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INTRODUCTION

This booklet consists of the notes of a seminar con-
ducted by the editors during the Wintersemester 1983/84 in
Bonn, at the Max-Planck-Institut fiir Mathematik. The topic
was the proof of the Mordell-conjecture, achieved recently by
one of us, as well as some additional results about arithmetic

surfaces.

We hope that these notes will be useful for mathe-
maticians interested in arithmetic algebraic geometry. We use
Arakelov's point of view, which simplifies a lot the classical

theory.

The text follows closely the original proof. For a
somewhat different point of view (i.e., French versus German
style) the reader may consult the exposés Nr.616/19 in the
Séminaire Bourbaki 1983, by P. Deligne and L.Szpiro. L. Szpiro
is also conducting a séminaire in Paris, whose notes should

be useful as well.

The book is subdivided into seven chapters. The first
two, written by G. Faltings, give some general information
about moduli spaces and heights. Their main purpose is to
define the modular height of an abelian variety, and prove it's
mainproperties. Here we often content ourselves with giving
descriptions instead of proofs, because the complete details

would require at least two additional volumes.



The chapter III, written by F. Grunewald, deals with
p-divisible groups and finite flat group-schemes. It's main
topic is the relation between Galois-representations and
differentials. After those three technical chapters the
conjectures of Tate, Shafarevich and Mordell are shown in
chapters IV and V, written by N. Schappacher and G. Wilistholz,
respectively. In chapter VI G. Faltings gives some complements,
mainly the generalization of the results to finitely generated
extensions of @ . Finally the chapter VII, by U. Stuhler,
contains an introduction to the theory of arithmetic surfaces.
(Arakelov's intersection theory, Riemann-Roch, Hodge index-

theorem) .

We thank the speakers, all participants, the
Max-Planck-Institut in general, and it's director, F.Hirzebruch.

For the typing our thanks go to Mrs. D. Bauer, K. Deutler and

U. Voss.

Bonn/Wuppertal, Gerd Faltings
May 1984 Gisbert Wiistholz
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§ 1 Introduction

The purpose of this chapter is to list the necessary basic

facts from the theory of moduli spaces and their compactifi-
cations. Giving complete proofs would require a book, and there-
fore we usually only describe what is going on. Precise details

may be found in the appropriate books, and this survey might be

useful as an introduction to them.

The topics we deal with are

- Jgeneral properties of moduli spaces, and some examples
- logarithmic singularities

- compactification of the complex moduli-space of abelian

varieties.

In the next chapter this will be used to define height-
functions for abelian varieties over number-fields. I have
profited very much from comments and advice given to me by

P. Deligne and O. Gabber.



§ 2 Generalities about Moduli-Spaces

Suppose S 1is a scheme. We want to represent a contravariant
functor

F : (Scheme/S)O + sets

If this is achieved by M - S , we call M a fine moduli-space
for F . Dito if we work with algebraic spaces instead of

schemes.

In many important cases fine moduli-spaces do not exist. We
define a coarse moduli space as an M + S , such that we have

a mapping of contravariant functors

¢:F hM = Homs(?,M)
with
a) If T=Spec( ) - S is a mapping, with k an algebraically
closed field, then ¢ 1induces a bijection
T) & Homg (T ,M)
b) ¢ is universal for mappings F -+ hN , that is, for any
N> S : HomS(M,N)ﬁ Hom (F,hy)

obviously b) uniquely determines M .

There are two methods for constructing moduli-spaceslnamely
geometric invariant theory and Artin’s method. We use the

latter, and try to explain the main idea.

Suppose first that we want to construct a fine moduli-space

M . For any point x of M , the inclusion Spec(k(x)) ~ M



(k(x)=residue-field in x) defines an element of F(Spec(k(x))).
The completion of the local ring of x in M must be the base
of a formal universal deformation of this element. If S is

of finite type over a field or an excellent Dedekind domain,
and if F is a "functor of finite presentation", we can use
Artin's approximation theorem to obtain an algebraic scheme

T ~ S8 and a point ye T, with k(y)=k(x) » M extending to an
étale mapping from T to M . We thus obtain an étale covering

of M.

If we do not have M in advance, we still can make these
constructions;and under suitable hypotheses we obtain étale
mappings hT + F which cover F . In this way we can construct
M as an algebraic space. As we have mentioned before, un-
fortunately in many interesting cases fine moduli-spaces do not
exist. This usually happens if we take for F the functor of
isomorphism classes of certain objects, like stable curves or
principally polarized abelian varieties, and if these objects

have nontrivial automorphisms. We then construct a coarse moduli-

space, as follows:

Given one of the objects we want to classify, over Spec (k)
with k an algebraically closed field, the finite automorphism
group [ acts on the versal deformation of this object. We
algebraisize (following [}J) and obtain an algebraic scheme

T with T'-action, together with a TI'-invariant object of F(T) .
The coarse moduli-space M then has an &tale covering given
by the quotients ;\? . Usually the "universal object" in

F(T) does not descend to ;\S . Thus there exists a family of



mappings

with q; étale, Py finite and dominant, such that

M = \lj p; (U3)
and such that over each Ui there eXists a "universal object"
geE%Ui). This means that for any geometric point Spec(k)—fﬂi,
k algebraically closed, the pullback of ¢ in F(Spec(k))
is equal to the image of the geometric point in
HomS(Spec(k),M)ZF(Spec(k)). We shall have to deal with similar
situations in the future, where the p; are allowed to be

proper, and so we make the following definition:

Definition:
Suppose M is a noetherian normal algebraic space. A "covering"

of M is any finite family of mappings of algebraic spaces

with Ui normal, which can be obtained by the following

procedure:

a) If the Ui form an étale covering of M , they form a
" covering"

b) If there is only one Ui , and if ¢1 is proper and dominant,
we have a "covering"

c) If ¢i:Ui + M and wijgvij > Ui are "coverings" , the

compositions



form a "covering"

The motion of "covering" has the following properties:
i) L{cbi(ui) =M

ii) If R is an excellent Dedekind-domain, K its field of
quotients, and
¥ : Spec(R) + M
a mapping, there exists a finite extension L of K , and
an open covering in the Zariski-topology Spec(S)=LJVi
(S=normalization of R in L )}, such that we have commutative

diagrams

Vi E— Ui
|
Spec (S)
) '
Y

Spec (R)——> M .

These properties are easily shown by induction since they are

obvious for "coverings" of the types a) and b) above.



§ 3 Examples

a) Hilbertschemes

Consider a finite type morphism of algebraic spaces X - S ,

and a finitely presented quasicoherent sheaf F on X .

Let for T > S

Hilb T

over T , whose support is proper/T

_ \quotients G of F (@ &, , flat
X/S(E)(T) = &g

Then Hilbx/s(g) is representable by an algebraic space lo-
cally of finite presentation over S . ( [A], Th.6.1). If
X —» S 'is projective and ©(1) an ample line-bundle on X ,

the space representing Hilb (F) is the disjoint union of

X/S
spaces proper over S . Such a decomposition may be obtained

via Hilbert-polynomials.

b) Picard-functors

Suppose f:X - S 1is finitely presented, proper and flat, and

for any T > S we have f*(ekaT)=eT . Let Pch/S(T) be the
sheaf in the étale topology associated to Tna~>Pic(XxsT) . If
f has a section s:S - X , we can construct Pic (T) as

X/S

PicX/S(T) = Ker(s*:Pic(XxST)-—» Pic (T))

Then Pic can be represented by an algebraic space, lo-

X/s

cally of finite type ([A],Th. 7.3). We denote it by Picx/S .

We are mainly interested in the case that f£f:X »S is a semi-

stable family of curves, that is the geometric fibres are
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. 1
reduced, connected, of dimension 1, and do not contain I s

meeting the other components in just one point. We denote by
. 0 . . . .
Plcx/sg;Plcx/s the subgroup classifying line-bundles whose re
strictions to the components of the geometric fibres of f
have degree zero. (the corresponding functor can be represented

by the same reasons that apply to Picx/s). We have:

Theorem 3.1:

i) Picg)(/S is separated, smooth, and finitely presented over
S.

ii) The fibres of PicO + S are connected, and extensions

X/s
of abelian varieties by tori.

s . . O .
iii) If £ is smooth, PJ.cX/S is proper over S .
Proof:

The statements are local in the é&tale topology, so we may

assume that £ has a section
s : S~»>X.
ii) 1is wellknown. We only indicate that for S=Spec(k»ﬁ:an al-
gebraically closed field, and p:% -+ X the normalization of
X , we have an exact sequence

I‘(X,p*0§/0;) > pic®(x) (k) » PicO (%) (k) » 0 ,

where the first term is a product of (kx)’s , and Pico(i) an

abelian variety.



For 1iii) we use the valuative criterion;and may assume that
S is the spectrum of a discrete valuation ring V , with quotient

field K . But then X is regular, and the mapping
Pic (X)—>»Pic(X® , K)

is a bijection. (Calculate with divisors. The special fibre is
a principal divisor). For i) we first test the separation
property with discrete valuation rings. Let V be such a ring,

with field of quotients K. We show that the mapping
. O . O
Pic~ (X)—» Pic (X®V K)
is an injection:

Assume L 1is a line-bundle on X , trivial on the generic

fibre. Then LF9(D) , with a Cartier-divisor D on X whose

supportis contained in the special fibre. If C1...Cr are
the irreducible components of the special fibre, D has inter-
section product zero with each Cj (since it is in Pico). It is

classical that then D 1is a multiple of the special fibre, and

thus a principal Cartier-divisor.

For smoothness we show that for S=Spec(A) with an artinian
ring A , and IcA an ideal with 12=O , the mapping
Pic(X)—> Pic(X®) , */
A

1)

fs a surjection. But its cokernel injects into



o
X/S

that S is noetherian. If X%cX denotes the open subset where

To show that Pic is finitely presented we may assume

f is smooth, we obtain for r big enough a mapping

o, 2r .
(X7) "T—— Pch/S’

. . . O
whose image contains PlCX/S .

On points this mapping is given by

r r
(X1,---,Xr,Y1 I---er)'-> O’(E Xi— _Z-
i=1 j=

o)
Thus Pch/S

We also compute the Lie-algebra of Pici/sz

is noetherian too.

If in general

is a smooth algebraic space which is a group, and s:S > G

. _ . * _ % 1 _

its zero-section, we let tG/S_s (QG/S) and tG/S—dual of

* * .

tG/S tG/s and tG/S are locally free, and tG/s is called

the Lie-algebra of G. It can be determined via deformation

theory, and in case that G=Pic © with a semi-stable curve
X/S

£f:X - S, we obtain

~ 1
=R E(S)

o+
|

G/S

ass - fxlogsg) o
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where denotes the relative dualizing sheaf

Yx/s

c) stable curves

For g > 2 let

—_ isomorphism classes of stable curves
JIL(S) =
f : X >SS of genus g
there acurve is called stable if it is semistable, and if each
smooth 2E1 contained in a geometric fibre meets the other
components of this fibre in at least three points. Ji% has no

fine moduli-space, but (Emﬂ) there exists a coarse moduli-

space ﬁg , proper over Spec(2) . This easily leads to
Theorem 3.2:
Suppose S 1s a noetherian normal algebraic space, V ¢ S
open, and
f : X >V
a stable curve. (The genus may vary on the connected components

of V , but it is always bigger than one). There exists a

"covering"

and stable curves

f.:X, >~ U, ,
1 1 1

& ~1 Do s .
such that over Vi_¢& (V) X, 1is isomorphic to Xx,V, -
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d) principally polarized abelian varieties

Similar to c) we let for g > 1

isomorphism classes of principally polarized

Ag(S) = abelian varieties f:A -+ 8 , of relative

dimension g

As before there exists a coarse moduli-space Ag over

Spec(Z) , but it is not proper. So far we have no reasonable
way to compactify it, and this causes a lot of difficulties in
the sequel. The method to deal with them is to write an abelian
variety as a quotient of a Jacobian (As it was usual in pre-
historic times). More precisely, if A/k is an abelian va-
riety over a field k , there exists a smooth complete curve

C over k and a surjection
a:Pico(C) - A .

As Pico(c) is an abelian variety, o has an inverse up to
isogeny, that is there exists a B:A ~ Pico(C) such that

Boo = deid is multiplication with a natural number 4 > O .
If k 1is the generic point of a normal noetherian scheme S ,
and if A/k 1is the restriction of an abelian variety A/S ,
there exists a "covering” ¢i:Ui + S , such that the pullbacks
of C via ¢i extend to stable curves Ci over Ui .
Furthermore by the lemma below the pullbacks of o and B8 can
be extended to morphisms

a, @ PicO(Ci) + Ax

sYi v

e . P
Bi : AxSUi + Pic (Ci) , with sioai—d id.



Lemma 3.3

Suppose S 1is a normal noetherian irreducible algebraic space
and A1 and A2 semiabelian varieties over S , whose generic
fibres are abelian varieties.( The Ai are smooth and sepa-
rated over S with connected geometric fibres which are exten-

sions of abelian varieties by tori). If Uc S is a non-empty

open set, and

a:A1/U - A2/U

a morphism over U, a can be extended uniquely to S.

Proof:

The lemma follows from the theory forstakle reduction and Néron
models if dim(S)=1 , especially if S is the spectrum of a
discrete valuation-ring. In general we immediately reduce to
the case that S 1is the spectrum of a local ring with alge-
braically closed residue-field, and that U=S-{s} , where s
denotes the closed point of S . We denote by ZEA1 xS A2 the
closure of the graph of o . We are done if we show that the
first projection pr1:Z > A1 is an isomorphism, or that it is
proper and injective. (Since A1 is normal), pT, is proper:
We use the valuative criterion in the following form:

Let T = {tn} be the spectrum of a discrete valuation ring.

with t the special and n the generic point. Consider a

commutative diagram



] pr2
{n} —?’Z —_— A2
f - l Py
T — A

neE——
H

with fe¢(n)evu .

We have to show that ¢ can be extended to T . It suffices if

pr,ey can be extended. For this we look at the diagram

¢ xgid 't
— S, A T ——-—-— A_x, T

2 7S

1 *s
»n
L o xg{n} T,
X

1 S{n} —— A, Xs{n}

l

{n} —m— A

If we apply the result for discrete valuation rings as base we

obtain an extension & of axs{n} . Then
Eo(¢xs id):T ——— A, %4 T

defines a mapping & from T to A2 (wWwhich extends przow ’

since the image of ¢ 1lies in the graph of o and hence

pryey = ao(¢]{n})
pr, is injective:
We show that for any point X eA1 Xg {s} with k(x)=k(s) there

exists at most one point

(x,y) € 2 X {s} c (A1 Xg A2) Xg {s}

(ye A, xs{s} )
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For this we first need some general remarks: If T={n,t}
is the spectrum of a discrete valuation ring and ¢:T - S a
mapping with ¢(n)e&eU,y(t)=s , we can extend o after base-

change to an

The induced morphism

2 @y (s) KO > 2@y (g k()

is already defined over k(s) , since this field is algebrai-
cally closed and simce A, ®k(s)k(t) is semiabelian. (Use

l-division points!) It is thus induced from an

ag: Ap x o {s} ~» A, x o {s}

This og is independant of the choice of T and y, since its

effect 6n l-division points is determined by the map o over
U . Now we claim that with our previous notations necessarily
y=as(x): There exist T as above and ¢:T » 2 C A,| Xg A2 with
1‘50pr‘l oy({n} JEU, v(t)=(x,y). From the commutative diagram

.-«
Hé¢
-

AN} o
A1 Xs{n}————> A, Xs{n} 174

we see that indeed y='&'(x)=as(x)
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§ 4 Metrics with logarithmic singularities

In the sequel we shall need various hermitian metrics on vector
bundles, which have mild singularities. To formalize the situ-

ation we make the following definition:

Definition
Let X be a normal complex space, Y c X a closed analytic
subset such that U = X-Y is dense in X . If E 1is a vector-
bundle on X and <,> a hermitian metric on E/U , this metric
has logarithmic singularities along Y if the following holds:
For y€&Y , there exist a neighbourhood V of y in X ,
holomorphic functions £

£, on Vv with Y as common

RARE

set of zeroes, and sections €qreserey of E over U which

form a basis of g/U , such that for some constants c1,c2> o,

2

| A

C
|<ejrey> | (2) ¢, | (Log(max (£, (z))) |

1 2

|A

c
| det<ei,ej>|(z)— e (lOQ(max(Ei(ZH)

for zeUNnvV

Remarks:
a) The extension E of E/U is uniquely determined by this
property, since a local section of E/U is holomorphic on X

if and only if its norm grows at most logarithmically near Y .

b) The definition is essentially independant of the choice of
the £, and e. :

1 J
For another choice fi and Ej , and for a neighbourhood

Weev of y inequalities like the one above hold for the new

data.
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c) If <>y is a hermitian metric on E (not only on EIU) ’

<,> has logarithmic singularities if and only if for any

vyé€Y we can find V,£ "’fr' c1,c2 >0 as above, such that

1"

-1 I
cy [log(max(lfi(z)D)* - Hell 4(2)
< llell 2
€2
< cyllog(max{if, (z) )] “lell 1)

for any section e of E over UNnV , and z€UNV .

(l]e|l,‘||e||1 are the norms defined by <,> ,<p1.)

d) If F c E is a subbundle such that E/F is locally free
too, a metric with logarithmic singulariti;s on E induces
such a metric on F and E/F (Use c) )

e) If g has a metric with Iﬁgarithmic singularities, 8o
have Ef ’ SP(E),AP(E) , etc.

£f) If (X1,Y1) is a pair fulfilling the assumption on X

Ty,

and Y , and ¢:X; > X a holomorphic map with Y12¢-
then the pullback of a hermitian metric on E[U with loga-
rithmic singularities along Y 1is a hermitian metric on
¢*(§)/U1 with logarithmic singularities along Y1 .

The converse is true (i.e.,¢*<,> logarithmic singularities
=> <,> logarithmic singularities) if ¢ 1is proper and sur-

1

jective, and Y1=¢- (Y)

Examples of metrics with logarithmic singularities arise as
follows:
Theorem 4.1

Suppose (X,Y) £fulfill the assumptions of the definitiom,
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and let

be a family of semistable curves, with good reduction outside

Y , that is:

i) f 1is proper and flat
ii) The fibres of £ are semistable curves of genus >2 .
iij) For xevu f’1(x) is a non-singular curve..

_ . o 1 . .
Let E—f*(wc/x) . Then §|U_f*(QCA4)IU , and square integration
of differentials on the fibres defines a hermitian metric on
giU . This hermitian metric has logarithmic singularities along

Y .

Proof:

The claim is local along Y . Choose y€Y , and let
C(y)=f_1({y}) be the fibre at y . The fibration £ 1is lo-
cally induced from a versal deformation of C(y) . We may
assume that it is the versal deformation, and Y the diskrimi-

nant locus.

Denote by g the genus of C(y) , by A the unit-disk

3g-3

(]z|<1) , and let X=a , y=(0,...,0) , be the base of the

versal deformation of C(0)=C(y) . We assume that ¥Y¢X is
the discrimJinant locus, so that Y is a union of hyperplanes.

From the deformation~theory of semistable curves we know that

there is an open covering C = Lf/ Uj , such that either
j=1

fIUj is smooth, and thus UngxX , or that
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Uj = {(z,w,x) € AxAXX |z-w = fj(x)} ,

where fj(x) is the defining equation of one of the components

of Y . The mapping £ 1is given by
f((z,x)) = x resp. £((z,w,x))=x (z,w €A4)

The relative dualizing complex is generated over Uj by
dz resp. dz/z . Thus a section o of f*(wc/x) is given

by

o = ¢(z,x)dz resp. o = ¢(z,w,x) dz/z ,

with ¢ holomorphic.
To get one of the inequalities necessary for logarithmic

singularities we estimate from above

) _ 2
Jlel®< 5 1l

(x) 5 £ (%)

The integral over the Uj with f_1(x)nUj smooth remains

bounded, and we come down to estimating

2
d
g
z-w=fj(x)
z|< T
wi< 1
dz 2 dr
= i Z| =21 | == -anoglfj(xﬂ,
|fj(x)|<]z|<1 |fj(x)
{r<1

if £, (x) 1.
1£5 ()2
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As the zero-set of fj is contained in Y , we have one of the

necessary inequalities. The other one is quite easy:

We may assume that the Uj with flUj smooth meet each

irreducible component of each fibre f'1(x) o If <,>1 is a

hermitian metric on f*(wcyx) on X , there is a c¢> 0 with

2 2
z f lo] ze - [lall
]

flUj smooth f_1(x)nt

(1f a]f_1(x)r\Uj vanishes for each j with fIUj smooth ,

o vanishes on f_1(x)).

Remark :

The semiabelian group algebraic space A=Pic°(Ci) is princi-
pally polarized over U . Any polarization induces a hermitian
metric on tZ/XlU , and as two polarizationscan be compared we
see that all such metrics have logarithmic singularities along

Y . This result extends to arbitrary semiabelian varieties.
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§ 5 The minimal compactification of Ag/¢

We give an analytic description of the moduli-space Ag over

the complex numbers, and of its compactification Ag which
has been constructed by 8atake. The construction has been ge-
neralized by Baily-Borel [BB] , and it has the property that

any analytic mapping

with x° algebraic, can be extended to an algebraic mapping

X > Aé , where .ngo is a compactification.

We first give the analytic description of Aq:

A principally polarized abelian variety A/C of dimension g
can be given by its cohomology U=H1(A,Z) , together with an
unimodular sympletic form <,> : U x U > 2 and a totally

isotropic subspace of dimension g

v = F(A,Q;) cUu ®z ¢c=-1@,0 ’

such that

for vev ,v+0

It is known that the pairs (U,<,>) are all isomorphic. So we
may assume that U=22g with basis e1,...,eg, f1,...,fg ’
and

<e,,e.> = <f,,f.>
i’73 i’™3

1]
o

Il
=3

<e,,f.> =-<f.,e.> .
i’"3 j'i ij
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The automorphisms of (U, <,>) then are equal to G(2) ,
where G=Sp(2g) denotes the symplectic group. In the sequel
we write UQ for U® 2 0 , and similar qR,U¢,.G(Q),GGRY,G.(¢).

We define

o<
]

ftotally isotropic complex subspaces V ¢ U¢ of

dimension g }

- v
(veb, -i<v,¥>>0 for vevV,vi0}cD.

o
Il

v
D is a Zariski-closed subset of some Grassmannian, and homo-

geneous under G(€) . D is open in ) , and homogeneous
under G(R) . By the previous considerations we know that
~ D
A (C) = G(7) .

This is in fact an isomorphism of analytic spaces. If

T cG(Z) denotes a neat subgroup of finite index (for example
a suitable congruence subgroup) there exists a principally
polarized abelian variety A over X=I>E , whose fibre over

the equivalence class of Ve&eD 1is given by

*_ *¥_
A = Vt/h* . (v —Homm(V,C) r U —Homz(U,Z))

*
The bundle tA/X

I-quotient of the G(R)-equivariant bundle on D given by the

is the bundle defined on X by taking the

Vis.

For a real isotropic subspace WclU, we define a subset

F(W c D by VeF(W) if and only if
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i) i<v,v>> 0 for vevV

ii) We= {vev | i<v,¥> = 0}

Thus F(0)=D , and the topological closure D of D in B

given by

D = U F (W)

W isotropic

F(W) is homogeneous under Sp(WJVW) and isomorphic to the
object we obtain if we start in the definition of D with

Wf/W instead of U

Such an F=F(W) 1is called a boundary component of D , and
F 1is defined to be rational if W can be defined over @
simplify notations we write F(W)=F(WR) for an isotropic

subspace W C UQ

We let
p*={J Fw)
WEUQ
isotropic

is

To

pD* is stable under G(@). If T'c G(Z) is a subgroupof finite

. *_\D*
index, X =r has the structure of a normal compact complex

*

space. If T1=0G(2) , then X¥=Ag is as a set the disjoint

union

= AVvVA _U...., .. 1%
g AguAg—’l v AO ’

where A. for 0<¢jeg corresponds to the quotient
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\ U =

dim (W) =g-]

(All W of the same dimension are conjugate under G(7) .

It is known that X* is a projective algebraic variety. An
ample line-bundle can be described as follows:

For some r > O , the r'th power of the G(R)-equivariant
bundle on D defined by the £9v gives a line-bundle on
X= ;Q .( If T 1is neat, we may take =x=1 , and obtain

* x

). This line-bundle extends to X~ , and is ample.

The proofs of these facts can be found in [BB] .
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§ 6 The toroidal compactification

We want to construct a non-singular model X+ of X* . To

avoid the difficulties arising from singularities of X=£\P

we assume that T is neat.

We first consider the realization of D is a Siegel-domain:

Let WcU be an isotropic subspace, F=F (W), N(F) Cc G

Q
denotes the parabolic subgroup of symplectic transformations
which fix W (and hence also Wl'). We choose a Levi-decompo-
sition of N(F), which amounts to choosing an isotropic sub-

1
space Wo cU such that UQ = wo(:)w . This leads to an

Q
orthogonal decomposition

Up = W@ W) @ W Ah

and W and WO are dual to each other.

Let
Gh(F) = Stabilizer of (W@WO) in G
2 spwAwlh 2 spwtw
G (F) = {(a a,id) | € Aut (W)}
(Gl(F) operates trivially on Wlhwoi',
R(F) ={o€N(F) | o operates trivially

on UQ/W’L,W'L/W and W}

Then R(F) 1is the unipotent radical of N(F) , and

N(F) = (G, (F)XG,(F)) x R(F),

is a Levi-deompositon.
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Furthermore,
R(F) = exp(v(F))-U(F)
= exp(v(F)-exp(u(F))
with
v(F) ={c , ce g ,
cw® ¢ wAwlh,
C(W"'nwO ) c W

C(w) =0}

u(F) ={HEg | H(U) ¢ W
H(W'L) =0
(g=Lie(G) = sp(2g))

v(F) is a subspace of g , and U(F) is the centre of R(F).

113

2 O ¥ symmetric bilinear forms
u(F) 2 s°W)" =

Furthermore
ion WO

where to He€u(F) corresponds the quadratic form with value
<w,H(w)> for wew' . C(F) € U(F)p denotes the cone of
positive definite quadratic forms, and we frequently identify

U(F)]R via exp with u(F) .

For VEF=F(W) we have

v =w® wawtAwh

Define
L L
W= w@® vAarawher® = rw)
and
A: F F F B
: Fx V(F)p x u(F)g >
by

A (V,C,A+iB) = exp(A+iB): exp(C)-(V°) .



Theorem 6.1:

i)  Im(}) =D, = (V]| i<v,¥>>0 for vevaw,
v ¥ 0}
iiy) A induces a bijection
F x y_(F)]R X E_(F)C = DF
-1
A = i
iii) (D) F x \_/(F)]R X (Q(F)IR+1C(F))

Remark: X is a diffeomorphism.

Example:
If W is maximal isotropic, then v(F)=0 , F is a point,
and
~ .
D ={X+iYe M(g,C) ,

X,Y symmetric, Y positive definite}
This is the classical Siegel upper half-plane ]Hg .

Proof of the theorem:

i) Obviously FO=F (Ww°) is contained in D+ and Dp is
stable under R(F) and exp(i@(F)IR) , since R(F) stabilizes
W and 1_.1_(F)IR annihilates VnWJ_ (so exp(iB) (V'r\WL) = VnW'L ’
for Beu(F)p) Therefore Im(n)eDg -

On the other hand 1Im(y) is stabilized by the group
N(ﬂ-¢xp(2F,¢)=N(F)txf>(ig F,]R) , and it suffices to show that Dy
has only one orbit under this group. As D 1is homo-
geneous un ér N(F), we are done if we show that DF=exp(i‘5(F)]IgD .
As D c Dg » it is clear that the right hand side is contained
in the left one, so let us choose VeDF . We need an element
BéE(F)]R with exp(i‘B) (V)eD . This means that for v eV, v %0,

the hermitian form



i < exp(iB)v, exp(iB)v >

i < exp(iB)v, exp(-iB)Vv >

i < v, exp(-2iB)V >

=i »<v,v>+2<v,B:V>

takes a positive value.

This is the case if vévan‘ , Since then B annihilates v .
Oon the other hand if E ¢ V denotes the space of elements
perpendicular to Vr\W'L for the hermitian product above (or for

ig¢v,V>, which leads to the same E) , then E injects into

U(B/W'L z WO , and for v€E <v,B.-¥> 1is the value of the her-

C
mitian scalar-product defined by the symmetric bilinear form
E u = SZ(WO)* on the image of v in WO . If we choose
~F R C
B te be sufficiently positive definite, we obtain what we need.

B

ii) We want to recover A,Beg(F)R,Ceg(F)]R, VeF from

exp(A+iB)~exp(C)(vo) . It is easy to find V :

vV=w® (VnWO'L) =Ww(® (VAW A wo"') '

oL

L
© has the same image in W'L/r.] TW AW as

and VnWLﬁW
exp (A+iB) exp(C) (VO)nWJ— .

We thus may fix V and assume that exp(A+iB)exp(C) stabilizes

VO . We want to show that A=B=C=0 .

If

L
v e_VonW = Vn WO'L , then

A(v) = B(v) =0 , (since V'cw?")
and
c(v)ewnvl = (0)

exp(C) (v)-v
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iy . (0]
so C annihilates V nW'L . C 1is real, so it annihilates

the complex conjugate Vor\W’L , hence also

AL oL L 4
Wt = () @ (vCnw)
. —_ . R o __.L . —
(if v and v lie in VAW , i<v,v>=0, so v=0) .

As C 1is skew-symmetric for <,> , and as C(Wo)c.W"hWo'L

cw®)=o0 , and

c=0 .
If now vewg ’

{A+iB)(v) =exp (a+1B) (v) -veVonW =(0) ,
so A+iB annihilates Wg and A=B=0

1ii) The necessary computations have already been made in 1i):

If VEF , VO=W¢O@ (VqWO‘L) is the orthogonal decomposition
for the scalarproduct i<v,v> used in i) , where Wg was
denoted by E . Note that i<v,v> = 0 for vewg

Thus:

exp(A+iB) exp(C) (vO)eD
<=> exp(iB) (VO) eD
<=> <vy,BV¥>> 0 for vewg , v$0

<=> BEC(F) .

