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THE STABILIZATION OF THE FROBENIUS–HECKE
TRACES ON THE INTERSECTION COHOMOLOGY OF

ORTHOGONAL SHIMURA VARIETIES

Yihang Zhu

Abstract. — We study Shimura varieties associated with special orthogonal groups
over the field of rational numbers. We prove a version of Morel’s formula for the
Frobenius–Hecke traces on the intersection cohomology of the Baily–Borel compact-
ification. Our main result is the stabilization of this formula. As an application, we
compute the Hasse–Weil zeta function of the intersection cohomology in some special
cases, using the recent work of Arthur and Täıbi on the endoscopic classification of
automorphic representations of special orthogonal groups.

Résumé. — Nous étudions les variétés de Shimura associées à des groupes spéciaux
orthogonaux sur le corps des nombres rationnels. Nous prouvons une version de la
formule de Morel pour les traces de Frobenius–Hecke sur la cohomologie d’intersection
de la compactification de Baily–Borel. Notre résultat principal est la stabilisation
de cette formule. Comme application, nous calculons la fonction zêta de Hasse–
Weil de la cohomologie d’intersection dans certains cas particuliers, en utilisant les
travaux récents d’Arthur et Täıbi sur la classification endoscopique des représentations
automorphes des groupes spéciaux orthogonaux.
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其始也，皆收視反聽，耽思傍訊，精騖八極，心
遊萬仞。其致也，情曈曨而彌鮮，物昭晰而互
進。

陸機《文賦》

In the beginning,
All external vision and sound are suspended,
Perpetual thought itself gropes in time and space;
Then, the spirit at full gallop reaches the eight

limits of the cosmos,
And the mind, self-buoyant, will ever soar to new

insurmountable heights.
When the search succeeds,
Feeling, at first but a glimmer, will gradually

gather into full luminosity,
Whence all objects thus lit up glow as if each the

other’s light reflects.(1)

Excerpt from Essay on Literature
by LU Ji (261–303 AD)

(1)Translated from Chinese by CHEN Shixiang.
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INTRODUCTION

Inspired by the early works of Eichler, Shimura, Kuga, Sato, and Ihara, the ongoing
study of expressing Hasse–Weil zeta functions of Shimura varieties through automor-
phic L-functions remains a focal point within the Langlands program. Langlands
approached this problem by proposing a comparison of the Frobenius–Hecke traces
on the cohomology of Shimura varieties with the stable Arthur–Selberg trace formu-
las, as detailed in [Lan77, Lan79a, Lan79b]. Kottwitz further formalized these
ideas into precise conjectures [Kot90, Kot92b]. In this paper, we confirm a version
of Kottwitz’s conjecture specifically for the intersection cohomology of orthogonal
Shimura varieties.

The conjectures

Let (G,X ) be a Shimura datum with reflex field E. For each sufficiently small
compact open subgroup K ⊂ G(Af ), we have the Shimura variety

ShK = ShK(G,X ),

which is a smooth quasi-projective algebraic variety over E. Let ShK be the Baily–
Borel compactification of ShK . Let IH∗ be the intersection cohomology of ShK ⊗E E
with Qℓ-coefficients. (More generally, a non-trivial “automorphic” coefficient system
is allowed, which we ignore in the introduction.) Let p be a hyperspecial prime for
K, i.e., K = KpK

p with Kp ⊂ G(Qp) a hyperspecial subgroup and Kp ⊂ G(Apf ) a
compact open subgroup. (Here Apf denotes the finite adeles away from p.) Assume
that p ̸= ℓ. On IH∗, we have commuting actions of Gal(E/E) and the Hecke algebra
H(G(Apf ) � Kp)Qℓ consisting of the Qℓ-valued smooth compactly supported Kp-bi-
invariant distributions on G(Apf ). Fix fp,∞ ∈ H(G(Apf ) �Kp)Qℓ , and let Φ = Φp be
a geometric Frobenius at a place p of E above p. Let a ∈ Z≥1.



2 INTRODUCTION

Conjecture 1 (Kottwitz, see [Kot90, §10] ). — The action of Gal(E/E) on IH∗

is unramified at p, and under simplifying assumptions of a group-theoretic nature, we
have ∑

k

(−1)k Tr(fp,∞ × Φa | IHk) =
∑
H

ι(G,H)STH(fH).(0.1)

On the right, H runs through the isomorphism classes of elliptic endoscopic data of
G. For each H, STH(·) is the geometric side of the stable trace formula for H, and
fH is a function on H(A) determined by the Shimura datum, fp,∞, and a.

In addition, Kottwitz also formulated the following conjecture for the compact
support cohomology H∗

c of ShK ⊗EE.

Conjecture 2 (Kottwitz, see [Kot90, §7]). — The action of Gal(E/E) on H∗
c is

unramified at p, and under simplifying assumptions we have∑
k

(−1)k Tr(fp,∞ × Φa | Hk
c ) =

∑
H

ι(G,H)STHe (fH).(0.2)

Here H and fH are the same as in Conjecture 1, while STHe (·) is the elliptic part of
the geometric side of the stable trace formula for H.

The main result

Let (V, q) be a quadratic space over Q of signature (n, 2), where n ≥ 3. We assume
that V has a 2-dimensional totally isotropic subspace, which is automatic if n ≥ 5. Let
G = SO(V, q). We have a natural Shimura datum (G,X ), where X can be identified
with the set of oriented negative definite planes in VR. This Shimura datum is of
abelian type (but not of Hodge type). The associated Shimura varieties are called
orthogonal Shimura varieties. They are n-dimensional varieties over the reflex field
Q.

Theorem 1 (Corollary 8.17.5). — Conjecture 1 is true for the orthogonal Shimura
varieties associate to (V, q), for almost all primes p and for all sufficiently large a.

We refer the reader to the statements of Theorem 1.8.4 and Corollary 8.17.5 for
the precise meaning of “almost all primes p”. Here we just mention that the set of
primes to be excluded should depend on a fixed element f∞ of the “full” Hecke algebra
H(G(Af ) �K)Qℓ , whereas fp,∞ in (0.1) should be the component of f∞ away from
p, after p has been chosen.

Some remarks

From a group-theoretic point of view, both sides of (0.2) are less complicated
compared to (0.1). In fact, the RHS of (0.2) has an elementary definition in terms of
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stable orbital integrals. For the LHS of (0.2), Kottwitz computed it for PEL Shimura
varieties of type A or C in [Kot92b] by counting (virtual) abelian varieties with
additional structures over finite fields and using the Grothendieck–Lefschetz–Verdier
trace formula. He obtained:∑

k

(−1)k Tr(fp,∞ × Φa | Hk
c ) =

∑
(γ0,γ,δ)

c(γ0, γ, δ)Oγ(fp,∞)TOδ(ϕ) Tr(γ0 | V).(0.3)

We do not explain the terms on the RHS in detail here, but only mention that they
are group-theoretic in nature and include orbital integrals Oγ(·) and twisted orbital
integrals TOδ(·). In [Kot90], Kottwitz conjectured that (0.3) should hold for general
Shimura varieties (at least under some simplifying assumptions of a group-theoretic
nature). In the same paper Kottwitz stabilized the RHS of (0.3), namely he found(2)

the functions fH such that the RHS of (0.3) is equal to the RHS of (0.2). In [KSZ],
both the formula (0.3) and the stabilization step are generalized to arbitrary Shimura
varieties of abelian type, and Conjecture 2 is proved for these varieties.

One should view Conjecture 1 as one step forward from Conjecture 2. From a
spectral perspective, it is STH rather than STHe that sees the “whole picture”. More
specifically, STH has a spectral expansion, from which one can eventually make a link
to automorphic representations. By contrast it is unclear how STHe can be directly
related to spectral information in general.

We also mention that the expectation that the intersection cohomology is the
correct cohomology to insert in (0.1) is motivated by Zucker’s conjecture and Arthur’s
work on L2-cohomology, among other things. We refer the reader to [Mor10a] for a
more detailed discussion on these motivations.

Application: the Hasse–Weil zeta functions

In [Kot90], Kottwitz showed that one can combine Conjecture 1 with the conjec-
tural framework of Arthur parameters and Arthur’s multiplicity conjectures to infer
a description of the Galois–Hecke module IH∗, and in particular a formula for the
Hasse–Weil zeta function associated to IH∗.

Currently some of these premises related to Arthur’s conjectures have been estab-
lished in special cases. Most notably, Arthur [Art13] has established the multiplicity
conjectures for quasi-split classical groups.(3) In fact, our interest in delving into spe-
cial orthogonal groups within this paper is driven by a desire to connect with Arthur’s
work. This intentional decision distinguishes our focus from similar groups such as

(2)The construction of fH relies on the Langlands–Shelstad Transfer Conjecture and the Fundamen-
tal Lemma, which were unproven at the time of [Kot90]. They are now theorems thanks to the
work of numerous mathematicians, most notably Ngô and Waldspurger.
(3)The results in [Art13] are contingent on the release of several upcoming papers, including the
reference [A25], which have not appeared as of the time of writing.
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GSpin, whose Shimura varieties display a relative simplicity in various aspects, for
instance, being of Hodge type.

Unfortunately, when the rank is large the special orthogonal groups that have
Shimura varieties cannot be quasi-split even over R, because of the signature (n, 2)
condition. Arthur’s work has been generalized to limited cases of inner forms by
Täıbi [Täı19] (building on earlier work of Kaletha [Kal18, Kal16] and Arancibia–
Moeglin–Renard [AMR18], among others). We combine Theorem 1 with Arthur’s
and Täıbi’s work to obtain the following theorem. Here we state it only for odd n for
simplicity.

Theorem 2 (Theorem 9.7.5, Remark 9.7.6). — Assume that n is odd, and that
G = SO(V, q) is quasi-split at all finite places. For any finite set S of prime numbers,
let ζS(IH∗, s) be the S-partial Hasse–Weil zeta function associated to IH∗. When S

is sufficiently large, we have

log ζS(IH∗, s)

=
∑
ψ

∑
π∞

∑
ν

dim(π∞)Km(π∞, ψ, ν)(−1)nν(sψ) logLS(M(ψ, ν), s).

Here ψ runs through a certain set of Arthur’s substitutes of global Arthur parameters,
π∞ runs through the away-from-∞ global packet of ψ, and ν runs through characters
of the centralizer group of ψ (which is finite abelian). The three-fold summation is
over a finite range. The numbers m(π∞, ψ, ν) ∈ {0, 1} and ν(sψ) ∈ {±1} are defined
in terms of constructions in [Art13] and [Täı19]. The term LS(M(ψ, ν), s) is a finite
product of S-partial standard automorphic L-functions for general linear groups (with
some shifting in the variable s), and hence has meromorphic continuation to C. In
particular, the above formula implies that ζS(IH∗, s) has meromorphic continuation
to C.

In the proof of Theorem 2, one crucial ingredient is a relatively simple formula for
STH(fH) when the test function fH is stable cuspidal at the real place; see Hypothesis
9.1.2. This formula follows from Kottwitz’s stabilization of the L2 Lefschetz number
formula in his unpublished notes, and is also used in Morel’s work [Mor10b, Mor11].
A self-contained proof of this formula for STH(fH), from a different point of view, is
given in a recent paper by Z. Peng [Pen19].

We also prove a refinement of Theorem 2 concerning the decomposition of IH∗

in the Grothendieck group of Galois–Hecke modules, under the same assumption on
G. When n is odd (as well as in some cases when n is even), we express IH∗ in
terms of the known Galois representations associated to regular algebraic cuspidal
automorphic representations of general linear groups, with multiplicities given in a
similar way as the multiplicities in Theorem 2. See Theorem 9.8.5, Corollary 9.8.8,
and Corollary 9.8.10. When n is even, both the computation of the partial Hasse–
Weil zeta function and the decomposition of IH∗ proved in this paper are weaker than
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the conjectures in [Kot90], in that a certain ambiguity up to outer automorphism is
constantly present. This is due to the extra ambiguity in the endoscopic classification
of representations for even special orthogonal groups in [Art13] and [Täı19], which
seems intrinsic to the methods therein.

As a byproduct of our refinement of Theorem 2, we prove that if an Arthur param-
eter ψ contributes to IH∗, then the cuspidal automorphic representations of general
linear groups that constitute ψ all satisfy the Ramanujan–Petersson conjecture at
almost all primes. These representations need not be regular algebraic, in which case
the conjecture was previously known. See Theorem 9.8.5 (3) and Remark 9.8.6.

Reduction to the stabilization of the boundary terms

We now discuss the structure of the proof of Theorem 1. For some period of time,
the study of the LHS of (0.1) had been restricted to sporadic low dimensional cases;
see for instance [LR92]. The essential tools for treating arbitrary dimensions were
developed by Morel [Mor06, Mor08] (cf. [Mor10a]), who went on to prove Conjec-
ture 1 for some unitary similitude Shimura varieties and the Siegel modular varieties
of arbitrary dimensions in [Mor10b] and [Mor11] respectively. We use Morel’s work
to obtain the following result for the orthogonal Shimura varieties associated to (V, q).
We fix a minimal parabolic subgroup of G = SO(V, q) and fix a Levi component of it.
Thus we get a notion of standard parabolic subgroups and standard Levi subgroups
of G.

Theorem 3 (Theorem 1.8.4). — For almost all primes p, we have∑
k

(−1)k Tr(fp,∞ × Φj | IHk) =
∑
M

TrM ,(0.4)

where M runs through the standard Levi subgroups of G.

Let us roughly describe the terms TrM . For M = G, we have

TrG =
∑
k

(−1)k Tr(fp,∞ × Φj | Hk
c ),

where Hk
c is the compact support cohomology of ShK,Q. For a proper M , the term

TrM is a more complicated mixture of the following ingredients.

– The analogue of
∑
k(−1)k Tr(fp,∞ × Φj | Hk

c ) for a boundary stratum in ShK .
In another words, an enumeration of points on the stratum fixed under certain
Frobenius–Hecke operators.

– The topological fixed point formula of Goresky–Kottwitz–MacPherson as in
[GKM97], for the trace of a Hecke operator on the compact support cohomology of
a certain locally symmetric space.
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– Kostant–Weyl terms. By this we mean characters for certain algebraic sub-
representations of MP inside

H∗(LieNP ,V),
where P is a standard parabolic subgroup of G containing M , and P = MPNP is
the standard Levi decomposition. These sub-representations are defined by certain
truncations of weights, and can be understood in terms Kostant’s theorem [Kos61]
describing H∗(LieNP ,V).

As we have already mentioned, in [KSZ] the term TrG is computed and stabilized
for all Shimura varieties of abelian type. Thus TrG is known to be equal to the RHS
of (0.2). In view of this, Theorem 1 follows from Theorem 3 and the following result,
which may be viewed as the “stabilization of the boundary terms”.

Theorem 4 (Theorem 8.17.2). — We have∑
M⫋G

TrM =
∑
H

ι(G,H)[STH(fH)− STHe (fH)].(0.5)

Stabilization of the boundary terms

The method for proving Theorem 4 is by calculating the two sides of (0.5) and
matching the explicit expressions. To calculate the RHS, we use Kottwitz’s formula
in his unpublished notes, as mentioned below Theorem 2. According to this formula
(to be recalled in §8.3), we have an expansion of the form

STH(fH)− STHe (fH) =
∑
M ′ ̸=H

STHM ′(fH),

where M ′ runs through standard proper Levi subgroups of H, and each term STHM ′(·)
has a relatively simple expression.

Roughly speaking, we label the pairs (H,M ′) appearing in the above summation
by either a standard proper Levi subgroup M of G or the symbol ∅. We write
(H,M ′) ∼M , or (H,M ′) ∼ ∅. In order to prove Theorem 4, we need to show

TrM =
∑

(H,M ′)∼M

STHM ′(fH),(0.6)

where M is either a standard proper Levi subgroup of G or the symbol ∅, and we
define Tr∅ to be 0. The proof of (0.6) involves the following ingredients.

(i) Fixed point formula for a boundary stratum. — We need a formula that
enumerates points on a boundary stratum fixed under a Frobenius–Hecke operator,
of a form similar to (0.3). The boundary stratum in question is (a finite quotient of)
either a modular curve or a zero-dimensional Shimura variety, so such a formula is
essentially a classical result. However, the zero-dimensional case causes some extra
complication. We will come back to this technical point later in the introduction.
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(ii) Archimedean comparison. — We need a series of identities between the
archimedean contributions to the two sides of (0.6). These are identities between
terms of two different natures, namely discrete series character values (which appear
on the RHS of (0.6)) and Kostant–Weyl terms (which appear on the LHS of (0.6);
see the discussion below Theorem 3). We establish such identities by explicit compu-
tation. On the discrete series side, we use formulas due to Harish-Chandra [HC65]
and Herb [Her79]. On the Kostant–Weyl side, we use Kostant’s theorem [Kos61]
and the Weyl character formula.

We point out that a priori it is not clear which identities between the archimedean
contributions would eventually lead to the proof of (0.6). Finding the correct forms
of the archimedean identities seems to be a harder task than proving them. It would
be desirable to have a more conceptual understanding of how the archimedean com-
parison should be woven into the proof of (0.6) in general.

(iii) Computation at p. — We need to compute the p-adic contributions to the
two sides of (0.6) explicitly. A priori there are more p-adic terms on the RHS than
the LHS. We will need to prove, among other things, that the extra terms eventually
cancel each other.

This finishes our discussion on the structure of the proof of Theorem 1. Next we
highlight three new features in the proof which did not show up in Morel’s work
[Mor11, Mor10b] for symplectic similitude and unitary similitude groups.

Arithmetic feature: Shimura varieties of abelian type

The orthogonal Shimura varieties are of abelian type and not of PEL type. In this
paper we take as a black box the main result of [KSZ] that proves Conjecture 2 for
these Shimura varieties. In Morel’s work, the Shimura varieties are of PEL type, and
for them Conjecture 2 was already proved by Kottwitz.

The reason that Theorem 1 is proved only for primes outside an unspecified finite
set is also due to a certain lack of understanding of Shimura varieties of abelian
type. Ideally one would like to prove the theorem for all hyperspecial primes p, but a
prerequisite for that would be a robust theory of integral models of the Baily–Borel
and toroidal compactifications. Such a theory has been established by Madapusi Pera
[MP19] in the case of Hodge type. For the Baily–Borel compactifications alone, a
“crude” construction of the integral models in the case of abelian type has been given
by Lan–Stroh [LS18]. However, for the above-mentioned purpose the integral models
of toroidal compactifications are equally important, and this is currently unavailable
beyond the case of Hodge type.

All the difficulty about integral models of compactifications can be circumvented
at the cost of excluding an unspecified finite set of primes, and this is the point of
view taken in this paper. We refer the reader to §3.1 for a more detailed discussion.
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Geometric feature: zero-dimensional boundary strata as quotients of
Shimura varieties

In general, the boundary strata of the Baily–Borel compactification are naturally
isomorphic to finite quotients of Shimura varieties at certain natural levels. Often
these quotients are isomorphic to genuine Shimura varieties. However this is not true
for the zero-dimensional boundary strata in the present case. From a group-theoretic
point of view, this issue corresponds to the fact that the orthogonal Shimura datum
does not satisfy Morel’s axioms in [Mor10b, Chap. 1]. As a result, in the proof of
Theorem 3 we need to modify the axiomatic approach in loc. cit., and the terms
TrM in (0.4) are also given by formulas that are slightly different from those in
[Mor10b, Mor11].

Endoscopic-theoretic feature: normalizing transfer factors

In the proof of (0.6), signs are utterly important. One source of signs is the differ-
ence between the normalizations of transfer factors at the real place. The necessity of
computing these signs was not emphasized in [Mor10b, Mor11]. For the orthogonal
Shimura varieties, these signs form a delicate pattern.

To understand these signs we need to compare the normalization ∆j,B introduced
in [Kot90, §7], and the Whittaker normalization. Here we explicitly fix GR as a pure
inner form of its quasi-split inner form G∗

R and fix a Whittaker datum for G∗
R, so

the Whittaker normalizations for the transfer factors between GR and its endoscopic
groups can be defined. The normalization ∆j,B naturally shows up in the description
of the archimedean component of fH . To compare these two normalizations, we
compare the corresponding spectral transfer factors that appear in the endoscopic
character relations and compute the sign between them.

Extra complication arises when G∗
R has more than one equivalence class of Whit-

taker data. This happens if and only if dimV is divisible by 4, when there are precisely
two equivalence classes. In this case, we need to study how the two (different) Whit-
taker normalizations relate to the explicit formulas of Waldspurger [Wal10], the latter
having the merit of being easier to keep track of when passing to Levi subgroups. In
this direction we prove Theorem 6.3.11, which may be of independent interest in
representation theory.
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LEITFADEN

In §1, we recall the setting of orthogonal Shimura varieties and state Morel’s for-
mula in Theorem 1.8.4. The terms in this formula are defined in §2, and the proof is
given in §3. For a more detailed introduction to the structure of the proof see §3.1.

In §4, we carry out the archimedean comparison between the Kostant–Weyl terms
and the stable discrete series characters. The results proved in this chapter to be used
later are Propositions 4.4.2, 4.5.2, 4.6.12, 4.6.13, and 4.6.14.

In §5, we review the endoscopic data for special orthogonal groups and give explicit
presentations which are important for the later computations.

In §6, we compare different normalizations of archimedean transfer factors for
special orthogonal groups. The goal is to explicitly determine certain signs.

In §7, we calculate some Satake transforms at p that will be needed later in the
stabilization.

In §8, we prove the stabilization of the boundary terms by assembling the preceding
ingredients and explicit manipulation. We deduce the main result Theorem 1 of this
paper in Corollary 8.17.5.

In §9, we apply our main result to the actual computation of Hasse–Weil zeta
functions in some special cases, after reviewing results of Arthur and Täıbi on the
endoscopic classification of automorphic representations. The main results in this
chapter are Theorems 9.6.4, 9.7.5, and 9.8.5.





CONVENTIONS AND NOTATIONS

– For x ∈ R, we denote by ⌊x⌋ the largest integer ≤ x and denote by ⌈x⌉ the
smallest integer ≥ x. If x ≥ 0, we denote by x1/2 the non-negative square root of x.

– We denote i ∈ C alternatively by
√
−1.

– For any n ∈ Z≥1, we denote by [n] the set {1, 2, · · · , n}. We denote by Sn the
symmetric group of the set [n].

– Let A be a subset of Z≥1. For each i ∈ Z≥1, we set ∇i(A) = 1 if i ∈ A, and
∇i(A) = −1 if i /∈ A.

– When the symbol ± appears for multiple times in a single expression, it is un-
derstood that all possible combinations of the signs are considered. For example, we
shall write {±x± y} for the set {x+ y, x− y,−x+ y,−x− y}.

– A basis of a finite-dimensional vector space is always understood as an ordered
basis. We often just use the notation for a set such as {e1, · · · , ed} to denote a basis,
but the ordering is understood.

– For x1, · · · , xn ∈ C×, we write symdiag(x1, · · · , xn) for the 2n × 2n diagonal
matrix diag(x1, · · · , xn, x−1

n , · · · , x−1
1 ).

– For any square matrix A, we write AT for the transpose.
– If a group G acts on a set X, we write CentGX for the action kernel, namely the

largest subgroup of G acting trivially on X.
– When x is an element of a group, we write Int(x) for the automorphism y 7→

xyx−1.
– If Σ is a finite set of prime numbers, we denote by Z[1/Σ] the ring Z[1/p, p ∈ Σ].
– For a ∈ Z≥1 and p a prime number, we denote by Qpa the degree a unramified

extension of Qp, and by Zpa the valuation ring of Qpa . We denote by σ the arithmetic
p-Frobenius acting on Qpa .

