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A description of the course

Shimura varieties play a vital role in the arithmetic aspects of the Langlands Program.
This course will focus on the point of view that they are moduli spaces of abelian varieties
with additional structures. The course consists of four parts.

(1) Modular curves. In this part, we first discuss the classical complex analytic
construction of modular curves. Then we introduce the idea that modular curves
are moduli spaces of elliptic curves, and give the scheme theoretic construction of
them over Z[1/N ].

(2) Abelian varieties. We discuss the fundamentals of abelian varieties, including
important theorems about line bundles and their cohomology. We mainly follow
[Mum08], but we simplify the exposition by admitting Grothendieck’s existence
theorem for Picard schemes.

(3) Siegel modular varieties. We establish the representability of the moduli func-
tor of polarized abelian schemes with level structure over Z[1/N ] using Geometric
Invariant Theory methods, following [MFK94].

(4) The Mazur–Ribet Theorem. We discuss how Ribet [Rib90] uses the geometry of
modular curves and Shimura curves to prove that Taniyama–Shimura–Weil implies
Fermat’s Last Theorem.

Prerequisites. Basic understanding of algebraic geometry (such as Hartshorne’s textbook),
and some familiarity with algebraic number theory and modular forms.

References for the course.

• Elliptic curves and modular curves: The two volumes by Silverman [Sil09,
Sil94] are the standard introductory textbooks on elliptic curves. A friendly intro-
duction to modular curves is given in [DS05]. Our discussion of modular curves over
C is similar in spirit to the first four chapters of [Mil11]. For the scheme-theoretic
point of view, see the book by Katz–Mazur [KM85], and the handouts in Brian
Conrad’s course [Cone], especially [Cona, Conc] .

• Abelian varieties: The classic [Mum08]. Also useful is the online book draft
[EvdGM], as well as various online lecture notes for instance [Cond].

• Moduli of abelian schemes: We will mainly follow [MFK94]. A brief summary
of the relevant content in [MFK94] is found in [GN06]. The latter also contains
material more towards the point of view of Shimura varieties, which we will not
cover.

• The Mazur–Ribet Theorem: The original sources are Ribet’s two papers [Rib90,
Rib94]. For expositions, see [Pra95, Oes88, Edi97]. We also highly recommend
Saito’s two volumes [Sai13, Sai14] for excellent explanation of many important con-
cepts in the subject of Fermat’s Last Theorem. For more information on the proof
of Fermat’s Last Theorem, see [CSS97, DDT97].

References for further study of Shimura varieties. The original theory is obviously
due to works of Shimura. The perspective which is nowadays more mainstream was initiated
in Deligne’s two ariticles [Del71b, Del79]. See also Milne’s notes [Mil17b] for a self-contained
overview. In [Lan], you can see the examples of many Shimura varieties. For a survey of
more recent research on Shimura varieties, see [HH20].
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1. Lecture 1

In this lecture we provide a brief motivational overview.

1.1. Modular curves. Let H = {z ∈ C | Im z > 0}. There is a left action of SL2(R) on

H, given as follows: for g =

(
a b
c d

)
∈ SL2(R) and z ∈ H, we define

g.z :=
az + b

cz + d
.

Note that this yields a surjection

SL2(R) ↠ Authol(H)

where Authol(H) is the holomorphic automorphism group of H. We are interested in certain
discrete subgroups of SL2(R) whose actions will produce interesting quotients of H.

Definition 1.1.1. We say that a subgroup Γ ⊂ SL2(R) is a congruence subgroup if it
is a subgroup Γ ⊂ SL2(Z) such that Γ(N) ⊂ Γ with finite index for some N ≥ 1, where

Γ(N) =

{
g ∈ SL2(Z) | g ≡

(
1 0
0 1

)
mod N}

}
.

We will also usually assume that Γ is small enough, i.e., that Γ ⊂ Γ(N) for some N ≥ 3.

The group Γ acts freely and properly discontinuously on H, and this implies that Γ\H has
a canonical complex manifold structure given by the complex structure on H. Furthermore,
the quotient map H→ Γ\H is the universal covering.

Definition 1.1.2. The complex manifold Γ\H is called a modular curve.

Proposition 1.1.3. A modular curve Γ\H enjoys the following properties:

(1) Γ\H has the canonical structure of an algebraic variety over C, which is compatible
with the complex manifold structure.

(2) Γ\H is the moduli space of elliptic curves over C with “Γ-level structure”.
(3) The moduli interpretation in (2) also makes sense over some number field E (de-

pending on Γ; e.g., E = Q(ζN ) if Γ = Γ(N)). This moduli problem over E is then
represented by a quasi-projective E-scheme whose base change to C recovers Γ\H as
a C-scheme. We say that Γ\H has a model over E.

(4) The model over E in (3) can be canonically characterized by using “special points”
in Γ\H and the Hecke action, without reference to the moduli problem.

Remark.

• The fact in (1) is not obvious, as the complex manifold Γ\H is not compact. Hence,
one cannot appeal to the usual equivalence between smooth projective curves over C
and compact Riemann surfaces. The key is that there is a canonical compactification
of Γ\H which is a compact Riemann surface (the Baily–Borel compactification).

• In (2), the space Γ\H is indeed a fine moduli space as a consequence of the as-
sumption that Γ is small enough. Also, the moduli interpretation in (2) holds both
algebraically and analytically. That is to say, one can formulate a moduli functor
either over the category of (finite-type) C-schemes or over the category of complex
manifolds. Then Γ\H as a C-scheme or a complex manifold respectively represents
the functor.
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• In (3), if we consider a certain disconnected variant of this construction, we can
descend the field of definition to Q.

• The fact in (4) provides the uniqueness of the canonical model, but not its existence.

1.2. Higher dimensional generalizations. To obtain higher dimensional generalizations
of the modular curves, we replace SL2 by a reductive group G over Q. One key example to
keep in mind is the symplectic similitude group G = GSp2g. Recall that this is defined
as follows. Fix a 2g-dimensional symplectic vector space V over Q, that is, a vector space
V over Q equipped with a symplectic bilinear form ⟨−,−⟩. Then for any Q-algebra R,

GSp2g(R) = GSp(V )(R) = {g ∈ GL(V ⊗R) | ∃ν(g) ∈ R×,∀v, w ∈ V, ⟨gv, gw⟩ = ν(g)⟨v, w⟩}.
More informally, we write

GSp2g = {g ∈ GL(V ) | ∃ν(g) ∈ Gm,∀v, w ∈ V, ⟨gv, gw⟩ = ν(g)⟨v, w⟩}.
Remark. Setting g = 1 gives GSp2g = GL2, not SL2.

At the same time, we wish to generalize H to a (possibly disconnected) homogeneous
space X under a left action of the real Lie group G(R) which admits a complex structure
(invariant under the G(R)-action). We also require a Hermitian structure on each tangent
space (invariant under the G(R)-action). This implies that there is constant curvature,
which we insist must be negative. We require that X cannot be too small by requiring that
up to connected components X is isomorphic to the symmetric space of Gad(R), i.e., the
quotient of Gad(R) by a maximal compact subgroup.

Remark. For G = GLn with n ≥ 3, there is no such X.

Fix such G and X as above. We wish to generalize the notion of a congruence subgroup
to this setting.

Definition 1.2.1. We say that a subgroup Γ ⊂ G(Q) is a congruence subgroup if Γ
contains K ∩ G(Q) with finite index for some compact open subgroup K of G(Af ) where
Af is the finite adeles of Q. We also assume that Γ is “small enough”, or neat.

Remark. The (canonical) topology on G(Af ) can be described in the following elementary
manner. Fix an injective Q-homomorphism ρ : G → GLn for some n. For each integer
N ≥ 1, define

Kρ,N := {g ∈ G(Af ) | ρ(g) ∈ GLn(Ẑ) ⊂ GLn(Af ), ρ(g) 7→ 1 ∈ GLn(Z/NZ)}.
For the fixed ρ and varying N , the subgroups Kρ,N of G(Af ) are all open compact, and
they form a neighborhood basis of 1. Thus a subgroup Γ ⊂ G(Q) is a congruence subgroup
if and only if it contains with finite index the inverse image under ρ of some congruence
subgroup of GLn(Q) (the latter defined in the same way as in the SL2 case).

As in the modular curve case, for a neat congruence subgroup Γ ⊂ G(Q), the set Γ\X
can be canonically equipped with the structure of a complex manifold. This manifold enjoys
similar properties as before.

Proposition 1.2.2.

• The complex manifold Γ\X can be given the structure of a quasi-projective com-
plex variety (again thanks to the Baily–Borel compactification which is a projective
complex variety containing Γ\X as a Zariski open).

• For some specific choices of (G,X) (called of PEL type), we enjoy analogues of
(2),(3), and (4) from Proposition 1.1.3, where in (2), the moduli of elliptic curves
becomes the moduli of abelian varieties equipped with some additional structures.
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1.3. Adelic reformulation. Fix a compact open subgroup K ⊂ G(Af ), which we also
assume to be small enough, or neat.

Remark. We are omitting the definitions of neatness for now, but we note that the notion
of neatness for compact open subgroups of G(Af ) is closely related to the neatness for
congruence subgroups of G(Q).

We define the set

ShK = G(Q)\X ×G(Af )/K.

Here G(Q) acts diagonally on the left of X ×G(Af ) as follows:

• G(Q) acts on X via the action of G(R) on X.
• G(Q) acts on G(Af ) by left multiplication.

Here K acts on the right of X ×G(Af ) by right multiplication on the factor G(Af ).
Notice that a priori ShK is merely a set, and a rather unmanageable one at that. The

following finiteness result assuages us.

Proposition 1.3.1 (Borel finiteness). The set G(Q)\G(Af )/K is finite.

We now equip ShK with the structure of a smooth quasi-projective complex variety. Fix
g1, . . . , gn ∈ G(Af ) to be representatives of G(Q)\G(Af )/K. For each i, let

Γi = G(Q) ∩ giKg−1
i

where the intersection is taken inside G(Af ). As K is neat, we know the Γi are neat
congruence subgroups of G(Q).

Proposition 1.3.2. The map
∐n

i=1 Γi\X → ShK given by sending x ∈ Γi\X to the double
coset of (x, gi) is a bijection.

We leave the proof as an exercise.
We use the above bijection to equip ShK with the structure of a smooth quasi-projective

complex variety, i.e., the disjoint union of the Γi\X. The resulting structure is independent
of the choices of the representatives gi.

Remark. The variety ShK is disconnected in general, for two reasons:

• X might be disconnected in general (although sometimes becomes connected after
taking the quotient by Γi)

• We typically have n ≥ 2.

2. Lecture 2

2.1. Continuation of the overview. We have indicated that we are interested in compact
open subgroups K ⊂ G(Af ) that are neat. We show that there is a rich source of such
subgroups.

Suppose ρ : G → GLn is a faithful algebraic representation over Q. This induces a
morphism of topological groups

ρ : G(Af )→ GLn(Af ).

We have a subgroup

H := {g ∈ GLn(Ẑ) | g 7→ 1 inside GLn(Z/NZ)} ⊂ GLn(Af )

where N ≥ 1. Then the Kρ,N := ρ−1(H) ⊂ G(Af ) are compact open subgroups that form
a neighborhood basis of 1, where ρ is fixed and we vary N .
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Proposition 2.1.1 (Criterion for Neatness). If K ⊂ G(Af ) is a compact open subgroup
such that K ⊂ Kρ,N for some ρ and N ≥ 3 as above, then K is neat.

Let K ⊂ G(Af ) be a neat compact open subgroup. As in the previous lecture, we define
the set ShK as follows:

ShK = G(Q)\X ×G(Af )/K ∼=
n∐

i=1

Γi\X

where Γi ⊂ G(Q) are congruence subgroups. The fact that K is neat implies that the Γi

are also neat. This equips the set ShK with the structure of a complex manifold.
Of course, we also desire the structure of an algebraic variety over C on ShK . A priori,

there may be 0 or ≥ 2 possible ways to give a compatible variety structure on ShK whose
analytification is the underlying complex manifold. (If ShK happens to be compact, then
there is at most one way.) Nonetheless, there is in fact a canonical variety structure, coming
from the Baily–Borel compatification: we are able to embed the complex manifold ShK into
a normal projective variety such that ShK is a Zariski open set in said variety. In particular,
ShK has the canonical structure of a quasi-projective smooth variety. Moreover, this variety
structure can be characterized by a universal property (and is in fact absolutely unique), to
be discussed in the next lecture.

Next, the gist of Shimura varieties is that they can be (canonically) defined over number
fields. For this, it is important to upgrade the pair (G,X) to a Shimura datum in the
sense of Deligne. This amounts to the extra datum of a G(R)-equivariant injective1 map

X ↪→ HomR(S, GR)

satisfying some axioms which we omit for now. Here, S = ResC/R(Gm) is the Deligne
torus, and HomR(S, GR) is the set of R-algebraic group homomorphisms S→ GR, on which
G(R) acts on by conjugation on GR.

The following theorem is a deep result due to the effort of numerous mathematicians.

Theorem 2.1.2 (Shimura, Deligne, Milne, Borovoi, et al.). Fix a Shimura datum

(G,X,X ↪→ HomR(S, GR)).

For each neat compact open subgroup K ⊂ G(Af ), ShK has a canonical model over a
canonical number field E. Here E, called the reflex field, depends only on the Shimura
datum, not on K.

Example. We give an example of a Shimura datum. Let G = GL2 and X = H+
∐

H− =
C \ R. Define an R-homomorphism h : S→ GR as follows. For any R-algebra R, we have

S(R) = (R⊗R C)× = {a⊗ 1 + b⊗ i | a, b ∈ R, a2 + b2 ∈ R×}.

We define S(R)→ G(R) = GL2(R) by

a⊗ 1 + b⊗ i 7−→
(
a b
−b a

)
.

Now, note that GL2(R)/ SO2(R) ·R× ∼= X under the map g 7→ g · i. (Here R× embeds into
GL2(R) as the scalar matrices.) Then, we define

X ∼= GL2(R)/SO2(R) · R× ↪→ HomR(S, GR)

1For some purposes injectivity can be loosen to finite-to-one.
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via g 7→ Int(g) ◦ h,∀g ∈ GL2(R), where Int(g) is the inner automorphism x 7→ gxg−1 of
GL2,R. In this case, the reflex field E = Q .

In this course, we will mainly consider Shimura data such that the resulting Shimura
varieties are closely related to certain moduli spaces of abelian varieties (with additional
structures). More precisely, these Shimura varieties are isomorphic, up to disjoint unions,
to such moduli spaces. Focusing on the moduli point of view will enable us to obtain good
models over Zariski open sets of SpecOE , as opposed to just SpecE. Further, this will allow
us to study the geometry and arithmetic of the reductions of the models modulo primes of
E.

There are a number of applications along these lines.

(1) The construction of Galois representations attached to certain automorphic forms,
as predicted in the Langlands program: This began with Deligne in the 1960s-1970s,
who attached 2-dimensional Galois representations to cuspidal eigenforms on GL2

of weight ≥ 2. This led to his famous resolution of the Ramanujan conjecture in
this setting. A closely related problem is the computation of the Hasse–Weil zeta
functions of these Shimura varieties. The prototype for this work is the Eichler–
Shimura Theorem in the cases of modular curves and Shimura curves.

(2) Congruences for modular forms: one critical exhibition of such an application is
Ribet’s theorem, which played an important role in the resolution of Fermat’s Last
Theorem.

Our first goals in this course, to be addressed in the next few lectures, are the following:

• Classify elliptic curves / abelian varieties with additional structure over C via mod-
ular curves in the one dimensional case and Siegel modular varieties in higher di-
mensions.

• Prove representability of the moduli functor of principally polarized abelian varieties
(ppav) over Z, following Mumford.

3. Lecture 3

3.1. Characterization of the algebraic variety structure. Let (G,X) be a pair as in
a Shimura datum. For this subsection, we do not require the datum of X ↪→ HomR(S, GR).
Here we will use the classical language as opposed to the adelic language. For every neat
congruence subgroup Γ ⊂ G(Q), we recall that Γ\X is a complex manifold, with its structure
inherited from the universal covering X → Γ\X. As before, the Bailey–Borel compactifi-
cation provides an algebraic variety structure on Γ\X that is compatible with its complex
manifold structure.

The following theorem gives a characterization of the algebraic variety structure in terms
of the complex manifold structure.

Theorem 3.1.1 (Borel). For every smooth variety S/C, every holomorphic map San →
Γ\X is algebraic, with respect to the algebraic structure on Γ\X given by Baily–Borel. In
particular, there is in fact a unique algebraic variety structure on the complex manifold
Γ\X.2

2For the last statement, use the following fact which is an easy consequence of Zariski’s Main Theorem:

If k is an algebraically closed field of characteristic zero, then every bijective algebraic morphism between
two (irreducible) varieties over k, with the target normal, is an isomorphism. See for instance [Mil17a,

Prop. 8.60].
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3.2. Naive classification of elliptic curves over C. In this subsection, all algebraic
varieties are over C. Recall that an elliptic curve E is a complete group variety of dimension
one. We denote the identity element by O = OE ∈ E(C) = E.

We now list some facts about elliptic curves which we will admit.

(1) The group structure on an elliptic curve is automatically commutative.
(2) If we have an algebraic morphism f : E → E′ between elliptic curves such that

f(OE) = OE′ , then f is automatically a group homomorphism.
(3) By a lattice in C we mean a Z-submodule of C generated by an R-basis of C. For

each lattice Λ ⊂ C, we equip the compact Riemann surface C/Λ with the group
structure coming from addition on C. Since there is an equivalence of categories
between compact Riemann surfaces and smooth projective algebraic curves, we see
that (C/Λ,+) is an elliptic curve.

Remark. We can in fact write down an explicit embedding C/Λ ↪→ P2
C using the

Weierstrass ℘ function and its derivative ℘′.

(4) Every elliptic curve arises as C/Λ for some lattice Λ ⊂ C. More precisely, given an
elliptic curve E, there is a holomorphic group homorphism

exp : LieE −→ E

coming from Lie group theory. Here LieE is a 1-dimensional complex vector space.
(Note that exp is not algebraic.) Then ker(exp) is a lattice in LieE and

(LieE)/ ker(exp)
∼−→ E

is an isomorphism of elliptic curves. Notice also that (non-canonically) the left hand
side is isomorphic to C/Λ for some lattice Λ ⊂ C.

Remark. The map exp : LieE → E is a universal covering. Hence we have the
following canonical isomorphisms:

ker(exp) ∼= π1(E,O) ∼= H1(E,Z).

(5) Suppose E and E′ are elliptic curves. We have

Hom(E,E′)
∼−→ {f : LieE → LieE′ | f is C-linear and f(H1(E,Z)) ⊂ H1(E

′,Z)}
where the assignment is given by

F 7−→ dF |LieE .
Combining the above facts, we have an equivalence of categories

((V,Λ), V a 1-dim’l C-vector space and Λ ⊂ V a Z-lattice) ∼−→ (Elliptic curves)(3.1)

given by
(V,Λ) 7−→ V/Λ,

with the inverse functor
E 7−→ (LieE,H1(E,Z)).

Now we say two lattices Λ and Λ′ in C are homothetic if there exists λ ∈ C× such that
Λ = λΛ′. From the equivalence of categories (3.1), we obtain a bijection

{Lattices inside C}/homothety
∼−→ {Elliptic curves}/isomorphism.

We now make the set on the left hand side more explicit. Set

H± := H+
⊔

H− = C \ R.
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For a lattice Λ in C, we pick a Z-basis w1, w2 ∈ C× of Λ. Then w1/w2 ∈ H±. If we choose

another Z-basis {w′
1, w

′
2} of Λ, then there is a (unique) matrix

(
a b
c d

)
∈ GL2(Z) such that

w1 = aw′
1 + bw′

2 and w2 = cw′
1 + dw′

2. Thus

w1

w2
=
aw′

1 + bw′
2

cw′
1 + dw′

2

=
a
(

w′
1

w′
2

)
+ b

c
(

w′
1

w′
2

)
+ d

.

In other words, w1

w2
and

w′
1

w′
2
are related by the GL2(Z)-action on H±. Thus every lattice

Λ ⊂ C has an invariant in GL2(Z)\H±. This construction induces a bijection from the
set of homothety classes of lattices in C to the set GL2(Z)\H±. Moreover, GL2(Z)\H± ∼=
SL2(Z)\H+. Thus we have proved the following theorem.

Theorem 3.2.1. There is a natural bijection

SL2(Z)\H+ ∼−→ {Elliptic curves}/isomorphism

sending the GL2(Z)-orbit of τ ∈ H+ to the isomorphism class of C/Z+ Zτ .

3.3. Alternative point of view: Hodge structures. In the previous subsection, we
classified elliptic curves V/Λ up to isomorphism by morally fixing the complex vector space
V and varying Λ. As an alternative point of view, we may fix an abstract Z-module Λ, finite
free of rank 2, and ask how we could vary the C-structure. We elaborate this idea below.

As before, an elliptic curve is given by E ∼= (LieE)/H1(E,Z). Also, we have a canonical
isomorphism of 2-dimensional R-vector spaces:

LieE ∼= H1(E,Z)⊗Z R.

Notice of course that LieE also has a complex structure. Thus in order to reconstruct E,
we need the abstract Z-module H1(E,Z) together with a complex structure on the R-vector
space H1(E,Z)⊗Z R. In general, to define a complex structure on an R-vector space V , it
suffices to define multiplication by i such that i2 = −1. In other words, a complex structure
on V is exactly an element J ∈ EndR(V ) such that J2 = −1, and this element corresponds
to scalar multiplication by i.

Definition 3.3.1. An integral Hodge structure of elliptic type is a pair (Λ, J) where
Λ is a finite free Z-module of rank 2 and J ∈ EndR(V ) is a complex structure on Λ⊗Z R.

As such, we can rewrite the equivalence of categories (3.1) as the following equivalence
of categories:

(Elliptic curves)
∼−→ (integral Hodge structures of elliptic type).

In particular, we obtain a bijection on the level of isomorphism classes of both categories
respectively. It is worth noting that there is a more general notion of a Hodge structure:

Definition 3.3.2. Fix a subring R ⊂ R, usually taken to be Z,Q, or R. An R-Hodge
structure is a finitely generated R-module Λ together with a direct sum decomposition

Λ⊗R C =
⊕
p,q∈Z

F p,q

as C-vector spaces such that

F p,q ∼= F q,p.
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Here the bar denotes the R-linear automorphism of Λ ⊗R C (viewed as an R-vector space)
given by x ⊗ y 7→ x ⊗ ȳ,∀x ∈ Λ, y ∈ C. In general, the type of a Hodge structure refers
to the set of (p, q) such that F p,q ̸= 0. We shall refer to this decomposition as the Hodge
decomposition. The Hodge filtration refers to

Fili =
⊕
p≥i
all q

F p,q.

This is a decreasing filtration by C-subspaces on Λ⊗R C, i.e., we have Fili ⊃ Fili+1.

In light of this new language, we observe that there is an equivalence of categories:

(Integral Hodge structures of elliptic type)
∼−→ (Z-Hodge structures free of rank 2 of type {(-1,0), (0,-1)}).

The assignment is as follows. Given an integral Hodge structure of elliptic type (Λ, J),
we define the decomposition Λ ⊗Z C = F−1,0 ⊕ F 0,−1 by letting F−1,0 and F 0,−1 be the
eigenspaces for J̃ of eigenvalues i and −i respectively. Here J̃ denotes the C-linear extension
of J ∈ EndR(Λ ⊗Z R) to EndC(Λ ⊗Z R ⊗R C) = EndC(Λ ⊗Z C). We leave it as an exercise
for the reader to work out the construction in the reverse direction.

4. Lecture 4

4.1. Classification of elliptic curves via Hodge structures.

Definition 4.1.1. Let R be a subring of R, and Λ an R-Hodge structure. We say that Λ is
pure of weight m if in the direct sum decomposition Λ ⊗R C =

⊕
p,q∈Z F

p,q, all nonzero
summands F p,q satisfy p+ q = m.

Definition 4.1.2. Suppose Λ is a Z-Hodge structure, with Hodge decomposition Λ⊗ZC =⊕
p,q F

p,q. Let Λ∨ = HomZ-mod(Λ,Z). Then we have Λ∨ ⊗Z C ∼=
⊕

p,q(F
p,q)∗, where ∗

denotes the C-linear dual. Define Gp,q := F−p,−q. Then Λ∨ ⊗Z C =
⊕

p,q G
p,q is a Hodge

decomposition. We thus obtain a Z-Hodge structure (Λ∨, (Gp,q)p,q), which we call the dual
of Λ.

Remark. Suppose Λ is a Hodge structure pure of weight m. Then we can recover F p,q

from (Fili)i and m, as

F p,q = Filp ∩Filq.

Recall that there is an equivalence of categories

(Elliptic curves)
∼−→ (Integral Hodge structures of elliptic type),

sending E to Λ = H1(E,Z) with complex structure J on H1(E,Z) ⊗ R ∼= LieE given by
that on LieE.

Remark. The usual Hodge decomposition

H1(E,Z)⊗Z C ∼= H1(E,C) ∼= H0(E,Ω1
E/C)⊕H1(E,OE)

endows the Z-module H1(E,Z) with the structure of a Z-Hodge structure of type

{(0, 1), (1, 0)},
where we set F 0,1 = H1(E,OE) and F

1,0 = H0(E,Ω1
E/C). This Hodge structure is the dual

of the integral Hodge structure of elliptic type that we attach to E.
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In summary, the task of classifying elliptic curves is tantamount to classifying integral
Hodge structures of elliptic type up to isomorphism. But this is not so difficult. Since we
identify isomorphic Hodge structures, notice that for any integral Hodge structure of elliptic
type (Λ, J), we can choose a Z-module isomorphism f : Λ ∼= Z2. Then f transports J to a
complex structure on Z2 ⊗ R = R2. In other words, we have a bijection

{Integral Hodge structures of elliptic type}/isom ∼−→ GL2(Z)\{Complex structures on R2}
where GL2(Z) acts by conjugation.

We now explain how this bijection is related to our previous bijection

GL2(Z)\H± ∼−→ {Elliptic curves}/isomorphism

given by
τ 7−→ C/(Z+ Zτ).

Firstly, we have the following construction.

Proposition 4.1.3. There is a natural bijection

H± ∼−→ {Complex structures on R2}.

Proof. We first define the map. Recall that there is a GL2(R)-equivariant injection
H± ↪→ HomR(S,GL2,R)

where S = ResC/R(Gm) is the Deligne torus. Note that an arbitrary element of H± can

be described as τ = g · i where i ∈ H± is the base point and g ∈ GL2(R)/ SO2(R) · R×.
The injection H± ↪→ HomR(S,GL2(R)) is defined by sending τ = g · i to the morphism
hτ : S → GL2,R of algebraic groups over R defined as follows: for any R-algebra T , we can
write S(T ) = (T ⊗R C)× = {a⊗ 1 + b⊗ i | a2 + b2 ∈ T×}. The morphism hτ is defined via

a⊗ 1 + b⊗ i 7→ g

(
a b
−b a

)
g−1. We then define

H± −→ {Complex structures on R2}
via τ 7→ Jτ := hτ (i) ∈ GL2(R) where i ∈ C× = S(R). It is an exercise to see that
Jτ is a complex structure and further that this assignment is a GL2(R)-equivariant bijec-
tion, where GL2(R) acts on H± by linear fractional transformations and GL2(R) acts on
{Complex structures on R2} by conjugation. □

Proposition 4.1.4. We have a string of bijections

{Elliptic curves}/isomorphism

{Integral Hodge structures of elliptic type}/isomorphism

GL2(Z)\{Complex structures on R2}

GL2(Z)\H±

SL2(Z)\H+
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where the third map is induced by the bijection τ 7→ Jτ in the previous proposition. The
composition of these maps is the inverse to τ 7→ C/(Z+ τZ).

Proof. Exercise. □

5. Lecture 5

5.1. Some motivation for level structure. Recall Proposition 4.1.4. In fact, we note
that there is also an SL2(Z)-invariant holomorphic morphism j : H+ → C inducing a
bijection

SL2(Z)\H+ ∼−→ C.

Here j corresponds to evaluating the classical j-invariant of an elliptic curve. We may use
this map to identify the quotient SL2(Z)\H+ with C in order to give the former a complex
manifold structure.

Note that H+ → SL2(Z)\H+ is a holomorphic map, but not a local isomorphism. In other

words, this is not a covering map; there is ramification over the images of i and e
2πi
3 with

branching of order 2 and 3 respectively. This is related to the fact that the SL2(Z)-action
on H+ is problematic in the following sense:

• −I ∈ SL2(Z) acts trivially on H+. In particular, the SL2(Z)-action on H+ is not
free.

• The naive solution is to now consider the action of SL2(Z)/{±I} on H+. For this
action, most points in H+ have trivial stabilizer, but points in the orbit of i and the

orbit of e
2πi
3 have nontrivial stabilizers. So this is also not a solution.

This phenomenon exactly corresponds to the fact that for any elliptic curve E over C (or
any algebraically closed field of characteristic away from 2 or 3), the automorphism group
of E is either:

(1) Z/2Z, where the nontrivial automorphism is negation. This corresponds to the
inclusion of {±I} in all stabilizers.

(2) Z/4Z. This automorphism group applies to a unique isomorphism class of elliptic
curves.

(3) Z/6Z. This automorphism group applies to a unique isomorphism class of elliptic
curves.

Remark. The complex manifold structure we put on SL2(Z)\H+ (using j) is the unique
one such that the projection H+ → SL2(Z)\H+ is holomorphic.

Remark. It is “more correct”, in some sense, to define the orbifold (or Deligne–Mumford
stack) quotient of H+ by SL2(Z). This allows us to form a fine moduli space of elliptic
curves that remembers the automorphisms (including the generic Z/2Z-automorphisms).
As we will see in the future, the only obstruction to representability of the moduli of elliptic
curves in the category of schemes is the presence of these automorphisms.

5.2. Level structure. Instead of seriously talking about orbifolds or stacks, we shall mainly
focus on the following solution to the presence of automorphisms: we will rigidify the mod-
uli problem by asking for some additional structures on the elliptic curves that will kill
all automorphisms. In particular, no nontrivial automorphism of E will preserve this ex-
tra structure. Correspondinly we will need to shrink SL2(Z) to some smaller congruence
subgroup Γ such that the Γ-action on H+ is free.
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Fix an integer N ≥ 3 throughout. For any elliptic E over C, consider the N -torsion
subgroup

E[N ] := {z ∈ E | z + · · ·+ z (N times) = 0}.
Recall that E[N ] is non-canonically isomorphic to (Z/Z)2 = Z/NZ ⊕ Z/NZ as Z/NZ-
modules.

Definition 5.2.1. A choice of an isomorphism γ : E[N ]
∼−→ (Z/NZ)2 is called a level-N

structure on E. Equivalently, this is a choice of an ordered basis (P,Q) of E[N ] as a free
Z/NZ-module.

Recall that elliptic curves over C correspond to integral Hodge structures of elliptic type
(Λ, J). For an elliptic curve E/C, the corresponding integral Hodge structure of elliptic
type was obtained by setting Λ = H1(E,Z). We have the canonical isomorphisms

E[N ] ∼=
1

N
Λ/Λ ∼= Λ/NΛ ∼= Λ⊗Z Z/NZ.

It thus makes sense to formulate the following definition.

Definition 5.2.2. A level-N structure on an integral Hodge structure of elliptic type
(Λ, J) is a choice of an isomorphism γ : Λ/NΛ

∼−→ (Z/NZ)2.

Now, define

Γ(N) := {g ∈ SL2(Z) | g ≡ 1 mod N} ⊴ SL2(Z).
The action of such groups on H+ behaves better than that of SL2(Z).

Proposition 5.2.3. For N ≥ 3, Γ(N) acts freely and properly discontinuously on H+.

Proof. We sketch the proof that the action is free. Suppose γ ∈ Γ(N) has a fixed point in
H+. Since the stabilizer of i ∈ H+ in SL2(R) is SO2(R) and since H+ is transitive under
SL2(R), we see that γ must lie in a SL2(R)-conjugate of SO2(R). In particular γ must
be semi-simple and its eigvenvalues in C have absolute value 1. On the other hand, the
characteristic polynomial of γ is monic with integer coefficients, so the eigenvalues of γ are
algebraic integers. Combined with the previous fact, we see that the eigenvalues of γ must
be roots of unity. Pick a prime power pe dividing N , and we can arrange that pe ≥ 3. Since
γ ≡ 1 mod pe, each eigenvalue λ of γ in Qp must satisfy vp(λ − 1) ≥ e. We leave it as an

exercise to the reader to show that any root of unity λ ∈ Qp satisfying vp(λ− 1) ≥ e must
be trivial provided that pe ≥ 3. Thus the eigenvalues of γ are trivial, so γ must be trivial.

We omit the proof that Γ(N) acts properly discontinuously. See [DS05, §2.1]. □

In particular, this implies that Γ(N)\H+ has the natural structure of a Riemann surface
and H+ → Γ(N)\H+ is a covering. Further, this is obviously the universal covering, since
H+ is simply connected.

Definition 5.2.4. The modular curve Y (N) is the complex manifold

Y (N) :=
∐

j∈(Z/NZ)×
Γ(N)\H+

j

where H+
j := H+.

Remark. Classically, the notation Y (N) often refers to just a single connected component,
namely Y (N) = Γ(N)\H+.
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For each j ∈ (Z/NZ)×, fix once and for all an element gj ∈ GL2(Z/NZ) such that

det(gj) = j. For instance, we may take gj =

(
j 0
0 1

)
.

For each j ∈ (Z/NZ)× and each τ ∈ H+
j , we will define an integral Hodge structure of

elliptic type together with a level-N structure:

Vτ = (Λτ , Jτ , γτ : Λτ/NΛτ
∼−→ (Z/NZ)2)

as follows:

• Λτ := Z2.
• Jτ is the complex structure on R2 corresponding to τ , i.e., Jτ := hτ (i).

• γτ : Λτ/NΛτ
∼−→ (Z/NZ)2 is the isomorphism defined by gj : (Z/NZ)2 ∼−→

(Z/NZ)2. (By the definition of Λτ , Λτ/NΛτ is (Z/NZ)2).
Observe that if τ, τ ′ ∈ H+

j are related by the Γ(N)-action, then we have (Λτ , Jτ , γτ ) ∼=
(Λτ ′ , Jτ ′ , γτ ′), i.e., there is an isomorphism of integral Hodge structures compatible with the
level structures. In turn, we get a map

Y (N)→ {Integral Hodge structures of elliptic type with level-N structure}/isomorphism.

(5.1)

In the next lecture we will show that this map is a bijection.