We now give a local description of a smooth compactification
+ D . .
X of X= 1\ . We remind the reader that T is supposed to

be neat.
The construction of X' makes use of rational polyhedral de-

compositions of the cones C(F) , for all boundary components
F . The details can be foundin [AMRT] . To give the idea we

make the following construction.
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Construction.

Choose a rational boundary component F . Then TnU(F) (R) is a
lattice in the vectorspace U(F)CKR)'E'E(F)]R . Choose vectors

e1,...,es€(:(F) such that exp(e1),...,exp(es) is a basis of
the free group A-I‘r\l;I(F)IR . Identify E(F)]R with R°® wvia this

basis.

Denote by T the torus
T = A\U(F) (€)

Cr —~ 3 X, r
ZI\ exp(2ﬂizj) (€ .

Then T operates freely on

D
A (A\g (F)Oxz(F)xF

D
and this space becomes a principal T-bundle over U(F) (G\

n

T operates also on ¢r , and T=(¢X)rgtr is a T-equivariant
embedding. We thus may form an embedding

r < \DF x ., AY
A T

A

D
The second space is a fibre bundle over U (F) (c;\F with fibre

A" . We need the following fact from [AMRT] and [M3] :

Fact:
a) There exists a compact complex algebraic manifold X+2X ,
such that locally the embedding X<u x* is isomorphic to one
of the embeddings above. (For suitable choices of F and

e ..,er). X+ dominates X* .

17"
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*
A/X

extends to X+ , such that its natural hermitian metric has

b) The vector bundle t (defined by the various V's)

logarithmic singularities along xt—x .

<+

c) The extension to X of the determinant bundle Agt*

A/X is
the pullback of the ample line-bundle on x* . (These two
bundles are already isomorphic over X , and this isomorphism

extends)

The proofs cannot be given here. a) is essentially the content
of [AMRT], b) and c) can be found in [M3] (Th.3.1 and

Prop. 3.4) We just indicate the essential idea behind b) :

Choose F, €q/--18g as in the construction above. Let
zj:U(F)¢ + ¢ be the coordinate functions dual to e1,...,es
The functions cj=exp(2nizj) form part of a local system of
coordinates, and the boundary is defined by ;1.....;r=o

Now the singular behaviour of the metric is determined by a

polynomial in the zj/ and the zj are of logarithmic growth.

Corollary 6.2:

For arbitrary X=;\P, the metric on one of the ample line-
bundles on X* constructed before (corresponding to the
r-th power of the AgV) has logarithmic singularities along

x*-x .
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§ 1 The definition

Let K denote a number-field. Classically the height H(x) of

a point x=(x0:...:xn)e]Pn(K) is defined by
[k-@] 1
H(x) = ves H(xo,..,xn) Il v

The product runs over the set S of all places v of K,

and H(xo,...,xn) Hv is given by':
sup {|xj |V | 0<j<n} , if v is finite,
i 287/ , . .
(fojlv , if v 1is infinite,
where € = 1 or 2 , if v 1is real/complex .

By the product formula this gives a well-defined function on

" (K) .

For any extension K.,cK the restriction to IPn(K1) of the

1="2
height-function w©n IPR(K,) 1is the height-function there.

.Thus H(.) is defined on P"(@). We let h(x) = log(H(x)) .

Theorem 1.1:

For ¢ > O is the number of xe.IPn(K) with h(x)<c finite.
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Proof:
Let t=[K:Q] , and Oire++s0 :K > @ the different embeddings
of K into the algebraic clasure of @ . Then (01(x),...,0r0<D

defines a Q-rational point in the r-fold symmetric product
r,.n n . .

ST @®") of T . Choose polynomials Fo...FNeQ[xij] in the

variables Xij’ O<i<n, 1<3<r , multihomogeneous of

degree (d,...,d) (that is homogeneous of degree d as a

polynomial in X and symmetric (under the action

Oj,...,an)
of f; on the j's), which give an embedding

¢:8¥ @") e— PN

There exists a constant cO with

h(¢(o{x»...,0ﬂk») < der-h(x) + o
We thus reduce to K=@Q .

We may assume that xo,...,xn are elements of % , and that

their greatest common divisor is 1 . Then
/2 2
h(x) = log XO+""+xn ,

and the claim is obvious.

Arakelov has given a new formulation for this definition:
Denote by R ¢ K the ring of integers. A metricized line-
bundle on Spec(R) is a projective R-module P of rank 1 ,

with hkermitian metrics on P(:)R € for any embedding
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K~ ¢ . For oonjugate complex embeddings the metrics should be
equal on P , and thus for p€P we have norms || p|[ ~for

any infinite place v of K

We define
deg (P, (|| ly? = 1og(order(P/R’p)) - 5- e, log ||p||V '
where p 1is an arbitrary nonzero element of P . (The de-

finition is independant of the choice of p )

To any point xéIPn(K) there corresponds a morphism

n

¢: Spec(R) —»IE’Z

On IP; we have the line-bundle (1) , the universal quotient
of Gn+1 H
Mt L ().

We thus define a hermitian metric on ©(1) ®Z T (on IPE) by
taking the quotient of the standard metric on the constant
bundle en+1 .

By pullback ¢*®11) becomes a metricized line-bundle on

Spec(R) . An easy calculation shows that
_ 1 ¥
h(x) = wgrgr " deg (47 &(1)

More general, if X 1is a separated scheme of finite type
over Spec(Z) , L a line-bundle on X with a hermitian

metric ||| on E@z € , and ¢ : Spec(R) » X a morphism defining
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a point x&X(K) , we let

_ 1 *
hL(X) = W deg(¢" L)

We then have the following properties:

i) Up to a bounded function, hL(.) depends only on the

isomorphism class of E@z Q@ , as a metricized bundle on
x@zg.
ii) If X®Z Q@ 1is proper over @, hL(') depends up to a

bounded function only on the isomorphism class of L @y 0

iii) If X@z Q 1is projective and L 1is ample on X®Z Q ,
the number of x€X(K) with hL(x) < ¢ is finite, for

any c¢ > O . (Note that we consider only =x€&X(K) which
extend to ¢ : Spec(R) - X . If X 1is proper of Spec(2) , this
is automatic)

Property i) follows from generalities about schemes of finite
type of over Spec(2) . For 1ii) we have to use that X(C€)

is compact and so any two hermitian metrics on L@ % € are

mutually bounded. For 1iii) we may assume that

L®,0 e |x,

for an embedding x@zqge»]pg (h  (x) is linear in L)

and the claimholds for JPE with ©(1)
The main advantage of Arakelov's definition is that we may
choose the metric on L ®Q C adapted to our problem. It is

a coordinate-free approach.
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We need a slight generalization:

Suppose X 1is proper and normal over Spec(2), Y c X a closed
nowhere dense subscheme (defined over 2 ) and L an ample
line-bundle on X . We suppose that E@ 2 ¢ has a hermitian
metric on (X-Y) ® 7 C , with logarithmic singularities along
Y.

If x&X(K)-Y(K) we extend as usual to a ¢ : Spec(R) + X ,

and obtain a.metricized line-+bundle ¢*(_L.) on Spec(R) .

_ 1 *
Let h.L_‘(X) = W deg(¢” (L))

Theorem 1.2:

The number of points x€&X(K)-Y(K) with h(x) ¢ ¢ is finite.

Proof:

We may assume that X EI!?IZ1 » Y ¢ X 1is the intersection of X
with a linear subspace, and L the restriction of &(1) to
X . There exist f1,...,fre_I‘(IP;, @(1)) with Y as common

set of zeros on X .

Let |} ||1 denote a her mitian metric on L&, € (on all

of X@, ¢ , and h (x) the corresponding height.

As x¢Y(K) , one of the fi does not vanish at x , and thus

¢*(fi) is a non-zero section of ¢*(£) . Thus

deg(¢* @+ || Il;) = log (order(s™ (@), , )
Ro™ (£,)

- I e_ logll€£,
ves Vv .

©

Iy
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v

.1log || £,

- vésmav I 1,v

-2 log Ilfi] ly (otx))
(o3
The lastsum goes over all embeddings K< C . As || £ || 1(2)
i

is bounded in X(L) , there exists a (independant of i and

X ) such that

- Logll £l 4(o(x)) < a + deg(e® (o™ I II) .
for all ¢ and i with £, (x)$0.
Thus
-log (max ]]fi ||1(‘7(x)))i a + [XK:0] 'HL(x) .
l —

for all ¢ and XxX€X(K)-Y(K).

As || || has logarithmic singularities along Y®, ¢, there

exist constants b,c>0 with

|1og || gll (z) -log |lg]|,(2)1 <
b + c-log{max[1, '—-lOg(milX I fi',"1) (z)]}

Hence we find d,e > O with
~ ~
]hL(x) - hE(x)I < d+e-log {max[1,hL(x)]}

Thus T‘L(X) remains bounded if hL(x) does,and this proves

the theorem.
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§ 2 Néron-Tate heights

We want to demonstrate the use of Arakelov's ideas in & relevant
example. Let S=Spec(R) with RcK as before, and let A be

an abelian variety over K . We also denote by A the Néron-
model of A over S , and by A° its connected component. A

and A° are algebraic groups over S ,
o

A(K) = A(R) 2 A°(R) ,

and A°(R) has finite index in A(R) .

If L is a line-bundle on A (over S ), we have the function
hL(.) on A(R) . We want to choose the hermitian metrics at
t;e infinite places in such a way that hL( ) becomes a qua-
dratic function on AO(R) . The quadratic_part is by defiﬁition

the Néron-Tate-~height. For any embedding o:K< @ A(Q%@ is a

complex torus.

If in general X/C is a complex torus and M a line-bundle
on X there exists a hermitian metric on M whose curvature

is translation-invariant. This metric is unique up to scalars.

(The curvature is a (1,1)-form, given locally by 35'log(||h|F),
h a local generator of M . If we use an translation-invariant
Kdhler-metric on X , the harmonic forms are translation-in-
variant, and the metric can be chosen such that its curvature

is harmonic). Then the metric satisfies the theorem of the

cube:
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For any subset 1Ic{1,2,3}, there are morphisms

pI:XXGan‘X—*X

pI(X1 ’X2’X3) = JiI Xj

The theerem of the cube means that

2 -0 p e = o
I

in Pic(X XLX xmx) , that is

~ ¥ ®(-1) III
Oxxxxx _@pl ™)

This isomorphism can be normalized in such a way that it is the
identity on {e} XCX x¢X , where e€X(C) 1is the neutral
element. (The right hand sidé isi canonically trivialized.on

{elx XCX th .

If we use the pullbacks by Pr of our hermitian metric on M ,

we obtain a hermitian metric on

-1y | I
@91*0‘9( 1)

Its curvature is given by

Tl *
L (=1) Pr (curvatureM)

I -
As curvature’i is a quadratic function on the tangent space
of X , this vanishes. We therefore have obtained a multiple

of the standard metric on &XxXxX . Using the trivialization on
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{e} x X x X we see that in fact we have an isometry

X x X xX

We now go back to arithmetic, and apply this to our bundle L
on A . For any o0:K<= € we take a hermitain metric on

L C:)R C with translation invariant curvature, and use these

metrics to define hL(.)

Theorem:

hL(x) is a polynomial function on AO(R) , of degree at most

two.

proof:

The theorem of the cube gives an isometric isomorphism of

bundles on
on on Ao :
°T o e T
e’o o o = pI(E)
A xSA xSA I
(At first the right-hand side is trivial on the fibres, hence
induced from a bundle on S . Restrict to the zero-section!)

Taking degrees this translates into
21 1T n o x,v,20) = 0
EPI IYI I

for x,vy,z€ a° (R)

Thus hL(.) is polynomial on AO(R) .
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§ 3 Heights on the moduli-space

As before, Ag denotes the coarse moduli-space of principally
polarized abelian varieties of dimension g . It is defined
over Q@ , (we do not need it over Z ), and there exists a
line-bundle L on Ag giving the "r'th power of

w = Agt"i ", r>0. (As Ag is not a fine moduli-

A/Ag A/Ag
space, there does not exist an universal A) .

We assume that g > 2 . If we replace r by a suitable multi-
ple, the sections of E@Q € give a projective embedding of

Ag®Q C , by the theory of the minimal compactification.

n

By descent there is an embedding Ag“—vIl?Q such that
_E=G’(1)1Ag . We denote by M the Zariski-closure of Ag in
P, , and by L the line-bundle ©(1)IM .

Then M®, € = (Aglc)* .

The bundle E@z ¢ on Ag,c has a natural hermitian metric,
defined by square-integration of differentials:

If A/C is an abelianvarietyover € , and o €ew =F(A,Qg/m),

A/C

gg=l)
Holl? = (-1) 2 (;)g [ ans
A(C)

Up to a constant factor this metric ¢eincides with the metric

*
A/Ag
logarithmic singularities at infinity. (Ch. I, Cor 6.2.)

on (A%t )®r defined in Ch. I, §6. Therefore it has

We thus can define a height-function hL on Ag(@) , such

that for number-fields K there are only finitely many
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><eAg(K) with hL(X) < c , for any c¢ (by Th. 1.2).

The purpose of this chapter is to compute hL(x) in case

x 1is the K-rational point defined by a semi-stable princi-
pally rolarized abelian variety A over K . More precisely,
we define a moduli-theoretic height h(A) for such an A ,

as follows:

Consider the connected component of the Néron-model of A

over R , a° - Spec(R) . The bundle t:/R has hermitian
metrics at the infinite places, and thus wA/R =Ath/R is a
metricized line-bundle over Spec(R) . Let
1
h(a) = deg(wA/R).

[X:0]

Then h(A) is invariant under extensions of K (since ﬁA/R

is), and we have:

Theorem 3.1:
There existsa constant C ,independant of XK and A , such

that
IhL(x) - r-h(a)] <C

Proof:

There existfa "covering"

¢i : Ui - M , with Ui schemes ,
such that
1

a) over ¢, (A

i g Q)’ there existsa universal abelian variety
I

A,
i
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b) Over Ui exists a stable curve

98 C; > Uy

with smooth generic fibre , and morphisms

a .
pic®(c,) —= A, with B, ea = d-id, d > O.
1 4—8—- 1 1 i
i

c) There exist line-bundles
My € Mayey lug sy
i’ 71

which are locally direct summands, such that over

-1
5 (Aq,m

o ¥ = A9t > 19q,

oW (w )
i A, /U, A, /U, i,%°7C; /0,

) M., 1is the image of
—i

This follows, because we realize the conditions a) b)
c) step by step by taking "cow:rings":

For a) this follows from I, § 2 for b) from I, 3.2/3.3, and
for c) we note that M, 1is already defined over ¢i_ (A
This defines a mapping from ¢i—1(Ag,Q) into a suitable
projective bundle, and we take the normalization of the clo-
sure of its graph. We further may assume:
d) The isomorphism used to define L on A_3

* ~ r r -1
¢l (_I:) = wAi@Ui ¥ I‘Al® jover ¢l (Ul) ’

extends to an isomorphism

b T u®r

on Ui(:>z Q

For this claim we may extend from @ to ¢ . Then both

line-bundles carry hermitian metrics with logarithmic singu-
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larities along the union of the discriminant locus of Ci

and ¢i_1(MQ-A ) . If we show that the isomorphism between

9,0
them on ¢i_1(Ag 0
I

bounded, our claim follows. This comes down to the fact that

) , as well as its inverse, is uniformely

the isomorphism

X, ~
¢ "*’Ai/Ui@z ¢S M@, ¢

and its inverse are uniformely bounded. Here the metric on

is given by the polarized Hodge-structure corresponding to

; ; 9
Ai , while the metric on gi c A q*(wci/ui) comes from the
polarization en Ai induced from the pblarization on Pico(Ci)
by

e)
ai.Plc (Ci) > Ai

As two polarizations on an abelian variety are comparable,

we are done.

The rest of the proof is rather easy:
Asthe Ui are of finite type over 8pec(2) , there exists a
number n > O , such that ¢i*(£) and Mfg>r are "isomorphic

up to a factor n"-, that is, if we denote by

. * ~ @r
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. . . -1
theisomorphism given on QiC>2 o, ney, and n.y,; extend

to regular mappings between ¢i¥(g) and Mé:)r on Ui

Now let A/K be a principally polarized abelian variety over
a number-field K, AO/R its Néron-model, xeiAg(K) the

corresponding moduli-point.

We claim that

th(x) -r-h(a)| < log(n) + r-g-log(d)

(d as in b) above)

For this we may extend K . We then may assume that there

exists a Zariski-open cover Spec(R) = lei and mappings

such that
450 vy = ¢lvy
where

¢ : Spec(R) » M

is defined by x , and such that the pullback by y.(K) of
i

Ai is isomorphic to A/K

By pullback, we obtain stable curves Di= wi*(ci) over Vi .

and morphisms over Spec (K)

a .
. .0 1 ¥ ~
Pic (Di)/K _T:d_é by (Ai)/K = A/K
i

By oay= deid .
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Furthermore there exists a direct summand

* g
vy M) ch qi,#(wDi/Vi) ’

such that over Spec(Ki) 1bi*(ﬂi) is the image of

> qu.

o, T w ((.0 )
i,% Di/Vi

i A/K

By the theory of minimal models @y and Bi can be extended

to V, :
i

[
i
Pico(Di) = A /v, .,
B.
i
and w.*(M) must be the unique direct summand of qu. (w )
i = i, = Di/vi
containing the image of ai* , so that
g B ¥ E3 * g
d %_(Ei) c 9y (w c wi (Ei) c Aq

A/Vi) i,at-(wDi./Vi)

Finally, there is a commutative diagram of isomorphisms

*
(b ot )Y L@, 0
Il
(wy n®r O 2 @, 0

b Fm) @, kT

The

isomorphism at the top comes from A/K S'Pi¥(Ai) , and it in-

duces an isometry at the infinite places (after base-change

with o : K - €) . We thus may view w£§;r,¢*(g) and
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(yi*(gi)§:>r as submodules of a fixed one-dimensional vector-

space V over K, with hermitian metrics on V(:)K ¢ for any

g:s K> C ,
®r * . .
mA/R and ¢ (L) are projective of rank 1 over R , and
their degrees are r-h(A) and hL(X) . If Ry;= F(Vi’ob.) ,

C: i
then ¢.*(M.) ¥ is projective of rank 1 over R, .
i =i i

We now have:

rg, , % ®r
d wi (Mi) ’

c (wA/R)®r R, C \Ui*(ﬂi)@r

ney @ ¢t r, en v Fa @,

hence

)®r.R

n-(w A/R i

o * (1. -rg, -1
A/R)® Ry € ¢ (L)-R; ¢ d 7 7-n (o

As the Vi form a covering of Spec(R) ,

r

r fg)
A/R '

n-(w c ¥ ¢ ahan

A/R’

and so indeed

|hL(x) - r-h(a)| < log(n) + rg-log(d) .
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§ 4 Applications

We shall need the following lemma (Hermite-Minkowski)

Lemma 4.1:

Let K be a number-field, S a finite set of places of K .
For given d > O there exist only finitely many extensions

L > K of degree <d , which are unramified outside S.

Proof:

We first use that a local field of characterisztic O has
only finitely many extensions of degree <d : This is known
for abelian extensions by local classfield-theory,and by in-
duction one reduces to this case because the absolute Galois-

group of a local field is solvable.

In the global case this shows that the discrminant of I is
bounded. By Minkowski' s theorem there existsa constant C>0
and an integral element xe€L with |X|V1 <c, ]leZ <1,

|x] <1, where the v, denote the infinite places of L .
Thévgoefficients of the minimal polynomial of x are bounded,
so that there exist only finitely many possibilities for this
polynomial and for K(x) . Now EL:K(x)] < 2 , and we may
assume that L 1is a quadratic extension of K(x) . By

classfield theory there are only finitely many such extensions

which are unramified outside S .

We use this lemma in the following form:
Lemma 4.2

Let K be a number-field, S a finite set of places of K .
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There existsa finite extension K'2 K , such that for any

abelianvariety A over K of dimension g , with good re-
duction outside S , the abelian variety A(:)K K' is semi-
stable, and has a level-12-structure. (All its 12-division

points. are rational over K')

proof:

For any such A , the field K(A[12]) obtained by adjoining
the 12-division points is unramified over K outside S and
places of characteristics 2 or 3 , and of degree < 124g
over K . Hence there existsa K' containing all such X(a[12]).

As any abelian variety with a level-12-structure is semistable,

we are done.

Remark:

We have used the following fact: Any automorphism of finite
order of Z§(21=l-adic integers) which is the identity mod 4
(for 1=2) or mod 1 (for 1>3) is the identity.

Now follows the main result of the first two exposées:

Theorem 4.3:

Let K be a number-field. Fix an integer g > 2 and a
c>0 . There exist up to isomorphism only finitely many
principally polarized semistable abelian varieties A over

K , such that h(A)<c .

Proof:
Let xtiAg(K) be the moduli-point for such an A . We have

seen that |hL(x)—rh(A)| is bounded, so that we obtain only
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finitely many different x . If two A’s give the same x ,
they become isomorphic over the algebraic closure X of K,
hence over a finite extension of K . They then have bad

reduction at the same places of K .

By the previous lemma there exists a finite Galois-extension
K’ o K such that all the A's have rational 12-division-
points over K! . Any isomorphism between them over a finite
extension of K’ then is already defined over KXK' itself,
since the isomorphism is already determined by its effect on
12-torsion-points, and hence equal to its Galois-conjugates.
Thus all A's inducing the same x:eAg(K) become isomorphic
over K’ . They are then parametrized by a subset of the finite

set
H1(Gal(K'/K) / Aut (A/K', polarization)) .

This proves our claim.

Remark:
Theorem 4.3 holds also for isomorphism classes of abelian

varietie.s (forgetting polarizations). See Ch. I, lemma 2.8.
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§o Introduction

This paper discusses some results which are used in the
contributions of Schappacher and Wiistholz to this volume. I
have tried to explain the application of the theories of finite
group schemes and p-divisible groups to the problems arising

in Faltings work.

Where it seemed necessary and where it was possible for
me, I have given detailed proofs. I have also included many

examples.

Chapters one and two introduce to the theory of group
schemes in particular finite group schemes. Most important

are here the exactness properties of the functor S*Ql.

Chapter three discusses p-divisible groups, a concept

introduced by Tate.

In chapters four and five we study the action of the
absolute galois group on the points of a finite commutative

group scheme and on the Tate-module of a p-divisible group.

I thank G. Faltings who has helped me a lot with writing

this paper.



§1 Generalities on group schemes

In this paragraph we describe certain elementary facts
from the theory of group schemes. We shall use the language of

schemes as set up for example in [HI.

Let S be a fixed scheme, then the category of schemes
over S has a categorial product which comes from the usual

fibre product of schemes.

~

X"gl

It ——
Jé—— |%

~N

So we have the notion of a group object in the category of
schemes over S. A group scheme over S 1is then a map of

schemes

| €«—iq}

together with maps of schemes over §S:

]

lne——m

=
| e——|n

|{ne——Ia

|

1]
ln€e———|n
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)

(=
lne—I|a

such that the following diagrams are commutative:

1) Gx Gx G »Gx G
- ST S ux_id -5
S
idx o
S.U
Gx G % G
- 5 u
2) Gx S — Gx G
ais I
2 - e
v
G id * G
n
2 o
§->< g" 'stg
S sx _id - =
S
3)

T~
——

A group scheme G +~ S 1is called commutative if the following

ix 1d

diagram



is commutative. Here g is the map which interchanges the
components of the product. Let G + § a group scheme and
T + S8 a scheme over S, then the structural maps of G + S

induce On

T G
G(T) = Homg(] , | )
=8 8

a group structure. G(T) is called the group of T -valued
points of G. Let G+ S and H + § be group schemes over

S. A map of schemes over §

S
|0 ——|Q

|ty &—|i

is called a homomorphism if the following diagram is commuta-

tative
GxgG o HxH
=} s 5
] I
If ¢: (G~ 8) » (H ~+ S) is a homomorphism of group schemes,

then the kernel of ¢ 1is the fibre product of the following

diagram

Q) ——IR

The structural maps of G induce on K + S a group scheme

structure.



We shall mostly consider the case where the base scheme
S is affine, that is § 1is of the form spec(R) for some
commutative ring R. A scheme X - spec(R) 1is called a scheme
defined over R. Consider the case where X is also affine,
X = spec(A). The map X -+ spec(R) comes from a ring homomor-
phism. R » A. Let now A be an R-algebra. The structural
maps of a group scheme on spec(A) - spec(R) come from

R-algebra homomorphisms:

us A > A @RA
S: A -+ R
i: A -~ A.

The maps 1u,s,i make certain obvious diagrams commutative.
Conversely given an R-algebra A and maps u,s,i making the
appropriate diagrams commutative one gets on 8pec(A) - spec(R)
the structure of a group scheme. An R-algebra A together
with R-Algebra homomorphisms u,s,i satisfying the appropriate

conditions is called a bigebra in [Bo].

Examples:

We shall now give some examples of group schemes over a ring R.
They will all be affine. We shall describe them by giving the

R-algebra homomorphisms corresponding to u,s,i.

Example 1: The additive group ga'
A = R[t]
us t > 1ot + tel

s: t >0
i: t > -t.
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If B 1is an R-algebra then there is a group isomorphism
~
ga(spec(B)) =B .

+ group
B is the additive/of B. 1If G = spec(R) is a group scheme

and B 1is an R-algebra we write
G(spec(B)) =: G(B)

for the group of B-valued points.

Example 2: The multiplicative group gm'

A = R[t,t" 1]

us t > tet
s: t » 1

i: t ~» t—l.

If B is an R-algebra then there is a group isomorphism
G, (B) = B*.

*

B is the group of units in B.

Example 3: The group of n-th roots of unity y_. For n €N

n
put
-1
A = R[t,t ]/<_tn_1>
p: t > t®t
s: t » 1
i: t » t—l-
Example 4: The constant group scheme “X(A). For a group A

put A = RA where RrA is the ring of R valued functions on A.

p: £ > uf with uf(g,h) = £(g-h)
s: £ > £(1)

i: £ > if with if(g) = £(g Y).
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The schemes in example 4 are all étale over R

Example 5: G, p- For a,b € R with a+b = 2 define
—4ayr

A = R[t]/<t2_at>

p: t > 1@t + t®l - btet
s: t >0
i: t > -t.

The R-algebra A 1is a two dimensional free R-modul:

Example 6: Many:examples arise from (affine) algebraic groups
over fields. Let R be a ring with quotient field K. A
group scheme G over spec(R) 1is called an abelian scheme
over R if G is proper and smooth over spec(R) and if

all fibres are connected.

Exact sequences ;

Definition: Let 91 92, §3 be group schemes over S. A

sequence of homomorphisms

) ¥
°~ & &2 & 0

is called exact if
1) ¢ 1is a closed immersion identifying 91 with the kernel
of .

2) ¢ is faithfully flat.
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Assume that V¥ 1is of finite type, then condition 2 implies
that ¢ 1is a strict epimorphism. That means that the sequence

v
G, X G,——"G, >

27, 257 ¢

3

is exact in the category of schemes. See [M] Theorem 2.17.
Assume that S and 91,92,§3 are affine, say S = spec(R),

91 = spec(Ai), i =1,2,3. Then the above seguence comes from

a sequence of R-algebra homomorphisms

~

¢ v
Aje—— A, A,

Condition 2 means that A2 is under ¢ a faithfully flat
A3—module. Condition 1 means that § is surjective and that

there is an R-algebra isomorphism

o A2 @ABR——~»A1

making the following diagram commutative

|N
<

The tensor product is formed viewing R as an A3-algebra

under the zero-section s.

Modules of differentials:

We consider here the case where S = spec(R) and where G =

spec(A) is an affine group scheme over §S. We write
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1 1 1
= =
“e/s T "o/r T Ta/m

where Q;/R is the usual A-module of Kdhler-differentials of

the R-algebra A. See [HI],[Gr] for the definitions. The
universal derivation is

1

d: A ~ QA/R'

We shall also be interested in the following R-module

*_1 1

s QA/R = QA/RQ

AR.

Here the tensorproduct is formed over the zero-section s: A+ R«

For later computation we need the following result.

Proposition 1.1: Let O » G

— gz—w—»§3 be an exact

sequence of affine group schemes over a ring R. Let 91 =
spec(Ai) for i =1,2,3. Then the sequence

1 1 1
0% /R %%, /R®, P %, /r €a M

of Alvmodules is exact.

Remarks: 1) From the result in proposition 1.1 it follows

that the following sequence of R-modules is also exact:
— s*Ql — s*Ql

G,/R G,/R G4/R

2) The above sequence of group schemes is exact if

condition (1) in the definition for exactness of short

exact sequences is satisfied.

Proof: Consider the underlying sequence of R-algebras

Y
A1<—L Aj,e——A,.
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Since ¢ 1is a closed immersion ¢ has to be surjective. But
then the map induced by ¢

1 1
o) {2 ®, A
Al/R A2/R A2 1

is surjective. Next, we take the sequence Aze——A3e——R of

rings and get, using the second exact sequence, an exact

sequence of Azrmodules

1 1
) QAz/R QA3/R ® A3A2

We tensor this sequence with A1 and obtain
A *———Ql ®, A
A

1 1
®_ A0 ® .
AZ/A3 A2 1 A2/R A2 1 A3/R 3 1

Using the commutative diagram of R-algebras

Ay &,
]
Afe—o—2,

we get a commutative diagram

R &
3

R
€ 7 A3

1
®, A —Q
B,/B3 TR A,/R TA,1

€ l 6]
-1

1 o gl
-—
“a ®AR/R A /R

2
3
e 1is the usual base change isomorphism. Since €°0 1is an

isomorphism,proposition 1.1 is proved. [



Remark: If Y -~ X is a map of schemes, then we write

for the relative module of differentials. Using the same
proof, one sees that the assumption in proposition 1.1

that the Ei should be affine, is not necessary.
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§2 Finite group schemes

Here we shall consider finite group schemes. They arise
for example as kernels of isogenies of abelien varieties.