– If H is either a locally profinite group or a real Lie group, we write C∞
c (H) for

the set of compactly supported smooth C-valued functions on H.
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– We use the following abbreviations:

ΓQ = Gal(Q/Q), Γp = ΓQp = Gal(Qp/Qp), Γ∞ = ΓR = Gal(C/R).

More generally, if F is a field, we write ΓF for the absolute Galois group of F .
– We say that a profinite Galois étale covering Y → X of schemes is a G-torsor,

where G is a profinite group, if G is the limit lim←−i∈I Gi of finite groups Gi, and Y → X

is the limit of finite Galois étale coverings Yi → X that is a Gi-torsor.
– By a reductive group, we always mean a connected reductive group.
– For a reductive group G over R and a maximal torus T in G defined over R, we

write ΩC(G,T ) for the complex Weyl group NorG(C)(T )/T (C), and write ΩR(G,T )
for the real Weyl group NorG(R)(T )/T (R).

– For a reductive group G over R, we denote by G(R)0 the identity connected
component of the real Lie group G(R).

– In the structural theory of reductive groups, the words “pinning”, “splitting”,
and “épinglage” are synonyms. We use the word “splitting”.

– If P is a parabolic subgroup of a reductive group over a field, we write NP for
the unipotent radical of P . We reserve the notation UP for a different purpose. We
write MP for P/NP . When it is clear from the context, MP also denotes a fixed Levi
component of P .

– We freely use the language of abelianized Galois cohomology as developed in
[Bor98] and [Lab99]. For an overview, cf. [KSZ, §1]. We also use Kottwitz’s more
classical formulation [Kot86] in terms of centers of Langlands dual groups.

– Let G be a reductive group over Q. We denote by ker1(Q, G) the kernel set

ker(H1(Q, G)→ H1(A, G)).

It is well known that ker1(Q, G) has the canonical structure of an abelian group; see
for instance [Bor98].

– When normalizing transfer factors, we use the classical normalization of local
class field theory as opposed to Deligne’s normalization, cf. [KS12, §§4.1–4.2].

– Names of Dynkin types are denoted by sans serif letters, e.g., An,Bn, etc.
– We sometimes use the abbreviations “LHS” and “RHS” for “left hand side” and

“right hand side”.



CHAPTER 1

THE ORTHOGONAL SHIMURA VARIETIES

1.1. General definitions concerning reductive groups

We collect some definitions that will appear repeatedly in the paper.

Definition 1.1.1. — Let G be a reductive group over a field F . Let P be a parabolic
subgroup of G, with unipotent radical NP . Let M be a Levi component of P .

(1) We denote by AM the split component of M , namely the maximal F -split torus
in the center of M .

(2) Let NorG(M) be the normalizer of M in G. We denote by WG
M the quotient

group NorG(M)(F )/M(F ), and denote by nGM the cardinality of WG
M .

(3) For any γ ∈M(F ), we define

DG
M (γ) := det

(
1−Ad(γ) | LieG/LieM

)
∈ F.

(4) Assume that F = Qv for a place v of Q. For any γ ∈ P (Qv), we define

δP (Qv)(γ) :=
∣∣det

(
Ad(γ) | LieNP ⊗Qv

)∣∣
v
∈ R>0,

where |·|v denotes the usual absolute value on Qv.

Remark 1.1.2. — In Definition 1.1.1 (2), we in fact have NorG(M)(F ) =
NorG(AM )(F ), and M(F ) = CentG(AM )(F ). Hence WG

M is isomorphic to the image
of NorG(AM )(F ) in Aut(AM ).

Definition 1.1.3. — Let G be a quasi-split reductive group over a field F . By
a Borel pair in G, we mean a pair (T,B) consisting of a maximal torus T in G

and a Borel subgroup B of G containing T . Given a Borel pair (T,B), we de-
note the sets of roots, coroots, positive roots, positive coroots by Φ(G,T ), Φ(G,T )∨,
Φ(G,T )+, Φ(G,T )∨,+ respectively. We write BRD(T,B) for the based root datum
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(X∗(T ),Φ(G,T ),Φ(G,T )+, X∗(T ),Φ(G,T )∨,Φ(G,T )∨,+). We define the Weyl de-
nominator

∆B(γ) :=
∏

α∈Φ(G,T )+

(1− α−1(γ)) ∈ F , ∀γ ∈ T (F ).

Definition 1.1.4. — Let G be a reductive group over R. We denote by XG the
symmetric space associated to G, namely XG = G(R)/KAG(R)0, where K is a max-
imal compact subgroup of G(R). Thus XG is a smooth manifold. We let q(G) be the
half of the dimension of XG.

Remark 1.1.5. — In Definition 1.1.4, K meets every connected component of G(R)
by Matsumoto’s theorem (see [BT65, 14.4]). Hence XG is connected.

Definition 1.1.6. — We call a reductive group G over Q cuspidal if GR contains el-
liptic maximal tori and Z0

G has equal Q-split and R-split rank. Equivalently, (G/AG)R
contains R-anisotropic maximal tori, where AG is the split component of G over Q.

Remark 1.1.7. — In this paper, every reductive group over Q that appears will
be a direct product of special orthogonal groups and general linear groups. Thus the
only case where the center can have different Q-split and R-split ranks is when we
have a direct factor SO2 which is non-split over Q but split over R.

Definition 1.1.8. — Let G be a reductive group over Q. We say that an element
γ ∈ G(Q) is R-elliptic, if there is an elliptic maximal torus T inGR such that γ ∈ T (R).

1.2. Generalities on quadratic spaces

1.2.1. — Let F be a field of characteristic zero, with a fixed algebraic closure F . In
this paper, all quadratic spaces over F are assumed to be finite-dimensional and non-
degenerate. Let (V, q) be a quadratic space over F . We denote by [·, ·]q : V ⊗ V → F

the associated bilinear pairing, defined as [x, y]q = q(x, y) − q(x) − q(y). When no
confusion can arise we simply write V for (V, q), and write [·, ·] for [·, ·]q. Recall that
the determinant of q, denoted by det q, is the image in F×/F×,2 of the determinant
of the matrix of q under any basis of V . We define the discriminant of (V, q) to be

δ := (−1)⌊dimV/2⌋ det q ∈ F×/F×,2.

For m ∈ Z≥1, we write Jm for the m×m matrix

Jm =

 1
...

1

 .

Definition 1.2.2. — Let (V, q) be a quadratic space over F of dimension d and
discriminant δ. Let m = ⌊d/2⌋. We define the following notions.
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(1) A basis {e1, · · · , ed} of V is called hyperbolic, if the matrix ([ei, ej ]q) is of the
form  Jm

x

Jm


for some x ∈ F× when d is odd, and is equal to(

Jm
Jm

)
when d is even. Note that when d is even, a hyperbolic basis exists only when δ is
trivial.

(2) Assume that d is even, and that δ is non-trivial. In this case a basis {e1, · · · , ed}
of V is called near-hyperbolic , if the matrix ([ei, ej ]q) is equal to

Jm−1
1
−x

Jm−1


for some x ∈ F×. Note that x is a lift of δ ∈ F×/F×,2. We say that x is the
discriminant of {e1, · · · , ed}.

Definition 1.2.3. — We call (V, q) quasi-split, if there exists a hyperbolic basis or
a near-hyperbolic basis of V . If there exists a hyperbolic basis we also say that V
is split; this is equivalent to requiring that V contains a totally isotropic subspace of
dimension ⌊dimV/2⌋.

Example 1.2.4. — Let F = R. Then a quadratic space over R of signature (p, q)
is quasi-split if and only p− q ∈ {1,−1, 2}. For any p ∈ Z≥1, the quadratic spaces of
signature (p, p) and (p + 1, p − 1) are both quasi-split, and their discriminants are 1
and −1 ∈ R×/R×,2 respectively.

1.2.5. — Let m ∈ Z≥1. We denote by RD(Bm) the standard type Bm root datum,
given by

(Zm = spanZ {ϵ1, · · · , ϵm} , R,Zm = spanZ {ϵ∨1 , · · · , ϵ∨m} , R∨),

where ⟨ϵi, ϵ∨j ⟩ = δi,j , and

R = {±ϵi | 1 ≤ i ≤ m} ∪ {±ϵi ± ϵj | 1 ≤ i < j ≤ m} ,
R∨ = {±2ϵ∨i | 1 ≤ i ≤ m} ∪

{
±ϵ∨i ± ϵ∨j | 1 ≤ i < j ≤ m

}
.

(If m = 1, then R = {ϵ1} , R∨ = {2ϵ∨1 }.) By the standard simple roots we mean the
following choice of simple roots:

ϵ1 − ϵ2, · · · , ϵm−1 − ϵm, ϵm.
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We denote by BRD(Bm) the based root datum corresponding to the above choice of
simple roots, called the standard based root datum. The Weyl group of RD(Bm) is
naturally identified with {±1}m ⋊Sm.

Similarly, for m ∈ Z≥1 we denote by RD(Dm) the standard type Dm root datum,
given by

(Zm, R,Zm, R∨),
where

R = {±ϵi ± ϵj | 1 ≤ i < j ≤ m} ,
R∨ =

{
±ϵ∨i ± ϵ∨j | 1 ≤ i < j ≤ m

}
.

(If m = 1, then R = R∨ = ∅.) By the standard simple roots we mean the following
choice of simple roots:

ϵ1 − ϵ2, · · · , ϵm−1 − ϵm, ϵm−1 + ϵm.

We denote by BRD(Dm) the corresponding based root datum. The Weyl group of
RD(Dm) is naturally identified with ({±1}m)′ ⋊ Sm, where ({±1}m)′ denotes the
kernel of the homomorphism {±1}m → {±1} taking the product of the coordinates.

Definition 1.2.6. — Let α ∈ F be an element such that α2 ∈ F× and α /∈ F . Let
U(1)α be the norm-one subtorus of ResF (α)/F Gm. We have a canonical isomorphism
U(1)α,F ∼= Gm,F corresponding to the inclusion F (α) ↪→ F . In particular, we canon-
ically identify X∗(U(1)α) and X∗(U(1)α) with Z. We also have a canonical injective
F -homomorphism ια : U(1)α → GL2, which represents the multiplication action of
U(1)α on F (α) under the F -basis {1, α} of F (α). If F = R, F = C, α =

√
−1, we

simply write U(1) for U(1)α.

1.2.7. — Let V = (V, q) be a quadratic space over F of dimension d and discriminant
δ. Let G = SO(V ). Then G is a reductive algebraic group over F , and semi-simple if
d ̸= 2. The absolute rank of G is m = ⌊d/2⌋.

Assuming that (V, q) is quasi-split, we shall obtain an explicit description of a Borel
pair in G and the associated based root datum as follows. There are two cases to
consider.

The first case is when V has a hyperbolic basis B = {e1, · · · , ed}. We then identify
G with a subgroup of GLd using the basis B. When d is odd, we obtain an F -
embedding

ιB : Gmm −→ G, (z1, · · · , zm) 7−→ diag(z1, · · · , zm, 1, z−1
m , · · · , z−1

1 ).

When d is even, we obtain an F -embedding

ιB : Gmm −→ G, (z1, · · · , zm) 7−→ diag(z1, · · · , zm, z−1
m , · · · , z−1

1 ).

For both parities of d, the image T of ιB is a split maximal torus in G. Also, the
intersection of G with the upper triangular Borel subgroup of GLd is a Borel subgroup
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B of G containing T . Under ιB, the based root datum BRD(T,B) is identified with the
standard based root datum BRD(Bm) (resp. BRD(Dm)) when d is odd (resp. even).

The second case is when d is even, δ is non-trivial, and V has a near-hyperbolic
basis B = {e1, · · · , ed}. Let x ∈ F× be the discriminant of B (see Definition 1.2.2),
and fix a square root α ∈ F of x. We identify G with a subgroup of GLd using the
basis B, and obtain an F -embedding

ια,B : Gm−1
m ×U(1)α −→ G

(z1, · · · , zm−1, zm) 7−→ diag(z1, · · · , zm−1, ια(zm), z−1
m−1, · · · , z

−1
1 ).

Here U(1)α and ια : U(1)α → GL2 are as in Definition 1.2.6. The image T of ια,B is
a maximal torus in G. Recall from Definition 1.2.6 that X∗(U(1)α) and X∗(U(1)α)
are canonically identified with Z, so X∗(Gm−1

m × U(1)α) and X∗(Gm−1
m × U(1)α) are

canonically identified with Zm. Under ια,B, the root datum of (TF , GF ) is identified
with RD(Dm). The standard based root datum BRD(Dm) thus gives rise to a Borel
subgroup BF of GF containing TF . The ΓF -action on X∗(Gm−1

m × U(1)α) ∼= Zm

factors through Gal(F (α)/F ), and the non-trivial element of Gal(F (α)/F ) acts by
Zm → Zm, (a1, · · · , am) 7→ (a1, · · · , am−1,−am). Hence the ΓF -action preserves the
set of standard simple roots. It follows that BF comes from a Borel subgroup B of G.
Thus (T,B) is a Borel pair in G, and ια,B induces an isomorphism between BRD(Dm)
and BRD(T,B).

Proposition 1.2.8. — Let (V, q) be a quadratic space over F of dimension d and
discriminant δ. Let G = SO(V ). Assume that d ≥ 3. The following statements hold.

(1) The quadratic space V is split if and only if G is split.
(2) If d is odd, then G is split if and only if G is quasi-split.
(3) If d is even, then G is split if and only if G is quasi-split and δ is trivial.
(4) Assume that d is even, δ is non-trivial, and V is quasi-split. Then G is quasi-

split.
(5) Assume that d is even, δ is non-trivial, and G is quasi-split over F . Then G

is split over F (α), for any α ∈ F whose square is a lift of δ.
(6) Keep the assumptions in (5), and assume that F is a non-archimedean local

field of characteristic zero. Then G is unramified if and only if F (α) is unramified
over F , if and only if δ ∈ F×/F×,2 has a representative in O×

F /O
×,2
F .

(7) Suppose F = Qp for an odd prime p. Then (V, q) is quasi-split if and only if
the Hasse invariant is (−1) p−1

2 vp(δ)⌊ d−1
2 ⌋. Here vp(δ) is well defined in Z/2Z.

(8) Suppose F = Q. Then (V, q)⊗Q Qp is quasi-split for almost all primes p.

Proof. — (1) This is well known; see for instance [PR94, Prop. 2.14].
(2) This follows from the fact that the Dynkin diagram of type B(d−1)/2 does not

have non-trivial automorphisms.
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(3) If G is split, then V is split by part (1), and so δ is trivial. Conversely, assume
that G is quasi-split and δ is trivial. By the abstract classification of quasi-split semi-
simple groups of type Dm (where m = d

2 ≥ 2), we know that the split rank of G is at
least d

2 −1. This implies that V is an orthogonal direct sum of d2 −1 hyperbolic planes
and a 2-dimensional quadratic space V0, by [PR94, Prop. 2.14]. The discriminant of
V0 is the same as that of V , which is trivial. Therefore there is a basis of V0 under
which the matrix of the quadratic form on V0 is diag(a,−ab2) for some a, b ∈ F×.
Clearly this implies that V0 is a hyperbolic plane. Hence V is split, and therefore G
is split by (1).

(4) By §1.2.7, G admits a Borel subgroup over F .
(5) This follows from (3) by base changing both V and G from F to F (α).
(6) Since δ is non-trivial, by (1) we know that G is non-split. By the abstract

classification of quasi-split non-split semi-simple groups of type Dm (with m ≥ 2), we
know that G splits over a unique quadratic extension E/F inside F , and that any
splitting field of G inside F must contain E. Thus G is unramified if and only if E/F
is unramified. By (5), we know that E = F (α). Thus G is unramified if and only if
F (α) is unramified over F , which is also equivalent to that δ has a representative in
O×
F /O

×,2
F .

(7) If (V, q) is quasi-split, then it has matrix representationI d−1
2

x

−I d−1
2


when d is odd and I d2 −x

−I d
2 −1


when d is even, for some x ∈ F× representing δ. Hence the Hasse invariant is
(x,−1)⌊ d−1

2 ⌋
p = (−1) p−1

2 vp(x)⌊ d−1
2 ⌋. This proves the “only if” direction. The “if”

direction follows since two quadratic spaces over Qp with the same dimension, dis-
criminant, and Hasse invariant are isomorphic.

(8) For almost all p, vp(δ) = 0 ∈ Z/2Z and the Hasse invariant of (V, q) at p is
trivial. By (7) we know that (V, q)⊗Q Qp is quasi-split for such p.

Remark 1.2.9. — From the assumptions that d is even, δ is non-trivial, and G =
SO(V ) is quasi-split over F , it does not follow that V is quasi-split. For example, the
quadratic spaces over R of signatures (n+2, n) and (n, n+2) define isomorphic special
orthogonal groups, but only the former quadratic space is quasi-split; cf. Example
1.2.4.
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1.3. Generalities on Shimura data and rational boundary components

In this section we collect some general facts concerning the formalism of mixed
Shimura data and rational boundary components in [Pin90].

1.3.1. — According to the definition of Pink [Pin90, Chap. 2], a mixed Shimura
datum is a tuple (P,U,Y, h), where P is a connected linear algebraic group over Q, U
is a subgroup of the unipotent radical of P that is normal in P , Y is a left homogeneous
space under the subgroup P (R)U(C) of P (C), and h is a P (R)U(C)-equivariant map
Y → Hom(SC, P ), satisfying the axioms in [Pin90, 2.1]. (Here S := ResC/R Gm.) If
h is clear from the context, we omit it from the notation. If U is trivial, we also
omit it from the notation. The mixed Shimura datum is called pure if P is reductive.
Note that the notion of a pure Shimura datum according to Pink’s definition is less
restrictive than Deligne’s definition in [Del79, 2.1], in that h is allowed to be non-
injective, cf. [Pin90, 2.2 (d)]. In the sequel all pure Shimura data are understood in
the sense of Pink.

Some comments on the homogeneous space Y are in order. First, note that
P (R)U(C) is the preimage of (P/U)(R) along the map P (C) → (P/U)(C), since
H1(R, U) is trivial. It follows that P (R)U(C) is a closed Lie subgroup of the real Lie
group P (C). Recall that for any real Lie group G, a left homogeneous space under
G is a set S equipped with a transitive left action of G such that the stabilizers are
closed Lie subgroups of G. Then S has the unique structure of a smooth manifold
such that the G-action is smooth. In the definition of a mixed Shimura datum, Y
is required to be a left homogeneous space under the real Lie group P (R)U(C), and
so Y is canonically a smooth manifold. As explained in [Pin90, 2.2], Y has finitely
many connected components, and the smooth structure on Y can be upgraded to a
canonical complex structure, which is invariant under P (R)U(C).

1.3.2. — By definition ([Pin90, 2.3]), a morphism between two mixed Shimura data
(P,U,Y, h) and (P ′, U ′,Y ′, h′) is a pair (π, F ), where π : P → P ′ is a homomorphism
of Q-algebraic groups, and F : Y → Y ′ is a map, required to satisfy the following
conditions:

– π maps U into U ′.
– F is equivariant with respect to the homomorphism P (R)U(C) → P ′(R)U ′(C)

induced by π.
– For any y ∈ Y, the homomorphism h′(F (y)) : SC → P ′

C is equal to the composite
homomorphism

SC
h(y)−−−→ PC

π−→ P ′
C.

As shown in [Pin90, 2.4], if (π, F ) is a morphism as above, then F is automatically
holomorphic with respect to the canonical complex structures on Y and Y ′.
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1.3.3. — Let (P,U,Y, h) be a mixed Shimura datum. In [Pin90, 2.9], Pink con-
structs the quotient of (P,U,Y, h) by a normal subgroup P0 of P . This is a mixed
Shimura datum for the group P/P0 equipped with a morphism from (P,U,Y, h) sat-
isfying a universal property. In the following, we give an alternative construction of
the quotient in the special case where P0 is the unipotent radical of P .

Let W be the unipotent radical of P . We write G for P/W , and write π for the
projection P → G. Since H1(R,W ) is trivial, and since W (R) and U(C) are con-
nected, the natural map P (R)U(C)→ G(R) is surjective and induces an isomorphism
π0(P (R)U(C)) ∼−→ π0(G(R)). In particular, π0(G(R)) acts on π0(Y).

Suppose we have a left π0(G(R))-set Γ and a π0(G(R))-equivariant map
λ : π0(Y)→ Γ. We define the map

Hλ : Y −→ Γ×Hom(SC, GC).
y 7−→ (λ([y]), π ◦ h(y)).

We have a diagonal G(R)-action on Γ×Hom(SC, GC), where the action on the second
factor is by conjugation. The map Hλ is equivariant with respect to the natural
homomorphism P (R)U(C) → G(R). Let Xλ := im(Hλ). Let hλ : X → Hom(SC, GC)
be the projection map to the second factor. It is easy to check that (G,Xλ, hλ) is a
pure Shimura datum, and that the pair (π : P → G, Hλ : Y → Xλ) is a morphism
(P,U,Y, h) → (G,Xλ, hλ) between mixed Shimura data. Since Hλ : Y → Xλ is
surjective by the definition of Xλ, it induces a surjection π0(Hλ) : π0(Y)→ π0(Xλ).

Lemma 1.3.4. — Let Γ and λ be as above. The following statements hold.
(1) The map Xλ → Γ given by the projection to the first factor induces an injection

π0(Xλ)→ Γ.
(2) The surjection π0(Hλ) : π0(Y) → π0(Xλ) is a bijection if and only if λ is

injective.
(3) If λ is injective, then the morphism (π,Hλ) : (P,U,Y, h)→ (G,Xλ, hλ) identi-

fies (G,Xλ, hλ) with the quotient of (P,U,Y, h) by W .

Proof. — (1) A connected component of Xλ is the same thing as a G(R)0-orbit in
Xλ, but G(R)0 acts trivially on Γ.

(2) The composition of π0(Hλ) followed by the injection π0(Xλ) → Γ in part (1)
is equal to λ.

(3) Let (π, F ) : (P,U,Y, h) → (G,Xabs, habs) be the abstract quotient by W ,
which is characterized by a universal property and constructed in [Pin90, 2.9]. By
the universal property, there is a unique G(R)-equivariant map j : Xabs → Xλ such
that hλ ◦ j = habs and j ◦ F = Hλ. We only need to show that j is a bijection. Since
Hλ : Y → Xλ is surjective, so is j. By part (2), j induces an injection π0(Xabs) →
π0(Xλ). It remains to show that the restriction of j to each connected component of
Xabs is injective. For this, it is enough to show that the restriction of hλ ◦ j = habs to
each connected component of Xabs is injective. But this is [Pin90, 2.12].
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1.3.5. — We recall the formalism of rational boundary components developed in
[Pin90, Chap. 4]. Let (G,X ) = (G,X , h) be a pure Shimura datum. For simplicity,
we assume that Gad is Q-simple, which will suffice for our applications. We denote by
AdmPar(G) the set of admissible parabolic subgroups of G, namely G itself and the
maximal proper parabolic subgroups of G (defined over Q). For any P ∈ AdmPar(G),
Pink [Pin90, 4.7, 4.8] defines a canonical normal subgroup PPink of P , and a canonical
normal subgroup UP of PPink contained in the unipotent radical of PPink.(1) As G is
reductive, the proof of [Pin90, 4.8] shows that the unipotent radical of PPink is equal
to the unipotent radical NP of P . In particular, the subgroup PPink ⊂ G uniquely
determines P . We shall write MP for P/NP and write GP for PPink/NP .