6. Lecture 6

6.1. Points on the modular curve.

Proposition 6.1.1. The map (5.1) is a bijection.

Proof. We leave injectivity as an exercise. For surjectivity, let V = (Λ, J, γ) be an arbitrary
integral Hodge structure of elliptic type together with a level N -structure. Pick a group
isomorphism u : Λ

∼−→ Z2. Then u takes J to some complex structure on Z2 ⊗Z R = R2,
which must be of the form Jτ for some τ ∈ H±. If τ ∈ H−, we compose u with some element
of GL2(Z) of determinant −1, and as a result we can always assume that τ ∈ H+. Now let
γ′ be the composition

(Z/NZ)2 u−1 mod N−−−−−−−−→ Λ/NΛ
γ−→ (Z/NZ)2.

Then γ′ ∈ GL2(Z/NZ). We note the following fact:
Fact. (Strong approximation for SL2.) The natural map SL2(Z) → SL2(Z/NZ) is

surjective.
For a proof, see [DS05, Exercise 1.2.2]. Note that the statement is not true if we replace

SL2 by GL2, since elements of GL2(Z) all have determinants ±1 .
Let j = det(γ′), so γ′g−1

j ∈ SL2(Z/NZ). By the above fact, we can compose u with a

suitable element of SL2(Z) to arrange that γ′ = gj . When we do this the element τ we
found in the above will be moved by the element of SL2(Z), but the new τ still lies in H+.
We think of it as an element of H+

j . It is then easy to check that u induces an isomorphism

between V and Vτ . Thus the image of τ under (5.1) is the isomorphism class of V. □

Corollary 6.1.2. Points on Y (N) are in natural bijection with the isomorphism classes of
elliptic curves with level N -structure.

Remark. Classically, one considers only one connected component of Y (N), and corre-
spondingly imposes a stronger condition on the level N -structure. For this, recall that
for each elliptic curve E, the Weil pairing is a canonical isomorphism of Z/NZ-modules
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E[N ]

∼−→ µN . (Here
∧2

is taken in the category of finite free Z/NZ-modules, and µN

is the set of N -th roots of unity in C.) Thus any level-N structure on E will induce an

isomorphism between µN and
∧2

(Z/NZ) = Z/NZ, or equivalently the choice of a generator
of µN . If one insists that the level structure must induce a prescribed generator of µN , then
under the correspondence one sees only one connected component of Y (N). It turns out that
the generator e2πi/N corresponds to the connected component Γ(N)\H+

1 . The verification
of the last claim amounts to the explicit computation of the Weil pairing for C/Z + τZ as
in [Sil94, Exercise 1.15].

Up to this point, we just described how points on Y (N) correspond to isomorphism classes
of elliptic curves or integral Hodge structures of elliptic type with level-N structure. We have
not used the complex manifold structure or complex algebraic variety structure on Y (N).
We would now like to upgrade the pointwise correspondence to a moduli interpretation.
Recall that the complex manifold Y (N) has a unique compatible structure of an algebraic
variety, by the theorems of Baily–Borel and Borel. The following is our target theorem.

Theorem 6.1.3. The algebraic variety Y (N) is the moduli space of elliptic curves with
level-N structure. Namely, it represents the functor sending each finite-type C-scheme V to
the set of isomorphism classes of proper flat families of elliptic curves over V with level-N
structure.

We will explain the notions in the statement of the theorem in more detail later.

6.2. Variation of Hodge structures. One important ingredient towards the proof of the
Theorem 6.1.3 is the correct notion of a “family of integral Hodge structures of elliptic
type”. Suppose S is a complex manifold and for each s ∈ S we are given an integral Hodge
structure of elliptic type (Λs, Js). The question is how to formulate that these structures
vary nicely as s varies in S. In particular, we need to take into account the complex manifold
structure on S. The answer is provided in the following definition.

Definition 6.2.1. A variation of integral Hodge structures of elliptic type on S
refers to a pair (Λ,L) consisting of a locally constant sheaf of abelian groups Λ on S that
is locally free of rank 2 over Z, and a holomorphic line subbundle L of the plane bundle
Λ ⊗Z OS . (Here OS is the structure sheaf of holomorphic functions on S.) They should
satisfy the following condition:

• For each s ∈ S, the 1-dimensional C-subspace of Λs⊗ZC determined by the fiber of
L3 is the Fil0 associated with a Hodge structure of elliptic type on Λs (i.e., a complex
structure on Λs⊗ZR, or equivalently a Hodge decomposition Λs⊗ZC = F−1,0⊕F 0,−1

such that F−1,0 = F 0,−1).

Recall that for Hodge structures of elliptic type, or more generally pure Hodge structures,
the Hodge decomposition and the Hodge filtration determine each other. Thus the above
definition is equivalent to the datum of Λ together with a Hodge structure of elliptic type
on Λs for each s ∈ S such that the pointwise Fil0’s vary holomorphically in the sense that
they come from some holomorphic line subbundle L ⊂ Λ⊗Z OS .

The following is the more general definition.

Definition 6.2.2. Let R be a subring of R, and let m be an integer. A variation of
R-Hodge structures of weight m on S refers to a pair (Λ,L•), where Λ is a locally

3Here Λs is the stalk of Λ at s, and we identify Λs ⊗Z C with the fiber of the plane bundle Λs ⊗Z OS at

s. Thus the fiber of L at s gives rise to a subspace.
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constant sheaf of R-modules on S that is locally finite free, and L• is a decreasing filtration
on Λ ⊗R OS by holomorphic sub-vector bundles. They should satisfy the following two
conditions:

• For each s ∈ S, the filtration on the C-vector space Λs ⊗R C determined by the
fibers of L• at s is the Hodge filtration associated with a (unique) Hodge structure
of weight m on Λs.

• (Griffiths transversality.) Let ∇ : Λ⊗ROS → Λ⊗RΩ1
S be the flat connection id⊗d.

For each p, we have ∇(Lp) ⊂ Lp−1 ⊗OS
Ω1

S .

Note that for Hodge structures of elliptic type, Griffiths transversality is automatic.
If we have a smooth projective variety X over C, then for each non-negative integer m

we have the Hodge decomposition from Hodge theory:

Hm(X,Z)⊗Z C = Hm(X,C) =
⊕

p+q=m

Hq(X,Ωp
X).

This makes Hm(X,Z) a Z-Hodge structure of weight m (with F p,q = Hq(X,Ωp
X)). The

following result is the motivation for the definition of a variation of Hodge structures.

Theorem 6.2.3 (Griffiths). Let X and S be smooth algebraic varieties over C, and let
X → S be a smooth projective morphism. Then the Hodge structures on Hm(Xs,Z) for
s ∈ S come from a canonical variation of Z-Hodge structures of weight m on San.

As a special case, we obtain the following

Theorem 6.2.4. Let S be a smooth algebraic variety over C, and let E → S be a proper
flat family of elliptic curves. Then the integral Hodge structures of elliptic type assigned to
Es for s ∈ S come from a canonical variation of integral Hodge structures of elliptic type
on San.

This is indeed a special case of Griffiths’ theorem, since the integral Hodge structure
of elliptic type attached to an elliptic curve E over C is the dual of H1(E,Z), and since
E → S is automatically projective (i.e., after Zariski localization on S, it factors through
E → P1

S ; a fact that is not true for higher dimensional abelian varieties). In fact, after
Zariski localization on S, one can always find an S-embedding E ↪→ P1

S that is described by
a Weierstrass equation. (More details in the future.)

7. Lecture 7

7.1. Variation of Hodge structures, continued. We briefly recall some notions from
before.

Definition 7.1.1. Let S be a complex manifold. A variation of integral Hodge struc-
tures of elliptic type over S is a pair (Λ, J) where:

• Λ is a locally constant sheaf of Z-modules on S that is locally free of rank 2 over Z.
• J = (Js)s∈S is a family where that each Js is a complex structure on the R-vector

space Λs ⊗Z R such that Fil0(Λs ⊗Z C) = (F 0,−1)s varies holomorphically in the
sense that they all come from a holomorphic line sub-bundle L of the plane bundle
Λ⊗Z OS .

Remark. Remembering (Λ, J) is the same as remembering (Λ,L).
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Definition 7.1.2. By a level-N structure on a variation of integral Hodge structures of
elliptic type (Λ, J), we mean a choice of sheaf isomorphism (as sheaves of groups)

γ : Λ⊗Z Z/NZ ∼−→ (Z/NZ)2.

Remark. Such an isomorphism need not exist in general!

7.2. Families of elliptic curves.

Definition 7.2.1. Let S be a scheme. An elliptic curve over S is a proper and smooth
morphism of schemes π : E → S, with geometric fibers that are (smooth and) connected
curves of genus 1, along with the datum of a section e : S → E.

Theorem 7.2.2 (“Abel”, see [KM85, §2.1]). In the notation from the above definition, there
is a canonical structure of an S-group scheme on E with e : S → E the identity section.
Moreover, this group scheme is commutative.

This group scheme structure is given similarly to the case where S = Spec k, with k a
field. For any S-scheme T , we will make E(T ) a group as follows. Write f for the structural
morphism E → S, and let fT be the pullback of f over T :

ET E

T S.

ffT

For P ∈ E(T ), denote by DP the Cartier divisor on ET given by im(P ). (Thus OET
(DP )

is the invertible OET
-module that is inverse to the ideal sheaf of im(P ).) Write eT for the

section of ET → T induced by e. Then for any P,Q,R ∈ E(T ), we impose that

P +Q = R

if and only if

OET
(DP )⊗OET

(DQ) ∼= OET
(DeT )⊗OET

(DR)⊗ f∗T (L)

for a line bundle L on T .

Remark. The attribution to Abel rests in his classical proof that for an elliptic curve E
over C we have

E
∼−→ Jac(E) = {deg 0 divisors on E}/linear equivalence

via P 7→ [DP −De].

Proposition 7.2.3 ([KM85, §2.3]). Suppose E/S is an elliptic curve. After localizing S,
the map E → S is projective. More precisely, each point in S has an open neighborhood U
such that EU → U factors through an embedding EU ↪→ P2

U whose image is described by a
generalized Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ OU (U).

Remark. Projectivity over the base (even after localization) is not true for general abelian
schemes; this is a special phenomenon about elliptic curves.

Proposition 7.2.3, combined with Theorem 6.2.3, implies the following corollary:
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Corollary 7.2.4. Suppose S is a smooth variety over C and E/S is an elliptic curve. The
pointwise integral Hodge structures of elliptic type associated to Es for s ∈ S(C) come from
a variation of integral Hodge structures of elliptic type over San. (More precisely, the local
system in the variation of integral Hodge structures is the Z-linear dual of the first derived
pushforward of Z along Ean → San. )

Definition 7.2.5. A (naive) level-N structure on an elliptic curve E/S is a choice of
isomorphism of S-group schemes

γ : E[N ]
∼−→ (Z/NZ)2.

Remark. In general, E[N ] is a finite locally free S-group of rank N2. We will only consider
the case when N is invertible on S, i.e., S is over Z[1/N ]. In this case E[N ] is finite étale
over S, and after a finite étale base change E[N ] is isomorphic to the constant group scheme
(Z/NZ)2.

Let S be a Z[1/N ]-scheme, and E/S an elliptic curve. Using the above remark, it is an
exercise to show that giving a level N -structure on E/S is the same as providing an ordered
pair of sections P and Q of the S-scheme E[N ] such that for each geometric point s̄ in S,
the fibers of P and Q at s̄ generate the group Es̄[N ].

Remark. There is an obvious version of Corollary 7.2.4 incorporating level-N structure.

7.3. The moduli functor.

Theorem 7.3.1. Suppose N ≥ 3. We define the contravariant functor

S(N) : (finite-type schemes over Z[1/N ]) −→ (sets)

by
S 7−→ {isomorphism classes of elliptic curves E/S with level-N structure}.

(On morphisms, this functor is defined by the obvious notion of pullback.) Then S(N) is
representable by a nice—in particular, finite type—scheme over Z[1/N ], still denoted by
S(N).

Recall that by the Bailey–Borel compactification the complex manifold Y (N) has a unique
structure of an algebraic variety over C.

Theorem 7.3.2. S(N)C is canonically isomorphic to Y (N).

We will indicate the proof of Theorem 7.3.1 using explicit manipulation with Weierstrass
equations in the near future. Later we will prove it again by deducing it from Mumford’s
more general theorem for the moduli of abelian schemes. We now explain the proof of
Theorem 7.3.2. For this we will first prove the following proposition.

Proposition 7.3.3. The complex manifold Y (N) represents the contravariant functor

(complex manifolds) −→ (sets)

sending S to the set of isomorphism classes of variations of Z-Hodge structures of elliptic
type with level-N structure on S. (On morphisms, this functor is defined by the obvious
notion of pullback.)

Proof. Recall that for each τ ∈ Y (N), we have constructed an integral Hodge structure
of elliptic type with level-N structure Vτ which is well defined up to isomorphism; see the
map (5.1) . We want to construct a variation of integral Hodge structures of elliptic type
with level-N structure on Y (N) that recovers this pointwise construction. In the rest of
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the proof, we abbreviate “variation of integral Hodge structures of elliptic type with level
N -structure” simply as “VHSL”.

Let j ∈ (Z/NZ)×. Recall that we have fixed gj ∈ GL2(Z/NZ) such that det(gj) = j.
First, we construct a VHSL on H+

j . Namely, we define

Ṽj = (Z2, (Jτ )τ∈H+
j
, γ : Z2 ⊗ Z/NZ = (Z/NZ)2

gj−→ (Z/NZ)2).

Here, as always, Jτ denotes hτ (i) ∈ GL2(R). To show that Ṽj is indeed a variation of Hodge
structures, consider the map ι : H+

j → P1(C) sending τ ∈ H+
j to the 1-dimensional subspace

Fil0 ⊂ C2 determined by Jτ (i.e., the −i-eigenspace of the complexification of Jτ ). One
checks that ι is the standard open embedding H+

j = C − R ↪→ P1(C). This shows that

the pointwise Fil0’s in Ṽj indeed vary holomorphically; more precisely, they come from the
tautological line bundle on P1(C) restricted to H+

j .

Now, suppose we have two points τ, τ ′ ∈ H+
j related by some (unique) g ∈ Γ(N). Say

τ ′ = gτ . Then for any open neighborhood U of τ in H+
j , we have an isomorphism

Ṽj |U
∼−→ g∗(Ṽj |g(U))

between VHSL’s on U given by g−1 : Z2 ∼−→ Z2. (Exercise: check that this indeed preserves
the other structures.) These isomorphisms satsify the cocycle relation and give rise to a
descent datum from H+

j to Γ(N)\H+
j , by which we obtain a VHSL on Γ(N)\H+

j , denoted
by Vj . Note here that the local system in Vj is no longer constant, but rather its monodromy
group is Γ(N), which is the full fundamental group of Γ(N)\H+

j . Taking disjoint union over

the j ∈ (Z/NZ)×, we obtain Vuniv on Y (N).
In the next lecture, we will show that Vuniv is the universal VHSL. □

8. Lecture 8

8.1. Proof of Proposition 7.3.3, continued.

Proof. It remains to show that Vuniv is the universal VHSL. This amounts to showing that
for any complex manifold S and any VHSL V on S, there exists a unique holomorphic map
f : S → Y (N) such that V ∼= f∗Vuniv. By Proposition 6.1.1, we have a bjiection

Y (N)→ {Integral Hodge structures of elliptic type with level N structure}/isomorphism.

One checks that this bijection is exactly given by sending τ ∈ Y (N) to the isomorphism
class of (Vuniv)τ . This implies that the desired map f must send each s ∈ S to the unique
f(s) ∈ Y (N) such that (Vuniv)f(s) is isomorphic to Vs. Thus we know that f is unique.

We must still check that f given by the above recipe is holomorphic and f∗Vuniv ∼= V.
If we wish to show that f is holomorphic at s0 ∈ S, then we may shrink S to an open
neighborhood of s0, which we may assume is connected and simply connected. This is
always possible, since S is just a complex manifold. In particular, after shrinking, we may
assume that the local system in V is constant. We denote

V = (Λ, (Js)s∈S , γ : Λ⊗ Z/NZ ∼−→ (Z/NZ)2).

Pick an isomorphism Λ ∼= Z2. Then γ becomes an element of GL2(Z/NZ). Here (Js)s∈S

becomes a family of elements (τs)s∈S where τs ∈ H±. Using the fact that Fil0 varies
holomorphically, we know that S → H± given by s 7→ τs is holomorphic. As such, the
image of S → H± is either in H+ or H−, and in particular we may compose the selected
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isomorphism Λ ∼= Z2 with a matrix in GL2(Z) with determinant −1 if necessary in order to
assume that S → H± lands in H+.

Now recall that strong approximation for SL2 says that SL2(Z)→ SL2(Z/NZ) is surjec-
tive. In turn, we may further compose the isomorphism Λ ∼= Z2 by an element of SL2(Z) if
necessary to ensure that this isomorphism carries

γ : Λ⊗ Z/NZ→ (Z/NZ)2

to gj for some j.

After these adjustments, we get a holomorphic map f̃ : S → H+
j such that for all s ∈ S,

we have Vs ∼= (Ṽj)f̃(s). We have a commutative diagram

H+
j

S Y (N).
f

f̃

Note here that S has been shrunk to be connected and simply connected; of course such
a lifting cannot be produced for general S. This implies that f is holomorphic since f̃ is
holomorphic.

Now we need that f∗Vuniv is isomorphic to V. First, we shrink S to an open neighborhood
of any given point in S, and we construct f̃ as before. Then, on any such neighborhood, we
have

V ∼= f̃∗(Ṽj) ∼= f∗Vuniv

where the first isomorphism can be checked using the construction of f̃ and the second
isomorphism follows from the above commutative diagram. In other words, we have an
open covering (Ui)i∈I of S such that for each i, there is an isomorphism

φi : V|Ui

∼−→ (f∗Vuniv)|Ui
.

This yields our claim locally. Now we note the following fact.

Fact 8.1.1. For N ≥ 3, on any complex manifold any VHSL has no automorphisms.

Proof. Let S be a complex manifold and V a VHSL on S. We may assume that S is
connected. Then any automorphism of V is uniquely determined by its behavior at one
fiber (since it is after all an automorphism of a local system). Thus we reduce to the case
where S is a point. In other words, we need to show that any integral Hodge structure
of elliptic type with level-N structure (Λ, J, γ) has no automorphism. Suppose g is an
automorphism. Choose an identification Λ ∼= Z2. Then g becomes an element of GL2(Z).
Since g preserves γ, g lies in Γ(N). Since g preserves J , g has a fixed point in H±. But
Γ(N) acts freely on H± (Proposition 5.2.3), so g = 1. □

This fact implies that on nontrivial intersections Ui ∩ Uj , the isomorphisms φi and φj

must agree; else φ−1
i ◦φj is a nontrivial automorphism of V|Ui∩Uj

. Thus we can glue together

the isomorphisms φi to get a global isomorphism φ : V ∼−→ f∗Vuniv. □

9. Lecture 9

9.1. Isomorphism between the algebraic and analytic moduli spaces. Recall the
following two theorems from before. Let N be an integer ≥ 3.
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Theorem 9.1.1. We define a contravariant functor

S(N) : (finite type Z[1/N ]-schemes) −→ (Sets)

given by
T 7−→ {iso. cl. of elliptic curves over T with level-N structure}.

Then S(N) is representable by a “nice” Z[1/N ]-scheme, also denoted by S(N). In particular,
S(N)C is a smooth C-variety.4

Theorem 9.1.2. We have a natural isomorphism of C-varieties
S(N)C ∼= Y (N).

We will prove Theorem 9.1.2 assuming Theorem 9.1.1.

Proof. We write “VHSL” for “variation of integral Hodge structures of elliptic type with
level-N structure”. For any smooth C-variety T , by the version of Corollary 7.2.4 incorpo-
rating level-N structures, we have a functor

(elliptic curves over T with level-N structure)→ (VHSL on T an).

In particular, we have a natural map between the sets of isomorphism classes. By Proposition
7.3.3 and Theorem 9.1.1, this is tantamount to a map

HomC-sch(T, S(N)C) −→ Homhol(T
an, Y (N)).

Consider the universal case, i.e., T = S(N)C. Then the distinguished element of the left hand
side—namely, the identity—gives rise to a distinguished holomorphic map f : S(N)anC →
Y (N)). By Borel’s Theorem, f is algebraic. Moreover, f is a bijection on C-points, since
the induced map on C-points is the familiar bijection

{isom. cl. of elliptic curves with level-N structure}
∼−→ {isom. cl. of integral Hodge structures of elliptic type with level-N structure}.

Fact 9.1.3. Suppose k is an algebraically closed field of characteristic 0 and f : X → Y is
a morphism of k-varieties. If Y is normal and f is a bijection on k-points, then f is an
isomorphism.

This fact implies that f : S(N)C → Y (N) is an isomorphism of C-varieties, since the
target is smooth and a fortiori normal. □

9.2. The representability of S(N). We will discuss the strategy first. Suppose that S
is a scheme and E/S is an elliptic curve. By the Riemann–Roch Theorem, we will be
able to construct “meromorphic functions with controlled poles”. From this we will attain
Weierstrass coordinates on E locally on S, i.e., after shrinking S, we will find a closed
S-embedding

E −→ P2
S

given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

(The indexing is such that every term aix
jyk satisfies i+2j+3k = 6.) The level-N structure

on E, which is used to rigidify the abstract elliptic curve, will serve to rigidify the concrete

4Here and below, by a variety over an algebraically closed field k we mean a reduced finite-type k-scheme
such that each connected component is irreducible. Thus we allow a finite disjoint union of what are usually

called k-varieties.
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Weierstrass equation, in the sense that ambiguous choices of ai for the same elliptic curve
will be rigidified. Then, we will construct S(N) as the spectrum of Z[1/N ][ai] modulo some
relations.

In fact, we will only be able to do this explicitly for small values of N . We will do
this for N = 3 and N = 4, and then bootstrap the general case from S(3) and S(4).
Namely, in the general case, this is done after passing through the open cover {SpecZ[1/N ]∩
SpecZ[1/3], SpecZ[1/N ] ∩ SpecZ[1/4]} of SpecZ[1/N ].

Remark. In [KM85], instead of a construction of S(3) and S(4), they construct S(3) and
a rigidified version of S(2). (Note that elliptic curves with level-2 structure always have
automorphism group Z/2Z, the non-trivial element being negation.) The construction for
the rigidified version of S(2) in fact contains a mistake, as pointed out in [Conc, §2]. As
a correction, one should just construct S(3) and S(4) instead. We will only explain the
construction of S(3). The construction of S(4) as well as the explanation of the
mistake in [KM85] are left as a presentation topic. The main reference is [Conc].

9.3. Generalities on relative curves. We collect some general facts about relative curves.
Suppose S is a locally noetherian scheme. Suppose f : X → S is a proper, smooth morphism
of schemes whose geometric fibers are all connected of dimension 1. We also assume that f
admits a section P : S → X, which we fix. We note that P is always a closed immersion.
We write IP for the ideal sheaf of im(P ) in X.

Facts:

(1) The OX -module IP is invertible. More precisely for all s ∈ S, after shrinking S
near s, we can find an open neighborhood U of im(P ) in X and t ∈ OU (U) such
that IP |U = t · OU and t : OU → OU is injective. This implies that IP is invertible.
We shall call t a local coordinate near P . When U is fixed, the choice of t is
unique up to multiplication by OU (U)×.

Let n be a positive integer. We will write O(nP ) for I⊗−n
P , a line bundle on X.

This is the “sheaf of functions that are allowed to have a pole of order n along P”.
After choosing a local coordinate as above and shrinking U around im(P ) in X, we
get an element t−1 ∈ O(P )(U) such that O(P ) = t−1 · OU and O(nP ) = t−nOU for
all n ∈ Z.

(2) We have a natural map of OS-modules “taking the −n-th coefficient of the Laurent
expansion at P”

Leadn : f∗O(nP ) −→ P ∗(ΩX/S)
⊗−n.

Here we note that ΩX/S is a line bundle on X thanks to our assumptions, so P ∗ΩX/S

is a line bundle on S and its negative tensor powers are defined.

10. Lecture 10

10.1. Generalities on relative curves, continued. We maintain the same assumptions
as the previous section. Namely, suppose S is a locally noetherian scheme. Fix f : X → S to
be a proper smooth morphism of schemes with all geometric fibers connected of dimension
1. Fix a section P ∈ X(S). We will describe the morphism of OS-modules

Leadn : f∗O(nP ) −→ P ∗(ΩX/S)
⊗−n.

First, we will provide an abstract description that does not rely on a choice of a local
coordinate. Note that by adjunction, there is a natural map

f∗O(nP ) −→ f∗P∗P
∗O(nP ) = P ∗O(nP ).
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So it suffices to define P ∗O(nP ) → P ∗(ΩX/S)
⊗−n. Observe that we have the following

string of isomorphisms of OX/IP = OS-modules:

P ∗O(nP ) = P ∗(I−n
P ) = I−n

P ⊗OX
OX/IP = I−n

P /I1−n
P = (I−1

P /OX)⊗n.

(The last n-th tensor power is over OS .)
It suffices to define an OS-module map

I−1
P /OX −→ P ∗(ΩX/S)

⊗−1,

or equivalently, an OS-bilinear pairing

I−1
P /OX ⊗OS

P ∗ΩX/S −→ OS .

Now as a general fact (see [Sta18, Tag 0474] ), P ∗ΩX/S is canonically identified with the

conormal sheaf of im(P ) in X, namely IP /I2P viewed as an OX/IP = OS-module. The

identification IP /I2P
∼−→ P ∗ΩX/S is given by a 7→ da. Then, we define the pairing

I−1
P /OX ⊗OS

IP /I2P −→ OS

by multiplication followed by reduction modulo IP .
For concreteness, we now also describe our morphism Leadn explicitly after choosing a

local coordinate. Thus assume we have an open neighborhood U of im(P ) in X and a local
coordinate t ∈ OU (U) such that t : OU → OU is injective and IP |U = t · OU as before.
Then, we have

f∗O(nP ) = (I−1
P /OX)⊗n = (t−1OU/OU )

⊗n

viewed as OU/tOU = OS-modules. Also, we have

P ∗ΩX/S = IP /I2P = tOU/t
2OU = (OU/tOU ) · dt|t=0 = OS · dt|t=0.

Here the symbol dt|t=0 denotes the image of t in tOU/t
2OU , and OS · dt|t=0 is a rank 1 free

OS-module generated by dt|t=0. Finally, our pairing for n = 1 can be described as

(t−1OU/OU )⊗OS
OS · dt|t=0 −→ OS

via

(t−1ζ, ϵ dt) 7−→ ζϵ mod t.

Remark. For more clarity, we can ask what the picture looks like in the classical case. Sup-
pose S = Spec k where k is an algebraically closed field. Then f∗O(nP ) = H0(X,O(nP ))
is the k-vector space consisting of ζ ∈ k(X) allowed to have a pole of at worst order n at P
and regular at all other points. On the other side, we have (P ∗ΩX/S)

⊗−n = (T ∗
PX)⊗k−n,

where T ∗
PX is the cotangent space of X at P . After choosing a local coordinate t near P ,

we have ÔX,P = k[[t]]. We have the composition

f∗O(nP ) ↪→ k(X)→ Frac ÔX,P = k((t))

which we think of as taking the Laurent expansion of a function ζ ∈ f∗O(nP ) at P . Also,
T ∗
PX is a 1-dimensional k-vector space with a basis dt|t=0 arising from the choice of t. Then

the pairing is defined by sending (ζ, dt⊗n) to the −n-th coefficient of the Laurent expansion
of ζ at P .

https://stacks.math.columbia.edu/tag/0474
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10.2. More generalities: cohomology and base change. Suppose f : X → S is an
arbitrary proper morphism of schemes, with S locally noetherian. Suppose F is a coherent
sheaf of OX -modules flat over OS , i.e., for all x ∈ X, the stalk Fx (which is an OX,x-module)
is flat over OS,f(x). For each s ∈ S, we write Xs for the fiber of Xs over s, namely the fiber
product

Xs X

Spec k(s) S,s

Write F|Xs
for the pullback of F along Xs → X.

Theorem 10.2.1. The following statements hold.

(1) (See [MFK94, §0.5] or [Conb, Cor. 1.2, Prop. 2.1].) Suppose H1(Xs,F|Xs) = 0
for all s ∈ S. Then f∗F is a vector bundle over S, and R1f∗F = 0. Moreover,
the formation of f∗F commutes with arbitrary base change in the following sense.
Suppose S′ is locally noetherian and g : S′ → S is an arbitrary morphism. Define
f ′ : X ′ → S′ to be the pullback of f along g, i.e., we have the cartesian diagram

X ′ X

S′ S.

f ′ f

g

Let F ′ be the pullback of F to X ′. Then the natural map (the “base change map”)
of OS′-modules

g∗f∗F −→ f ′∗F ′

is an isomorphism.
As a special case, we can take g to be the map Spec(k(s))→ S defined by a point

s ∈ S. Then the natural map of k(s)-vector spaces

(f∗F)⊗OS
k(s) −→ H0(Xs,F|Xs)

is an isomorphism. In particular, this means that any k(s)-basis of H0(Xs,F|Xs)
can be lifted to a trivialization of the vector bundle f∗F near s ∈ S.

(2) (See [Conb, Thm. 1.1, Prop. 2.1].) Suppose for each s ∈ S, the natural map

(f∗F)⊗OS
k(s) −→ H0(Xs,F|Xs)

is surjective. Then the map is an isomorphism for each s ∈ S. Moreover, f∗F is a
vector bundle, and the formation of f∗F commutes with arbitrary base change.

11. Lecture 11

11.1. Application: pushforward of the structure sheaf. As an application of Theorem
10.2.1 (2) above, we have the following useful result (cf. [Conb, Cor. 1.3]).

Proposition 11.1.1. Let S be a locally noetherian scheme. Let f : X → S be a proper,
flat, surjective morphism such that all its geometric fibers are connected and reduced. Then
the natual map OS → f∗OX is an isomorphism.
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Proof. Since X is flat over S, OX is flat over S. Now for each s ∈ S the natural map

(f∗OX)⊗OS
k(s) −→ H0(Xs,OXs

)

is surjective since it is non-zero (as 1 7→ 1) and the right hand side is 1-dimensional. Thus
OX satisfies the assumptions in Theorem 10.2.1 (2) . We conclude that f∗OX is a vector
bundle and its formation commutes with base change. Now since OS → f∗OX is a map
between vector bundles, in order to check that it is an isomorphism it suffices to check
that the induced maps OS ⊗OS

k(s) → (f∗OX) ⊗OS
k(s) are isomorphisms, for all s ∈ S.

But the two sides are 1-dimensional k(s)-vector spaces and the map is non-zero, so it is an
isomorphism. □

11.2. Riemann–Roch for a relative elliptic curve. Let S be a locally noetherian
scheme, and f : E → S an elliptic curve with identity section e. Recall that this means that
f is a proper smooth morphism with all geometric fibers being connected smooth projective
curves of genus 1, and e : S → E is a distinguished section of f . Recall from before that for
every positive integer n we have a line bundle O(ne) on E, as well as a map of OS-modules
Leadn : f∗O(ne)→ e∗(ΩE/S)

⊗−n.

Theorem 11.2.1. Let n be a positive integer. The following statements hold.

(1) For each s ∈ S, H1(Es,O(ne)|Es
) = 0, and H0(Es,O(ne)|Es

) has dimension n over
k(s).

(2) The OS-module f∗O(ne) is a vector bundle of rank n, and its formation commutes
with arbitrary base change.

(3) The composition of the natural maps of OS-modules OS → f∗OX → f∗O(e) is an
isomorphism.

(4) The natural complex of OS-modules

0→ f∗O(ne)→ f∗O((n+ 1)e)
Leadn+1−−−−−→ e∗(ΩE/S)

⊗−(n+1) → 0

is exact.

Proof. (1) Note that O(ne)|Es
= OEs

(nes), where es is the identity section of the elliptic
curve Es over k(s). Hence the statement follows from the following special case of Riemann–
Roch: LetX be a smooth projective curve over a field k (not necessarily algebraically closed)
that is geometrically connected and has genus g. Let P ∈ X(k). Then for all n > 2g − 2,
we have H1(X,OX(nP )) = 0 and dimk H

0(X,OX(nP )) = 1− g + n.
(2) This follows from part (1) and Theorem 10.2.1 (1). (Here, since O(ne) is a line bundle

on E and since E is flat over S, we know that O(ne) is indeed flat over S.)
(3) Both OS and f∗O(e) are vector bundles whose formation commutes with base change.

Thus we reduce to the case where S is the spectrum of a field. Then the statement is classical.
(4) Note the following (easy) fact: Suppose R is a local ring with residue field k, and

0→ A→ B → C → 0 is a complex of finite free R-modules. Then this complex is exact if
and only if 0→ A⊗ k → B ⊗ k → C ⊗ k → 0 is exact.

Now all three terms in the complex in question are vector bundles over S, by part (2)
and by the fact that ΩE/S is a line bundle on E. Using the above paragraph, we see that
we only need to check that the complex in question becomes exact after ⊗OS

k(s) for each
s ∈ S. But the formation of the three terms commutes with base change (by part (2), and
by the functoriality of ΩE/S). Hence we reduce to the case where S is the spectrum of a
field. Then the assertion follows from the description of Leadn+1 as taking the −(n+ 1)-th
coefficient of the Laurent expansion after choosing a local coordinate around e.

□
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11.3. Local Weierstrass coordinates. Keep the above notation. After replacing S by
a Zariski open neighborhood of an arbitrary point, we may assume that S = SpecR and
that the line bundle e∗ΩE/S on S is trivial. Fix a trivialization e∗(ΩE/S)

⊗−1 ∼−→ OS , or in

other words a basis ω of the rank 1 free R-module e∗(ΩE/S)
⊗−1(S). Then for each positive

integer n, we have a basis ωn for the rank 1 free R-module e∗(ΩE/S)
⊗−n(S). Write H(n)

for the R-module (f∗O(ne))(S). We have a short exact sequence of R-modules

0→ H(n)→ H(n+ 1)
Leadn+1−−−−−→ Rωn+1 → 0.

Now H(1) is canonically identified with OS(S) = R (see Theorem 11.2.1 (3)), and Rωn+1

is always free of rank 1. Thus by induction we know that H(n) is a free R-module of rank
n for each n ≥ 1. Moreover, the basis {1} of H(1) = R can be extended to a basis {1, x} of
H(2) with

Lead2(x) = ω2,

and this can be further extended to a basis {1, x, y} of H(3) with

Lead3(y) = ω3.