Let X be a scheme. For U g_gt, an open set in the

underlying topological space of X, let U&(U) be the assoc-
iated ring. A morphism ¢: X > S of schemes is called affine
if the inverse image under ¢ of any affine open subset is

affine in S.

Definition: A morphism of schemes ¢: X -+ S 1is called finite
if it is affine and if for every open affine set U ¢ §t the
OS(U)- algebra @X(w_l(U)) is a finitely generated G%(U)—

module. The morphism ¢ 1is called of finite order if the

X

US(U)—modules O (w_l(U)) are locally free of constant rank.
If n 1is this rank then n 1is called the order of ¢. One

also says then that X is of finite order over S.

If S 1is a locally noetherian connected scheme then a
scheme X +~ S over S is of finite order if and only if it is
finite and flat over §. More specifically, consider the case
where S = spec(R) for a noetherian local ring R. Let o:

X > spec(R) be a scheme over Spec(R). Then X 1is of finite

order over Spec(R) if and only if X = spec(A) for some

R-algebra A which is a finitely generated free R-module.

A group scheme ¢: G + S 1is called finite or of finite
order if the map ¢ is finite or of finite order. The
examples 3,8 from §1 are group schemes of finite order over R.

The constant group scheme R(A), this is example 4, is of
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finite order if the group 4 is finite.

A Theorem of oort and'Tate:

We shall report here on the construction of certain

group schemes of prime order due to Oort and Tate [ O ].

Let p be a prime number. Let ¢ be the primitive (p-1)

-th root of unity in the ring of p-adic integers Zp which

satisfies ;m =mmodp for m=1,...,p-1. Put
A =mlg, ——102Z_ Q.
p p(p-1) P~ P
We shall construct now certain elements wl,...,wp_l € Ap
To do this let
B = Ap[z]/<zp_l>
and define in B:
p-1 _ X
¢z g -zZ")?t
m=1
w, = .
p-1l _.
(= ¢ M1-2™))
m=1
The claim here is that the w, are units in Ap' Examples
are easily computed:
p = 2: w, = 1
p = 3: w, = 1, w, = -1
2
p = 5: w, = 1, w, = ~z(2+z), wqy = (2+z) 7,
w, = —5(2+c)2.
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Take now any Ap -~algebra R with structural map ¢: A_ -+ R.

For any pair a,b € R with a*b = p define

p .
Ga,b *
A = R[t]/<tp_at>
p-1 : i
u:t»t@l+1®t+£—p— r —L  tletP?t
i=1 w(wiwp_i)
s: £t >0
i: t » -t
Then (A,u,s,i) is a commutative group scheme of order p over

R. This can be checked by computation. Let R now be a
complete noetherian local ring of residue characteristic p. R
is in a-natural way a Ep—, hence Ap—algebra. In this case,

we have a group scheme Gi for any pair of elements a,b € R
’

b
with a+b = p. The following is proved in [ O ].

Theorem 2.1: (Oort, Tate)

Let R be a complete noetherian local ring of residue
characteristic p > O. For any group scheme G over R which
is finite of order p there are a,b € R with a*b = p such

that G and gg are isomorphic as group schemes over R.
r

b

Let a,b,c,d be elements of R with a+b =p and c-d = p.

2]
Then ga,b

unit u € R* with

c = up—la, d = ul_pb.

and gg are isomorphic if and only if there is a

d

Notie that this theorem implies for certain rings that any group
scheme of prime order is commutative. This is proved without

2
restriction on the base scheme in [0]. The ga,b have already

shown up in example 5 of §1.



Duality:
Let R be a ring and G = spec(A) »> spec(R) a commutative
affine finite group scheme over R. G' stands for the Cartier

dual of G. It is defined as follows.

G' = spec(A'")

where A' = HomR(A,R). In the Hom only R-module homomorphisms
are considered. The structural maps u,s,i induce maps
u',s',i' which make G' into a commutative group scheme over
R. If G was of finite order then G' 1is also of finite

order and the orders coincide. We have

Proposition 2.2: Let p be a prime and R an Ap -

algebra, and let a,b € R with a+b = p. Then

P v = P
G = G
(—alb) —bra

This can be seen by a straightforward computation, see also [O].

Modules of differentials:

We shall compute now the modules of differentials for the

group schemes gg b* We deduce then some general results on
’

the modules of differentials for group schemes of prime order.

Proposition 2.3: Let p be a prime and R an AP-

algebra. For a,b € R with a*b =p 1let G = Gg b be the
- -y

group scheme over R defined above, then



1) Qé/R - R[t]<tp_at,ptp'1_a>
2) S*QE/R = R/a°R
Proof: We have
G = gg,b = spec(A) ,
where
A= ER[t]/<tp—at>

The module of differentials of a polynomial ring is a free

one dimensional module:

1

2p1x /g = Rlxl-dx

with derivation:

1
d: R[X] > QR[X]/R
d: P(x) » P'(x)dx
exact

From the second/sequence (1) follows.

explicit description of the zero section of

Proposition 2.4:

(2) is proved using the

B
ga,b' s

Let R be a complete noetherian local ring of residue

characteristic p > O

a group scheme of order p over R.

% 1 * 1 _ R
#(s QE/R)- #(s Qg'/R) = B /p‘R)

and without zero divisors.

Let G be

Then:



_70_

Proof: By theorem 2.1 we find a,b € R with a*b = p such

that

=z &P 1 = P
S G, p' & %5,

as group schemes over R. We know by proposition 2.3 that

yf(s*szé/R> # %/, p and

* 1 R
¥ agyp) = HC/pp)-

We have the exact sequence of R-modules

R R

/abrR”> /bR O

0 > R/aR -

From this the result follows. [

A group scheme G over a ring R of finite order is of
multiplicative type if and only if its dual G' is é&tale
over R. For examnle the schemes My are of multiplicative
type. We have

Zy ).

() = RE/

Proposition 2.5: Let R Dbe a complete noetherian ring of

residue characteristic p > O. Let G be a group scheme of

order p over R which is of multiplicative type. Then
* _ R
#(s"agp) = #C/ )

Proof: Since G' 1is étale over R we have
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=O.

* 1
(s QE'/R)

We then apply proposition 2.4. 0

Remark: Proposition 2.4 will be generalised greatly in

theorem 2.10.

,

Etale groups:
Let R be a complete noetherian local ring with guotient
. N
field K and residue field k. k 1is the separable
algebraic closure of k and (%O is its galoisgroup. Rét is
the maximal local étale extension of R. (%O acts naturally
on Rét'

Let M be a finite Cvo—module. Put

A = Mapoao (M,R,,)

et
for the R-algebra of <§O-invariant Rét-valued functions.
Define the structural maps for A Jjust as for constant groups.
This turns A into an étale bigebra over R. We call this

group scheme of finite order M.

Theorem 2.6: Let R be a complete local ring. The map
Mr-+>M 1is an equivalence between the category of finite
%O—modules and the category of é&tale group schemes of finite

order over R. The inverse map to Mm->M is given by
AN
G k(G @pkIk) .

Here
lod ol
G®k =G x spec(k).

R spec(R)



A
The fibre product is taken over the map R » k » k. For all

of this see [G,D],section II.

We also mention for later use that any group scheme of

finite order G can be embedded in an exact sequence

O+§o—>_(-;—>gét—>0.
o | ét ., _ . 0
where G is a connected subgroup and G is etale. G
and get are unique up to isomorphism. See [G], [Ral.
Finite subgroups of abelian schemes:
If A is an abelian scheme over a ring R then one
knows that
* 1 . g9
S Qé/R = R
for some g €¢IN. g is the dimension of A. See [M ]. Assume

that G 1is a flat subgroup of finite order in A
0>G~A
Then the exact sequence. from proposition 1.1 gives some

. . * 1
restriction on s QQ/R'

Proposition 2.7: Let K be an algebraic number field of

degree m over @. Let A be an abelian scheme of dimension
g over the ring of integers (0 in K. Let G be a flat

subgroup of A annihilated by a prime number p. Then
*.1 _.d
# (s Qg/R) =p

with d < m-q.

Proof: That G 1is annihilated by p means that
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multiplication by p factors through the zero section of &.
See the beginning of §3. The map:multiplication by p induces

on s*Ql also the multiplication by p. So s¥a

1
/R &/R

an abelian group of emponent p. It is also a quotient of

is

o0 =z". 0O

We shall also need the following:

Theorem 2.8 (Raynaud): Let R be a local noetherian
ring and let G be a finite flat group scheme over R. Then
there is a projective abelian scheme A and a closed immersion

0O~ G > A.

For this see [Be] p. 110 and [Oo] chapter II for a somewhat
weaker version. If G 1is a finite flat subgroup of an

abelian scheme A then there is an exact sequence

This is proved in [M-T1.

*
The exactness of s Ql:

Here we shall improve on proposition 1l.1.
Theorem 2.9: Let R be a discrete valuation ring with
quotient field K of characteristic 0. Let
0—>§l—>92—>g3—>0

be an exact sequence of group schemes of finite order over R.

Then the sequence of R-modules

* 1 1 1
0O ~>s 953/R > 8°Q > s Q
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is exact.
Proof: The problem here is the injectivity on the left.
Let the sequence
0~+G~> A > B >0

be exact, where G is of finite order and A, B are abelian

schemes. The sequence

[0
*_1 * 1 * 1
0~s QB/R > 8 QA/R > 8 QG/R

»> 0

is then also exact. This is clear apart from the injectivity

on the left. ¢ 1is an isogeny and

0 s*Qé/R————*s Qé/R
¢ l
I X

has the degree of ¢ as determinant. Since K is of charac-
teristic O +the map ¢ is injective. By theorem 2.8 we

embed G into an abelian scheme A and define

2

A
/ c-=12
G <))

B =2

Then we have the exact seqguences

0o » 17 A->B->0O
2 > A > C > 0}
0 -~ > B ~» C >0

0

l

G

¥
0->G
4

G

=3

!

0

From these we obtain a commutative diagram
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(o}
1 i 1
* * *
Q
o » s E/R - s QE/R > s 093/R > (¢}
[ I |
* 1 * 1 % 1
o > s QE/R > s Qé/R +> S QEZ/R > o
1 1 :
* * *
0o -~ SQE/R > SQA/R -~ 8 le/R -> (o}
e}

A diagram chase proves that the arrow o 1is injective. O

We generalise proposition 2.4. If M 1is a module over
a ring R we write ¥ (M) for the length of M.

Theorem 2.10: Let R be a discrete valuation ring with
quotient field of characteristic 0. Let G be a finite

group scheme over R, let G' be its Cartier dual and n its

1)
order. Then

L (s™ag, ) + K (s™ag, ) = LY o)

Proof: We embed G into an abelian scheme A and define

B = é/G. Then we have exact sequences
0—»§+é—>§—>0
0~ G'-A'+~ B's> 0.

Here A', B' are the dual abelian schemes of A, B, see
[0o], [Mu].

We get exact sequences

* 1 * 1 * 1

0O ~»s QE/R > S Qé/R > S QE/R > 0
* * 1 * 1

0O+ s QE'/R +> 8 Qéf/R > 8 ﬂg'/R - 0

We write g for the dimension A or B. We have
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% 1 * 1 * 1
= Q Q
s QE/R Ccoker (s E/R > s é/R)
* 1 * 1 *
s QG'/R = Coker(s_Qg,/R > s QA'/R)

1 1
Coker (H™ (B, @B) + H (A, UA))'
The last identity uses
1 _ %1 . 1 R S | '
H (é, UA) - (S Qé'/R) r H (E'OB) - (S QE'/R) -

So we get

X (s

1 g ., g
/R %(COker(r(g,QE/R) I(2/9p/g))

%(s*né./R) Y (coker (09 (B, 0g) > #9(a, 0,))).

This follows by consideration of determinants of the appropr-
iate maps. All maps are here the maps induced from the exact
sequences at the beginning. From the Serre-duality theorem

we get a commutative diagram

#9(a, 0

I

H9(B,05) x T(B,9

g9
RPN

deg (o)

gd—>2

g, )
B/R

But the degree of the isogeny ¢ coincides with the order of
G. For the notation and for Serre-duality, see [H], chapter

IIT. 0O



§3. p-divisible groups

Here we discuss the definition and some facts on p-divis-

ible groups. This concept is due to Tate [T].

Definition: R 1is a noetherian ring, p 1is a rational
prime number and h 1is a nonnegative integer. A p-divisible

group G over R of height h 1is a system

G = (gk'ik) k>0,
where
(1) each gk is a group scheme of finite order over R. The
order of G is pkh.

k
(2) for each k > 0 the sequence of group schemes
i k

k. 12N
0~ & Sy 41 > Gy

is exact.

Remarks:
k . . . . k
1) The map p under (2) is multiplitation by p'. If G
is any group scheme over S and if n €IN then the

composite map

¢ —343d , ¢ x .G —tG

is called multiplication by n. If G is commutative, it
is a homomorphism of group schemes over S§.
2) LetG bea finite commutative group scheme over S of

order n. Then multiplication by n annihilates G. That



means, there is a commutative diagramm:

A

G———

IO e——1Iun
/)]

where A is multiplication by n. See [T].
3) If G = (gk,ik) is a p-divisible group, we

shall prove that the exponent of Qk is exactly pk.
The exponent of a finite commutative group scheme G + S

is the minimal number n such that multiplication by n

annihilates G.

Exactness of the sequence under (2) means that ik is.a
closed immersion. Furthermore, ik has to induce an isomor-

phism to the kernel of pk.

Let G = (gk,lk), H = (Hk,jk) be p-divisible groups. A

homomorphism
¢: G > H
of p-divisible groups is a system of homomorphisms of group

schemes over R

opi G T Hy

such that the diagrams
S B
*x Ik

SpsT "

Pk+1
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are commutative. A sequence of homomorphisms of p-divisible

groups

is called exact if the sequences of homomorphisms of group

schemes over R

are exact in the sense of §1.

We define now for k,% € R with k > 0, & > 1:
i

k.0 is a closed immersion
r

We have now

Proposition 3.1: Let G be a p-divisible group over a

noetherian ring R without zero divisors.

(1) The sequences:
k

1% N
§k+2

i
O_)G_k—,th

k k+2

are exact for all kx >0, £ > 1

(2) gk is annihilated by pk.

(3) There is a homomorphism of group schemes

Ikt Gen > &
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such that the following diagram is commutative

k

p Y
G —_—_— G
=k+4% =k+4&

2,k
Ik, s
-2

(4) The sequence of homomorphisms of group schemes

is exact.

Proof: The G are all affine schemes:

G

G = spec Ak

for some R-algebra Ak' We write

ik : Ak+l -> Ak

k,SZ,: Ak'HL > A

k
: A A
p g TNy

i

for the homomorphisms of R-algebras corresponding to the maps
of group schemes with the same name. We also have R-algebra

homomorphisms ©, making the following diagrams commutative:

® R «
Ak+1 A
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Since the zero-sections are surjective, the maps ¢ are
surjective. The kernel of ¢ 1is the ideal generated by the

image under pk of the kernel of s.

(1) This is proved by induction on &, the beginning of the
induction being obVvious. We shall indicate the induction step

from 2 =1 to 2= 2. Consider the diagram:

v
ALn Alu:.
® Re—----|---cm e
ALM Aku k B "
(:2//// s\\\\\\\ P P
Alt. € Yl AEH € bieed Ak *2

The algebra B 1is the tensorproduct Ak ® R formed
+2 A
k+2
over the maps pk and s. Whereas C 1is the tensorproduct
A ® R formed over the maps pk+l and s. The broken
k+2 Apio

line is induced by A diagram chase making use of the

kel
preliminary remarks shows that this is an isomorphism. The

broken line composed with © gives the identification of the

kernel of pk with the image of ik 2°
’

(2) Multiplication by 92 commutes with every R-algebra

homomorphism. Consider the diagram



- 82 -

)
i |
By s i1 »Ar ®Ak+1R
k k
P P

It shows that the map ikopk factors through the zero section
k, . .
of Ak+1' Hence p eiy factors through the zero section of

Ak+l' Since 1k is surjectlve,the map

k
P By > By
factors through the zero section of Ak'
(3) follows from (2).

(4) The problem here is to see that is faithfully flat,

Ik, e
everything else is straightforward.

By (1) the kernel of the homomorphism

k

p
Ser ™ Ske

is a group scheme which is flat over R. From this it follows

that pk is flat, see [M], p. 67. Consider now the diagram:

P
K L) BApie
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We have already proved that Ak+2 is under jk'£ a flat
Al-module. We shall prove next that jk . is injective.
14
This is seen by proving
h?

k
rankp(p (&, N=P -

To do this tensor the above sequence with the algebraic
closure K of the quotient field of R. If K has character-
istic O all the above group schemes become constant and the
claim can be checked on the explicit basis for constant group
schemes. See §2, and [G,D], II. If the characteristic of

K is p > O then one has to check the claim on the models in

[G,D],11I.

Now is under a finite ring extension of Al'

Bx,n )
Hence by going up,condition (e) of proposition 9 in [Boul]

chapter I is satisfied and Ak } is a faithfully flat module.
’

ﬁtale and connected:

In this subsection we assume that R 1is a complete
noetherian lacal ring with residue field k of characteristic

p > O.

Let G be a group scheme of finite order over R. Then

there is a canonical exact sequence

’,

O+§O->_G_—>§et—>o

?

. ét
where GO is the connected component of 1 in G and G is
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étale over R. See [G], (Ga] for this. If G = (gk,ik) is a
p-divisible group over k, then the maps ik induce maps
: 0 (o]
1,2 6 5 G
.. St ét
It GG -
ét et,
These can be used to form p-divisible groups G = (gk,lk),
go = (Eg’ik)° From the sequences
(4
O»Eg—»gk»git—»o

we get an exact sequence of p-divisible groups

,

0-¢%+g~gtso.

We describe here constructions for é&tale and connected

p-divisible groups over R. We start off with connected groups.
Given a natural number n we write

& = R[[x % 1]

1'°°°"""n

for the ring of formal power series in n variables over R.

Let F be an n-dimensional commutative Lie group over R.

F can be described as a system
F(Xry) = (fl(XIY) 1o ,fn(X,Y))

of n power series in 2n variables which satisfy the
following axioms

(i) F(O,x) = F(x,0) = (Xlr---lxn)

if x = (Xl""’xn)
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(ii) F(x,F(y,z)) = F(F(x,Y),2)

(iii) F(x,y) = F(y,x)
For examples of such see [Hal chapter 2..

Taking on & the order topology we have a continuous

isomorphism
\A'A
®Rf4 - R[[xl,...,x2n]].

Using this one sees that there is a unique R-algebra homomorph-

ism
B A AE A
satisfying
M(x.) = £ (xlﬁl, X ®1; 18x ,. .,laxn)
Let
a(x) = (al(xl,...,xn),...,an(xl,...,xn))

be the unique n-tuple of power series in n variables satis-
fying

F(x,a(x)) = O.
There is a unique R-algebra homomorphism

i: &> "
satisfying

2 -
I(Xi) = ai(xl,...,xn).

Define further

+ R

>
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by

AN
The R-algebra v together with the maps u,i,Q is a bigebra
in the category of céntinuous R-algebras. That is ﬁ,ﬁ,g
satisfy the commutative diagrams mentioned in §1, only the

tensorproducts have to be replaced by their continuous analogs.

We define now inductively

~ ~ ”~
un.ﬂ-—iv‘]oR .)Q'@R e QRA
D
n-times
by ﬁz =1 and
N A N ~ A
/un+l(xi) = fi(,un(xi) ® 1, l@xl,...,laxn).
Furthermore put
=I’[].(?A
¥ up
where
mi AR AR, ... B s ———
“ _ W
p-times

is induced by the continuous multiplication.

v: A > KA

is an R-algebra homomorphism corresponding to multiplication
by p in the formal Lie group. The following formula is
easily seen from the definitions: wk(xi) = pkxi + terms of
higher degree. We assume now that ¢ 1is an isogeny, that is

M is under y a free A -module of finite rank. The formal



group is then said to be divisible. We define a p-divisible

group
E = (—qk'lk)
as follows:

G = spec(ﬂ-/qa( ).

(xi)>

Here <wk(xi)> is the ideal in ¥ generated by the wk(xi)

for i =1,...,n. The bigebra-structure on JQ/ka(x )> is
i
n
induced by the maps ﬁ,i,;. The maps ik come from the

inclusions

afx)> 2 ).

It can be proved by elementary considerations on power
series that .E is in fact a p-divisible group. Of course each

gk is connected since JQ/<wk(xi)> is a local ring.

We have now
Theorem 3.2 (Tate): Let R be a complete noetherian ring
whose residue class field has characteristic p > 0. Then
the map

Fr— F

is an equivalence between the categories of divisible
commutative formal Lie groups over R and the category of comnec-
ted p-divisible groups over R.

For a proof see [T]. Tate's theorem can now be used to

define the dimension of a p-divisible group.

Definition: Let G be a p-divisible group over R with

connected component g?. Let F be an n-dimensional formal
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group with E = go. Then n is defined to be the dimension

of G.

We shall now give a construction of étale p-divisible
groups. Here R 1is again a complete noetherian ring with
residue field k of characteristic p > O. ﬁ is the separabel
algebraic closure of k and 0}0 is the Galois group of K
over k. Furthermore, let R’et be the maximal local étale

extension of R. U}O lifts to a group of automorphisms of

R’et over R. We start off with a continuous representation

Qs (90 > Aut((»@p/zp)h)= GLh(Zp'Y

h 1is a natural number and Qp, Zzp are the p-adic number-

field and the p-adic integers.

We define now from ¢ a p-divisible group ¢. Put

n k _ k.. h
by = tu € (Q /7)) Ip¥eu = 0} = (z/p %)".

is 030— invariant. Put

B = Ry (0 Rey)

for the ring of "30 Jinvariant Rét_ valued functions on Ak.

A gets a bigebra structure just as the constant group

k

scheme in example 4. The inclusion maps
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induce R-algebra homomorphisms

lk: Ak+1 e Ak'
We put

Gy = spec(Ak).

It is then straightforward to check that

.(.E. = (_G_kllk)
is a p-divisible group of height h. We have now

Proposition 3.3: Let R be a noetherian local ring.

Then the map
@ b @

is an equivalence between the category of continuous represen-
tations of %0 in GLn(zp) and the category of étale

p-divisible groups over R.

This is proved by application of theorem 2.6.

More Examples:

The first example derives from the multiplicative group

gm' Let p be a prime number then w [ 1is the kernel of

P
the map

k
p

Sp— &y
There are obvious inclusions
gt M7 ¥ kn
p p

The system (u k,ik) is a p-divisible group of height 1 called
p
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SL(p).

Next, let A be an abelian scheme of dimension g over
S . k
R. Assume that the kernel Ak of multiplication by p on A

is a flat group scheme over R. This is for example the case
if R 1is a ring of integers in a number field or one of its
completians and R has good reduction modulo 4 for all

primes dividing p. The obvious inclusions ik: Ak > A
make

Alp) = (B,4i))

into a p-divisible group of héight 29 over R.

Let E be an elliptic curve over Zp that has good
reduction modulo p. It is interesting to
consider the decomposition of E(p) into its connected and
étale parts. One finds:

E(p) 1is connected < the Hasse-invariant of E
is 0.
In case the Hasse-invariant of E 1is not zero one has an

exact sequence
0-E@° > EM® »EM o0

where E(p)o is a connected p-divisible group of height 1.

See [Se] for this.

Modules of differentials:?

We now use Tate's theorem to compute the modules of

differentials of the constituents of a p-divisible group.

Proposition 3.4: Let R be a noetherian local ring with
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residue class field of characteristic p > 0. Let G =
(gk,ik) be an n-dimensional p<divisible group over R. Then

* 1 R n

s Q = ("/ ).

9k/R ka
Proof: The differential module of an étale group is

zero. So, using proposition 1.1 we may assume that G is
connected. By theorem 3.2 wemay choose a divisible n-dimen-
sional formal Lie group F with §'= G. Let & = R[[xl,...,
xn]] be the ring of formal power series over R and let
¥,%,1,5 be as defined before theorem 3.2. The module of

formal differentials

Al
2. /g

is a free module of rank n over A :

Al _ . .
QA/R—ﬂdxl ® ... 0R-dx .
The derivation being
of of
Df = —— dx, + ... + — dx_.
Bxl 1 axn n
From the formula
k k .
(%) Y (xi) =P X + terms of higher degree
k k
we get: DY (xi) =p dxi + nonconstant terms.
The homomorphism
__ﬁ =
A AR A
<y (xi)>

is continuous: [T]. Hence we get a map
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ﬁﬂq/R > ﬁik/R = gl R = Qé /R -
Ay Zx
By [Gr] we get
n; /R " g A/
X i=1 <®x)), g—f{: wk(x1>,...,-§§—i V)

Using (¥) we find the required formula.

The Tate module:

We assume here that R 1is a complete discrete valuation
ring with quotient field K and residue field k. We assume
that char K = 0 and char k = o > O. ﬁ,'ﬁ are the separable
algabraic closures of K and k. % is the galoisgroup of R
over K. Let G = (gk,ik) a p-divisible group of height h

over R. Then we have maps

I5,1° Ske1 > Sk

These induce maps

It Gpyq (K) » G (K).

The limit T(G) = lim G, (R) is called the Tate module of G.

k
Since the _(_;k @R'ﬁ are étale. and hence constant the group
T(G) gets a mnatural QZp -module structure. As Zp -module
we have T(G) = Zg . The galoisgroup 0} acts continuously on

T(G). We shall describe examples of this action in §5. If



$: G > H is a homomorphism of p-divisible groups we get an

induced homomorphism
T(p): T(G) » T(H).

Clearly the image of T(¢) 1is a Zp-—direct summand of T(H).
It is also O} invariant.

Theorem 3.5: Let B be a p-divisible group over R.
Let furthermore M < T(H) be a 0y -invariant zp -direct
summand. Then there is a p-divisible group ¢ over R and
a homomorphism of p-divisible groups ¢: G ~ H such that o

—

induces an isomorphism

T(e): T(G)—"—M & T(H).

A proof of this is contained in section 4.2 of [T].

Remark: For the application in [Sch] note that a Qp—

subspace

c
W e Qp 8% T(H)
P
intersects T(H) in a zp-—direct summand. In general one
has then to go to an extension so that this summand gets

galois-invariant.
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§4 A theorem of Raynaud

Here R 1is a complete discrete valuation ring with
quotient field K and residue field k. We assume that

char K= 0 and char k = p > O. 0} , %b are the galoisgroups

9= Cal(R:x), Of, = Galck:k)

where ﬁ,ﬁ are the separabdé algebraic closures of K and k.

Let G . be a commutative group scheme of finite order over
R which is annihilated by multiplication by p. Raynaud calls
these group schemes of type (p,...,p). The scheme G is
affine, G = spec(A) for some R-algebra A. A 1is a free R-

module of rank pr. The group scheme

G ® K=Gx spec(K)

spec(R)
is reduced, since K 1is of characteristic 0, see [Ca], page
109. So A GhK is a product of finite extensions of K, and
G ek is étale over K. The ring R is some order in a
product of finite extension of K. The order of G is a power
of p. This follows from the general structure theorem on

étale finite groups [G,D], II §5.

From this it follows that the group of R— valued points

of G
G(K) = G(spec(K))
is isomorphic to
A r
G(K) = .
G(K) (IFp)

Multiplication by natural numbers makes G(ﬁ) into anZTp -

vectorspace of dimension r. Hence the galoisgroup 0} acts
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linearly on g(ﬁ) . We write
g(_;: O}——>GLr(1Fp)
for the corresponding representation. We define
* r, r
: — (F = GL(A(F
%5t 9 (F,) (A (E5))
as the determinant representation of 9G' We shall be interes-

ted in the representation )(G. To analyse Xg Wwe have to

introduce the following: Ky = maximal unramified extension of K
Kt = maximal tamely ramified extension of K.
Rnr = integral closure of R in Knr'
Rt = integral closure of R 1in Kt'
I = O}al(K:Knr) c o}
Ip = Qal(K:K.J ¢ 0
I, = I/I = Qyal(K :K )
P
The notation here is the same as in [Se], §1. v is the
valuation of K and e = v(p). We say that R is strictly

henselian if R has no étale local extension.rings. This

means that K = K.
nr

The galoisgroup U} acts on the groups of p-th roots of

unity in K. This defines a homomorphism
X, > Aut(p_(K)) = *
Xpt Oa. Au (up( )) —(IE‘p) .

The group of (p-1)-th roots of unity pp_l(ﬁ) is contained

in R. Applying the residue map we get an isomorphism

ol *
RK)=mw_".
up_l( ) P

Let 7 be a uniformising element for R. The field
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k(P7L/T)
is a tamely ramified Galois extension of k. For g € C}
we have
gty =Pl
. A Ky s ] Kyl ~
with a z gpp_l(K). Using the above isomorphism up_l(K) =

F; we may extend the map g =+ ¢ to a homomorphism

Tp : O}.) ]F; .

Note that both T and ib have to vanish on the pro-p-group
I_. We have
P
-— e
Xo Tp

on I. See [Se] for this fact.

If M is a finitely generated R-torsionmodule we define

Z (M)
to be the length of the module M. The length has the follow-
ing properties:
1) ia(R/ ) = v(a) for any a € R
a R
> M, > O 1is an exact sequence of finitely

2 3
generated R-torsion modules then

2) If O ~» Ml - M

% (My) = L)) L(M,).

Examples:

We shall describe here for various examples the character

XE-

Example 1: G = u_ . Here G = spec(A) where A = R[t]

/<tp—1>'



If K contains a primitive p-th root of unity then A @RK
is a product of p copies of K. If K doesn't contain a
primitive p-th root of unity A.@RK is the product of K

with the field K[t]/ -1 .
<Py Lo+
Giving a K valued point of G amounts to selecting a

p-th root of unity for t. We get

Example 2: Etale groups.

We start off with a continuous representation

[0t (%O > GLI(]FP).
The group 0, = O}al('}\czk) can be identified with @.al(Knr:K) ,

so wé may consider the ring of CQO—-invariant functions

A = Map ) .