We define
YP := π0(X )×Hom(SC, PPink

C ),
equipped with the diagonal action of P (R)UP (C). Here the action on the first factor
is via π0(P (R)UP (C)) ∼= π0(P (R)) → π0(G(R)), and on the second factor via conju-
gation. We write pP1 and pP2 for the projection maps from YP to the two factors. In
[Pin90, 4.11], Pink defines a canonical P (R)-equivariant map

ωP : X −→ YP

such that pP1 ◦ ωP is the natural projection X → π0(X ).
By definition ([Pin90, 4.11]), a rational boundary component of (G,X ) is a pair

(P,Y), where P ∈ AdmPar(G), and Y is any PPink(R)UP (C)-orbit in YP such that
Y ∩ im(ωP ) ̸= ∅. We denote by RBC(G,X ) or simply RBC the set of all rational
boundary components. For each P ∈ AdmPar(G), we denote by RBCP (G,X ) or
simply RBCP the set of all rational boundary components whose first coordinate is
P . For (P,Y) ∈ RBC, we write XY for the subset ω−1

P (Y) of X . We have the following
facts (see [Pin90, Chap. 4]):

(I) For (P,Y) ∈ RBC, the PPink(R)UP (C)-action on Y and the map pP2 |Y : Y →
Hom(SC, PPink

C ) make the tuple (PPink, UP ,Y) a mixed Shimura datum.
(II) For (P,Y) ∈ RBC, the set XY is the union of some connected components of

X . The map ωP maps XY injectively and holomorphically into Y, inducing a bijection

γY : π0(XY) ∼−→ π0(Y).(1.3.5.1)

Moreover, the map π0(Y) → π0(X ) induced by pP1 |Y : Y → π0(X ) is the inverse of
γY .

(III) For each fixed P ∈ AdmPar(G), X is the disjoint union

X =
∐

(P,Y)∈RBCP

XY .(1.3.5.2)

(1)Our P , P Pink, and UP are denoted respectively by Q, P1, and U1 in [Pin90, 4.7, 4.8].
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1.3.6. — We keep the setting of §1.3.5. Let P ∈ AdmPar(G). For each (P,Y) ∈
RBCP , we let (GP ,XY) be the quotient of the mixed Shimura datum (PPink, UP ,Y)
by the unipotent radical NP of P (which is also the unipotent radical of PPink), and
let FY : Y → XY be the canonical PPink(R)UP (C)-equivariant map. By Lemma 1.3.4,
we know that FY induces a bijection between the sets of connected components.

Let πY be the composition

πY : XY ωP−−→ Y FY−−→ XY .

Then πY is holomorphic and induces a bijection between the sets of connected com-
ponents, since both ωP |X Y and FY have these properties. Moreover, πY is equivariant
with respect to the surjective Lie group homomorphism PPink(R)UP (C) → GP (R).
In particular, πY is a surjective submersion, since XY (resp. XY) is a left homogeneous
space under PPink(R)UP (C) (resp. GP (R)).

Let XP be the disjoint union

XP :=
∐

(P,Y)∈RBCP

XY ,

as a complex manifold with a GP (R)-action. In view of (1.3.5.2), we have a map

πP :=
∐

(P,Y)∈RBCP

πY : X −→ XP .

Then πP is holomorphic, surjective, submersive, equivariant with respect to
PPink(R)UP (C) → GP (R), and induces a bijection between the sets of connected
components, since each πY has these properties. When P = G, the map πG is an
isomorphism.

Consider the set-theoretic disjoint union (2)

X ∗ =
∐

P∈AdmPar(G)

XP =
∐

(P,Y)∈RBC

XY .(1.3.6.1)

There is a natural G(Q)-action on X ∗, satisfying the following properties (see [Pin90,
4.16, 6.2]):

– The action respects the stratification of X ∗ by the subsets XY .
– For g ∈ G(Q) and P ∈ AdmPar(G), we have g(XP ) = XgPg−1 . In particular,

StabG(Q)XP = P (Q).
– For P ∈ AdmPar(G), the map πP : X → XP is P (Q)-equivariant. Here P (Q)

acts on XP since StabG(Q)XP = P (Q). Moreover, the P (Q)-action on XP factors
through the quotient map P (Q)→MP (Q).

Let P ∈ AdmPar(G). As discussed above we have an MP (Q)-action on XP . Since
MP (Q) is dense in MP (R), there is at most one way to extend this action to a

(2)While we shall only consider X ∗ as a set, there is a natural Satake topology on X ∗; see [Pin90,
6.2]. Under this topology, X ∗ contains X as a dense open subset.
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continuous MP (R)-action. It is shown in [Pin90, 3.6] that such an extension indeed
exists. Since we need to explicitly describe this MP (R)-action later for the orthogonal
Shimura datum, we give its construction in the following proposition.

Proposition 1.3.7. — Keep the setting of §1.3.5, and let P ∈ AdmPar(G). The
following statements hold.

(1) There is a unique extension of the GP (R)-action on XP to an MP (R)-action
such that the map πP : X → XP is equivariant with respect to the homomorphism
P (R)→MP (R).

(2) The MP (R)-action on XP in (1) factors through the natural homomorphism

MP (R) −→ π0(MP (R))×Aut(GP,R)(1.3.7.1)
m 7−→ ([m], Intm).

(3) The MP (R)-action on XP in (1) is transitive and continuous. Its restriction
to MP (Q) coincides with the MP (Q)-action discussed in §1.3.6.

Proof. — (1) The uniqueness immediately follows from the surjectivity of πP . We
prove the existence. Using the canonical isomorphism π0(P (R)UP (C)) ∼= π0(MP (R)),
we view π0(X ) as a π0(MP (R))-set. In particular, π0(X ) is a π0(GP (R))-set. To
simplify notation, we write HP for the set π0(X )×Hom(SC, GP,C), which is equipped
with the diagonal GP (R)-action as in §1.3.3 (where we take Γ to be π0(X )). The
GP (R)-action on HP extends to an MP (R)-action in the obvious way (using the
normality of GP in MP ). We have a natural map

FP : YP = π0(X )×Hom(SC, PPink
C ) −→ HP = π0(X )×Hom(SC, GP,C)

([x], l) 7−→ ([x], (SC
l−→ PPink

C → GP,C)),

which is equivariant with respect to P (R)→MP (R).
Let (P,Y) ∈ RBCP . We denote by λY the injective map

π0(Y)
γ−1

Y−−→ π0(XY) ↪→ π0(X ),

where γY is as in (1.3.5.1). As in §1.3.3, λY induces a map HλY : Y → HP , whose
image is denoted by XλY . By Lemma 1.3.4, we may assume that XY is equal to
XλY , and that the map FY : Y → XY is equal to the map HλY . Then we have a
commutative diagram

Y �
� //

FY

��

YP

FP

��
XY
� � // HP

For different elements (P,Y) ̸= (P,Y ′) ∈ RBCP , the subsets XY and XY′ of HP
are disjoint, because their projections in π0(X ) are the disjoint subsets π0(XY) and
π0(XY′). Therefore we may identify XP with the union of the XY ’s inside HP . Under
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this identification, the map πP : X → XP is given by the composite map

X ωP−−→ YP
FP−−→ HP .

Since πP : X → XP is surjective, and since FP ◦ ωP : X → HP is equivariant with
respect to P (R) → MP (R), we see that XP is an MP (R)-stable subset of HP . We
define the desired MP (R)-action on XP to be the one inherited from the MP (R)-action
on HP . Then πP is indeed equivariant with respect to P (R)→MP (R).

(2) It suffices to observe that the MP (R)-action on HP factors through (1.3.7.1),
which is obvious.

(3) Firstly, by [Pin90, 4.7], the G(R)-action on X restricts to a transitive P (R)-
action on X . Since πP : X → XP is surjective, the MP (R)-action on XP is transitive.
Secondly, the continuity of the MP (R)-action on XP follows from the continuity of the
P (R)-action on X , and the fact that the maps πP : X → XP and P (R)→MP (R) are
surjective submersions. Finally, the last statement in (3) follows from the surjectivity
and P (Q)-equivariance of πP : X → XP , where P (Q) acts on XP in the way described
in §1.3.6.

Remark 1.3.8. — In the above exposition, we started with the rational bound-
ary components in the sense of [Pin90], and used them to construct the MP (R)-
homogeneous space XP , the P (R)-equivariant map πP : X → XP , and the G(Q)-set
X ∗. This is the approach taken in [Pin90]. Alternatively, one could apply the clas-
sical (i.e. non-adelic) formalism of rational boundary components in [AMRT10] to
each connected component of the Hermitian symmetric domain X in order to con-
struct each connected component of XP and each connected component of X ∗. One
could then construct the whole XP and X ∗ by taking suitable disjoint unions, and
reconstruct the subsets XY ⊂ XP as the GP (R)-orbits in XP . This alternative ap-
proach is the point of view taken in [Pin92a]. These two approaches are logically
equivalent. Our usage of the notations X ∗ and XP agrees with [Pin92a, §3.6] and
[Mor10b, §1.1].

1.4. The group-theoretic setting

In this section we fix the group-theoretic setting for our discussion of orthogonal
Shimura varieties.

1.4.1. — Let (V, q) be a quadratic space over Q, of signature (n, 2). We always
assume that n ≥ 3. Let d = dimV = n + 2, and let m = ⌊d/2⌋. Let G = SO(V ).
Throughout the paper, we shall refer to “the odd case” and “the even case” according
to the parity of d.

Since n ≥ 3, the maximal totally isotropic subspaces of VR are of dimension 2.
Throughout the paper we assume that the maximal totally isotropic subspaces of V
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are also of dimension 2. If n ≥ 5, this assumption is automatic by Meyer’s theorem
(see [Ser73, §IV.3.2 Cor. 2]). We fix a flag

0 ⊂ V1 ⊂ V2 ⊂ V ⊥
2 ⊂ V ⊥

1 ⊂ V,(1.4.1.1)

where Vi is an i-dimensional totally isotropic Q-subspace of V . We set

Wi := V ⊥
i /Vi,

for i ∈ {1, 2}. Define

P1 := StabG(V2) ⊂ G,
P2 := StabG(V1) ⊂ G,
P12 := P1 ∩ P2 ⊂ G.

Then P12 is a minimal parabolic subgroup of G, and P1 and P2 are the only proper
parabolic subgroups of G strictly containing P12. If S is a non-empty subset of {1, 2},
we write PS for the one of P1, P2, and P12 corresponding to S.

1.4.2. — We fix once and for all a splitting of the flag (1.4.1.1). Then we obtain a
Levi component MS of PS for each non-empty S ⊂ {1, 2}. We have

M1 ∼= GL(V2)× SO(W2),
M2 ∼= GL(V1)× SO(W1),
M12 ∼= GL(V1)×GL(V2/V1)× SO(W2).(1.4.2.1)

In the sequel we call parabolic subgroups of G containing P12 standard. For each
standard parabolic subgroup P , we denote by MP the Levi component of P containing
M12, also called standard, and denote by NP the unipotent radical of P . Thus the
standard proper parabolic subgroups are P1, P2, P12, and for P = PS we have MP =
MS . We also write NS for NPS .

1.4.3. — We fix a basis {e1} of V1 and a basis {e2} of V2/V1. By the fixed splitting
of the flag (1.4.1.1), we can view e2 as a vector in V2 ⊂ V . Let e′

1 ∈ V/V ⊥
1 and

e′
2 ∈ V ⊥

1 /V ⊥
2 be determined by the conditions [ei, e′

i] = 1, i = 1, 2. We view e′
1, e

′
2 as

vectors in V as well. Under these choices we have identifications

GL(Vi) ∼= GLi, i ∈ {1, 2} , and GL(V2/V1) ∼= GL1,

which we shall use freely in the sequel. In particular, the decomposition (1.4.2.1)
becomes

M12 ∼= Gm ×Gm × SO(W2).
We shall refer to the factor corresponding to GL(V1) as the first Gm, and refer to the
factor corresponding to GL(V2/V1) as the second Gm.
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1.4.4. — Let M be a standard proper Levi subgroup of G. We set

MGL :=


GL(V2),
GL(V1),
GL(V1)×GL(V2/V1),

MSO :=


SO(W2),
SO(W1),
SO(W2),

Mh :=


GL(V2),
GL(V1),
GL(V1),

Ml :=


SO(W2),
SO(W1),
GL(V2/V1)× SO(W2),

where the three cases are when M = M1,M2, and M12 respectively. (Here h stands
for “hermitian” and l stands for “linear”.) We have

M = MGL ×MSO = Mh ×Ml.

1.5. The orthogonal Shimura datum

1.5.1. — Let (V, q) and G = SO(V ) be as in §1.4. In this paper we are concerned
with the orthogonal Shimura datum on G. In the following we recall its definition and
some basic facts. More details can be found in [MP16].

Consider the set X of oriented, negative definite, two-dimensional subspaces of VR.
Then X is a left homogeneous space under the natural action of G(R). Moreover, X
has two connected components, and the action of π0(G(R)) = Z/2Z on π0(X ) is the
non-trivial one.

Let x ∈ X . For any reiθ ∈ C× (with r ∈ R>0, θ ∈ R), we let

h(x)(reiθ) ∈ G(R)

be the element which acts on VR = x⊕x⊥ as the rotation on x by angle −2θ (according
to the given orientation on x) and as the identity on x⊥. The map h(x) : C× → G(R)
comes from an R-algebraic group homomorphism

h(x) : S −→ GR.

Moreover, the association x 7→ h(x) is G(R)-equivariant and identifies X with a
G(R)-conjugacy class of homomorphisms S → GR. The tuple (G,X , h) is a pure
Shimura datum, called the orthogonal Shimura datum. From now on we also denote
this Shimura datum by O(V ). It is known that O(V ) is of abelian type. In fact, the
pair (GSpin(V ),X ) can be upgraded to a Shimura datum of Hodge type, and O(V )
is the quotient of that by the central Gm in GSpin(V ).

The Hodge cocharacter µ : Gm → G of O(V ) (well-defined up to G(Q)-conjugacy)
is given as follows. Choose an arbitrary hyperbolic basis B of VQ, and let ιB : Gmm ↪→
GQ be the embedding constructed in §1.2.7. Let {ϵ∨1 , · · · , ϵ∨m} be the standard basis of
X∗(Gmm). Then µ is conjugate to ιB◦ϵ∨1 . Moreover, it is possible to find a representative
µ : Gm → G defined over Q. In fact, we may assume that the first and the last vectors
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in B are respectively e1 and e′
1. Then ιB ◦ ϵ∨1 is defined over Q. Consequently, the

reflex field of O(V ) is Q.
Next we determine some explicit information about the rational boundary compo-

nents of O(V ). We follow the notation in §1.3. In the present case the set AdmPar(G)
consists of G and the G(Q)-conjugates of P1 and P2.

Proposition 1.5.2. — The following statements hold.
(1) For each P ∈ AdmPar(G), the set RBCP (O(V )) is a singleton.
(2) For i = 1, 2, we have PPink

i = Mi,hNi. In particular, GPi = PPink
i /Ni is

naturally identified with Mi,h.
(3) For i = 1, 2, under the identification Mi,h

∼= GL3−i, the Shimura datum
(Mi,h,XPi) is identified with the Siegel Shimura datum (GL3−i,H2(2−i)) (see [Pin90,
2.7, 2.8]).

(4) The action of the subgroup M1,l(R) ⊂M1(R) on XP1 is trivial.
(5) The groups π0(M2,h(R)), π0(M2,l(R)), and π0(G(R)) are all isomorphic to

Z/2Z. The map

π0(M2(R)) ∼= π0(M2,h(R))× π0(M2,l(R)) −→ π0(G(R))

induced by the inclusion M2(R) ↪→ G(R) is given by

Z/2Z× Z/2Z −→ Z/2Z
(a, b) 7−→ a+ b.

The action of M2(R) on XP2 as in Proposition 1.3.7 is given by the composite
map M2(R) → π0(M2(R)) → π0(G(R)) followed by the unique non-trivial action of
π0(G(R)) ∼= Z/2Z on the two-element set XP2 = H0.

Proof. — Statements (1) (2) (3) follow from [Hör14, Prop. 2.4.5]. To show (4), note
that M1,l(R) ∼= SO(n−2, 0)(R) is connected, and that it commutes with GP1 = M1,h.
The statement then follows from Proposition 1.3.7 (2). We now show (5). We have

M2,h(R) ∼= R×, M2,l(R) ∼= SO(n− 1, 1)(R), G(R) ∼= SO(n, 2)(R).

The first two statements in (5) follow from the standard description of the connected
components of special orthogonal groups; see for instance [Kna02, I.17]. The third
statement follows from the fact that the map πP2 : X → XP2 is P2(R)-equivariant and
induces a bijection π0(X ) ∼−→ π0(XP2) = XP2 ; see §1.3.6 and Proposition 1.3.7.

1.6. Shimura varieties

From now on until the end of §1, we let O(V ) = (G,X , h) be the orthogonal
Shimura datum fixed in §1.5. Let K be a neat compact open subgroup of G(Af ).
(See [Pin90, 0.6] for the meaning of “neat”.) As usual we define

ShK(O(V ))(C) := G(Q)\X ×G(Af )/K.
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This is the set of C-points of the canonical model ShK(O(V )), which is a smooth
quasi-projective variety of dimension n = d − 2 over the reflex field Q. As O(V ) is
of abelian type, the existence of the canonical model follows from [Del79]. We write
ShK for ShK(O(V )).

Let K1 and K2 be neat compact open subgroups of G(Af ), and let g be an element
of G(Af ) such that K1 ⊂ gK2g

−1. We have a finite étale Q-morphism

[·g]K1,K2 : ShK1 −→ ShK2

called a Hecke operator . On C-points, it is induced by

X ×G(Af ) −→ X ×G(Af )
(x, k) 7−→ (x, kg).

When the context is clear we will simply write [·g] for [·g]K1,K2 .
We recall the following facts proved in [Pin90, 12.3]. For any neat compact open

subgroup K ⊂ G(Af ), the Shimura variety ShK has the canonical Baily–Borel com-
pactification

j : ShK −→ ShK ,
where ShK is a normal projective variety over Q, and j is a dense open embedding
defined over Q. At the level of C-points, we have

ShK(C) = G(Q)\X ∗ ×G(Af )/K,

where X ∗ is the G(Q)-set defined in (1.3.6.1), and j is induced by ωG : X ∼−→ XG ↪→
X ∗. For K1,K2, and g as in the last paragraph, the morphism [·g] : ShK1 → ShK2

uniquely extends to a finite Q-morphism [·g] = [·g]K1,K2
: ShK1 → ShK2 .

1.7. Automorphic λ-adic sheaves

1.7.1. — Let V be a finite-dimensional vector space over a number field E equipped
with a G-representation, i.e., an E-algebraic group homomorphism GE → GL(V). Let
λ be a finite place of E. Then by a well-known construction, for any neat compact
open subgroup K ⊂ G(Af ) there is an Eλ-sheaf on ShK associated to V, which we
denote by FKV. Moreover, for each Hecke operator [·g] : ShK1 → ShK2 (with K1,K2
neat), there is a canonical isomorphism

F[·g] : FK1V ∼−→ [·g]∗FK2V.(1.7.1.1)

We refer the reader to [Pin92a, §5.1] and [KSZ, §1.5] for more details.
Let ℓ be the rational prime below λ, and fix a Qℓ-algebra embedding Eλ ↪→ Qℓ.

Let K be as above. We view the Eλ-sheaf FKV as a Qℓ-sheaf and keep the same
notation. We have the intersection complex

ICK V :=
(
j!∗
(
(FKV)[n]

))
[−n] ∈ Db

c(ShK ,Qℓ).
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Here j is the open embedding ShK ↪→ ShK , and remember that n = dim ShK .

1.7.2. — We have analogues of the canonical isomorphisms (1.7.1.1) for the intersec-
tion complexes, which we now explain. Consider a Hecke operator [·g] : ShK1 → ShK2

and its extension [·g] : ShK1 → ShK2 . To ease notation we write g for [·g] and write
ḡ for [·g]. For i = 1, 2, we write Fi and ICi for FKiV and ICKi V respectively, and
write ji for the open embedding ShKi → ShKi .

For any F ∈ Db
c(ShK2 ,Qℓ), we have the commutative diagram

ḡ∗Rj2,!F

��

// Rj1,!g
∗F

��
ḡ∗Rj2,∗F // Rj1,∗g

∗F

where the horizontal maps are the base change maps, and the vertical maps are
induced by the natural maps Rji,!(·)→ Rji,∗(·), i = 1, 2. Since ḡ is finite (see §1.6),
ḡ∗ is exact with respect to the (middle-perversity) perverse t-structures. Therefore
the above commutative diagram induces a natural map

ḡ∗j2,!∗F −→ j1,!∗g
∗F .(1.7.2.1)

Taking F to be F2[n], we obtain a map

ḡ∗j2,!∗(F2[n]) −→ j1,!∗g
∗(F2[n]).

The composition of the above map followed by j1,!∗(F−1
[·g]) gives a map

ḡ∗j2,!∗(F2[n]) −→ j1,!∗(F1[n]).

Shifting by [−n] we obtain a map

ḡ∗ IC2 −→ IC1 .(1.7.2.2)

Similarly, using the base co-change maps (see [SGA73, XVIII])

Rj1,!g
!F −→ ḡ!Rj2,!F ,

Rj1,∗g
!F , −→ ḡ!Rj2,∗F ,

we obtain a map

j1,!∗g
!F −→ ḡ!j2,!∗F(1.7.2.3)

as a counterpart of (1.7.2.1). Note that because g is finite étale (see §1.6), we have
g! = g∗. Again, taking F to be F2[n] in (1.7.2.3), pre-composing with j1,!∗(F[·g]),
and shifting by [−n], we obtain a map

IC1 −→ ḡ! IC2 .(1.7.2.4)
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Now for Hecke operators [·g1]K′,K1 and [·g2]K′,K2 , we obtain a canonical cohomo-
logical correspondence

Hg1,g2,K1,K2,K′ : ḡ∗
1 ICK1 V −→ ḡ!

2 ICK2 V(1.7.2.5)

by composing (1.7.2.2) for g = g1 with (1.7.2.4) for g = g2.

1.8. Intersection cohomology and Morel’s formula

1.8.1. — Keep the setting of §1.7.1. Let K be a neat compact open subgroup of
G(Af ). Define

IH∗(ShK ,V) := H∗
ét(ShK ⊗Q Q, ICK V),

H∗
c(ShK ,V) := H∗

ét,c(ShK ⊗Q Q, FKV),

which we view as graded Qℓ-vector spaces. We denote by H(G(Af ) �K)Q the Hecke
algebra of Q-valued smooth compactly supported K-bi-invariant distributions on
G(Af ). If we choose a Haar measure dg∞ on G(Af ) that gives rational volumes
to compact open subgroups, then each element of H(G(Af ) � K)Q can be uniquely
written as f∞dg∞, where f∞ is a smooth compactly supported K-bi-invariant func-
tion G(Af )→ Q. We have commuting actions of Gal(Q/Q) and H(G(Af ) �K)Q on
IH∗(ShK ,V) and H∗

c(ShK ,V). Here the H(G(Af ) � K)Q-action on IH∗(ShK ,V) is
characterized as follows. For any g ∈ G(Af ), the element

1KgK · voldg∞(K)−1dg∞ ∈ H(G(Af ) �K)Q
depends only on g and not on the choice of dg∞. We require that this element acts
on IH∗(ShK ,V) via the endomorphism induced by the cohomological correspondence

Hg,1,K,K,gKg−1∩K : ḡ∗ ICK V −→ 1̄! ICK V,

where the notation is as in (1.7.2.5). By linearity, this determines the H(G(Af )�K)Q-
action on IH∗(ShK ,V). The H(G(Af ) �K)Q-action on H∗

c(ShK ,V) is characterized
similarly.