Now using that Lead4(x
2) = ω4, we see that {1, x, y, x2} is a basis of H(4). Similarly,

{1, x, y, x2, xy} is a basis of H(5) since Lead5(xy) = ω5; and {1, x, y, x2, xy, x3} is a basis of
H(6) since Lead6(x

3) = ω6. Now y2 ∈ H(6), so

y2 = Ax3 − a1xy + a2x
2 − a3y + a4x+ a6

for unique A, a1, a2, a3, a4, a6 ∈ R. Comparing Lead6 of both sides we see that A = 1. Thus
we conclude that x and y satisfy the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for unique ai ∈ R.

12. Lecture 12

12.1. Local Weierstrass coordinates, continued. We have found a basis {1, x} of
H(2) = f∗(O(2e))(S) and a basis {1, x, y} of H(3) = f∗(O(3e))(S) such that Lead2(x) = ω2

and Lead3(y) = ω3. We showed that x and y satisfy the Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for unique ai ∈ R. We shall call such x and y a choice of Weierstrass coordinates.
Now let W be the closed subscheme of P2

S = P2
R defined by the (homogenization of the)

above equation (with point at infinity (0 : 1 : 0)). Then the S-morphism E → P2
S defined

by the basis (x, y, 1) of H(3) factors through an S-morphism

ϕ : E −→W.

(Here the identity section e goes to the constant section (0 : 1 : 0).) We claim that ϕ is an
isomorphism. For this, we use the fibral criterion for isomorphism:

Fact: Let X,Y be two S-schemes that are locally of finite type and flat over S. Let
ϕ : X → Y be an S-morphism that is of finite type and separated. Then ϕ is an isomorphism
if and only if ϕs : Xs → Ys is an isomorphism for each s ∈ S.

In order to apply this criterion to ϕ : E → W, we need to know that W is flat over
S, but this follows from the general fact that any hypersurface in Pn

R defined by a single
homogeneous equation whose coefficients generate the unit ideal is flat over SpecR. It is
also not hard to check that ϕ : E → W is of finite type and separated. Thus we reduce
to checking that ϕs : Es → Ws is an isomorphism for all s ∈ S. But the formation of ϕ
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commutes with base change, so we reduce to the case where S is the spectrum of a field.
Then the claim is classical; see [Sil09, §III, Prop. 3.1].

Remark. It follows from our claim thatW is smooth over S. In particular, the discriminant
∆ of the Weierstrass equation (which is a universal polynomial in the variables ai with integer
coefficients, and homogeneous of degree 12 if ai is assigned weight i; see [Sil09, §III.1]) is
non-zero in k(s) for all s ∈ S5, and therefore ∆ ∈ R×.

Now let us analyze the uniqueness of the Weierstrass coordinates x, y. If we fix the basis
ω of e∗(ΩE/S)

⊗−1(S) fixed, then x and y are unique up to the transformation{
x 7−→ x+ a

y 7−→ y + bx+ c.

by the defining properties of x and y. On the other hand ω is unique up to ω 7→ uω for
u ∈ R×, and this can be matched by the transformation{

x 7−→ u2x

y 7−→ u3y.

Thus the group of all admissible transformations is generated by the above two types of
transformations. One sees that a general transformation is of the form{

x 7→ u2x+ a

y 7→ u3y + u2bx+ c.

for a, b, c ∈ R and u ∈ R×.
Thus we have shown that given any elliptic curve E/S, locally on S we can identify E

with the planar curve defined by a Weierstrass equation, and moreover the identification
is unique up to the effect of the above transformation group. We might imagine that the
“moduli space of elliptic curves” should be given by “SpecZ[a1, a2, a3, a4, a6] modulo the
action of the transformation group”. Unfortunately this does not work in the category of
schemes. In the next few lectures, we will show that a level-3 structure can help to rigidify
the Weierstrass equation to the extent that none of the above transformations are allowed.
Then we will be able to prove the representability of S(3).

13. Lecture 13

13.1. Construction of S(3). As before, let f : E → S be an elliptic curve, with identity
section e : S → E. Recall that if S = SpecR and e∗ΩE/S

∼= OS , then we can findWeierstrass

coordinates x and y on E such that E is the relative curve in P2
S defined by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for unique ai ∈ R. Here e corresponds to the homogeneous coordinate (0 : 1 : 0). Moreover,
the x and y are unique up to transformation{

x′ = u2x+ a

y′ = u3y + bu2x+ c
, a, b, c ∈ R, u ∈ R×.

5This is because over a field, a Weierstrass equation defines a non-singular curve if and only if ∆ ̸= 0.
In fact, in the classical proof ([Sil09, §III, Prop. 3.1]) that our ϕ : E → W is an isomorphism when S is the

spectrum of a field, it is shown a priori that the Weierstrass equation must be non-singular.
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We will explain how to use a full level-3 structure to rigidify the situation, which will
eventually lead to the construction of the moduli space S(3). Our explanation will be
informal to begin with.

Suppose S = Spec k where k is a field with char k ̸= 3. Let (P,Q) be a level 3 structure,
namely, P,Q ∈ E[3](k) such that they form an F3-basis of

E[3](k) ∼= F2
3.

Note in particular that this implies that E[3](k) = E[3](k). Then we take Weierstrass
coordinates x and y in the classical sense such that E is defined by y2 + a1xy + a3y =
x3 + a2x

2 + a4x+ a6 where ai ∈ k.
Now, the fact that 3P = e implies that 3[P ]− 3[e] is a principal divisor, i.e., there exists

φ ∈ k(E) such that div(φ) = 3[P ] − 3[e]. Note that we have φ ∈ H(3) \ H(2) where
H(n) := (f∗O(ne))(k) = H0(E,O(ne)). We may assume that Lead3(φ) = ω3 where ω is
the fixed basis of e∗(ΩE/S)

⊗−1(k). Hence we could have chosen y to be φ. Namely, we may
assume div(y) = 3[P ]− 3[e]. So we have y(P ) = 0. Now x(P ) may not be zero, but we can
always replace x by x− x(P ). In summary, we may assume P = (0, 0).

Next we discuss negation on E. Take T ∈ E(k). By the definition of the group law, the
three points T,−T , and the “point at infinity” e = (0 : 1 : 0) ∈ P2(k) are colinear. Thus the
x-coordinate of −T is the same as that of T . Now if y1, y2 are the two roots of the equation
y2 + a1x0y+ a3y = x30 + a2x

2
0 + a4x0 + a6 for some fixed x0, then y1 + y2 = −(a1x0 + a3) by

Vieta theorem. Hence if T has coordinate (x, y) then −T has coordinate (x,−y−a1x−a3).
Now applying this to P = (0, 0), we get −P = (0,−a3). Since −P ̸= P (as P is a non-trivial
3-torsion point), we have

a3 ̸= 0.

Now recall that x ∈ H(2) \ H(1), which means that the only pole that x has is a pole of
order 2 at e. We have seen that both P and −P has zero x-coordinate, so x has at least a
zero at P and at least a zero at −P . Therefore div(x) = [P ] + [−P ]− 2[e]. Now recall that
div(y) = 3[P ]− 3[e]. From here, we see that

ordP (y
2 + a1xy + a3y) ≥ 3.

We also see that ordP (x
3) = 3. Hence ordP (a2x

2 + a4x + a6) ≥ 3. But we know that
ordP (x) = 1. This implies that a2 = a4 = a6 = 0. Therefore the Weierstrass equation is
forced to be of the form

y2 + a1xy + a3y = x3

where a3 ̸= 0 and ∆ ̸= 0. Here ∆ is the discriminant ∆ = ∆(a1, a3) = a31a
3
3 − 27a43 (see

[Sil09, §III.1]). Note that the only allowed transformations of coordinates are{
y′ = u3y

x′ = u2x
, u ∈ R×

by easy considerations on the vanishing orders of x and y at P .
Now, we consider Q. There exists unique A,B ∈ k such that

div(y −Ax−B) = 3[Q]− 3[e]

because the right hand side is a principal divisor and has exactly a pole of order 3 at e.
Now, we consider the system of equations{

y = Ax+B

y2 + a1xy + a3y = x3
.
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After substituting the first equation into the second equation, we obtain

x3 − (Ax+B)2 − a1x(Ax+B)− a3(Ax+B) = 0.

The fact that y − Ax − B has a triple zero at Q precisely means that the above equation
has a triple zero at x = x(Q). Hence we have

x3 − (Ax+B)2 − a1x(Ax+B)− a3(Ax+B) = (x− x(Q))3.

By comparing coefficients, we will see that a1, a3 are related to A and B.

14. Lecture 14

14.1. Construction of S(3), continued. Recall our setup from before. Fix an elliptic
curve E over a field k with char k ̸= 3. We also fix a level-3 structure (P,Q). By choosing
Weierstrass coordinates x and y such that P = (0, 0) and div(y) = 3[P ]−3[e], we can deduce
that the Weierstrass equation is of the form

y2 + a1xy + a3y = x3.

We also know that the discriminant ∆ = ∆(a1, a3) := a31a
3
3 − 27a43 is non-zero, which

implicitly implies a3 ̸= 0.
Now we consider Q. Since Q is also 3-torsion and Q ̸= e, we know that 3[Q] − 3[e] is

principal divisor. Hence we can find unique A,B ∈ k such that div(y−Ax−B) = 3[Q]−3[e].
The fact that y −Ax−B has a triple zero at Q precisely means the following identity

(14.1) x3 − (Ax+B)2 − a1x(Ax+B)− a3(Ax+B) = (x− x(Q))3.

Note that different powers of x are linearly independent over k, so we can compare coefficients
in (14.1) to get relations among a1, a3, A,B. In particular, for the quadratic coefficient, we
see −A2 − a1A = −3x(Q). Note also that Q ̸= ±P since (P,Q) is a level 3 structure. This
implies x(Q) ̸= 0. So we have A ̸= 0. Then by the change of coordinates{

x 7→ A2x

y 7→ A3y

we may assume that A = 1.
Now set x(Q) =: C ̸= 0. Since y − x − B vanishes at Q, we have y(Q) = B + C, i.e.,

Q = (C,B + C). Comparing coefficients in (14.1) we get
a1 = 3C − 1,

a3 = −3C2 −B − 3BC,

B3 = (B + C)3.

Using the above, we think of ∆ = ∆(a1, a3) as a polynomial in B,C. In order to avoid
conflict of notation we denote this polynomial by ∆B,C ∈ Z[B,C].

In conclusion, starting with (E,P,Q), we can choose Weierstrass coordinates x and y
on E such that P = (0, 0) and Q = (C,B + C), and such that the Weierstrass equation
(uniquely determined after choosing x and y) is of the form

y2 + a1xy + a3y = x3

where {
a1 = 3C − 1,

a3 = −3C2 −B − 3BC.
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Moreover, B,C ∈ k satisfy

(14.2)


C ̸= 0,

∆B,C ̸= 0,

B3 = (B + C)3.

(Recall that C ̸= 0 comes from the condition Q ̸∈ {±P, e}, and from ∆B,C ̸= 0 we have
a3 ̸= 0 which corresponds to P ̸∈ {−P, e}.)

Conversely, suppose we start with B,C ∈ k satisfying the conditions (14.2). We set
a1 := 3C − 1 and a3 := −3C2 −B − 3BC, and then define

EB,C := {y2 + a1xy + a3y = x3} ⊂ P2
k,

PB,C := (0, 0),

QB,C := (C,B + C).

Then EB,C is an elliptic curve over k and (PB,C , QB,C) is a level-3 structure for EB,C .
Also, for any given (E,P,Q), there is a unique choice of Weierstrass coordinates x and

y rendering (E,P,Q) in the above standard form for unspecified B,C. Indeed, if x and y
render (E,P,Q) in the standard form, then we can show that

div(y) = 3[P ]− 3[e],

div(x) = [P ] + [−P ]− 2[e],

div(y − x−B) = 3[Q]− 3[e].

It is then easy to see that there is no non-trivial coordinate change{
x′ = u2x+ a

y′ = u3y + bu2x+ c
, a, b, c ∈ k, u ∈ k×

preserving these three conditions.
This uniqueness means that for any (E,P,Q), there exist unique B,C and a unique

isomrophism (E,P,Q)
∼−→ (EB,C , PB,C , QB,C).

Now imagine that we may perform this construction in the relatively setting, i.e., we
can show that for all elliptic curves E/S where S is defined over Z[1/3], after localizing S
(i.e., passing to a Zariski open covering), there exist unique Weierstrass coordinates x and
y rendering (E,P,Q) in the standard form as above. In particular, by uniqueness, we see
that passing to a Zariski open covering of S is not necessary, because the local Weierstrass
coordinates and the local sections B,C must be compatible on the overlaps of the open
covering. Thus, for all locally noetherian S/Z[1/3] (not necessarily affine) and any E/S
with level-3 structure (P,Q), there exist unique B,C ∈ OS(S) and a unique isomorphism
from (E,P,Q) to the standard (EB,C , PB,C , QB,C) inside P2

S . We may state this even more
precisely as follows.

Theorem 14.1.1. The functor

S(3) : (locally noetherian schemes over Z[1/3]) −→ (Sets)

sending S to the set of isomorphism classes of elliptic curves E/S with level-3 structure
(P,Q), is represented by the Z[1/3]-scheme

SpecZ[1/3, B,C,C−1,∆−1
B,C ]/(B

3 − (B + C)3).

The universal object is given by (EB,C , PB,C , QB,C).
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The proof roughly follows the same ideas as our discussion over a field. For the complete
rigorous proof, see [Conc, §4]. There are two interesting points in the proof which we intend
to elaborate on:

(1) Assume S = SpecR and e∗ΩE/S is trivial, so Weierstrass coordinates exist. Up to
further shrinking S, for any fixed Weierstrass coordinates x and y, there are unique
a, b ∈ R such that the suitable analog of the statement “div(y+ax+b) = 3[P ]−3[e]”
holds. Thus we can replace y by y + ax+ b.

(2) In the same setting as (1), the morphism [−1] : E → E is still given by (x : y : z) 7→
(x : −y − a1x− a3 : z), as in the case over a field.

15. Lecture 15

15.1. Construction of S(3), technical details. Recall that last lecture, we informally
showed that the functor

S(3) : (locally noetherian schemes over Z[1/3]) −→ (Sets)

sending S to the set of isomorphism classes of elliptic curves E/S with level-3 structure
(P,Q), is represented by the Z[1/3]-scheme

SpecZ[1/3, B,C,C−1,∆−1
B,C ]/(B

3 − (B + C)3).

The universal object is given by (EB,C , PB,C = (0, 0), QB,C = (C,B + C)).

Remark. The scheme S(3) is affine and smooth over Z[1/3], with fibers of pure dimension
1.

We now elaborate on the two technical details stated at the end of last lecture. In this
lecture we discuss (1). Suppose we have Weierstrass coordinates x, y, adapted to the choice
of an R-basis ω of e∗(ΩE/S)

⊗−1(S) (so Lead2(x) = ω2 and Lead3(y) = ω3). Recall that for
each p ∈ E(S), we have the ideal sheaf for the closed subscheme p(S) ⊂ E, denoted Ip ⊂ OE .
This is an invertible OE-module, and we have the notation O(np) := I⊗−n

p . Recall that

{1, x} is an R-basis of (f∗O(2e))(S) = O(2e)(E) = I⊗−2
e (E) such that Lead2(x) = ω2 where

Lead2 : (f∗O(2e))(S) −→ (e∗ΩE/S)
⊗−2(S) ∼= R · ω2.

Also, {1, x, y} is an R-basis of I⊗−3
e (E) such that Lead3(y) = ω3 where

Lead3 : I⊗−3
e (E) −→ R · ω3.

Note that there is a natural injective map of OE-modules

I⊗3
p ⊗ I⊗−3

e ↪→ I⊗−3
e

as I⊗3
p = I3p is an ideal sheaf of OE . So there is a natural OS-module embedding

f∗(I⊗3
p ⊗ I⊗−3

e ) ↪→ f∗(I⊗−3
e ).

The desired generalization of the statement “∃! a, b such that div(y+ ax+ b) = 3[P ]− 3[e]”
which makes sense over a field is the following statement:

• (After further shrinking S if necessary), ∃! a, b ∈ R such that the global section
y + ax + b of f∗(I⊗−3

e ) generates the OS-submodule f∗(I⊗3
p ⊗ I⊗−3

e ). (Since S is
affine, this is equivalent to requiring that y+ax+b is an R-basis of the R-submodule
f∗(I⊗3

p ⊗ I⊗−3
e )(S) ⊂ f∗(I⊗−3

e )(S). )
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We now prove this statement. Recall that the group law on E is given such that for three
points p, q, r ∈ E(S) we have p+ q = r if and only if

Ip ⊗ Iq ⊗ I⊗−2
e

∼= Ir ⊗ I⊗−1
e ⊗ f∗L

for some line bundle L on S. Since P ∈ E[3], we have I⊗3
P ⊗ I⊗−3

e
∼= f∗L for some line

bundle L on S. After shrinking S, we may assume that L is trivial. In particular, we may
ensure that I⊗3

P ⊗ I⊗−3
e

∼= OE (non-canonically).
Now recall that since E/S is proper and flat, with reduced and connected geometric

fibers, we know that f∗OE
∼= OS canonically. So we know that non-canonically, we have

f∗(I⊗3
P ⊗ I⊗−3

e ) ∼= OS ,

i.e., f∗(I⊗3
P ⊗ I⊗−3

e ) is a (trivial) line bundle on S.
Now consider the composition

φE,P : f∗(I⊗3
P ⊗ I⊗−3

e ) ↪→ f∗(I⊗−3
e )

Lead3−−−−→ e∗(ΩE/S)
⊗−3.

We claim that φE,P is an isomorphism. Since both the source and target are line bundles,
it suffices to check that φE,P induces isomorphisms on all geometric fibers. For this, note
that for each geometric point s̄ : Spec k → S, the map

f∗(I⊗3
P ⊗ I⊗−3

e ) ⊗
OS ,s̄

k −→ e∗(ΩE/S)
⊗−3 ⊗

OS ,s̄
k

induced by φE,P is identified with φEs̄,Ps̄
, i.e., the same construction but applied to the

elliptic curve Es̄ over k and the point Ps̄ ∈ Es̄[3](k) induced by P . Thus in order to check
that φE,P is an isomorphism, we may assume that S = Spec k for k an algebraically closed
field. Then φE,P becomes, for a choice of a local coordinate z around e, the map

φE,P : H0(E,O(3[P ]− 3[e]))
Lead3−−−−→ k,

sending each function to the coefficient of z−3 in its Laurent expansion near e. Since
P ∈ E[3], we see that there is a function in the left hand side whose divisor is precisely
3[P ]− 3[e]. Hence φ is surjective. Also, we see that φ−1(0) is the set of h ∈ k(E) that have
at most 2 poles at e, no other poles, and at least 3 zeros at P . But this must just be 0.
Hence φ is injective as well. The claim is proved.

By the claim, there is a unique global section of f∗(I⊗3
P ⊗ I⊗−3

e ) that generates this line
bundle and which has image ω3 under Lead3. Then this global section must be of the desired
form y + ax+ b for unique a, b ∈ R.

16. Lecture 16

16.1. The inversion formula and the Rigidity Lemma. Next, we will prove the fol-
lowing fact, which we recall is another key ingredient in the proof of the representability of
S(3).

Proposition 16.1.1. Let S = SpecR be an affine scheme, and suppose E/S is an elliptic
cuve given by the Weierstrass equation y2 + a1xy+ a3y = x3 + a2x

2 + a4x+ a6 in P2
R (with

identity section (0 : 1 : 0)). Then [−1] : E → E is given by (x : y : z) 7→ (x : −y− a1x− a3 :
z).

Proof. Note that the claimed formula gives an endomorphism of E, in the sense that this
is an S-scheme morphism E → E preserving the identity section; (this indeed implies that
this is a morphism of group schemes, but we will not need this fact). This formula and
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the abstract morphism [−1] : E → E are two endomorphisms of E that agree on geometric
fibers. We conclude by the following fact. □

Fact 16.1.2. If E/S is an elliptic curve and φ,φ′ : E → E are endomorphisms of elliptic
curves (in the above sense) such that they agree on Es for each geometric point s of S, then
φ = φ′.

Remark. In fact the analogous statement is true for general abelian schemes.

This fact following from the following Rigidity Lemma.

Theorem 16.1.3 (Rigidity Lemma). Suppose G is a group scheme over an arbitrary base
scheme S. Suppose f : X → S is a proper (or just closed, which is enough) morphism such
that f∗OX

∼= OS. Suppose φ,φ
′ : X → G are two S-morphisms that agree on each geometric

fiber. Then φ and φ′ differ by multiplication (with respect to the group structure of G) by a
section γ ∈ G(S).

For a proof, see [Conb, §4].

Remark. Recall one sufficient set of conditions for the hypothesis f∗OX
∼= OS : when f is

proper, flat, and surjective with connected and reduced geometric fibers.

Remark. To see that we need not have φ = φ′, consider the case when S = Spec k[ϵ]/(ϵ2)
for some field k, and G = Ga/S = A1

S . Set f : X = S → S to be the identity. Then S-maps
from X to G form the additive group G(S) = (k[ϵ]/(ϵ2),+). We may set φ = 0 and φ′ = ϵ.
They indeed agree on geometric fibers.

Proof of Fact 16.1.2. By the Rigidity Lemma, φ and φ′ differ by some γ ∈ E(S). But φ
and φ′ both preserve the identity section, and hence γ must be trivial. □

16.2. Relative representability of level structures. We have already shown the repre-
sentability of S(3) over Z[1/3] by an affine, smooth scheme over Z[1/3]. We accept the same
for S(4) (over Z[1/2] = Z[1/4]) without proof. Our next objective is to prove the following
theorem.

Theorem 16.2.1. For N ≥ 3, the functor

S(N) : (Locally noetherian schemes over Z[1/N ]) −→ (Sets)

given by
T 7−→ {iso. cl. of elliptic curves E/T with level-N structure}

is representable by a smooth affine scheme over Z[1/N ].

The idea is to consider the forgetful map S(N)→ S(1), where S(1) is the fibered groupoid
of elliptic curves (i.e., for each test scheme S, S(1)(S) is the groupoid of all elliptic curves
over S, namely the category of all elliptic curves over S where the only allowed morphisms are
isomorphisms; if we have a morphism S → S′, then we have a functor S(1)(S′)→ S(1)(S)
given by pullback). We want to show that for each Z[1/N ]-scheme S and each object
of S(1)(S), i.e., an elliptic curve E over S, the pullback of S(N) → S(1) over S along
E ∈ S(1)(S) should be representable by a scheme over S. Let us state this more concretely
as follows.

Theorem 16.2.2 (Relative representability of level structures). Let N ≥ 1. Let S be a
scheme over Z[1/N ], and let E/S be an elliptic curve. The functor

(schemes over S) −→ (Sets)
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given by
T 7−→ {level-N structures on ET = E ×S T}

is representable by an S-scheme IE/S,N . Moreover, IE/S,N is an étale GL2(Z/NZ)-torsor
over S under the natural GL2(Z/NZ)-action. (See the beginning of the next lecture for étale
torsors.)

17. Lecture 17

17.1. Relative representability of level structures, continued. We first briefly recall
some terminology. Suppose G is a finite group and S is a scheme. An étale G-torsor over
S is a scheme X over S which is finite étale and surjective over S, together with an action
of G on X via S-automorphisms such that the map

GS ×S X −→ X ×S X

given for all S-schemes T via G×X(T )→ X(T )×X(T ), (g, x) 7→ (gx, x) is an isomorphisms
of S-schemes. (HereGS denotes the constant group scheme over S given byG.) Equivalently,
since X is finite étale and surjective over S, the condition on the action of G amounts to
imposing that for all geometric points Spec k → S, the action of G on X(k) is free and
transitive.

Example. Suppose k′/k is a finite Galois extension of fields. Take X = Spec k′ and
S = Spec k. Let G = Gal(k′/k). Then X is an étale G-torsor over S. Note that the action
of G on X(k) is not free; X(k) has only one element.

We now state and prove the relative representability of S(N) over S(1).

Theorem 17.1.1 (relative representability of level structures). Let N be a positive integer
and S a scheme over Z[1/N ]. Fix an elliptic curve E/S. The functor

(S-schemes) −→ (Sets)

given by

T 7→ {level-N structures on ET = E ×S T , i.e., isomorphisms γ : (Z/NZ)2
T

∼−→ ET [N ]}

is representable by a scheme IE/S,N which is an étale GL2(Z/NZ)-torsor over S.

Proof. We will use the following two facts, which we admit.

(1) Since S is over Z[1/N ], the group scheme E[N ] is finite étale over S.
(2) For any S-scheme T , we have a canonical identification ET [N ] ∼= E[N ]×S T .

We define an S-scheme

M := E[N ]×S E[N ] = “{(P,Q) | P,Q ∈ E[N ]}”.
We have a universal homomorphism

h : (Z/NZ)2
M
→ EM [N ] = E[N ]×S M

given by
h(i, j) = iP + jQ, ∀i, j ∈ Z/NZ,

where (P,Q) is the “universal element of E[N ]× E[N ]”, i.e., the section of

EM [N ]×M EM [N ] = E[N ]×S E[N ]×S M =M ×S M −→M

given by the diagonal M →M ×S M . Abstractly, the functor

(S-schemes) −→ (Sets), T 7−→ {homomorphisms (Z/NZ)2
T
→ ET [N ]}
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is represented by the S-scheme M , and h is the universal object.
We want to construct IE/S,N as a suitable locus in M over which h is an isomorphism.

This can indeed be done by throwing away certain connected components of M . More
precisely, notice that for each connected component Mi of M , exactly one of the following
must be true.

(1) h|Mi : (Z/NZ)2
Mi
→ EMi [N ] is an isomorphism.

(2) For each geometric point x : Spec k̄ → Mi, the homomorphism hx : (Z/NZ)2
x
→

Ex[N ] is not an isomorphism.

Indeed, for each geometric point x : Spec k̄ → Mi, we have the following equivalence of
categories:

(finite étale Mi-schemes) −→ (finite πét
1 (Mi, x)-sets), Y 7−→ Yx(k̄).

This follows from Grothendieck’s Galois theory for schemes and the fact that Mi is con-
nected. Now both the source and target of h|Mi are finite étale Mi-schemes. If hx is
an isomorphism, then the image of h|Mi

under the above equivalence of categories is an
isomorphism between πét

1 (Mi, x)-sets (since it is a bijection of sets and equivariant under
πét
1 (Mi, x)). This implies that hMi

is an isomorphism.

Now notice that for any S-scheme T and any isomorphism γ : (Z/NZ)2
T
→ ET [N ],

the resulting S-scheme morphism T → M arising from γ will factor through the union U
of those connected components Mi satisfying (1) above, because otherwise there will be a
geometric point of T over which γ is not an isomorphism. Conversely, if we have an S-scheme
morphism T → U ⊂ M , then the pullback of h to T is an isomorphism. In particular, this
indicates that the functor in the theorem is represented by IE/S,N := U .

Since M is finite étale over S, we know that IE/S,N is finite étale as well. Also, using the
moduli interpresentation of IE/S,N , we can easily see that IE/S,N → S is surjective and a
GL2(Z/NZ)-torsor. □

17.2. Back to the construction of the modular curve. We now have enough to start
proving the representability of S(N).

Theorem 17.2.1. Let N ≥ 3. The functor

S(N) : (locally noetherian schemes over Z[1/N ]) −→ (Sets)

given by

S 7−→ {iso. cl. of elliptic curves over S with level-N structure}
is representable by a smooth affine scheme over Z[1/N ] with all fibers pure of dimension 1.

Proof. We assume this for N = 3 and N = 4. Suppose that N ≥ 5 is general. We proceed
along cases.

Case (a): Suppose 3|N . We have an open immersion SpecZ[1/N ] ⊂ SpecZ[1/3]. We
have already constructed S(3) as a moduli scheme over Z[1/3]. We denote the universal
object over S(3) as (E3, γ3). We write S(3)[ 1N ] for the base change of S(3) over Z[1/N ].
Then we obtain S(N) by the following fiber product:

S(N) IE3/S(3)[ 1
N ],N

S(3)[ 1N ] IE3/S(3)[ 1
N ],3

γ3

forget .
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Here, the right vertical map is defined by the canonical process of obtaining a level 3-
structure from a level N -structure, namely by identifying (Z/3Z)2 (resp. E[3]) with the

3-torsion inside (Z/NZ)2 (resp. E[N ]). This map is finite étale. Hence S(N) if finite étale

over S(3)[1/N ], and therefore it is smooth, affine, of pure relative dimension 1 over Z[1/N ]
as S(3)[1/N ] has the same properties.

Case (b): Suppose 4|N . Then we proceed as in Case (a), making use of S(4) instead of
S(3).

In the next lecture, we will treat the case when neither 3 or 4 divides N . □

18. Lecture 18

18.1. The construction of the modular curve, continued.

Proof of Theorem 17.2.1, continued. In the last lecture we constructed S(N), in the case
where 3 or 4 divides N , by taking a fiber product. That the fiber product indeed represents
the correct functor follows from statement (1) in Lemma 18.1.1 below.

Case (c): Suppose N is coprime to 6. We have an open covering

{SpecZ[1/2N ],SpecZ[1/3N ]}

of SpecZ[1/N ]. It suffices to construct S(N) over Z[1/2N ] and over Z[1/3N ] separately,
because over SpecZ[1/2N ] ∩ SpecZ[1/3N ] the two constructions must be canonically iso-
morphic by Yoneda’s lemma, which allows us to glue the two constructions together to
obtain S(N) over Z[1/N ].

We construct S(N) over Z[1/3N ]. We already have S(3N) over Z[1/3N ] by Case (a).
Let K = ker(GL2(Z/3NZ) → GL2(Z/NZ)). The group GL2(Z/3NZ), and therefore K,
acts on S(3N) via the moduli interpretation of S(3N) by permuting the level-3N structure,
i.e.,

g · (E, γ) = (E, γ ◦ g−1), ∀(E, γ) ∈ S(N)(S),∀ loc. noeth. Z[1/3N ]-scheme S.

Now for any locally noetherian Z[1/3N ]-scheme S and any elliptic curve E/S, after étale
localization on S, to give a level N -structure on E/S is the same as to give a K-orbit of
level-3N structures. (The étale localization on S is needed just to guarantee the existence
of one level 3N -structure on E; for instance we can use the finite étale cover IE/S,3N → S to
achieve this.) This suggests that the K-action should make S(3N) an étale K-torsor over
S(N)|Z[1/3N ] (which is yet to be constructed). In turn, we should construct S(N)|Z[1/3N ] as
the quotient of S(3N) by K. This quotient is of the simplest type in algebraic geometry
as we now explain.

Suppose X → Y is a morphism of finite type between affine schemes X = SpecB and
Y = SpecA. Assume that Y is noetherian. Let G be a finite group acting on X via Y -
scheme automorphisms. Suppose for any geometric point Spec k → Y , the action of G on
X(k) = {Y -morphisms Spec k → X} is free. Then X/G := Spec(BG) is again a Y -scheme
of finite type, and the natural map X → X/G is an étale G-torsor. Moreover, X/G is the
categorical quotient of X by G, in the sense that for every Y -scheme Z, every G-invariant
Y -scheme map X → Z factors uniquely through X → X/G. Furthermore, X/G is the
geometric quotient of X by G in the sense that the topological space |X/G| is the quotient
space of |X| by G. The reference for these statements is [Gro03, V, §1, §2]. (See also
[Mum08, §6] when the base is an algebraically closed field.)

Now in our case, theK-action on the Z[1/3N ]-scheme S(3N) satisfies the freeness hypoth-
esis in the above paragraph, by statement (1) in Lemma 18.1.1 below. (For each geometric
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point Spec k → SpecZ[1/3N ], each K-orbit in S(3N)(k) is equal to the set on the right
hand side of the bijection in Lemma 18.1.1 (1) for some choice of (E, γ) (with N ′ = 3N).
But clearly the K-action on the left hand side is free.) Hence we can form the quotient
S(N)|Z/[1/3N ] := S(3N)/K, and S(3N)→ S(N)|Z/[1/3N ] is an étale K-torsor.

We now give a rigorous argument justifying that S(N)|Z[1/3N ] constructed above indeed
represents the correct functor. To simplify notation we write S = S(N)|Z[1/3N ]. We will
use the assumption that N is coprime to 3 in order to simplify the argument, although
this could be avoided without too much difficulty. Firstly, we need to construct a universal
object over S . Over S(3N) we have the universal object (E3N , γ3N ), and we let γ′N be the
level-N structure on E3N induced by γ3N . Then (E3N , γ

′
N ) descends to S by finite étale

descent since it is “invariant” under the action of K.6 The resulting elliptic curve with level-
N structure on S will serve as the universal object, and we denote it by (EN , γN ). Now
suppose we have a locally noetherian Z[1/3N ]-scheme S, and an elliptic curve with level
N -structure (E, γ) over S. Since (3, N) = 1, we have E[3N ] ∼= E[3] × E[N ], and similarly
Z/3NZ ∼= Z/3Z×Z/NZ. Therefore, for any S-scheme T , to give a level-3N structure on ET

compatibly with the prescribed level-N structure γ is the same as to give simply a level-3
structure on ET . Thus we have a map φ : IE/S,3 → S(3N), where for any level-3 structure
we “combine” it with γ to produce a level 3N -structure. Now φ is K-equivariant (with
K ∼= GL2(Z/3Z) acting non-trivially on both sides), and therefore it descends to a map
ψ : S → S (by finite étale descent, using that IE/S,3 is an étale K-torsor on S). One then
checks that ψ is the unique map that pulls (EN , γN ) back to (E, γ) up to isomorphism.

Similarly, we construct S(N)|Z[1/2N ] as the quotient of S(4N) (which is already con-
structed in Case (b)) by ker(GL2(Z/4NZ)→ GL2(Z/NZ)). Then we glue the two construc-
tions to obtain S(N) over Z[1/N ] as we have already explained. By construction and finite
étale descent, S(N) is affine, smooth, of pure relative dimension 1 over Z[1/N ].

Case (d): We are left with the case where N = 2d, with d coprime to 6. By Case (c)
we already have S(d) over Z[1/d]. Since d|N , we can construct S(N) from S(d) in the same
way as how we constructed S(N) from S(3) in Case (a). (Note that since (2, d) = 1, we
in fact have S(N) ∼= IEd/S(d)[ 12 ],2

by the decomposition E[N ] = E[d]× E[2] for any elliptic

curve E over any locally noetherian Z[1/N ]-scheme S.) □

Statement (1) in the following lemma is used for several times in the above proof of
Theorem 17.2.1.

Lemma 18.1.1. Let N ≥ 3. Let E be an elliptic curve over S, and γ be a level-N structure
on E. The following statements hold.