(FE,R
2}0 p’' nr
Define the bigebra structure on A by the same formulas as
in case of the constant group scheme of §1 example 4. This
defines an &tale group scheme ¢ = spec(A) of type (p,...,P)
over R. In our case Rnr coincides with the maximal étale
extension of R. It follows from [G,D] II, §5 that every
étale group scheme of type (p,...,p) is of the form ¢ for
some representation ¢. We assert now that p2 =% , vhere
¢ 1is ¢ composed with the projection 0§ -+ Oy, Note that

o is trivial on the ramifiéation group Ip

Example 3: The groups G
-a,b

Let a,b € R be two elements of R with a*b =p. We
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have defined the groups G in §2. G is of order p
-a,b -a,b

and hence annihilated by p. The galois representation § G
-a,b

ean now be described as follows. The field K contains the
(p-1)-th roots of unity up_l(ﬁ). From the residue map we

have an isomorphism
20 (K)SSTE
X p_l p.
For any g € O} we may write
g® Ay = Pl

with a (p-1)-th root of unity . We define the Kummer charac-

ter
*
Xa* O} +]Fp
as x,(g) = x(z). It is an interesting exercise using the

explicit formulas for the multiplication in Ga b to prove
<y

P = X = X4
Sa,p “SGa,b

Assume for a moment that R 1s strictly henselian. Writing

= () v(a)

a *u with a unit u, we find that x_ = (1)
[ a p

From proposition 2.3 we have v(a) = 2,(S*Qé /R)'
-a,b
This is a special case of theorem 4.5.

Group schemes with F;-action:

In addition to the previous assumptions we assume in this
subsection that R is strictly henselian. Otherwise we use
the same notation. Let ¢ = pr for some natural number r.

Since R 1is strictly henselian it contains the group of (g-1)-th
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roots of unity.

Let now G = spec(A) be a commutative group scheme of
finite order over R. An ZTq-compatible system of endomor=

phisms of G is a map

[ ] :]Fq > Endbialg(A)

such that

[ale[b] = [ab]
me(fal ® [b])ou = [a+b]
for all a,b E]Fq. Here m: A ®RA -+ A 1is the multiplication
of A. . For example, the multiplications by a natural number
define an :Ep-compatible system of endomorphisms on any

commutative group scheme.

Definition: A group scheme G with an ]T;—action is a
commutative group scheme of order q together with an ZTq—
compatible system of endomorphisms. Note that G is then

already annihilated by p.

Given a group scheme with an :T;-—action one can decompose
the augmentation ideal, that is the kernel ofs,0of A accord-~-

ing to the orthonogal idempotents:

e, == =, x '

X amLl e
q

Here X:IT; > uq_l(ﬁ) € R is a character of ZT;. One gets

as in [0 ] :
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Proposition 4.1 (Raynaud): Let G = spec(A) be a

*
group scheme over R with an Eéraction for g = pr. Then

there are elements 51,...,Gr such that
RIX,,eeerx]
A= 7 - p p P
<xT=§ -4 . ) >,
SR R T B b L A e |
We call §8.,...,8 the parameters of G. A proof is contain-
1 r -

ed in [R ], mind the assumptions on R that we have made
here. In [R ] one also finds a formula for the comultipli-

cation pu of A. The above formula can now be used to prove

Proposition 4.2: Let G = spec(A) be a group scheme

r

over R with an ZF:—action for g = p . Let 61,...,6r be
the parameters of G. Then
1) s*al =R/ o o &/
SYU/r - ‘s rRY " §_R
= 1 r
)2 (s*2t ) = v(s,) 4 ee + (s
G/R 1 " r
Proof: We have for B = R[xl,...,xr]
Ql = B-dx, ©® & B-dx
B/R 1 e r '
where the derivation is
1
D: B ~» QB/R
Df=%;f{—dxl+...+-g—f—dx.
1 xr £
B
Let A ="/ p p then
<Xl—61X2,...,Xr-§rxl>
1 . 1 c s
QA/R is QB/R divided by the submodule generated by the

p_
Dxi-8,%;,,)- N
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We can now prove the result

Proposition 4.3: Let G = spec(A) be a group scheme

over R with an :F:—-action for q = pr. Let
* .1
d = 2L(s QE/R)’
then
_ d
Xg (Tp) .
Proof: Let 61""’6r be the parameters of G. Then
one finds easily that
d
xg = (1)
with 4 = V(sl) + ... 0+ V(sr). See [R] section 3.4. By
proposition 4.2 we have
d =X (s*s, ) ]
G/R

Generalization:

In this subsection R 1is again a strictly hebselian
local ring of unequal characteristic. Otherwise the notations
from the beginning of this chapter are valid. We quote from

[R], Corollary 3.3.7.

Theorem 4.4: Let R be a strictly henselian ring with
e < p-1. Let G be a group scheme over R which is
commutative, of finite order and annihilated by a power of p.

Then G has a decomposition series 91' i=0,..., such that

Sin

/g

=i
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* . r
has an :Tq—actlon for some q

I
o

Remark: A decomposition series of G 1is a sequence
90""'§k of group schemes with Ek = G and EO = spec(R),
together with closed immersions

08 * &
Si+1
By [G], [Ra] the faithfully flat quotient /g exists.
=i
Theorem 4.5: Let R be a strictly henselian ring with
e < p-l. Let G be a group scheme over R which is commu-

tative, of finite order and annihilated by p.

Let
* 1
Z (s QQ/R) = d.
Then

d

XQ = (rp) .
Proof: We use here the exactness of s*Ql from theorem
2.9

together with the multiplicativity of Z . The

result then follows by an obvious induction argument along a

decomposition series from theorem 4.4. Note that if

O—>gl—>§2—>§3—>0

is exact, then the Galois modules gi(ﬁ) satisfy

e

G, (R) # g (R) x 65(K).

2 =3

Remark: This is more or.less theorem 4.11 from [R].
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Globalization

We apply theorem 4.5 to a global situation. We fix the
following notations
K 1is a finite extension fiédd of @ of degree m.
(0 is its ring of integers.
KV is the completion of K at the place v.
(9V is the ring of integers in KV

p 1is a prime number and K is assumed to be unramified at p.

Vyreeesv, are the places extending p.

ll

mi is the degree of the extension Qp c KV
i

Q = R c @ = ﬁv are the algebraic closures of the various

- P fields.

qK [= O;Q are the absolute Galois groups of K and Q.

Given a representation g of a group G on a IIFP—

vectorspace and a subgroup H € G we write for the

oly
restriction of [ to H. If H 1is of finite index in G we
denote by Indg(p) the induction of a representation of H
to G. Given two characters Xyrxp" G ->IE‘; we write Xy ® Ky
for their tensorproduct.

q’p is the decomposition group at p; O}P < Q}«Q.

Ip is the ramification group at p; Ip c Ua’p

%1""' 03:: are the decomposition groups at v ,...,v_7i Q}ig

I ,Ir are the ramification groups at vl,...,vr; I. Sq/i.

ARE
€ 039 ->IE‘; is the determinant character of the permutation

representation of %Q on O}Q/"JK.

* .
Given a character : O}K +]F‘p we define

* m OJQ
x. o= A@nd * (x))
L%
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for the determinant character of the induced representation.

Given a finite group scheme G over (¢ which is commu-
tative and annihilated by multiplication by p we again have

oy _ t
G(K) = (IFP)

for some t. The Galois growp O, acts linearly on g(%). We

denote this representation again by and its determinant

g

representation by Xge Similarly, we have the representations
. - — . ] o Ky

°G. and Xg. if gi =G @bov_. Identifying gi(Kv.) with

=i —i i i

G(K), we have

Xg'o}i = Xg .*

pal =
g o‘}i & -1

—i
(gi is here identified with the absolute Glois group of KV .

i
is as before the cyclotomic character YO = X .

Xo
"p

Theorem 4.6: Let G be a finite commutative group scheme
over (0 annihilated by p. Assume that each Gi =G (9v
- -0 i

is flat over (9V . We then have

i
d _ * 1
p = ¥ (s Qg/w)
for some nonnegative integer d. The character

* t -d *
: Ir
XG®e @ xo + G > Ty
is unramified at p, that is, it is trivial on L.
Proof: The group s*Qé/O is annihilated by p so its

a
order is/power of p. This settles the first claim. By the

base change isomorphism we have
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* 1 * 1
s Q =sQ ® U
Ei/wv_ G/0O © vy
1
Putting
* 1
4y = L(s 8 /4 )
i vi
we have
r
d= I m d,.
. i 7i
i=1

Let Ui be the ring of integers in the maximal unramifiéd

extension (KV )nr of KV . We have a natural identification
i i

Iv. = %al(Kv.:(Kv.) ).
i i i

The ring Ei is strictly henselian. We have

1
a, = £(s*a ~ )
i G ®@ Ub v
Since
G, = Y
—-i —i ®Uvi A

is by assumption flat over (9V we may apply theorem 4.5 and
we get:

=4y -4,
1 = x5 ® Xq = (xG@xO )|I
& G

V.
1

We may apply theorem 4.5 since the valuation of p in the

~

local rings (QV is always 1. This also has
i

Xo = Tp as

consequence.

The following is a standard identity from the represen-

tation theory of groups (see [Ser])

90
(Ind %K(OE)) |, =

I @ R

I
Inde (bgly )

P i=1 v, — "V,
1 1
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The result now follows by taking determinants of both sides. 0O

Remarks: 1) Theorem 4.6 is applied in [Wiil in the
situation where one already knows (from stable reduction) that
the character

* t -d

is unramified at all primes different from p. Then it has to
be trivial by class field theory. In the application G 1is the
kernel of an isogeny between abelian schemes having good red-

uction at all places extending p. From this follows that G
is flat at these places.

2) If G 1is already flat (of finite order) over @ then the

same argument shows that the above character is trivial.
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§5 A theorem of Tate

Here we discuss a theorem of Tate on the action of the
Galois group on the Tate module of a p-divisible group. R is
again a complete discrete valuation ring of unequal charac-
teristic. K is the quotient field of R and k is the
residue field of R. 0}, 0}0 are the Galbis groups of the
separable algebraic closures ﬁ,ﬁ over K and k respec-
tively. Let

G = (Qk,ik)
be a p-divisible group of height h over R. Then the
Galois group O} acts Zp-—linearly on the Tate module T(G)

of G. We call this representation 9G:

ggz 03 > Aut(T(G)) = GL h(ZZp)

The corresponding determinant character is called X!

-

h _ x
Xg: @3 > Aut(A(T(G))) = z,

-

Examples:

We shall describe the character for two examples.

*g

Example 1: gm(p).
The p-divisible group gm(p) has height 1 and dimension

1 and
XAt= X =
o' *g (p) T Fop(p)

is called the cyclotomic character of ©} . Let Zi) +]F;

be the canonical quotient map. Following Xo by this map we
get a character of O} with values in ]F;, it coincides with

the character ib = X, defined in §4.
P
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Example 2: Etale groups:

Given a continuous representation
01 Oy > Aut((e/z ) = @ (Z)
0 IS o p

we have defined a p-divisible group @ in §3. ¢ has height
h and dimension O. We have a canonical map (7) - %O' so by

composition ¢ defines a homomorphism
©: O') > GLh(ZZp) .

It can be checked easily that

¢ =0
and
= Ao.
Xi’i ¢
Note that both ® o and X vanish on the ramification group,

that is on the kernel of (73 > O(}O'

Tate's theorem :

Let C be the completion of the algebraic closure ﬁ of
K. The Galois group 0} acts continuously on f(, hence this

action extends to an action on C:
0& > Aut(C).

The p-adic integers are naturally embedded in R hence in C.
So we may for any character y: Oa - Z; define the follow-

ing action of 0(} on C:

o(x) = P(og)eo(})



- 109 -

This module for the group Cg is denoted by C(v) and is
called the Tate twist of the Galois module C by . For an

integer t we also introduce the notation

Given a p-divisible group G, Tate describes in [T] the

structure of the Galois module

T(G) ® C.
7z
p
In the application, [Sch], we need only information on the
determinant-character Xg* We have

Theorem 5.1: Assume that R 1is a strictly henselian
complete discrete valuation ring with quotient field of
characteristic O and residue field of characteristic p. Let
G be a p-divisible group of height h and dimension d over R.

Then

This formulation is due to Raynaud, a proof is contained in
[R]. First of all, the p-divisible group G can be supposed
to be connected since both the dimension and the determinant
character Xg coincide for G and its connected component.
Then G comgg, as is explained in §3, from a formal group F.
Raynaud then uses the deformation theory of formal groups
together with a purity argument to prove the result. Another

formulation is

Theorem 5.2: Let R be a complete discrete valuation



- 110 -

ring with cquotient field of characteristic O and residue
characteristic p. Let G be a p-divisible group of dimen-
sion d and height h over R. Then there is an isomorphism

of 0() -modules:

A(ree)) 8, c=c.
p

Proof: Let R be the algebraic closure of K and Knr

”n
the maximal unramified extension of K in K. Rnr is the

integral closure of R in Knr' Rnr is a complete discrete

valuation ring, it is strictly henselian. So, we may apply

theorem 5.1 to the p-divisible group

€ O

Let I be the absolute Galois group of Knr' I is a normal

subgroup of Q}. We have a natural identification:

0y/; = Gal(k:k)

where k is the residue field of R and ﬁ its algebraic

closure. Clearly we have

X Xealp -
S ® Ry g'I

denotes the restriction of XG to I. By application of

—

1
theorem 5.1 we find that

= %O
¥l 7 Xo'r-

There is a character 0: (% > Zp which is trivial on I and

satisfies
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© has to have a finite image in Z;. Its image has to be
then in the (p~1)-th roots of unity in” zp . Let L by the
fixed field of the kernel of ©. By Kummer-theory, [C,F],
there is an element a € L with o(a) = 0(o)+a for all

¢ € COy. Define now

®: Clxg°0) > Clx,)
by

@p: ¢ > a-c

¢ 1is an isomorphism of Galois modules, as is seen by the

following computation:

e(o(e)) = olxgz0(g)-o(c))
= a-e(c)-xg(c)-c(c)
= 0(a°xG(0)'C)

= go(c). a

Remark: Theorem 5.2 can directly be read off from [T]
§4, corollary 2, at least if the residue field is perfect.
But theorem 5.2 does not quite imply theorem 5.1. Here one

would have to restrict both sides to an open subgroup.
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Iv

TATE'S CONJECTURE ON THE ENDOMORPHISMS

OF ABELIAN VARIETIES

Norbert Schappacher

Contents:

§1 Statements
§2 Reductions
§3 Heights

§4 Variants

Following Faltings and using older arguments due to Tate
and zZarhin, we shall deduce, from the diophantine result
[F2]1,1IT 4.3, Tate's conjectural description of the endo-
morphisms of abelian varieties over number fields, in

terms of f-adic representations.
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§ 1 Statements

Let K be a number field (of finite degree over ¢ ), and let
A Dbe an abelian variety defined over K . Put g=dim A

For a prime number £ , and n21 , denote by A[ln] the
kernel of multiplication by zn on A , and write, as usual,

Coas n., = . -
T, (@) = Lin AL ®); v @) =T R ey @

L

where K is a fixed algebraic closure of K .

TR and VZ actually define covariant functors in an obvious
way. The absolute Galois group 7= Gal(K/K) acts on TQ(A) ’

resp. V,(A) , by Z,-linear, resp. @,-linear, continuous
2 %

L

transformations.

The object of this article is to prove the following theorem,
known as Tate's conjecture on the endomorphisms EndKA of

A defined over K

1.1 Theorem. (i) The action of 7™ on VQ(A) L5 semi-sdmple.

(i1)  The natural map

EE&AG@Z Z

48 an Lsomonphism.,

Remark: The following facts can be found, e.g., in [Mul]:
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(i) Since K has characteristic 0 , TJL(A) is a free

zl—module of rank 2g.

(ii) If B is another abelian variety over K , the homo-
morphisms HomK (A,B) always form a free Z-module of finite
type, and the functor TJL induces an J{njfection

[N
Hom, (A,B) ® Z ZQ, HomZ

y (T, (8) T, (B))

L

whose image has to be in the submodule
'n = v
HOH‘ZQ/ (T,Q,(A) ITQ/(B)) = HOI%R,[,”] (TQ,(A) ITJL(B))

fixed by 7 , because u(x)g = u(xg) , for all g € m ,
x € A[!Lm], if uw €End A is defined over K . So, the

essential claim of 1.1(ii) is sarjectivity.

1.2 Corollary. For A,B as above, the natural map

Hch(A,B) @, B, —> Homzl[ﬂ](Tz(A) /To(B))

A5 an Asomorphism,

Proof: Apply 1.1 to the abelian variety Ax'B. - See [T1],
lemma 3.

The following corollary used to be known as the  .{sogeny

confectune for abelian varieties over K.
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1.3 Corollary. The following statements are equivalent.
(i) A and B anre {s0gencus over K
(1) Vg (a) =V (B) , as w-modutes.

(iii) For almost all primes v of K, LV(A,S) = LV(B,s).

(iv) Forn all v , LV(A,s) = LV(B,s).
Iy _ IV
(v) Forn almost all v, tr(FVIVQ (a) ) = tr(FVIVQ(B) ) .

i)  For all tr(® 1V, (&) Y) = tr (FIV, (B) V)
(vi) [4] v, tr vV = tr v'Vy

Here, LV(A,s) is the Euler factor at v of the Hasse-Weil

L-function of A over K :

Njw
-
.

L(A/K,s) =T LV(A,s) (for Re(s) >
v

Let IV < 1 be an inertia subgroup at v , and FVE 'TT/IV
I
a Frobenius element at v. Then the action of FV on TJL (ay v

is well-defined, and we put

L,(A,s) = . ,

det(1-INvy ° - F, l Ti('A)IV)

Nv being the cardinality of the residue class field at v. -

This definition of LV does not depend on the choice of the
prime number £ 1t INv , and IV acts trivially on TQ(A) for

almost all v . Cf.[sT].

Corollary 1.3 asserts in particular that +the L-function L(A/K,s)

48 a complete {s0geny Linvariant of A/K .
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Proof of 1.3: (i) <=—> (ii). £ € Hom(A,B) 1is an isogeny if

and only if Tz(f) has full rank, i.e., det Tl(f)¢ 0. This
already implies (i) =>(ii). On the other hand, suppose

Q: VR}A)+ VQ(B) is an isomorphism of m-modules. Choose n
such that 2" @ € Hom(TQ(A), TZ(B))' This homomorphism comes
from HomK(A,B) szz , and can therefore be approximated by
elements of Hom(A,B) . Since det(lnw) *+ 0 , the same will be
true for good approximations. This way one finds the required

isogeny.

Remark: Note that, for an isogeny f:A -+ B , Tl(f) is an

isomorphism TQ(A) - TR(B) if and only if 24deg(f) .

{v)™>(ii) : A semi-simple representation of a ®,- algebra
in a finite-dimensional Qi—vector space is determined by its
character; [Boul, § 12, n°1, In our case, the character is
continuous and therefore determined by its values on a dense
subset of 1w . By Eebotarev's theorem (cf. [Se], chap. I),

such a subset is provided by the Frobenius elements of a set

of places of density 1.

The rest of the proof of 1.3 is logic. Note in particular that

any quantifier may be used with & in (ii).
1.4 Remark Since all higher &tale cohomology groups
n —
Hge (B gK,Q)

of the abelian variety A are given by exterior powers of
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Hét(Ax

KE ' Q&’ = HomQZCVK(A),Qz)

the semi-simplicity asserted in 1.1 implies that:

. » n = .
For a n 20 , Zhe action of w on Hét (AXKK'QIL) 8

semi-sdmple.

In fact, since the representations of 1w 1in question are in
finite dimensional vector spaces over a field of characteris-
tic 0 , this follows by passing to Lie-algebras: see [Hum],

13.2; [BoL], chap. I, § 6 n°5; cf. [BoL], chap. III, §9 n°8.

1.5 Tate's general conjecture

Let k be a field which is of finite type over its prime
field, k¥ a fixed algebraic closure of k , 7 = Autk(f)

and £ a prime number different from the characteristic of
k . Let X be a smooth projective geometrically connected
variety over k , and write X = X xkf-. Every closed

irreducible subvariety Z of X of codimension r defines

an f-adic cohomology class
= 2r = . 2r o @r

eL(Z) € H" " (X,0,) (r) = {lim H,_ (X, ( ) T)le, @

it == Tét /ﬂn Z, %

namely the image of 1 € QQ under the natural map from

relative cohomology
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~

2r = 2r =
2, T HXi2) (1) —— BT, ) (1)

Cf. [Mill, chap. VI.

Call }r(x) the free abelian group on subvarieties Z of X

of codimension «r defined over k , and
GLr(X) = ?(X)/kernel (2 ~— c£(Z)).

Then the general form of Tate's conjecture related to our

theorem is:

Conjecture: Of(x) QzQJL =5 H2r()-(' Ql) (r)".

cf. [T3].

We shall now indicate how theorem 1.1(ii) can be seen to be a
special case of this conjecture. In fact, *hings become more
transparent when we deduce corollary 1.2 instead. So, suppose

A and B are abelian varieties over k , and consider the

diagram
Hom (A,B) AN, Pic® (A x B*)
l(2)
2
) H™ (A x B*,0,) (1)

(3)

1 l

H (a,0,)®, H!(B*,0 ) (1)
2 Q2 2

Hole(VﬂA) ’VJL(B» V() *®V2(B)
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where B*/k 1is the dual of B , and the maps are given as

follows.

(1) For ¢ € Hom(A,B) , pullback of the Poincaré bundle

BXxB* wvia ¢ x id: Ax B* »B xB* ,
(2) First Chern class.

(3) Projection onto the (1,1) - component in the Kiinneth-

decomposition.

(4) Use that H1(A,QZ) = V, (A)* (dual), and that the Weil-

pairing on VQ(B) induces a duality
' (B,0,) x H (B*,0,) — @, (1)

Il IQ/ Q, 4
and thus an isomorphism

H1(B*,mg) (1 = H1(B,Q£)* = V,(B) .
(5) A®Db & (a+ Ata).b) .
(6) oOur natural map, induced by the functor VQ'
It is easy to see that this diagram commutes. All maps are
m-equivariant, and from the definition of the Poincaré
bundle, it is clear that the image of Homk(A,B) under

(3)° (2) o (1) is precisely @U%"

the H1® H1—projection of UC(AXB*). So, assuming Tate's con-

(A x B*) < [H'(@a)eH (B) (1)1,

jecture, the surjectivity of (6) follows from the fact that (4)

and (5) are isomorphisms.
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1.6 A glance at the history

Elliptic curves over finite fields have lots of endomorphisms.
This phenomenon was systemtically perused by Deuring in [Deul,
and, as Tate points out in [T1], Deuring's results allow one
to deduce the analogue of Corollary 1.2 for A,B elliptic
curves over a finite field K (of characteristic =z2). In
[T1], Tate generalized this to abelian varieties over finite
fields. In this case, the semi-simplicity of the w-action can
be shown directly, but the pattern of proof developed by Tate
turned out to be adequate even for the number field case. In
a sequence of papers - [Z1] through [Z5] - Zarhin proved the
analogue of 1.1 for most function fields of finite transcen-
dence degree over a finite field. For this, he had to refine
Tate's way of reducing 1.1 to a diophantine statement, and
some of our reduction steps are inspired by Zarhin's re-

finements.

There have been partial results in the number field case be-
fore Faltings' general proof of 1.1, of which we mention
Serre's results on elliptic curves (see [Se]), the case of

complex multiplication (see [Shiml, cf. [ZZ]), and the Jacobian

of modular curves ([Ri]).
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§2 Reductions

In this section, theorem 1.1 will be seen to be a consequence
of a diophantine result on abelian varieties over K . Using
the finiteness theorem [F2], II 4.3, this diophantine
statement is seen to result from the behaviour of the modular
height under certain isogenies. These height calculations will

be performed in § 3.

The notations are those of the beginning of § 1.

£2.1) To prove 1.1(ii), 4% suffices fo show that the natwwal

infection

®
EndKA ZQQ — Ensz[ﬂ](VQ(A))
A5 an Lsomorphism,
In fact, this map is still injective since QE is flat over
EZ' Furthermore, the cokernel of the Zl—linear map is

torsion-free: an endomorphism of A vanishing on A[%] is

divisble by £%.

(2.2) Let K' oK be a finite extension, 1§ 1.1 48 thue for A K"

over K', then Lt holds also-over K .

Let 7'= Gal(K/K'), m'*'= Gal(K/K" ), where XK' is a finite
Galois extension of K containing K' . Since 7" is normal
in 7', the semi-simplicity of VQ(A ﬁ<K' ) = VQ(A) as a

m'-module implies that of the 7"-module Vl(A) . T acts on
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the decomposition of this 7''-module into simple factorss and

adding up these T-orbits decomposes v,(a) as a w-module.

Any ¢ € End(Tz(A)) fixed by 7n 1is also fixed by n';
] .
therefore comes from an £ € EndK,(A XKK ) @hzl. But f 1is

again fixed under 1w , and thus lies in EndK A.@h%l.

(2.3) In proving 1.7, we may assume that A has semi-stable ne-

duction over the ning of integers ¢ of XK .

This is a consequence of 2.2 and Grothendieck's semi-stable
reduction theorem - [Groth], thm. 3.6 - which asserts that
there is a finite (separable) extension K' of K such
that A XKK' acquires semi-stable reduction over Ok,
We shall recall the definition and various properties of

abelian varieties with semi-stable reduction in § 3.
(2.4) To prove 1.1, it suffices to show the following:

Forn every T -Lnvariant subspace W o Ve (d) , there 4is
(*){,

u € EndK A ®2ZQZ such that u. VSL(A) = W.

A reduction step of this kind is already essential in Tate

[T1]. Cf. also [Z4], lemma 3.1. First note that the right

ideal

{v € End, A8, @, | V.V (A) W},

like any right ideal in a semi-simple algebra, is generated
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by some Projector u,,i.e., u°2= u, . If u exists as in
(*), it follows that uo-VQ(A) = W. So every mw-invariant sub-
space of Vz(A) is a direct factor, which implies the semi-

simplicity of the m-action.

Let C Dbe the commutant of EndKA ® Ql in End (VQ(A)). The

0]
2
commutant C° of C equals EndK A® QJL , by the theorem of

bicommutation - [Boul, § 5,n°4 -, again because End AQQQ

is a semi-simple algebra.

Assume we know (*) for all abelian varieties over K , in

particular for A xA . Then the graph
W= {(x,0(x)) | x € VQ(A)} c VQ(A)2 = Vy(AxA)

of any ¢ € End ](VQ(A)) is a m-invariant subspace, so

Ql[ﬂ
there is u € EndKA2 [e29) Q,Q such that u. V‘Q (AxA) =W .

It will be enough to show that ¢ € C° . So take o € C. Then

o O
€ End(V (A)z) commutes with End A2 ®@ @ , in particwu
0 o 2 K 2
lar with wu. Consequentiy (g 2) W cW, which means that

op = o , di.e., @ € C°.

2.5 Subspaces and L- divisible groups.

Given a Qz—linear subspace W c VQ(A) , put U =WN TJL"(A) .
Then, for nz21,

n

g7 u/u 2T T (@) /T, () = A 271K
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defines the levels of an &-divisible subgroup G of A(%)/K

with height (G) = dimQ W. (¢cf. [Grun].) If W is m-invariant ,
L.

G 1is defined over K .

Over K , we can divide A by Gn (for n2 1), obtaining

abelian varieties A/Gn over K , together with isogenies

Py
A ——;?—9 A/G.n
n
of degree zn.dim w , such that
T )7 (T,(a/6)) = 2 Ru+T,(a)
2'%n L n L !
n =
Tﬂfn) (TQ(A/Gn)) =U + £ TQ(A) —.Tn .

{2.6) Given a m-invariant subspace Wev, (8) scondition (*) of (2.4)4s
satisgied, if infinitely many of the abelian varieties A/G,(n 20)

are Lsomorphic to each othen over K.

The proof of 2.6 is the essential step which enabled Tate to
prove the analogue of 1.1 for abelian varieties over finite

fields; see [T1], Proposition 1.

To prove 2.6, let I be an infinite subset of N , with
smallest element i, , such that, for all i € I , there are

isomorphisms defined over K ,

v, A/Gi

~
i _ A/Gi

o

In EndK A®Q , , consider the element uy composed of
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-1
fi, Vi fi
A ——> A/Gi _— A/Gi —> A .

o

Viewed in End VQ(A), ui maps Tio onto Ti < Tio ’ in the

naotations of 2.5. But End Ti is compact. So, selecting a
o
smaller I if necessary, we may assume that the sequence

(u;) converges to a limit u which still comes from

i€e1l
EndK A® Q2 since this set is closed in End VE(A)'

i
Consider U = rj T, . Since u,(T, ) =T,, every X € U
h i 171, i
ieT
is a limit 1im u,(y.,) , for certain y, € T, . Passing to an
. iti i i,
1€l
accumulation point y of the yi“s we see that U = u(Ti ).
o

Thus, u. VR(A) = W , as required.

Taking into account (2.3), it is now obvious that we will be
done with the proof of Theorem 1.1, once we have obtained the

following two results.

2.7 Proposition: In Zhe notation of (2.5), assuming A , and there-

fore all zthe A/Gn , to have semi-stable nreduction, the modular height

h(a/G ) 4y Andependent of n, for n sufficiently Lanrge.

2.8. Theorem: Given g and c, there exist, up Lo isomornphism, only

ginitely many abelian varieties A with semi-stable reduction over K

such that dimA=g and h(A) £c

The proof of (2.7) and the reduction of (2.8) to the analogous
statement for principally polarized abelian varieties which

was proved in [F2] will be the subject of the next section.
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§ 3 Heights

Before turning to the proofs proper of (2.7) and (2.8), let us
recall some basic facts about abelian varieties with semi-

stable reduction. The reference for this is [Groth].