If p is a prime and Kp is a compact open subgroup of G(Apf ), we denote by
H(G(Apf ) � Kp)Q the Hecke algebra of Q-valued smooth compactly supported Kp-
bi-invariant distributions on G(Apf ). Similarly as before, its elements can be written
as fp,∞dgp,∞, where fp,∞ is a function G(Apf )→ Q and dgp,∞ is a Haar measure on
G(Apf ) giving rational volumes to compact open subgroups.

Definition 1.8.2. — Let K be a compact open subgroup of G(Af ) and let p be a
prime number.

(1) We say that p is a hyperspecial prime for K, if we have K = KpKp, with Kp

a hyperspecial subgroup of G(Qp), and Kp a compact open subgroup of G(Apf ).
(2) Let f∞dg∞ ∈ H(G(Af ) � K)Q. We say that p is an unramified prime for

f∞dg∞, if p is hyperspecial for K, and we have f∞dg∞ = fp,∞dgp,∞1Kpdgp, where
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fp,∞dgp,∞ is an element of H(G(Apf ) �Kp)Q, 1Kp : G(Qp)→ Q is the characteristic
function of Kp, and dgp is a Haar measure on G(Qp) giving rational volumes to
compact open subgroups.

1.8.3. — Fix a neat compact open subgroup K of G(Af ), and fix f∞dg∞ ∈
H(G(Af ) � K)Q. Let Σ0 be the finite set consisting of the prime ℓ, the primes not
hyperspecial for K, and the primes not unramified for f∞dg∞. For each prime
p /∈ Σ0, we write K = KpKp and f∞dg∞ = fp,∞dgp,∞1Kpdgp as in Definition 1.8.2.
Without loss of generality, we may and shall assume that voldgp(Kp) = 1 by rescaling
fp,∞dgp,∞.

Recall from §1.7.1 that we have fixed an embedding Eλ ↪→ Qℓ. We now also fix
a field embedding E ↪→ C. For any endomorphism u of the graded Qℓ-vector space
IH∗(ShK ,V), we write Tr(u | IH∗(ShK ,V)) for the alternating sum∑

k

(−1)k Tr(u | IHk(ShK ,V)) ∈ Qℓ.

(The sum is finite, since the terms are zero unless 0 ≤ k ≤ 2 dim ShK .) The same
convention is applied to H∗

c(ShK ,V).

Theorem 1.8.4 (Morel’s formula). — In the setting of §1.8.3, there exists a finite
set of prime numbers Σ = Σ(O(V ),V, λ,K, f∞) containing Σ0 such that the following
statements hold for all primes p /∈ Σ.

(1) The actions of Gal(Q/Q) on IH∗(ShK ,V) and on H∗
c(ShK ,V) are both unram-

ified at p.
(2) Let Frobp ∈ Gal(Q/Q) be a geometric Frobenius at p. There exists a positive

integer a0 = a0(O(V ),V, λ,K, f∞, p) such that for all integers a ≥ a0 we have

(1.8.4.1) Tr(Frobap ×f∞dg∞ | IH∗(ShK ,V))

= Tr(Frobap ×f∞dg∞ | H∗
c(ShK ,V)) +

∑
M

TrM (fp,∞dgp,∞,K, a).

Here in the summation M runs through the standard proper Levi subgroups of G, and
TrM (fp,∞dgp,∞,K, a) will be given in Definition 2.4.3 below (which depends on the
embedding E ↪→ C). The two sides of (1.8.4.1) are a priori numbers in Qℓ and C
respectively, but they actually both lie in E.

The proof of Theorem 1.8.4 will be given in §3.

Remark 1.8.5. — We expect that Theorem 1.8.4 should in fact hold for Σ = Σ0.
The proof of this would require a robust theory of integral models of the Baily–Borel
compactification and the toroidal compactifications of ShK at all hyperspecial primes,
which is currently unavailable. See §3.1 below for a more detailed discussion.





CHAPTER 2

DEFINITION OF THE TERMS IN MOREL’S FORMULA

In this chapter we define the terms TrM (fp,∞dgp,∞,K, a) in Theorem 1.8.4. We
keep the setting in §1.4–§1.8. In particular, we fix E ↪→ C as in §1.8.3.

2.1. Truncated Lie algebra cohomology

Definition 2.1.1. — For i ∈ {1, 2}, let ϖi : Gm →Mi,h be the weight cocharacter
of the Shimura datum (Mi,h,XPi), and let ti = dimXPi − dimX . (Here dim means
the complex dimension.)

Lemma 2.1.2. — The following statements hold.
(1) The cocharacter ϖ1 of M1,h = GL(V2) ∼= GL2 is given by z 7→ diag(z, z).
(2) The cocharacter ϖ2 of M2,h = GL(V1) ∼= Gm is given by z 7→ z2.
(3) We have t1 = 3− d, and t2 = 2− d.

Proof. — By Proposition 1.5.2, we have (Mi,h,XPi) ∼= (GL2−i,H2(2−i)). The state-
ments about ϖ1 and ϖ2 are clear. To determine t1 and t2, we use that dimX = n =
d− 2, dimXP1 = 1, and dimXP2 = 0.

2.1.3. — Let S be a non-empty subset of {1, 2}. By Kostant’s theorem [Kos61]
(cf. [GHM94, §11] or §4.3 below), the Lie algebra cohomology

Hk(Lie(NS)C,V⊗E C)

is a finite-dimensional algebraic representation of MS(C), and is non-zero only for
finitely many non-negative integers k. For i ∈ S, since we have Mi = Mi,h ×Mi,l

and since ϖi is a central cocharacter of Mi,h defined over Q, we know that ϖi is a
cocharacter of the split component AMi

of Mi, and a fortiori a cocharacter of the
split component AMS

of MS .
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Definition 2.1.4. — Let S be a non-empty subset of {1, 2}. We write

Hk(Lie(NS)C,V⊗E C)>tS
for the maximal MS(C)-sub-representation of Hk(Lie(NS)C,V⊗EC) on which ϖi has
weights strictly greater than ti for each i ∈ S. (Here we say that a Gm-representation
has weights greater than a number t if all the appearing characters z 7→ zk satisfy
k > t.) We define the virtual MS(C)-representation:

RΓ(LieNS ,V)>tS :=
∑
k≥0

(−1)k Hk(Lie(NS)C,V⊗E C)>tS .

When P = PS is fixed in the context, we also replace the symbol “> tS” by “> tP ”.

2.2. The Kostant–Weyl term LM

In this section, let M be a standard proper Levi subgroup of G, i.e., M ∈
{M1,M2,M12}.

Definition 2.2.1. — Let P(M) be the set of pairs (P, g), where P is a standard
proper parabolic subgroup of G, and g is an element of G(Q), satisfying the following
conditions.

(1) We have Mh = MP,h, and Ml is a Levi subgroup of MP,l. In particular,
M ⊂MP .

(2) The element g centralizes Mh ⊂ G, and normalizes Ml ⊂ G. In particular, g
normalizes M ⊂ G.
Let ∼ be the equivalence relation on P(M) such that (P, g) ∼ (P ′, g′) if and only if
P = P ′ and g ∈ MP (Q)g′M(Q). (Here MP is the standard Levi component of P ,
which may not be the same as M .) For any standard proper parabolic subgroup Q

of G, let
P(M,Q) := {(P, g) ∈ P(M) | P = Q} ⊂ P(M).

Definition 2.2.2. — Set mM to be 1 if M = M1, and 2 if M ∈ {M2,M12}. For
γ ∈M(R) and (P, g) ∈ P(M), define the complex number

LM,P,g(γ) := mM (−1)dimAM/AMP (nMP

M )−1
∣∣∣DMP

M (gγg−1)
∣∣∣1/2

R

· δP (R)(gγg−1)1/2 Tr(gγg−1 | RΓ(LieNP ,V)>tP ).

Here the terms nMP

M , DMP

M (·), δP (R)(·) are all defined in §1.1, and RΓ(LieNP ,V)>tP
is as in Definition 2.1.4.

It is easy to see that LM,P,g(γ) depends on (P, g) only via the ∼-equivalence class
of (P, g). We use this fact in the next definition.
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Definition 2.2.3. — For γ ∈M(R), define the Kostant–Weyl term

LM (γ) :=
∑

(P,g)∈P(M)/∼

|P(M,P )/∼|−1
LM,P,g(γ) ∈ C.(2.2.3.1)

Proposition 2.2.4. — Let i = 1 or 2. Then every element of P(Mi) is ∼-equivalent
to (Pi, 1). In particular, for γ ∈Mi(R) we have

LMi
(γ) = mMi

δPi(R)(γ)1/2 Tr(γ | RΓ(LieNi,V)>ti).

Proof. — It is clear that (Pi, 1) ∈ P(Mi). Let (P, g) ∈ P(Mi). By condition (1) in
Definition 2.2.1, we have P = Pi. Since Mi,h contains AMi , the centralizer of Mi,h in
G is contained in Mi. Hence by condition (2) in Definition 2.2.1, we have g ∈Mi(Q).
It then follows that (P, g) ∼ (Pi, 1).

2.2.5. — Next we give an explicit description of the set P(M12)/∼. Recall from
§1.4 that we have identified V with the orthogonal direct sum of spanQ {e1, e

′
1} and

W1, and identified W1 with the orthogonal direct sum of spanQ {e2, e
′
2} and W2. Also

recall that M2,l = SO(W1) ⊂M2 = GL(V1)× SO(W1).

Definition 2.2.6. — Let M2,l(Q)♯ be the set consisting of g ∈ M2,l(Q) satisfying
the following conditions:

(1) g(e2) = e′
2, g(e′

2) = e2.
(2) g stabilizes W2, and g|W2 is an element of O(W2)(Q) with determinant −1.

Remark 2.2.7. — Since dimW2 = n− 2 ≥ 1, the group O(W2)(Q) indeed contains
elements with determinant −1. It is then clear that M2,l(Q)♯ ̸= ∅.

Proposition 2.2.8. — The set P(M12, P1) is empty. Every element of P(M12, P2)
is ∼-equivalent to (P2, 1). The set P(M12, P12) is the union of exactly two ∼-
equivalence classes, and they are represented by (P12, 1) and (P12, g0), where g0 is
any element of M2,l(Q)♯.

Proof. — Since M12,l is not contained in M1,l, we have P(M12, P1) = ∅. Since
M12,h = GL(V1) = AM2 , by condition (2) in Definition 2.2.1 we know that any (P, g) ∈
P(M12) must satisfy g ∈ NorM2(M12,l)(Q). Conversely, for any g ∈ NorM2(M12,l)(Q),
we have (P2, g), (P12, g) ∈ P(M12). The statement about P(M12, P2) immediately fol-
lows.

To show the last statement about P(M12, P12), we know from the above discussion
that we have a surjection

NorM2(M12,l)(Q) −→ P(M12, P12)/∼
g 7−→ (P12, g).

This surjection restricts to a surjection

NorM2,l(M12,l)(Q) −→ P(M12, P12)/∼,
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which induces a bijection (see Definition 1.1.1 for the notation)

WM2,l
M12,l

∼−→ P(M12, P12)/∼.

Now note that GL(V2/V1) ∼= Gm is the split component of M12,l. As in Remark 1.1.2,
we have an injective homomorphism

WM2,l
M12,l

−→ Aut(GL(V2/V1)) ∼= Z/2Z
g 7−→ Int(g)|GL(V2/V1).

The desired statement follows from the fact that for all g0 ∈ M2,l(Q)♯, we have
g0 ∈ NorM2,l(M12,l)(Q), and Int(g0)|GL(V2/V1) is non-trivial.

2.3. Definitions related to Kottwitz’s fixed point formula

2.3.1. — Let Mh be the reductive group GLi over Q, where i = 1 or 2. We equip
Mh with the Siegel Shimura datum H2(2−i) (see [Pin90, 2.7, 2.8]). We define some
group-theoretic terms that appear in Kottwitz’s fixed point formula for the Shimura
varieties associated to (Mh,H2(2−i)). The main reference is [Kot90, Part I]; see also
[Mor10b, §1.6]. We fix a prime p, and an integer a ≥ 1.

Define a cocharacter µ of Mh as follows. When Mh = Gm, let µ be the identity
cocharacter. When Mh = GL2, let µ be z 7→ diag(z, 1). Thus µ is a Hodge cocharacter
for the Shimura datum (Mh,H2(2−i)).

The following definition is equivalent to the standard definition as in [Kot92b,
§19] or [Mor10b, §1.6]; it appears simpler since in the group Mh stable conjugacy is
the same as conjugacy.

Definition 2.3.2. — A Kottwitz triple in Mh (of level pa, for the Shimura datum
(Mh,H2(2−i))) is a triple (γ0, γ, δ), with γ0 ∈ Mh(Q), γ ∈ Mh(Apf ), δ ∈ Mh(Qpa),
satisfying the following conditions:

(1) The element γ0 is semi-simple and R-elliptic (see Definition 1.1.8).
(2) The element γ is conjugate to γ0 in Mh(Apf ).
(3) The element N δ := δσ(δ) · · ·σa−1(δ) ∈Mh(Qpa) is conjugate to γ0 inMh(Qpa).
(4) If Mh = Gm, then the p-adic valuation of δ ∈ Q×

pa is −1. If Mh = GL2, then
the p-adic valuation of the determinant of δ ∈ GL2(Qpa) is −1.
Two Kottwitz triples (γ0, γ, δ) and (γ′

0, γ
′, δ′) are said to be equivalent, if γ0 is con-

jugate to γ′
0 in Mh(Q), and δ is σ-conjugate to δ′ inside Mh(Qpa). In the sequel, it

is understood that whenever Kottwitz triples appear in a summation, they are taken
up to equivalence.

Remark 2.3.3. — Abstractly, condition (4) in Definition 2.3.2 says that the image
of δ in π1(Mh)Γp under the Kottwitz map is equal to that of −µ.
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2.3.4. — Let (γ0, γ, δ) be a Kottwitz triple. Let I0 = Mh,γ0 be the centralizer (which
is connected) of γ0 in Mh. Define K(I0/Q) to be the finite abelian group consisting of
those elements of π0([Z(Î0)/Z(M̂h)]ΓQ) whose images in H1(ΓQ, Z(M̂h)) are locally
trivial; see [Kot86, §4.6]. In [Kot90, §2] Kottwitz defines an invariant

α(γ0, γ, δ) ∈ K(I0/Q)D

of the triple (γ0, γ, δ). Here K(I0/Q)D is the Pontryagin dual of K(I0/Q).

Lemma 2.3.5. — For Mh = GL1 or GL2, we always have K(I0/Q) = 0.

Proof. — If I0 = Mh then obviously K(I0/Q) = 0. Thus we may assume that Mh =
GL2 and that γ0 in non-central. Then I0 is a maximal torus T in GL2 defined over
Q. In this case Z(Î0) = Î0 = T̂ . Since the Galois action on Z(ĜL2) is trivial, by
Chebotarev’s density theorem the only locally trivial element of H1(ΓQ, Z(ĜL2)) is
the trivial element. In view of the exact sequence

π0(Z(ĜL2)ΓQ)→ π0(T̂ΓQ)→ π0([T̂ /Z(ĜL2)]ΓQ)→ H1(ΓQ, Z(ĜL2)),

it suffices to show that
T̂ΓQ ⊂ Z(ĜL2).

Since γ0 is R-elliptic, TR is an elliptic maximal torus in GL2,R. Hence there exists
an identification T̂ ∼= C× × C× such that the non-trivial element of Γ∞ acts on T̂

by switching the two coordinates. It follows that T̂Γ∞ ⊂ Z(ĜL2), and a fortiori
T̂ΓQ ⊂ Z(ĜL2).

2.3.6. — Let (γ0, γ, δ) be a Kottwitz triple. By Lemma 2.3.5, the invariant α(γ0, γ, δ)
automatically vanishes. Hence as in [Kot90, §3], there is an inner form I of I0 over
Q satisfying the following conditions.

– The group IR is anisotropic modulo center.
– For any finite place v of Q not equal to p, IQv is the trivial inner form of I0,Qv .
– The inner form IQp of I0,Qp is isomorphic (as an inner from) to the σ-centralizer

(Mh)δσ of δ in Mh (which is denoted by I(p) in loc. cit.).
We refer the reader to loc. cit. for more details.

Fix Haar measures on I(Qp), I(Apf ), and I(R) such that the product Haar mea-
sure on I(A) is the Tamagawa measure. Fix a Haar measure on Mh(Qpa) such that
Mh(Zpa) has volume 1. Fix Haar measures on Mh(R) and Mh(Apf ) arbitrarily.

Definition 2.3.7. — In the setting of §2.3.6, we define

c(γ0, γ, δ) := c1(γ0, γ, δ)c2(γ0, γ, δ),

where

c1(γ0, γ, δ) = vol(I(Q)\I(Af )) = τ(I) vol(AMh
(R)0\I(R))−1,

c2(γ0, γ, δ) =
∣∣ker(ker1(Q, I0)→ ker1(Q,Mh))

∣∣ .
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Here τ(I) is the Tamagawa number of I.

Definition 2.3.8. — In the setting of §2.3.6, we define the orbital integral along γ
to be the functional

Oγ : C∞
c (Mh(Apf )) −→ C

f 7−→ Oγ(f) =
∫
Mh,γ(Ap

f
)\Mh(Ap

f
)
f(g−1γg),

with respect to the fixed Haar measure on Mh(Apf ) and the Haar measure on Mh,γ(Apf )
transferred from I(Apf ). We define the twisted orbital integral along δ to be the
functional

TOδ : C∞
c (Mh(Qpa)) −→ C

f 7−→ TOδ(f) =
∫

(Mh)δσ(Qp)\Mh(Qpa )
f(g−1δσ(g)),

with respect to the fixed Haar measure on Mh(Qpa) and the Haar measure on
(Mh)δσ(Qp) transferred from I(Qp). For more details see [Kot90, §3].

Definition 2.3.9. — Let ϕMh
a : Mh(Qpa) → Q be the characteristic function of

Mh(Zpa)µ(p)−1Mh(Zpa).

2.4. Definition of TrM
In this section, let P be a standard parabolic subgroup of G, and let M = MP

be the standard Levi component of P . We define the term TrM (fp,∞dgp,∞,K, a) in
(1.8.4.1).

Definition 2.4.1. — For γ0 ∈ Mh(R) and γL ∈ Ml(R), we write γ0 ∼R γL, if one
of the following conditions holds.

(1) We have Mh
∼= GL2.

(2) We have Mh
∼= Gm, γ0 ∈Mh(R)0, and γL ∈Ml(R)0.

(3) We have Mh
∼= Gm, γ0 /∈Mh(R)0, and γL /∈Ml(R)0.

Remark 2.4.2. — When M = M1, we have Mh = GL2, and so the condition
γ0 ∼R γL is by definition automatic. When M = M12 or M2, we have π0(Mh(R)) ∼=
π0(Ml(R)) ∼= Z/2Z. Thus the condition γ0 ∼R γL depends only on the Mh(R)-
conjugacy class of γ0 and the Ml(R)-conjugacy class of γL.

Definition 2.4.3. — Let K be a compact open subgroup of G(Af ). Let p be a
hyperspecial prime for K, and let Kp,K

p be as in Definition 1.8.2. Let fp,∞dgp,∞ ∈
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H(G(Apf ) �Kp)Q, and let a ∈ Z≥1. We define the complex number

(2.4.3.1) TrM (fp,∞dgp,∞,K, a) :=
∑
γL

ιMl(γL)−1χ((Ml,γL)0)
∑

(γ0,γ,δ)

c(γ0, γ, δ)

· δP (Qp)(γ0)1/2OγLγ(fp,∞M )OγL(1Ml(Zp))TOδ(ϕMh
a )LM (γLγ0),

where γL runs through the semi-simple conjugacy classes in Ml(Q) that are R-elliptic
(see Definition 1.1.8; if no such γL exists, then the sum is empty), and (γ0, γ, δ) runs
through the equivalence classes of Kottwitz triples in Mh of level pa (see Definition
2.3.2) such that γ0 ∼R γL (see Definition 2.4.1 and Remark 2.4.2). The other terms
are defined as follows:

(1) We write ιMl(γL) for
∣∣Ml,γL(Q)/(Ml,γL)0(Q)

∣∣.
(2) We write χ((Ml,γL)0) for the Euler characteristic of the reductive group

(Ml,γL)0 over Q, as defined in [GKM97, §7.10].
(3) The term c(γ0, γ, δ) is as in Definition 2.3.7.
(4) We let fp,∞M ∈ C∞

c (M(Apf )) be the constant term of fp,∞ as defined in
[GKM97, §7.13]. This function depends on auxiliary choices, but its orbital
integrals are well defined once all the relevant Haar measures are fixed.

(5) We have a canonical identification

C∞
c (M(Apf )) ∼= C∞

c (Mh(Apf ))⊗C C
∞
c (Ml(Apf )).

In view of this, we define the functional OγLγ : C∞
c (M(Apf )) → C to be the ten-

sor product of the functional Oγ : C∞
c (Mh(Apf )) → C in Definition 2.3.8 and the

functional

OγL : C∞
c (Ml(Apf )) −→ C(2.4.3.2)

f 7−→ OγL(f) =
∫
Ml,γL

(Ap
f

)\Ml(Apf )
f(g−1γLg)dg,

where the relevant Haar measures are to be specified in Remark 2.4.4 below.
(6) We let Ml(Zp) be the hyperspecial subgroup of Ml(Qp) given by

Ml(Zp) := [Kp ∩ (Ml(Qp)NP (Qp))]/(Kp ∩NP (Qp)).(2.4.3.3)

See Remark 2.4.5 below for more explanations.
(7) We define

OγL(1Ml(Zp)) :=
∫
Ml,γL

(Qp)\Ml(Qp)
1Ml(Zp)(g−1γLg)dg,(2.4.3.4)

where the relevant Haar measures are to be specified in Remark 2.4.4 below.
(8) The term TOδ(ϕMh

a ) is as in Definitions 2.3.8 and 2.3.9.
(9) The term LM (·) is as in Definition 2.2.3.

Remark 2.4.4. — We make precise the choices of various Haar measures in Defi-
nition 2.4.3. We choose an arbitrary Haar measure on Ml(Apf ), and choose arbitrary
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Haar measures on Ml,γL(Apf ) and Ml,γL(Qp) for each γL. We then define the Haar
measure on M(Apf ) = Mh(Apf ) ×Ml(Apf ) to be the product of the Haar measure on
Ml(Apf ) chosen above and the Haar measure on Mh(Apf ) chosen in §2.3.6. We then
specify various normalizations:

(1) Use the Haar measure on M(Apf ) as above and the Haar measure dgp,∞ on
G(Apf ) to define the constant term fp,∞M .