(1) Let N ′ be a positive multiple of N . For any level N ′-structure γ′ on E, denote by
γ′|N the level-N structure induced by γ′ (as explained in Case (a) in the proof of
Theorem 17.2.1). Then the natural map

{γ′ | γ′ is a level-N ′ str. on E, γ′|N = γ}
−→ {(E′, γ′) ell. cv. with level N ′-str. on S | (E′, γ′|N ) ∼= (E, γ)}/isom

is a bijection. Here on the right hand side we quotient out by the isomorphisms
between elliptic curves with level-N ′ structures.

6More precisely, for any k ∈ K, writing fk for the automorphism of S(3N) given by k, we have a

canonical isomorphism f∗
k (E3N , γ′

N )
∼−→ (E3N , γ′

N ◦ k−1) = (E3N , γ′
N ). These isomorphisms satisfy the

cocycle relation and therefore give rise to a descent datum.
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(2) The pair (E, γ) has no non-trivial automorphism, i.e., the only automorphism of E
(as an elliptic curve over S) preserving γ is the identity.

Proof. We first show that (2) implies (1). Clearly the two sets in (1) are simultaneously
empty or non-empty, and when they are non-empty the map in question is surjective. To
show injectivity, suppose γ′ and γ′′ are two elements of the left hand side such that (E, γ′) ∼=
(E, γ′′). Thus there is an automorphism τ of E carrying γ′ to γ′′. Since γ′|N = γ′′|N = γ,
we see that τ preserves γ, and therefore must be the identity by (2). It follows that γ′ = γ′′.

We now prove (2). By the rigidity of the endomorphisms of E (see Fact 16.1.2), it suffices
to treat the case where S is the spectrum of an algebraically closed field k. In this case the
statement is classical, but we give a proof.

Let H = End(E). This is a Z-algebra, and is a free Z-module of rank 2 or 4. Moreover,
the Q-algebra H ⊗Z Q is either a quadratic imaginary field or a quaternion algebra over Q
ramified at ∞ and p, with the latter happening only when char k = p. Now for any h ∈ H,
either h ∈ Z or the minimal polynomial Ph(T ) of h over Q is a degree 2 monic polynomial
in Z[T ]. (Here h is integral over Z since H is a finite Z-module.)

We have Aut(E) = H×, and by the previous description of H we know that Aut(E) is
finite. Let g ∈ Aut(E) and suppose that g preserves γ. Then g acts trivially on E[N ]. If
g ∈ Z, then g = ±1, and then g = 1 since −1 does not act trivially on E[N ] (as N ≥ 3).
We may thus assume that g /∈ Z. Then Ph(T ) is a quadratic monic irreducible polynomial
in Z[T ] whose roots are roots of unity (since g is of finite order), and therefore it must be
one of the following:

T 2 + 1, T 2 − T + 1, T 2 + T + 1.

On the other hand the fact that g acts trivially on E[N ] implies that g − 1 ∈ N · H,
i.e., g−1

N ∈ H. It is easy to see that

Pg(T ) = N2P g−1
N

(
T − 1

N
).

Since P g−1
N

(T ) is monic integral, we see that

Pg(T ) ≡ T 2 − 2T + 1 mod N.

But this is not true for the three candidates of Pg(T ), contradiction. □

19. Lecture 19

We reviewed some key points from last lecture, including Case (c) in the proof of Theorem
17.2.1, and Lemma 18.1.1 (1).

19.1. Abelian schemes. We would like to generalize the modular curves to the higher-
dimensional Siegel modular varieties. These are moduli spaces of polarized abelian
schemes with level structure. Our next goal is to prove that such a moduli functor is indeed
representable over a base like Z[1/N ], generalizing Theorem 17.2.1.

From now on, all schemes are assumed to be locally noetherian.

Definition 19.1.1. Let S be a scheme. An abelian scheme over S is a smooth proper
group scheme over S all of whose geometric fibers are connected.

One can prove several useful facts about abelian schemes using the following Rigidity
Lemma, which is a (more powerful) variant of Theorem 16.1.3.

Theorem 19.1.2 (Rigidity Lemma). Let S be a scheme, and G be a group scheme over S
and separated over S. Let f : X → S be a scheme morphism such that
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(1) f is flat.
(2) either f is proper, or f is closed and admits a section.
(3) For each s ∈ S, the k(s)-vector space H0(Xs,OXs

) is 1-dimensional.

Then for any two S-morphisms ϕ, ϕ′ : X → G, if ϕ and ϕ′ agree on one geometric fiber
(or equivalently, on one fiber) for each connected component of S, then ϕ and ϕ′ differ by
multiplication by a section in G(S).

Proof. See [MFK94, Prop. 6.1]. (Note that in loc. cit. all schemes are assumed to be sepa-
rated over SpecZ, so all scheme maps are automatically separated.) □

Remark. In Theorem 19.1.2, if f is flat and proper, then assumption (3) implies that the
natural map OS → f∗OX is an isomorphism. Thus in this case the set of assumptions on
f is strictly stronger than Theorem 16.1.3 (where f is not assumed to be flat whatsoever).
Also, in Theorem 16.1.3 the group scheme G is not assumed to be separated over S. In any
case, the assumptions on f in Theorem 19.1.2 are satisfied if f is flat proper with connected
and reduced geometric fibers.

We have the following interesting consequence, which tells us that we can “separate
variables” for G-valued functions in two variables under suitable assumptions.

Corollary 19.1.3. Let X and G over S be as in Theorem 19.1.2. Assume either that X → S
is proper, or that it is universally closed and admits a section. Let Y be a connected scheme
over S and assume that Y → S admits a section ϵ. Then for any S-scheme morphism
φ : X ×S Y → G, there are S-scheme morphisms g : X → G and h : Y → G such that φ is
given by (x, y) 7→ g(x) · h(y).

20. Lecture 20

20.1. Abelian schemes, continued. We continue to assume all schemes are locally noe-
therian.

Proof of Corollary 19.1.3. Let f : X → S be the structure map. We consider the following
commutative diagram

X ×S Y G×S Y

Y

Φ

Φ′

where we define

Φ(x, y) := (φ(x, y), y), Φ′(x, y) = (φ(x, ϵ(f(x))), y).

The Y -scheme X ×S Y and the Y -group scheme G×S Y satisfy the hypotheses of Theorem
19.1.2. Now Φ,Φ′ are Y -morphisms and for any y0 ∈ im(ϵ), the morphisms Φ and Φ′ agree
on the fiber of X ×S Y over y0. Hence by Theorem 19.1.2 we know that Φ,Φ′ differ by
multiplication by a section of G×S Y → Y , which is of the form y 7→ (h(y), y) for some S-
map h : Y → G. Then we have φ(x, y) = φ(x, ϵ(f(x))) · h(y). Setting g(x) := φ(x, ϵ(f(x)))
we can conclude the proof. □

Recall that an abelian scheme is a proper smooth group scheme with connected geometric
fibers.
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Corollary 20.1.1. Suppose X/S is an abelian scheme and G/S is a separated group scheme.
Any S-map φ : X → G preserving the neutral section is a group homomorphism. In
particular, the group structure on X is determined by the neutral section.

Proof. We may assume that S is connected. Then X is connected, since X → S is closed,
surjective, and has connected fibers. Consider the composition

Φ : X ×S X
µ−→ X

φ−→ G

where µ is the multiplication map, i.e., Φ(x, y) = φ(x · y). Then by Corollary 19.1.3, we
have φ(x · y) = g(x) · h(y) for some g : X → G and h : X → G. Now observe that

e = φ(e · e) = g(e)h(e).

This implies that h(e) = g(e)−1. Then we have

φ(x) = φ(x · e) = g(x)h(e) = g(x)g(e)−1.

Also,

φ(x) = φ(e · x) = g(e)h(x).

So we have

g(x) = φ(x)g(e), h(x) = g(e)−1φ(x).

Hence we have

φ(x · y) = g(x)h(y) = φ(x)g(e)g(e)−1φ(y) = φ(x)φ(y).

This concludes. □

Corollary 20.1.2. Suppose X/S is an abelian scheme. Then the group structure is com-
mutative.

Proof. Apply Corollary 20.1.1 to the inversion X → X,x 7→ x−1. □

20.2. Picard schemes. Again we demand all schemes to be locally noetherian.
For a scheme X, we define Pic(X) to be the abelian group of isomorphism classes of

invertible OX -modules. A morphism f : X → Y of schemes gives a group homomorphism
Pic(Y )→ Pic(X) via L 7→ f∗L. This yields the absolute Picard functor Pic : (Sch)op →
(Ab).

Suppose f : X → S is a scheme morphism. It will be easier to work with the relative
Picard functor, defined as

PicX/S : (S-schemes)op −→ (Ab), T 7−→ Pic(XT )/f
∗
T Pic(T ),

where XT := X ×S T and fT : XT → T is the base change of f .

Theorem 20.2.1 (Grothendieck). Suppose X → S is a flat projective morphism with all
geometric fibers integral (irreducible and reduced). Also assume that X/S has a section.
Then PicX/S is representable by a commutative group scheme over S which is locally of
finite type and separated over S.

Proof. See [Kle05, Thm. (9.)4.8]. □

Remark. (1) If e ∈ X(S) is a section, then PicX/S
∼= PicX/S,e where PicX/S,e is the

rigidified Picard functor sending each S-scheme T to the group of isomorphism
classes of pairs (L, ρ), where L is a line bundle on XT and ρ is an isomorphism

e∗TL
∼−→ OT (called a rigidification of L along eT ). Here, eT denotes the section
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of XT → T induced by the section e of X → S. More explicitly, we have inverse
bijections

Pic(XT )/f
∗
T Pic(T )←→ PicX/S,e(T )

L ←− [ (L, ρ)
L 7−→ (L ⊗ f∗T e∗TL−1, canonical ρ).

Here the canonical ρ is defined by noting that e∗T (L ⊗ f∗T e
∗
TL−1) is canonically

isomorphic to e∗TL ⊗ e∗TL−1.
(2) Without assuming the existence of a section but with the other assumptions in force,

the theorem still holds for the fppf-sheafification (or just the étale sheafification) of
PicX/S . See the discussion in [Kle05, §§3–4].

21. Lecture 21

21.1. Projective morphisms. Recall that a morphism f : X → S is called projective,
if the S-scheme X is isomorphic to a closed subscheme of the projective bundle P(E) over
S attached to some coherent OS-module E on S. We caution the reader that in general
this is not the same as requiring that X is isomorphic to a closed subscheme of Pn

S for
some n. However, when S admits an ample inveritble sheaf (e.g., when S is affine), the two
definitions are the same; see for instance [Sta18, Tag 0B45].

If f : X → S is projective, then it is proper, and there is an open covering (Ui) of
S such that X|Ui

is Ui-isomorphic to a closed subscheme of Pni

Ui
for each i (see [Sta18,

Tag 01WB]). The converse is not true. Thus a locally projective morphism (i.e., one that
becomes projective after passing to an open covering of the target) need not be projective.

21.2. The torsion component of the Picard scheme. The following result enhances
Theorem 20.2.1.

Theorem 21.2.1 (Grothendieck). Let f : X → S be a flat projective morphism whose
geometric fibers are integral. Assume that f admits a section, and that f is smooth. Assume
that S is noetherian. Then there is a closed and open subgroup scheme PicτX/S of PicX/S

(over S), called the torsion component, satisfying the following conditions:

(1) For each s ∈ S, the fiber of PicτX/S over s consists of the torsion connected compo-

nents of (PicX/S)s. Here we say that a connected component is torsion if its image
under the multiplication-by-n map [n] : (PicX/S)s → (PicX/S)s lies in the identity
connected component for some n ≥ 1.

(2) PicτX/S is projective over S.

Proof. See [Kle05, Thm. 9.6.16, Exc. 9.6.18]. (It seems that the necessity of the assumption
that S is noetherian is overlooked in Grothendieck’s original article [Gro62, Cor. 4.2].) □

21.3. Dual abelian schemes. Now ifX/S is an abelian scheme, then all the assumptions in
Theorem 20.2.1 are satisfied. If we assume that X/S is projective and that S is noetherian,
then the assumptions in Theorem 21.2.1 are satisfied as well. Furthermore we have the
following result:

Theorem 21.3.1. Let X/S be a projective abelian scheme, and assume that S is noetherian.
Then PicτX/S is smooth and has connected geometric fibers. Hence in view of Theorem 21.2.1

we know that PicτX/S is a projective abelian scheme.

https://stacks.math.columbia.edu/tag/0B45
https://stacks.math.columbia.edu/tag/01WB
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Proof. To show that PicτX/S has connected geometric fibers, we reduce to the case where S is

the spectrum of an algebraically closed field (since the formation of PicτX/S commutes with

base change). Then this is a fundamental result in the theory of abelian varieties over a field;
see [Mum08, §13]. The proof that PicτX/S is smooth is found in [MFK94, Prop. 6.7]. □

Definition 21.3.2. In the setting of Theorem 21.3.1, we call PicτX/S the dual abelian

scheme of X, and denote it by X∨.

Remark. For an abelian variety X over a field k, it is a classical result that PicτX/k is (geo-

metrically) connected. Hence for an abelian scheme X/S one could equivalently define X∨

by requring that fiberwise it is the identity connected component of (PicX/S)s. (Note that
the identity connected component of (PicX/S)s is automatically geometrically connected
since it has a rational point.) One can interpret the definition of X∨ as a subfunctor of
PicX/S , even without knowing that PicX/S is representable. Namely, for each S-scheme T
we declare that an element ξ ∈ PicX/S(T ) belongs to X∨(T ) if for every geometric point
Spec k → T there exist a connected k-scheme V and an element of PicX/S(V ) which spe-
cializes to ξ and to 0 at two k-points of V . Hence for an arbitrary abelian scheme X/S
one could ask whether the functor X∨ is represented by an abelian scheme, even without
requiring that PicX/S is representable.

To answer this question, first we have a relatively easy generalization of Theorem 21.3.1:
For any locally projective abelian scheme X over any (locally noetherian) S, PicτX/S is
a locally projective abelian scheme. This would immediately follow from Theorem 21.3.1
once we check that X∨ is a Zariski sheaf. A much deeper generalization is to drop all the
assumptions whatsoever: For any abelian scheme X over any S, X∨ is an abelian scheme.
(This holds even without assuming that S is locally noetherian.) This result is due to
Raynaud and Deligne on top of Artin’s general result on the representability of Pic by
algebraic spaces; see [FC90, §I.1].

21.4. Isogenies.

Definition 21.4.1. Let A,B be two abelian schemes over an arbitrary (locally noetherian)
S. By an isogeny, we mean an S-group scheme homomorphism A → B that is surjective
and quasi-finite.

Lemma 21.4.2. Any isogeny ϕ : A→ B is finite and flat.

Proof. Since both A and B are proper over S, we know that ϕ is proper. But a proper and
quasi-finite map is finite ([Sta18, Tag 02LS]), so ϕ is finite.

Since both A and B are flat and finite-type over S, we have the fiberwise criterion for
flatness. Namely, in order to check that ϕ : A → B is flat, we only need to check that
ϕs : As → Bs is flat for each s ∈ S. (See [Gro66, (11.3.11)] or [Sta18, Tag 039E].) Hence
we reduce to the case where S is the spectrum of a field k. We may also assume that k is
algebraically closed since flatness satisfies fpqc descent (see [Gro65, (2.2.11) (iv)] or [Sta18,
Tag 02L2]). Now ϕ is a surjective map between two finite-type schemes over a field, and
the target is integral. Hence we have the generic flatness (see [Gro65, §6.9]): There exists a
non-empty open subscheme U ⊂ B over which ϕ is flat. Since ϕ is a group homomorphism,
we can use the group structure on B to translate U , in order to obtain an open covering of
B such that ϕ is flat over each member of the covering. (For this step we need to use that
k is algebraic closed.) It follows that ϕ is flat, as desired. □

https://stacks.math.columbia.edu/tag/02LS
https://stacks.math.columbia.edu/tag/039E
https://stacks.math.columbia.edu/tag/02L2
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22. Lecture 22

22.1. The Mumford Λ-construction. Let S be a noetherian scheme, and f : A → S a
projective abelian scheme over S. For any line bundle L on A, we define the Mumford
line bundle M(L) on A×S A by

M(L) := µ∗L⊗ p∗1L−1 ⊗ p∗2L−1,

where p1, p2 are the two projections A×S A→ A, and µ is the group law A×S A→ A.
Recall that for any S-scheme T to give an S-map T → PicA/S is the same as to specify

an element of Pic(AT )/f
∗
T Pic(T ), where AT = A×S T . Thus for T = A, the Mumford line

bundle M(L) on A×S A = AA gives rise to an S-map

Λ(L) : A −→ PicA/S .

Lemma 22.1.1. The S-map Λ(L) takes the neutral section of A to the neutral section of
PicA/S.

Proof. Let e ∈ A(S) be the neutral section. To compute Λ(L) ◦ e, we need to compute the
pullback of M(L) under

A = A×S S
(id,e)−−−→ A×S A, x 7−→ (x, e(f(x))).

Note that the compositions of the above map followed by µ, p1, p2 : A×SA→ A respectively
are id, id, e◦f . Hence the pullback of M(L) under the above map is isomorphic to f∗e∗L−1.
This line bundle on A represents the zero element of PicA/S(S) = Pic(A)/f∗ Pic(S). Hence
Λ(L) ◦ e is the neutral section of PicA/S . □

As a consequence, we know that Λ(L) : A → PicA/S is a group homomorphism by the
Rigidity Lemma (see Corollary 20.1.1). Moreover, by the fiberwise connectedness of A, we
know that Λ(L) is a homomorphism A → A∨. Similarly to the proof of the above lemma,
one shows that for two line bundles L,M on A we have

Λ(L⊗M±1) = Λ(L)± Λ(M).

22.2. The case over an algebraically closed field. We now assume that A is an abelian
variety over an algebraically closed field k. In this case A is automatically projective.
(Strictly speaking for our course we do not need this information, because we will be exclu-
sively working with abelian schemes A/S which are assumed to be projective; in any case
in the following we assume that A/k is projective.)

Note that PicA/k(k) = Pic(A), since Pic(k) is trivial.
Let L be a line bundle on A. It is easy to see that at the level of k-points the map Λ(L)

is given by
A(k) −→ A∨ ⊂ PicA/k(k) = Pic(A), x 7−→ t∗xL⊗ L−1,

where tx : A → A is translation by x. The fact that Λ(L) is a group homomorphism thus
entails the following:

Theorem 22.2.1 (Theorem of Square). For any line bundle L on A and any x, y ∈ A(k),
we have an isomorphism of line bundles

t∗x+yL⊗ L ∼= t∗xL⊗ t∗yL.

We make two further observations.

Lemma 22.2.2. Let L be a line bundle on A. Then Λ(L) = 0 if and only if the Mumford
line bundle M(L) is trivial.
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Proof. The “if” direction is clear from the very definition of Λ(L) in terms ofM(L). Suppose
that Λ(L) = 0. Then we know, again by the definition of Λ(L), that M(L) dies in Pic(A×k

A)/p∗2 Pic(A). In general, suppose M is a line bundle on A×k T which isomorphic to p∗2(N)
for some line bundle N on T . Write eT for the map T → A×k T, t 7→ (e, t). Then

p∗2e
∗
TM
∼= p∗2e

∗
T p

∗
2N
∼= p∗2N

∼=M,

where the second isomorphism is because p2 ◦ eT = idT . In particular,

M ⊗ p∗2e∗TM−1 ∼= OA×T .

Applying this to M = M(L), we know that

M(L)⊗ p∗2(e, id)∗M(L)−1 ∼= OA×A.

A computation shows that the left hand side is isomorphic to M(L) ⊗ e∗2L, where e2 is
the map A ×k A → A, (x, y) 7→ e. But e∗2L is trivial since e2 factors through Spec k and
Pic(k) = 0. Hence M(L) is trivial. □

Since A/k is projective, it has ample line bundles.

Lemma 22.2.3. Let L be an ample line bundle on A. Then ker(Λ(L)) is a finite subgroup
scheme of A.

Proof. Suppose not. Then one can find a positive-dimensional abelian subvariety B ⊂ A
contained in ker(Λ(L)). Note that Λ(L)|B = Λ(L|B), and L|B is ample on B. Thus for the
sake of deducing a contradiction we may assume that B = A, i.e., Λ(L) = 0. By Lemma
22.2.2, M(L) is trivial. The pullback of M(L)−1 along the “anti-diagonal”

(id, [−1]) : A −→ A×k A, x 7−→ (x,−x)
is L⊗ [−1]∗L, and it must be trivial on A. Since L is ample and [−1] is an automorphism
of A, L⊗ [−1]∗L is ample. Thus the trivial line bundle on A is ample, a contradiction with
the fact that A is projective and positive-dimensional. □

The following is the “main theorem” for line bundles on an abelian variety.

Theorem 22.2.4 (Main Theorem). Fix an ample line bundle L on A. For any line bundle
M on A, we have Λ(M) = 0 if and only if M ∼= Λ(L)(x) = t∗xL⊗ L−1 for some x ∈ A(k).

The proof of the above theorem will be given in the future few lectures. Let us now
deduce some important consequences.

Definition 22.2.5. Let M,M ′ be two line bundles on A. We say that M is algebraically
equivalent to M ′, if there exists a connected k-scheme T and a line bundle on A ×k T
specializing to M and M ′ at two k-points of T .

Lemma 22.2.6. Two line bundles M and M ′ are algebraically equivalent if and only if the
isomorphism class of M ⊗M ′−1 lies in A∨(k) ⊂ PicA/k(k) = Pic(A).

Proof. Exercise. (Use the moduli interpretation of PicA/k.) □

The following corollary of Theorem 22.2.4 says that one can detect algebraic equivalence
of line bundles by looking at Λ(·).

Corollary 22.2.7. Let M be a line bundle on A. Then M is algebraically equivalent to
zero if and only if Λ(M) = 0.

We will prove this next time.
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23. Lecture 23

23.1. Criterion for algebraic equivalence. Let A be an abelian variety over an alge-
braically closed field k. The following two corollaries are consequences of Theorem 22.2.4.

Corollary 23.1.1. Let M be a line bundle on A. Then M is algebraically equivalent to
zero if and only if Λ(M) = 0.

Proof. SupposeM is algebraically equivalent to zero. Then there is a connected k-scheme T
and a line bundle M̃ on A×kT which specializes toM and to OA at two points t1, t2 ∈ T (k).
Consider the T -group scheme homomorphism

Λ(M̃) : AT = A×k T −→ PicAT /T .

On the fiber of AT over t2, the map induced by Λ(M̃) is Λ(OA) = 0. Thus Λ(M̃) and the
zero homomorphism agree on one fiber over T . Since they both preserve the neutral section,
they must be equal by the Rigidity Lemma (see Theorem 19.1.2). Thus Λ(M̃) = 0. But on

the fiber over t1, the map induced by Λ(M̃) is Λ(M). Hence Λ(M) = 0.
Conversely, suppose that Λ(M) = 0. Then by Theorem 22.2.4, there exists an (ample)

line bundle L on A and a point x ∈ A(k) such thatM = Λ(L)(x). But Λ(L)(A(k)) ⊂ A∨(k),
so M ∈ A∨(k). Thus M is algebraically equivalent to zero by Lemma 22.2.6. □

Corollary 23.1.2. Let L be an ample line bundle on A. Then Λ(L) : A→ A∨ is an isogeny.

Proof. By Lemma 22.2.3, Λ(L) is quasi-finite. To see that it is surjective, let M ∈ A∨(k).
Then Λ(M) = 0 by Corollary 23.1.1. Hence M ∈ im(Λ(L)) by Theorem 22.2.4 . □

The above two corollaries will be the essential tools needed to study “polarizations”.
Note that these they together imply the “only if” direction of Theorem 22.2.4, which is the
more difficult direction.

23.2. Proof of Theorem 22.2.4. We first show the “if” direction. Suppose M = t∗xL ⊗
L−1. Then for any y ∈ A(k) we compute

Λ(M)(y) = t∗yM ⊗M−1 ∼= t∗x+yL⊗ t∗yL−1 ⊗ t∗xL−1 ⊗ L,
which is trivial by the Theorem of Square (Theorem 22.2.1). Thus Λ(M) = 0. This proves
the “if” direction.

For the “only if” direction we need some preparations.

Lemma 23.2.1. Let M be a line bundle on A with Λ(M) = 0. Then for any k-scheme T
and any two k-scheme maps f, g : T → A, we have (f + g)∗M ∼= f∗M ⊗ g∗M . (Here the
addition in f + g is the group law.) For any n ∈ Z, we have [n]∗M ∼=M⊗n, where [n] is the
multiplication-by-n map A→ A, x 7→ x+ · · ·+ x (n times).

Proof. By Lemma 22.2.2, M(M) is trivial. The pullback of M(M) along

(f, g) : T −→ A×k A

is (f +g)∗M ⊗f∗M−1⊗g∗M−1, and this is trivial. This proves the first statement. For the
second statement, note that it is obviously true for n = 0 or 1. (For n = 0, note that [0]∗

of any line bundle is trivial since [0] : A → A factors through Spec k.) Applying the first
statement to f = [m] (with m ≥ 1) and g = [1], we prove by induction that the statement
holds for all n ≥ 1. For negative n, use thatOA

∼= [0]∗M ∼= [n−n]∗M ∼= [n]∗M⊗[−n]∗M . □

Lemma 23.2.2. Let M be a line bundle on A with Λ(M) = 0. If M is non-trivial, then
Hj(A,M) = 0 for all j ≥ 0.
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Proof. We induct on j. For j = 0, suppose H0(A,M) ̸= 0. Then M ∼= OA(−D) for some
effective divisor D. By Lemma 23.2.1, OA(D) ∼=M−1 ∼= [−1]∗M ∼= OA([−1]∗(−D)), i.e.,

OA
∼= OA(D + [−1]∗D).

But both D and [−1]∗D are effective, so D = 0, a contradiction with the non-triviality of
M .

For the induction step, assume j ≥ 1. We factorize idA as

A
(id,e)−−−→ A×k A

µ−→ A.

Thus the identity map on Hj(A,M) factors through Hj(A ×k A,µ
∗M), and it suffices to

prove that Hj(A×k A,µ
∗M) = 0. Since M(M) is trivial (by Lemma 22.2.2), we have

Hj(A×k A,µ
∗M) ∼= Hj(A×k A, p

∗
1M ⊗ p∗2M).

By the Künneth formula the above is isomorphic to⊕
u+v=j

Hu(A,M)⊗k Hv(A,M),

and this is zero by the induction hypothesis since for every pair (u, v) with u + v = j at
least one of u, v is strictly less than j. □

We are now ready to prove the “only if” direction of Theorem 22.2.4. (The reference for
this proof is [Mum08, §8, Thm. 1].) For the sake of contradiction suppose that ∀x ∈ A(k),
M is not isomorphic to t∗xL⊗ L−1. Define a line bundle on A×k A:

K := M(L)⊗ p∗2M−1.

For any x ∈ A(k), we write K|{x}×A for the pullback of K along A → A ×k A, y 7→ (x, y).
We have

K|{x}×A
∼= t∗xL⊗ L−1 ⊗M−1,

and this is non-trivial by our assumption. Now

Λ(K|{x}×A) = Λ(t∗xL⊗ L−1 ⊗M−1) = Λ(t∗xL⊗ L−1)− Λ(M).

The first term is zero by the “if” direction of the theorem, and the second term is zero by
assumption. Hence

Hj(A,K|{x}×A) = 0, ∀j ≥ 0

by Lemma 23.2.2. Since x ∈ A(k) is arbitrary, this implies that

Rjp1,∗K = 0, ∀j ≥ 0

by “cohomology and base change”; see [Mum08, §5, Cor. 3]. (To use this result one needs
to check that Hj(Spec k(x)×Spec k A,K|{x}×A) = 0 for all points x ∈ A, not just the closed
points. However by semi-continuity [Mum08, §5, Cor. 1] knowing the vanishing for all closed
points x ∈ A(k) is already enough.) By the Leray spectral sequence

Ep,q
2 = Hp(A,Rqp1,∗K) =⇒ Hp+q(A×k A,K),

we conclude that
Hi(A×k A,K) = 0, ∀i ≥ 0.

We now look at the other Leray spectral sequence

Ep,q
2 = Hp(A,Rqp2,∗K) =⇒ Hp+q(A×k A,K).(23.1)

For x ∈ A(k), we have
K|A×{x} ∼= t∗xL⊗ L−1,
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and so Λ(K|A×{x}) = 0 again by the “if” direction of the theorem. If t∗xL⊗L−1 is non-trivial,
i.e., x /∈ ker(Λ(L))(k), then again by Lemma 23.2.2 we have

Hj(K|A×{x}) = 0, ∀j ≥ 0.

Hence for each j, Rjp2,∗K is supported on the closed subscheme ker(Λ(L)) ⊂ A. But L is
ample, so ker(Λ(L)) is a finite (maybe non-reduced) k-scheme by Lemma 22.2.3. Thus

Hi(A,Rjp2,∗K) = 0, ∀i ≥ 1,∀j ≥ 0.

Thus the only non-zero terms in the E2-page of the spectral sequence (23.1) are those in
the 0-th row. It follows that

H0(A,Rjp2,∗K) = Hj(A×k A,K), ∀j ≥ 0.

We have already seen that this is zero. Since Rjp2,∗K is finitely supported, we conclude
that

Rjp2,∗K = 0, ∀j ≥ 0.

Again by “cohomology and base change” (see [Mum08, §5, Cor. 4]), this implies that for
any x ∈ A(k), we have

Hj(A,K|A×{x}) = 0, ∀j ≥ 0.

Taking j = 0 and x = e, we get H0(A,OA) = 0, which is absurd since this should be k.
This finishes the proof of Theorem 22.2.4.

24. Lecture 24

24.1. Theorem of Cube and consequences.

Theorem 24.1.1 (Theorem of Cube). Let X,Y, Z be three abelian varieties over a field
k (not necessarily algebraically closed). Let L be a line bundle on X × Y × Z (all the
products are over k) such that its restrictions to {e} × Y × Z ∼= Y × Z,X × {e} × Z ∼=
X × Z,X × Y × {e} ∼= X × Y are all trivial. Then L is trivial.

Proof. Fix a trivialization ρ of L|X×Y×{e}. Then (L, ρ) defines an element of PicZ/k,e(X ×
Y ), or in other words a k-map F : X × Y → Z. By Corollary 19.1.3, F is of the form
F (x, y) = g(x) + h(y) for k-maps g : X → Z and h : Y → Z. By our assumptions, we have
g(e) + h(y) = g(x) + h(e) = 0 for all x ∈ X, y ∈ Y . Thus g and h are constant (i.e., they
factor through the structure maps X → Spec k, Y → Spec k respectively). Then F = 0, and
so (L, ρ) represents the trivial element of PicZ/k,e(X × Y ), which in particular implies that
L is trivial. □

Corollary 24.1.2. Let A be an abelian variety over a field k, and let L be a line bundle on
A. Let T be a k-scheme, and f, g, h : T → A be k-maps. Then

(f + g + h)∗L ∼= (f + g)∗L⊗ (g + h)∗L⊗ (f + h)∗K ⊗ f∗L−1 ⊗ g∗L−1 ⊗ h∗L−1.

Proof. Let pi be the i-th projection A× A× A → A, and pij := pi + pj : A× A× A → A.
Let m := p1 + p2 + p3 : A×A×A→ A. Define a line bundle on A×A×A:

M := m∗L⊗ p∗12L−1 ⊗ p∗13L−1 ⊗ p∗23L−1 ⊗ p∗1L⊗ p∗2L⊗ p∗3L.
Then the difference of the two sides of the desired isomorphism is the pullback of M along

(f, g, h) : T → A×A×A.
Hence it suffices to check that M is trivial. But one directly checks that M satisfies the
hypothesis in the Theorem of Cube. □
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Corollary 24.1.3. Let A and L be as in Corollary 24.1.2. Then for each n ∈ Z we have

[n]∗L ∼= Ln2

⊗ (L⊗ [−1]∗L−1)(n−n2)/2.

Proof. Write Ln for [n]∗L. Applying Corollary 24.1.2 to f = [n + 1], g = [1], h = [−1], we
get

Ln+1
∼= Ln+2 ⊗ L0 ⊗ Ln ⊗ L−1

n+1 ⊗ L
−1
1 ⊗ L

−1
−1,

i.e.,
Ln+2 ⊗ L−2

n+1 ⊗ Ln
∼= L⊗ L−1.

Note that the desired isomorphism obviously holds for n = 0 and n = 1. The proof is then
done by induction in the two directions, i.e, knowing the desired formula for Ln and Ln+1

we can compute Ln+2, and knowing the desired formula for Ln+2 and Ln+1 we can compute
Ln. □

We say that a line bundle L on A is symmetric if L ∼= [−1]∗L . If L is symmetric, then

[n]∗L ∼= Ln2

. Now pick an ample line bundle L0 and let L = L0 ⊗ [−1]∗L0. Then L is
both ample and symmetric. In particular, on A we have an ample line bundle L such that

[n]∗L ∼= L⊗n2

. From this, it is easy to see that [n] : A → A is an isogeny. Moreover, for
any ample line bundle L on A and any isogeny f : A→ A, we have deg(L) ̸= 0,deg(Lm) =
mdimA deg(L), ∀m ≥ 1, and deg(f∗L) = deg(f) deg(L). It follows that deg([n]) = n2 dimA.
Here the degree of a line bundle is defined using the Hilbert polynomial; see [Mum08,
Appendix to §6] for details.

The following result will be proved in the next lecture.

Corollary 24.1.4. Let A be an abelian variety over an algebraically closed field k. For any
ample line bundle L on A, we have Hi(A,L) = 0 for all i > 0.

25. Lecture 25

25.1. Cohomology of an ample line bundle. In the following, let k be an algebraically
closed field, and A/k an abelian variety.

Corollary 25.1.1. For any line bundle L on A and any integer n, the line bundle [n]∗L is

algebraically equivalent to L⊗n2

.

Remark. Recall from Lemma 23.2.1 that if L is a line bundle satisfying Λ(L) = 0, then
[n]∗L ∼= L⊗n. In this case L is algebraically equivalent to zero, so this does not contradict
with the current corollary.

Proof. By Corollary 24.1.3, we only need to show that ∆ := L ⊗ [−1]∗L−1 is algebraically
equivalent to 0. By Corollary 23.1.1, we only need to show that Λ(∆) = 0. For any x ∈ A(k),
we compute

Λ(∆)(x) ∼= t∗xL⊗ L−1 ⊗ t∗x[−1]∗L−1 ⊗ [−1]∗L ∼= t∗xL⊗ L−1 ⊗ [−1]∗(t∗−xL
−1 ⊗ L)

∼= t∗xL⊗ L−1 ⊗ (t∗−xL
−1 ⊗ L)−1,

where the last isomorphism is because [−1]∗M ∼= M−1 for all M such that Λ(M) = 0 (see
Lemma 23.2.1). The above is isomorphic to

t∗xL⊗ t∗−xL⊗ L−2,

and this is isomorphic to t∗0L⊗L−1 ∼= OA by the Theorem of Square. Hence Λ(∆) = 0. □

Corollary 25.1.2. For any ample line bundle L on A, we have Hi(A,L) = 0 for all i > 0.
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Proof. Since L is ample, there is an integer n0 such that

Hi(A,Ln) = 0, ∀i ≥ 1, n ≥ n0.