Given an abelian variety AK over the number field K , recall
that there exists the Néron-model A of Ay which is a smooth
group scheme over the ring of integers R of K , and is

uniquely characterized by the fact that

HomR (S,A) = HomK (SK,AK) ,

for every smooth group scheme S over R with generic fibre
Sk - From now on, we will always denote by A the connected component of
A , with fibres the connected components of 0 of the fibres

of A

AK is said to have semi-stablfe reduction over K , if for every

s € Spec R , the fibre AS sits in an exact sequénce

with an abelian variety BS and a torus Ts over k(s) .
Equivalently, [Groth], 3.2, AK has semi-stable reduction, if
there exists some smooth separated group scheme G of finite
type over Spec R whose fibres are all extensions of an

abelian variety by a torus as above, and whose generic fibre

is AK .



- 129 -

Assume now that AK and BK are abelian varieties with semi-

stable reduction over K. Suppose an isogeny

K K

over K 1is given. By the universal property of the (connected)

Néron model, ¢ certainly extends to a morphism over Spec R:
¢ : A ——> B .

Semi-stability implies furthermore that this morphism is {§aith-
qully §€at , and that the kernel

)
G = ker ( A —> B)

is a quasi-finite, flat group scheme over Spec R. ( Cf.[Groth],
2.2.1, or [Mu2], lemma 6.12 : the typical bad case ruled out
by semi-stability is multiplication by p : & ;—— Ga '

over a field of characteristic p.) Note that G {4 not
necessanily a finite group scheme over Spec R (unless A and B
have good reduction everywhere) : its fibres will have varying

orders in general.

At any rate, one obtains the exact sequence

1 0¥
0 — s*(Q ) ——> s*(Q
B/R

) —> s*(Q ) — 0.

1 1
A/R G/R
Here, s denotes the zero-sections of the group schemes in

question. The exactness at the centre follows from that of the

well-known sequence of relative differentials,
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1 N 1

]
e*(Qg/p) — % a/R € aA/B

Now, the order of the finite group s*(Q ! ) equals

G/R
# (s*x9 ) ) = # coker( NI ¢* : w —_— Wy )
G/R * "B/R A/R' !
. 1
i *
where Wy /R denotes the maximal exterior power of s (QX/R)'

This is shown by localizing and applying a well-known corollary

of the theorem of elementary divisors.

Recall the definition of the modular height of a (semi-)abelian

varuiety:

h(a) = [K_1QT deg (wy/g)

with:

deg (wA/R) = log #(u)A/R/p.R) -v%w e . log Hpll .

p being a non-zero element of w and €, 1 or 2,

A/R '

according as v 1is real or complex.

As ¢ changes the volume by vYdeg ¢ at every infinite place

of K , we see that we have the

(3.1) Isogeny Formula: Under the above assumpiions,

log #(s*Q ! ) .

=1 -
h(B) - h(d) = 5 log (deg ¢) ] G/R

K:@Q

(3.2) For the application of this isogeny formula in the proof

of (2.7) we shall need the theory of the {ixed and forus parts

of TZ(AK)’ for an abelian variety AK with semi-stable
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reduction. See [Groth], esp. § 5. Let us recall the basics of

this theory in the situation we shall encounter.

Let v be a place of K dividing £ , and RV the completion
of R at v . As over the spectrum of any Henselian local

ring, every quasi—fdinite scheme X over Spec RV decomposes as

X=Xuy,

where X 1is {inite over R, and Y has no special fibre,
cf. [EGAIT])6.2.6. Given AK with semi~stable reduction as be-
fore, we can apply this to the quasi-finite group scheme

v

A[kv], the kernel of multiplication by & on the connected

Néron model of AK , considered over the completion RV , thus
~7

obtaining its {inite part AfV1 over R, - These finite parts

make up a strict (i.e.,%:A > A is surjective) projective

system which then defines what is called the {44ixed part of the

Tate-module of A :
v (a)f T, (a)
3 2 :

We shall make use of this submodule 4n the generic fibre (i.e.,
the only Tate-module we ever considered in §§ 1 and 2) which

may be written all explicitely
v a)f &) et (a,)(®) .

2K v 2 K v
Henceforth, we shall simply write

f
T,Q,(AK )T T,Q(AK |
v v
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even if we think only of the f2-adic Galois-representation

given by the K;—rational points.

Let A over Spf(Rv) be the formal completion of A/Rv

along its special fibre A, . Now, in the decomposition above

ALV = ALRY1 4 o (v20)
we have
),
apvy = a1,

because C has no special fibre. Therefore,
A £
T (A) = TQ(A) ’

if we agree to identify finite schemes over Spec Rv with

finite formal schemes over Spf (R ). (Cf. [EGA 1II],4.8.)

Furthermore, by semi-stability, the special fibre A, sits in

an exact sequence

for some abelian variety B, and torus T, over kV = Rvéﬂv'
For every n21 , there is a unique torus Tn over
Rv/mv(n+1) with special fibre T, ([Gro]l, 3.6 bis). Being

unique, the Tn fit together to define a formal torus f/RV

A
which injects into A . This torus gives us a submodule

t A A f
T (A)" : = T, (T) = T,(A) = T, (a) .
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Here too, we can consider the generic fibre. So we have a
two-step filtration

t

£
Tl(AK )~ < TQ(AK )T < TE(AK )
v v

v
of the Tate-module of the semi-stable abelian variety AK
over K

Likewise, for the dual abelian variety AK* over K , we get

submodules

t f
Ty A )T ST (B )T e Ty (A ) -
v v v

The Weil pairing provides an alternating duality

TQ(AK)X Tl(A *) — > 7Z (1) .

K 2
The Onthogonality Theorem - [Groth], 5.2 - asserts that, with
respect to this paring,
t BT
TQ(AK ) = (TQ(AK )7) ’

and, of course, the other way around:

t _ £f.L
T, (A *)° = (T (B, V)™ .
v v

As a first consequence of this, let us note right away the



- 134 -

3.3 Lemma: Call D, = Gal (K_V/Kv) c 7 the decomposition group and
I, <D, fthe A{nentia subghoup of v . Then I, acts ulvially on
f , .o ,

Tl(AKV)/Tl(AKV) , and D, dacts viaa finite quotient.

Proof: By the orthogonality theorem,

£~ A
= Hom(Tz(T), Tg(Gm)) .

Ty (Bg ) /Ty (B )
v v
A
So, the lemma follows from the fact that T 1is split by a
finite unramified extension of Kv (in fact, T, 1is split

by the algebraic closure of the residue field kv) .

(3.4) We can now return to the situation envisaged in (2.5),
with a view to proving (2.7). Rewriting (2.5) in our present
notation, we are given an abelian variety AK with semi-
stable reduction over K , an #-divisible group (GnK)nzO )
and the quotients

Pn
A, — (AK/G

nK) - AnK y
Passing t© connected Néron models, call Gn now the kernel

of the isogeny of connected Néron models

p,: A —_— An over R
Fixing a place vl|% , decompose, as in (3.2) above,
~J
G, . =G_ 4 H over R
n n n v
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with d; finite over Spec Rv , and Hn without special

fibre. - Thus,

~_/\ n
G—A[»Q]ﬂGn

n .

G need not be an 2-divisible

Now, our problem is that ngo n

greup over R .

In fact, consider first the Galois representation in the
generic fibre : Yy, G_ (K ). Being an intersection of two
nz0 n v

2-divisible groups over Kv , this is of the form:

( Kv-rational points of an ) finite abelian
° )
K

g-divisible group over group

The finite group is contained in some é; (f;), so for

~

o
Fn= Gn°+n/Gn° (n20), we find that ngo Fn(KV) is

2=divisible oven Kv .

But r need not be an f-divisible group over R, -

nﬁo n

In fact, the sequences

0 — T — T r 0

may not be exact over Rv . This problem is discussed on the
last page of [T2] , and we are going to apply Tate's trick to

get around it: Look at the maps induced by multiplication by £

L
: r
)3 Theo/ner — The/ Iy

n N2 (n20) .
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. i Y
Let E_ be the affine algebra of Fn+1/Fn . Since n0 I‘n

is an Q#-divisible group over Kv’ F::En Q is a finite-

R, v

dimensional Kv—algebra which does not depend on n . So, the
En form an increasing sequence of orders in F. Such a sequence

has to become stationary. In other words, the maps (*)rl are

isomorphisms for, say, nz2 n1 . We claim that the

~

Te=7 /Ty 8 in 4n/C (n20)

+tn’ ney+n
1 °

constitute an 2-divisible group over RV .— We have to show
that the long rows of the following commutative diagram are

exact, for all n .

(*)nq+n
0 Fn1 +n+2/1ﬂn1 +n+1 = I‘n1 +n+1/rn1+n
T s 7
~
0 II-1 > T.’n+2 - T(n+1 — 0
A
l J PR
. ¥ ~
0 ?1 4 Tn+1 - I1n — 0

This follows from this very diagram by induction.

(3.5) We can now begin to show that

for af n20 , which gives (2.7) .

To simplify notations, let us pretend that n.=n,=0 , so that

1
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~

I‘n = Gn' Recall that An = A/Gn (connected semi-abelian

scheme over R ). From 3.1, we get:

1 1 1
h(An) - h(a) = 5 log (deg pn) T TRad log #(s*QGn/R) .

Recall (3.2) that, for all places v of K dividing & ,
G =G_w« H over R__ ,
v

where Hn is concentrated in the genetic fibre, and (';\l',l is
finite over RV . Completing along the special fibre, one

A &
finds Gn = Gr1 , over RV . - Taking differentials commutes

with completion, so we get successively:

1 1 1 1
#(s*Q ) =]l #(s*Q ) =] #(s*Q2n ) = #(s*Qxy ) .
Gn/R v Gn/RV vR Gn/Rv v R Gn/Rv

By [Grun], 3.4 , we have

d
1 n v
#(s*Qx ) = #(R_/4R_) ’
Gn/Rv v v
where dV is the dimension of the f2-divisible group ngo Gn

over RV (we have assumed for simplicity that this 4%

2-divisible).

Call h = dim, (W) = rank, (U) (see 2.5) the height of the
2, g

f-divisible group ngo GnK overn K

We find:
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. h [Kv :QQ] 3
niay) - ) = n.log(n) {} - § ity a
" 2 gfpt k=0 V}

We have to show that the expression in curly brackets 48 zero!

(3.6) Put T = Gal(®/@), and consider the induced Galois-re-

presentations (recall that U = TZ(HGnK)’ see 2.5)
. 5 ¥
U =1Ind U < Ind T, (Ay) = T (By) ,

where B, = ReSK/Q(AK) is the abelian variety over @ ob-

@

tained from AK by Weil-restriction from K to @ . We are

going to more or less evaluate the character

in two different ways!

First, it is well~- known (cf,,e.g.,[Marl]l, 3.2, which is easily

generalized to our situation) that

det U = eh. (det U = Verg ) ,

where €: T ——> {#1} is the signature of the permutations

~

induced by T on the homogeneous space T7/7m , and Verg

is the transfer map : ?ab — ﬂab . To compute det U at a
place v of K dividing & , up to an unramified character of

finite order, we may replace H GnKv by g GnKv - this

follows from (3.3) since
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f
) S T (A, )/T (A )T .
v v

T, (UG )/TR(HGn y

£'n nKv K

New, by [Grun], 5.2 , we have

R ~ ~
A TQ(UGnKv) ®ZL CV = cv(dv) ’

where R is the height of the 2%-divisible group Han over

R, ., and Cv(dv) is the completion of K with Galois-

~

action given by the restriction to Gal(Cv/Kv) &—> qgcT of

*
> ZZ the cyclotomic

character giving the action of 7T on TQ(Gm). Composing with

the character dev ¢ With x,: T

~

Ver; , and adding up the results for all v|4% , we see that

_E[szQk]dv

T vig
(det U’°Verﬂ) T Xy

is unramified at & .(The transfer map does not introduce any
new ramification because it corresponds to the natural map of
ideles g%* —_— %A* , via class field theory.) On the other
hand, at each finite place w of K not dividing & , the in-
ertia Iw acts unipotently on U since AK has semi-stable

reduction: [Groth], 3.8. As unipotent matrices have determin-

ant 1, we conclude that the character

—E[KV:QR]dV
«~ . -h v|g ~
@ = det U * ¢ : Xy, : T —> %, *

48 unnamifdied at every rational phime.

But @ has no (abelian) extensions that are unramified at all

finite places (use Minkowski or class field theory). So, by
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class field theory, ¢ has to be the +trivial characten.

Thus for any rational prime p=% % where By has good re-

duction, if F_ € 5 ab

on the one hand, we certainly have ¢(p) = 1 . On the other

is a Frobenius element at p , then,

hand, by the part of the "Weil-conjectures" proved by Weil
himself, the eigenvalues of Fp on U are algebraic numbers

1/2

purely of absolute value P , since ﬁCTl(BQ) . So,

det ﬁ(Fp) is an algebraic number purely of absolute value

:03/2
ph[K o3/

(recall that h = rankZ (U)!). As X!L(Fp) = pEZQ*
2

we conclude that

vig

This proves (3.5),and therefore (2.7) .

We still have to deduce the diophantine result 2.8 from the
corresponding assertion, proved in [F2] , about paincipally
polarized abelian varieties. We claim it will be enough to
establish the following two results:

3.7 Proposition: For any abelian variety A, over K with semi-

K
stable neduction, calling Ap* Aty dual abelian variety, we have

h (AK*) =h (AK)

3.8 Lemma [Zarhin ] : For any abelian variety Ay over K, calling

AK* its dual, AK4 XAK*4 cadies a princdpal polarization.,
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In fact, given 3.7 and 3.8, we find

4 %4,
h(AKxAK) =8 . h(AK) ,

and of course,

4

4 .
* =
L\ ) 8 dim (AK)

dim (A

So, the number of K-isomorphism classes of Aéx AK*4 (even
equipped with a principal polarization) is finite. But the

ring & = EndK(AK4 XAK*4)

is finitely generated over Z ,
and £ ®Q is a semi-simple algebra. Therefore there are, up
to conjugation by E* , only finitely many idempotents in E.
(In fact: e and e' are conjugate if and enly if Ee % Ee' and
E(1-e)TE (1-e'). But the number of subspaces (E®Q@) . e and
(S Q) (1-~e) is finite, and the theorem of Jordan and Zassen-

haus implies there are only finitely many choices of a lattice

in each of these spaces.) Thus, 2.8 follows from 3.7 and 3.8.

Proof of 3.7 : 1In computing h, we are free to make finite

extensions of the base field. Also, the proposition is trivial
if AK is principally polarizable, because then A = A* . Now,
over a suitable extension field, A is isogenous to a princi-

pally polarized abelian variety. So, it is enough to show that
h(A*) - h(aA) 1is an isogeny invariant. Since every isogeny can

be factored (over an extension field) into steps of prime

degree, we are reduced to showing that

h(A*) - h(B*) + h(B) - h(a) =0 ,
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provided there is an isogeny ¢: A —> B of degree 1%
By our isogeny formula 3.1, applied to ¢ and to the dual

isogeny
@* : B¥ ——> A¥* (also of degree ) R

with respective kernels G &> A and G* “— B* , we have

to prove that

Ty L #(s*a)

[K:@] . log (%) = log (#(S*QG/R . ex/r)) -

Using the localisation and completion process as in (3.5), it
suffices to show that, for every place v of K dividing 2% ,

Doy #sxl ) = KR /IR .

(3.9) #(S*Qé
/RV G*/Rv

To prove 3.9, we shall break up ¢ and @* according to the
two-step filtrations of Tl discussed in 3.2. - Tz(w) and its

dual Tz(w*) induce three pairs of dual maps (the duality

following from the orthogonality theorem quoted in 3.2)

t t
TQ(A) _— TQ(B)

(1)
T,L(A*)/TJL{A*)f e T B*) /Ty (80

f t f t

TPV (3a) /TSZ, () _— TQ (B) /TQ, (B)

(I1) £ t £ t
ST P C R p—— SR E S
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f

f
TQ(A)/TQ(A) —_— TQ(B)/TQ(B)

(II1)
xt R
TQ(A ) S TQ(B )

Considering the decompositions of the formal completions of
our semi-stable abelian varieties over RV:

A A N
1 — T(d) — A —> Ab(p) —> O
A A A
T () © Ab (v)

A A A
1 — T(B) —> B-——> Ab(B) —> 0 '

the maps between the torus parts of the Tate-modules in (I)
and (III) are induced by the map f(w) between the completed
tori (resp. by %(w*)), and the maps in (II) are derived from
the pair of dual mappings ﬁ%(m), éL(w*) between formal

abelian schemes over Spf(RV)

N A
G and G* have order 1 or &, so precisely one of the three
pairs of dual maps will have non-trivial kernels. More

A A
precisely: Suppose a kernel sits in (I). Then G < T(A), and

forcibly é> =0 . As 8 is of multiplicative type,
1
* =
#ls*0gp ) = # (Ry/IR,)
- just as forAU.2 , see lGgrunl , 2.5 . Next, suppose

A A A A A
Gd4¢ T(A) , and G** 0 . Then T(¢) and T(p*) are isomor-

N fa)
phisms, whereas Ab(p) and Ab(y*) are dual isogenies of
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A A
degree & , with kernels G and G* , respectively. Applying

the functor Hom(., @h) to the short exact sequence
A A A
0 — G — &ab(A) — Ab(B) —>» 0 ,
we obtain the exact sequence (of fppf-sheaves)

A 1. A A 1 A A
0 — Hom(G,Gm)-——é Ext (Ab(B),Gm) — Ext (Ab(A),Gm)

| N

A A
Ab(B*) Ab (A*) .

A A
This shows that G and G* are dual to each other, and

consequently (see [Grun], 2.4 ) :
# (%% 0 ) #(s*0% p ) = H(R/2R)
v v

as required.

Finally, if the maps in (I) and (II) are all bijective, then
A A A
we must have G = 0 and G*c T(B*). This case is exactly dual

to the first one we treated.

g.e.d.

To complete this section, we still have to do the

Proof of lemma 3.8:

There is always some polarization on AK over K , so let iZ

be an ample line bundle on AK defined over K, giving rise

to the symplectic form



<> 1 Ty (Ag) X TQ(AK)

for any prime

%,
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%. Choose an integer N> 0

:
Ty (A ey Ty ) < Ty (By) G 0

where TR(AK)*

to <, >
2
a

(In fact,

N

(E.g., N = deg(l).

+ b

2

2 + c2 + d2 =

2 2 2

+ 1 + 1 + 1

2 2
th 1 ¢-(F_* 1+ (F_*
en ¢-( P )“u ( P )

From there, one goes with

so that

lattice

t
Qa

o

I

4

a ~b
b a
c -d
d c
.o = -1 (mod

4
) (T, (3 ° ®

—— z, (1)

}) There are

(mod N) .

’

14

such that,for all

a,b,c,d €Z

is the dual lattice of TQ(AK) with respect

with

-1 (mod 8), and if -1¢ (Fp*) '

so that —CFp*)zﬂ 1+(Fp*)2*¢

Newton.) Put

-C

N)

For each

L

€ M4(%) '

, consider the

4 8
T (Bg)* )= V) (Ag)
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It is easily checked that, by its very construction, this

lattice is selfdual and integral-valued with respect to the

form < ,>8 on VK(AK)8 . (Note that, as o has rational-

integral entries, the Rosati involution of <,>4 on o is
simply the transpose.) As the lattice is clearly Galois-

invariant, there is a quotient B of A over K , such

K K
that TQ(BK) is the above lattice. BK is obviously
isomorphic to Aé X A§4 , and from the properties of TE(BK)

we see that it admits a principal polarization.

g.e.d.

This completes the proof of the Tate conjecture.
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§ 4 Variants

In this section, we collect some variants of Theorem 1.1 ,

and indicate a possible variation of its proof.

Let us start with the following obvious consequence of Theorem
1.1 and Corollary 1.2. The notations are those of the be-

ginning of § 1.

4.1 Variant Let T be a finite set of national primes. Then:
. . & . o

(1) The action of T on LET Vo (B)  As semd sdimple.

(ii) The naturaf map

Hom, (A,B) € (Y z,) — || Hom_(T,6(a),T,(B))
"K Z gep % ser "4 %

A8 an Lsomorphism,

There is a less trivial and more interesting way to pass from

A —_—
one Z, to Z = 1lim (Z/n %) = {| z,
2 — 2
n€lN

4.2 Theorem (See last remark of[F11l;cf .[De},2.7) Let

T(a) = 7 T!L(A) ’ and
allg

0t %[TT]—" End @(T(A))

be the homomonphism given by the action of m on T(A) . Then the
subalgebra o ( TIT]) of End f(T(A)) 4is of finite index in the

commutant o4
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End  (3) <—— End 2 (T(R))
in End Q(T(A))

Note that 4.2 implies 1.1. In fact, 4.2 implies that, for all

primes £ , the image of

92%2: Q,Q,[ﬂ] —_— EndQQ(Vﬂ,(A))

is the commutant of the semi-simple @, 6-algebra EndK AQZ )]

2 L°
So, this image is itself a semi-simple QR—algebra, whence (i)

of 1.1. Furthermore, by the theorem of bicommutation,EndKAe QR
is the commutant of pl(QR[ﬂ])in End VQ(A), which implies (ii)

of 1.1 — cf.2.4 above.

But 4.2 is much more precise: It says that, for almost all &,

pl( Zl[ﬂ]) is exactly the commutant of EndK(A) in

Enqz (Tg(A)) !
L

Proof of 4.2: All we have to show is the last-mentioned
equality of pz( Zk[ﬂ]) and EndK(A)° , for almost all .

We proceed by a reduction very much ¥eminiscent of 2.4.

(4.3) 1t sugfices to show that, for almost all prime numbers L, if W

48 a m-dnvariant subspace of the F,-vecton space A[2](K), then there is

L
u € End A such that W = A[L1(R)N ker(u) .

In fact, assuming the condition of 4.3, one immediately gets
the semi-simplicity of the m -action on the F - vector space

a[21(K) . so, the algebra Fg generated by the elements of
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T in End (A[21(K)) is a semi-simple F -algebra. Thus,

2
letting
E, = Endy A Z/2Z < End Fjl(A[JL] (K)) '
and denoting commutants by ° , the theorem of bicommutation
tells us that FR = E£° if and énly if F2° = El . But
the condition of 4.3 for Ax A implies F£° = E% , by exactly
the same argument as in 2.4. So, we have Fl = E2° , for al-

most all primes {. Finally, calling EndK A° the commutant

of End, A 1in End (T, (A)), we have mappings
K Zl L

pﬂ@ Z/{Z
o o o
Fp — EndK A /Q,.EndK peC—— E2
So, by Nakayama's lemma, Fy = Ep° implies pl(zz[ﬂ]) = EndKAS
This proves 4.3.

In order to prove 4.2, we have to use a result which will only

be established in the following article:

4.4 Theorem (see [Wiist], 3.5). Fon A with semi-stable re-

duction over K , there 4s a gfinite set of primes T such that, for any

isogeny A—>B over K of degree pnime to aff Lre T , one has

h(a) = h(B)

Like in 2.2 , 2.3 , we have fo prove 4.2 only for semi-stable
A . Suppose then that the condition of 4.3 fails to be true.
Then there is an infinite set M of prime numbers such that
for all % € M there is a rm-invariant subspace W, < Al2](K)

which does not come from an endomorphism u as required in
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4.3. Then 4.4 and 2.8 imply that there is an infinite subset
Mo,c M such that for all 2,%'e Mo, A/WQ =t A/Wz. .

Taking 2% 42' in M, , call £ the composite map
A —> A/Wl——f-> A/W,, —> A

Since the degree of the last map is a power of &' , the endo-

morphism £ EEndK A satisfies indeed

Wy = A[2]1(X) N ker (f),

contradicting our initial assumption on M . This proves 4.2.

(4.5) To conclude, let us recall (cf. [T1] and [F1]) that we
could have used the weaker diophantine result on paincipally
polarnizéd abelian varieties,[F2],II 4.3, instead of 2.8, in the
proof of Theorem 1.1, at the expense of working a little harder
on the reduction steps of § 2. Refining 2.4, we would have

had to reduce to showing that any maximal {sotropic subspace
VVCSQ(A)— with respect to the f-adic Riemann form of some fixed
principal polarization on A - is the image of some global
endomorphism. This is done by an argument quite similar to the
one we had to use here in the proof of 3.8 in order to get 2.8.
See [Z4], 2.6, for this reduction. Incidentally, in this
approach, it is legal to assumev A principally polarized be-
cause, over a field extension (see 2.2) A 1is isogenous to
some principally polarized abelian variety B ; and 1.1 is in-
variant under isogeny, thanks to 2.1, because isogenous

varieties have isomorphic m-representations Vg .
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§1 Introduction

In this chapter we shall state the finiteness theorems of
Faltings and give very detailed proofs of these results. In the
second section we shall beginn with the finiteness theorem

for isogeny classes of abelian varieties with good reduction
outside a given set of primes. Here we use in an essential

way the Tate conjecture which is proved in much detail in

[sch].

In the third section we give then the proof of the finiteness
theorem for isomorphism classes of abeélian varieties with
prescribed good reduction. Here we use deeply the results of
Raynaud on finite group schemes of +typ (p,..,p). Again very
detailed proofs of the results which are used are given in

[Grul .

In section 4 we shall use the results of the preceeding two
sections in order to give Faltings' proof of the Mordell con-
jecture. Here we use the construction of Parshin [Pa] which
associates to a rational point a certain curve with good re-
duction outside of a finite set of primes which does not de-
pend on the point. This makes it possible to apply thefinite-

ness theoremon isomorphism classes.

In the last section we give then a proof of Siegel's theorem
on the finiteness of integer points on curves. This proof

does not use diophantine approximations.
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This paper profited very much from the Expose§ given by

Deligne [Del] and Szpriro [Sz] in the Séminaire Bourbaki.
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§2 The finiteness theorem for isogeny classes

2.1 Edgenvalues of the Frobenius automorphism .

Let K be an algebraic number field, S a finite set of finite
places of K and &£ a prime number. Suppose that A 1is an
abelian variety defined over K with good reduction outside
of S . Let further v be a finite place of K not in S

and not deviding & , Fv the Frobenius automorphism at the
place v acting on the Tate module TJZ,(A) of A. Then we can
define the characteristic polynomial Ph(T) for 0<h< 2g
(g=dim A) by

h
P (T) = det(T-id - F_ | A T, (B))

If we denote by NV the number of elements of the residue
field KV of v , then the following theorem is a consequence

of a result of Weil.

Theorem 2.1. For 0<£hg2g the polynomials Ph(T) have integen

coefficients and do not depend on £ . Funthermore their complex zeroes

N h/2

have absofute values equal %o v

We shall use this result later on in a modified form. For this

let p be a prime number (replacing V) not deviding & and

1= Gal (K/K) ,

T= Gal (@/Q -
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Then denoting by ResK/CD A the Weil restriction of A (see

[wel) we obtain an abelian variety defined over @ that has
good reduction outside the set of primes which are divisible by
the places contained in S or ramify in K . Furthermore we
have

ﬂ
Tz(Res A) = Ind? (TK(A))'

K/@

Now we can apply Theorem 2.1 to Res A and Fp . Here we

K/@
have

dim Res A = [K:@] » dim A

K/@

and therefore we obtain the following corollary.

Corollary 2.2. For 0<h<2[K:@] * g Zthe polynomials

h it
P, (T) = det (T-id - Fp | A Ind> (T, (A)))

have integen coefficients and do not depend on £ . The absofute values of

thein complex zeroes are equal to ph/z.

2.2 The density Theorem of Cebotarev.

Let K,S,% be as before, ZK the set of all finite places of
K and S2 the set of finite places of K consisting of S
and those places which divide & . Now let P be a subset of

XK and for each integer n let an(P) be the number of
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veP with Nvé n , where Nv is equal to the number of

elements of the residue field kv of wv.

Then one says that P has density a(P) if

a(P) = lim, a (P)/a (},)
exists. Since by the prime number theorem

an(EK)ﬂ‘n/log n
one dgets

an(P) = a(P)*'n/log n + o(n/log n).
Now we can state the density theorem of Cebotarev (see [Se 11]).
Theorem 2.3. Let L be a finite Galois extension of the numbern fiefd K
with Galodis ghoup G . Let X be a subset of G Zhat {8 siable under
conjugation. Denote by Py the set of places vE ZK unnamigled in L
Auch that the conjugacy class of the Frobendius awtomorphism F, is con-
tained in X . Then

a(Py) = x|/]G].

We shall use later on the following version of the density

theorem.
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Corollary 2.4. Let K'S K be a finite Galois extension of K unrami-

gied outside of Sp - Then there exists a finite setf of places T of K
such that TN Sy = @  and the confugacy classes of the Frobenius auto-

monphisms F,(vET) cover all of Gal(K'/K).

Remark, For effective versions of the density theorem of

Cebotarev see [Se 2] .

2.3 The Theorem of Hermite-Minkowski

Let KX be as before an algebraic number field and Sc EK a
finite set of finite places of K. Then we have the following

well-known result of Hermite-Minkowski.

Theorem 2.6. There exist only finitely many Galois extensions LK

unramified outside of S and of degree at most equal to a given number 4.

Sketch of the proof. The set S of finite places determines the
prime factors of the discriminants of the extensions which are
unramified outside of S . It remains to bound the exponents

of these prime factors.

This is done by well-known estimates of the exponent in terms
of the ramification indices at the places in question. These
can be bounded in terms of the degree and consequently by d.
Therefore there are only finitely many possibilities for the

discriminant.
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Remark. The number of such extensions L 2 K which are un-
ramified outside of S and of degree at most equal to 4

can be effectively determined (see [Se 2]).

2.4 The finiteness theorem for isogeny classes.

Let K be an algebraic number field, S a finite set of

finite places and % a prime number.

Lemma 2.6. Let A/K be an abelian variety defined over K with
good heduction outside of S. Then for any fixed place Vv € S prime
to L there are onby finitely many possibilities for the Local L-facton

: _ _ NS =1
L {a,s) =det (1 - N 'F | T,(a) .

Proof. Consider the polynomial
P(T) = det (T*id - F_ | T, (A)).

By Theorem 2.1 this polynomial has integer coefficients and

its zeroes have absolute values equal to Ni/z . Hence there
are only finitely many possibilities for the coefficients and
the number of the polynomials P(T) is bounded. Now the

statement follows directly.