(2) Use the Haar measures on Ml(Apf ) and Ml,γL(Apf ) chosen above to define
(2.4.3.2).

(3) Use the Haar measure on Ml(Qp) giving volume 1 to Ml(Zp), and the Haar
measure on Ml,γL(Qp) chosen above, to define (2.4.3.4).

(4) Use the Haar measures on Ml,γL(Apf ) and Ml,γL(Qp) chosen above to define
the product measure on (Ml,γL)0(Af ), and use the latter to define χ((Ml,γL)0) as in
[GKM97, §7.10].

Remark 2.4.5. — We explain why Ml(Zp) defined by (2.4.3.3) is a hyperspecial
subgroup of Ml(Qp) by collecting standard facts about reductive group schemes from
[SGA70, XXVI]. Since Kp is a hyperspecial subgroup of G(Qp), there is a reductive
group scheme G over Zp with generic fiber GQp such that Kp = G(Zp) ⊂ G(Qp). By
[SGA70, XXVI, Cor. 3.5], the parabolic subgroup PQp of GQp extends to a unique
parabolic subgroup P of G. Since parabolic subgroups are closed (see [SGA70, XXVI,
Prop. 1.2]), we have P(Zp) = P (Qp) ∩Kp. Now the reductive quotient M of P (see
[SGA70, XXVI, Cor. 1.5, Prop. 1.6]) is a reductive group scheme over Zp whose
generic fiber is M . Since SpecZp is affine, by [SGA70, XXVI, Cor. 2.3] we know
that P admits a Levi component. It follows that the natural map P(Zp) → M(Zp)
is surjective. Therefore, the subgroup M(Zp) of M(Qp) is equal to the image of
P (Qp) ∩ Kp under P (Qp) → M(Qp). Now since M = Mh ×Ml, any hyperspecial
subgroup of M(Qp) (such as M(Zp)) must be the direct product of a hyperspecial
subgroup of Mh(Qp) and a hyperspecial subgroup of Ml(Qp). Hence the kernel of
M(Zp) ↪→ M(Qp) → Mh(Qp), which is Ml(Zp), must be a hyperspecial subgroup of
Ml(Qp).

Remark 2.4.6. — When M = M1 or M12, every element of Ml(Q) is semi-simple
R-elliptic, because Ml,R is isomorphic to either SO(n− 2, 0) or Gm,R × SO(n− 2, 0),
and SO(n − 2, 0)(R) is compact. When d is even and M = M2, we know that
Ml,R ∼= SO(n− 1, 1) does not have elliptic maximal tori (as n is even and at least 4),
so there are no R-elliptic elements of Ml(Q) in the sense of Definition 1.1.8. In this
case it is understood that TrM (fp,∞dgp,∞,K, a) = 0.

2.5. An equivalent form of Morel’s formula

At this point we have defined the terms in (1.8.4.1). In this section we give an
equivalent form of (1.8.4.1). It is this equivalent form that we shall prove in §3. In
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the following, we fix K, p, fp,∞dgp,∞, and a as in Definition 2.4.3, and we shall
omit them from the notation when convenient. For instance, we shall write TrM for
TrM (fp,∞dgp,∞,K, a).

2.5.1. — Let M ∈ {M1,M2,M12}. We set

StdLev(Ml) :=


{M1,l} , M = M1,

{M2,l,M12,l} , M = M2,

{M12,l} , M = M12.

Thus in each case StdLev(Ml) is a set of representatives of the Ml(Q)-conjugacy
classes of Levi subgroups of Ml.

Definition 2.5.2. — Let M ∈ {M1,M2,M12} and let (Q, g) ∈ P(M) (see Definition
2.2.1). We define TrM,Q,g by the same formula (2.4.3.1) used to define TrM , but with
LM (·) replaced by LM,Q,g(·) (see Definition 2.2.2). Thus

(2.5.2.1) TrM,Q,g :=
∑
γL

ιMl(γL)−1χ((Ml,γL)0)
∑

(γ0,γ,δ)

c(γ0, γ, δ)

· δP (Qp)(γ0)1/2OγLγ(fp,∞M )OγL(1Ml(Zp))TOδ(ϕMh
a )LM,Q,g(γLγ0),

Definition 2.5.3. — For Q ∈ {P1, P2, P12}, we define

T′
Q :=

∑
M

TrM,Q,1,

where the sum is over M ∈ {M1,M2,M12} such that Ml ∈ StdLev(MQ,l). Indeed,
for each such M , we have (Q, 1) ∈ P(M), and so TrM,Q,1 is defined as in Definition
2.5.2.

Lemma 2.5.4. — We have

TrM1 + TrM2 + TrM12 = T′
P1

+ T′
P2

+ T′
P12
.

Proof. — By (2.2.3.1), for each M ∈ {M1,M2,M12} we have

TrM =
∑

(Q,g)∈P(M)/∼

|P(M,Q)/∼|−1 TrM,Q,g .

By Propositions 2.2.4 and 2.2.8, if (Q, g) ∈ P(M), then (Q, 1) ∈ P(M). We
claim that in this case TrM,Q,g = TrM,Q,1. Indeed, by definition LM,Q,g(γLγ0) =
LM,Q,1(gγLg−1γ0), so it suffices to show that the expression

ιMl(γL)−1χ((Ml,γL)0)OγLγ(fp,∞M )OγL(1Ml(Zp))

on the RHS of (2.5.2.1) is invariant under the replacement γL 7→ gγLg
−1. The invari-

ance of ιMl(γL) and χ((Ml,γL)0) follows from the fact that g normalizes Ml. To show
the invariance of OγLγ(fp,∞M ), it suffices to show that fp,∞M and its composition with
the automorphism Int(g) of M(Apf ) have equal orbital integrals at all elements. By
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Kazhdan’s density result [Kaz86] it suffices to check this only at regular semi-simple
elements. Since orbital integrals are locally constant on the regular semi-simple locus,
we further reduce to (G,M)-regular semi-simple elements. That is, we only need to
show the invariance of OγLγ(fp,∞M ) under γL 7→ gγLg

−1 under the assumption that
γLγ is (G,M)-regular. This follows from the descent formula (see [ST16, Lem. 6.1]
or [vD72])

OγLγ(fp,∞M ) =
∣∣DG

M (γLγ)
∣∣1/2
Ap
f

OγLγ(fp,∞)

and the fact that g normalizes M .(1) Finally, to show the invariance of OγL(1Ml(Zp)),
it suffices to show that gMl(Zp)g−1 is conjugate to Ml(Zp) in Ml(Qp). By the de-
scriptions in Propositions 2.2.4 and 2.2.8, we are left to show that for any hyperspecial
subgroup U ⊂ SO(W2)(Qp) and any x ∈ O(W2)(Qp)− SO(W2)(Qp), we have xUx−1

is conjugate to U in SO(W2)(Qp). For this it suffices to exhibit one element of
O(W2)(Qp) − SO(W2)(Qp) normalizing U . But U is the stabilizer of a Zp-lattice Λ
in W2 (cf. [LS20, §2]). Since p > 2, if we take v ∈ Λ such that vp(⟨v, v⟩) is minimal,
then the projection w 7→ w− ⟨v,w⟩

⟨v,v⟩ v preserves Λ, and hence Λ is the orthogonal direct
sum of Zpv and its orthogonal complement in Λ. We can therefore take the desired
element of O(W2)(Qp)−SO(W2)(Qp) to be the reflection along v, which stabilizes Λ.
This finishes the proof of the claim.

By the claim we have
TrM =

∑
Q

TrM,Q,1,

where the sum is over Q ∈ {P1, P2, P12} such that P(M,Q) ̸= ∅. We finish the proof
by noting that for M ∈ {M1,M2,M12} and Q ∈ {P1, P2, P12}, we have P(M,Q) ̸= ∅
if and only if Ml ∈ StdLev(MQ,l).

Definition 2.5.5. — For Q ∈ {P1, P2, P12}, we define

(2.5.5.1) TQ = mMQ

∑
L∈StdLev(MQ,l)

(−1)dimAL/AMQ,l (nMQ,l

L )−1

·
∑
γL

ιL(γL)−1χ(L0
γL)
∣∣∣DMQ,l

L (γL)
∣∣∣1/2

R

·
∑

(γ0,γ,δ)

c(γ0, γ, δ)δQ(Qp)(γ0)1/2OγLγ(fp,∞ML
)OγL(1L(Zp))TOδ(ϕ

MQ,h
a )

· δQ(R)(γLγ0)1/2 Tr(γLγ0 | RΓ(LieNQ,V)>tQ).

Here, for each L ∈ StdLev(MQ,l), we let ML be the unique element of {M1,M2,M12}
such that ML,l = L. In other words, ML = MQ,h × L. The second sum is over all

(1)The above argument of reducing to the (G, M)-regular case and then applying the descent formula
is quite standard. In fact, one uses a similar argument to show, in the first place, that the choices
made in the definition of the constant term do not affect its orbital integrals; cf. [ST16, §6.1].
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semi-simple conjugacy classes γL in L(Q) which are R-elliptic in the sense of Definition
1.1.8. (If no such element exists, then the summand labeled by L is zero.) The third
sum is over equivalence classes of Kottwitz triples (γ0, γ, δ) in MQ,h with γ0 ∼R γL.
The definition of L(Zp) is given by (2.4.3.3) applied to M := ML. All the other terms
are defined in the same way as in Definition 2.4.3.

Lemma 2.5.6. — For Q ∈ {P1, P2, P12}, we have T′
Q = TQ.

Proof. — For each L ∈ StdLev(MQ,l), let PL be the unique element of {P1, P2, P12}
such that MPL = ML. Combining Definitions 2.2.2, 2.5.2, 2.5.3, and using the fact
that for L ∈ StdLev(MQ,l) we have ML,h = MQ,h, we obtain

T′
Q = mMQ

∑
L∈StdLev(MQ,l)

(−1)dimAML/AMQ (nMQ

ML
)−1

·
∑
γL

ιL(γL)−1χ(L0
γL)
∣∣∣DMQ

ML
(γLγ0)

∣∣∣1/2

R

·
∑

(γ0,γ,δ)

c(γ0, γ, δ)δPL(Qp)(γ0)1/2OγLγ(fp,∞ML
)OγL(1L(Zp))TOδ(ϕ

MQ,h
a )

· δQ(R)(γLγ0)1/2 Tr(γLγ0 | RΓ(LieNQ,V)>tQ).

Here the three summations are the same as on the RHS of (2.5.5.1). To finish the
proof, we only need to check the following four identities for each L ∈ StdLev(MQ,l):

(1) dimAML/AMQ
= dimAL/AMQ,l

.

(2) nMQ

ML
= n

MQ,l

L .
(3) DMQ

ML
(·) = D

MQ,l

L (·).
(4) δPL(Qp)(γ0) = δQ(Qp)(γ0).

The first three identities follow from the fact that ML = MQ,h × L and MQ =
MQ,h ×MQ,l. For the fourth identity, we have PL ⊂ Q, and the subgroup NPL/NQ
of Q/NQ = MQ is contained inside MQ,l ⊂ MQ. Hence γ0 ∈ MQ,h(Q) acts trivially
on LieNPL/LieNQ, and the desired identity follows.

Proposition 2.5.7. — The formula (1.8.4.1) in Theorem 1.8.4 is equivalent to the
following formula.

(2.5.7.1) Tr(Frobap ×f∞dg∞ | IH∗(ShK ,V))− Tr(Frobap ×f∞dg∞ | H∗
c(ShK ,V))

= TP1 + TP2 + TP12 .

Proof. — This follows from Lemmas 2.5.4 and 2.5.6.





CHAPTER 3

PROOF OF MOREL’S FORMULA

In this chapter we prove Theorem 1.8.4.

3.1. Introduction to the proof

3.1.1. — Our goal is to prove the formula (1.8.4.1). In Proposition 2.5.7, we have
shown that (1.8.4.1) is equivalent to (2.5.7.1). This last formula is a variant of
[Mor10b, Thm. 1.7.1], and our proof will be a modification of the proof in loc. cit..

First we review some key ingredients in [Mor10b, Thm. 1.7.1]. The proof is
axiomatic in nature, building on the earlier work of Morel [Mor06, Mor08], and the
work of Pink [Pin92a]. Other ingredients needed in this axiomatic approach include:

(1) Deligne’s conjecture on local terms in the Grothendieck–Lefschetz–Verdier
trace formula, which was proved in special cases that are already enough for Shimura
varieties by Pink [Pin92b], and in general by Fujiwara [Fuj97] and Varshavsky
[Var05].

(2) The fixed point formula of Goresky–Kottwitz–MacPherson [GKM97].
(3) The fixed point formula of Kottwitz [Kot92b].

The ingredient (1) is of course still valid in our case. As regards (2), we will need the
original formula as well as a variant of it (see Proposition 3.2.3 below). As regards
(3), we will apply this formula to the boundary pure Shimura data (Gm,H0) and
(GL2,H2). The Shimura datum (GL2,H2) gives rise to the usual modular curves, and
Kottwitz’s formula is valid. For (Gm,H0), we need a version of Kottwitz’s fixed point
formula for certain variants of the usual zero-dimensional Shimura varieties associated
to the datum (see Proposition 3.3.14 below). Finally, note that in Theorem 1.8.4 we
have not provided a formula for the term Tr(· | H∗

c(ShK ,V)). Such a formula is
eventually needed in order to fully understand the LHS of (1.8.4.1). This ingredient
is provided in [KSZ] (for all Shimura varieties of abelian type), and is treated as a
black box in the present paper when we prove Corollary 8.17.5 below.



48 CHAPTER 3. PROOF OF MOREL’S FORMULA

3.1.2. — Let P be a standard proper parabolic subgroup of G. There are the follow-
ing differences between our TP in Definition 2.5.5 and Morel’s definition [Mor10b,
p. 23]. We do not explicitly assume that the Kottwitz triples should have trivial Kot-
twitz invariant, but this is automatic by Lemma 2.3.5. Also, in the first summation
in (2.5.5.1) we do not explicitly assume that L is cuspidal (see Definition 1.1.6), but
in our case if L is non-cuspidal then the sum over γL is empty. (Indeed, the possible
choices of L are M1,l,M2,l,M12,l. In the odd case all of them are cuspidal. In the even
case, M1,l and M12,l are cuspidal, whereas (M2,l)R does not contain elliptic maximal
tori, as noted in Remark 2.4.6.) The sole essential difference is that we impose the
condition γ0 ∼R γL, which is not imposed by Morel, and this is due to the fact that
our orthogonal Shimura datum O(V ) does not satisfy the axioms in [Mor10b, §1.1].

Recall that Morel’s axioms require that for each P ∈ AdmPar(G), the Levi quotient
MP of P should admit a decomposition MP = GP × LP such that GP (R) acts
transitively on XP and LP (R) acts trivially on XP , among other things. In our case,
by Proposition 1.5.2 (5), such a decomposition is clearly impossible for P = P2. This
is in fact related to the following geometric phenomenon. In general, each boundary
stratum of the Baily–Borel compactification of a Shimura variety can be identified
with the quotient of a smaller Shimura variety by the action of a finite group. If
Morel’s axioms are satisfied, then this finite quotient can be “absorbed” by a change
of level. By contrast, in our case, the zero-dimensional boundary strata corresponding
to P2 cannot be identified as Shimura varieties without taking quotients.

To resolve this problem, we need to systematically modify the arguments in
[Mor10b, Chap. 1] whenever they concern zero-dimensional boundary strata.
Roughly speaking, Morel’s formula for TP is a mixture of two formulas: the fixed
point formula of Kottwitz for a Shimura variety associated to GP , and the fixed point
formula of Goresky–Kottwitz–MacPherson for a locally symmetric space associated
to LP . In our case, we need to replace the “Shimura variety associated to GP ” by a
finite quotient of it, and meanwhile replace the “locally symmetric space associated
to LP ” by a finite covering of it. Fortunately, we only need these generalizations
in very simple situations, and the extra complication is mainly of a combinatorial
nature.

3.1.3. — We now discuss another ingredient in Morel’s proof of [Mor10b,
Thm. 1.7.1], namely the construction of suitable integral models. In [Mor10b,
§1.3] Morel provides two approaches to the construction of the integral model of the
Baily–Borel compactification, for which Pink’s formula (see [Mor10b, Thm. 1.2.3]
and [Mor10b, p.8 item (6)]) holds, among other things. The first approach,
[Mor10b, Prop. 1.3.1], applies Lan’s work [Lan13] to construct the integral model
away from a controlled finite set of bad primes. This approach is valid in the
PEL-type case. The second approach, [Mor10b, Prop. 1.3.4], is applicable in much
more general situations, but it only constructs the integral model away from an
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uncontrolled finite set of primes. Although Lan’s work has been generalized by
Madapusi Pera [MP19] to the case of Hodge type, our Shimura datum O(V ) of
abelian type is still beyond the applicability.(1) Hence we have to follow Morel’s
second approach, losing control of the set of bad primes. This explains why in
Theorem 1.8.4 the set Σ is not made specific and may also depend on λ and f∞.

Nevertheless, we shall show (see Lemma 3.5.7 below) that the localizations to
almost all primes of the abstract integral models constructed by Morel’s second ap-
proach can be compared with other known integral models of Shimura varieties in the
expected way. In particular, for sufficiently large primes we are in a position to apply
the result of Lan–Stroh [LS18, Thm. 4.19], which relates the intersection cohomology
and compact support cohomology of the special fiber of the integral model to those
of the generic fiber respectively.

Outline of the proof. — In §3.2, we prove an analogue of the fixed point formula
of Goresky–Kottwitz–MacPherson for certain double coverings of locally symmetric
spaces. The main result is Proposition 3.2.3. In §3.3, we study certain finite quo-
tients of zero-dimensional Shimura varieties that will appear on the boundary of ShK .
We develop the analogues of various constructions in [Mor10b, Chap. 1] for these
quotients. The main results are Propositions 3.3.14 and 3.3.16. In §3.4, we explain
how Morel’s axioms in [Mor10b, §1.1] should be modified to suit our situation. In
§3.5, we construct the integral models away from an uncontrolled set of bad primes,
and compare the localizations of these models at almost all primes with other known
integral models. In §3.6, we assemble all the ingredients and explain how to modify
the proof of [Mor10b, Thm. 1.7.1] to prove our Theorem 1.8.4.

3.2. A fixed point formula for some double coverings of locally symmetric
spaces

3.2.1. — Let L be a reductive group over Q. We assume that π0(L(R)) ∼= Z/2Z.
By the real approximation theorem, L(Q)+ := L(Q) ∩ L(R)0 is of index 2 in L(Q).
We also assume that a minimal Levi subgroup L0 of LR satisfies π0(L0(R)) ∼= Z/2Z.
Then by Matsumoto’s theorem (see [BT65, 14.4]), for any Levi subgroup L′ of LR,
the inclusion L′(R) ↪→ L(R) induces an isomorphism π0(L′(R)) ∼−→ π0(L(R)). Now
for each Levi subgroup L′ of L defined over Q, we set

L′(Q)+ := L′(Q) ∩ L′(R)+,

which is of index 2 in L′(Q).

(1)In [LS18], Lan–Stroh have given a “crude” construction of the integral models of the Baily–
Borel compactifications in the case of abelian type. However, since good integral models of toroidal
compactifications are also implicitly needed in order to verify Pink’s formula, their construction does
not seem sufficient for our purpose.
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3.2.2. — Let L be as in §3.2.1. Let K be a neat compact open subgroup of L(Af ).
Let XL be the symmetric space associated to LR as in Definition 1.1.4. We have the
usual locally symmetric space

MK := L(Q)\XL × L(Af )/K,

as considered in [GKM97, §7] and [Mor10b, Chap. 1]. We shall consider the fol-
lowing variant of MK :

MK
sh := L(Q)+\XL × L(Af )/K.

We call MK
sh a shallower locally symmetric space. Both MK and MK

sh are smooth real
manifolds, and the natural map MK

sh → MK is easily seen to be a double covering.
Let W be an algebraic representation of LC. Denote by FKW the sheaf on MK of

local sections of the map

L(Q)\(W×XL × L(Af )/K) −→ MK .

Denote by RΓc(K,W) the virtual alternating sum of the compact support cohomology
H∗
c(MK ,FKW). Similarly, we let FKshW be the sheaf on MK

sh of local sections of the
map

L+(Q)\(W×XL × L(Af )/K) −→ MK
sh,

and denote by RΓc,sh(K,W) the virtual alternating sum of the compact support
cohomology H∗

c(MK
sh,FKshW), cf. [Mor10b, §1.2].

Fix g ∈ L(Af ), and let K ′ ⊂ L(Af ) be another compact open subgroup such that
K ′ ⊂ K∩gKg−1. Analogous to [Mor10b, p. 22], we have finite étale Hecke operators

T1, Tg : MK′

sh −→ MK
sh.

As in [Mor10b, Thm. 1.6.6], the natural cohomological correspondence

T ∗
gFKshW −→ T !

1FKshW

gives rise to an endomorphism ug of RΓc,sh(K,W). (2)

Let l0 denote the non-trivial element of L(Q)/L(Q)+. We have a natural action
of L(Q)/L(Q)+ on MK

sh, induced by the diagonal left action of L(Q) on XL ×L(Af ).
Under this action the covering MK

sh → MK is a L(Q)/L(Q)+-torsor. The sheaf FKshW
has a natural L(Q)/L(Q)+-equivariant structure, and so l0 induces an endomorphism,
still denoted by l0, of RΓc,sh(K,W). This endomorphism commutes with ug. The
following result is a variant of [Mor10b, Thm. 1.6.6], the latter being a special case
of [GKM97, Thm. 7.14 B].

(2)Note that Morel [Mor10b, Thm. 1.6.6] and Goresky–Kottwitz–MacPherson [GKM97] follow
different conventions concerning the definition of ug ; see [Mor10b, Rmk. 1.6.7]. We follow Morel’s
convention here.
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Proposition 3.2.3. — In the setting of §3.2.2, we have

(3.2.3.1)
Tr(ug | RΓc,sh(K,W)) = 2

∑
L′

(−1)dim(AL′/AL)(nLL′)−1
∑
γ

ιL
′
(γ)−1χ((L′

γ)0)

·Oγ(f∞
L′ )
∣∣DL

L′(γ)
∣∣1/2 Tr(γ |W),

and
(3.2.3.2)

Tr(ugl0 | RΓc,sh(K,W)) = 2
∑
L′

(−1)dim(AL′/AL)(nLL′)−1
∑
γ

ιL
′
(γ)−1χ((L′

γ)0)

·Oγ(f∞
L′ )
∣∣DL

L′(γ)
∣∣1/2 Tr(γ |W).

Here:
– In both (3.2.3.1) and (3.2.3.2), the first sum is over L(Q)-conjugacy classes of

Levi subgroups L′ of L.
– In (3.2.3.1) (resp. (3.2.3.2)), the second sum is over L′(Q)-conjugacy classes γ in

L′(Q)+ (resp. L′(Q)−L′(Q)+) that are R-elliptic in L′(R) in the sense of Definition
1.1.8.

– We denote by f∞ the function 1gK/ vol(K ′) ∈ C∞
c (L(Af )), and let f∞

L′ be the
constant term of f∞ along L′, cf. Definition 2.4.3.

– All the other terms on the right hand sides of (3.2.3.1) and (3.2.3.2) are defined
in the same way as in [Mor10b, Thm. 1.6.6], cf. Definition 2.4.3.

