all components in Fv' v E S , except the 

one, which contains a fixed line bundle e(E) 

Then P will be of finite type over B. Consider again our 

D above, 

D..L Vv 'if v E S 

Then e'x (E ... n D) will define a point in P for all n E:l • 

We consider 8cP as the crJ.osure of the standard theta-divisor 

on P = Pic 1 (X )/K . We have seen in §3, that if ~ denotes 
T] g- T] 

the universal line bundle over P, we have the isomorphism 

and this is even an isomorphism of hermitian line bundles on 

P , as we have seen in §3 . 

Now, the class of ex(E+nD) defines a rational section 

B C'"" ~ P 
s 

We obtain the following diagram 

X xB(s) -+ X xBP 

n L n J 
B ~> P 

c 

c 

X x B PiC g _1 (X/B) 

n~ 
Pic 1 (X/B g-
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Using base change again, we obtain 

= A.lR 1'\it (S'x (E+nD) ) 

These are isomrophisms as hermitian line bundles on B , 

because the iso~rphismsare given canonically and we have 

seen in §3 that these canonical isomorphisms induce 

isometriesfor the Riemann surfaces Xv' v 6. S.,. • 

We therefore can conclude: 

+ deg (s I9-p (- 9) ) 

=X (S'x (E+no» • 

Using the Riemann-Roch theorem on the one hand we have 

x (O'x (E+nO) ) 

1 X (&x) + 2 <E+nO, E+no-oox> 

n2 :r <0,0> + terms, only linear in n. 

On the other hand, using the results of part II, Heights, 

we immediately obtain the equality 
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(K:~) x logarithmic height (E+nD) 

Using the ralation of logarithmic height and Neron-Tate 

height, the result follows. q.e.d. 
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