Suppose L′ is a line bundle algebraically equivalent to Ln. By Theorem 22.2.4, since L′⊗L−n

is algebraically equivalent to zero and since Ln is ample, we know that L′⊗L−n ∼= t∗xL
n⊗L−n

for some x ∈ A(k). Thus L′ ∼= t∗xL
n , and so Hi(A,L′) = 0 for all i ≥ 1 since tx is an

automorphism of A.

Now by Corollary 25.1.1, [n]∗L is algebraically equivalent to Ln2

, so we have

Hi(A, [n]∗L) = 0, ∀i ≥ 1, n ≥
√
n0.

But the above is also isomorphic to

Hi(A, [n]∗[n]
∗L)

since [n] : A → A is finite. We claim that if char k does not divide n, then L is a direct
summand of [n]∗[n]

∗L. This would finish the proof since we can pick n sufficiently large and
not divisible by char k.

To prove the claim, first note that by the projection formula we have [n]∗[n]
∗L ∼= L ⊗

[n]∗OA. Hence it suffices to show that OA is a direct summand of [n]∗OA. Since [n] is
finite flat, there is a canonical trace map [n]∗OA → OA (see [Sta18, Tag 0BVH]) which
when composed with the natural map OA → [n]∗OA on the left is the map OA → OA that
multiplies each section by deg[n] ∈ Z. But deg[n] = n2 dimA is invertible over A, so the
claim follows. □

26. Lecture 26

26.1. Global sections of ample line bundles. Let A be an abelian variety over an
algebraically closed field k and take L to be an ample line bundle on A. We showed last
lecture that Hi(A,L) = 0 for all i > 0. We want now to show that for such L, we have the
following result.

Theorem 26.1.1.

dimH0(A,L) =
√

deg Λ(L).

We first briefly examine the case of elliptic curves. If A = E is an elliptic curve, we note
that L1 = O(e) is a canonical choice of an ample line bundle, as L⊗3

1 is very ample. In this
case, we know that dimH0(E,L1) = 1. Hence by the theorem we have deg Λ(L1) = 1, which
in particular says that Λ(L1) : E → E∨ is an isomorphism. As such, we may canonically
identify E with E∨ via Λ(L1).

Remark. We know that Λ(L1) is a group homomorphism, and on k-points it is given by

E(k) −→ E∨(k), P 7−→ t∗P (O(e))⊗O(e)−1 = O([P ]− [e]).

Hence we once again see that the group structure on E(k) is given by the following rule: We
have P +Q = R if and only if O([P ]− [e])⊗O([Q]− [e]) ∼= O([R]− [e]), i.e., [P ] + [Q]− 2[e]
is linearly equivalent to [R]− [e].

On an elliptic curve E, consider more generally the line bundles Ln := O(n[e]) = L⊗n
1 .

Then Λ(Ln) = n·Λ(L1) = [n]◦Λ(L1). If we use Λ(L1) to canonically identify E and E∨, then
Λ(Ln) is identified with [n]. Recall that by Riemann–Roch, we have dimH0(E,Ln) = n.
We have also seen that deg[n] = n2. This verifies the theorem for Ln.

To prove Theorem 26.1.1 in general we need some preparations.

https://stacks.math.columbia.edu/tag/0BVH
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26.2. The Poincaré line bundle. Suppose A/S is a projective ablian scheme where S is
noetherian. Recall that PicA/S represents the rigidified Picard functor

PicA/S,e : (locally noetherian S-schemes) −→ (Abelian groups)

given by

T 7−→ {(L, ρ) | L a line bundle on AT = A×S T, ρ : e∗TL
∼−→ OT }/ ∼= .

Over APicA/S
= A ×S PicA/S , we have a universal pair (L, ρ) where L is a line bundle on

APicA/S
and ρ : (e, id)∗L

∼−→ OPicA/S
. This pair is unique up to isomorphism. We may

restrict (L, ρ) to A ×S A
∨. In particular, we acquire the so-called Poincaré line bundle P

on A×S A
∨, which comes equipped with a trivialization along (e, id).

Remark. Let e∨ be the neutral section of A∨ → S. Then (id, e∨)∗P on A is also equipped
with a trivialization and this trivialization is compatible with the previous trivialization in
the sense that these two induce the same isomorphism

(e, e∨)∗P ∼−→ OS .

Remark. We have the “flipping” identification f : A∨ × A ∼−→ A × A∨, (x, y) 7→ (y, x).
Notice that f∗P is a line bundle onA∨×A again equipped with two compatible trivializations
along (e∨, id) and (id, e). We can use this structure to obtain a canonical map A → A∨∨,
which turns out to be an isomorphism.

Remark. The role played by the Poincaré line bundle in the duality theory for abelian
varieties is analogous to the evaluation morphism ev : V ⊗k V

∨ → k for a vector space V
over k.

Remark. Given an abelian variety A/k where k = k, we can pick (non-canonically) an
ample line bundle L to acquire an isogeny Λ(L) : A→ A∨. This in particular implies that

dimA∨ = dimA.

We will study the cohomology of A×A∨ with coefficients in the sheaf P as an intermediate
step in attacking Theorem 26.1.1.

Theorem 26.2.1. Suppose A is an abelian variety over an algebraically closed field k with
dimension g. We have

Hn(A×k A
∨,P) =

{
0, n ̸= g

k, n = g.

Proof. In the following we write A × A∨ for A ×k A
∨. We consider Rnp2,∗P where p2 :

A × A∨ → A∨ is the second projection. Note that for x ∈ A∨(k) \ {e∨}, the isomorphism
class of the line bundle P|A×{x} on A tautologically corresponds to x ∈ Pic(A). Since we
are assuming that x is nontrivial, this line bundle must also be nontrivial and algebraically
equivalent to 0. Hence, for such x, by Corollary 23.1.1 and Lemma 23.2.2, we have

Hn(A× {x},P|A×{x}) = 0, ∀n ≥ 0.

In particular, for all n ≥ 0, we know that Rnp2,∗P is supported at the neutral section e∨.
By the Leray spectral sequence, we have

Ep,q
2 = Hp(A∨, Rqp2,∗P) =⇒ Hp+q(A×k A

∨,P).
NowHp(A∨, Rqp2,∗P) = 0 except when p = 0, since Rqp2,∗P is supported on a finite scheme.
This yields

H0(A∨, Rnp2,∗P) ∼= Hn(A×A∨,P)
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for all n. If n > g, then Rnp2,∗P = 0 as p2 has relative dimension g. Hence Hn(A×A∨,P) =
0 for n > g. Now notice that

ωA×A∨ = ∧2gΩA×A∨/k

is a trivial line; this is because ΩA×A∨/k is a trivial vector bundle already by the fact that
A×A∨ is an abelian variety (see [Mum08, §4 (iii)]). Hence by Serre duality applied to the
2g-dimensional A×A∨, we have

Hn(A×A∨,P) ∼= H2g−n(A×A∨,P−1)∨.

In particular, we know that Hi(A×A∨,P−1)∨ = 0 for i < g. It is an easy exercise to show
that

P−1 ∼= ([1], [−1])∗P.
Since ([1], [−1]) : A×A∨ → A×A∨ is an automorphism, this implies that P and P−1 have
the same cohomology. Hence Hn(A× A∨,P) = 0 for all n < g as well. It remains to show
that Hg(A×A∨,P) = k. □

27. Lecture 27

27.1. The Poincaré line bundle, continued.

Proof of Theorem 26.2.1, continued. Let p2 : A × A∨ → A∨ be the second projection. By
examining the cohomology of the fibers, we showed that Rnp2,∗P is supported at e∨. This
implies that for i ≥ 1, we have Hi(A∨, Rnp2,∗P) = 0. As such, the Leray spectral sequence

Ei,j
2 = Hi(A∨, Rjp2,∗P) =⇒ Hi+j(A×A∨,P)

degenerates, and we have

H0(A∨, Rnp2,∗P) ∼= Hn(A×A∨,P).(27.1)

These vanish for n > g, as p2 has relative dimension g. Now notice that for any group variety
B over k, we have ωB/k = ∧dimBΩB/k

∼= OB , as ΩB/k is a trivial vector bundle. As such,

for any line bundle L on any abelian variety B, we have Hi(B,L) ∼= HdimB−i(B,L−1)∨ by
Serre duality. Setting B = A×A∨, we have

Hn(A×A∨,P−1) ∼= H2g−n(A×A∨,P)∨,
and we have already seen that the right hand side vanishes n < g. But P and P−1 have
the same cohomology, as P−1 ∼= ([1], [−1])∗P, where ([1], [−1]) : A × A∨ → A × A∨ is the
automorphism given by (x, y) 7→ (x,−y). In particular, this implies that for n < g, we have

Hn(A×A∨,P) = 0.

Now since Rnp2,∗P is supported on a finite scheme, it is determined by its global sections.
Thus by (27.1) and the vanishing of Hn(A× A∨,P) for n ̸= g, we know that Rnp2,∗P = 0
for n ̸= g.

It remains to show that Hg(A×A∨,P) = k. For this, let R = OA∨,e∨ be the local ring of
A∨ at the closed point e∨, and denote by m the maximal ideal of R. Let M be the (finitely
generated) R-module corresponding to the pullback of Rgp2,∗P to SpecR. By (27.1), it is
enough to show that M ∼= R/m = k as R-modules.

Now, the vanishing of Rnp2,∗P for all n > g implies by cohomology and base change that
Rgp2,∗P is compatible with fiber cohomology in the sense that for all x ∈ A∨, the natural
base change map

(Rgp2,∗P)⊗OA∨ k(x) −→ Hg(A× {x},P|A×{x})



ABELIAN VARIETIES AND SHIMURA VARIETIES 55

is an isomorphism of k(x)-vector spaces. (For this, use [Conb, Thm. 1.1] and reverse induc-
tion to show that all the fiber cohomology vanish at degrees > g. Then feed the vanishing
of fiber cohomology at degree g+1 into [Conb, Cor. 1.2].) For x = e∨, the right hand side is
justHg(A,OA), and by Serre duality this is dual toH0(A,O−1

A ) = k. HenceM⊗RR/m = k.
It follows thatM is generated by one element as an R-module by Nakayama’s lemma. Write
M ∼= R/J . On the other hand, M is finite-length as an R-module, i.e., M is a finite dimen-
sional k-vector space; this follows from the finite-dimensionality of H0(A∨, Rgp2,∗P). Hence
we have (exercise) √

J = m.

We will show that J = m using Grothendieck duality, following [EvdGM, §9]. In view of the
fact that p2 is proper smooth of relative dimension g and the fact that Ωg

A×A∨/A∨
∼= OA×A∨

(again because ΩA×A∨/A∨ is a trivial vector bundle), Grothendieck duality says that for
any bounded complexes F • and G• of quasi-coherent OA×A∨-modules and OA∨-modules
respectively, there is a natural bijection

HomD(A×A∨)(F
•, p∗2G

•[g])
∼−→ HomD(A∨)(Rp2,∗F

•, G•).

Here for a variety X we write D(X) for the derived category of the abelian category of
quasi-coherent OX -modules. Applying the proposition to the case when F • = P[0] and
G• = G[−g] where G is an arbitrary quasi-coherent OA∨-module, we have

HomOA×A∨ (P, p∗2G)
∼−→ HomOA∨ (R

gp2,∗P, G).(27.2)

In particular, we will take G to be the quasicoherent OA∨-module corresponding to the
R-modules R/J and R/m respectively. Then the right hand side of (27.2) is R/J and R/m
respectively in the two cases. We thus obtain a commutative diagram:

HomOA×A∨ (P,OA×A∨ ⊗OA∨ R/J) R/J

HomOA×A∨ (P,OA×A∨ ⊗OA∨ R/m) R/m,

∼=

∼=

where the horizontal arrows are bijections, and the right vertical arrow is induced by idR
and hence surjective. Hence the left vertical arrow is also surjective. Now, in the lower
left set, there is a canonical element ϕ coming from the trivialization of P along (idA, e

∨).

More precisely, we have a canonical isomorphism ϕ̄ : (idA, e
∨)∗P ∼−→ OA as part of the

structure of the Poincaré line bundle, and this is precisely the datum of a morphism ϕ :
P −→ OA×A∨ ⊗OA∨ R/m. By the surjectivity of the left vertical arrow, there exists a

morphism ϕ̃ : P −→ OA×A∨ ⊗OA∨ R/J lifting ϕ . Now ϕ̃ corresponds to the datum of a
morphism

¯̃
ϕ : P|(A×A∨)×A∨SpecR/J → O(A×A∨)×A∨SpecR/J .

Note that
¯̃
ϕ lifts ϕ̄ (i.e., it induces ϕ̄ if we base change along SpecR/m→ SpecR/J). Since

J =
√
m, the natural map

(A×A∨)×A∨ SpecR/m = A× SpecR/m→ A× SpecR/J = (A×A∨)×A∨ SpecR/J

induces a homeomorphism of underlying topological spaces. Hence, since ϕ̄ is an isomor-

phism, we know
¯̃
ϕ is an isomorphism as well. By the moduli interpretation of (A∨,P), the

fact that there exists a trivialization of P|A×SpecR/J lifting ϕ̄ implies that SpecR/J → A∨
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factors through e∨ : Spec k → A∨. As such, m = J . This concludes the proof of Theorem
26.2.1. □

28. Lecture 28

28.1. Generalities on G-torsors. We now use Theorem 26.2.1 to prove Theorem 26.1.1.
We will first discuss some general facts about torsors.

Let k ve a field and G be a finite group scheme over k (not necessarily commutative).
Let X be a finite-type k-scheme. (In particular, X is noetherian.)

Definition 28.1.1. A G-torsor over X is a scheme Y over X with a G-action on Y (i.e.,
there is a k-scheme map G×k Y → Y such that for all k-schemes T , we have a group action
G(T )× Y (T )→ Y (T )) such that

(1) The structure map Y → X is finite flat and surjective, as well as G-equivariant
where G acts trivially on X.

(2) The map G ×k Y → Y ×X Y defined via (g, y) 7→ (gy, y) is an isomorphism. (The
fact that this map is well defined follows from the G-equivariance of Y → X.)

Proposition 28.1.2. Suppose ϕ : Y → X is a G-torsor in the language above. For any
coherent sheaf F on X, we have

χ(ϕ∗F) = deg ϕ · χ(F).

Proof. The proof proceeds via dévissage and noetherian induction, and in particular needs
that X is noetherian. See [Cond, Lem. 7.3.2] or [Mum08, §12, Thm. 2] for a proof. □

Lemma 28.1.3. Let ϕ : A→ B be an isogeny between abelian varieties over a field k. For
all coherent sheaves F on B, we have χ(ϕ∗F) = deg ϕ · χ(F).

Proof. The morphism ϕ : A→ B is a G-torsor, where G = kerϕ. Then we apply Proposition
28.1.2. □

28.2. Global sections of ample line bundles, continued. Now we prove Theorem
26.1.1. To recall our setup, let A be an abelian variety over an algebraically closed field k
and let L be an ample line bundle on A.

Proof of Theorem 26.1.1. Recall from Corollary 25.1.2 that Hi(A,L) = 0 for all i > 0.
Hence it suffices to show that

χ(L) =
√
deg Λ(L).

Recall that we have three morphisms µ, p1, p2 : A × A → A; here µ is the group law
and pi is the projection to the i-th factor. The idea is to relate the Mumford line bundle
M(L) = µ∗L⊗ p∗1L−1⊗ p∗2L−1 on A×A with P on A×A∨. It is an exercise to see that for
the morphism (idA,Λ(L)) : A × A → A × A∨, we have M(L) ∼= (idA,Λ(L))

∗P. Note that
deg(idA,Λ(A)) = deg Λ(L). By Theorem 26.2.1, we have χ(P) = (−1)g, where g = dimA.
By Lemma 28.1.3, we have

χ(M(L)) = deg(Λ(L))χ(P) = (−1)g deg(Λ(L)).

We now need to relate χ(L) with χ(M(L)). We will examine the higher direct images of
M(L) along p1 : A × A → A. If x ∈ A(k) \ ker(Λ(L)), then M(L)|{x}×A is nontrivial, but
Λ(M(L)|{x}×A) = 0. Hence, we know that

Hi(A,M(L)|{x}×A) = 0
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for all i, by Lemma 23.2.2. As such, we know that for each i, the higher direct image
Rip1,∗M(L) is supported on kerΛ(L), which is finite since L is ample.

By the projection formula ([Sta18, Tag 01E8]), we have

Rip1,∗M(L) = Rip1,∗(µ
∗L⊗ p∗2L−1 ⊗ p∗1L−1) ∼= Rip1,∗(µ

∗L⊗ p∗2L−1)⊗OA
L−1.

Now, since L−1 is a line bundle and the left hand side is finitely supported, we know that
Rip1,∗(µ

∗L⊗ p∗2L−1) must be finitely supported and isomorphic to the left hand side. Thus

Rip1,∗M(L) ∼= Rip1,∗(µ
∗L⊗ p∗2L−1).

By the Leray spectral sequence, we have

χ(M(L)) = χ(µ∗L⊗ p∗2L−1).

Now, we have an automorphism (µ, p2) : A× A→ A× A given by (x, y) 7→ (x+ y, y), and
it is easy to see that

(µ, p2)
∗(p∗1L⊗ p∗2L−1) ∼= µ∗L⊗ p∗2L−1.

This yields

χ(M(L)) = χ(p∗1L⊗ p∗2L−1).

By the Künneth formula, the right hand side is χ(L) · χ(L−1). Finally, by Serre duality, we
have Hi(A,L) ∼= Hg−i(A,L−1)∨, and so

χ(L−1) = (−1)g · χ(L).
Combining the results we have

χ(M(L)) = (−1)g deg Λ(L) = (−1)gχ(L)2,
which concludes the proof. □

29. Lecture 29

29.1. Very ample line bundles. Let A be an abelian variety over an algebraically closed
field k. Let L be an ample line bundle on A. We have shown that

hi(A,L) =

{
0 , i > 0,√

deg Λ(L) , i = 0.

This recovers our knowledge of hi(E,O(ne)) for E and elliptic curve and n ≥ 1. (Recall
that if we identify E with E∨ via the isomorphism Λ(O(e)) then Λ(O(ne)) is identified with
[n].) In the case of an elliptic curve, we also know that O(3e) is very ample, i.e., the third
power of the ample line bundle O(e) is very ample. This phenomenon has the following
generalization.

Theorem 29.1.1. Let A be an abelian variety over an algebraically closed field k, and let
L be an ample line bundle on A. Then L3 is very ample.

Sketch of proof. For the detailed proof see [Mum08, §17].
(1) Every effective divisor on A is linearly equivalent to a multiplicity-free effective divi-

sor. To see this, consider the simple situation with a divisor of the form np, where n ≥ 2
and p is a prime divisor. By the Theorem of Square, for any points x1, · · ·xn ∈ A(k) such
that

∑
xi = 0, we have that

∑
t∗xi

p is linearly equivalent to np, and is multiplicity free as
long as the xi’s are “generic enough”. The general situation is treated similarly.

(2) Since h0(A,L) > 0 (as L is ample), we have L ∼= O(D) for some effective divisor D.
By (1), we may assume that D is multiplicity-free.

https://stacks.math.columbia.edu/tag/01E8
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(3) We need to show that the linear system |3D| separates points. Suppose not. By
translation, we may assume that |3D| does not separate 0 ∈ A(k)− and some other point
x1 ∈ A(k), x1 ̸= 0. This means that for each D′ ∈ |3D|, we have 0 ∈ Supp(D′) ⇒ x1 ∈
Supp(D′). Now observe that for any x, y ∈ A(k), we have

t∗xD + t∗yD + t∗−x−yD ∈ |3D|

by the Theorem of Square. Thus for any x, y we have

0 ∈ Supp(t∗xD) =⇒ x1 ∈ Supp(t∗xD) ∪ Supp(t∗yD) ∪ Supp(t∗−x−yD).

Now for each given x, we can choose y such that

x1 /∈ Supp(t∗yD) ∪ Supp(t∗−x−yD).

Hence we conclude that

∀x ∈ A(k), 0 ∈ Supp(t∗xD) =⇒ x1 ∈ Supp(t∗xD).

From this it is easy to see that Supp(D) is invariant under tx1 . Since D is multiplicity free,
we conclude that D (as a divisor) is invariant under tx1

.
In particular, we have x1 ∈ ker(Λ(L)), which is a finite k-group scheme as L is ample. Let

F be the k-subgroup scheme generated by x1. Thus F is a finite étale (and hence constant)
group scheme over k; the constant value of F is just the subgroup of A(k) generated by x1.
We can form the quotient A/F , which is still an abelian variety, and it is equipped with an
isogeny A → A/F which is an étale F -torsor. (See [Mum08, §7, Thm. 4], and cf. [Mum08,
§12].7) The fact that D is invariant under tx1

and multiplicity-free implies that D is the
pullback of a divisor D1 on A/F . Moreover, every s ∈ H0(A,L) whose zero divisor (s)0
equals D comes from a global section of O(D1) on A/F .

Now as a general fact about finite étale torsors, there are only finitely many isomorphism
classes of line bundles L1, · · · , Lm on A/F whose pullback to A are isomorphic to L. (The
set of Li’s is in bijection with the set of all characters F → k×; see [Mum08, §7, Prop. 3].)
Let s ∈ H0(A,L). If (s)0 is multiplicity-free, then we can take D to be (s)0 in the previous
discussion, and conclude that s comes from a global section of some Li. Now each Li is still
ample on A/F since L is ample on A, and therefore we have

h0(A/F,Li) = χ(Li) =
1

deg(A→ A/F )
χ(L) =

1

|F |
χ(L) < χ(L) = h0(A,L).

Here |F | > 1 because x1 ̸= 0. Thus we have

H0(A,L) = V1 ∪ · · · ∪ Vm ∪W,

where each Vi is a proper vector subspace of H0(A,L), andW is the set of s ∈ H0(A,L) such
that (s)0 is not multiplicity-free. In the next lecture we will show that such a decomposition
is impossible unless W = H0(A,L). Since we have already seen that W ̸= H0(A,L), the
proof is finished.

(4) We need to show that |3D| separates tangent vectors. The argument is similar to (3)
but more technical. We refer the reader to [Mum08, §17]. □

7Note that in the language of [Mum08, §7], a finite subgroup of A means a finite subgroup of A(k), which

is identified with the corresponding constant k-group scheme.
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29.2. Globalization. Let S be a noetherian scheme, and π : A → S a projective abelian
scheme. Let L be a line bundle on A that is relatively ample with respect to π. Recall
[Gro61a, §4.6] that this means there exists a Zariski open covering (Ui) of S such that
L|π−1(Ui) is ample for each i. In the current setting, since S is noetherian and π is proper,
this condition is also equivalent [Gro61b, Thm. 4.7.1] to the condition that the pullback of
L to each fiber of π is ample.

Theorem 29.2.1 (cf. [MFK94, Prop. 6.13]). The following statements hold.

(1) Riπ∗L = 0 for all i > 0 .
(2) π∗L is a vector bundle on S, and its formation commutes with arbitrary base change

(cf. Theorem 10.2.1 (1)). Let r be its rank.
(3) The S-homomorphism Λ(L) : A→ A∨ is an isogeny, and its degree is r2.
(4) L3 is relatively very ample, i.e., the canonical S-map A → PS(π∗L

3) is a closed
immersion.

Proof. By cohomology and base change, the first two statements follow from Corollary
25.1.2 and the fact that L is fiberwise ample. In particular, we know that r is equal to
the dimension of H0(As, L|As) for any geometric point s of S. In view of this, the third
statement is easily reduced to the corresponding statement for the fibers, in which case it
is Theorem 26.1.1. The fourth statement is reduced to the corresponding statement for the
fibers by [Gro61b, Prop. 4.6.7] and the fact that the formation of π∗(L

3) commutes with
arbitrary base change (by (2) applied to L3). □

Remark. By (2) applied to L3, we may Zariski localize S and fix a trivialization π∗L
3 ∼−→

O⊕n
S . Then by (4) we obtain a closed immersion of S-schemes A→ Pn−1

S .

Definition 29.2.2. By a polarization on A, we mean an S-group homomorphism λ :
A→ A∨ such that for each geometric point x : Spec k̄ → S, the induced homomorphism

λx : Ax −→ (A∨)x ∼= (Ax)
∨

(from the abelian variety Ax over k̄ to its dual) is of the form Λ(Lx) for some ample line
bundle Lx on Ax. Note that a polarization is necessarily an isogeny, since each λx = Λ(Lx)
is surjective and quasi-finite by the ampleness of Lx.

30. Lecture 30

30.1. Multiplicities of divisors in a linear system. The following result is needed in
the proof of Theorem 29.1.1. In [Mum08, §17] this result is taken for granted, but we find
it not so straightforward.

Lemma 30.1.1. Let X be a smooth projective variety over an algebraically closed field k. Let
L be a line bundle on X. Let V = H0(X,L), andW = {s ∈ V | (s)0 is not multiplicity-free}.
Suppose V ̸= 0 and V ̸=W . Then it is impossible to have

V = V1 ∪ · · · ∪ Vm ∪W
where each Vi is a proper vector subspace of V .

Sketch of proof. It suffices to show that the set of s ∈ V −{0} such that (s)0 is multiplicity-
free contains a non-empty Zariski open subset of V (viewed as the maximal spectrum of an
affine space).

Write M for the k-scheme such that M(k) = V − {0} (i.e., M = An
k − {0} for some

n). Then the set-theoretical map sending every s ∈ M(k) to the divisor (s)0 in X can be
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upgraded to a geometric family over M . More precisely, inside X ×k M we have a closed
subscheme D, which is the zero scheme of the tautological global section of p∗1L on X×kM .
For s ∈M(k), the fiber ofD over s is identified with the zero scheme of s insideX ∼= X×{s}.

Given this construction, for s ∈ M(k), the condition that (s)0 is multiplicity-free is
equivalent to the condition that the fiber Ds is reduced. One can show that D is flat over
M , in the same way as the argument showing that q−1(U)→ U is flat in the proof of [Sta18,
Tag 0FD6]. It now suffices to cite the general fact [Sta18, Tag 0C0E] that for a proper flat
morphism Y → S of finite presentation, the set of s ∈ S such that Ys is geometrically
reduced is a Zariski open subset of S (which may be empty). □

30.2. The line bundle attached to a polarization. Let S be a noetherian scheme, and
π : A → S a projective abelian scheme. In the last lecture we defined the notion of a
polarization of A, which is a special kind of S-homomorphism A → A∨. We now define a
general construction that takes a homomorphism A→ A∨ to a line bundle on A.

Suppose λ : A→ A∨ is an S-homomorphism. Consider the map (idA, λ) : A→ A×S A
∨.

We set
L∆(λ) := (idA, λ)

∗P
where P is the Poincaré line bundle. Equivalently, the datum of λ gives rise to a line bundle
on AA = A ×S A trivialized along (e ◦ π, id) : A → A ×S A by the moduli interpretation
of PicA/S

∼= PicA/S,e, and L∆(λ) is the pullback of this line bundle under the diagonal

∆ : A → A ×S A. Note that according to either definition, L∆(λ) is equipped with a

canonical trivialization along e, i.e., an isomorphism ρcan : e∗L∆(λ)
∼−→ OS .

Proposition 30.2.1 ([MFK94, Prop. 6.10]). Let λ be a polarization on A. Then

Λ(L∆(λ)) = 2λ.

Proof. Since the construction λ 7→ Λ(L∆(λ)) commutes with base change, by the Rigidity
Lemma we reduce to the case where S is the spectrum of an algebraically closed field k.
Since λ is a polarization and S = Spec k, we have λ = Λ(L) for some line bundle L on A,
and we know that λ is an isogeny. We need to show that Λ(L∆(λ)) = 2Λ(L). Since the right
hand side is Λ(L2), it suffices to show that L∆(λ) is algebraically equivalent to L2 in view
of Corollary 23.1.1. Since λ = Λ(L), unraveling the definition one sees that L∆(λ) is the
pullback of the Mumford line bundle M(L) on A×k A along ∆ : A→ A×k A. This can be
explicitly computed to be [2]∗L ⊗ L−2. Hence it suffices to note that [2]∗L is algebraically
equivalent to L4, by Corollary 25.1.1. □

Definition 30.2.2. We say that an isogeny λ : A → A∨ is symmetric if it satisfies
Λ(L∆(λ)) = 2λ. Thus Proposition 30.2.1 says that polarizations are special examples of
symmetric isogenies. (Recall that a polarization is automatically an isogeny.)

Lemma 30.2.3. Let λ : A → A∨ be an isogeny, and n ≥ 1. Then λ is symmetric if and
only if nλ is symmetric.

We postpone the proof to the next lecture.

Proposition 30.2.4 ([MFK94, Prop. 6.11]8). Fix a line bundle L on A together with a

trivialization ρ : e∗L
∼−→ OS. Fix a positive integer n. Assume that Λ(L) : A → A∨ is

an isogeny (which is true, e.g., when L is relatively ample with respect to A → S). The
following statements hold.

8In this reference, the condition of symmetric isogeny in statement (1) is missing, and the proof is invalid

without this condition.

https://stacks.math.columbia.edu/tag/0FD6
https://stacks.math.columbia.edu/tag/0C0E


ABELIAN VARIETIES AND SHIMURA VARIETIES 61

(1) For any S-scheme T (always assumed to be noetherian), there exists at most one
symmetric isogeny λ : AT → A∨

T such that the base change to T of the pair (L, ρ) is
isomorphic to the pair (L∆(nλ), ρcan).

(2) There exists a closed (necessarily unique) subscheme S0 ⊂ S such that for every
S-scheme T , the existence of λ in (1) holds if and only if T → S factors through
S0.

Sketch of proof. (1) We show that the uniqueness of λ holds even if we just assume that
the naked line bundles L|AT

and L∆(nλ) are isomorphic. Thus suppose λ and λ′ are
two symmetric isogenies AT → A∨

T such that L∆(nλ) ∼= L∆(nλ′). Since nλ and nλ′ are
symmetric by Lemma 30.2.3, we have

2nλ = Λ(L∆(nλ)) = Λ(L∆(nλ′)) = 2nλ′.

To show that λ = λ′, we may pass to the case where S is the spectrum of an algebraically
closed field by Rigidity Lemma. Then the homomorphism λ − λ′ : A → A∨ sends the
connected A to the finite group scheme A∨[2n], and hence is constantly 0. Thus λ = λ′.

(2) Firstly, a necessary condition for the existence of λ is that 2nλ = Λ(L) (since nλ
is symmetric by Lemma 30.2.3). Note that 2nλ = [2n]A∨ ◦ λ = λ ◦ [2n]A. Thus we need
Λ(L) : A → A∨ to factor through [2n]A. Now [2n]A : A → A is a K-torsor where K is the
finite flat S-group scheme ker([2n]A). By flat descent, Λ(L) factors through [2n]A if and

only if Λ(L)|K is “constantly zero”, i.e., equal to e∨ ◦π : K
π−→ S

e∨−→ A∨. Of course without
a suitable base change there is no reason for this to hold. Let K ′ be the kernel of Λ(L)|K .
Using the fact that K is finite flat over S, one can show that there exists a maximal closed
subscheme S1 ⊂ S such that K|S1

= K ′|S1
.

The desired S0 is certainly contained in S1, so we may replace S by S1. Thus we may
assume that Λ(L) factors through [2n]A, and so we can find a (necessarily unique) isogeny
λ : A → A∨ such that Λ(L) = 2nλ. Since we have assumed that Λ(L) is an isogeny, the
same proof as Proposition 30.2.1 shows that Λ(L) is a symmetric isogeny. Therefore λ is
a symmetric isogeny by Lemma 30.2.3. Now (L, ρ) and (L∆(λ), ρcan) correspond to two
sections of PicA/S → S. The desired locus S0 is the maximal closed subscheme of S over
which the two sections agree, which exists (maybe empty) since PicA/S → S is separated. □

31. Lecture 31

31.1. More on symmetric isogenies.

Proof of Lemma 30.2.3. Recall that L∆(λ) is the pullback of P along

A
∆−→ A×A (id,λ)−−−→ A×A∨,

and L∆(nλ) is the pullback of P along

A
∆−→ A×A (id,λ)−−−→ A×A∨ (id,[n]A∨ )−−−−−−→ A×A∨.

By the moduli interpretation of the group law on A∨, we have (id, [n]A∨)∗P ∼= Pn. Hence
L∆(nλ) ∼= L∆(λ)n, and Λ(L∆(nλ)) = nΛ(L∆(λ)). Thus the lemma follows from the fact
that two isogenies f, g : A → B between abelian varieties are equal if mf = mg for some
m ≥ 1. □

Proposition 31.1.1. Let λ : A→ A∨ be a homomorphism. Then the following are equiva-
lent. (In the literature one often finds (2) as the definition of a polarization.)

(1) λ is a polarization.
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(2) λ is a symmetric isogeny, and L∆(λ) is relatively ample with respect to A→ S.

Proof. All the three notions “polarization”, “symmetric isogeny”, “relatively ample” can be
checked fiberwise, so we may assume that S is the spectrum of an algebraically closed field
k. (Then relatively ample just means ample.)

(1) ⇒ (2). By Proposition 30.2.1, λ is a symmetric isogeny. By definition λ = Λ(L) for
some ample L. Then by being symmetric we have 2λ = Λ(L∆(λ)). Now 2λ = Λ(L2) and
L2 is ample. In order to show that L∆(λ) is ample, it suffices to show the following claim:
A line bundle M on A is ample if Λ(M) = Λ(M0) for some ample M0. To show the claim,
note that Λ(M ⊗M−1

0 ) = 0 and so we can find x ∈ A(k) such thatM ⊗M−1
0
∼= Λ(M0)(x) =

t∗xM0⊗M−1
0 . ThenM ∼= t∗xM0 is ample. (Exactly the same argument appeared in the proof

of Corollary 25.1.2).
(2) ⇒ (1). We admit the following fact ([Mum08, §23, Thm. 3]): For any line bundle M

on A, if A[m] ⊂ ker(Λ(M)), then M admits an m-th root, that is, there exists a line bundle
N on A such that Nm = M . Now since Λ(L∆(λ)) = 2λ, we have L∆(λ) = L2 for some
line bundle L. Then 2Λ(L) = 2λ, and so Λ(L) = λ. To finish the proof it suffices to show
that L is ample. Since Λ(L2) = Λ(L∆(λ)) and L∆(λ) is ample, by the claim in the previous
paragraph we know that L2 is ample. Hence L is ample. □

Remark. Our definition of a symmetric isogeny is not the standard definition, which in-
volves the notion of dual isogenies and the identification A ∼= (A∨)∨. According to the
standard definition, λ is symmetric if λ∨ : (A∨)∨ ∼= A→ A∨ is equal to λ. The two defini-
tions are equivalent, because in general we have Λ(L∆(λ)) = λ+λ∨; see the proof of [Lan13,
Prop. 1.3.2.14].