Proof. — The formula (3.2.3.1) follows from similar arguments as in [GKM97, §7].
The key point is that the main tools used in loc. cit., namely the reductive Borel–
Serre compactification and the weighted complexes on it, are still available in the
current setting. In fact, these objects were studied in [GHM94] in the non-adelic
setting, where one is allowed to replace any given arithmetic subgroup by an arbitrary
finite-index subgroup. Hence by the standard translation between the adelic and the
non-adelic languages, we can consider the reductive Borel–Serre compactification of
MK

sh, as well as weighted complexes on it. The arguments in [GKM97, §7] can be
easily transported to this new setting.

We explain some more details. Fix a minimal parabolic subgroup P0 of L, and fix a
Levi component L0 of P0. For any standard parabolic subgroup P of L (i.e. one that
contains P0), we denote by LP the Levi component of P containing L0, and denote
by NP the unipotent radical of P . As in [GKM97, §7], the reductive Borel–Serre
compactification of the usual locally symmetric space MK has a stratification indexed
by the standard parabolic subgroups P of L. The stratum indexed by P is of the
form

LP (Q)\[(NP (Af )\L(Af )/K)×XLP ].(3.2.3.3)
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In [GKM97, §7], one considers the spaces Fix(P, x0, γ), where P runs through the
standard parabolic subgroups of L, x0 runs through representatives of the double
cosets in P (Af )\L(Af )/K ′, and γ runs through conjugacy classes in LP (Q). Each
space Fix(P, x0, γ) is of the form

Fix(P, x0, γ) = LP,γ(Q)\(Y ∞ × Y∞).

We refer the reader to [GKM97, p. 523] for the definition of Y ∞ and Y∞.
For us, the reductive Borel–Serre compactification of MK

sh still has a stratification
indexed by the standard parabolic subgroups P of L, and the stratum indexed by P
is of the form

LP (Q)+\[(NP (Af )\L(Af )/K)×XLP ].(3.2.3.4)

Comparing (3.2.3.3) and (3.2.3.4), it is clear that if one is to count the fixed points of
the cohomological correspondence in the same way as in [GKM97, §7], one should
consider ∐

P,x0,γ

Fix′(P, x0, γ),(3.2.3.5)

where P runs through the standard parabolic subgroups of L, x0 runs through repre-
sentatives of the double cosets in P (Af )\L(Af )/K ′, γ runs through conjugacy classes
in LP (Q)+, and

Fix′(P, x0, γ) := LP (Q)+
γ \(Y ∞ × Y∞).

Here LP (Q)+
γ denotes the centralizer of γ in LP (Q)+

Let P be a standard parabolic subgroup of L. For γ ∈ LP (Q)+, we say that γ is
of first kind if LP,γ(Q) ⊂ LP (Q)+, and of second kind if otherwise. When γ is of first
kind, the LP (Q)-conjugacy class of γ is the disjoint union of two LP (Q)+-conjugacy
classes, and we have Fix′(P, x0, γ) = Fix(P, x0, γ). When γ is of second kind, the
LP (Q)-conjugacy class of γ is the same as the LP (Q)+-conjugacy class of γ, and
Fix′(P, x0, γ) is a double covering of Fix(P, x0, γ). From this discussion, we see that
the space (3.2.3.5) is the same as∐

P,x0,γ

Fix′′(P, x0, γ),(3.2.3.6)

where P and x0 run through the same indexing sets as before, γ runs through LP (Q)-
conjugacy classes in LP (Q)+, and Fix′′(P, x0, γ) is the disjoint union of two copies of
Fix(P, x0, γ) if γ is of first kind, and is equal to Fix′(P, x0, γ) if γ is of second kind.

From the above discussion, the compact support Euler characteristic (see
[GKM97, §7.10, §7.11]) of Fix′′(P, x0, γ) is equal to twice that of Fix(P, x0, γ).

In the qualitative discussion in [GKM97, §7.12], the contribution from
Fix(P, x0, γ) to the Lefschetz formula is a product of three factors (1), (2), and
(3), where factor (1) is the compact support Euler characteristic of Fix(P, x0, γ). For
us the contribution from Fix′′(P, x0, γ) is also a product of three analogous factors,
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where our factors (2) and (3) are identical to those in loc. cit., and our factor (1) is
two times the factor (1) in loc. cit. as we have already seen. Therefore, analogous to
[GKM97, (7.12.1)], we have the following expression for the Lefschetz formula:∑

P

∑
γ

2(−1)dimAI/ dimALP
∣∣LP,γ(Q)/L0

γ(Q)
∣∣−1

χ(L0
γ)LGKM

P (γ)Oγ(fP ),(3.2.3.7)

where γ runs through the LP (Q)-conjugacy classes in LP (Q)+ (instead of LP (Q)),
and the other notations are the same as in loc. cit. except that we write LGKM

P (·) for
the function denoted by LP (·) in loc. cit..

Now the rest of the arguments in [GKM97, §7] that deduce [GKM97, Thm. 7.14
B] from [GKM97, (7.12.1)] can be applied to (3.2.3.7). Also the elementary trans-
lation from [GKM97, Thm. 7.14 B, §7.17] to the formula of [Mor10b, Thm. 1.6.6]
carry over to imply (3.2.3.1).

We have proved (3.2.3.1). We now prove (3.2.3.2). We claim that

Tr(ug | RΓc,sh(K,W)) + Tr(ugl0 | RΓc,sh(K,W)) = 2 Tr(ug | RΓc(K,W)).(3.2.3.8)

Here we abuse notation and write ug also for the endomorphism of RΓc(K,W) induced
by g. Once (3.2.3.8) is proved, the desired identity (3.2.3.2) follows from (3.2.3.1),
(3.2.3.8), and the formula for Tr(ug | RΓc(K,W)) given in [Mor10b, Thm. 1.6.6].

We now prove (3.2.3.8). Let π denote the double covering map MK
sh → MK . We

write Fsh (resp. F ) for the sheaf FKshW (resp. FKW) on MK
sh (resp. MK). Since

Fsh = π∗F , and since π is a finite covering, we have

H∗
c(MK

sh,Fsh) = H∗
c(MK

sh, π
∗F ) = H∗

c(MK , π∗π
∗F ).(3.2.3.9)

For each character χ of the deck group ∆ = Z/2Z of π, we let Gχ be the local system
on MK given by the covering π and the character χ. Combining (3.2.3.9) and the
projection formula

π∗π
∗F ∼= F ⊗

⊕
χ:∆→C×

Gχ,

we obtain a decomposition

H∗
c(MK

sh,Fsh) ∼=
⊕

χ:∆→C×

H∗
c(MK ,F ⊗ Gχ).

This decomposition is equivariant with respect to ug, and the direct summand
H∗
c(MK ,F ⊗ Gχ) corresponds to the χ-eigenspace for the ∆-action on the left hand

side. The desired (3.2.3.8) follows.

3.3. Cohomological correspondences on some zero-dimensional Shimura
varieties

3.3.1. — Let (Gm,H0) be the zero-dimensional Siegel Shimura datum as in [Pin90,
2.8]. Recall that H0 consists of two elements, and Gm(R) acts on H0 via the unique
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non-trivial action of π0(Gm(R)) ∼= Z/2Z. We now recall the construction of the asso-
ciated zero-dimensional Shimura varieties, following [Pin90, 11.3, 11.4] and [Pin92a,
§5.5].

As usual, we fix a neat compact open subgroup K of Gm(Af ), and define the set
of C-points of the Shimura variety as

ShK(C) = ShK(Gm,H0)(C) := Gm(Q)\H0 ×Gm(Af )/K.

There is a natural action of π0(Gm(A)/Gm(Q)) on the finite set ShK(C), from which
we obtain an action of Gal(Q/Q) on ShK(C) via the isomorphism

Gal(Qab/Q) ∼−→ π0(Gm(A)/Gm(Q))(3.3.1.1)

from class field theory (normalized such that geometric Frobenius elements correspond
to uniformizers). The canonical model

ShK = ShK(Gm,H0)

is by definition the finite étale Q-scheme corresponding to the Gal(Q/Q)-set ShK(C).
In fact, using the transitivity of the π0(Gm(A)/Gm(Q))-action on ShK(C), we can

describe ShK more explicitly as follows. The inclusion Ẑ× ⊂ Gm(Af ) induces an
isomorphism Ẑ× ∼−→ π0(Gm(A)/Gm(Q)). We thus identify Ẑ× with Gal(Qab/Q) via
(3.3.1.1). (According to our normalization, this identification is induced by the Gauss
isomorphisms (Z/mZ)× ∼−→ Gal(Q(ζm)/Q), k+mZ 7→ (ζm 7→ ζkm).) Let FK/Q be the
finite abelian extension corresponding to the open subgroup K ⊂ Ẑ× ∼= Gal(Qab/Q).
Then we have a canonical identification

ShK ∼= SpecFK .

From this description, it is clear that lim←−K ShK ∼= SpecQab.
Observe that the non-identity bijection H0 → H0 induces a bijection ShK(C) →

ShK(C) which is π0(Gm(A)/Gm(Q))-equivariant. From this we obtain an automor-
phism of the Q-scheme ShK , denoted by σ∞. If we identify ShK with SpecFK as
above, then σ∞ is given by the complex conjugation acting on FK . Moreover, since
K is neat, we have Q× ∩ K = {1}, and it follows that σ∞ is always a non-trivial
automorphism of ShK (or equivalently, FK is always totally complex).

We denote by Sh♭K the quotient of ShK by σ∞. Thus Sh♭K ∼= SpecF ♭K , where F ♭K
is the maximal totally real subfield of FK . Alternatively, Sh♭K is the Shimura variety
at level K associated to the Shimura datum (Gm,

{
NC/R : S→ Gm,R

}
).

We shall need a common generalization of the Q-schemes ShK and Sh♭K . First we
define the generalization of a level subgroup.

Definition 3.3.2. — We say that a subgroup U of Gm(Af )×Z/2Z is an admissible
level, if there are neat compact open subgroups K1 and K2 of Gm(Af ) such that

K1 × {0} ⊂ U ⊂ K2 × Z/2Z.
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3.3.3. — Note that for any neat compact open subgroup K ⊂ Gm(Af ), we have
K ⊂ Ẑ×, and the element −1 ∈ Ẑ× is not in K. Thus K×Z/2Z can be identified with
a subgroup of Ẑ×, where the non-trivial element of Z/2Z corresponds to −1 ∈ Ẑ×. It
follows that every admissible level U as in Definition 3.3.2 can be canonically identified
with an open subgroup of Ẑ× ∼= Gal(Qab/Q), and thus determines a finite abelian
extension FU/Q. We define

ShU = ShU (Gm,H0) := SpecFU .

When U ⊂ Gm(Af ), the current definition of ShU agrees with the one in §3.3.1. Also,
if K is a neat compact open subgroup of Gm(Af ), then K × Z/2Z is an admissible
level and we have ShK×Z/2Z = Sh♭K .

The usual Hecke operators can be generalized to this new setting as follows. Let U
be an admissible level, and let g ∈ Gm(Af )×Z/2Z. We shall define an automorphism

[·g]U : ShU −→ ShU .

For this we identify g with an element of Gm(A) by identifying Z/2Z with {±1} ⊂ R×.
Then g determines an element ρ(g) ∈ Gal(Qab/Q) via the inverse of (3.3.1.1). We
define [·g]U to be the automorphism of ShU = SpecFU corresponding to the restriction
of ρ(g) to FU .

If U ′ is another admissible level contained in U , then we have a natural map
ShU ′ → ShU , and the two compositions

ShU ′ // ShU
[·g]U // ShU ,

ShU ′
[·g]U′ // ShU ′ // ShU

are equal. We denote them by [·g]U ′,U .
If K is a neat compact open subgroup of Gm(Af ) and g ∈ Gm(Af ), then the

above definition of [·g]K recovers the usual Hecke operator on ShK . If ϵ denotes the
non-trivial element of Z/2Z, then [·ϵ]K is the automorphism σ∞ of ShK as in §3.3.1.

For an admissible level U , we define

SU = SU (Gm,H0) := SpecOFU ,

and call it the canonical integral model of ShU . The Hecke operators [·g]U and [·g]U ′,U

as above uniquely extend to the canonical integral models.

Lemma 3.3.4. — Let U1 and U2 be two admissible levels with U1 ⊂ U2. Then the
following statements hold.

(1) The natural map ShU1 → ShU2 is a Galois covering and a U2/U1-torsor.
(2) Let p be a prime number such that Z×

p ⊂ U1. (Here Z×
p is viewed as a subgroup

of Gm(Af ) ⊂ Gm(Af ) × Z/2Z.) Then SUi ⊗Z Z(p) are finite étale over Z(p) for
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i = 1, 2. Moreover, the natural map SU1 ⊗Z Z(p) → SU2 ⊗Z Z(p) is a Galois covering
and a U2/U1-torsor.

Proof. — Statement (1) is just Galois theory. To show (2), we observe that p is
unramified in FU1 and FU2 by class field theory.

3.3.5. — Let L be a reductive group over Q, and fix a continuous action of L(R)
on the set H0. We write L(Q)♮ for CentL(Q)H0. Thus L(Q)♮ is a normal subgroup of
L(Q) of index at most 2. We have a canonical injection

L(Q)/L(Q)♮ ↪→ Aut(H0) = Z/2Z.(3.3.5.1)

Let M = Gm × L. Thus the group M(R) acts on H0, where we let Gm(R) act as
in §3.3.1. Let KM be a neat compact open subgroup of M(Af ). Define

KM,⋄ := KM/(KM ∩ L(Af )).

We identify KM,⋄ with the image of KM under the projection M(Af ) → Gm(Af ).
Since KM is a neat compact open subgroup of M(Af ), we know that KM,⋄ is a neat
compact open subgroup of Gm(Af ). Define the following subgroups(3) of M(Af ):

H̄ := KM ∩ (Gm(Af )L(Q)),(3.3.5.2)

H̄♮
L := KM ∩ L(Q)♮.(3.3.5.3)

Note that H̄♮
L is a normal subgroup of H̄. We define

Ȟ := H̄/H̄♮
L.

We have a natural homomorphism Ȟ → Gm(Af ) induced by the projection map
KM → Gm(Af ), and a natural homomorphism Ȟ → Z/2Z induced by the composi-
tion

Gm(Af )L(Q)→ L(Q)→ L(Q)/L(Q)♮ (3.3.5.1)−−−−−→ Z/2Z,
where the first map is the projection to the second factor. Taking the product, we
obtain a homomorphism Ȟ → Gm(Af )× Z/2Z which is injective. We use it to view
Ȟ as a subgroup of Gm(Af )× Z/2Z.

Lemma 3.3.6. — In the setting of §3.3.5, the following statements hold.
(1) We have H̄♮

L = KM ∩ (CentM(Q)H0).
(2) The subgroup Ȟ of Gm(Af )× Z/2Z is an admissible level.

Proof. — For (1), the containment H̄♮
L ⊂ KM∩(CentM(Q)H0) is clear. For the reverse

containment, let g ∈ Gm(Q) and l ∈ L(Q) be such that gl ∈ KM ∩ (CentM(Q)H0).
Then g ∈ KM,⋄ ∩Gm(Q), which is the trivial group by the neatness of KM,⋄. Hence

(3)In the application, typically M will be the Levi quotient of a parabolic subgroup P of a reductive
group G, and we reserve the notations H, H♮

L for certain subgroups of P (Af ) whose images in M(Af )
are the subgroups H̄, H̄♮

L defined here, cf. §3.4.5.
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gl = l, and l ∈ L(Q)♮. This shows (1). For (2), we let K1 = KM ∩ Gm(Af ) and
K2 = KM,⋄. Then K1 and K2 are neat compact open subgroups of Gm(Af ), and we
have K1 × {0} ⊂ Ȟ ⊂ K2 × Z/2Z.

3.3.7. — We keep the setting of §3.3.5. By Lemma 3.3.6 (2), Ȟ is an admissible
level. Applying the construction in §3.3.3, we obtain a Q-scheme ShȞ and a Z-scheme
SȞ .

By definition, the profinite Galois covering SpecQab → ShȞ is a Ȟ-torsor. We
may thus construct étale sheaves on ShȞ associated to suitable Ȟ-modules. More
precisely, let RepM be the category of finite-dimensional algebraic representations
of M on Eλ-vector spaces (where E and λ are as in §1.7.1). Let Db(RepM ) be the
bounded derived category of RepM (i.e., the category of graded objects of RepM of
finite length, as RepM is semi-simple). As explained in [Mor10b, §1.2] and [Mor06,
§2.1.4], we have an additive triangulated functor

F ȞRΓ(H̄♮
L,−) : Db(RepM ) −→ Db

c(ShȞ ,Eλ).(3.3.7.1)

Roughly speaking, to compute this functor at W ∈ Db(RepM), one first applies the
right derived functor of H0(H̄♮

L,−) to W to get a complex of Ȟ-modules, and then
uses this complex and the Ȟ-tower SpecQab → ShȞ to construct a complex of Eλ-
sheaves on ShȞ . We refer the reader to [Mor06, §2.1.4, Généralisation] for the precise
construction.(4)

Using (3.3.7.1), we define the following functor, which can be viewed as a compact
support analogue:

F ȞRΓc(H̄♮
L,−) : Db(RepM ) −→ Db

c(ShȞ′ ,Eλ),(3.3.7.2)

W 7−→ D

(
F ȞRΓ(H̄♮

L,W
∗)[2q(LR)]

)
,

where D(·) denotes the Verdier dual, W∗ denotes the contragredient of W, and q(LR)
is as in Definition 1.1.4.

Similarly, let RepGm×Z/2Z be the category of finite-dimensional algebraic represen-
tations of Gm × Z/2Z on Eλ-vector spaces, and let Db(RepGm×Z/2Z) be the bounded
derived category. (Here we view Z/2Z as a constant group scheme.) We have an
additive triangulated functor

FKM,⋄×Z/2Z(−) : Db(RepGm×Z/2Z) −→ Db
c(ShKM,⋄×Z/2Z,Eλ) = Db

c(Sh♭KM,⋄ ,Eλ)
(3.3.7.3)

given as follows. Let W ∈ RepGm×Z/2Z. First viewing W as an algebraic rep-
resentation of Gm, we obtain the associated automorphic Eλ-sheaf on ShKM,⋄ as
usual (see §1.7.1). We then use the Z/2Z-action on W to define the descent datum

(4)It is assumed in loc. cit. that L(Q) = L(Q)♮, but this assumption can be removed without affecting
any of the arguments.
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with respect to the double covering ShKM,⋄ → Sh♭KM,⋄ , and obtain an Eλ-sheaf on
Sh♭KM,⋄ . Equivalently, we let the Galois group Γ of SpecQab → Sh♭KM,⋄ , namely
Γ = KM,⋄ × Z/2Z ⊂ Ẑ×, act on W via the projection Γ → Gm(Qℓ)× Z/2Z followed
by the canonical action of Gm(Qℓ) × Z/2Z on W. We then obtain an Eλ-sheaf on
Sh♭KM,⋄ via the Γ-torsor SpecQab → Sh♭KM,⋄ and the Γ-representation W.

3.3.8. — We keep the setting of §3.3.5. Let Db(RepM ) and Db(RepGm×Z/2Z) be as
in §3.3.7. For any neat compact open subgroup U ⊂ L(Af ), we shall construct a
functor

RΓ♮(U,−) : Db(RepM ) −→ Db(RepGm×Z/2Z).(3.3.8.1)

The construction is similar to the one described in [Mor10b, Rmk. 1.5.2 (1)]. Con-
sider the space

MU
♮ := L(Q)♮\XL × L(Af )/U,

where XL is as in Definition 1.1.4. Thus MU
♮ is a variant of the usual locally symmetric

space MU , cf. §3.2.2. We know that MU
♮ is a smooth manifold, and the natural map

MU
♮ → MU is a covering map of degree [L(Q) : L(Q)♮]. (In our later application, L

will satisfy the assumptions in §3.2.1 and we will have L(Q)♮ = L(Q)+, so MU
♮ is the

same as MU
sh discussed in §3.2.2.)

Fix a system of representatives (li)i∈I of the double cosets in L(Q)♮\L(Af )/U .
Here the indexing set I is finite, since the set L(Q)\L(Af )/U is finite and [L(Q) :
L(Q)♮] ≤ 2. Then we have

MU
♮
∼=
∐
i∈I

Γi\XL,

where each Γi := liUl
−1
i ∩ L(Q)♮ is a neat arithmetic subgroup of L(Q). For W ∈

Db(RepM ), we define

RΓ♮(U,W) :=
⊕
i∈I

RΓ(Γi,W),(3.3.8.2)

where each RΓ(Γi,−) is the functor Db(RepM ) → Db(RepGm) as in [Mor10b,
Rmk. 1.2.2] such that the cohomology of RΓ(Γi,W) computes the group cohomol-
ogy H∗(Γi,W).

We further equip RΓ♮(U,W) with a Z/2Z-action as follows: If L(Q)/L(Q)♮ is
trivial, we define this action to be trivial. Assume that L(Q)/L(Q)♮ ∼= Z/2Z. Then
left-multiplication by the non-trivial element of L(Q)/L(Q)♮ induces an involution on
the set L(Q)♮\L(Af )/U , and hence an involution on I. If {i, j} is a size-two orbit
in I under the involution, then there is a canonical coset in Γj\L(Q) consisting of
l ∈ L(Q) satisfying lli ∈ ljU . For any such l, the isomorphism W→W given by the
action of l intertwines with the isomorphism Γi

∼−→ Γj given by Int(l), and we obtain
an isomorphism τi,j : RΓ(Γi,W) ∼−→ RΓ(Γj ,W), which is independent of the choice of
l. Moreover, the isomorphism τj,i : RΓ(Γj ,W) ∼−→ RΓ(Γi,W) obtained in the similar
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way is inverse to τi,j . Now consider a size-one orbit {i} in I under the involution.
Then Γi is a subgroup of liUl−1

i ∩L(Q) of index 2. For any l ∈ (liUl−1
i ∩L(Q))− Γi,

the isomorphism W → W given by the action of l intertwines with the isomorphism
Γi

∼−→ Γi given by Int(l), and we obtain an automorphism τi of RΓ(Γi,W), which
is independent of the choice of l and has order at most 2. The collection of τi,j and
τi as above thus gives a canonical Z/2Z-action on RΓ♮(U,W), and we thereby view
RΓ♮(U,W) as an object in Db(RepGm×Z/2Z).

At this point, we have constructed the desired functor (3.3.8.1), after fixing the
choice of a system of representatives (li)i∈I . It can be checked that changing the
system of representatives does not change the functor up to natural isomorphism.

Using (3.3.8.1), we define the following functor as a compact support analogue:

RΓc,♮(U,−) : Db(RepM ) −→ Db(RepGm×Z/2Z)(3.3.8.3)

W 7−→
(
RΓ♮(U,W∗)[2q(LR)]

)∗

,

where ∗ denotes taking contragredient, and q(LR) is as in Definition 1.1.4.

