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This is a plan of a seminar run by Ruochuan Liu and Xinyi Yuan in
BICMR in Fall 2018. The basic references are:

• Faltings’ original paper, whose English translation is in [CS, Chap. II].

• The book [CS], which is a collection of independent papers surveying
on theories and results related to Faltings’ proof.

• The online note [Mil]. Especially the last chapter has a sketch of Falt-
ings’ proof.

• The online note [BS]. This is an outline of a seminar in Michigan. We
will roughly follow this note, but with many modifications.

• The online notes in [Sta]. This is a collection of notes for a seminar at
Stanford.

1 Lecture 1: Summary of the proof

In this section, we give an overview of the proof. The goal is to state all im-
portant theorems involved in the proof, and mention the precise implication
relations among the theorems. We will give ideas and references of all impli-
cations. This section can serve as a guide to read Faltings’ proof, though it
is highly not self-contained.

For simplicity, by a curve over a field K, we mean a projective, smooth
and geometrically integral scheme X over K of dimension 1. Denote by g(X)
the genus of X.

Shafarevich conjectures

The goal is to prove:

Theorem A (Mordell conjecture). Let K be a number field, and C be a
curve of genus g(C) > 1 over K. Then C(K) is finite.

By Parshin’s construction (before Faltings), the conjecture is to reduced
to the following conjecture. The process is amazing as it reduces “counting
points” to “counting curves”.
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Theorem B (Shafarevich conjecture: curves). Fix an integer g > 1, a num-
ber field K, and a finite set S of finite places of K. Then up to isomorphism,
there are only finitely many curves over K of genus g and with good reduction
outside S.

IDEA (Thm B ⇒ Thm A) The details are given in [CS, §VII.9], [Mil,
§III.9], or [Mil, §IV.5]. The key is Parshin’s construction, which constructs
from each P ∈ C(K) a finite morphism πP : CP → CK′ over K ′, where:

(1) K ′ is a finite extension of K;

(2) CP is a curve over K ′ with good reduction outside a finite set S ′ of finite
places of K ′;

(3) πP is ramified exactly over P ;

(4) (K ′, S ′, g(CP )) is independent of the choice of P in C(K).

By Theorem B, there are only finitely many such CP . By a classical result of
de Franchis, for each CP , there are only finitely many finite K ′-morphisms
CP → C. Thus there finitely many morphisms πP : CP → CK′ . As πP
determines P by considering ramification, there are only finitely many P ∈
C(K).

Remark 1.1. The theorem of de Franchis requires g(C) > 1, which is essen-
tially the only part of the proof using the assumption g(C) > 1. The field K
in Theorem B is actually a finite extension of the field K in Theorem A in
the application.

By taking Jacobian varieties, one can further reduce “counting curves”
to “counting abelian varieties”.

Theorem C (Shafarevich conjecture: abelian varieties). Fix an integer g >
0, a number field K, and a finite set S of finite places of K. Then up to
isomorphism, there are only finitely abelian varieties over K of dimension g
and with good reduction outside S.

IDEA (Thm C ⇒ Thm B) The details are given in [CS, §VII.12-13] or
[Mil, §III.12-13]. By Torelli’s theorem, the Jacobian map

{curves of genus > 1 over K} −→ {principally polarized abelian varieties over K}
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is injective. The Jacobian map also keeps places of good reductions. There-
fore, it remains to check that for any abelian variety A over any field, there
are only finitely many polarizations A → A∨ of a fixed degree. See [Mil,
Theorem I.15.1].

Finiteness Theorems of abelian varieties

It is reduced to prove Theorem C, which is naturally equivalent to the fol-
lowing two theorems.

Theorem D (finiteness I). Fix a number field K, and an abelian variety A
over K. Then up to isomorphism, there are only finitely abelian varieties
over K which are isogenous to A.

Theorem E (finiteness II). Fix an integer g > 0, a number field K, and a
finite set S of finite places of K. Then up to isogeny, there are only finitely
abelian varieties over K of dimension g and with good reduction outside S.

For the statement to be reasonable, we need the fact that if A and B
are isogenous abelian varieties over K, and v is a finite place of K, then A
has good reduction at v if and only if B has good reduction at v. In fact, if
A has good reduction, let A be the projective and smooth model of A over
OKv . Let A → B be an isogeny, and denote the kernel by G. Denote by G
the Zariski closure of G in A. Then B = A/G, and B = A/G is a projective
and smooth model of B over OKv .

PROOF (Thm D+E ⇐⇒ Thm C) Trivial.

In Faltings’ proof, he first proves a weaker version of Theorem D, and
eventually proves Theorem D and Theorem E by many other pieces of argu-
ments. The weaker version is as follows.