Remark. This number of possibilities for the local L-=factor

can be effectively determined in terms of NV and g = dim A.
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We denote by K a finite Galois extension of K which

contains all Galois extensions K'o> K with

2
[K':K] < 22‘3

and which are unramified outside of S. Let T be the set of
finite places constructed in Corollary 2.4 for S and

L =X , d a positive integer.

Proposition 2.7. Let pym, ¢ Gal (K/K)—> GL(d,Q,) be

Awo semi-simple nepresentations with

Trace p1(FV) = Trace p2(Fv) (VET)
which arne unwamified outside o4 S . Then Py and p, are Asomonphic.
Proog. It is a well-known fact in representation theory that
semi-simple representations are isomorphic if their traces are
equal. In order to prove that P and p, are isomorphic
it suffices therefore to show that

Trace p1(o) = Trace pz(c)

for all of Gal(K/K).

Consider the image M of the algebra ZQ[Gal(f/K)] under the

homomorphism
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P X Py Zl[Gal(f/K)] —> Mg (@) x Mg (@) .

and define the function f : M — Q£ by

f(m,m') = Trace m - Trace m'

for (m,m') € M. We have to show that £ is identically zero.
For this it suffices to show that f vanishes on a set of
generators. We shall show that M 1is generated over Zl

by the images of the conjugacy classes of the Frobenius auto-
morphisms F for veET . Since

v

f(p1(FV),pz(FV)) =0 (v ET)

by hypothesis the function will then be identically zero.

In order to show that the images of the conjugacy classes

of the Fv(ve T) generate the module M over -zz it
suffices to show that they generate M/4M . This follows from
the Lemma of Nakayama since zg is local and M finitely

generated.

The representation P=P4% Py induces a representation
p: Gal(K/K) — (M/M)*

of the Galois group Gal (K/K) into the group of units in

M/&M and the image of p generates M/iM. Since
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2
# (M/gM)* . g2d

and since the representations are unramified outside of S
the representation p factorizes over Gal (K/K) . The
conjugacy classes of the Frobenius automorphisms FV for
vET cover Gal(K/K) by construction so that their images
under p© generate M/4M over %, . This completes.the proof

L

of the Proposition.

We are now able to prove the Main Theorem of this section. We

use two more facts which are proved in [Sch] , namely

1. the action of 7 = Gal(X/K) on

voa): = TQ(A)QZQ R,

is semi-simple (Theorem 1.1 in [Schl),

2. two abelian varieties A,A' both defined over K are
isogenous over K if and only if the w- Modules Vg(A) and

VQ(A') are isomorphic (Cor. 1.3 in [Schl).

To an abelian variety A defined over K one associates an
L-series in the following way. For v¢€ EK let IV be the
inertia subgroup of 1 = Gal(X/K) and TQ(A)IV the fixed

part under the action on Iv of TQ(A). Then the action of

F, Ew/IV is well-defined on Tl(A)IV and we put

1
= d - N-S T
det(id - N7 FVI T, (3) V)

LV(A,s)
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Note that for v ¢ Sl one has TQ(A) = TSL(A)Iv , where S is
the set of places v € ;K where A has bad reduction and

SQ is defined as in 2.2. Then L(A,s) is defined as

L(A,s) = ] L_(a,s) .
v € ZK v

This function is defined for Re s> 3/2 .

Theorem 2.8. Llet S be a finite set of finite places of K, gz 1
an integen. Then there exist only ginitely many Lisogeny classes of
abelian varieties defined vver K of dimension g and with good re-
duction outside of s .

Proof. We call two such abelian varieties A,A' equivalent

if for all ve€T
LV(A,S) = LV(A',s) .

Here T is defined as in Proposition 2.7.(It would indeed
suffice to call A,A' equivalent if the traces of the Fro-
benius are equal).Then we deduce from Lemma 2.6 that there are
only finitely many equivalence classes. We proceed to show
that equivalent abelian varieties are isogeneous. Since two
abelian varieties A and A' as above are isogeneous if and
only if the mw-modules VQ(A) and Vl(Al) are isomorphic
(this is 2. above) we need only to show that A and A' are

equivalent if and only if V(A) and V,(a') are isomorphic
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as m-modules.
Suppose first that A and A' are equivalent. Then the
m-modules VZ(A) and VZ(A') correspond to representations

p,0' : Gal(XK/K) —> GL(29,R,) .

These representations are semi-simple and unramified outside

of S and satisfy

LV(A,s) = LV(A',s) (Ve T) .

From this it follows that

- ]
Trace p(Fv) = Trace p (Fv)

for all veE€T . By Proposition 2.7 the representations p and
p' are isomorphic and therefore VR(A) and Vl(A') are

isomorphic as mw-modules.

Next suppose that VQ(A) and VQ(A') are isomorphic
m-modules. Then the corresponding representations p and p'

are isomorphic and therefore
L,(A,s) = L_(a',s)
for all v ,i.e. Anand A' are equivalent. It follows that

the number of isogeny classes is equal to the number of

equivalence classes. Since this number is finite the theorem
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follows.

Remark. Thecrem 2.8 is completely effective: it is possible
to establish an upper bound for the number of isogeny classes

effectively in terms of S,g9,2 and K .
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§3 The finiteness theorem for isomorphism classes

3.1 Statement of the theorem and finst reductions

let K,S,g be as before and d>0 an integer, R the ring of
integers of K. The following theorem was conjectured by

Shafarevich.

Theorem 3.1. There are only finitely many Lsomorphism classes of
d -4old polarized abelian varieties defined over K of dimension g
with good heduction outside of S.

Remark . It can be shown that this remains true even without
polarisation. We shall establish in this section a Theorem
(Theorem 3.5) and show how Theorem 3.1 will follow from this
result. It will be proved then in the next section. But first

we shall make some simple reductions.

Reductions: 1., Without loss of generality we can assume that
d =1, i.e the abelian varieties are principally polarized.

This is obtained with Zarhin's trick (see Lemma 3.8 of [Schl]l).

2. Because of Theorem 2.8 it suffices to prove that there are
only by finitely many isomorphism classes within a given
isogeny class. Let A be a prinicpally polarized abelian
variety defined over K , of dimension g and with good
reduction outside of S . Then we denote by gi(A) the

isogeny class of A.
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3. We may assume without loss of generality that all B in
cl(A) can be extended to semi-abelian varieties over spec R.
This can be obtained by a finite galois extension K' o K for
which the torsion points of order 4 and 3 of A become
K'-rational. We replace then K by K', R by R' , the inte-
gral closure of R in K' , and A by A xKK' . This is the
theorem on semi-stable reduction (see [SGA 7.I] , Exposé IX).

Then if B€ cl(A) and A 1is semi-stable the abelian variety

B 1is also semi-stable.

3.2 Some auxiliary results

Let N be a finite set of prime numbers, A a principally
polarized abelian variety defined over K, % as usual. Then
we denote by A[JLn] for integers nz0 the set of torsion

points of A with order dividing &7

Lemma 3.2. Suppose that A' s Lsogeneous fo A and

TQ(A') T, ()
forn all 2 EN as m-modules. Then there exists an Ls0geny

@ : A' —> A

0f degree prime to all § 4in N .
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Remark. If the degree degy of ¢ is prime to each & in

we shall denote this by (deg ¢,N) = 1.
Proog. Since Hom(A',A) 1is dense in
TT Hom_ (T,(A'), T,(Rn))
LEN m 2 2
it follows (see Theorem 4.1 of [Sch]) that
Hom (a,A")e T[] =z, = TT Hom (T, (A'), T,(a)).
LEN LEN

Let now 0y for 2€ N be the given isomorphisms

9, TQ(A') _ TQ(A)

Then there exist W1€ Hom (A',A) and W2€ Hom (A',A)e Zl
such that
Y= W1 + £Y2
satisfies
TQ(W) = 0

for & € N . From this we deduce that the kernel of V¥ and

is finite. It follows that Y is an

hence that of Y 1

1

isogeny and it remains to show that
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(deg W1,N) =1
Suppose that the prime number £ divides
(deg ¥ ,N) .

Then there exists an element x in A' of order & such

that W1(x) = 0 . Hence

¥Y(x) = W1(x) +2&E(x) =0
and therefore

9(x) = T, (¥)(x) =0 .
But @, is an isomorphism and we may conclude that x = 0 .
Since we have assumed that the order of x 1is equal to L
we have obtained a contradiction. It follows that

(deg T1,N) = 1

as claimed. This concludes the proof of Lemma 3.2.
The next Lemma is an important step towards the proof of

Theorem 3.1.

Lemma 3.3. There areonby finitely many Lsomorphism classes of % [ml-

Anvardant Lattices in T, (A& @, .
2 Z£ 2
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Proof. This follows directly from the Jordan-Zassenhaus Theorem

(for a proof see [Reil). For if MSL denotes the Zz—sub-—

algebra generated in Endx (TJL(A)) by w then the algebra
L

. is semi-simple by Theorem 1.1 in [Sch]
2

3.3 Heights on isogeny classes

Let N denote again a non-empty set of prime numbers, A a
prin@ipally polarized abelian variety defined over X and

cl(A) the isogeny class of A

Proposition 3.4. There exist an integer n21 depending only on , N

and A -+ /A€ cl(d) with the following propernty. Let B€ cl(a)

17°
be any abelian variety isogencous to A . Then there exists an integen

i=1i(B) with 15i<n and an {s0geny

with (deg ¢,N) 1 .

Proog. According to Lemma 3.3 there exist an integer n
depending only on N and ’A1 sev. A €cl(a) with the follow-
ing property.

Let B €cl(A) be any abelian variety isogeneous to A . Then

there exists an integer i = i(B) with 1<1isn such that
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T, (B) = Tl(Ai)

for all £ €N as m-modules. By Lemma 3.2 it follows that

there exists an isogeny
9: B —> A

with (deg ¢,N) = 1 . This proves the Proposition.

Now we come to the main step in the proof of Theorem 3.1.

This is the following theorem.

Theorem 3.5 Let A be a principally polarized abelian variety
defined over K with semi-stable neduction. Then there exists a ginite
set N of primes with the following property. Let @: A' —> A

be an {sogeny with (deg @ ,N) =1 . Then one has
h(aA') = h(a) .

Corollary 3.6. One has

hH(cl(n)) = {'h(A1) ,...,h(An)}

A4 A ...,A are zhe abelian varieties constructed in Proposition 3.4

forn the N gdiven by Theorem 3. 5.

Proog. Obvious,
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Corollary 3.7. There exists a constant ¢ >0 depending on

AgreeesB (as 4in Conollary 3.6) such that o  BE cl(A) one has
h(B) £c .
Proof. Obvious.

Remark. The constant c¢ can be effectively determined in
terms of K,N,h(A1) ;-0 (An) . But it is not possible to give

an effective bound for the h(Ai) (1841gn).

We shall prove Theorem 3.5 in the next section. Since Theorem
3.1 follows very easily from Theorem 3.5 we shall give the
proof now. For this we need the following result which is

proved in [Fa II] , Theorem 4.3.

Theorem 3.8. Let K be a numben field. Fix an Lnteger g=21
and a real number ¢ > 0 . Then there are up to Lsomonphism only
ginitely many principally polarized semistable abelian varieties A

over K o4 dimendion g such that h(a) < c.

Proog of Theorem 3.1. From Theorem 2.8 it follows that the
number of isogeny classes is bounded. In each isogeny class
the height is bounded by Corollary 3.7. By Theorem 3.8 there
are only finitely many isomorphism classes of principally
polarized abelian varieties of bounded height. Together with

reduction 1 and reduction 3 Theorem 3.1 follows now.
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3.4  Galois representations and the Theorem ¢f Ragnand

The arguments in this section are very similar to those used
in [Sch] , 3.6. Since we are working here mod &, the

2-divisible groups are replaced by finite group schemes.

Let K be a number field as usual, R 1its ring of integers
and m = [K:Q] , 7= Gal(K/K) and 7 = Gal(Q/@) . We fix
some prime number & and denote by E2 the finite field with
2 elements. Let V be a finite dimensional Ez—module with

dim V = h. Suppose that

p:m —> GL (V)

is a Galois representation. Then the module V becomes a

m-module and we can define the module

~

7

T
Ind V

™
This is a T-module and to it corresponds the representation

—> GL(V)

o
2

where

o
n
=
o)
o

o]

To each such representation we can associate the
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one-dimensional determinant representation. It follows that

we obtain two further representations

det p:m ——> T

2
and
det P:7 — EZ
Both induce representations of ﬂab and %ab of the

abelianized Galois groups. We denote by

Ver? M —> T

~ab

the canonical projection 7 — 7 followed by the trans-
fer map 730 5 0®P e put

X : = det 0:T — EQ
and

Tr ~

x : = (det p)o(Ver F) T —> El
x and ¥ are characters of 7 with values in E, . If we
denote by
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the signature of the permutations induced by the elements of

~

T on T/t then y and Y are linked as follows.

Proposition 3.9. We have

Proof. See [Ma], Proposition 3.2.

We apply this in the following situation.Let A be an abelian
variety as usual (principally polarized, defined over K,

semistable reduction over K),

an isogeny with kernel G that is annihilated by £ and
deg =2 h . Then G 1is a quasi-finite and flat group scheme
over R . If v 1is a place of K with v|& and if A has

good reduction at v then

G_ = G 3R
v v

is a finite and flat group scheme over Rv . Associated to

A' and G are several modules over E2 , namely

VZ = Tz(A')/QTZ(A')

and



Then both V and W are m-modules and we can apply the

2 2
foregoing to V = W2 . For this we put
N T
V2 = Ind Vﬁ
m
and
W o= Indﬂ'w
m 2

and these are both T-modules. We have then the representation
p T —> GL(WZ) and the induced representation

? = Ind ip: T — GL(WE) . We have further associated to o
and p the characters y = det po Ver; and X = det 7.

Since h = dim W2 we obtain from Proposition 3.9 that
Let
xo it T —> 3

be the cyclotomic character and by abuse of notation we denote

also by Xo its reduction mod £ ,
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i.e. the compositum with the canonical projection Zz—-> E2 .
Lemma 3.10. The character X 48 a power of Xg*

Proo§. Since A' has semi-stable reduction outside of v |32
it follows that p operates unipotently ([SGA 7]) on Iw,
w¥ £ . Hence X is unramified outside of & . But then it
follows that ¥ is a power of the character Xo (using the
theorem of Kronecker-Weber and the fact that Q@ does not

possess any unramified extensions). This proves the Lemma.

We aré going now to compute the exact power of XO . This is

done using a result of M. Raynaud on finite group schemes.

Let as before G be the kernel of an isogeny ¢ : A' —> A
annihilated by & and assume that for each place v dividing

L
(i) A' has good reduction at v,

(ii) K is unramified at v.

Let Qé/R be the module of differentials of G , s : R —> A

the zero section and the non-negative integer d defined by

3 - #s*mé/R) .

Then d satisfies (see §Gru],Proposition 2.7}

0<dsm°g (m = [K:Q],g = dim A').
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We have then the following theorem.

Theorem 3.11. One has

~1_€h a
X = XO .

Puwof. See [Grul, Theorem 4.6.

Remark. The condition (ii) on the place v implies that the
ramification index e, is equal to 1 and this implies that
e, <% -1 for every v dividing 2 . The condition (i) implies

that GV is a finite and flat group scheme over Rv'

3.5. Proof of Theorem 3.5

Iet A',K be the same as in the preceeding section, p and £
two different prime number such that K is unramified at p
and %, and for each place.v of K such that v|p°% the
abelian variety A' has good reduction at v. Let F be
the Frobenius automorphism at the prime p and for each in-

teger h with 1s5h<2mg define the polynomials Ph(T) as

_ via h k3 .
P, (T) = det(T-id Fy [ Ind T, (A')).
Then define the finite set N of primes as follows:
A prime number p' 1is in N if and only if one of the

following conditions is satisfied:



- 181 -

(1) p'=p.,p' =2,

(ii) K is ramified at p' ,

(iii) for some place v of K with v{p' the abelian
variety has bad reduction at v ,

(iv) for O0s<jsgm, 0£hs2gm such that j # h/2 the
prime p' divides one of the numbers Ph(:pj) (this

number is non-zero by Theorem 2.1).

This is a finite set of prime number which can be determined
effectively. We sall show now that the set N has the desired
property. Note that the set N does not depend on £ (Theorem
2.1) . Therefore we may choose & such that £ ¢ N.

Now let
¢ :+ A' —> A

be an isogeny such that (deg ¢,N) = 1 . We may assume with-
out loss of generality that deg ¢ is a power of a prime
number £ not contained in N . Furthermore we may assume
that & annihilates the kernel of ¢. All this can be
achieved by simple reductions. Let the notations be as in

section 3.4.

Since X (Fp) = p we obtain from Theorem 3.11

R =t E )y S () mepd

modulo 2. It follows that
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+pd
is a zero of the congruence
th(T) =0 mod 2% .
Thus
d
2Py, (D7)
and because of the definition of N
d -

mh
2

Now apply the height formula for isogenies ([Sch],Theorem 3.1)

and obtain

h(a) - h(a') = % log (deg¢) - [K1W log (#S*Qé/R)
- % log & - % log#
=0 .

This proves the Theorem.
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§4 Proof of Mordell's conjecture

4.1 The theorem of Torelldi.

Let again K be a number field, S a finite set of finite

places of K . Then we have the following Lemma.

Lemma 4.1.  There exists a finite extension K' > K , such that
fon any abelian variety A overn K of dimension g ,with good re-
duction outsdide of S the abelian variety

'
A ®KK

is semistable and has all its 12-divdison points K!-aational.

Proof. See [Fal, II, Lemma 4.2.

4

The general reference for the following is [Mul], chapter
V,Vi,ViII. Let B be a noetherian scheme and gz 2 be an
integer. By a curve X of genus g over B we understand
a morphism p : X —> B which is smooth, proper and
whose geometric fibres are irreducible curves of genus g.
Let now B any given noetherian scheme. Then we denote by
Mg(B) the set of curves X of genus g over B modulo

isomorphisms.

By an abelian scheme A over B of dimension g we under-
stand a group scheme p : A —> B for which p 1is smooth,

proper and has geometrically connected fibres. For integers
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(B) the set of triples consisting

n,d 21 denote by Ag,d,n

of

(i) an abelian scheme A over B of dimension g,
(ii) a polarization of A of degree d2 ’

(iidi) a level n structure of A over B

up to isomorphism. If n = d =1 we simply write

gB) = Ag,q,0 B

Then M and A are functors which associate to a
g g,d,n

noetherian scheme a set. There exists a functor

g g,1,1

which associates to a curve X over B of Mg(B) its

Jacobian J(X/B) (see [Mul]l, VII 4).

From now on we let B be spec K for the number field K

at the beginning and Mg(spec K)S the subset of Mg(spec K)
consisting of the curves X over K with good reduction
outside of S . In the same way we define Ag(spec K)S as
the subset of Ag(spec K) consisting of the abelian varieties
A over K with good reduction outside of S . Then it can
be shown that the restriction j(spec K)S of Jj(spec K)

to Mg(spec K)S maps into Ag(spec K)S (use [Mul, Prop. 6.9}



- 185 -

Theorem 4.2. The map
j (spec K)S : Mg(spec K)S —_— Ag(spec K)S

has ginite §ibres and the number of elements in each fibre is uniformly
bounded.

Proog4. Suppose that X and Y are in Mg(spec K)S such that
j(spec K)g(X) = j(spec K)o(Y) .

Then
j (spec K)JX@K) = j(spec K)g(Y&K).

It follows from Torelli's Theorem ([Mu],VII.4) that

Let K' 2 K be the field constructed in Lemma 4.1 and
m = Gal(K'/K'). If ¢ denotes the above isomorphism then for
o Em one gets isomorphisms

o

. o) bl
® .X@KK —_— YoKK

Consider
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0,-1
2(c) = (9) ° o.
Then &(c) is an automorphism of X@KI_(_' , hence of finite
order (since for curves X of genus g2 2 the group Aut(X)

is finite).

The automorphism ¢(¢g) induces the identity on the 12-divis=
sion points on the Jacobian of X@KK' and therefore by the
subsequent Lemma the identity on the Jacobian of X«&KK'. It

follows that o=@ S for g € m.

This implies that
v T '
X @kK Y ng

over K' . Finally the set of curves X over K which be-
come isomorphic over K' is parametrized by a subset of the

finite set
E1(Gal(K'/K) , Aut(X @ K'))

by Galois cohomology. This proves the Theorem.

In the proof of Theorem 4.2 we have used the following Lemma

of Serre.

Lemma 4.3. Let A/K be an abelian variety over K . Suppose that
@ :A—>A s an endomorphism which dnduces the Ldentity on the 12di-

nNisdon points of A(K). Then ¢ 45 the {identity on A
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Proof. See sém. Cartan, 1960/61, Exposé 17, ([scl).

4.2 The Shafarevich confecture for curves

Let K be a number field as in the preceeding section and
a finite set of finite places, g2 2 as integer. Then the

following result was conjetured by Shafarevich.

Theorem 4.4. There ane only finitely many Lsomorphism classes of

smooth connected curves over K with good reduction outside of S

Proof. We know by Theorem 3.1 that there are only finitely
many isomorphism classes of principally polarized abelian
varieties defined over K with good reduction outside of

Now Theorem 4.4 follows from Theorem 4.2.

4.3 Coverings

For the proof of the Mordell conjecture we need some facts

about ramified coverings of curves. In this section we give

a short account of these facts.

As usual let K be an algebraic number field and R its
ring of integers and S a finite set of finite places of
We denote by U the open set

U =spec R~ S .

We shall also need the Hilbert class field K' 2 K of K

S

S.

K.
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Its ring of integers is denoted by R' and S' is the set
of primes of R' 1lying over S , U' = spec R' - S'. Finally
we let p:X— U be a curve (see section 4.1). The

basic tool is the following construction.

Proposition 4.5. let A be a quasi-coherent sheaf of OX- alge~

bras. Then there exists an unique scheme Y over U and a morphism

f:Y ——> X over U such that for every open aggine VS X

we have
£ (V) = spec A(V) ,
and fon every inclusion U &> V 0f open affines of Y Zhe morphism

£l e—s 7]

(V)

corrnesponds Zo the nestrniction homomorphism A(V) —A(U).
Proog. See [Ha], II, Ex. 5.17.

Remark. The scheme Y is denoted by spec A.

We shall also make use of the following result of Grothendieck.

Proposition 4.6. Let D be an effective divisor on the generic

§ibre Xy 0f X. Then there exists an uniquely determined elLosed

subscheme D 0§ X §fat over U such that D= B’K , the generic
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§ibre of D .

Proof. See Proposition 2.8.5 in [EGA IV].

Now let D be an effective divisor on XK and OX (-D)
K
the corresponding invertible sheaf and suppose that

~ é&n
0, (-D) =1
for some invertible sheaf Lx on XK and some integer
K
n 21. By Proposition 4.6 the sheaves 0, (-D) and L
Xy Xk

extend to invertible sheaves OX(-B) and L on X . We put

~ R~ -1, @n
MX = OX( D)o (L )
and obtain for its restriction MX to XK
K
_ _ -1, @®n ~
My = Oxy (7D @ (Ly, ) Og

Hence the invertible sheaf MX is trivial on the generic

fibre and can therefore be written as

= *
My = p*(F)
for some F € Pic U . We make now the base extension

U' —> U and obtain the curve p':X'———3 ¢y and the
invertible sheaves MX',LUOX,(-ﬁ') . Since K' 1is the
Hilbert class field of K the sheaf F€Pic U becomes trival
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in Pic U' . Denote the resulting sheaf in Pic U' by F'.

Then

Hyr = pr(F') F pal0y,) 0y,

and we have proved the following result.

Proposition 4.7. let X,K,XK,D be as above and suppose that
Og(-D) = L o ® ton some invertible sheaf L, on X, and some
K

* xR

Aiteger nz21 . Then there exists an abelian unamified extension
K' 2K (the Hilbert class gield) of finite deghee with ring of integers
R' and U' = L divison D flat over U on
X' = XxU' , and an inventible shea§ L' on X  such that
o~ @
Oy (=B1y = %%,
These sheaves are obtained by base extension U'—> U from the

extended %0 alf of U’

sheaves OX (-D), L
K

XK

Next consider the situation of Proposition 4.7 and define the

OX' -algebra A' on X' by putting
Lot e (0s1i<n)
and
A= 0 ,eL'_1 ®... o L' (07T) ,
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and defining the multiplication on A as

e
LT E3) if 1+ j<n

[ v
ot > {L. - (i+3-n)

otherwise

for 0 £i,j<n-1 using the isomorphism

which gives us a homomorphism
Lt —— 0 .

By Proposition 4.5 we get then a curve spec A' over U'.
This curve is a ramified covering of X' . Denote it by Y'.
Then Y' is a curve over U' which is smooth at the places
where D' 1is smooth and n invertible. This can be easily
verified by local considerations. So if the generic fibre

Y of Y' is smooth the curve Y has good reduction

1
Kl Kl
outside a fixed set of places which depends only on the

set of bad places of X , the divisor 'D and n.

4.4  The comstruction of Kodaira-Parshin

The main step in the deduction of the Mordell conjecture
consists of the construction of Kodaira-Parshin (see [Pal).
For this fix a number field K , a finite set of finite places

of K that contains all places v of K with v|2 and a smooth
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curve X defined over K with good reduction outside of

S . A rational point

P : spec K —> X

determines an embedding of X into the Jacobian J(X) of X.
Henceforth we assume that the genus g of X is at least
two. The Jacobian J(X) 1is also defined over K and the
embedding X —> J(X) is given by sending a point Q of X
to the sheaf oX(Q - P). The Jacobian J(X) has good re-
duction outside of S . Consider now the unramified covering
X(2) —> X induced by the multiplication by 2 on J(X),

i.e. defined by the commutative diagram

X(2) —_— J(X)
T2
1 t
X —_—  J(X)
such that X(2) is the pull-back. Then the curve X(z) is

defined over K and has good reduction outside of S (note

(2),

that by definition veESs for v|2). Its genus g(X can
be easily determined: First the degree of the covering is
equal to 229. By Hurwitz (see [Hal])we get

g o gx@y 2 2%9(g - 1) + 1.

Let D be the inverse image of the divisor P on X. This
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is a divisor of degree 22g which is rational over K . Note
that it depends on P . In order to apply the results of the

last section we need a simple Lemma.

Lemma 4.8. There exists a finite extension K(z)g K not depending
on PE X(K) such that k'? i wmamified outside of S with the

g§ollowing property: Let fon P E X(K) be D constructed as above.

Then there exists an effective divison D' on X(z)deﬂined over K(2)

such that D 48 Linearnly equivalent to 2D'.

Proof. For a given PE€ X(K) let Kp be the smallest field

containing K such that each point in the fiber over P of

(2) ——> X becomes KP-rational. This is

an extension of degree at most equal to 2zg and unramified

the covering X

outside of S (note that the places dividing 2 are in §).

Apply now Hermite-Minkowski (Theorem 2.5) to obtain K(z).

In order to obtain D' we proceed as follows. The support

|D| of D in the Jacobian J(X) 1is isomorphic to the group

(Z/2z)29. Find subsets y' and y" of the latter such that
Y'ﬂY" = ¢ ’
Y = @/2m)29
#oy' = # y» ’
) x! = x" .
chYn Xn € yn

This decomposition induces a decomposition



- 194 -

D=D'+D"

where D' corrkesponds to y' and D" to y" .

The last property in the definition of y' and y" implies

that
D' - D"~ 0
or equivalently
D'~D" .,
Hence

D ~2D'

(2)

as desired. Obviously the divisor D' 1is K -rational.

This proves the Lemma.

We make now the following base change:

spec K'—> spec K(z) —> spec K

(2)

where spec K —> spec K 1is defined by Lemma 4.8 and

(2) is definea by Proposition 4.7. We

spec K' —> spec K
shall now replace everything by its corresponding object
after this base change and in order to simplify the

notations we still write for them P,D,D',X,J(X),X(z)etc.
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They are schemes over spec R'. Since by Lemma 4.8
~ 2
0 (-D)= L
x(2)

for
L= 0 -D')
L(2f

we can apply the techniques of section 4,3 to obtain a curve

(2)

over U' which is a covering of degree 2 of X and

ramifies exactly at D . Furthermore it has bad reduction at

most at those places where X(z) has bad reduction and those

dividing 2. Hence it is a covering
fp

YP———>—X

of X of degree 22g+1 which ramifies only at P . We have

therefore proved the following result.

Proposition 4.9. Let K be a number field, R its ning of integers,

S a finite set of finite places containing all places v with v|2 ,
U=spec R-S and X-U a cwwe over U 0f genus g & 2

Then there exists a finite extension XK' 2 K with the following
property: 14 R 4s the rning of integens of K',S' the set of places

Lying over S and U' = spec R'-S'then for each rational point
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P € X(K) there exists a cuwe Y, over U' such that the generic

§ibre YP,K' 04 YP.JA a covernding of Xpv = X@K' 04
deghee 229*T that is namified exactly at P. The genus of Y
4

& equal to 2297 V(ag - 3) + 1.

4.5 Mondell's confectwre

We are now able to prove the following result conjectured by

Mordell. Let K be as usual a number field.

Theorem 4.10. Let X/K be a smooth curwe of genus gE2.

Then X(K) 48 finite.

Remanks.1.Let S be the set of places of K at which X has

bad reduction together with the places which divide 2 or 3.

2. Without loss of generality we may assume that the 12-di-

wision points in the Jacobian are K-rational.

Proof of Theorem 4.10. By Theorem 4.4 the set of curves YP K
r
constructed in Proposition 4.9 is finite up to isomorphism.

It remains to show that there are only finitely many coverings

Y

| s

X

which are ramified exactly at a fixed point P of given

degree and fixed genus g(Y) of Y. But this follows from
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the fact that there are only finitely many dominant morphisms

f : Y —> X if the genus X 1is at least equal to two.
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§5 Siegel's Theorem on integer points

Suppose that, as usual, K is a number field, S a finite

set of finite places and R the ring of S-integers of K.