Remark 3.3.9. — For W ∈ RepM , the object RΓ♮(U,W) (resp. RΓc,♮(U,W)) is an
incarnation of the cohomology (resp. cohomology with compact support) of the space
MU
♮ “with coefficients in W”. To explain this, fix a field embedding Eλ ↪→ C. Then W

determines an algebraic representation WC of LC over C. Consider the sheaf FU♮ (WC)
of local sections of

L(Q)♮\WC ×XL × L(Af )/U −→ MU
♮ ,

cf. [Mor10b, §1.2] and §3.2.2. Then for each k ∈ Z, the base change to C of the k-
th cohomology of RΓ♮(U,W) (resp. RΓc,♮(U,W)) is isomorphic to Hk(MU

♮ ,FU♮ (WC))
(resp. Hk

c (MU
♮ ,FU♮ (WC))).

3.3.10. — We keep the setting of §3.3.5. Consider the following situation, which
is a special case of the situation described below [Mor10b, Notation 1.5.1]. Fix
m ∈ Gm(Af )L(Q) ⊂ M(Af ). Let K ′

M be a compact open subgroup of M(Af ) such
that

K ′
M ⊂ KM ∩mKMm

−1.

Let H̄ ′ and (H̄♮
L)′ be defined by the formulas (3.3.5.2) and (3.3.5.3, but with KM

replaced by K ′
M . Note that we have H̄ ′ ⊂ H̄ ∩mH̄m−1.

Let Ȟ ′ := H̄ ′/(H̄♮
L)′. Let θ1 : Ȟ ′ → Ȟ be the homomorphism induced by

Int(m−1) : H̄ ′ → H̄, and let θ2 : Ȟ ′ → Ȟ be the homomorphism induced by the
inclusion H̄ ′ ⊂ H̄. As a generalization of the functor (3.3.7.1), for i ∈ {1, 2} we have
a functor

F Ȟ
′
θ∗
iRΓ(H̄♮

L,−) : Db(RepM ) −→ Db
c(ShȞ′ ,Eλ).(3.3.10.1)
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To compute this functor at W ∈ Db(RepM ), roughly speaking one first applies the
right derived functor of H0(H̄♮

L,−) to W to get a complex of Ȟ-modules, then pulls
this complex back via θ∗

i to obtain a complex of Ȟ ′-modules, and then uses the last
complex and the Ȟ ′-tower SpecQab → ShȞ′ to construct a complex of Eλ-sheaves on
ShȞ′ . The precise construction of (3.3.10.1) is along similar lines as the construction
of (3.3.7.1), for which we refer to [Mor10b, §1.5].

Let m̄ be the image of m in Gm(Af ) × (L(Q)/L(Q)♮) ⊂ Gm(Af ) × Z/2Z. As in
§3.3.3, we have Hecke operators

[·m̄]Ȟ′,Ȟ : ShȞ′ −→ ShȞ ,
[·1]Ȟ′,Ȟ : ShȞ′ −→ ShȞ .

In the sequel we denote them simply by [·m] and [·1].
Let W ∈ Db(RepM ). Applying the functor (3.3.7.1) to W , we obtain

L := F ȞRΓ(H̄♮
L,W) ∈ Db

c(ShȞ ,Eλ).

As explained in [Mor10b, §1.5], it follows from [Pin92a, Prop. 1.11.5] that there are
canonical isomorphisms

F Ȟ
′
θ∗

1RΓ(H̄♮
L,W) ∼= [·m]∗L ,

F Ȟ
′
θ∗

2RΓ(H̄♮
L,W) ∼= [·1]∗L .

Using these isomorphisms, as in [Mor10b, §1.5] one constructs a canonical cohomo-
logical correspondence

cm,1 : [·m]∗L −→ [·1]!L = [·1]∗L .(3.3.10.2)

(Both sides are complexes of sheaves on ShȞ′ .) Similarly, applying the functor
(3.3.7.2) we obtain

Lc := F ȞRΓc(H̄♮
L,W) ∈ Db

c(ShȞ ,Eλ),

and there is a canonical cohomological correspondence

cm,1 : [·m]∗Lc −→ [·1]!Lc = [·1]∗Lc.(3.3.10.3)

Now let p be a prime number which is coprime to λ and hyperspecial for KM (see
Definition 1.8.2). Assume in addition that m ∈ Gm(Apf )L(Q). Then there exists K ′

M

as in the above discussion such that p is also hyperspecial for K ′
M . For such K ′

M ,
it is clear from Lemma 3.3.4 (2) that the Hecke operators [·m] : ShȞ′ → ShȞ and
[·1] : ShȞ′ → ShȞ extend to finite étale morphisms SȞ′ ⊗Z Z(p) → SȞ ⊗Z Z(p) (still
denoted by [·m] and [·1]), that L and Lc extend to complexes of lisse Eλ-sheaves
on SȞ ⊗Z Z(p), and that the cohomological correspondences (3.3.10.2) and (3.3.10.3)
also extend. We denote by L (resp. Lc) the pull-back to SȞ ⊗Z Fp of the extension
of L (resp. Lc) over SȞ ⊗Z Z(p). As in [Mor10b, Notation 1.5.1], for any a ∈ Z≥1
we can twist the reductions of (3.3.10.2) and (3.3.10.3) over Fp by the a-th power of
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the absolute Frobenius, and obtain cohomological correspondences

Φacm,1 : [·m]∗L −→ [·1]!L ,

Φacm,1 : [·m]∗Lc −→ [·1]!Lc.

Definition 3.3.11. — In the setting of §3.3.10, we define

TrH(a,m,KM ,K
′
M ,W) :=

∑
k

(−1)k Tr(Φacm,1 | Hk(SȞ ⊗Z Fp,L )),

TrH,c(a,m,KM ,K
′
M ,W) :=

∑
k

(−1)k Tr(Φacm,1 | Hk(SȞ ⊗Z Fp,Lc)).

3.3.12. — We keep the setting of §3.3.5. Let U ∈ Db(RepGm×Z/2Z). Applying the
functor (3.3.7.3) to U we obtain

M := FKM,⋄×Z/2Z(U) ∈ Db
c(ShKM,⋄×Z/2Z,Eλ).

Let p be a prime number coprime to λ such that Z×
p ⊂ KM,⋄. (For instance, if p is

hyperspecial for KM , then Z×
p ⊂ KM,⋄.) Let g ∈ Gm(Apf ). As in §3.3.3, we have the

Hecke operator

[·g]KM,⋄×Z/2Z : ShKM,⋄×Z/2Z −→ ShKM,⋄×Z/2Z,

which we denote simply by [·g]. Similarly as in §3.3.10, we have a canonical cohomo-
logical correspondence

u(0, g) : [·g]∗M −→M ,

and we can pass to the special fiber of the canonical integral model mod p, twist by
the a-th power of the absolute Frobenius (where a ∈ Z≥1), and obtain a cohomological
correspondence

u(a, g) = Φau(0, g) : [·g]∗M −→M .(3.3.12.1)

Definition 3.3.13. — In the setting of §3.3.12, we define

Tr(a, g,KM,⋄ × Z/2Z,U) :=
∑
k

(−1)k Tr(u(a, g) | Hk(SKM,⋄×Z/2Z ⊗Z Fp,M )).

The following result is a variant of [Mor10b, Rmk. 1.6.5].

Proposition 3.3.14. — Keep the setting of §3.3.12. We have

Tr(a, g,KM,⋄ × Z/2Z,U) =
∑

(γ0,γ,δ)

c(γ0, γ, δ)Oγ(fp)TOδ(ϕGma )T̃r(γ0 | U).(3.3.14.1)

Here the terms on the right are as follows.
(1) The summation is over Kottwitz triples (γ0, γ, δ) in Gm of level pa, as in §2.3.
(2) The terms c(γ0, γ, δ), Oγ(·), and TOδ(·) are defined as in §2.3.
(3) We define fp := 1gKp

M,⋄
/ vol(Kp

M,⋄) ∈ C∞
c (Gm(Apf )), where Kp

M,⋄ is the sub-
group of Gm(Apf ) such that KM,⋄ = Z×

p K
p
M,⋄. The function ϕGma is as in Definition

2.3.9.
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(4) For any γ0 ∈ Gm(Q) = Q×, we set

T̃r(γ0 | U) :=
{

Tr(γ0 | U), if γ0 > 0,
Tr(γ0 × ϵ | U), if γ0 < 0,

where ϵ denotes the non-trivial element of Z/2Z.

Proof. — We write K for KM,⋄, and write S for the set SKM,⋄×Z/2Z(Fp). We identify
the three sets S, Sh♭K(C), and Gm(Q)\Gm(Af )/K = Q×\A×

f /K. Let Φ be the en-
domorphism of S induced by the absolute Frobenius on the Fp-scheme SKM,⋄×Z/2Z.
We denote by pp the image of p under the embedding Q×

p ↪→ A×
f . Then the endomor-

phism Φa ◦ [·g] of S is given by the multiplication by papg on Q×\A×
f /K. Similarly, we

write S̃ for SK(Fp), and identify it with ShK(C) = Q×\H0 × A×
f /K

∼= Q>0\A×
f /K.

Since we are in the zero-dimensional case, we can compute Tr(a, g,KM,⋄×Z/2Z,U)
by summing the naive local terms over the fixed points of S under Φa ◦ [·g].

Let x ∈ S be a fixed point under Φa ◦ [·g]. Then x has a representative x̃ ∈ A×
f

for which there exists f0 ∈ Q× satisfying f0x̃ ∈ papgx̃K, or equivalently f0 ∈ papgK.
Hence the set of fixed points is non-empty if and only if Q× ∩ papgK ̸= ∅, and when it
is non-empty it is equal to S.

If Q× ∩ papgK = ∅, then Tr(a, g,KM,⋄ × Z/2Z,U) = 0 since there are no fixed
points. In this case it is straightforward to check that the RHS of (3.3.14.1) is also
zero.

Assume that Q× ∩ papgK ̸= ∅. In this case, this set has a unique element f0, since
we have Q× ∩K = {1} by the neatness of K. We have seen that in this case every
point in S is a fixed point. There are two cases to consider.

First suppose that f0 > 0. Then every point in S̃ is fixed by Φa ◦ [·g]. Write
gℓ ∈ Gm(Qℓ) for the ℓ-adic component of g. In this case, the naive local term at each
point in S is equal to the naive local term at any one of the two lifts of that point
in S̃, and the latter is equal to the trace on the algebraic Gm(Qℓ)-representation U
of the product of g−1

ℓ and the ℓ-adic component of f−1
0 papg ∈ K (cf. the argument

on [Kot92b, p. 433]). Hence the native local term is equal to Tr(f−1
0 | U), which is

equal to T̃r(f−1
0 | U) since f0 > 0.

Now suppose that f0 < 0. Then for every point in S, the two lifts of it in S̃ are
permuted non-trivially by Φa ◦ [·g]. In this case, the naive local term at each point
in S is equal to the trace on the algebraic Gm(Qℓ) × Z/2Z-representation U of the
product of g−1

ℓ and the projection to Q×
ℓ × Z/2Z of f−1

0 papg × ϵ ∈ K × Z/2Z, which
is Tr(f−1

0 × ϵ | U) = T̃r(f−1
0 | U).

We conclude that in both cases the naive local term at each point in S is equal to
T̃r(f−1

0 | U). Hence

Tr(a, g,KM,⋄ × Z/2Z,U) = T̃r(f−1
0 | U) |S| .
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To compute the RHS of (3.3.14.1), we note that every Kottwitz triple (γ0, γ, δ) that
makes a non-zero contribution must satisfy γ0 = f−1

0 . (In fact all Kottwitz triples sat-
isfying this condition are in one equivalence class.) On the other hand, by [Mor10b,
Rmk. 1.6.5] we know that∑

(γ0,γ,δ)

c(γ0, γ, δ)Oγ(fp)TOδ(ϕGma ) = 1
2
∣∣S̃∣∣ ,

which is nothing but |S|. Hence the RHS of (3.3.14.1) is equal to T̃r(f−1
0 | U) |S| as

well. The proof is complete.

3.3.15. — We now state a variant of [Mor10b, Prop. 1.7.2]. We keep the setting of
§3.3.5. Let p be a prime number which is coprime to λ and hyperspecial for KM . Fix
m ∈M(Apf ) (not necessarily in Gm(Apf )L(Q)). Let K ′

M be a compact open subgroup
of M(Af ) such that p is hyperspecial for K ′

M and such that

K ′
M ⊂ KM ∩mKMm

−1.

Fix a system of representatives (mi)i∈I of those double cosets e in

Gm(Af )L(Q)\M(Af )/K ′
M

satisfying
emKM = eKM .

For every i ∈ I, let gi ∈ Gm(Af ) and li ∈ L(Q) be such that

gilimi ∈ mimKM .

We may and shall assume that mi ∈M(Apf ) and gi ∈ Gm(Apf ) for each i ∈ I.
Let W ∈ Db(RepM ), and let

U := RΓ♮(KM ∩ L(Af ),W) ∈ Db(RepGm×Z/2Z),
Uc := RΓc,♮(KM ∩ L(Af ),W) ∈ Db(RepGm×Z/2Z),

where the notations are as in (3.3.8.1) and (3.3.8.3). The following result is a variant
of [Mor10b, Prop. 1.7.2].

Proposition 3.3.16. — Keep the setting and notation of §3.3.15. Write g for the
projection of m in Gm(Apf ), and write K ′

M,⋄ for K ′
M/(K ′

M ∩ L(Af )). Assume that
[L(Q) : L(Q)♮] = 2. Then for each a ∈ Z≥1 we have

(3.3.16.1)
∑
i∈I

TrH(a, gili,miKMm
−1
i ,miK

′
Mm

−1
i ,W)

= Tr(a, g,KM,⋄ × Z/2Z,U) · [KM,⋄ : K ′
M,⋄],
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and

(3.3.16.2)
∑
i∈I

TrH,c(a, gili,miKMm
−1
i ,miK

′
Mm

−1
i ,W)

= Tr(a, g,KM,⋄ × Z/2Z,Uc) · [KM,⋄ : K ′
M,⋄].

Here the terms TrH(· · · ), TrH,c(· · · ), and Tr(· · · ) are as in Definitions 3.3.11 and
3.3.13.

Remark 3.3.17. — The RHS of (3.3.16.1) is indeed the analogue of the RHS of
[Mor10b, Prop. 1.7.2 (1)]. We have the seemingly extra factor [KM,⋄ : K ′

M,⋄], but this
is due to the fact that in our definition of the cohomological correspondence (3.3.12.1)
we used the Hecke operator [·g] as an endomorphism of ShKM,⋄×Z/2Z, as opposed to
using the correspondence ShKM,⋄×Z/2Z

[·g]←−− ShK′
M,⋄×Z/2Z

[·1]−−→ ShKM,⋄×Z/2Z.
Similarly, the RHS of (3.3.16.2) is the analogue of the RHS of [Mor10b, Prop. 1.7.2

(2)].

Proof. — By duality, (3.3.16.1) implies (3.3.16.2). The proof of (3.3.16.1) is essen-
tially the same as that of [Mor10b, Prop. 1.7.2(1)], the only difference being that
we need to modify Morel’s functor RΓ(KM ,−) (and its analogue for K ′

M ). Below we
explain this modification.

Consider the space

MKM
♮ := M(Q)\(H0 ×XL ×M(Af ))/KM

∼= (CentM(Q)H0)\XL ×M(Af )/KM ,

where M(Q) acts on H0 × XL ×M(Af ) diagonally, and for the action of M(Q) on
H0 both the factors Gm(Q) and L(Q) act non-trivially. (The action of L(Q) on H0
is via the unique non-trivial action of L(Q)/L(Q)♮ ∼= Z/2Z.) Thus MKM

♮ is a double
covering of the usual locally symmetric space

MKM = M(Q)\XM ×M(Af )/KM ,

where XM = XL since XGm is a point. Let RΓ♮(KM ,W) be the “cohomology of MKM
♮

with coefficients in W” (cf. Remark 3.3.9). Namely, we write MKM
♮ as∐

j∈J
(njKMn

−1
j ∩ CentM(Q)H0)\XL,

where (nj)j∈J is a system of representatives of the double cosets in

(CentM(Q)H0)\M(Af )/KM ,

and define
RΓ♮(KM ,W) :=

⊕
j∈J

RΓ(njKMn
−1
j ∩ CentM(Q)H0,W)

inside the derived category of finite-dimensional Eλ-vector spaces.
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Observe that we have a fibration

MKM
♮ −→ Gm(Q)\Gm(Af )/KM,⋄(3.3.17.1)

induced by the projection H0×XL×M(Af )→ Gm(Af ). The fibers of (3.3.17.1) are
naturally identified with

L(Q)\H0 ×XL × L(Af )/(KM ∩ L(Af )),

which we observe is the same as MKM∩L(Af )
♮ defined in §3.3.8, since [L(Q) : L(Q)♮] =

2. The base of the fibration (3.3.17.1) is identified with ShKM,⋄×Z/2Z(C). Hence we
have identifications

RΓ♮(KM ,W) ∼= RΓ(ShKM,⋄×Z/2Z⊗QC,M ) ∼= RΓ(SKM,⋄×Z/2Z ⊗Z Fp,M ),
(3.3.17.2)

where M = FKM,⋄×Z/2Z(U) and M is the reduction of M (cf. §3.3.12).
On the other hand, we have a fibration

MKM
♮ −→ Gm(Af )L(Q)\M(Af )/KM(3.3.17.3)

induced by the projection H0 × XL ×M(Af ) → M(Af ). For each e ∈ M(Af ), we
denote by MKM

♮ (e) the fiber of (3.3.17.3) over the double coset of e. Then MKM
♮ (e) is

identified with
Gm(Q)\H0 ×Gm(Af )×XL/H̄e,

where H̄e := eKMe
−1 ∩ (Gm(Af )L(Q)) is the analogue of H̄ in §3.3.5 with eKMe

−1

replacing the role of KM , and the right action of H̄e on H0 ×Gm(Af )×XL is given
as follows. The action of H̄e on H0 ×Gm(Af ) is the restriction of the Gm(Af )L(Q)-
action, where Gm(Af ) acts on Gm(Af ) by multiplication and L(Q) acts on H0 via the
non-trivial action of L(Q)/L(Q)♮. The action of H̄e on XL is given by the restriction
of the projection map Gm(Af )L(Q) → L(Q) followed by the inversion on L(Q) and
followed by the natural left L(Q)-action on XL.

Let H̄♮
L,e := eKMe

−1 ∩ L(Q)♮ and Ȟe := H̄e/H̄
♮
L,e, which are the analogues of H̄♮

L

and Ȟ in §3.3.5 with eKMe
−1 replacing the role of KM . Then we have a fibration

MKM
♮ (e) −→ Gm(Q)\H0 ×Gm(Af )/Ȟe,(3.3.17.4)

where the Ȟe-action onH0×Gm(Af ) is induced by the H̄e-action onH0×Gm(Af )×XL

in the above. The fibers of (3.3.17.4) are identified with XL/H̄
♮
L,e, while the base is

identified with ShȞe(C). Hence we have an identification

RΓ♮(KM ,W) ∼=
⊕
e

RΓ(ShȞe ⊗QC,L (e)) ∼=
⊕
e

RΓ(SȞe
⊗Z Fp,L (e)),(3.3.17.5)

where e runs through a system of representatives of the double cosets in

Gm(Af )L(Q)\M(Af )/KM ,
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and for each e we define L (e) := F ȞeRΓ(H̄♮
L,e,W) and define L (e) to be its reduction

(cf. §3.3.10).
In view of (3.3.17.2) and (3.3.17.5), we can replace Morel’s functor RΓ(KM ,−) by

RΓ♮(KM ,−) (and also for K ′
M ) and proceed in exactly the same way as in [Mor10b,

Prop. 1.7.2] to conclude the proof.

3.4. Modifying Morel’s axioms

3.4.1. — Let (G,X ) be a pure Shimura datum. We keep the notation in §1.3. We
replace the axioms on p. 2 of [Mor10b] by the following axioms:

A0. — For each P ∈ AdmPar(G), the Levi quotient MP of P admits a decomposition
MP = GP × LP , where GP is the image of PPink ⊂ P as in §1.3.

A1. — For each P ∈ AdmPar(G), the set RBCP (G,X ) is a singleton. In particular,
XP is equal to XY for the unique element (P,Y) ∈ RBCP (G,X ), and we have a
Shimura datum (GP ,XP ); cf. §1.3.6.

A2. — For each P ∈ AdmPar(G), the action of LP (R) on XP (see Proposition 1.3.7)
is trivial unless XP is zero-dimensional.

A3. — For each P ∈ AdmPar(G), let LP (Q)♮ := CentLP (Q)XP . For each neat
compact open subgroupKM ofMP (Af ), we haveKM∩CentMP (Q)XP = KM∩LP (Q)♮.

Remark 3.4.2. — Our axiom A0 is slightly more restrictive than the first two
conditions on p. 2 of [Mor10b], where GP is allowed to be different from the image
of PPink. Assuming A0, our axiom A1 is equivalent to the first part of the fourth
condition in loc. cit., and our axiom A2 is weaker than the second part of that
condition. Our axiom A3 is identical to the fifth condition in loc. cit.. We have
deleted the third condition in loc. cit. from the axioms as a general correction. Indeed,
this condition is neither used in [Mor10b] nor satisfied by any of the Shimura data
considered in [Mor10b], [Mor11], or the present paper.

3.4.3. — From now on we assume the axioms in §3.4.1. Let P ∈ AdmPar(G) and g ∈
G(Af ). On p. 2 of [Mor10b], Morel defines the groups HP , HL,KQ,KN associated
to the pair (P, g). We define:

HP := gKg−1 ∩ P (Q)PPink(Af ),

H♮
L := gKg−1 ∩ LP (Q)♮NP (Af ),

KQ := gKg−1 ∩ PPink(Af ),
KN := gKg−1 ∩NP (Af ).

Our HP ,KQ,KN are the same as Morel’s definitions, and our H♮
L is equal to Morel’s

HL (defined to be gKg−1 ∩ LP (Q)NP (Af )) when LP (Q) = LP (Q)♮ (which is always
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true under Morel’s axioms). In general, H♮
L may be different from HL, and H♮

L is the
correct replacement of HL in the discussion on the structure of the boundary strata
in [Mor10b, Chap. 1]. The point is that under the axioms in §3.4.1, the group H♮

L is
always equal to Pink’s group HC in [Pin92a, §3.7], which has a canonical definition.
More precisely, as on p. 2 of [Mor10b], the boundary stratum in the Baily–Borel
compactification corresponding to (P, g) is of the form(5)

ShKQ/KN (GP ,XP )/HP ,(3.4.3.1)

and the action of HP factors through the finite quotient group HP /H
♮
LKQ (instead

of HP /HLKQ).
In Table 1 below we compare Pink’s notation in [Pin92a, §3.7], Morel’s notation in

[Mor10b, p. 2], and our notation. The symbols in the first column all have canonical
definitions, independent of the axioms in [Mor10b] or §3.4.1. Under the axioms in
§3.4.1, the three symbols in every row denote the same object, with the only exception
that Morel’s HL is not equal to Pink’s HC in general.

Table 1. Comparison of notations
Pink’s notation Morel’s notation Our notation

Q P P
P1 QP PPink

W1 NP NP
G1 GP GP
X1 XP XP
XQ XP XP

StabQ(Q)X1 P (Q) P (Q)
HQ HP HP

HC HL ☡☡☡☡ H♮
L

KW KN KN

KP KQ KQ

π1(KP ) = KP /KW KQ/KN KQ/KN

☡☡☡☡ : HL ̸= H♮
L unless LP (Q) = LP (Q)♮.

3.4.4. — We make the following crucial assumption CA, in addition to the axioms
in §3.4.1.