Theorem D’ (weak finiteness I). Fix a number field K, and an abelian va-
riety A over K with everywhere semistable reduction. Let G be an `-divisible
subgroup of A[`∞] over K for a prime `. Denote Gn = G[`n]. Let An = A/Gn

be the quotient abelian variety over K. Then the sequence {A1, A2, · · · } has
only finitely many isomorphism classes of abelian varieties over K.
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Faltings height

The biggest innovation of Faltings’ proof may be the introduction of the
Faltings height. For any abelian variety A over a number field K, let A be
the Neron model of A over OK . The Hodge bundle of A is defined to be

ωA = ε∗Ωg
A/OF

= π∗Ω
g
A/OF

,

where π : A → Spec(OF ) denotes the structure morphism and ε : Spec(OF )→
A denotes the identity section. Then ωA is a line bundle over Spec(OF ).

There is a canonical hermitian metric on ωA, and thus one has the
Arakelov degree d̂eg(ωA) ∈ R. Define the Faltings height of A to be

h(A) =
1

[K : Q]
d̂eg(ωA).

The most important property of the height is the following finiteness theorem.

Theorem H (Northcott property). Fix a number field K, an integer g > 0,
and a real number C. Then up to isomorphism, there are only finitely many
abelian varieties A over K of dimension g with h(A) < C.

IDEA (Proof of Thm H) We can assume that A is principally polarized
by Zarhin’s trick ([Mil, Thm I.13.12]). Denote by Sg the moduli stack of
principally polarized abelian varieties of dimension g over Q. Putting a level
structure, we can assume that Sg is a (quasi-projective) variety over Q. Let
S∗g be the minimal compactification of Sg. The Hodge bundle ω of Sg extends
to an ample line bundle ω∗ on S∗g by construction. The classical Northcott

property is about the Weil height hω∗ : S∗g (Q) → R associated to ω∗. The
goal is to convert this statement to the setting we need. Then it amounts
to compare h(A) and hω∗(x), where A is an abelian variety over Q, with a
polarization and a level structure, and x ∈ Sg(Q) is the point associated to A.
Two major difficulties are the logarithmic singularity of the metric involved
and the compactification issue of Sg over Z. These are best treated by the
Faltings–Chai theory (cf. [FC, §V.4]). One can also use Gabber’s lemma (cf.
[BS, §4]).

IDEA (Thm H⇒ Thm D’) It suffices to bound the Faltings height h(An).
The change H(A,An) = exp([K : Q](h(A)−h(An))) of the Faltings height is
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an integer. It amounts to bound ord`H(A,An) for every `. The multiplicity
ord`H(A,An) can be expressed in terms of invariants of Gn, the Zariski closure
of Gn in the Neron model A of A over OKv , for primes v of K above `. If A
is proper, G∞ = {Gn}n is an `-divisible group. To get ord`H(A,An) = 0, one
needs to compare the height of G∞ with the dimension of G∞. These two are
related by the representation ρ of Gal(K̄/K) on T`(G∞). The height of G∞
is given by the weight of ρ away from `, and the dimension of G∞ is given
by the Hodge–Tate weight of ρ at v. See [BS, §7]. If A is not proper, the
maximal proper subgroup of G∞ = {Gn}n has a finite subgroup scheme such
that the quotient is an `-divisible group.

Tate modules

By Tate’s work (originally over finite fields), Theorem D’ actually implies
two fundamental results about Tate modules of abelian varieties. These two
results also lie in the passage from Theorem D’ to Theorem D+E.

Theorem F (semisimplicity). Let A be an abelian variety over a number field
K, and ` be any prime. Then the Gal(K̄/K)-module V`(A) is semi-simple.

Theorem G (Tate conjecture). Let A and B be abelian varieties over a
number field K, and ` be any prime. Then the canonical map

HomK(A,B)⊗Z Z` −→ HomGal(K̄/K)(T`A, T`B)

is an isomorphism.

IDEA (Thm D’ ⇒ Thm F+G) These are in [Mil, §IV.2] or [BS, §2]. The
proof of the two theorems are similar, as one needs to construct endomor-
phism from information on Tate modules in each theorem. The key is the
following result:

If W ⊂ V`(A) is a sub-representation of Gal(K̄/K), then there exists
f ∈ EndK(A)Q`

such that f(V`(A)) = W .
To prove this result, denote

M = W ∩ T`(A), Mn = M + `nT`(A), Gn = Mn/`
nT`(A).

Note that Gn ' M/`nM and Gn ⊂ T`(A)/`nT`(A) = A(K̄)[`n] is Galois
invariant. Then {Gn}n forms a p-divisible subgroup of A[`∞]. Denote Bn =
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A/Gn. There is a unique morphism fn : Bn → A whose composition with the
quotient map A→ Bn is just [`n] : A→ A. We further have fn(T`(Bn)) = Mn

in T`(A). By Theorem D’, there is an abelian variety B over K, which is
isomorphic to Bn for infinitely many n. Thus, for every such n, there is
gn ∈ Hom(B,A) such that gn(T`(B)) = Mn in T`(A). By compactness, there
is a limit point g ∈ Hom(B,A)⊗Z Z` of {gn}n, which satisfies g(T`(B)) = M
in T`(A). This proves the theorem.