Remark. There is an analogy between the duality of abelian schemes and the duality
of vector spaces. Thus the notions of a homomorphism A → A∨, an isogeny A → A∨,
a symmetric isogeny A → A∨, and a polarization on A respectively correspond to, loosely
speaking, a bilinear pairing on a vector space (say over Q), a non-degenerate bilinear pairing,
a symmetric non-degenerate bilinear pairing, and a positive definite symmetric bilinear
pairing.

32. Lecture 32

32.1. Automatic deformation of abelian group structure.

Remark. In the above proof of Proposition 31.1.1, we used the fact that for any abelian
variety A over an algebraically closed field k and any line bundle M on A, if A[m] ⊂
ker(Λ(M)), then M admits an m-th root. The set of all m-th roots of M is a torsor under
PicA/k[m](k), which is exactly A∨[m](k), as π0(PicA/k) is torsion-free. Since A∨ is an
abelian variety of the same dimension as A, one can study the possible number of k-points
of A[m]. e.g., if char(k) = 0, then we have m2 dimA points.

We briefly summarize some of the most important facts we have proven thus far.

(1) (“Riemann–Roch”) For L an ample line bundle on an abelian variety A over an

algebraically closed field k, we have that H0(A,L) has rank equal to
√
deg Λ(L)

and Hi(A,L) = 0 for i > 0.
(2) For such L, we know that L3 is very ample.
(3) Suppose A/S is a projective abelian scheme and S is noetherian. Let (L, ρ) be a

pair where L is a line bundle on A such that Λ(L) : A → A∨ is an isogeny and

ρ : e∗L
∼−→ OS is an isomorphism. Given n ≥ 1, there exists a (unique) closed
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subscheme S0 ⊂ S such that for all S-schemes T , the morphism T → S factors
through S0 if and only if on T , we have (L, ρ)T ∼= (L∆(nλ), ρcan) for a unique
symmetric isogeny λ : AT → A∨

T .

We wish to add another important fact to this list, a theorem of Grothendieck.

Theorem 32.1.1 (Automatics deformation of abelian group structure). Suppose S is a
connected, locally noetherian scheme, π : A→ S is a projective and smooth morphism, and
e : S → A is a section of π. Suppose further that there is a geometric point s : Spec k → S
of S such that πs : As → Spec k is an abelian variety with zero section es (the base change
of e). Then π : A→ S is an abelian scheme with zero section e.

Remark. In the following, we simply say that (π, e) is an abelian scheme when we mean
that π : A → S is an abelian scheme with zero section e. Recall that the group structure
on an abelian scheme is uniquely determined by the zero section. Hence whether (πs, es) or
(π, e) is an abelian scheme is a question of the existence of a group scheme structure.

The proof of this theorem proceeds in three steps. We leave the complete proof of the
theorem as a presentation topic; see [MFK94, §6.3]. In the course we shall only discuss the
first step, which we should consider as an infinitesimal version of the theorem.

Suppose R is a local Artin ring with maximal ideal m and residue field k. Consider a
quotient ring R0 = R/I where I satisfies mI = 0 (which in particular implies that I2 = 0).
Such a quotient map R → R0 is often called a small extension of local Artin rings, and in
general any surjection of local Artin rings can be factored into finitely many small extensions.
We write S = SpecR and S0 = SpecR0.

Proposition 32.1.2. Let π : A → S be a proper and smooth morphism and e : S → A a
section such that (π0, e0) := (π, e) ×S S0 is an abelian scheme. Then (π, e) is an abelian
scheme.

Remark. The proof uses obstruction theory. Similar considerations also imply that any
proper smooth morphism A0 → S0 together with section e0 automatically deforms to proper
smooth A → S together with section e. Combining this fact with the proposition, we see
that any abelian scheme over S0 always deforms to an abelian scheme over S.

33. Lecture 33

33.1. Automatic deformation of abelian group structure, continued.

Proof of Proposition 32.1.2. Let A := A ×S Spec k. We can encode the group structure of
(A0, e0) into the difference map µ0 : A0×S0 A0 → A0, (x, y) 7→ x− y. The goal is to deform
µ0 to a map µ : A×S A→ A satisfying the group axioms (that is, we define the group law
+ : A×S A→ A using the zero section e and the difference map µ by x+ y := x− (0− y),
and require that + satisfies the group axioms). The possibility of lifting µ0 to µ (without
worrying about the group axioms) is controlled by the vanishing of a certain

β ∈ H1(A×k A,µ
∗(T ⊗k I)),

where T is the tangent bundle of A, I is as in R0 = R/I (thus a finite -dimensional k-vector
space), and µ : A×k A→ A is induced by µ0. We would like to show that β0.

Define g1 : A0 → A0 ×S0 A0 via x 7→ (x, 0) and g2 : A0 → A0 ×S0 A0 via x 7→ (x, x). We
have µ0 ◦ g1 = id : A0 → A0 and µ0 ◦ g2 = e0 ◦ π : A0 → A0.
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Briefly, suppose that g : B ×S S0 → A0 ×S0 A0 is an arbitrary morphism where B is
any proper smooth S-scheme. Then one acquires a morphism µ0 ◦ g : B ×S S0 → A0. The
obstruction to deform µ0 ◦ g to a morphism B → A is controlled by

g∗β ∈ H1(B, g∗µ∗(T ⊗k I)),

where g : B×S Spec k → A is induced by g. As such, in our case, the obstruction to deform
µ0 ◦ gi to a morphism A→ A is

gi
∗β ∈ H1(A, gi

∗µ∗(T ⊗k I)).

Notice that µ0 ◦ g1 deforms to idA and µ0 ◦ g2 deforms to e ◦ π. So gi
∗β = 0 for i = 1, 2.

We will use this information to show that β = 0.
We have T ∼= OA ⊗k T where T is the tangent space at zero TeA (which is a finite

dimensional k-vector space); this description of the tangent bundle is a general fact that
holds for any group variety over a field.

To simplify notation, for any variety Y over k we write Hi(Y ) for Hi(Y,OY ). Defining
the k-vector space W := T ⊗k I, we have β ∈ H1(A×k A)⊗k W and gi

∗β ∈ H1(A)⊗k W .
Pick an arbitrary k-linear map q :W → k, and let

βq ∈ H1(A×k A)⊗k k = H1(A×k A)

be the functorial image of β under q. It suffices to prove that βq = 0 since q is arbitrary.
Now from gi

∗β = 0 we have
gi

∗βq = 0 ∈ H1(A).

By the Künneth formula, we have

H1(A×k A) = p∗1H
1(A)⊕ p∗2H1(A).

Write
βq = p∗1β1 + p∗2β2

where βi ∈ H1(A). We have

0 = g1
∗βq = g1

∗p∗1β1 + g1
∗p∗2β2 = β1 + 0

and
0 = g2

∗β = β1 + β2.

Hence β1 = β2 = 0, and so βq = 0 as desired.
We have shown that µ0 lifts to µ : A ×k A → A. The choice of lift is not unique, and

need not a priori provide a group structure on A.
In fact, the possible choices of lift µ form a torsor under

H0(A×k A,µ
∗(T ⊗k I)) = H0(A×k A)⊗k W =W.

Likewise, deformations of the morphism

e0 = µ0 ◦ (e0, e0) : S0
(e0,e0)−−−−→ A0 ×S0 A0

µ0−→ A0

to S → A either do not exist, or form a torsor under

H0(Spec k, (e, e)∗µ∗(T ⊗k I)) =W.

(Of course we know that we are in the latter case, since e is a deformation of e0.) Therefore,
there is a unique choice of µ such that

µ ◦ (e, e) : S (e,e)−−−→ A×k A
µ−→ A

is equal to e.
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Now it suffices to check that this choice of µ satisfies the group axioms. In [MFK94,
Prop. 6.15] Mumford suggests that one employs the Rigidity Lemma for this verification;
this approach might be problematic9. As an alternative solution, we notice that the previous
argument showing the uniqueness of µ deforming µ0 and taking (e, e) to e can be generalized
as follows. Consider

f0 : A0 ×S0 · · · ×S0 A0︸ ︷︷ ︸
m times

→ A0

such that f0◦(e0, . . . , e0) = e0. Then there exists at most one deformation f : A×S · · ·×SA→
A of f0 such that f ◦ (e, . . . , e) = e. The proof is the same as before: The set of f deforming
f0 is either empty or a torsor under W .

Using this uniqueness, one can check all the group axioms. For instance, suppose we
want to check 0− (0− x) = x. Define f : A → A, x 7→ 0− (0− x) and f ′ : A → A, x 7→ x.
Then f and f ′ are deformations of the same map A0 → A0 (because A0 is a group) and
they both take e to e. Here, the fact that f takes e to e follows from the fact that µ takes
(e, e) to e. Thus by the above paragraph we have f = f ′. □

34. Lecture 34

34.1. The moduli problem. We fix integers g ≥ 1, d ≥ 1, N ≥ 3.

Definition 34.1.1. Let Ag,d,N be the functor from the category of noetherian schemes
over Z[1/N ] to the category of sets, sending S to the set of isomorphism classes of triples
(A, λ, γ), where

• π : A→ S is a projective abelian scheme of relative dimension g.
• λ : A→ A∨ is a polarization on A whose degree (as an isogeny) is d2.

• γ is a level-N structure onA, namely an isomorphism of S-group schemes (Z/NZ)2gS
∼−→

A[N ].

Here on morphisms the functor Ag,d,N is defined using the obvious notion of pullback.

Theorem 34.1.2. The functor Ag,d,N is representable.

Remark. (1) For π : A→ S as above, A[N ] is a finite étale group scheme over S, and

étale locally on S it is isomorphic to (Z/NZ)2gS . From this, similar to the modular
curve case, it is easy to show that the functor from S-schemes to sets sending T to
the set of level-N structures on A ×S T is representable by an S-scheme, and that
this S-scheme is a finite étale GL2g(Z/NZ)-torsor on S.

(2) For N ≥ 3, if A is a projective scheme over S and γ is a level-N structure on A,
then there is no non-trivial S-automorphism of A preserving γ.

(3) In view of (1) and (2), by the same argument as in the modular curve case we know
that to prove the theorem for general N ≥ 3 we only need to prove it for two choices
of N that are coprime to each other. In particular, it is enough to prove the theorem
for all sufficiently large N .

(4) The so-called Siegel modular variety, which is the most fundamental example of a
Shimura variety, is the subfunctor of Ag,d,N where a certain compatibility condition
between λ and γ is imposed. More precisely, for (A, λ, γ) over S, there is a canonical

9It seems that the best one could prove using the Rigidity Lemma [MFK94, Prop. 6.1] (note that

[MFK94, Cor. 6.2] is not directly applicable since the target is not known to be a group) is that certain

maps A×S · · · ×S A → A factor through e : S → A. Thus one would be able to prove statements about µ
and e such as x−x = 0 or (x−(x−y))−y = 0, but not the statements about the equality of two morphisms,

such as the axiom 0 + x = x, meaning 0− (0− x) = x.
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S-scheme morphism A[N ] ×S A
∨[N ] → µN,S which is bilinear with respect to the

group structures, and from this we obtain a bilinear map

(Z/NZ)2gS ×S (Z/NZ)2gS
(γ,γ)−−−→ A[N ]×S A[N ]

(id,λ)−−−→ A[N ]×S A
∨[N ]→ µN,S .

The Siegel modular variety is defined by asking that the last map should belong to a
certain prescribed list. Once we know the representability of Ag,d,N , we immediately
deduce that the Siegel modular variety is represented by a union of some connected
components of Ag,d,N .

We will prove the theorem in two steps. Firstly, we consider a “framed” version of the
moduli problem, namely a functor Hg,d,N which classifies (A, λ, γ) together with an extra
structure of a projective embedding into some fixed Pm. (The precise meaning of this will
be made clear soon.) We will show that Hg,d,N is representable by relating it to Hilbert
schemes. Secondly, we show that the natural PGLm+1-action on Hg,d,N (by acting on the
projective space Pm) admits a “nice” quotient, and this quotient is the desired scheme
representing Ag,d,N .

34.2. The framed moduli problem. We make precise the definition of Hg,d,N . First we
make some observations. Let S be a noetherian Z[1/N ]-scheme, π : A → S a projective
abelian scheme of relative dimension g, and λ : A → A∨ a polarization of degree d2. Then
L∆(λ) is relatively ample with respect to π by Proposition 31.1.1, and then by Theorem
29.2.1 (4) L∆(λ)3 = L∆(3λ) is relatively very ample. Thus we have canonical closed im-
mersion A→ P(π∗L∆(3λ)). Moreover, by Theorem 29.2.1 (1) (2), we have Riπ∗L

∆(3λ) = 0

for i ≥ 1, and π∗L
∆(3λ) is a vector bundle on S of rank r =

√
deg Λ(L∆(3λ)). Since

3λ is a symmetric isogeny, we have Λ(L∆(3λ)) = 6λ, and hence r = 6gd. (Recall that
deg[n]A = n2g.) Set

m = 6gd− 1

once and for all. Thus if we localize S and trivialize the vector bundle π∗L
∆(3λ), then

P(π∗L∆(3λ)) is isomorphic to Pm
S . This motivates the following definition.

Definition 34.2.1. By a linear rigidification of (A, λ), we mean the choice of an S-
isomorphism

ϕ : P(π∗L∆(3λ))
∼−→ Pm

S .

We explain that this notion behaves well with base change. Suppose we have T → S,
then a linear rigidification ϕ of (A, λ) will determine a linear rigidification of (AT , λT ) (the
base change of (A, λ) from S to T ) as follows. Write L for L∆(3λ). First note that the line
bundle L∆(3λT ) on AT is canonically identified with L|AT

, the base change of L on A to
AT . Second, since Riπ∗L = 0 for all i ≥ 1, we know that the formation of π∗L commutes
with base change, i.e., that πT,∗(L|AT

) is canonically isomorphic to π∗L⊗OS
OT . Combining

these two facts, we see that P(πT,∗L
∆(3λT )) is canonically identified with P(π∗L∆(3λ))×ST .

Hence a linear rigidification of (A, λ) canonically induces one for (AT , λT ).
By the above discussion, it makes sense to define the following functor.

Definition 34.2.2. Let Hg,d,N be the functor from the category of noetherian schemes over
Z[1/N ] to the category of sets, sending S to the set of isomorphism classes of quadruples
(A, λ, γ, ϕ), where (A, λ, γ) is a triple over S as in the definition of Ag,d,N , and ϕ is a linear
rigidification of (A, λ).

The strategy to show that Hg,d,N is representable is to embed it into a larger functor
which is closely related to Hilbert schemes.
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Definition 34.2.3. Let H̃ be the functor from the category of noetherian schemes over
Z[1/N ] to the category of sets, sending S to the set of closed subschemes Z ⊂ Pm

S that are
flat over S together with 2g + 1 sections σ0, · · · , σ2g : S → Z.

We construct a natural transformation Hg,d,N → H̃ as follows. Let S be a noetherian
Z[1/N ]-scheme, and let (A, λ, γ, ϕ) ∈ Hg,d,N (S). We define an element (Z, σ0, · · · , σ2g) ∈
H̃(S) as follows. From (A, λ, ϕ), we obtain a closed immersion A ↪→ P(π∗L∆(3λ))

ϕ−→ Pm
S ;

this is our definition of Z. Define σ0 to be the neutral section e of A. The S-scheme
(Z/NZ)2gS has 2g canonical sections, corresponding to the basis vectors

(0, . . . , 0, 1, 0, · · · , 0) ∈ (Z/NZ)2g.
Using γ, we view these 2g sections as sections σ1, · · · , σ2g of A. This completes the definition

of the map Hg,d,N (S)→ H̃(S).
In the next lecture, we will show that Hg,d,N → H̃ is a subfunctor, and is locally closed,

i.e., roughly, for any ξ ∈ H̃(S), we have a locally closed locus in S over which ξ comes from
Hg,d,N .

The point of this is that by standard theory of Hilbert schemes, H̃ is representable. It
then follows that the locally closed subfunctor Hg,d,N is also representable (by a locally

closed subscheme of the scheme representing H̃).

35. Lecture 35

35.1. The framed moduli problem, continued. Recall that we are interested in proving
the representability of the functorAg,d,N . For this, we are first studying an auxiliary functor,
the framed moduli functor Hg,d,N given by sending a noetherian scheme S over Z[1/N ] to
the set of isomorphism classes of quadruples (A, λ, γ, ϕ) where:

• π : A→ S is a projective abelian scheme of relative dimension g
• λ : A→ A∨ is a polarization of degree d2

• γ : (Z/NZ)2gS
∼−→ A[N ] is an isomorphism of S-group schemes

• ϕ : P(π∗L∆(3λ))
∼−→ Pm

S is an S-isomorphism, called linear rigidification, where
m = 6gd− 1.

From the data of an element of Hg,d,N (S), we canonically acquire a closed embedding
ican : A ↪→ Pm

S defined as the composition

A ↪→ P(π∗L∆(3λ))
∼−→ Pm

S

where the first arrow is a closed embedding given by the relative very ampleness of L∆(3λ).

We define another auxiliary functor H̃ sending a noetherian scheme over Z[1/N ] to the set
of closed subschemes Z ⊂ Pm

S flat over S together with 2g + 1 sections σ0, . . . , σ2g : S → Z.

We obtain a natural transformation Hg,d,N → H̃ given by sending (A, λ, γ, ϕ) ∈ Hg,d,N (S)

to an element of H̃(S) in the following way:

• ican : A ↪→ Pm
S is a closed subscheme where A is clearly flat over S, as π : A→ S is

smooth since it is an abelian scheme
• σ0 = e : S → A is the identity section
• For each 1 ≤ i ≤ 2g, define fi := (0, . . . , 1, . . . , 0) ∈ (Z/NZ)2g with only identity in
the ith entry and 0 elsewhere. Then we obtain 2g sections

σi : S
fi−→ (Z/NZ)2gS

γ−→ A[N ] ⊂ A.

Proposition 35.1.1 ([MFK94, Chap. 7, §2]). The map Hg,d,N (S)→ H̃(S) is injective.
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Proof. From A ⊂ Pm
S and σ0 = e, we recover the abstract abelian scheme structure on A,

that is, the group structure. From σ1, . . . , σ2g we obtain the level structure. To obtain λ,
we need the fact that the pullback of OPm

S
(1) under ϕ differs from O(1) on P(π∗L∆(3λ)) by

something in Pic(S) (by which we mean a line bundle that is the pullback of a line bundle
on S). Similarly, pullback of O(1) on P(π∗L∆(3λ)) to A differs from L∆(3λ) by something
in Pic(S). In particular, we must have i∗canOPm

S
(1) ≡ L∆(3λ) mod π∗ Pic(S). Now recall

that L∆(3λ) is canonically trivialized along e. As such, we have

L∆(3λ) ∼= i∗canOPm
S
(1)⊗ π∗e∗(i∗canOPm

S
(1))−1.

Hence we have recovered L∆(3λ). Applying the Λ-construction, we obtain 6λ, and in par-
ticular we also obtain λ. It remains to recover ϕ. From ican : A → Pm

S and λ, we must

acquire an isomorphism P(π∗L∆(3λ))
∼−→ Pm

S . Define M := e∗i∗canOPm
S
(−1). This is a line

bundle on S. Let f : Pm
S → S be the structure map. By adjunction, we acquire a canonical

morphism:

Φ : f∗OPm
S
(1)⊗OS

M −→ π∗(i
∗
canOPm

S
(1)⊗ π∗M).

We claim that this is an isomorphism. Notice first that both sides are vector bundles
by cohomology and base change, since for each s ∈ S we have H1(Pm

s ,O(1)) = 0 and
H1(As, i

∗
canOPm

S
(1)|As

) = 0 (by the relative ampleness of i∗canOPm
S
(1)). So it suffices to

check that Φ induces isomorphisms on all fibers. Again by the fiberwise vanishing of H1,
formation of pushforwards on each side commutes with base change. Hence we may assume
that S = Spec k where k is an algebraically closed field. In this case, the claim is clear.

By taking the projectivization of both sides of Φ, we then acquire an isomorphism

ψ : P(f∗OPm
S
(1)⊗OS

M)→ P(π∗(i∗canOPm
S
(1)⊗ π∗M)).

The left hand side is isomorphic to Pm
S . Also, by the previous step, we know that

i∗canOPm
S
(1)⊗ π∗M ∼= L∆(3λ).

Hence, ψ can be viewed as an isomorphism Pm
S

∼−→ P(π∗L∆(3λ)). Once checks that ϕ must
be the inverse of ψ, and as such we have recovered ϕ. □

Proposition 35.1.2 ([MFK94, Prop. 7.3]). The natural transformation Hg,d,N ↪→ H̃ is

locally closed, i.e., for all S and all ξ ∈ H̃(S), there exists a unique locally closed subscheme

S0 ⊂ S such that for any T → S, the pullback ξ|T ∈ H̃(T ) lies in Hg,d,N (T ) if and only if
T → S factors through S0.

Proof. Write ξ = (i : A ↪→ Pm
S , e, σ1, . . . , σ2g). The proof proceeds in a few steps.

(1) Note that there is a unique open subscheme S′ ⊂ S such that for all geometric
points s of S, the base change As is smooth if and only if s belongs to S′. Hence
we may replace S by S′, and in particular we may assume that A→ S is smooth.

(2) Since A→ S is smooth and proper, we can apply Theorem 32.1.1, which states that
for each connected component S+ of S, if (A, e) becomes an abelian scheme when
base changed to one geometric point of S+, then (A, e) is an abelian scheme on S+.
So we can and must throw away all connected components of S not satisfying this
condition. Then for the new S, the pair (A, e) is an abelian scheme over S.

(3) Asking that σ1, . . . , σ2g are sections of A[N ] (instead of just sections of A) is a closed
condition on S. For them to define a level structure γ is an open condition. Thus
we may assume that σ1, . . . , σ2g indeed come from a (unique) level structure γ.
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(4) To conclude, it suffices to show that the condition that i comes from a polarization
λ together with a linear rigidification ϕ is also locally closed on S. We will do this
next time.

□

36. Lecture 36

Proof of Proposition 35.1.2, continued. Write ξ = (i : A ↪→ Pm
S , σ0, . . . , σ2g) where m =

6gd − 1. We showed last time that we may assume that (A, σ0) is an abelian scheme and
(σ1, . . . , σ2g) corresponds to a level-N structure on A. Now we need to show that there

exists S0 ⊂ S such that over S0, the inclusion i : A ↪→ Pm
S comes from A

can−−→ P(π∗L∆(3λ))

for a polarization λ of degree d2 and a linear rigidification ϕ : P(π∗L∆(3λ))
∼−→ Pm

S0
and

similarly after base change.
Now recall Proposition 30.2.4: fix (L, ρ) on A where L is a line bundle, ρ : e∗L

∼−→ OS

is an isomorphism, and such that Λ(L) : A → A∨ is an isogeny (e.g., if L is relatively
ample). Then there exists a locally closed S1 ⊂ S such that for any S-scheme T , the
morphism T → S factors through S1 if and only if (L, ρ)T ∼= (L∆(3λ), ρcan) for some
(unique) symmetric isogeny λ : AT → A∨

T . Now in our current setting we define

L = i∗O(1)⊗ π∗e∗i∗O(1)−1

and take ρ : e∗L
∼−→ OS to be the canonical isomorphism. Here, L is relatively ample, so

we can apply Proposition 30.2.4 to (L, ρ) and find a locally closed S1 ⊂ S over which (L, ρ)
comes from a unique symmetric isogeny λ via L∆(3λ). Here the idea is that if i indeed
comes from some polarization λ′ and linear rigidification ϕ, then we must have L ∼= L∆(3λ′)
by the same argument as the proof of Proposition 35.1.1. Thus the sought-after S0 must be
contained in S1, and λ

′ must be λ (by the uniqueness in Proposition 30.2.4).
Since the third power of L∆(λ) is L, which is relatively ample, we know that L∆(λ)

is relatively ample. Further, λ is symmetric. This implies that λ is a polarization by
Proposition 31.1.1.

We may replace S by S1. So we have reduced to the case where we have a unique
polarization λ on A such that

i∗O(1)⊗ π∗e∗i∗O(1)−1 ∼= L∆(3λ).

Finally, we just need to find S0 ⊂ S over which i : A ↪→ Pm
S0

factors as (ϕ ◦ can) where

ϕ : P(π∗L∆(3λ))
∼−→ Pm

S0
is an isomorphism and can : A ↪→ P(π∗L∆(3λ)) is the canonical

embedding. To be precise, as in the proof of Proposition 35.1.1, in our current situation we
already have a map of coherent OS-modules

Φ : f∗O(1)⊗OS
e∗i∗O(−1) −→ π∗(L

∆(3λ)),

where f : Pm
S → S is the structure morphism. If i factors as ϕ ◦ can, then Φ must be an

isomorphism and ϕ must be the inverse of P(Φ), and vice versa. Hence the sought-after S0

is just the open subscheme of S over which Φ is an isomorphism. □

36.1. Hilbert schemes. Fix an integer n ≥ 1. We define a functor HilbPn from locally
noetherian schemes to sets sending each S to the set of all closed subschemes Z ⊂ Pn

S such
that Z is flat over S.

Theorem 36.1.1 (Grothendieck). The functor HilbPn is representable by a locally noether-
ian scheme, still denoted by HilbPn .
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Write H for HilbPn . We have the universal closed subscheme Zuniv ⊂ Pn
H which is flat

over H. Using this, we can easily represent certain variations of the functor HilbPn . For
instance, for r ≥ 1, we define a functor HilbPn,r by sending a locally noetherian scheme S
to the set of all closed subschemes Z ⊂ Pn

S with Z flat over S, along with the data of r
(ordered) sections S → Z. The functor HilbPn,r is representable by the r-fold product

Zuniv ×H · · · ×H Zuniv.

In particular, we have that H̃ = HilbPm,2g+1×SpecZ SpecZ[1/N ] is representable. One
issue is that HilbPn and HilbPn,r are too large. We want to shrink them to more manageable
subschemes.

To do this, we will need the notion of Hilbert polynomials. For a closed subscheme
Z ⊂ Pn

k where k is algebraically closed, we obtain a polynomial PZ(T ) ∈ Z[T ] such that for
all n ∈ Z, we have PZ(n) = χ(OZ(n)), where OZ(n) is the nth power of O(1)|Z .

A basic fact is that for S locally noetherian connected and Z ⊂ Pn
S a closed subscheme

flat over S, for geometric points s of S the polynomial PZs(T ) is independent of s. Thus we
obtain a natural decomposition

HilbPn =
∐

P (T )∈Z[T ]

Hilb
P (T )
Pn

where each Hilb
P (T )
Pn is open and closed (i.e., a union of connected components) in HilbPn ,

determined by the condition that over its geometric points the Hilbert polynomial of Zuniv

is P (T ).

Theorem 36.1.2 (Grothendieck). Each Hilb
P (T )
Pn is a quasi-projective scheme over Z.

Similarly, we define Hilb
P (T )
Pn,r := HilbPn,r ×HilbPn Hilb

P (T )
Pn ; the moduli problem it repre-

sents is clear. This is again a quasi-projective scheme over Z, since HilbPn,r is obviously
projective over HilbPn .

Lemma 36.1.3. The subscheme Hg,d,N ⊂ H̃ = HilbPm,2g+1[1/N ] is contained in

Hilb
P (T )
Pm,2g+1

for an explicit P (T ). In particular, Hg,d,N is quasi-projective over Z[1/N ].

Proof. We will compute the Hilbert polynomial P (T ). Take an arbitrary some (A, λ, γ, ϕ) ∈
Hg,d,N (k) where k is algebraically closed. As usual we obtain

i = ican : A ↪→ P(π∗L∆(3λ))
ϕ−→ Pm

k .

We need to compute Pi(A)(T ).
Take any integer n ≥ 1. We have

Pi(A)(n) = χ(i∗O(n)) = χ(L∆(3λ)⊗n) = χ(L∆(3nλ)).

Note that L∆(3nλ) is ample. Hence by Corollary 25.1.2 and Theorem 26.1.1 we have

χ(L∆(3nλ)) = h0(L∆(3nλ)) =
√

deg Λ(L∆(3nλ))

=
√
deg 6nλ =

√
deg[6n] · deg λ = (6n)gd = 6gd · ng.

Since n ≥ 1 is arbitrary, Pi(A)(T ) must be 6gdT g. We have thus shown that Hg,d,N is

contained in Hilb6
gdT g

Pm,2g+1 . □
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36.2. The projective linear group. The idea is to roughly construct Ag,d,N as a quotient
Hg,d,N/PGLm+1, where PGLm+1 acts by modifying the linear rigidification

ϕ : P(π∗(L∆(3λ)))
∼−→ Pm

S

via its natural action on Pm
S .

Recall that PGLn is roughly speaking the group GLn modulo the scalars. As a group
scheme, we define PGLn as ProjZ[a11, a12, . . . , ann] minus the locus where det(aij) = 0.

Then PGLn is an open subscheme of Pn2−1
Z . The group structure is simply given by matrix

multiplication. We know that PGLn is a smooth group scheme over Z. For each scheme
S, the group PGLn(S) acts on Pn

S via linear transformations, which are S-scheme automor-
phisms of Pn

S .
We have the following important non-trivial fact:

Fact 36.2.1 (See [MFK94, Chap. 0, §5, (b) ]). For each noetherian scheme S, the homo-
morphism PGLn(S)→ AutS-sch Pn−1

S is an isomorphism.

37. Lecture 37

37.1. The “most ideal” quotient. For g, d ≥ 1 and N ≥ 3, we have shown that Hg,d,N

is representable by a locally closed subscheme of the quasi-projective Z-scheme Hilb
P (T )
Pm,2g+1,

where m = 6gd− 1 and P (T ) = 6gdT g.
Recall that for a group scheme G over Z and a scheme X over Z, a G-action on X means

a functorial collection of G(S)-actions on X(S) for all test schemes S. In particular, the
action determines and is determined by a morphism G×X → X, which we call the action
morphism.

We have a natural PGLm+1-action on Hg,d,N as follows: For g ∈ PGLm+1(S) and
(A, λ, γ, ϕ) ∈ Hg,d,N (S), we define g(A, λ, γ, ϕ) ∈ Hg,d,N (S) to be (A, λ, γ, g ◦ ϕ), where
in writing g ◦ϕ we think of g as an S-scheme automorphism of Pm

S . Our idea of showing the
representability of Ag,d,N is to construct it as a suitable quotient of Hg,d,N by PGLm+1. Of
course we need to make precise the notion of a quotient. In general, there are many possible
versions of the notion of a quotient, but we will only need the version which is in some sense
the most ideal. That is, we ask that the quotient map should be a PGLm+1-torsor in the
following sense. We keep the convention that all schemes are locally noetherian.

Definition 37.1.1. Let G = PGLn, or more generally any finite-type flat group scheme
over Z. Let X be a scheme equipped with a G-action. We say that a scheme map Φ : X → Y
is a G-torsor, if it satisfies the following conditions:

(1) It is of finite type, and flat.
(2) It is G-invariant, where G acts trivially on Y . In other words, for any scheme S,

the map Φ : X(S)→ Y (S) is G(S)-invariant, where G(S) acts trivially on Y (S).
(3) By (2), we have a map G ×SpecZ X → X ×Y X which on S-points is given by

(g, x) 7→ (g · x, x). (Here the fiber product X ×Y X is formed with respect to
Φ : X → Y .) We ask that this map is an isomorphism.

Remark. If Φ : X → Y is a G-torsor, then one should think of Y as an “ideal quotient”
of X by G. When the scheme X with G-action is fixed, there can exist at most one pair
(Φ, Y ) up to unique isomorphism. That is, if (Φ, Y ) and (Φ′, Y ′) are two pairs, then there

exists a unique isomorphism u : Y
∼−→ Y ′ such that u ◦ Φ = Φ′. On the other hand, the

existence of a pair (Φ, Y ) is a very subtle issue; it depends on how “good” the G-action on
X is.
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Theorem 37.1.2. Fix g, d ≥ 1. For all N sufficiently large with respect to (g, d), the
scheme Hg,d,N with PGLm+1-action (where m = 6gd − 1 as always) admits a PGLm+1-
torsor Hg,d,N → Y . Moreover, Y is quasi-projective over Z.

Proposition 37.1.3. Let Y be as in Theorem 37.1.2. There is an isomorphism between
(the functor of points of) the scheme Y and the functor Ag,d,N , under which the map
Hg,d,N → Y corresponds to the natural forgetful map Hg,d,N → Ag,d,N . In particular,
Ag,d,N is representable by a quasi-projective Z-scheme as long as N is large enough with
respect to (g, d).

Proof. The proof is formal in the sense that it doesn’t require the knowledge of how Y is
constructed, but just the fact that we have a PGLm+1-torsor Hg,d,N → Y . See [MFK94,
Prop. 7.6]. The basic idea is that supposing (A, λ, γ, ϕ) is the universal object over Hg,d,N ,
we want to show that the polarized abelian scheme with level-N structure (A, λ, γ) descends
to Y , and that the descended object over Y is the universal object for the moduli functor
Ag,d,N . □

We have already observed that for fixed (g, d), the representability of Ag,d,N for all
N ≥ 3 follows from the representability of Ag,d,N for all sufficiently large N , or even just
two coprime choices of N . Thus we have completed the proof of Theorem 34.1.2 modulo
Theorem 37.1.2.

37.2. A blackbox from Geometric Invariant Theory. In order to prove Theorem
37.1.2, we introduce a huge blackbox which gives a sufficient condition for a scheme X
with a PGLn+1-action to admit a PGLn+1-torsor X → Y . In the following we fix n, and
let G denote PGLn+1.

Definition 37.2.1. Let k be an algebraically closed field, and l a positive integer. We say
a collection C of l points in Pn

k (k) is stable, if for every proper linear subspace H ⊊ Pn
k , we

have
|C ∩H|

l
<

dimH + 1

n+ 1
.