S
Let X/K be a smooth curve and D an ample divisor on X.
Then let Y =X - |D| and Y(RS) be the set of S-integer
points on Y. Then Siegel proved for S = § the following

result which was extended later on by Mahler to arbitrary S.

Theorem 5.1. Suppose that Y(%;) L8 Anfinite. Then the genus of X
A8 equal to zeno and Y 48 Asomorphic %o G, Zthe additive ghoup,

on B, the mulitiplicative ghroup.

We shall give now a proof of this result using only Mordell's
conjecture. We consider first the case that the genus g of
X 1is zero and |D| consists of at least and then without loss

of generality exactly 3 different points. Then

Yy TpIN{0,1,%} .

Let U = P1\{o,1,w} and
]
j p
P1
be a cowvering of degree 3 fully ramified at 0,1, . Then the

genus X' can be calculated and one obtains by Hurwitz
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2g(X') - 2 = 3(g(X) - 2) +6 .

Hence

g(x')y =1
Let V = p_1(U). Then v —E»s ¢ is proper and étale and
an .integer point o¢: spec Rs ——> U 1lifts to a point
g : spec RS ——> V over a finite extension KO of K
unramified outside a set of places T independent of o
( T contains the places of bad reduction of X and. the

places where D has bad reduction).

The degree of K0 over K 1s at most equal to 3. So we find
a finite extension K' 2 K that contains all the fields K0
for oE'Y(RS) (by Theorem 2.5). Hence we may assume that

K' = K . It remains to show that x'(RS) is finite. But V
is an elliptic curve with 3 points missing. Therefore it is
sufficient to show that on an elliptic curve E with one point
P missing the set of S-integral points is finite. Let P=0,
the point at infinity of E , and E' = E~ 0. Then as in the
last section one constructs a smooth curve X over K which
is a covering of E of degree 8 and which ramifies at 0
and which has genus g(X) = 3 (see Proposition 4.9) . Again

an integer point

g: spec RS ——> E'
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lifts to a point
0g: spec R, —> X
after an eventually finite extension of K as before. Since

g(X')2 2 we may apply Theorem 4.10 and find that E'(RS) is

finite.
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§ 1 INTRODUCTION

The purpose of this chapter is to give some additional
results, mainly about generalizations to finitely generated
extensions of @ . Similar results have been obtained by
other people, and on occasion I have used their arguments
instead of my original ones. More precisely, we obtain the

following facts:

Choose a finitely generated extension field K of @
and let R ¢ K denote a finitely generated smooth Z-algebra,
with field of quotients K . As before, w=Gal(K/K) is the

absolute Galois-group of K .

For an abelian variety A over K , n acts continu-

ously on the Tate-module Tl(A) (1 a prime). We have:

Theorem 1 (Tate-Conjecture)

a) Tl(A)C)Z o, is a semisimple w-module
1

b) The map

EndK(A) [ - End"(Tl(A))

2 1
is an isomorphism

c) Except for finitely many primes 1 , the image of the
mapping
2, [n] » Endzl (T, (A))

is the full commutator of EndK(A)
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Theorm 2: (Shafarevich-conjecture)

Up to isomorphism, there exist only finitely many abelian
varieties of a given dimension g over K , which have

good reduction at all primes p c¢ R of height one. The

same holds if we consider d-fold polarized abelian varieties,

for some integer d > 0 .

Theorem 3: (Mordell-conjecture)
Any curve over K of genus bigger than one has only finitely

many rational points.

Theorem 4:
If A is an abelian variety over a field L of characteristic
zero, and X ¢ A a curve of genus bigger than one, then for

any finitely generated subgroup I'cA(L), I'NX is finite.

Theorem 5:
The mapping
EndK(A) - Endﬂ(A(K)) is
is an isomorphism
We also describe some ideas of A.N. Parshin and J.G. Zarhin,
which give an effective bound for the number of rational points

on a curve of genus bigger than one.

Most results are proven by reduction to the case of number-
fields. This is achieved via complex Hodge-theory. In the

next paragraph we give the necessary preliminaries.
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§ 2 PRELIMINARIES

1.) The Eebotarev—density theorem

Let S=Spec(R) with RcK as before, R smooth over 2 .

Let n1(S) be the &tale fundamental group of S . (with
respect to some geometric point). If x€S is a closed

point, its residue field k(x) is finite with N(x) elements,
and we obtain a conjugacy class Fx in w1(S) containing the
canonical generator of Gal(ET;)/k(x))Ea . By abuse of
notation we will often speak just of the element ern1(s) ’

which is determined up to conjugation.

v
Theorem: (Cebotarev)
The conjugacy classes of the FX are dense in n1(S)

sketch of proof: We may replace S by an open subscheme,

hence assume that a fixed prime 1 is invertible in R.

We have to show that for any continuous surjection of w1(S)
onto a finite group G the images of the FX meet any
conjugacy class of G . Following the proof in the numberfield
case it suffices it for any irreducible representation X on
G over a finite extension E of @ , the L-series

L(s,x) = I det(1-N(x)'s.x(FX))‘1

is holomorphic for Re(s) >d = dim(S) ,
can be continued meromorphically to Re(s)>d - % , and has
at s=d either a pole of first order (if X= trivial represen-

tation), or neither a pole nor a zero (if X% trivial) .
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Using Brauer's induction theorem one reduces to abelian

characters
X:m > = roots of unity.

By Grothendieck's formula, if F denotes the étale l-adic
sheaf associated to X !

2(d-1) i+1

Lis,X) = I ( ndet(1-p’s.FP[Hi(s®Ep,F))“”
P

It is known that the factors for i < 2(d-1) are holomorphic
and non-zero for Re(s) > 4 - -;— , and that Hé(d—“ (S®f‘p,F)
is dual to HO(SC)fk, F*)(d—1) , hence we have to worry

only about
d-1-s -1 0 = -1
I det(1- r_ ' ®°(s®F._,F
p (1-p P (s®@ o’ ))

This is essentially the L-series for the representation of
= (o} = ¥ . .
Gal(Q/Q@) on the dual of H (S® Q,F) , with a shift d-1
in the variable s . If L denotes the algebraic closure of
® in K, this representation is induced from the Gal(L/L)
- Vv —
representation on HO(SC)I”F) . But HO(SC)qu) vanishes,
v -
unless F is trivial on S®L , that is, unless ¥ is given
by a character of Gal(L/L) . 1In this case we have to consider

the L-series of this character, and its behaviour is known.

2.) Decomposition groups

Suppose X 1is an geometrically irreducible normal algebraic
variety over a numberfield L , of dimension at least one.
The fundamental group n1(x) of X 1is then an extension of the

geometric fundamental group n1o(X) = n1(X(:)Lf) by the Galois-
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group Gal(L/L):
0— n1°(x) —>m, (X) —Gal(L/L) =0

To any L-valued point peX(L) of X corresponds a

decomposition group

Dp c n1(X) .
The mapping from Dp to Gal(L/L) is an injection, and
gives an isomorphism of Dp with some Galoisgroup Gal(i/L1),
where L, ¢ L 1is the field of definition of p . Hence the

1
semidirect product n1°(X)>4Dp has finite index in n1(X) .

3.) Complex Hodge-Theory

Consider a smooth geometrically irreducible algebraic
variety X over a number-field L , similar as in 2.) . If
we choose an embedding L<-C, n1°(x) is the profinite
completion of the topological fundamental group n1(X(C)).
This gives us valuable information, for example that it is
finitely generated.

Furthermore, if

$ :+ A > X

is an abelian variety over X , and pe X(L)CX(F) a
geometric point, the action of n1°(x) on Tl(A) (1 a2 prime)
is induced from the representation of n1(X1¢)) on

H1(A(P),Z) = T(A) .



- 209 -

This representation has the following wellknown properties:
(Déligne, Hodge II)

a) T(A)®, Q@ is a semisimple n, (8(€)) -module.

b) Consider the injection

Endx ®L¢ (A) = Endml (s(q)) (T(A)) -

An endomorphism of T(A) commuting with n1(S(C)) is already
in the image if it induces an endomorphism of one fibre of

¢, for example the fibre at p .

Thus:

Endx®LC(A) = EndT£1 (s(c)) (T(R))NEnd, (A(p)ec )

4.) Hermite-Minkowski

Let S=Spec(R) be as in 1.), R smooth and finitely
generated over 2 .

Theorem: (Hermite-Minkowski)

Suppose G 1is a finite group. Then there exist only finitely

many continuous homomorphism

o :n1(S)+G
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sketch of proof:

Let L be the algebraic closure of @ in K (K = quotient-

field of R). Then

X=5®,0

is geometrically irreducible over L , and n1(X) surjects

onto n1(S) .

Choose a geometric point Pe€ X(L) . Then n1°(x) b Dp
has finite index in n1(X) , so that it suffices to show
that the various ¢'s restrict to finitely many morphisms

P
give only finitely many different elements by the classical

from n1°(X) > Eb to G . But their restrictions to D

Hermite-Minkowski-theorem, and the same is true for the
restricions to n1°(X) sbecause this group is topologically

finitely generated.
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§ 3 THE TATE-CONJECTURE

Theorem 1:

Suppose that K is a finitely generated extension of @ ,

A an abelian variety over K , Tl(A) its Tate-Module

(for some prime 1),
py:m=Gal (K/K) - Aut (T, (A))

the corresponding representation.

Then

a) Tl(A) ® Q is a semisimple w-module
2, 1

b) EndK(A) ®, 7 = Endn(Tl(A))

z2 "1
¢) For almost all 1 , the subalgebra of End2 (Tl(A))
1

generated by pl(n) is the full commutator of EndK(A) .

Corollary:

Up to isomorphy, there exist only finitely many abelian

varieties B over K which are isogeneous to A

Proof:

We start by some general remarks. Properties a) and b)

imply that for any prime 1 the subalgebra of Endzl(Tl(A))
generated by «n has finite index in the commutator of

EndK(A) . To prove c¢), we may restrict ourselves to primes

1 for which EndK(A) ®2 2/12 is a semisimple T/lZ—algebra.
For those 1 , property c¢) holds if and only if Tl(A)/l~Tl(A)
is a semisimple w-module, whose m-endomorphisms are given

by Endg(A) © If r'cw is a closed subgroup with

2 Y12
[r:n] finite and prime to 1 , it suffices to show this
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property for w' instead of = . This also applies to a) and

b), and we thus may assume the following hypotheses:

Let LcK denote the algebraic closure of @ in K . Then
there exists a smooth, geometrically irreducible scheme X
over L , with function field K , such that A extends to
an abelian variety over A . Furthermore, X has a rational

point p € X(L) .

Thus w acts on Tl(A) via its quotient n1(x) . If we choose
an embedding L< ¢ , n1(X) decomposes as a semidirect
product

14

_ .0
n1(X) = n1(x)x Dp
where w? X) 1is the profinite completion of the topological

fundamental group n1(X(¢)) .

If A(p) denotes the fibre of A over p , properties
a) , b) and c¢) are known for A(p) (with the action of
Dpécal(i/L)). We let T(A)=H, (A(p)(¢),2) , so that

Tl(A)=T(A) ® Zl , and the action of n? on Tl(A) is derived

z
from the action of ﬂ1(X)(C)) on T(A) . The rest is easy:

. A o
a) Tl(A) ®21 Ql is a semisimple n-module: let g,g and é
denote the Lie-algebras of the compact l-adic groups

o .
pl(n), pl(n ) and pl(Dp) . We have to show that g is
reductive in Tl(A) ®z Ql . We know that this already holds

1l
for ao(by complex Hodge-theory) and {’(Tate—conjecture for
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A(p)) . But go is an ideal in 8’ , and?! =g°+!.

The claim follows.

b) End,(a) ®, #) jad End_(T;(A)): We have an injection of

left into right. Furthermore, we know that EndK(A)=EndX(A)

= En X® ¢(®) N End  (A(p))

= End )(T(A)) n EndL(A(p))

ﬂ1(X(¢)

Tensoring with Wl and applying the Tate-conjecture to A(p)

gives:
End (A)® zl—Endn1o(T1(A))n Ende(Tl(A)
= End"(Tl(A)) .
c) For almost all 1 , pl(n) generates the full commutator
of End,(A):

Taking into account a) and b) we have to show that there
exists a subalgebra MEEndZ(T(A)) (of finite index in the
commutator of EndK(A)=Endx(A)) , such that for all

1 M 8% Zl is the subalgebra generated by pl(ﬁ) .

If we replace ™ by n? , such an algebra is given by the
image of 2[31(X(¢))j. The same can be said about Dp5n1(x) ’
by using the case of number-fields. We take for M the algebra
generated by those two subalgebras. The corollary follows,
because M ®z ® 1is semisimple, and abelian varieties B
isogeneous to A correspond to M-lattices in T(A) 82 Q .

By the Jordan-Zassenhaus-theorem, there are only finitely

many isomorphism classes of such lattices.
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§ 4 THE SHAFAREVICH-CONJECTURE

Theorem 2: Let S be an integral scheme, smooth and of infinite
type over 2 . For any g, there exist up to isomorphism only
finitely many abelian varieties A of dimension g over the
function-field K of S , which extend to abelian varieties

over some apen set UcCS with codim (S-U)=2 .

The same holds for isomorphism classes of d-fold polarized

abelian varieties, for any integer d

Proof: The two statements are equivalent, so we only show the
first one. The corollary to the Tate-conjecture (Th.1) im-
plies that it suffices to prove finiteness up to isogeny,

and by the Tate-conjecture we only need to consider the iso-

morphism-classes of the Galois-representations Tl(A) ®2 Ql .
“1

We may assume that 1 is invertible on S . If A extends to

an abelian variety over S , we know that ﬂ1(S) acts semi-

simple on Tl(A) ® Ql , and that this representation is pure

z

of weight 1/2 (thatlis, for x € S a closed point, the
Frobenius FX has eigenvalues of asolut value N(x?a ) .
We show that these properties also hold if A has only good
reduction up to codimension 2: Bypurity of the branch-locus,
the representation of Gal(E/K) on Tl(A) factors over its
quotient n1(S) . This representation is also pure of weight
1/2 ; because for any closed point x € S we can find a

proper birational morphism Q:g ~ 8 , such that § is regular

and @_1(x) is a divisor in § (take the blow-up in x ,

for example). As ¢¥(T1(A)) is unramified on 3 ' ¢*(A)
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extends to an abelian variety over some open set ﬁ(:gz

whose complement has codimension at least two. Thus there
exists a closed point y ¢ g n ¢_1(x) , and the eigenvalues of
FY have the correct absolute value. As F is a power of Fy,

Y

we are done.

Now the original proof of the finiteness of isogeny classes
applies (Ch17}71.19), since we only need

a) Hermite-Minkowski

b) gébotarev

c) The Tate-conjecture.

Thus the proof of theorem 2 is complete.

By the Parshin-construction, we obtain the Mordell-conjecture
Theorem 3:
Let X be a curve of genus g>2 , defined over a finitely

generated extension K of @ . Then X(K) is finite.

Remark:

Another way to show this is to make use of the Mordell-con-
jecture for function-fields (Manin, Grauert) and reduce to
number-fields.

The Mordell-conjecture is equivalent to the following old

conjecture:

Theorem 4:
Let L Dbe a field of characteristic zero, A on abelian

variety over L , and XcA a curve of genus bigger than
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one. If TI'cA(L) is a finitely generated abelian group,

TcX(L) is finite.

proof:

There exists a finitely generated extension of @ contained
in L, K<L, such that A and X are defined over K ,

and TcA(K) . Then TNX(L)<X(K) , and this is finite.

Remark:
By results of M. Raynaud, this also holds if we assume that

r has only finite rank.
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§ 5 ENDOMORPHISMS

Again K 1is a finitely generated extension of @ ,
K its algebraic closure, n=Gal (R/K). = operates
continuously on the divisible group A(K) , and wehave an

exact sequence

o~ A(K)tors > A(K) ~ A(K)ntors >0
with
A(k)tors = C? Tl (2) & Ql /zl
A(K)ntors A(K)/A(K)tors
A(R) is a vectorspace over @ , and it's the union of

ntors
finite-dimensional m-modules. More precisely, if ©'c

is a closed subgroup of finite index, the space of m-invariant:
in A(K)

is finite-dimensional (by the Mordell-Weil
ntors

theorem)

There is a natural injection
End (A) >~ End_ (A(K)) ,

and we want to prove that it is an isomorphism. We proceed

by several lemmas.
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Lemma 1:
Let M be a m-module which is a subquotient of A(i)tors'

Then

Homﬂ(A(K)ntors’M) =0
proof:
If 7em is a normal subgroup of finite index, we show
that

_-T['
Homn(A(K)ntors’M) =0

Choose a subring RcK , smooth over 2 etc. (as always),
such that the normalization R' of R in the field

K=R" is étale over R , such that A extends to
S=Spec(R) , and such that the A(K)-valued points of A
extend to R-valued points. We furthermore may assume that
M is an l-torsion group, for some prime 1 , and that 1

is invertible in R .

Then the m-operation on A(R);tors and M is induced
;n—l

from a n1(s)—operatlon. For this operation A(K)ntors

is pure of weight zero (each Fx has roots of unity as
T

is a finite-dimensional
ntors

eigenvalues, because A(K)

Q-vectorspace), while M is pure of weight %. (Fx has

/2

eigenvalues of absolute value N(x) ). So there cannot

exist a nontrivial ﬂ1(S)—morphism.
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Lemma 2:

Hom,_ (A(RK) , A(K) =0

tors)

proof:

By lemmal, this injects into End_(A(K) , and by

tors)
the Tate-conjecture we may assume that A is simple,

hence that
D = End (A) ®, @
is a skew-field.

1 — -
Let c:eExtﬂ(A(K) ,A(K)tors) denote the class

ntors
of the extension

> A(R) » A(K) >0

0+ A(K) ntors

tors
From the usual proof of the Mordell-Weil theorem one
knows that for any prime 1 and any finite extension

KERHI of K , the cup-product with ¢ gives an injection
1 ‘
A(K) @ QY% =—H (mT, (A) @ 0/7;) .

Now suppose that Hom_(A(K),A(R) )$0 . Choose a

tors

non-zero element ¢ in this group.

By lemma 1, ¢(A(K))=y(a(K) ) ., hence

tors

A(K) = A(K) + Ker (y) ,

tors

hence ¢ goes to zero wunder the mapping
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Ext] (A(K) » AR ) » Bxt] (AGR) AR, /Kerd)

ntors tors ntors

Thus for some prime 1 there exists a w-invariant sublattice

W:g:Tl(A) , such that ¢ goes to zero in
1 -
Ext (A(K) ¢ oror (T1(R)/W) ®7‘1 2,/2,)

We show that this cannot happen:

W(S&l @, is a subspace of Tl(A)(g;)Z,l Q,, invariant
under w . By the Tate-conjecture, it thus must be the
image of an idempotent e of IDC)Q Ql . There is a
natural number n with n-.e € G@Z Z(l , and n(1-e)

annihilates the image of ¢ 1in

1 -
Ext" (A(K) ntors’ Ty A 2, Ql/zl)

and hence also

A(K) (D 0,/

for each finite extension K>K . If we choose K' in such

a way that A(K) contains a non-torsion element, A(K) contains
as a submodule of finite index a free O-module of positive
rank. Thus A(KO(EDQ]/zl can be annihilated by n(1-e)

only if e=1 , hence W=T1(A) . This is a contradiction.

end of proof of theorem 4:

We have a diagram

End, (A) » End_(A(R)) <> End_(A(K) )

= End, (A) ®, %

ntors

Endn(A(R)tors)
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It suffices if
Endy () ® , 2, > End_(A(K)) @, 7y

is an isomorphism for each 1 , and we are ready if

we show that the mapping
End (A(K)) (® , %, » End_(T,(3))

is injective, for each 1 .

As Endﬂ(A(R)) is torsion-free, we have to show:

Claim:

If f1,...,frezEndﬂ(Hi)) are linearly independant over

2, they are
linearly independant over Wl as endomorphisms of Tl(A) .
proof of claim:

As Endﬂ(A(K)) injects into Endn(A(K)ntors) , We can

find a finite extension K' of K such that the fi are
linearly independant as endomorphisms of A(K'). As
End (A(K')) wus a finitely generated abelian group, there

exists a constant d , such that
n \ n-d
17-End (BK") ) n(2E,+  +2f )cl” ~. (2f,+  +2L)) ,

for n > d . (Artin-Rees)

If the fi are not %,-independant as endomorphisms of

1

. r
Tl(A) , there is a sequence njEEZ , nj=(nj1,...,njr) ’
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such that

a) not all components of nj are divisible by 1
r .

J
b) 21 nji fie,l End“(Tl(A)) .

1

r .
Hence T n.. fi annihilates the lj-torsion—points

i=1 r
of A(R) , so $ n.. f.eld.End (A(R)) ,
jop 3174 m

hence

r .

1 my;-f;el) EndAR)

i=1

hence

rHj_elJ_d-Z, For Jj>d; This is a contradiction.
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§ 6 EFFECTIVITY

A.N. Parshin and J.G. Zarhin have found a method which
leads to an effective bound for the number of rational points
on a curve of genus bigger than one, over a numberfield K .

We intend to give a sketch.

Let K denote a numberfield, X a curve of genus g = 2
over K . The Parshin-construction associates to any rational
point x € X(K) an abelian variety A(x) , whose dimension

is independant of x .

Let us suppose that there exists a rational point X, € X(K) .
We let h(x)=hL(x) denote the height of x € X(K) , measured
by the line-bu;ale £=ek(xo) . Then h(x) is related to

the height of A(x), h(aA(x)) , by

h(A(x)) = c,* h(x) + O(V[h(x)[+1) ,

1

whith some constant ¢, > O

1

We already know that there exist only finitely many isogeny-
classes of A(x)!'s , and we can bound their number if we use the

v
effective Cebotarev-theorem. (ELO])

It is thus sufficient to bound the number of points xeX(K)
for which A(x) is isogeneous to a fixed abelian variety A 5
If we show that for two such rational points Xq0%, € X(K) , the

difference in heights [h(A(x;))-h(A(x,))| can be bounded
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effectively, we may use an old result of Mumford ([M]): The
mapping A:%-h(x) =0’(x—xo) embeds X(K) into the Mordell-Weill group J(K) T
1]R=V an euclidean vector-
space, and for a pair of reals 0 < r,s the number of

The Néron-Tate height makes J(K) ®

rational points x € X(K) with r = |IAMx) ]| =r(1+s) is
effectively bounded, with the bound depenaing only on s .
As 1™ (x) |l is related to h(x) just as h(A(x)) by a
relation

+ h(x) + o(V|h(x) |+1) ,

G = e,
we see that for any x € X(K) with A(x) isogeneous to A ,
we have either |[A(x)][=1 , or r=|xx)|=r(1+s) with
constants r,s independant of x , and such that s can be
effectively determined. Thus the number of those x is

bounded.

We thus are reduced to bounding the difference of heights

in one isogeny-class. So let us consider abelian varieties

B isogeneous to a fixed A , and with good reduction outside
a given set S of places of K . We may assume that A and
all B's are semistable. The Weil-conjectures give an
effective number N , such that for any l-isogeny <p:B1 - B2 '
with 1 a prime bigger than N , the heights h(B1) and

h(B2) are equal.

We are thus reduced to consider l-isogenies for 1 < N , or

for justone fixed prime 1 .

(J=Jacobian of X))
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By a series of reduction steps one shows that ¢ can be
factored into a product of finitely many isogenies
®1""’¢r , with the number r independant of ¢ , and each

¢y having one of the following properties:

Either
a) deg(@i) =1,
or

b) For each place v of K dividing 1 , the kernel Gi,v
of the extension of ¢y to the Néron-models over the local
ring OV is a truncated l-divisible group of some exponent
s 2 2 . This means that the Tate-module of (%,v is of the

form (2/_g )hV , and G, satisfies the axioms for an
1°72 i,v

1-divisible group "up to order s". Furthermore, the Tate-

module of Gi(over K) is of the form (2/ s )h . For isogenies
1%z
®y of type a) we know that
1
lh(B1) - h(BZ)i =5 log(1l) ,
so we may assume that 0=, is of type b) . By a theorem of
Grothendieck the truncated l-divisible group Gv=Gi ¢ over
14

the completion 8& may be extended to a full l-divisible
group. It thus has invariants dV and h, , and we have to

show that for s big

d =5 d, [K,:@J= [K:@]-h/2 .

The left hand side can be determined by considering the
action of w=Gal(X/K) and 7=Gal(@)/Q@) on the Tate-modules.

We obtain that the determinant of the action of ¥ on the
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on the induced Tate-module is Xg-gh , where Xo is the

cyclotomic character, and ¢ the permutation character.

Here these characters take values in (2/ s )* .
177

The Weil-conjectures show that either the equality above holds

S divides a certain number M > O which can be

ore 1
effectively determined. Thus either ®y does not change

heights, or 1its degree is effectively bounded.

This finishes the argument of Parshin and Zarhin.
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§0 INTRODUCTION

The purpose of this part is to give an introduction to
intersection theory on arithmetic surfaces, a theory initiated
by S.Yu Arakelov in [A1,2,3] and further developped by
G. Faltings in [F]*[ The idea, propagated during the last years
in particular by L. Szpiro, is roughly to replace or better to
enrich algebro- geometric structures at the infinite primes in-
volved by hermitian structures as for example hermitian line

bundles, curvatures, volumes etc.

We describe the approach more detailed: Suppose X IsB
is a semistable curve over B=Spec(R) , R the ring of algebraic

integers in the field K . Suppose, D1 and D2 are divisors

(in the usual sense) on X . We want to associate an intersection

number <D1,D2> . This is easy if by chance one of the divisors,

is vertical with respect to = , D1 c n—1(v),v€SB '

irreducible. We consider the line bundle Qx(Dz)

say D1 ’

and D1

on X and obtain
<D;sDy> = 1og(qv)deg(6X(D2)| D1) ’

the degree of the restriction of GX(DZ) to D1 , multiplied
with log(qv) R qv=1ﬁk(v) , the order of the residue field at

v . It is this definition which can be made to work in general.

*)
See also P. Hriljac [H].
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Suppose D1=5(B) is a section - this is the critical case. The
idea is to put hermitian structures on all the line bundles
O%(Dz),Then we can consider the hermitian line bundle 5*(OX(D2))
on B . We have a degree map for these and can define

<D;,D,> = deg & (9,(D,))

2

in perfect coincidence with the definition above.

The problem is to find a consistent system of hermitian

metrics on the line bundles & (D) on B . This will be

done in §1 and once this is achieved the elementary properties
of an intersection product can be easily developped. This will
be done in §2. The next task would be to prove the analogues
of the main theorems of classical surface theory as Riemann-Roch,

Hodge index theorem and Noether's formula.

For example the Riemann-Roch theorem classically for the case

of an algebraic surface says:

X(ek(D)) - X(Sk)

_ 1

= 7 <D,D-w > ’

X

mx the canonical class.

Now the intersection number on the right in our case involves
the infinite primes vVeES, of B , so should the left side.

We consider the cohomology groups Hl(X,Gx(D)), i=0,1 , which
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are finitely generated R-modules.

Now suppose for a moment, we are in the classical situation
of a fibration w:X - B of a surface over a curve B and
would extend everything to the complete curve B,

Sm=§\B the primes at infinity. If neB is the generic point
of B, Xn= w_1(q) the generic fibre, this would induce on
the K-vector spaces Hi(Xn,GEéD)]X ) v-adic structures using

n
the (canonical) isomorphisms

i

H™ (X /€(D) | Xn)
~ i
1 H™(X,,0,(D) IX-V) ®Rv K
for ves_, XV=1r (Spec(Rv))

Therefore, making use of the general philosophy, we could expect
hermitian structures on the (Hi(X,Gk(D)) C)}R K) in our situ-
ation at all the infinite primes wve&sS_ . Actually this seems

to be hoping to much. What can be done is only to construct
volume forms for ve€¢S_, not even on the Hi(XV,OX(D)IX ), but on
HO(XV,G'X_(D)lxv)-H"(XV,UK(D)]X ) , that is, more precisel§,

v
a hermitian metric on

4 -
A (1° (X, /& (D) | XV) i@ r (11 (X, T (D) \xv)

where A always denotes the highest non trivial exterior

product.
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Using this Faltings is able to prove in [FJ all the analogues

of the mentioned results of classical surface theory

In this paper we will do the following: We will introduce
the intersection theory as well as the volume forms on
x(ek(D)) in complete detail. Hopefully this is of help to
algebraists which had so far not much experience with hermitian
"analytic geometry". Afterwards we prove the Riemann-Roch
as well as the Hodge index theorem, which both are fairly
easy to obtain. We omit the proof of M.Noether's theorem, which
is substantially deeper. We also omit the interesting consider-
ationsconcerning the Arakelov Zeta functions as well as the
explicit computations in the case of an elliptic curve. For
all of this we refer the reader to Falting's paper [F].
One final comment: It would be nice to have volume forms also
in the case of vector bundles E on X , that is volume forms
on

AR T(X,E) = A (X,E) @A (H (X/E))

Apparently D. Quillen has results in this direction working
in a more analytic context with Selberg's Zeta function, analytic
torsion etc. We discuss this point a little bit at the end of

§3 .

I would like to thank G. Faltings for explaining to me a number

of points concerning his work.
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§ 1 HERMITIAN LINE BUNDLES

(general reference for things not made explicit is the

book of Griffiths and Harris, @—H]).

We consider a Riemann surface X with genus g > O .
On the space of holomorphic differentials F(X,Q;) we

have the hermitian form

<w1,w2> s =

N+
X
€
—
>
€1
N

Denote w1,...,wg an orthonormal basis of X .

We have the volume form

a i g _
= = z .
H 29 3=1 ® Aw] !
such that in particular fdu=1 . du is independent of the
X

orthonormal basis ch.osen.

Suppose, £ 1is a hermitian line bundle on X , with metric |

Canonically attached to £ is its curvature form

curv : = 33 log HSH2
S Th

=mlog Hs”2 dz Adz

in local coordinates, where s 1is a meromorphic section of &£ .

Apparently, the 1-1-form curv, is independent of the chosen

section and therefore in particular well defined, because to
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any point Pe X one can choose a section s , generating £

in a neighborhood of P and compute curvy using this section

there.