IDEA (Thm F+G ⇒ Thm E) This is in [Mil, §IV.3]. By Theorem
F+G, the Gal(K̄/K)-module V`(A) determines the isogeny class of an abelian
variety A over K. Then it suffices to prove that there are finitely many
Gal(K̄/K)-modules V`(A) up to isomorphism. By Theorem F, the Gal(K̄/K)-
module V`(A) is semi-simple, so its isomorphism class is determined by its
character (trace) χA : Gal(K̄/K) → Q`. Note that A is of dimension g
and good reduction outside S. By an argument using Chebotarev’s density
theorem, there is a finite set T of finite places of K, disjoint from S, such
that the Gal(K̄/K)-module V`(A) is determined by the restriction of χA to
{Frob(v) : v ∈ T}. Then the results follows as the eigenvalues of Frob(v) are
Weil numbers.

IDEA (Thm H+F+G ⇒ Thm D) This is in [Lip]. The proof is similar
to that of Theorem D’. Let B be isogenous to A. We need to bound h(B).
The change H(A,B) = exp([K : Q](h(A) − h(B))) of the Faltings height
is still an integer, and we need to bound the multiplicity ord`H(A,B) for
every `. For large `, apply a Theorem of Raynaud on group schemes to prove
that the multiplicity is just 0. For small `, note that T`(B) is a Gal(K̄/K)-
invariant lattice of V`(A). First, all Gal(K̄/K)-invariant lattices of V`(A) lie
in finitely many isomorphism classes of Gal(K̄/K)-modules over Z`. Second,
if T`(B) and T`(B

′) are isomorphic as Gal(K̄/K)-modules, by Theorem G,
an isomorphism T`(B)→ T`(B

′) can be approximated by an isogeny B → B′

with degree prime to `. Then ord`H(B,B′) = 0.
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Table of implications

The theorems involved are Theorems A,B, · · · , H, D’. The implications men-
tioned above are:

• Prove Thm H.

• Thm H ⇒ Thm D’ ⇒ Thm F+G ⇒ Thm E.

• Thm H+F+G ⇒ Thm D.

• Thm D+E ⇒ Thm C is trivial.

• Thm C ⇒ Thm B ⇒ Thm A.

In the following, by postponing the proof involving Thm H as much as pos-
sible, we introduce the proof by the following order:

• Thm D’ ⇒ Thm F+G ⇒ Thm E.

• Prove Thm H.

• (Thm H ⇒ Thm D’) and (Thm H+F+G ⇒ Thm D).

• Thm C ⇒ Thm B ⇒ Thm A.

2 Lecture 2: Thm D’ ⇒ Thm F+G

Follow [BS, §2] or [Mil, §IV.2]. This is Tate’s proof, which treats the situation
of finite fields. The proof does not use any special property of number fields.
In fact, it proves that if a field K satisfies Thm D’, then it satisfies Thm F
and Thm G.

3 Lecture 3: Abelian varieties over finite fields

There are three goals for this talk:

(1) Prove that up to isomorphism, there are only finitely many abelian va-
rieties of a fixed dimension over a fixed finite field. Follow [Mil, Cor
I.13.13]. Prove Zarhin’s trick ([Mil, Thm I.13.12]), and explain the other
ingredients.
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(2) Prove the Riemann hypothesis for abelian varieties over finite fields. Fol-
low [Mil, Thm II.1.1].

(3) State the Honda–Tate theorem (cf. [Mil, Thm II.2.1]). Relate the injec-
tivity of the map to Theorem F+G over finite fields.

4 Lecture 4: Thm F+G ⇒ Thm E

Follow [Mil, §IV.3].

5 Lecture 5: Basics of group schemes

Give a general introduction following [CS, §III.1-4].

6 Lecture 6: Basics of Neron models and semi-

abelian schemes

Cover [BS, §3]. Add some of [CS, VIII] depending on time.

7 Lecture 7: Proof of Thm H

Follow [BS, §4]. May also modify the proof by [FC, §V.4].

8 Lecture 8: Tate–Raynaud Theorem

Cover [BS, §5].

9 Lecture 9: Basics of p-divisible groups

Cover [BS, §6]. Add some of [CS, §III.5-7] depending on time.
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10 Lecture 10: Raynaud’s extension theorem

on group schemes

Cover [BS, §9].

11 Lecture 11: (Thm H ⇒ Thm D’) & (Thm

H+F+G ⇒ Thm D)

Follow [BS, §7] and [Lip].

12 Lecture 12: Thm C ⇒ Thm B ⇒ Thm A.

Follow [Mil, §IV.4-5, §III.9, §III.12]. Note that the [Mil, §IV.5] and [Mil,
§III.9] give different ways to construct branched covers, so choose one of
them.
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