For example, in P2
k(k), a collection of 4 points is stable if and only if no 3 of the points

are colinear. In general, by considering 0-dimensional H, we see that a necessary condition
for any collection of l points in Pn

k (k) to be stable is that l > n+ 1.

Fact 37.2.2. Let l ≥ 1. There is a unique maximal open subscheme (Pn)lstable of (Pn)l

(where Pn is over Z) such that for every algebraically closed field k and every

ξ = (ξ1, · · · , ξl) ∈ (Pn)lstable(k),

the l components ξi of ξ form a stable collection of l points in Pn
k (k).

Note that the natural diagonal action of G on (Pn)l stabilizes the open subscheme
(Pn)lstable. Here is the blackbox.

Theorem 37.2.3. Suppose X is a finite-type Z-scheme with a G-action. Assume that there
exists a G-equivariant morphism f : X → (Pn)lstable for some l ≥ 1. Assume the following
technical condition:

(*) There exists a G-equivariant line bundle L on X such that L is relatively ample with
respect to f .

Then there exists a G-torsor X → Y and Y is quasi-projective over Z.



ABELIAN VARIETIES AND SHIMURA VARIETIES 73

Proof. Combine [MFK94, Def. 3.7/Prop. 3.4, Thm. 3.8, Prop. 7.1]. □

Here, a G-equivariant line bundle on X means a line bundle L on X together with a
G-equivariance structure, meaning an isomorphism σ∗L

∼−→ p∗2L satisfying certain “cocycle
conditions”, where σ is the action morphism G ×X → X and p2 is the second projection
G×X → X. See [MFK94, Chap. 1, §3] for more details, where a G-equivariance structure
is called a G-linearization.

For our application to X = Hg,d,N with the PGLm+1-action, the technical condition
(*) is always automatically satisfied. The real challenge is to construct a G-equivariant
f : Hg,d,N → (Pm)lstable for some l.

37.3. Mapping into the stable locus. We will prove the following lemma in the next
lecture, using some intersection theory.

Lemma 37.3.1. Let k be an algebraically closed field. Let A be an abelian variety over k
embedded in some Pn

k such that it is not contained in any hyperplane. Let g be the dimension
of A, and let r be the degree of A as a closed subvariety of Pn

k . Let N be any integer larger

than
√
(n+ 1)r and coprime to char(k). Then the set A[N ](k), viewed as a collection of

N2g points in Pn
k (k), is stable.

Proof of Theorem 37.1.2. We prove the theorem for N > 6gd
√
g!. Let G = PGLm+1. We

construct a G-equivariant map f : Hg,d,N → (Pm)N
2g

as follows. Fix an enumeration
y1, · · · , yN2g of (Z/NZ)2g. Let S be a noetherian Z[1/N ]-scheme, and let ξ = (A, λ, γ, ϕ) ∈
Hg,d,N (S). As usual, from ξ we obtain a canonical closed embedding ican : A ↪→ Pm

S which is
the composition of the canonical closed embedding A ↪→ P(π∗L∆(3λ)) and the isomorphism

ϕ : P(π∗L∆(3λ))
∼−→ Pm

S . We can view each yi as a section in (Z/NZ)S(S), and thus we get a
section ican(γ(yi)) ∈ Pm

S (S). We define f(ξ) = (ican(γ(y1)), · · · , ican(γ(yN2g ))) . The above

construction ξ 7→ f(ξ) is functorial in S, so we obtain morphism f : Hg,d,N → (Pm)N
2g

,
which is clearly G-equivariant.

By Theorem 37.2.3, to complete the proof we only need to check that f lands in the stable
locus, and that (*) is satisfied. For the first, it suffices to show that for any algebraically
closed field k whose characteristic is coprime to N and any ξ = (A, λ, γ, ϕ) ∈ Hg,d,N (k),
the collection ican(A[N ](k)) of N2g points in Pm

k (k) is stable. By Lemma 37.3.1, it suffices

to show that N >
√
(m+ 1)r where r is the degree of ican(A). Recall that the degree of

a projective variety is equal to the factorial of the dimension times the leading coefficient
of the Hilbert polynomial. We have shown before that the Hilbert polynomial of ican(A) is
P (T ) = 6gdT g. Hence r = g!6gd. Also m + 1 = 6gd, so the desired bound is N > 6gd

√
g!,

which is what we initially assumed.
To check (*), it suffices to show that Hg,d,N admits a G-equivariant line bundle which is

absolutely ample. Now Hg,d,N is a G-equivariant locally closed subscheme of Hilb
P (T )
Pm,2g+1,

and it is a general fact that the latter admits a G-equivariant line bundle which is absolutely
ample. Pulling back to Hg,d,N we obtain an absolutely ample G-equivariant line bundle.
This concludes the proof. □

At this point, we have proved the representability of Ag,d,N for all N ≥ 3 modulo Lemma
37.3.1.

38. Lecture 38

38.1. Proving the key lemma using intersection theory.
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Proof of Lemma 37.3.1. We follow [MFK94, Prop. 7.7]. The proof uses intersection theory,
which we will assume as a blackbox. First note that it suffices to show that for any given
hyperplane H ⊂ Pn

k (of codimension 1), we have

y :=
#A[N ] ∩H(k)

N2g
<

1

n+ 1
.

We recall the formalism of Chow ring. The standard reference is [Ful98], also cf. [EH16].
Let X be a smooth projective variety over k of dimension g. The Chow ring of a X is a
graded ring CH(X) =

⊕g
i=0 CH

i(X), where CHi(X) is the quotient of the free abelian group
generated by codimension i subvarieties of X (elements of this group are called codimension
i cycles on X) modulo rational equivalence. Here rational equivalence is the equivalence
relation generated additively by the following rule: We set a codimension i cycle

∑
j njZj ,

where each nj ∈ Z and Zj is a codimension i subvariety of X, to be equivalent to 0, if
there is a codimension (i − 1) subvariety W of X, and a rational function f on W , such
that

∑
j njZj is the divisor of f . Note that we do not require W to be smooth, so the

notion of the divisor of a rational function on W is more technical, but we omit the details.
The multiplication on CH(X) is graded-commutative, meaning that for u ∈ CHi(X) and
v ∈ CHj(X) we have u · v = (−1)ijv · u ∈ CHi+j(X). Intuitively, if U is a codimension i
subvariety and V is a codimension j subvariety such that U and V intersect transversally,
then we define [U ] · [V ] to be [U ∩ V ], where [·] denotes the image in CH(X). To really get
this idea to work and obtain a ring structure on CH(X) some non-trivial work is needed.
Finally, we have a homomorphism deg : CHg(A)→ Z sending the class of every closed point
to 1. We introduce the following notation: For u ∈ CHi(X) and v ∈ CHg−i(X), we write
⟨u, v⟩ for |deg(u · v)| ∈ Z≥0. This is regarded as the intersection number of u and v.

Back to our situation, let h = A∩H, a codimension 1 subvariety of A. Pick a codimension
(g− 1) linear subspace U of Pn

k and let γ = A∩U . Let ψ denote [N ]A : A→ A. When U is
“general enough”, γ is a codimension (g − 1) subvariety of A, and both ψ∗γ ∩ h and γ ∩ h
are codimension g subvarieties of Ain Pn

K . By pre-composing the embedding A → Pn
k with

some translation on A (which does not change the previous conditions), we may assume that
eA ∈ γ. In this case, the intersection number ⟨ψ∗γ, h⟩ is larger or equal to #((ψ∗γ)∩h)(k),
which is a finite number larger or equal to N2gy. We claim that for any x ∈ CHg−1(A), we
have ⟨x, ψ∗h⟩ = N2⟨x, h⟩. By the claim, we have

y ≤ N−2g⟨ψ∗γ, h⟩ = N−2g−2⟨ψ∗γ, ψ∗h⟩ = N−2g−2 deg(ψ) · ⟨γ, h⟩ = N−2⟨γ, h⟩.
Now we have ⟨γ, h⟩ = r, which implies the desired bound for y.

To prove the claim, we have a natural isomorphism CH1(A) ∼= Pic(A). Recall that for

L ∈ Pic(A), ψ∗L is algebraically equivalent to L⊗N2

. Translating the fact to the Chow
group side, we have that ψ∗h is algebraically equivalent to N2 · h for a suitable definition
of algebraic equivalence. Under this equivalence the intersection number does not change,
and the claim follows. □

38.2. Galois representations associated to modular forms. We now start a brand
new topic, the Mazur–Ribet Theorem on level-lowering for modular representations over
finite fields. This work shows that the Taniyama–Shimura–Weil Conjecture, which states
that every elliptic curve over Q is modular, implies Fermat’s Last Theorem, which states
that the equation an + bn = cn for n ≥ 3 has no integer solution with abc ̸= 0.

For this part of the course, the original sources are Ribet’s two papers [Rib90, Rib94].
For expositions, see [Pra95, Oes88, Edi97]. Many important concepts that we will encounter
are excellently explained in the two-volume [Sai13, Sai14].
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To start let us recall the basics of modular forms. We will exclusively work with weight-2
cusp forms for Γ0(N) with trivial nebentypus, so in the following we simply call them cusp
forms of level N . We first recall their definition.

Let N be a positive integer and Γ0(N) be the subgroup of SL2(Z) consisting of

(
a b
c d

)
such that c ≡ 0 (mod N). By definition, a cusp form of level N is a holomorphic function
f : H+ → C (where H+ is the upper half plane) satisfying:

(1) For all τ ∈ H+ and

(
a b
c d

)
∈ Γ0(N), we have

f(
aτ + b

cτ + d
) = (cτ + d)2f(τ).

(2) f vanishes at the cusps for Γ0(N). Here recall that Y0(N) = Γ0(N)\H+ is a non-
compact Riemann surface, and it can be completed to a compact Riemann surface
X0(N) by adding finitely many points called cusps.10 The vanishing condition is
precisely formulated by expressing f in terms of a local chart of X0(N) near each
cusp.

In fact, the two conditions precisely mean that the holomorphic differential f(τ)dτ on H+

descends to Y0(N) and then extends to X0(N). Denote the space of all cusp forms of level
N by C (N). Thus C (N) is naturally identified with H0(X0(N),Ω1), the space of (global)
holomorphic differentials on X0(N). In particular, this is a finite-dimensional C-vector
space, of dimension equal to the genus of X0(N).

For each f ∈ C (N), we have a unique q-expansion f(τ) =
∑∞

n=1 anq
n, where an ∈ C

and q = e2πiτ . Conversely, two elements having the same q-expansion are equal. For each
prime number p ̸ |N , we have the Hecke operator Tp : C (N)→ C (N), which in terms of
q-expansions sends f =

∑∞
n=1 anq

n to

∞∑
n=1

anpq
n +

∞∑
n=1

panq
np.

Of course this definition seems ad hoc, and it is not even clear that the above formula defines
an element of C (N). Later we will discuss the geometric origin of Tp.

Now let f =
∑
anq

n ∈ C (N) be a normalized eigenform, meaning that a1 = 1 and f is
an eigenvector for all Tp with p̸ |N . In this case, ap is in fact the eigenvalue of f under Tp,
and the set {ap}p∤N ⊂ C is contained in OK for a number field K. In particular, the ring

R(f) := Z[ap, p̸ |N ]

is a finite free Z-module. These facts follow from the so-called Hecke theory, and we omit
all the proofs. We now fix a subfield F of Fℓ for some prime ℓ, and fix a ring homomorphism
π : R(f)→ F.

By the work of Shimura and others, we have the following result. (In fact, we have a
similar result for cusp forms of weights other than 2 and non-trivial nebentypus as well. For
weights ≥ 2, this is due to Deligne [Del71a]; for weight 1, Deligne–Serre [DS74].) We shall
refer to it as the Shimura–Deligne Theorem.

10Here is the reason why the “missing points” on Y0(N) are called cusps. On Y0(N) we have a natural

Hermitian metric of constant curvature −1 inherited from that on H+. According to this metric, the surface
becomes infinitely narrow near any cusp and yet the cusp is at infinite distance from any point on the

surface.
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Theorem 38.2.1 (See for instance [Oes88, §II.2]). In the above setting, associated to f =∑
anq

n and π : R(f) → F) there is a unique (up to isomorphism) semi-simple continuous
representation ρ = ρf,π : GQ := Gal(Q/Q)→ GL2(F) (where GL2(F) has discrete topology)
with the following properties:

(1) For each prime p ̸ |Nℓ, ρ is unramified at p. This means that for any choice of de-
composition group Dp ⊂ GQ at p (well defined up to conjugacy), the inertia subgroup
Ip of Dp is mapped to {1} under ρ.

(2) By (1), for each p̸ |Nℓ, we have a well-defined conjugacy class ρ(Frobp) in GL2(F).
We require that this conjugacy class has trace π(ap) and determinant p.

In the theorem, since GQ is compact, by Galois theory we know that the continuity of ρ
just amounts to the existence of a finite Galois extension F/Q such that ρ factors through
Gal(F/Q). Thus ρ is essentially just a 2-dimensional semi-simple representation of the
finite group Gal(F/Q) over F. (Since F has positive characteristic, semi-simplicity is not
automatic.) The uniqueness of ρ is easy to show, so the essential part of the theorem is the
existence.

We shall call the representation ρ as in the theorem a modular representation over F,
where the word “modular” means “coming from a modular form”.11 More precisely, we say
that ρ is modular of level N . The purpose of this language is that we want to emphasize
ρ more than remembering f ; we just want to remember the representation ρ itself, and
remember the fact that it is associated to some unspecified f in C (N). It is totally possible
that a given ρ can be modular of level N and modular of level N ′ simultaneously, and that
phenomenon is in fact what the Mazur–Ribet Theorem is trying to understand.

39. Lecture 39

39.1. Statement of the Mazur–Ribet Theorem. Let us recall the concept of a modular
representation from the last lecture.12

Definition 39.1.1. Let F be a subfield of Fℓ for some prime ℓ. Let N be a positive integer.
A representation ρ : GQ = Gal(Q/Q)→ GL2(F) is called modular of level N , if it satisfies
the following conditions:

(1) ρ is continuous and semi-simple, i.e., there exists a finite Galois extension F/Q such
that ρ comes from a semi-simple representation Gal(F/Q)→ GL2(F).

(2) ρ is unramified at each prime p ̸ |Nℓ.
(3) There exists a normalized eigenform f =

∑
n anq

n ∈ C (N) and a ring homomor-
phism π : Z[ap, p̸ |N ] → F such that for each prime p̸ |Nℓ the element ρ(Frobp) ∈
GL2(F) (well defined up to conjugacy) has trace π(ap) and determinant p.

Remark. (1) If ρ is modular, then the character det ρ : GQ → F× sends Frobp to p
for almost all p. Using class field theory (for Q) we see that det ρ must be given
by the ℓ-th cyclotomic character χℓ : GQ → F×

ℓ . The latter is defined by the

rule σ(ζ) = ζχℓ(σ) for all σ ∈ GQ and any primitive ℓ-th root of unity ζ ∈ Q.
In particular, if c ∈ GQ is any choice of complex conjugation (well defined up to

11In the context of representation theory, the word “modular” usually just means representations over
positive characteristic, as in “mod” p.

12In this course we only consider Galois representations associated to weight-2 eigenforms, and we omit
the adjective “weight-2” in the definition of a modular representation. In general the notion of a modular

representation should allow for representations associated to eigenforms of other weights.
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conjugacy), then ρ(c) is of order 2 and has determinant −1, and hence conjugate to

the diagonal matrix

(
1
−1

)
.

(2) Suppose ρ is modular and irreducible, and ℓ ≥ 3. Then ρ is absolutely irreducible,
i.e., irreducible when base changed to F. In fact, if over F there is a 1-dimensional
subrepresentation, then that must be equal to the eigenspace of ρ(c) over F of
eigenvalue either 1 or −1. But ρ(c) is already diagonalizable over F, so that 1-
dimensional subrepresentation is already defined over F, a contradiction.

(3) Let ρ : GQ → GL2(F) be an arbitrary semi-simple continuous representation, where

F ⊂ Fℓ. We say that ρ is defined over a subfield F′ ⊂ F, if there is a semi-simple
continuous representation of GQ over F′ whose base change to F is isomorphic to
ρ. Let Fmin be the subfield of F generated by the coefficients of the characteristic
polynomials of ρ(g) for all g ∈ GQ. Clearly Fmin is a finite field, and is contained
in any field of definition of ρ. Then ρ is in fact defined over Fmin. To see this, we
immediately reduce to the case where F is finite, and we may replace GQ by its finite
image under ρ. Then we use the following general fact (see [DS74, Lem. 6.13]): Any
semi-simple representation ρ of a finite group G over a finite field F is defined over
the minimal subfield of F containing the coefficients of the characteristic polynomials
of ρ(g) for all g ∈ G.

We can now state the Mazur–Ribet Theorem.

Theorem 39.1.2 (Mazur–Ribet). Let F ⊂ Fℓ, and let ρ : GQ → GL2(F) be a modular
representation of level N . Assume that F = Fmin is the minimal field of definition of ρ, so
in particular F is finite. Assume that ρ is irreducible. Let p be an odd prime dividing N
precisely once (we write p∥N), satisfying the following conditions:

(1) ρ is finite at p (see below).
(2) Either p ̸≡ 1 (mod ℓ), or ℓ ̸ |N .

Then ρ is modular of level N/p.

We explain the condition “finite at p”. Let us agree that “F-vector space” always means
“finite-dimensional F-vector space”. We have an equivalence of categories between the
category of F-vector space schemes over Q (i.e., finite commutative group schemes V over
Q together with endomorphisms λ : V → V for all λ ∈ F satisfying the axioms for scalar
multiplication in a vector space; or equivalently, Q-schemes V together with F-vector space
structures on V (S) for all test Q-schemes S which are functorial in S) and the category of
continuous representations ofGQ on F-vector spaces. The equivalence is given by V 7→ V (Q).
Now suppose V is the F-vector space scheme over Q corresponding to ρ. We say that ρ is
finite at p, if the F-vector space scheme V ×SpecQ SpecQp over Qp extends to an F-vector
space scheme over Zp that is flat over Zp.

We comment that if p ̸= ℓ, then ρ is finite at p if and only if it is unramified at p.

39.2. Taniyama–Shimura–Weil implies Fermat. Suppose Fermat’s Last Theorem is
false. Then we can find non-zero integers a, b, c, and a prime ℓ ≥ 5 such that aℓ + bℓ = cℓ

and a ≡ 3 (mod 4), b ≡ 0 (mod 2). (Here we can assume ℓ ≥ 5 because FLT is known
for exponent 4.) We then construct the “Frey curve” E, an elliptic curve over Q given by
y2 = x(x−aℓ)(x+ bℓ). Let ρ : GQ → GL2(Fℓ) be the continuous representation arising from

the natural GQ-action on the 2-dimensional Fℓ-vector space E[ℓ](Q). The curve E enjoys
the following “incredibly good” properties (cf. [DDT97, Prop. 2.15]):
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(1) E[2](Q) = E[2](Q). (This alone is not uncommon.) In particular, by results of
Mazur, ρ is irreducible (see [Ser87, §4.1, Prop. 6]).

(2) The conductor NE of E is square-free, or equivalently, E has semi-stable reduction
everywhere; see [Ser87, §4.1]. (Again, this alone is not uncommon.) In fact NE is
the product of all the distinct prime divisors of abc.

(3) ρ is finite at every odd prime p. Equivalently, E[ℓ]Qp extends to a flat group scheme
over Zp. If p̸ |NE , then EQp extends to an elliptic curve over Zp, so this is clear.
Suppose 3 ≤ p|NE . Then since we already know E has multiplicative reduction at
p, the criterion for ρ to be finite at p is that ℓ|vp(jE) (see [DDT97, Prop. 2.12]). As
computed in [Ser87, (4.1.9)], we have

vp(jE) = −2vp(aℓbℓcℓ) = −2ℓvp(abc),

which is indeed divisible by ℓ.

Now by Taniyama–Shimura–Weil, E is modular. Whatever that means, that implies that
ρ is modular of level NE . Since NE is square-free and even, and since ρ is irreducible and
finite at every odd prime p, we can repeatedly apply Theorem 39.1.2 to conclude that ρ is
modular of level 2. In particular this implies that C (2) = H0(X0(2),Ω) is non-zero. This is
absurd since X0(2) has genus 0.

Now a few words on TSW. As we observed in (2) above, the Frey curve E, if exists,
has semi-stable reduction everywhere, or simply semi-stable over Q. Thus for the previous
argument to work one only needs TSW for semi-stable elliptic curves over Q; this is what
Wiles and Taylor–Wiles proved around 1995. Later, around 2000, the full TSW was proved
by Breuil–Conrad–Diamond–Taylor, known as the Modularity Theorem.

40. Lecture 40

40.1. Mazur–Ribet and Fermat’s Last Theorem. Recall the statement of the Mazur–
Ribet Theorem:

Theorem 40.1.1 (Mazur–Ribet). Let F be a subfield of Fℓ for some odd prime ℓ. Let
ρ : GQ → GL2(F) be an irreducible modular representation of level N . Assume that F = Fmin

is the minimal field of definition and in particular F is finite. Let p be an odd prime such
that p∥N and such that the following two conditions hold:

(1) ρ is finite at p, that is, there exists an F-vector space (of finite F-dimension) scheme
V/Zp flat over Zp such that the action of Gal(Qp/Qp) on V(Qp) is isomorphic (as

a continuous Gal(Qp/Qp)-representation on a two-dimensional F-vector space) to
ρ|Dp

, where Dp is any choice of a decomposition group at p in GQ.
(2) Either of the following holds:

(a) p ̸= 1 mod ℓ
(b) ℓ̸ |N .

Then ρ is modular of level N/p.

Note here that the case of (2)(a) is due to Mazur and (2)(b) is due to Ribet.
We now recall how the Taniyama–Shimura–Weil Conjecture implies Fermat’s Last The-

orem. Assume that Fermat’s Last Theorem is falst. Then we may find aℓ + bℓ = cℓ with
abc ̸= 0 where ℓ is a prime such that ℓ ≥ 5. Further, we may always arrange that a ≡ 3
mod 4 and b is even. Then we obtain an elliptic curve E/Q given by

E : y2 = x(x− aℓ)(x+ bℓ).
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Further, define a continuous representation ρ : GQ → GL2(Fℓ) by the action of GQ on

E[ℓ](Q) ∼= F2
ℓ . Using properties of E, we can prove that ρ is irreducible and finite at every

odd prime p, and further that the conductor NE of E is square free. If the Taniyama–
Shimura–Weil Conjecture is true for E, then ρ is modular of level NE . Now there are two
cases:

Case 1: Suppose ℓ|NE . Then take p = ℓ. This obviously gives p ̸≡ 1 mod ℓ. By
Mazur’s part of Theorem 40.1.1, we see that p is modular of level NE/p. Hence we
have reduced to the following case.

Case 2: ρ is modular of some level N which is square free and coprime to ℓ. By
Ribet’s part of Theorem 40.1.1, we see that ρ is modular of level given by N divided
by all odd prime factors of N . This leaves the level as being either 1 or 2. (In fact,
NE is even, so here can assume the level is 2.) But C (1) = C (2) = 0. This is a
contradiction.

40.2. Reformulation of modular representations. Suppose N ≥ 1 is an integer. For
each prime p ̸ |N , recall the Hecke operator

Tp : C (N) −→ C (N)

which in terms of q-expansions sends f =
∑∞

n=1 anq
n to

∞∑
n=1

anpq
n +

∞∑
n=1

panq
np.

For p|N , we also have a Hecke operator

Tp : C (N) −→ C (N)

via

f =

∞∑
n=1

anq
n 7−→

∞∑
n=1

anpq
n.

The Tp’s all commute with each other. We define Tn for all integers n ≥ 1 by equating the
two formal series

∞∑
n=1

Tn
ns

=
∏
p ̸|N

(1− Tpp−s + p · p−2s)−1
∏
p|N

(1− Tpp−s)−1.

(This defines each Tn as an integral-coefficient polynomial in the Tp’s with p|n.) The Hecke
algebra T(N) is the subring of EndC(C (N)) generated by Tp for all primes p, or equivalently,
generated by Tn for all n ≥ 1.

Fact 40.2.1. T(N) is a commutative ring, and is a finite free Z-module.

Let m be a maximal ideal of T(N). Let km := T(N)/m be the residue field. Since T(N)
is finite over Z, km is a finite field. Let ℓ = char km.

Theorem 40.2.2 (Reformulation of the Shimura–Deligne Theorem). For the fixed m, there
exists a unique (up to isomorphism) continuous semi-simple representation ρm : GQ →
GL2(km) such that for all primes p̸ |Nℓ, we have

(1) ρm is unramified at p.
(2) Tr(ρm(Frobp)) = Tp mod m.
(3) det(ρm(Frobp)) = p.

For a proof of this result admitting the Shimura–Deligne theorem, see [Rib90, Prop. 5.1].
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Remark. (1) ρm is a modular representation of level N in the previous sense.
(2) For an arbitrary continuous semi-simple ρ : GQ → GL2(F) where F ⊂ Fℓ, we have

that ρ is modular of level N if and only if there exists a maximal ideal m ⊂ T(N)
together with km ↪→ Fℓ such that ρ⊗F Fℓ is isomorphic to ρm ⊗km

Fℓ.

40.3. Canonical models of modular curves. Recall that Y0(N) := Γ0(N)\H+ is a non-
compact Riemann surface, and it sits inside a compact Riemann surface X0(N) such that
X0(N)−Y0(N) consists of finitely many cusps. Both Y0(N) and X0(N) are algebraic curves
over C and have canonical models over Q. To construct the Q-models, take M ≥ 3 divisible
by N . By our previous work, we have the smooth affine curve S(M) over Z[1/M ], and
Y (M) = S(M)(C) is identified with a disjoint union of ϕ(M) copies of Γ(M)\H+. There is
a natural map Y (M)→ Y0(N) which is a (possibly ramified) quotient (as Riemann surfaces,
or as C-varieties) by the action of some finite group ∆M,N on Y (M). This action actually
comes from an action of ∆M,N on S(M)Q as a Q-variety. Since S(M)Q is quasi-projective,
we can take the quotient Y0(N)Q := ∆M,N\S(M)Q in the category of Q-schemes (see for
instance [Sai13, §A.3]). This gives the model of Y0(N) over Q.

We caution that when N is small, the action of ∆M,N on Y (M) may not be free (cor-
respondingly Y (M) → Y0(M) may be a ramified covering). Hence the finite Q-morphism
S(M)Q → Y0(N)Q may not be étale.

We know that Y0(1)Q is canonically isomorphic to A1
Q (induced by the j-invariant j :

S(M)Q → A1
Q). The canonical embedding A1

Q ↪→ P1
Q is a Q-model for Y0(1) ↪→ X0(1). We

thus take X0(1)Q to be P1
Q. We have a commutative diagram of C-varieties

Y0(N) X0(N)

Y0(1) = A1
C X0(1) = P1

C

such that X0(N) is the integral closure of X0(1) in Y0(N). Moreover, the vertical map
on the left and the bottom map are both defined over Q. We thus construct X0(N)Q by
taking the integral closure of X0(1)Q in Y0(N)Q. Thus we have a commutative diagram of
Q-varieties whose base change to C recovers the previous diagram:

Y0(N)Q X0(N)Q

Y0(1)Q = A1
Q X0(1)Q = P1

Q

Fact 40.3.1. The variety X0(N)Q is a smooth projective curve over Q, and Y0(N)Q is a
dense open subvariety.

Fact 40.3.2. The Q-variety Y0(N)Q is a coarse moduli space for the moduli functor over
Q of elliptic curves with Γ0(N)-level structure. Here, a Γ0(N)-level structure on an elliptic
curve E → S (for a Q-scheme S) refers to the datum of a closed S-subgroup scheme C ⊂ E
such that C is finite étale over S and all geometric fibers of C over S are isomorphic to
Z/NZ; often we refer to such a datum as “a cyclic subgroup of order N”. Similarly, X0(N)Q
is also a coarse moduli space, where we allow certain degenerate variants of elliptic curves.

Here, for any scheme S, to say that an S-scheme Y is a coarse moduli space for a
functor Y from S-schemes to sets, we mean that there is a morphism ψ : Y → Y which is
initial among all morphisms from Y to S-schemes, and such that for any geometric point
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s : Spec k̄ → S the map Y(k̄)→ Y (k̄) is a bijection. Thus we allow Y to be not representable,
but we ask that Y should be the “best approximation” of Y and “has the expected geometric
points”. It is easily seen that for fixed Y, there can exist at most one coarse moduli space
up to canonical isomorphism. Moreover if Y is representable then the coarse moduli space is
the scheme representing Y (in which case we say it is a fine moduli space). Thus the above
fact gives an abstract characterization of the Q-varieties Y0(N)Q and X0(N)Q. In particular,
we know that they are actually independent of the choice of M in the construction.

For more details on Y0(N)Q and X0(N)Q, the reader should consult [Sai13, §§2.1–2.4]

41. Lecture 41

41.1. Jacobians of modular curves. From now on, we simply use the notations Y0(N)
and X0(N) to denote the canonical models of modular curves over Q.

Recall that X0(N) is a smooth projective curve over Q, and Y0(N) is a dense open sub-
variety. Consider the Jacobian of X0(N), denoted by J0(N) := Jac(X0(N)) = Pic0X0(N)/Q.
This is the identity component of PicX0(N)/Q, which represents the fppf sheafification of the
usual relative Picard functor for X0(N)/Q. It is a fact that J0(N) is an abelian variety over
Q.

Now let n be a positive integer. We can define a smooth (perhaps disconnected) curve
Y0(N,n) over Q which is a coarse moduli space for tuples (E1, C1, E2, C2, ϕ) where (Ei, Ci) ∈
Y0(N) and ϕ : E1 → E2 is a degree n isogeny such that ϕ(C1) = C2. In turn, we obtain
an algebraic correspondence Y0(N) 99K Y0(N) by the following diagram, where the solid
arrows send (E1, C1, E2, C2, ϕ) to (E1, C1) and to (E2, C2) respectively, and the dashed
arrow should be thought of as a “one-to-many map”.

Y0(N,n)

Y0(N) Y0(N).

This correspondence naturally extends to an algebraic correspondenceX0(N) 99K X0(N),
which we call the n-th Hecke correspondence. By the functoriality13 of the Jacobian, for
each n the n-th Hecke correspondence X0(N) 99K X0(N) induces a homomorphism

T geom
n : J0(N) −→ J0(N).

Note that the cotangent space HomQ(Lie J0(N)∨,Q) of J0(N)∨ at identity is isomorphic
to H0(X0(N),Ω). As such, we have

HomQ(Lie J0(N)∨,C) ∼= C (N).

By functoriality, T geom
n induces an endomorphism of C (N). It is a fact that this endomor-

phism is Tn defined before in terms of q-expansions. In view of this, and since the functor
sending an abelian variety to its cotangent space at identity is faithful, we obtain a well-
defined faithful action of T(N) on J0(N) such that Tn ∈ T(N) acts by T geom

n . In other
words, we obtain an injective ring homomorphism

T(N) −→ EndQ(J0(N)), Tn 7−→ T geom
n , ∀n ≥ 1

13In fact, the Jacobian of a smooth projective curve admits a canonical degree 1 polarization, and

therefore it is both a contravariant functor and a covariant functor in the curve. These two functorialities
are respectively referred to as “Picard functoriality” and “Albanese functoriality” in the literature. Here we

need to use the contravariant, Picard functoriality.
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where EndQ(J0(N)) indicates endomorphisms of J0(N) in the category of abelian varieties
over Q. From now on we do not distinguish between Tn and T geom

n .
Now for any maximal ideal m ⊂ T(N), we define

ρJacm := J0(N)(Q)[m] = {x ∈ J0(N)(Q) | ∀f ∈ m, f(x) = 0}.
(Similarly we shall apply the notation M [m] to any other T(N)-module M to mean m-
torsion.) Note that this is a finite set: If ℓ denotes the characteristic of km, then our
set is contained in J0(N)(Q)[ℓ], which is of order ℓ2g with g = dim J0(N) = g(X0(N)).
In particular, ρJacm is a finite-dimensional km-vector space (induced by the T(N)-module
structure) with a compatible GQ-action. We have the following result:

Theorem 41.1.1. Let m ⊂ T(N) be a maximal ideal such that ρm is irreducible. Then ρJacm

is isomorphic to ρ⊕d
m as a km[GQ]-module for some positive integer d. (Necessarily d ≤ g.)

If char km ̸ |2N , then d = 1.

This result tells us that all the information about irreducible modular representations is
encoded in the T(N)-action on J0(N).

41.2. Reduction of J0(N) modulo a prime. For an arbitrary abelian variety A over Qp,
there exists a unique (up to canonical isomorphism) smooth commutative group scheme A
over Zp with generic fiber identified with A, called the Néron model, characterized by
the following “Néron extension property”: for all smooth Zp-schemes T , the natural map
MorZp(T,A)→ MorQp(TQp , A) is a bijiection. In general, A is not necessarily proper, so it
is not an abelian scheme.

We write AFp
for AFp

. With this notation, we are interested in J0(N)Fp
, which is a

smooth commutative group scheme over Fp with a T(N)-action (inherited functorially from
the T(N)-action on J0(N)). We study two important cases.

Case 1: good reduction. Suppose p̸ |N . Then X0(N)Qp
has a (canonical) integral

model X0(N) over Zp which is smooth projective over Zp has a similar description as a
coarse moduli space over Zp of elliptic curves (with some permitted degenerations) with
level structure. This can be constructed from S(M)⊗Z[1/M ] Zp for some suitable M just as
how we constructed X0(N) over Q from S(M)Q. The Néron model of J0(N)Qp over Zp is

an abelian scheme, and in fact it is identified with Pic0X0(N)/Zp
. The special fiber J0(N)Fp

is also an abelian variety, and it is identified with the Jacobian of the curve X0(N)Fp . In
this case, we have the following injections of rings:

T(N) ↪→ EndQp
(J0(N)Qp

) ↪→ EndFp
(J0(N)Fp

).

Case 2: semi-stable reduction. Suppose p∥N . In this case, we have the Deligne–
Rapoport integral model X = X0(N) of X0(N)Qp

. This is projective and flat over Zp.
Moreover, X is weakly semi-stable, meaning that the special fiber XFp

is a curve with at
worst nodal singularities, and X→ SpecZp is smooth away from the nodes in XFp

. In fact,
XFp is the union of two curves C1 and C2, each canonically isomorphic to X0(N/p)Fp (hence
projective and smooth), intersecting transversally at finitely many points. In particular,
C1 ∩C2 is a finite scheme over Fp. Moreover, C1 ∩C2 is the supersingular locus X0(N/p)

ss
Fp

(i.e., the coarse moduli space of supersingular elliptic curves plus level structure) inside
each of C1

∼= X0(N/p)Fp
and C2

∼= X0(N/p)Fp
. However, the way that C1 and C2 are glued

together is not via the identity map from the supersingular locus in C1
∼= X0(N/p)Fp

to
the supersingular locus in C2

∼= X0(N/p)Fp
; rather, it is via the absolute p-Frobenius. We

caution the reader that the two maps X0(N/p)Fp

∼−→ Ci ↪→ XFp
for i = 1, 2 do not lift to

characteristic zero.
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As we have mentioned, the structure map X → SpecZp is smooth away from C1 ∩ C2.