Remark: The definition of course makes sense for any complex

manifold with hermitian line bundle on it.

The following is well known or can be easily derived using

S tokes theorem.

Theorem 1: One has
{ curv, = (27i) deg(®)

X

Therefore not any 1-1-form w can occur as curvature form of
a specified line bundle £ . On the other hand we will see
below, that this relation above is the only obstruction to

solving the equation
curv =
£ 00l

We have to make use of

Proposition 1: Suppose, X 1is a Kdhler manifold, n a

1-1-form, such that

a) dn =0

b) n is perpendicular to the harmonic
1-1-forms with respect to the pairing given by the Kihler

structure.
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Then n = 33(v) can be solved with a c”-function v .
Furthermore v is uniquely determined up to a constant.
Proof: Using Hodge theory (with respect to d) , we can

write
] >
n=h + dn1 + d Ny,

an orthogonal decomposition, with h harmonic, a* adjoint to

da .
Because dn=0 , we obtain dd*(n2)=0 , therefore d*(n2)=0 .

Using

0 =(n,h) = (h,h) by b)
we have h=0.
Write n1=n1’0 + n0,1 ’ n1,o a 1-0O-form, n0,1 a O-1-form.
But because 8(n1,o) would be a 2-O-form, which could not

cancel in

n = dn1 = dny + Iny '

we obtain a(n1 O)=O , as well as
’

8(n0’1)=0

Using Hodge theory again (this time with respect to a,aﬁ'resp.

- = %
3,9 ) , we can write

3
@]
-

1
=2
+

@l
=
=
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*
where h1 o 1s harmonic with respectto 3 and 3 , hg ,
14 ?
- % . _ .
with respect to 3,3 . Putting v:=(—no O+né1é) , we obtain
I’ 17

ag(v)=n as a solution.
The uniqueness up to a constant follows (with a little care)

from the maximum principle for harmonic functions.

Proposition 1 has several applications..

I) Theorem 2: Given a 1-1-form w on the Riemann surface X

which satisfies

Ju = (2m1i) deg(®)

X
Then there exist a hermitian metric || || on ¥ , such that
CUrvy g = @ - | || is determined up to a positive constant

r

factor.
Proof: Choose an arbitrary hermitian metric || [/, on € ;
Suppose

curv =0

gl 1"
By theorem 1 we have [ (0=wy)=0 . (w-w,) certainly is
X

closed. The space of harmonic 1-1-forms is 1-dimensional,

generated by du , furthermore

(v=wy,du) = [ (w=wqy)=0
X
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By Propos-ition 1 we can solve 35(V)=(w-w1) . Putting

exp(v/2)=:u , we can define

and obtain a hermitian metric with curvature form . The

uniqueness up to aconstant factor follows as above. g.e.d.

As an immediate application of this we obtain a uniquely de-
termined hermitian metric on any line bundle £ on the Riemann

surface X as follows:

i) Suppose first, QeX, £=OX(Q) . Then there is a uniquely

determined metric || || on ¥ , such that for

G(P,Q):= H1 || o_(Q) (p) ,
X

the length of the constant section 16r(x’§k(QD at P , we
have

- 2
a 3 3 logG“(p,
) b % gG~ (P, Q)

W.A D,

I
g 133

It mQ

j
b) [ log G(P,Q) du(P)=0
X

ii) Writing an arbitrary line bundle as a tensor product of

e&(Q)’s , we obtain a uniquely determined hermitian metric

on any £ on X
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We call a hermitian metric || || on £ , with curvy, ||| du
!
c= gomstant , admissible,Making use of the extra condition

b) we have specified a unique admissible metric.

Remarks: 1) We pose g(P,Q):=logG(P,Q). g 4is a ¢ -function
fer all P#Q . The behavior at P=Q is as follows: locally

around Q we can write

S a generating section of GSJQ) in Q , za local coordinate

around Q . Therefore || 1]] = |z]|.

s|| , where [ls Q)] 0,

hence

g(P,Q) = log |z(P)| + log|| s(®)||

and g(P,Q) has a logarithmic singularity at p=Q .

Bematk: -g(P,Q) gives an inverse (Green function) for the

positive elliptic differential oparator 4 defined by

33 (£) = - 2’3—9([11-”

3

o1 Q

7 33
For details, see [F]

2) One should remark, that f g(P,Q) du(P) exists, the
X

singularity in Q causes no difficulties (,(e r log r dr

o
exists!)



- 239 -

More generally we have

Theorem 3: Suppose, X 1is a Kdhler manifold, ® a

1-1-form on X , £ a line bundle on X . Then the eqguation

curVZ’” H = w

can be solved, iff

1) de =0
2) Dﬂ ; the cohomology class represented by w ,
satisfies

(] = 271 c, (&)

The proof is similar to the proof of theorem 2 and can be found

in |G-H| ,p. 139-144. (But ceution: Griffith uses

curvy =33log ||....|]| , hence a (-) sign!) There are other
possibilities to express property 2) . For example, suppose
£=ﬂ&(D) , D = Zni Y, , where the Y, are (n-1)-dimensional

subvarieties. Then

f wAah = 271 (

3
—
jng

should heold for all harmonic (n-1)-(n-1)-forms h .

We can apply this in the following case: Consider (for a
Riemann surface X ) the Kdhler manifold XxX and the line

bundle &£ = x (8 () A(X) the diagonal.
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Take

w = 21Ti(pTdu + pz‘; du)

9 x * ¥ ¥

Pq/P, of course the projections.

Checking against a generating system of harmonic 1-1-forms,
* * *® * - * *

as for example p1 du, P, du , p1(wi)A pz(wj), p1(mi)Ap2(wj)

condition b) (or better the equivalent version) above,

we easily obtain.

Theorem 3: There is a unique hermitian metric || || on &
such that a) cur =
’ SRt 2
b) [ log {| 1]| (P,Q) du(P) =0
b 4

for Q=QOE X a specified point.

II) We determine the relation of the function || 1]| (P,Q) on
(XxX) to our previously considered function G(P,Q)

As w is symmetric, we have

1l @, =l 1] (/P ,

O<c€&eIR .

Therefore c¢=1 , applying this twice.

We will show in a moment, that ¢(Q):= [ log]| 1|| (P,Q)du(P)
X

is a constant function. Therefore ¢{(Q)=0 by Db).

But then, by restricton, we obtain
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Supplement to Theorem 3: One has || 1| (P,Q)=G(P,Q) , in

particular G(P,Q) and g{(P,Q) are symmetric functions

It remains to show
Lemmal: The function

$(Q) = [ 1logl| 1]] (P,Q)du(P)
X

is constant.

Proof: We compute

3y 39 & logl|| 11| (P,Q)du(P) | 0,

Q1 an arbitrary point of X .

Suppose UG(Q1) is a small € -neighborhood in X around
Q 12/2(Q1h:%(Q1) and  a,,0, real valued positive

CZfunctions on X , such that

i) supp(a1)cUt(Q1)

ii) a1=1 on I%/Z(Q1) ’
a2=1 on X\UG(Q1)

iii) 0t1+a2=1 on X .

Therefore

3 9 ¢(Q)|Q1

= lim 33 sog| 1] (e, au(@) |
o Q0 Q
€-+0 X\, (@) 1

+ lim 3.8, /| a.(P) log|l 1][(P,Q)du(P) |
o Q03 M Q,

We obtain for the first term
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lim 3, 34 logll 11| (2,0 |, du(®)
€-0 X\wejzmp e 9 2

T g ~

(mi) du(Q1)

For the second term we can introduce local coordinates

(t,z) for (P,Q) around Q1 and obtain

loglz-t| w(t)du(t) | __.
lt]<e z=0

where
du(t) =the standard measure on ¢ ,

() dult) = au(®) on Ug, (@)

corresponding some open neighborhood of t=0 , finally
v (t) with compact support in |t]|<€

We can write

3.9 log|z-t|w (t)du(t) | __
zZ 2 |t{ie I !z—O

=3,5, [ loglz-t|y(t)du(t)|,_,
C

=5_3 [ loglul ¥(z+w)du(u)|,_q (t-z=:u)
C

logluls,a, v(z+u) |,_ du(u)

]
as-—
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= (] toglul (F)e, (vtuT duw) dzndz

T
= (lim / (log|ul) %—Au(w(u)) du(u)) dzadz
§+0  8<|ul|<R
. 1 3
= (lim | + = {(loglu|) y(u) ds
620 |ul=s * 7

1 3y (u -
- Gzloglul 2 g5 ) azaaz

using Green'!s theorem.

= (alixg |£l=6 4—’—1;!- ¥ (u)ds) dz Adz
= Z 4(0) dzadZ

== 7i ¢(0) du(z)

= - 7i du(Q1)

Therefore

% %9 $(Q) =0

and ¢(Q) has to be constant. g.e.d.
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§ 2 ARAKELOV-DIVISORS AND INTERSECTION THEORY

Suppose B=Spec(R) , where R 1is the ring of alge-
braic integers in the number field K , 7w: X » B a semi-
stable curve over B , n€B the generic point, Sf the
set of closed points of B (finite places of XK ), S the

o0

set ofinfinite places, S=Squc° '
el
X 1= X ® K for ves

the associated Riemann surfaces for the infinite primes.

Definition 1: The group of Arakelov.divisors is
o~
Div(X) = Div(X) ® @ R(X.)
v
veES,

So, any Arakelov-divisor has a unique decomposition

where D = b r (X))
vV

Now using the results of §1 , we can associate with any
Arakelov-divisor D a set of hermitian line bundles for the
VES_ . For a fixed v , the line bundle itself will be the
one induced from & (D.) on X to X

X £ v
This line bundle has a canonical hermitian metric by the
results of §1 . To take into account the infinite part De

of D , the hermitian metric has to be rescaled by the factor
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exp(-rv) .

Definition 2: By & hermitian line bundle on the arithmetic

surface X , associated to the Arakelov-divisor D we
understand the line bundle eﬁ(Df) , enriched with the

hermitian metrics at the ve Sw , explained above.

We remind the reader that a hermitian line bundle on
B=Spec (R) has a degree, given as follows. The line bundle

is given by a projective modile P of rang 1 over R ,

suppose peP , pf0 : Then we have
deg(P) = log # (P, ) = = €_ log |lpl
/Rp ves, v v
where

'.J
.
=D R
I
&

H
e

Definition of the intersection product:

This will be uniquely determined by the following properties

of the intersection pairing

~ ~

Div(X) x Div(X) - R
(D1ID2) g <D1,D2>

1.) <D1,D2> is biadditive

2.) Suppose, D1 is an irreducible vertical (¢ ﬂ—1(V),VGS)

divisor .
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Then
1og(qv), vesf
<D, ,D,> = deg(&y(D,) |D1) : ‘

2
1 ' S

©

, where qv=¢Fk(v) the order of the residue field.

3.) Suppose L>K 1is a finite field extension, X a
semistable regular model of (Xn<:>K L) , ¢ : X > X, the

projection. Then one has

PP x T TRy P1rP2’

4.) Suppose D1=(P), P EXn(K) a rational point. P defines
a section g:B > X . ek(DZ) is a hermitian line bundle on
X , therefore g(GX(DZ)) is a hermitian line bundle on B

and one haS
<D D,> = deg S (6 (D ) )
1 14 2 X 2

Remarks: It is easy to check, that properties 1.) - 4.)

uniquely determine the intersection pairing.

We now have to establish the usual properties of an inter-
section pairing, that is:

Theorem 1:

1.) 1If D1,D2 have no common components, <D1,D2> can be

determined by computing local intersection numbers ,

2.) <D1'D2> = <D2,D1>
3.) Suppose feK(X) is a function, (f) the associated

divisor on X ,
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(£)": = (£) + T or (X))
V'eSoo vV
with
r,: = - [ logl| £ | du,, for ves,
X
v

the Arakelov-divisor associated to £ .

Then one has

1
o

<t£)”, D>

for all DeDiv (X)

Proof: It is enough to show 1.) and 3.) , because using 3.)

we can always assume D1,D without common components. Be-

2
cause we will see that the local intersection numbers are

symmetric, 2.) follows.

We show 1.) , but only for the typical case (P)=D1, Péixn(K)
a rational point. We can assume, that D, is an effective

divisor on X . We consider the section p=1er(X,Qx(D2))

We have
<D1I D2> = deg (e’X(DZ) I (P)
= Logdf (040 [ (p) / & 1
- I e_ logl| 1]
VES v v
Suppose st1nD2 , m(x)=v€eB , t=0 and z=0 local

equations for D’I'DZ in x. We have

e’X(DZ)(x) = X,x X,x '
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furthermore

Using the isomorphism

-1 —~
(z 6]’31,}{ /1 'e’D1,x)~* e’X,x/ (t,z)

we obtain for the local contributions

<D1sDy> () = 109H Oy o/ (¢, )]

(log(qv))'(D1rD2)x ’

(D1,D2) (x) the usual intersection multiplicity of D‘],D2

at x .

As x and Tw(x)=v uniquely determine each other, we will
write also <D1’D2>v for these contributions. There remain the
contributions at ve S_.

Write D2=D2h+D2V , @ sum of horizontal and vertical divisors.

On XV, v€E€S, , we have

5 (0

2 =EnQ(Q)

Therefore we obtain for these VES

<D1ID2>V - 10g||1|[(P)

- ZnQ log G(V) (P,Q)

as a local expression. We see again, that <D1’D2>v
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is symmetric, because the functions G(V)(P,Q) on the Xv are

symmetric.

Altogether we obtain
DyiDy> = y&s <PysDy> v
v
a decomposition of the intersection number in local inter-

section numbers.

We next show 3.) of theorem 1: It suffices again to do the
case D1=(P), PeXn(K) a rational point. That is, we have to
show

<P, (f)~> =0

Consider the hermitian line bundle Ox((f)~) on X . We take

f_1=p as a section and obtain

<(B), (£)7> = deg(s*ey ((£7))

* ~ -1
log # s* (e, ((©)7) jom1, T vEs SV losll £

= - 3.6 logl £

veSwV v

As (f)=ZnQ(Q) on Xv , We can write

o)
[f] = 1 G(P,Q) u(P) ,
Q

u(P) a C”-function on X , u(P)$0 on X .



- 250 -

Therefore we obtain

0 = %3log |f]|
= I n, 33log G(P,Q) + 33log u(P)
Q
= aﬁlog u(P) , because Z n. =0

Q

It follows, that u(P)=cv is constant.

Because
/ log G(P,Q) du(P) = 0, we obtain
X
[ log |[£| du = [ log u(P) du(P)
X X
v v
= (log c,) £ du(P) = log (c,)
Finally
-1 -1
log|l £ "[l , = log|l £ - 1|

v

log |7 + 10g]] 1,

(2 =-n

log G(P,Q) - log u(P))
o @

+ é n, log G(P,Q) + (-rv)

X

- [ 1logl|flaw + [ 1log|f| du
v xV

=0 g.e.d.
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§3 VoLuME ForMs oN RIX.®)

A8 explained in the introduction to be able to formulate
theorems like the Riemann~Roch theorem for arithmetic surfaces
it is necessary to have at least a volume form on the virtual

R-module

1O (x;8) - HY(X;¥) ,

that is, more precisely, a hermitian structure on the

?v-vector spaces

o = 1 s -1
A (H (x,x)®R K) @M HXL) @y K)
where X denotes the highest non trivial exterior product of
A A
the K -vektorspace 1 (X,2) ®R K, for example (VES))
We will handle this problem in the context of Riemann surfaces,
so let X be again a Riemann surface of genus g > 1 in this

paragraph and we use the same notations as §1

Definition 1: We put formally

1

AEC (X)) @2 (H (X,8)) =i Rr(X,2)

for a line bundle £ on X .

We consider only such hermitian metrics on a line bundle L4
such that the curvature form curvx Nl is a multiple
’
=, —i— -
of du (Zg b (mj/\wj) .

Denote ¥ the category of all such hermitian line bundles on

X With tsometius.
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Theorem 1: There is a functor £+—X RI'(X,£) on the category
€ to the category of hermitian (1-dimensional) complex vector

spaces, such that the following properties hold:

i) Any isometric isomorphism 81 - 32 in g induces an
isometric isomorphism MRI‘(X,81)—> )\IRI‘(X,:ZZ) that is, saying

again, ARI(X,?) is a functor.

ii) If one changes the metric on a line bundle ¥ by a factor
a>0 , the metric on MR(T'(X,£)) changes by the factor

o -n1 i i
GX(&)=ah @)-h'(2) hl(£) :dima:Hl(X,f/) (i=1,2).

iii) Suppose, D 1is a divisor on X , PE€X, D1=D—P and
GX(D1) , GX(D) are equipped with the hermitian structure
introduced in §1. The one-dimensional fibre of e'X(D) at

P, & (D) [P] inherits the hermitian vector space structure of

G'X(D) . Then the canonical map

MRI‘(X,BX(D)))
= ART(X,07(D;))) ®.0, (D) ]
is an isometric isomorphism. The functor MRT(X, ) is

uniquely determined by i) - iii) up to a factor > O .

Remark: Suppose O - V1 -+ V2 -+ .. > Vn -+ O 1s an exact

sequence of vector spaces. Then there is a canonical

homomorphism
AV @ A(V3) @

~
— X(Vz) ® X(V4) ®
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This ismorphism is the one meant above.

Proof: A) We first construct an assignment

D %—MRF(X,Gk(D))

associating to any divisor D with a specified admissible

hermitian: metric on ek(D) a volume form on IR]XX,ek(D)) ’
such that this map by constructicn fullfills ii) and iii):
This is in fact easy . Fix any volume form on RIKX,O%)) '
that is for D=0 . Next build up GX(D) by adding and sub-
tracting points. Property iii) (and ii)) say how to define
MRF(X,G%(D)) in general. The fact, that the functions

G(P,Q) are symmetric, guarantees, that it plays no role,

how D is build up from nothing. There remains to show, that
the map D+~ NR(X,ek(D)) in fact induces a functor on ¢,

that is to prove i)

B) Proof of 1i): Suppose we have two divisors D,D' and

an isometry ek(D) - ek(D') . To show: The induced map

ART (X,O’X(D)) > AR I‘(X,G’X(D' ))

is an isometry itself.
It suffices to show this for divisors with a specified degree,

making use of iii) again.

Suppose therefore,

deg (D) = deg(D') = (g-1)
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We can write
D = E-(P1+...+Pr)

- - ' !
D E (P1+"'+Pr)
with an effective divisor E , if r is large enough.

Consider the map
r .
o: X7~ P1cg_1(X)
r
(P1,...,Pr)h» QX(E— .E Pi)
i=1
The study of this map ¢ will enable us to prove i) .
Using the standard properties of base change, it is easy
to see, that we have a (hermitian) line bundle #. on Xr ’
r
the fibre at (P1,...,P ) beeing \RT(X,9,(E-~ 2 P.))
r X i=1 i
On the other hand, on Picg_1(x) we have the theta-divisor
6 = image (x¥7! Picy_1(X)) . The associated line bundle
&(-6) on Picg_1(X) will obtain a hermitian structure and

we will show, that the pull-back of &(-6) as a hermitian

line bundle will be # up to a constant factor. Therefore it

follows, that the volume element on RF(X,G&(E - E Pi))
i=1
depends in fact only on the isomorphism class of
r
Gk(E - Pi) . Using this, i) of theorem 1 follows.
i=1

We therefore have to fullfill the following program:
a) Construct a hermitian metric on &(-8) .
b) To show: ¢*(®&(-6)) and ¥ are isometric up to a factor.

To see this, it suffices to show:

* =
® (curvG(_e)) = curvn
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Ad a): Using an embedding X-—éPng_1(X) , we can identify

the differential forms w1,...,mg with forms on Picg_1(X)
which we also denote by w1,...,wg and which are translation-
invariant.

Proposition 1: There is a hermitian metric on &(-6) ,

such that the curvature form is

2y (egney) =

g9
n 2
J:

1

Indication of proof: Of course we want to use theorem

3 of §1 . That is, we have to show for h an arbitrary harmonic

(g-1,9-1) form, that

J (nAah) = =(2ni) [ h
Pic _y(X) 0

That is, the 1-1-form (-2nin) represents the cohomology

class associated to © . It is enough to check this for

a generating system of harmonic (g-1) — (g-1) forms, for
= =A

example for the forms wI/\mj , where 0= 1 @y

- _ ( A = = BT = (g-

5= 58y ®). HI =43 = (g-1) .

Finally one should evaluate the integrals involved as follows.

Using the canonical map
v
g-1 .
X - 9CP1Cg_1(X)

we have, because generically themap is



- 256 -

finite of degree (g-1) ! ,

1 * -
fh= — V¥ (0 AT)
5 (g-171 -1 17 %

but the pull-backs W*(wI) on Xg-1 are easily determined.

Similarly one proceeds with S (nAh)  and the map
Pic (x)
. g=-1
covering
\3
g .
X7 > Plcg_1(X)
g Py a fixed
(Q1,...,Qg)-—-)(j£1 Qj—Po) point on X ,
such that
_ 1 *
pic!_(xy MAB) =g5r [ ¥ (nah)
g-1 %9

It is an easy exercise now to complete the proof of

proposition 1 .

Ad b1): To show o (9(-8))Z ¥ as line bundles (without
hermitian structure for the moment):

Orehas to go back to the construction of the line bundles
involved. On (XxXr) respectively (Xx Picg_1(x))

we have the obvious universal line bundles, say 5{ and P .

We have the diagram

x xxt _(1ds0) X xPic__q (X)
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Obviously

n

. ¥

(14,0*@ 2E@n,* L)

with some line bundle xo on Xr . Furthermore it is known,
that

P T o(-90)

One should remark for this, that 2 is trivial on
-1 .

® (Plcq_1 (X)\8).

We obtain

AR (i (®) = 6(-06)

2% @
AR(ry), @ = %

Using base change, we finally have the isomorphisms

«p*xcciwz)*(@) = xcmwzl)*) (0" ()
0¥ (&(-0)) ?

b1) follows. g.e.d.

We have

A = rmrrx,0(E)

® (& p Mo mE)
i=1

*
® ® P (e (A(X)))
1<k<l<r k,1 XxX
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Therefore
r
*
curv. = - 3 p; (curv )
i=1 7t Oy (E)
*
+ I p (curv )
]Sk<l§r k,1 ekXX(A(X)
But we have
r *
% - p;i(curv )
i=1 Oy (E)

r g

= 3 m(?gﬂi@l) ¥ 7 (0.3,
i=1 g j=1 7

and
Z p; p (curvg  (A(X))

T<k<lsgr ! XxX

= 3 211 () (du) + pj (dw)
T<k<l<r

-z P 3 (Py (@) AP] (B1Py (5.)AP) ()
1<k<l<r j=1 J J J J

Taking this together, one obtains, using b1), by a short

computation:

curvy = ®*(CurV9(_9))

(see @q , if necessary)

Therefore the hermitian metrics on ® and cp*(e'(-e))“-“t

differ only by a constant. Theorem 1 follows. qg.e.d.
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Remark: As already mentioned in the introduction, it would be
be interesting to doa similar thing for wector hundles on
a Riemann surface X . If one wants to use the same method

as followed here, one has the following problems:

(1) Specifying a curvature form for all bundles E of

1,1

rang d in (A ® End(E)) up to a multiple. Probably one

g
should use ( 2 (ij aj)ébld), but perhaps this puts
j=1
restrictions on the bundles E , indecomposable or stable

perhaps.

(2) How to define the volume form
E » \RIX,E) ?

Even if one starts with a matrix divisor instead of a bundle
it is not clear how to define ART(X,- ) , because a matrix

divisor can be build up in many different ways.



- 260 -

§ 4 R1EMANN-ROCH

We consider again the arithmetic situation, that is,
m:X - B our semistable curve over B=Spec(R) , R the ring

of algebraic integers in K .

Suppose, D is an Arakelov-divisor, Z=G’X(D) a hermitian
line bundle on X ; Then Hl(X;Z)=O for i>2 , using the Leray
spectral sequence and, using the results of §3, we have a

volume form on the virtual (R®Z]R) -module

(5O (X; %) -H (X;£)) ® 2 R

= RT(X,¥) ®, R

To be able to make computations, we develop the following

formalism:

Definitdon 1: Suppose, M is a finitely generated R-module,
. ~ P

vol a Haar measure on (M®ZIR) (over R ®ZIR = VlgSva)

Then one poses

vol (M®QR/M)

# Mtors

X (M):= - log

X (M) := X (M)-X (R)- Rang (M) , where R obtains

the standard Haar measure on (R ®z]R) .

~
KO(R) should be the Grothendieck group generated by the
finitely generated R-modules witth volume form on

M®Z]R ’ (M,vol) .
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Thé relations are given by the exact sequences
O->M, - M->M

-+ O ’

such that A (M ®, R)T (M, @ g R ®A(M,® R) as hermitian

line bundles. (under the canonical map)
It is easy to check, that one has a mapping
x:X_(R) — R
o
(M,vol)+— X (M)

Therefdare we define

Definition 2: If ¥ is a hermitian line bundle on X . Then

we pose

X(€): = X(RT(X,%))

The main result of this section is

Theorem 1: (Riemann-Roch) One has X ()= %”,z-mx>+ X(G'X) ’
where wX=mX/B is the relative dualizing sheaf of X over
B.

Proof. We proceed as in [F]

i) The formula holds for $=Gk . Suppose, the formula is true
for Z;Gk(D) . We have to show, it remains true, if one adds
an arbitrary divisor DO .

ii) I%=GVFV,VESm' Q;]R . We obtain (writing X (D) instead of

X (& (D))
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X(D + av FV ) = X(D)
_ o _ 1
= av((h (D) h' (D)) IFV)
= av(deg(D)lF + 1-g
v
= <D F -1 F oka
= < ,aV V> 2 < V,mX> Y.

iii) Suppose, DO=C is an irreducible component of a fibre.

We have to compute X(D+C)-X (D). But we have the exact sequence
(O Ok(D) > Ok(D+C) - ek(D+C)/9k(D)+ (0]
We obtain the following equation in ?;(R):

RI (0, (D)) + RT (O’X(DfC)/eX(D) )

= RF(S&(D+C)))

Using property iii) of the volume forms, defined in §3.

Therefore
X (D+C) =X (C) = x(ek(D+C)/9k(D))
= log y(ek(n+c)/ek(D))
= log(q,) (deg(C+D) |, + 1-g;)
_ 1
= <C+D,C >= > <C,C+wx> '
because 9c = 1+ S N <C,C+wx>

2log(q,)

using the adjunction formula.
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iv) Do=s(B) , where s:B » X 1is a section for m:X -+ B ,
given by PE€ Xn(K)
We have

X (D+s(B)-X (D)

X (&, (D+s(B) )/GX(D))

x (& (&, (D+5(B)))

<D+58(B) , S(B)>

But we have the following

Lemma 1: One has an isomorphism
o, 00, (P))F R
“x @ %

Proof: One can define amap using residues. The surjectivity
of the map can be tested locally.

Therefore we obtain
<D +s(B), s(B)>
=<D-wx, S(B) >
<D+ g(B), D+ g(B) mog>

<D,D-wx>

Nl-—l N =

g.e.d.
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§ 5 THE HoDGE INDEX THEOREM

We have the same notations as in §4.
Theorem 1 (Ibdge index theorem)
Denote VV for ve¢S , thesetof places of R , the set of
Arakelov divisors, which are generated by irreducible compo-
nents of the fibre FV . Then the following holds
1) The intersections pairing <,> is negativ semidefinit on
Vv . The same is true for (PVV .
2) Suppose DeﬁE@(X) and D..l.VV for all v €S . Then
&y (D) lx € Jac(Xn) (K) .

M

One has: <D,D> = =2(K:0)

* Néron Tate height (& (D) Iy )

(as an element of Jac(Xn)(K) i

3) The signature of <,> on the group DTV(X)/{(f)NIfEK(X)}iS

sign (< >») = (+,-,...,-) and the number of -signs is
# (=) = vés (( # of components of F,)-1) + Rang Jac(xn)(K)
For 1.) one can proceed exactly as in the classical

situation. The reader can consult &q if necessary.
3.) follows from 1.) and 2.) It remains to show 2.):
Because <D,F > = 0 , we can conclude: deg (&, (D) |, )=0

Therefore we obtain a class
(8 (D) Ixn) € Jac(Xn) () .

The line bundles of degree (g-1) on X give a scheme

Pii?1(X/B) over B , locally of finite type over B
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There exists an open subscheme
P < Picg_, (X/B) ,

where we have removed all components in FV , v € S , except the

one, which contains a fixed line bundle ©O(E)

Then P will be of finite type over B . Consider again our

D above ,
DL V_V v €8S

Then Gk(E* nD) will define a point in P for all n¢Z .

We consider 6cP as the ¢losure of the standard theta-divisor
on Pﬂ = Picg_1(Xn)/K . We have seen in §3 , that if ¥ denotes
the universal line bundle over P , we have the isomorphism

MR (8)) = O5(=0)

and this is even an isomorphism of hermitian line bundles on

P , as we have seen in §3 .

Now, the class of OX(E+nD) defines a rational section

B%P

We obtain the following diagram

X xp(s) > X xgP € X xy Picg_;(X/B)

i £ n l ﬂl

= P c Picy (X/B
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Using base change again, we obtain

s*(9(-0)) = s™ Amrm (%)

AR, (s (2))

AR rsl(G'X(E+‘nD))

These are isomrophisms as hermitian line bundles on B ,
because the isomorphismsare given canonically and we have
seen in §3 that these canonical isomorphismsinduce

isometriesfor the Riemann surfaces X,r VES, .

We therefore can conclude:

deg(s*e,(-0))
= deg (X IRrr*G'X(E+ m))

=X (G'X(E+-nD) ) .
Using the Riemann-Roch theorem on the one hand we have

X (G’X(E+'nD))

1 .
X(Qx) + 3 <E+nD, E+nD Wy>

2
92— <D,D> + terms, only linear in n

On the other hand, using the results of part 1II , Heights,

we immediately obtain the equality
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deg(s* o, (-8)) = (K:0) x logarithmic height (E+nD)

Using the relation of legarithmic height and Néron-Tate

height, the result follows. g.e.d.
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