The singularities at C1 ∩ C2 have the following description: Set W = W (Fp) to be the

Witt vectors over Fp. For each x ∈ (C1 ∩ C2)(Fp), the complete local ring of XW at x is
isomorphic to

W [[S, T ]]/(ST − pe(x))
as a W -algebra (as is true in general for any weakly semi-stable curve over Zp; see [Sai14,
Lem. B.9]), where e(x) is some positive integer determined by the following recipe. We view
x as a point of C1(Fp) ∼= X0(N/p)(Fp), and so it corresponds to a pair (E,C) where E is

a (supersingular) elliptic curve over Fp and C is a cyclic subgroup of order N/p. Then we
have

e(x) =
1

2
#Aut(E,C).

(Note that {±1} is always a subgroup of Aut(E,C), so the order of the latter is even.)
Using the above description of X and general work of Raynaud on Néron models of

Jacobians, Ribet showed that J = J0(N)Fp
can be described as follows:

(1) There is a Hecke-equivariant short exact sequence

1→ J◦ → J → Φ→ 1

where Φ is a constant finite group scheme.
(2) There is a Hecke equivariant short exact sequence

1→ T → J◦ → A→ 1

where T is a torus over Fp and A is an abelian scheme over Fp.
(3) We have an isomorphism

A ∼= J0(N/p)Fp
× J0(N/p)Fp

equivariant for Tn with n coprime to N . We may say that “A sees C1 and C2”.

(4) Write T̂ for X∗(T ). As a Gal(Fp/Fp)-module, T̂ is isomorphic to the group of formal

integral linear combinations of X0(N/p)
ss
Fp
(Fp) with the coefficients adding to 0. In

particular, T splits over Fp2 since every point of X0(N/p)
ss
Fp
(Fp) is defined over Fp.

Moreover, Tp acts on T̂ in the same way as Frobp. In particular, this action is an
involution (i.e., squaring to the identity). We may say that “T sees C1 ∩ C2”.

(5) The T(N)-module Φ is such that for every prime q ̸ |N , Tq acts in the same way

as 1 + q. One can describe Φ more precisely using the function (C1 ∩ C2)(Fp) →
Z≥1, x 7→ e(x), but we omit it. We may say that “Φ sees C1∩C2 as well as the local
equations of XW at these points”.

42. Lecture 42

42.1. Proof of Mazur’s theorem.

Lemma 42.1.1. Let ρ1, ρ2 be two continuous semi-simple representations GQ → GL2(F),
where charF = ℓ > 2. Note that for almost all primes p, ρ1 and ρ2 are unramified at p, so
Tr(ρ1(Frobp)) and Tr(ρ2(Frobp)) are well defined. Assume that these two traces are equal
for almost all p. Then ρ1 and ρ2 are isomorphic.

Proof. Recall that the Brauer–Nesbitt theorem says that two n-dimensional semi-simple
representations of a finite group over a field k are isomorphic if they have the same character
and either char k = 0 or char k > n. We can view ρ1 and ρ2 as semi-simple representations
of Gal(F/Q) for some finite Galois extension F/Q. By the Chebotarev density theorem,
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every conjugacy class in Gal(F/Q) contains Frobp for infinitely many primes p (among those
which are unramified in F ). The lemma follows from these two theorems. □

Definition 42.1.2. Let N ≥ 1 and letM be a T(N)-module. We say thatM is Eisenstein,
if for almost all primes q we have Tq = q + 1 in End(M).

Example. Suppose p∥N . The component group Φ of J0(N)Fp
from last lecture is an

Eisenstein T(N)-module.

Lemma 42.1.3. Let M be an Eisenstein T(N)-module. Let m be a maximal ideal of T(N)
with residue characteristic ℓ > 2. If ρm is irreducible, then M [m] = 0, and M/mM = 0.

Proof. First, we observe that M/mM is also Eisenstein, and it is equal to (M/mM)[m].
Hence it suffices to prove the vanishing of M [m] for all Eisenstein M .

Suppose M [m] contains a non-zero element f . Then the annihilator of f in T(N) must
be m. On the other hand, for almost all primes q, Tq − q − 1 lies in this annihilator. Hence
Tq = q + 1 in km. Therefore for almost all q, Tr(ρm(Frobq)) = q + 1 by the characterizing
property of ρm. On the other hand, the representation ρ = χℓ ⊕ 1 of GQ, where χℓ is the
ℓ-th cyclotomoic character GQ → F×

ℓ and 1 is the trivial character GQ → {1} ⊂ F×
ℓ , also

satisfies that Tr(ρ(Frobq)) = q + 1 for almost all q. Hence ρm is isomorphic to (the base
change to km of) χℓ ⊕ 1 by Lemma 42.1.1, and is therefore reducible. □

The following lemma will be the “source” of all level lowering phenomena.

Lemma 42.1.4. Let N1, N2 be two positive integers. Assume that there is an abelian group
Y and ring maps αi : T(Ni) → End(Y ) for i = 1, 2, and assume that α1(Tq) = α2(Tq) for
almost all primes q. Let m be a maximal ideal of T(N2) of residue characteristic ℓ > 2 such
that either Y/α2(m) · Y ̸= 0 or Y [α2(m)] ̸= 0. Then ρm is modular of level N1.

Proof. Let S be the set of primes q such that α1(Tq) = α2(Tq). Let T′ be the subring
of α2(T(N2)) generated by α2(Tq) for q ∈ S. Our hypothesis implies that α2(m) is a
maximal ideal of α2(T(N2)). Let m′ = α2(m) ∩ T′. Then m′ is a maximal ideal of T′ since
T′ ⊂ α2(T(N2)) is a finite ring extension. Also, we have T′ ⊂ α1(T(N1)), and this is again a
finite ring extension. By going-up, we can find a maximal ideal n′ of α1(T(N1)) containing
m′. Let n be the inverse image of n′ in T(N1). Let k denote the field T′/m′. Then we have
constructed field maps f : k → km and g : k → kn such that for almost all primes q we have
elements Uq ∈ k with f(Uq) = Tq ∈ km and g(Uq) = Tq ∈ kn. Since k, km, kn are finite fields

of characteristic ℓ, we can obviously embed all of them into Fℓ in such a way that f and
g become inclusion maps. Then if we base change both ρm and ρn to Fℓ, their characters
agree on Tq for almost all primes q, and so they are isomorphic by Lemma 42.1.1. Thus m
is modular of level N1. □

Remark. Typically we will apply Lemma 42.1.4 to situations where N1|N2, but this con-
dition itself is not necessary for the lemma.

Lemma 42.1.5. Let N ≥ 1 and p∥N . Let A be the abelian variety part of J0(N)Fp
. Let

m be a maximal ideal of T(N) of residue characteristic ℓ > 2. If A(Fp)[m] ̸= 0, then ρm is
modular of level N/p.

Proof. Apply Lemma 42.1.4 to the natural action of T(N) on A(Fp) and the action of

T(N/p) on A(Fp) via the identification A ∼= J0(N/p)
2
Fp
. □
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Theorem 42.1.6 (Mazur). Let N ≥ 1, and p∥N . Let m be a maximal ideal of T(N) of
residue characteristic ℓ > 2, and assume that ρm is irreducible and finite at p. Assume that
p ̸≡ 1 mod ℓ. Then ρm is modular of level N/p.

Proof. For simplicity, we only prove the theorem assuming that p ̸= ℓ. (However, recall
that for the application to Fermat’s Last theorem, we precisely need the case p = ℓ; the
idea of proof in this case is nevertheless similar to the case p ̸= ℓ, except that it involves
more technical discussion about group schemes.) Let V be the vector space of ρm. By
Theorem 41.1.1, we can choose a km[GQ]-module embedding ι′ : V ↪→ J0(N)(Q)[m]. Fix an

embedding Qp ↪→ Q and use it to define the decomposition group Dp
∼= Gal(Qp/Qp) ⊂ GQ.

Since ρm is finite at p, we can find a km-vector space scheme V over Zp which is flat over Zp

and such that V(Qp) gives rise to ρm|Dp
. Now ι′ determines a T(N)-equivariant morphism of

Qp-schemes VQp → J0(N)Qp . Since p ̸= ℓ, V is in fact étale over Zp, and in particular smooth
over Zp. Hence by the Néron extension property, we get a T(N)-equivariant morphism of
Fp-schemes VFp

→ J0(N)Fp
, and in particular a km[Dp]-module morphism

ι : V −→ J0(N)Fp
(Fp)[m],

where Dp acts on the right via the quotient Gal(Fp/Fp). It is easy to check that ι is injective,
by the injectivity of ι′.

We now assume that ρm is not modular of level N/p. Let Φ, A, T be the component
group, the abelian variety part, and the torus part of J0(N)Fp

. Then by the fact that Φ
is Eisenstein and by Lemmas 42.1.3 and 42.1.5, we know know that im(ι) is contained in
T (Fp)[m]. Now we identify T (Fp)[m] with

Hom(T̂ /mT̂ , (F×
p )[ℓ]) = Hom(T̂ /mT̂ , µℓ(Fp)).

On T̂ /mT̂ , Frobp acts by order at most 2, and its action also agrees with Tp, which acts via
scalar multiplication by (Tp mod m) ∈ km. Since km is a field, we conclude that Frobp acts

on T̂ /mT̂ by scalar multiplication by 1 or −1. On the other hand, Frobp acts on µℓ(Fp) via

multiplication (if the abelian group µℓ(Fp) is written additively) by p. Since ι is injective
and Dp-equivariant, we conclude that ρm(Frobp) is conjugate in GL2(km) to either one of

±
(
p

p

)
. In particular, det(ρm(Frobp)) = p2. As we have observed before, det(ρm) is in

fact the ℓ-th cyclotomic character on GQ. Since p ̸= ℓ, we have det(ρm(Frobp)) = p. Thus
p = p2 in km, i.e., p ≡ 1 mod ℓ. □

Combining the analysis of T (Fp)[m] in the above proof with the last statement of Theorem
41.1.1, one can prove the following result.

Lemma 42.1.7. Let p∥N , and let m be a maximal ideal of T(N) of residue characteristic

ℓ̸ |2N . Suppose ρm is irreducible. Let T be the torus part of J0(N)Fp . If T̂ /mT̂ has km-
dimension at least 2, then p ≡ 1 mod ℓ.

Proof. By a general fact about Néron models, there is an injective map T (Fp)→ J0(N)(Qp)
which is T(N)-equivariant and Dp-equivariant. (It is a section of the natural reduction map

J0(N)(Qp) → J0(N)Fp
(Fp) coming from the Néron extension property, and hence T(N)-

equivariant.) It follows that we have an injective map of km(Dp)-modules T (Fp)[m] →
J(Qp)[m] ∼= J(Q)[m]|Dp . By the last statement of Theorem 41.1.1, the right hand side

is isomorphic to ρm|Dp
(with multiplicity 1). Using T (Fp)[m] ∼= Hom(T̂ /mT̂ , µℓ(Fp)), our

hypothesis implies that T (Fp)[m] has km-dimension at least 2. Since ρm has km-dimension
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2, we conclude that T (Fp)[m] ∼= ρm|Dp as km[Dp]-modules. Now as showed in the proof of

Theorem 42.1.6, the determinant of Frobp acting on T (Fp)[m] is p2 ∈ km. On the other
hand the determinant of Frobp acting on ρm is p ∈ km (since det ρm = χℓ). This concludes
the proof. □

42.2. Shimura curves. To prove Ribet’s theorem, we follow Ribet to study certain re-
ductions of Shimura curves. These curves are certain one-dimensional Shimura varieties
different from modular curves and attached to a quaternion algebra over Q ramified at two
finite places p and q. We will study the reduction modulo q of the Jacobian of the Shimura
curve, and in a miraculous way relate it to the reduction of the Jacobian of modular curves
modulo the different prime p!

To start, we always fix two distinct primes p, q, and fix a positive integer M coprime to
pq. Let D be the unique (up to isomorphism) quaternion algebra over Q ramified exactly
at p and q. Thus for each place v of Q, Dv := D ⊗Q Qv is isomorphic to M2(Qv) as a
Qv-algebra if v ̸∈ {p, q}, and Dv is a division algebra over Qv for v ∈ {p, q}. Fix an order
OD ⊂ D (i.e., OD is a subring of D and a finite free Z-module such that it contains a
Q-basis of D) such that for every finite place v of Q, OD ⊗Z Zv is a maximal Zv-order in
Dv (i.e., maximal among subrings of Dv that are finite free over Zv and contain a Qv-basis
of Dv) if v ̸ |M , and is the order{(

a b
c d

)
| a, b, c, d ∈ Zv, c ≡ 0 (mod v)

}
in Dv

∼=M2(Qv) if v|M . We can then form the complex Shimura curve:

X = XD,M := D×\H± × (D ⊗Q Af )
×/

∏
v<∞

(OD ⊗Z Zv)
×.

Here D× acts diagonally on the two factors, and
∏

v<∞(OD⊗ZZv)
× acts only on the second

factor. The action of D× on H± is inherited from the usual GL2(R)-action via D× ↪→ D×
∞

and a fixed isomorphism D∞ ∼=M2(R). One can show that X is actually connected (which
is not the case in general for the double quotients in the general definition of Shimura
varieties), and is actually isomorphic to

Γ\H+,

where Γ = O×
D ∩ SL2(R), a discrete subgroup of SL2(R); the last intersection is inside

D×
∞ which has been identified with GL2(R).14 Unlike Y0(N) = Γ0(N)\H+ which is a non-

compact Riemann surface, X is a compact Riemann surface. Moreover, X has a canonical
model over Q, which is a smooth projective curve over Q and is the coarse moduli space of

14Similarly, we can present Y0(N) = Γ0(N)\H+ (at the level of complex points) as a double quotient as

follows. Take B to be the Q-algebra M2(Q), and take OB ⊂ B to be the order consisting of

(
a b

c d

)
with

a, b, c, d ∈ Z and N |c. Then Y0(N) is isomorphic to B×\H± × (B ⊗Q Af )
×/

∏
v<∞(OB ⊗Z Zv)×. (Here

the product group on the right is also K0(N) := {
(
a b
c d

)
∈ GL2(Ẑ) | c ≡ 0 mod N}.) To prove that

both double quotients with D and B are actually connected, one uses strong approximation, the fact that

the derived subgroups of D× and B× (as reductive groups over Q) are simply connected, the fact that the

abelianization maps D× → Gm and B× → Gm map (OD ⊗ Zv)× and (OB ⊗ Zv)× respectively onto Z×
v

for all finite v, and the fact that Q×
>0\A

×
f /Ẑ× = {1}, i.e., Z has trivial narrow class group. See [Mil17b,

Thm. 5.17] for how to compute connected components of such double quotients in general when the derived
subgroup is simply connected.
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abelian surfaces A together with an injective ring map OD → End(A) and a certain “level-
M structure”. This coarse moduli space can be constructed from (Ag,d,N )Q for g = 2, d = 1,
and large enough N by taking a finite quotient of a suitable subscheme. For more details,
see [BC91].

From now on, we write X for the canonical model of the Shimura curve over Q. Just
as for modular curves, for each integer n ≥ 1, we have a Hecke correspondence X 99K X,
and by functoriality this gives rise to an endomorphism Tn of the Jacobian J(X) := Jac(X)
(which is again an abelian variety over Q). We define the Hecke algebra for X to be the
subring T(X) of EndQ(J(X)) generated by the Tn’s. We will be mainly interested in the
reduction modulo q of (the Néron model over Zq of) J(X), denoted by J(X)Fq

. This is a
smooth commutative group scheme over Fq equipped with a T(X)-action. We will see that
this is actually related to J0(Mpq)Fp and J0(Mp)Fp in an extremely interesting way.

43. Lecture 43

43.1. Reduction of the Shimura curve. Let p, q be distinct primes, M be a positive
integer coprime to pq, and X = XDp,q,M be the the (canonical model of) Shimura curve
attached to (M,p, q). Thus X is a smooth projective curve over Q. Recall that we have
the Hecke algebra T(X) acting on J(X) = Jac(X). We are interested in describing J(X)Fq

(i.e., the reduction of the Néron model of J(X)Qq
over Zq modulo q) together with the

T(X)-action.
Similar to the case of the reduction of the modular curve at a prime dividing the level

precisely once, we have a weakly semi-stable integral model X over Zq of the Shimura curve

XQq
, constructed and studied by Čerednik and Drinfeld. Recall that weakly semi-stable

means that X→ SpecZq is smooth away from finitely singularities which are nodes of XFq
.

More specifically, XFq
is the union of two families of parallel P1’s such that whenever a P1

in the first family intersects with a P1 in the second family the intersection is transverse.
Let V1 (resp. V2) be the set of P1’s in the first (resp. second) family, and let E be the
set of intersection points. Then the intersection configuration is described by the maps
γ1 : E → V1, γ2 : E → V2 defined in the obvious way. (Equivalently, the dual graph of XFq

has E as the set of edges, V1 ⊔ V2 as the set of vertices, and (γ1, γ2) as the boundary map
from edges to vertices.) The datum (E ,V1,V2, γ1, γ2) has the following concrete description.
We introduce a notation. For any integer K ≥ 1 and any prime v ̸ |K, we write Σ(K, v) for
the set of Fv-points of the supersingular locus of X0(K)Zv (the “good” canonical integral
model of X0(K)Qv

over Zv).
Then we have natural identifications E ∼= Σ(Mq, p) and V1 ∼= V2 ∼= Σ(M,p). Moreover,

the maps γ1, γ2 : Σ(Mq, p) → Σ(M,p) come from two maps X0(Mq) → X0(M) (definable
over characteristic zero) that can be explicitly described both in terms of the moduli inter-
pretation and in terms of the complex coordinates in H+. If τ is the coordinate in H+, then
the two maps are induced by τ 7→ τ and τ 7→ qτ .

Moreover, the exponent e(x) in the local equation ST − qe(x) for X near each x ∈ E ∼=
Σ(Mq, p) is the same as the exponent in the local equation ST − pe(x) for X0(Mpq)Zp near
x. (Here recall that the nodes in X0(Mpq)Fp are also parametrized by Σ(Mq, p).)

Using the above information about X over Zq, Ribet proves the following statements.
(1) The group scheme J(X)Fq

is an extension of a finite abelian constant group scheme
ΦX,q by a torus TX,q over Fq. In general, if A is an abelian variety over Qq with Néron
model A over Zq such that the identity connected component A◦

Fq
of AFq

is an extension
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of an abelian variety by a maximal torus (i.e., A has semi-stable reduction modulo q), then
EndQq (A) injects into EndFq (A◦

Fq
). Thus we know that T(X) acts faithfully on TX,q.

(2) We have a short exact sequence

0→ T̂X,q
α−→ T̂Mpq,p

β−→ T̂ 2
Mp,p = T̂Mp,p ⊕ T̂Mp,p → 0(43.1)

coming from the description of the dual graph of XFq
. Here T̂Mpq,p denotes the charac-

ter group of the torus part of J0(Mpq)Fp , and similarly for T̂Mp,p. Recall that T̂Mpq,p

(resp. T̂Mp,p) is the abelian group of formal integer linear combinations of elements of
Σ(Mq, p) (resp. Σ(M,p)) with the coefficients summing to zero. The map β is induced
by the two maps γ1, γ2 : Σ(Mq, p)→ Σ(M,p).

(3) The map α is equivariant for each Tn. (Here Tn acts on T̂X,q via Tn ∈ T(X) and

acts on T̂Mpq,p via Tn ∈ T(Mpq); these two rings are a priori unrelated, but they both have
elements indexed by an integer n denoted by Tn.) In particular, remembering that T(X) acts
faithfully on TX,q, we see that there is a well-defined surjective ring map T(Mpq) ↠ T(X)
sending each Tn to Tn. We shall use this map to view every T(X)-module as a T(Mpq)-
module. Then α is T(Mpq)-linear.

(4) Since α is a map of T(Mpq)-modules, there is a unique structure of T(Mpq)-module

on T̂ 2
Mp,p such that β is T(Mpq)-linear. This structure is given as follows. For each prime

v, define Uv ∈M2(T(Mp)) by

Uv =



(
Tv

Tv

)
, v ̸= q

(
Tq −1
q 0

)
, v = q.

Then Tv ∈ T(Mpq) acts on T̂ 2
Mp,p via the natural action of Uv on T̂ 2

Mp,p. In the sequel, we

will always view T̂ 2
Mp,p as a T(Mpq)-module in this way.

(5) Let Ψ be the cokernel of the endomorphism of T̂ 2
Mp,p induced by T 2

q − 1 ∈ T(Mpq)

(i.e., the endomorphism U2
q − 1). Then we have an exact sequence

0→ A→ Ψ→ ΦX,q → B → 0(43.2)

of T(Mpq)-modules where A and B are Eisenstein.

43.2. Lemmas for proving Ribet’s theorem. From now on, we fix an odd prime ℓ, and
all maximal ideals of all Hecke algebras are assumed to be of residue characteristic ℓ. Let
M,p, q be as in §43.1.

Lemma 43.2.1. Let m ⊂ T(Mpq) be a maximal ideal. Assume that T̂ 2
Mp,p/mT̂

2
Mp,p ̸= 0.

Then ρm is modular of level Mp.

Proof. Apply Lemma 42.1.4 to the actions of T(Mpq) and T(Mp) on T̂ 2
Mp,p. Here for each

prime v, Tv ∈ T(Mpq) acts by Uv (as always), and Tv ∈ T(Mp) acts by

(
Tv

Tv

)
. These

two actions satisfy the hypothesis of Lemma 42.1.4 by the discussion in (4) in §43.1. □

Lemma 43.2.2. Let m ⊂ T(Mpq) be a maximal ideal such that ρm is not modular of level

Mp. Then T̂X,q/mT̂X,q and T̂Mpq,p/mT̂Mpq,p have the same km-dimension.
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Proof. By Lemma 43.2.1, we have T̂ 2
Mp,p/mT̂

2
Mp,p = 0. Since T̂ 2

Mp,p is a finite Z-module and

hence a finite T(Mpq)-module, by Nakayama we have (T̂ 2
Mp,p)m = 0. Localizing the short

exact sequence (43.1) of T(Mpq)-modules at m and tensoring to km gives the result. □

Lemma 43.2.3. Let X be the Shimura curve attached to (M,p, q). Let m ⊂ T(Mpq) be a
maximal ideal such that ρm is irreducible. Then the following are equivalent.

(1) ΦX,q/mΦX,q ̸= 0.

(2) T̂ 2
Mp,p/mT̂

2
Mp,p ̸= 0 and T 2

q − 1 ∈ m.

Proof. Let the notation be as in (43.2). Since A is Eisenstein and ρm is irreducible, by
Lemma 42.1.3 we have A/mA = 0. Since A is finite over Z, by Nakayama we have Am = 0.
Similarly, we have Bm = 0. Thus the exact sequence (43.2) implies that Ψm

∼= (ΦX,q)m as
T(Mpq)m-modules. In particular,

Ψ/mΨ ∼= ΦX,q/mΦX,q

as km-vector spaces. Now if (2) holds, then it immediately follows from the definition of

Ψ that Ψ/mΨ = T̂ 2
Mp,p/mT̂

2
Mp,p ̸= 0. Hence (1) holds. Conversely, if (1) holds, then

Ψ/mΨ ̸= 0. But the annihilator of Ψ/mΨ in T(Mpq) contains m and contains T 2
q − 1.

Hence T 2
q − 1 ∈ m. Given this, we also have Ψ/mΨ = T̂ 2

Mp,p/mT̂
2
Mp,p. Hence (2) holds. □

Finally, a general lemma on abelian varieties.

Lemma 43.2.4. Let A be an abelian variety over an algebraically closed field k. Let S be a
commutative subring of End(A) and let I be a maximal ideal of S of residue characteristic
ℓ. (Thus ℓ > 0 since S is of finite rank over Z.) Assume that ℓ ̸= char k. Then A(k)[I] ̸= 0.

Proof. Consider the ℓ-adic Tate module T = Tℓ(A), which is a finite free Zℓ-module with a
natural action by S ⊗Z Zℓ. We shall use two general facts: First, T/ℓT ∼= A(k)[ℓ]. Second,
the action of S ⊗Z Zℓ on T is faithful.

Write R for S⊗Z Zℓ. We can identify R with the ℓ-adic completion of S, and as such the
ℓ-adic completion J of I is a maximal ideal of R (with residue field S/I) containing the image
of I under S → R. It suffices to show that the R-module T/ℓT satisfies (T/ℓT )[J ] ̸= 0. We
now give two proofs of this.

First proof. Since R is of finite rank over the complete local ring Zℓ, we know that R ∼=∏n
i=1Ri, where each Ri is a complete local ring. (See http://www.math.lsa.umich.edu/

~hochster/615W14/ModFinComp.pdf) Now using the idempotents in R, we can decompose
the R-module T into

⊕n
i=1 Ti such that R acts on each Ti via the projection R→ Ri and a

certain Ri-action. Since the R-action on T is faithful, we have Ti ̸= 0 for each i. Without
loss of generality we may assume that J = m1 × R2 × · · · × Rn, where m1 is the maximal
ideal of R1. Then it suffices to show that the R1-module M := T1/ℓT1 satisfies M [m1] ̸= 0.
Since T1 is a non-zero finite free Zℓ-module, we have M ̸= 0. Also M is a finite abelian
group. Hence by Nakayama we have M ⊋ m1M ⊋ · · · ⊋ mr

1M = 0 for some r ≥ 1. But
then 0 ̸= mr−1

1 M ⊂M [m1].
Second proof. We claim that J ∈ suppR(T/ℓT ) (i.e., the localization (T/ℓT )J ̸= 0).

Indeed, if not, then T/ℓT = J(T/ℓT ), and so T = JT . Since T is finite over Zℓ and a fortiori
finite over R, we have, by Nakayama, an element α ∈ 1 + J ⊂ R − {0} such that αT = 0.
This contradicts with the fact that R acts faithfully on T . Now since T/ℓT is a finite-length
module (being a finite abelian group) over the noetherian ring R, suppR(T/ℓT ) is equal to
the set of associated primes, i.e., the prime ideals of R of the form Ann(x) for some x ∈ T/ℓT .
(See Cor. 1.6.10 of https://faculty.math.illinois.edu/~r-ash/ComAlg/ComAlg1.pdf,

http://www.math.lsa.umich.edu/~hochster/615W14/ModFinComp.pdf
http://www.math.lsa.umich.edu/~hochster/615W14/ModFinComp.pdf
https://faculty.math.illinois.edu/~r-ash/ComAlg/ComAlg1.pdf
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or see [Eis95, Cor. 2.17, Thm. 3.1a].) Hence J = Ann(x) for some x ∈ T/ℓT , which shows
that (T/ℓT )[J ] ̸= 0. □

43.3. Proof of Ribet’s theorem.

Theorem 43.3.1 (Ribet). Let N ≥ 1, and let p be a prime with p∥N . Let m0 ⊂ T(N) be
a maximal ideal of residue characteristic ℓ̸ |2N . Suppose ρm0

is irreducible and finite at p
(equivalently, unramified at p). Then ρm0

is modular of level N/p.

Proof. We write M for N/p. Suppose ρm0 is not modular of level M . Then by the same
argument as in the proof of Theorem 42.1.6, we have an injection of km0 [Dp]-modules

ρm0
|Dp

↪→ TMp,p(Fp)[m0]. It follows that

T̂Mp,p/m0T̂Mp,p ̸= 0.(43.3)

Recall that ρm0
(c), where c is any complex conjugation in GQ, is conjugate in GL2(km0

)

to

(
1
−1

)
. By Chebotarev density we can find a prime q ̸ |Nℓ such that ρm0

is unramified

at q and ρm0(Frobq) is conjugate to

(
1
−1

)
. In particular, we have

Tq ∈ m0,(43.4)

q ≡ −1 mod ℓ(43.5)

by looking at the trace and determinant of ρm0
(Frobq). We now form the Shimura curve X

using (M,p, q). By Cayley–Hamilton, we know that Uq ∈ M2(T(Mp)) (notation as in (4)
in §43.1) satisfies that U2

q − TqUq + q = 0 (where Tq ∈ T(Mp)). Reducing this modulo m0

and using (43.4) and (43.5), we get

U2
q − 1 ≡

(
0 0
0 0

)
mod m0.(43.6)

Let R be the image of T(Mpq) in End(T̂ 2
Mp,p), let R1 be the subring of End(T̂

2
Mp,p) generated

by the images of Tv ∈ T(Mp) for primes v ̸= q, and let R2 be the image of T(Mp) in

End(T̂ 2
Mp,p). Then we have finite ring extensions R1 ⊂ R and R1 ⊂ R2. By (43.3), im(m0 →

R2) is a maximal ideal of R2. Then m1 = R1 ∩ im(m0 → R2) is a maximal ideal of R1. By
going-up, we can find a maximal ideal m′ of R containing m1. Let m be the inverse image
of m′ in T(Mpq). By (43.6), the image of T 2

q − 1 ∈ T(Mpq) in R is zero. Hence T 2
q − 1 ∈ m.

Clearly we have field maps R1/m1 → km and R1/m1 → km0
such that for almost all primes

v, Tv ∈ km and Tv ∈ km0
come from a common element of R1/m1. By the same argument

as in Lemma 42.1.4, we conclude that ρm ∼= ρm0 (after some common extension of scalars).
It remains to show that ρm is modular of level M .

For this, it suffices to show that ρm is modular of level Mq, since then we can apply
Mazur’s theorem to q∥Mq (in view of (43.5)) to conclude. In the following we assume ρm is
not modular of level Mq, and deduce a contradiction.

By (43.3) and the definition of m1, we have T̂ 2
Mp,p/m1T̂

2
Mp,p ̸= 0. But T̂ 2

Mp,p/mT̂
2
Mp,p =

(T̂ 2
Mp,p/m1T̂

2
Mp,p)⊗R1/m1

km, so this is again non-zero. Recall that T 2
q −1 ∈ m. Hence by the

(2) ⇒ (1) direction of Lemma 43.2.3, we conclude that ΦX,q/mΦX,q ̸= 0. In particular, the

image of m under T(Mpq) ↠ T(X) is a maximal ideal. Thus J(X)(Q)[m] ̸= 0 by Lemma
43.2.4.

We claim that the semi-simplification of the non-zero km[GQ]-module J(X)(Q)[m] is ρdm
for some d > 0. Indeed, we know from the work of Eichler and Shimura that for almost all
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primes v, the action of Frobv on J(X)Fv satisfies Frob2v −Tv Frobv +v = 0, where Tv ∈ T(X).
Writing V for J(X)(Q)[m], we immediately deduce, using Chebotarev and Brauer–Nesbitt,
that the semi-simplification of the km[GQ]-module V ⊕ Homkm

(V, µℓ) is isomorphic to ρ2dm
for some positive integer d. (The point of forming this direct sum is to make sure that the
eigenvalues of Frobv, for almost all v, come in pairs λ and v/λ.) Since ρm is irreducible our
claim follows.15

Hence we can choose an injective map of km[GQ]-modules ι′ : ρm ↪→ J(X)(Q)[m]. We now
consider the reduction of J(X) modulo p. (Up to now we have only considered the reduction
of J(X) modulo q!) Since ρm is not modular of level Mq, by Lemma 43.2.1 (with p and q

reversed), we have T̂ 2
Mq,q/mT̂

2
Mq,q = 0. Then by Lemma 43.2.3 (with p and q reversed), we

have ΦX,p/mΦX,p = 0. Since ΦX,p is a finite Z-module (in fact a finite abelian group), by
Nakayama we have αΦX,p = 0 for some α ∈ 1 + m ⊂ T(Mpq). This implies immediately
that ΦX,p[m] = 0. Now since ρm is finite at p, as in the proof of Theorem 42.1.6 we

know that ι′ induces an injective map of km[Dp]-modules ι : ρm ↪→ J(X)Fp(Fp)[m]. Since

ΦX,p[m] = 0, the right hand side is equal to TX,p(Fp)[m]. Hence dimkm
(TX,p(Fp)[m]) =

dimkm
(T̂X,p/mT̂X,p) ≥ 2. Since ρm is not modular of level Mq, by Lemma 43.2.2 (with

p and q reversed) we get dimkm
(T̂Mpq,q/mT̂Mpq,q) ≥ 2. Now by Lemma 42.1.7 applied to

q∥Mpq, we get q ≡ 1 mod ℓ. This contradicts with (43.5). □
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Cerednik et de Drinfeld. Number 196-197, pages 7, 45–158 (1992). 1991. Courbes modulaires et

courbes de Shimura (Orsay, 1987/1988). 87
[Cona] Brian Conrad. Course notes for Math 248B Modular Curves. http://virtualmath1.stanford.

edu/~conrad/248BPage/handouts/modularcurves.pdf. 5

[Conb] Brian Conrad. Handout on cohomology and base change. http://virtualmath1.stanford.edu/

~conrad/248BPage/handouts/cohom.pdf. 27, 36, 55

[Conc] Brian Conrad. Handout on isogenies and level structures. http://virtualmath1.stanford.edu/

~conrad/248BPage/handouts/level.pdf. 5, 25, 34
[Cond] Brian Conrad. Lecture notes on abelian varieties. http://virtualmath1.stanford.edu/~conrad/

249CS15Page/handouts/abvarnotes.pdf. 5, 56
[Cone] Brian Conrad. Math 248B. Modular Curves. course website http://virtualmath1.stanford.edu/

~conrad/248BPage/handouts.html. 5

[CSS97] Gary Cornell, Joseph H. Silverman, and Glenn Stevens, editors. Modular forms and Fermat’s last
theorem. Springer-Verlag, New York, 1997. Papers from the Instructional Conference on Number

Theory and Arithmetic Geometry held at Boston University, Boston, MA, August 9–18, 1995. 5

[DDT97] Henri Darmon, Fred Diamond, and Richard Taylor. Fermat’s last theorem. In Elliptic curves,
modular forms & Fermat’s last theorem (Hong Kong, 1993), pages 2–140. Int. Press, Cambridge,

MA, 1997. 5, 77, 78

[Del71a] Pierre Deligne. Formes modulaires et représentations l-adiques. In Séminaire Bourbaki. Vol.
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[Oes88] Joseph Oesterlé. Nouvelles approches du “théorème” de Fermat. Number 161-162, pages Exp. No.
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