CA. — If P ∈ AdmPar(G) is such that XP is zero-dimensional, then the Shimura
datum (GP ,XP ) is the Siegel Shimura datum (Gm,H0). For such P we also assume
that LP satisfies the assumptions in §3.2.1. Namely, we assume that π0(LP (R)) ∼=

(5)We systematically replace Morel’s notation MKQ/KN (GP , XP ) for the Shimura variety by the
notation ShKQ/KN (GP , XP ).
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π0(L0(R)) ∼= Z/2Z, where L0 is any minimal Levi subgroup of LP,R. Moreover, for
such P we assume that π0(LP (R)) acts non-trivially on H0. In particular, we have
LP (Q)♮ = LP (Q)+.

3.4.5. — Under CA, we know that for any P ∈ AdmPar(G) such that XP is zero-
dimensional, and for any g ∈ G(Af ), the boundary stratum (3.4.3.1) corresponding to
(P, g) is related to the generalized Shimura varieties in §3.3.3 in the following way. In
§3.3.5, we identify Gm with GP , and take L = LP , M = MP . Let KM be the image
of gKg−1 ∩ P (Af ) under the projection P (Af )→M(Af ), and define H̄, H̄♮

L, Ȟ as in
§3.3.5. Then H̄ (resp. H̄♮

L) is the image of HP (resp. H♮
L) under P (Af ) → M(Af ),

and (3.4.3.1) is the same as ShȞ defined in §3.3.7.

3.4.6. — Our orthogonal Shimura datum O(V ) satisfies A0–A3 in §3.4.1, and CA
in §3.4.4. Indeed, it suffices to verify these conditions for the standard maximal proper
parabolic subgroups Pi, i = 1, 2. We take LPi to be Mi,l. Then the desired conditions
follow from Proposition 1.5.2 and Lemma 3.3.6 (1).

3.5. Integral models

3.5.1. — We now turn to construct the integral models of the Baily–Borel com-
pactification ShK and its strata. For this let us specialize to the orthogonal Shimura
datum (G,X ) = O(V ). Recall that the standard maximal proper parabolic subgroups
of G are P1 and P2. We write (Gi,Xi) for the Shimura datum (GPi = Mi,h,XPi) for
i ∈ {1, 2}, and write (G0,X0) for (G,X ). (Our numbering of the Pi and Gi is the
same as the abstract numbering in [Mor10b, §1.1].) For i ∈ {1, 2}, we set LPi to
be Mi,l. In accordance with loc. cit., we define LP12 to be M12,l, so that M12 is the
direct product of G2 and LP12 .

Without loss of generality, we assume that the function f∞ in Theorem 1.8.4 is of
the form 1KgK/ vol(K ∩ gKg−1) for some fixed g ∈ G(Af ). Since O(V ) is of abelian
type, we can apply [Mor10b, Prop. 1.3.4] to construct the following objects:

– a finite set Σ of prime numbers containing Σ0 (where Σ0 is as in §1.8.3).
– a set Ki of neat compact open subgroups of Gi(Af ) for i ∈ {0, 1} such that K

and K ∩ gKg−1 are elements of K0.
– a set K2 of admissible levels, in the sense of Definition 3.3.2.
– a subset Ai of Gi(Af ) for i ∈ {0, 1, 2} such that 1 and g are elements of A0.
– a smooth quasi-projective scheme SU (Gi,Xi) over Z[1/Σ] with generic fiber

ShU (Gi,Xi), for each i ∈ {0, 1, 2} and each U ∈ Ki. Here when i = 2, the Shimura
variety ShU (G2,X2) at the admissible level U is understood as in §3.3.3.

– a normal projective scheme SU (Gi,Xi) over Z[1/Σ] containing SU (Gi,Xi) as
a dense open subscheme, whose generic fiber is the Baily–Borel compactification
ShU (Gi,Xi) of ShU (Gi,Xi), for each i ∈ {0, 1} and each U ∈ Ki.
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These objects should satisfy all the requirements in [Mor10b, Prop. 1.3.4] and the
paragraph following it. To be more precise, the formulations of these requirements
need to be suitably modified when they concern zero-dimensional boundary strata. In
the above, we have already modified the formulation of [Mor10b, Prop. 1.3.4] when
it concerns K2, i.e., our K2 is a set of admissible levels, which are more general than
neat compact open subgroups of G2(Af ) = Gm(Af ). The conditions (a), (b), and
(1)–(7) in [Mor10b, §1.3] also need to be modified as follows.

– In condition (a), if j = 2, we need to replace LP ′(Q) with LP ′(Q)+. (Here
P ′ is either P2 or P12, and LP ′(Q)+ is the same as LP ′(Q) ∩ LP2(Q)♮.) After this
replacement, the quotient group in question is naturally a subgroup of G2(Af ) ×
Z/2Z = Gm(Af ) × Z/2Z, and the requirement is that this subgroup should be a
member of K2.

– As in the paragraph following [Mor10b, Prop. 1.3.4], we may and shall assume
that the Ki are minimal in the following sense. We assume that K0 is the union of
the G(Af )-conjugacy class of K and that of K ∩ gKg−1. Then we determine K1 as
the minimal set that is stable under G1(Af )-conjugacy and such that condition (a)
is satisfied for (i, j) = (0, 1). Having determined K0 and K1, we determine K2 as the
minimal set such that the modified version of condition (a) as above is satisfied for
(i, j) ∈ {(0, 2), (1, 2)}. In particular, K1 is finite modulo G1(Af )-conjugacy, and K2
is finite.

– In condition (b), if j = 2, we still keep LP (Q), and do not replace it with LP (Q)♮.
– In conditions (3) and (4), if i < 2, then the relevant requirements about zero-

dimensional boundary strata should be reinterpreted in the obvious way, taking into
account that in the generic fiber these strata are given by the generalized Shimura
varieties ShU (Gm,H0) at admissible levels U ; cf. §3.4.5.

– In conditions (5)–(7), for i = 2 and U ∈ K2, the sheaves on the integral model
SU (G2,X2) in question should be extensions of those sheaves on the generic fiber
ShU (G2,X2) that are constructed by the functors (3.3.7.1), (3.3.7.2), and (3.3.7.3).
(Indeed, by the minimality of K2 assumed above, each U ∈ K2 is of the form either
H̄/H̄♮

L or KM,⋄, for a suitable choice of L and KM as in §3.3.5; cf. §3.4.5.)
With the above modifications, the same proof of [Mor10b, Prop. 1.3.4] still goes
through.

Remark 3.5.2. — The construction in §3.5.1 can be easily generalized to an arbi-
trary abelian-type Shimura datum satisfying A0–A3 in §3.4.1 and CA in §3.4.4.

Next we would like to to compare the localizations of the integral models con-
structed in §3.5.1 with other known integral models, at least at almost all primes. We
need some preparations.

Definition 3.5.3. — Let S be a scheme of finite type over Q.



70 CHAPTER 3. PROOF OF MOREL’S FORMULA

(1) By a family of local integral models of S, we mean the choice of an integral
model Sp of S over Zp (i.e. a Zp-scheme with generic fiber S ⊗Q Qp) for almost all
primes p. Two such families (Sp)p≫0 and (S ′

p)p≫0 are called equivalent, if for almost
all p there exists a Zp-isomorphism Sp

∼−→ S ′
p extending the identity on the generic

fiber.
(2) Given a finite-type Z-scheme S with generic fiber S, we obtain a family of local

integral models (S ⊗Z Zp)p≫0 of S. Any family of local integral models equivalent to
such a family is called eventually globalizable.

Remark 3.5.4. — By the “spreading out” property of isomorphisms (see [Gro66,
Thm. (8.10.5) (i)] or [Poo17, Thm. 3.2.1]), the eventually globalizable condition
characterizes the family of local integral models up to equivalence.

Lemma 3.5.5. — Let R be an integral domain, with fraction field F . Let Y be a
scheme flat and locally of finite presentation over R. Let X be a scheme over F , and
let π : Y ⊗R F → X be an F -morphism. Then there exists at most one separated R-
scheme X with generic fiber X such that π extends to an fppf R-morphism π0 : Y → X .

Proof. — Let X and X ′ be two separated R-schemes with generic fiber X, together
with fppf R-morphisms π0 : Y → X and π′

0 : Y → X ′ extending π. We claim that π′
0

factors uniquely through π0. The lemma follows from the claim by symmetry.
To prove the claim, form the fiber product Y ×X Y with respect to π0 : Y → X .

Since π0 is an fpqc covering and therefore a universal effective epimorphism, it suffices
to check the equality of the two morphisms

gi : Y ×X Y
pri−−→ Y π′

0−→ X ′, i = 1, 2.

Since both π0 and the structure morphism Y → SpecR are flat and locally of finite
presentation, the same holds for the structure morphism Y ×X Y → SpecR, which
implies that it is open. Hence the generic fiber of Y ×X Y is dense in Y ×X Y. Since
the R-morphisms g1 and g2 agree on the dense generic fiber, and since the target X ′ is
separated over R (which implies that the locus where g1 = g2 is closed), we conclude
that g1 = g2 on a closed subscheme of Y ×X Y whose underlying topological space is
that of Y×X Y. In particular g1 and g2 induce the same map at the level of topolgical
spaces. To finish the proof, we can reduce to the affine case, namely we can replace
X ′ by an affine R-scheme SpecA, and replace Y ×X Y by an affine R-scheme SpecB
flat over R. We know that g1, g2 : A→ B induce the same map A⊗R F → B ⊗R F .
Hence we can conclude that g1 = g2 since B → B ⊗R F is injective.

3.5.6. — We keep the notation in §3.5.1. In the following, by “enlarging Σ” we
always mean replacing Σ by a finite set of primes containing Σ. Also, when we write
p /∈ Σ it is understood that p is a prime.
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Let (GSpin(V ),X ′) be the GSpin Shimura datum associated to the quadratic
space V , which is of Hodge type and has reflex field Q. The natural homomor-
phism GSpin(V ) → G extends to a morphism (GSpin(V ),X ′) → (G,X ) of Shimura
data, inducing an isomorphism between the adjoint Shimura data. For more details
see [MP16, §3].

We fix a neat compact open subgroup K̃ ⊂ GSpin(V )(Af ) such that its image
in G(Af ) is contained in K. We denote by ShK̃ the canonical model over Q of the
Shimura variety associated to (GSpin(V ),X ′) at level K̃, and denote by ShK̃ the
Baily–Borel compactification over Q. Thus ShK̃ is smooth quasi-projective over Q,
and ShK̃ is normal projective over Q. There are natural Q-morphisms π : ShK̃ → ShK
and π̄ : ShK̃ → ShK .

Note that π is finite étale surjective. Indeed, by fpqc descent, it suffices to check
these properties for the base change of π to C, which is clear from the adelic description
of the Shimura varieties over C and Hilbert 90 applied to ker(GSpin(V )→ G) = Gm;
cf. [MP16, §3.2].

Recall that K ∈ K0. We let SK = SK(G,X ) be the smooth quasi-projective
scheme over Z[1/Σ] with generic fiber ShK as given in §3.5.1. By standard “spreading
out” (see [Poo17, Thm. 3.2.1]), we may and shall assume that the following objects
exist after enlarging Σ:

– a smooth quasi-projective scheme SK̃ over Z[1/Σ] with generic fiber ShK̃ .
– a normal projective scheme SK̃ over Z[1/Σ] with generic fiber ShK̃ .
– a dense open embedding SK̃ ↪→ SK̃ extending the embedding ShK̃ ↪→ ShK̃ .
– a finite étale surjective morphism π0 : SK̃ → SK extending π.

We also enlarge Σ so that the following condition holds:

– For each p /∈ Σ, there are reductive group schemes G̃p and Gp over Zp with generic
fibers GSpin(V )Qp and GQp respectively such that the homomorphism GSpin(V )Qp →
GQp extends to a homomorphism G̃p → Gp. Moreover, we have K̃ = G̃p(Zp)K̃p

and K = Gp(Zp)Kp for some compact open subgroups K̃p ⊂ GSpin(V )(Apf ) and
Kp ⊂ G(Apf ).

Lemma 3.5.7. — In the setting of §3.5.6, it is possible to further enlarge Σ and
find a number field F unramified outside Σ such that the following conditions hold for
all p /∈ Σ. Here all isomorphisms between integral models are required to extend the
identity on the generic fiber.

(1) For each U ∈ K2, SU (G2,X2)⊗ Zp is isomorphic to the base change to Zp of
the canonical integral model of ShU (G2,X2) in §3.3.7.

(2) For each U ∈ K1, SU (G1,X1)⊗Zp is isomorphic to the canonical hyperspecial
integral model over Zp of the modular curve ShU (G1,X1).
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(3) The integral model SK̃ ⊗ Zp (resp. SK̃ ⊗ Zp) is isomorphic to the canonical
hyperspecial integral model SK̃,p,can (resp. SK̃,p,can) over Zp constructed in [Kis10]
(resp. in [MP19]).

(4) The integral model SK⊗Zp is isomorphic to the canonical hyperspecial integral
model SK,p,can over Zp constructed in [Kis10].

(5) For each place v of F above p, SK ⊗Z OF,v is isomorphic to the base change
to OF,v of the integral model over Zp of ShK constructed in [LS18, Prop. 2.4].

Proof. — First note that for (1) and (2) it suffices to show that we can enlarge Σ
for each U separately, since K1 is finite modulo G1(Af )-conjugacy and K2 is finite.
(Indeed, as is implicit in the proof of [Mor10b, Prop. 1.3.4], the integral models at
conjugate levels are by construction isomorphic to each other.)

For (1)–(3), we know that the canonical integral models in each case form an
eventually globalizable family of local integral models (Definition 3.5.3) as p varies.
We are done by Remark 3.5.4.

For (4), we would like to apply Lemma 3.5.5 to characterize SK,p,can in terms of
SK̃,p,can. Let p /∈ Σ. By the construction in [Kis10] (cf. [LS18, Prop. 2.4, Remark
2.6]) and by the surjectivity of π, the morphism πQp : ShK̃ ⊗QQp → ShK ⊗QQp
extends to a finite étale surjective (hence fppf) morphism SK̃,p,can → SK,p,can. We
also know that SK̃,p,can is flat of finite presentation over Zp. By [LS18, Prop. 2.4],
SK,p,can is quasi-projective and hence separated over Zp. By part (3), we may assume
that SK̃,p,can = SK̃⊗ZZp. Since SK̃⊗ZZp → SK⊗ZZp is also finite étale surjective
and since SK⊗ZZp is also separated over Zp (as it is quasi-projective), we know from
Lemma 3.5.5 that SK ⊗Z Zp is isomorphic to SK,p,can as integral models of ShK .

For (5), we let (Ci,geom)i∈I be the connected components of ShK̃ ⊗Q Q, and let
(Dj,geom)j∈J be the connected components of ShK⊗QQ. For each i ∈ I, let C0

i,geom be
the intersection of Ci,geom with ShK̃ ⊗QQ, and similarly defineD0

j,geom. The morphism
π̄ : ShK̃ → ShK induces a surjection I → J , which we still denote by π̄. As in the proof
of [LS18, Prop. 2.4], we know that for each i ∈ I, the morphism Ci,geom → Dπ̄(i),geom
induced by π is the quotient by a finite group ∆i acting on Ci,geom, in the sense of
[LS18, Rmk. 2.6]. Moreover, ∆i acts freely on C0

i,geom and the Galois étale cover
C0
i,geom → D0

π̄(i),geom is a ∆i-torsor. We pick a number field F such that each Ci,geom

is the base change of a connected component Ci of ShK̃ ⊗Q F , and such that the
action of ∆i on Ci,geom descends to Ci. For each i ∈ I, define Di to be the quotient
Ci/∆i, in the sense of [LS18, Rmk. 2.6]. We fix a section ι : J → I of the surjection
I → J . Then it is clear that ShK ⊗Q F can be identified with

∐
j∈J Dι(j).

Since our choice of F is independent of Σ, we can enlarge Σ such that F is un-
ramified outside Σ. After further enlarging Σ, we may and shall assume that each
Ci is contained in a unique connected component Ci of SK̃ ⊗Z OF , and that the
action of ∆i on Ci extends to Ci. Since the formation of the quotient of a quasi-
projective scheme by the action of a finite group commutes with flat base change, we
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know that the generic fiber of
∐
j∈J Dι(j) is the same as

∐
j∈J Dι(j), which we have

already identified with ShK⊗QF . Thus
∐
j∈J Dι(j) and SK⊗ZOF are two finite-type

OF ⊗ZZ[1/Σ]-schemes with the common generic fiber, and we can hence enlarge Σ to
assume that they are OF -isomorphic. It is then clear from parts (3) and (4) above,
and the construction in the proof of [LS18, Prop. 2.4], that the condition in (5) holds
for all p /∈ Σ and all places v of F above p.

3.6. Finish of the proof

Essentially all arguments in [Mor10b, Chap. 1] can be easily modified to suit
our new axiomatic setting (i.e. A0–A3 in §3.4.1 plus CA in §3.4.4). With each
appearance of HL replaced by H♮

L, the results of [Mor10b, §1.4, §1.5] all carry
over. More precisely, in [Mor10b, Prop. 1.4.5], if the index nr corresponds to zero-
dimensional boundary data, then we replace the functor FH/HLRΓ(HL/KN ,−) with
the functor (3.3.7.1) (applied to M = MP , H̄ = the image of H under P (Af ) →
MP (Af ), and H̄♮

L = the intersection of H̄ with Lnr (Q)+). We then modify [Mor10b,
Cor. 1.4.6] correspondingly (by replacing the functor FH/HLRΓc(HL/KN ,−) with
the functor (3.3.7.2)), and modify the definitions of LC1 and LC2 on pp. 17–18 of
[Mor10b, §1.5] correspondingly.

Let SK be the integral model constructed in §3.5.1. We now explain the modifica-
tion of the proof of [Mor10b, Thm. 1.7.1], applied to the special fiber of SK modulo
a prime p /∈ Σ, where Σ is as in Lemma 3.5.7. We follow the notation in loc. cit.. Mod-
ifications are only needed when nr corresponds to zero-dimensional boundary data.
In this case, the definitions of vh and uh′ need to be modified in accordance with the
modifications in [Mor10b, Cor. 1.4.6, §1.5] mentioned above. To get the relation be-
tween Tr(vh) and Tr(uh′), we need to apply Proposition 3.3.16 in place of [Mor10b,
Prop. 1.7.2]. Finally, in the calculation of Tr(vh) on the bottom of [Mor10b, p. 25],
we apply Proposition 3.3.14 in place of [Mor10b, Rmk. 1.6.4, Rmk. 1.6.5], and apply
Proposition 3.2.3 in place of [Mor10b, Thm. 1.6.6]. Note that Proposition 3.3.14 is
applicable thanks to condition (1) in Lemma 3.5.7. Also, the fixed point formula of
Kottwitz for the one-dimensional boundary strata is applicable thanks to condition
(2) in Lemma 3.5.7.

After calculating Tr(vh), the same arguments as those on pp. 26–27 of [Mor10b]
lead to a modified version of [Mor10b, Thm. 1.7.1], where the right hand side of the
equality in that theorem is replaced by

Tr(Frobap ×f∞dg∞ | H∗
c(SK ⊗Z Fp,FKV)) + TP1 + TP2 + TP12 ,
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with the terms TP1 , TP2 , and TP12 as in Definition 2.5.5.(6) From this, we deduce the
analogue of the identity (2.5.7.1) for the special fiber. Namely we have proved (2.5.7.1)
for a sufficiently large, but with ShK and ShK replaced by the mod p reductions of
the integral models.

To prove (2.5.7.1) itself, we apply [LS18, Thm. 4.19]. This result confirms Theorem
1.8.4 (1) and asserts that the terms Tr(· · · | IH∗(ShK ,V)) and Tr(· · · | H∗

c(ShK ,V))
in (2.5.7.1) are unchanged if we replace ShK and ShK by the mod p reductions of the
integral models.(7) Indeed, by [LS18, Thm. 4.19] and conditions (4), (5) in Lemma
3.5.7, we know that the compact support cohomology and the intersection cohomology
(with coefficients in V) of ShK,Qp are respectively isomorphic to those of SK,Fp under
the canonical adjunction morphisms (which are Hecke-equivariant and Gal(Qp/Qp)-
equivariant). Note that in Lemma 3.5.7 (5) we only compare the integral models over
an extension of Zp, but this already suffices for the current purpose since whether the
canonical adjunction morphisms are isomorphisms is insensitive to finite base change.
This finishes the proof of Theorem 1.8.4 (1) and (2.5.7.1). In Proposition 2.5.7, we
have already proved that (2.5.7.1) is equivalent to the identity (1.8.4.1) in Theorem
1.8.4 (2).

Finally, we explain why the two sides of (1.8.4.1) lie in E for all sufficiently large
a. In the above proof of (2.5.7.1), it is already implicit that the LHS of (2.5.7.1) lies
in the algebraic closure Q of Q inside Qℓ, and that the equality holds when we view
the LHS as a number in C by choosing an arbitrary E-algebra embedding Q ↪→ C.
(Remember that at the outset we fixed field embeddings Eλ ↪→ Qℓ and E ↪→ C, and
that the RHS of (2.5.7.1) is a number in C.) Since the definition of the RHS of
(2.5.7.1) depends only on the embedding E ↪→ C but not on the choice of Q ↪→ C, we
see that both sides of (2.5.7.1) are in E since they must be fixed by Gal(Q/E). Thus
it remains to check

Tr(Frobap ×f∞dg∞ | H∗
c(ShK ,V)) ∈ E.

But this follows from the point counting formula in [KSZ].
The proof of Theorem 1.8.4 is complete.

(6)Note that the factor mM in Definition 2.5.5 comes from the factor 2 in Proposition 3.2.3, which is
an analogue of [Mor10b, Thm. 1.6.6]. By contrast, in Morel’s case the extra factor 2 comes from
[Mor10b, Rmk. 1.6.5].
(7)In [LS18, §3], an extra assumption is made on the relation between the level K and the prime ℓ.
This assumption can be easily removed if we consider the system of levels in [Pin92a, §4.9] instead
of the system H(ℓr), r > 0 in the notation of [LS18, §3].



CHAPTER 4

COMPARISON WITH DISCRETE SERIES
CHARACTERS

4.1. Elliptic maximal tori in Levi subgroups

4.1.1. — We now pass to a local setting over R. The symbols V , Vi, Wi, G, PS ,
and MS will now denote the base change to R of the corresponding objects in §1.4.
We note that over R, P12 is still a minimal parabolic subgroup of G, and P12, P1, P2
are still the only proper parabolic subgroups of G containing P12. Also note that the
split component of MS over R is just the base change to R of the split component
over Q. For this reason we still use the notation AMS

for the split component over R.
Note that W2 and W1 are quadratic spaces of signatures (n − 2, 0) and (n − 1, 1)

respectively. We have

M1 ∼= GL2×SO(W2), M2 ∼= GL1×SO(W1), M12 ∼= G2
m × SO(W2).

Hence M1 and M12 always contain elliptic maximal tori (over R), whereas M2 contains
elliptic maximal tori if and only if d is odd (recall that when d is even we assume that
n = d − 2 ≥ 4). We fix an elliptic maximal torus TW2 in SO(W2). We then obtain
elliptic maximal tori:

T1 := T std
GL2
× TW2 ⊂M1 = GL2×SO(W2),

T12 := G2
m × TW2 ⊂M12 = G2

m × SO(W2),

where
T std

GL2
=
{(

a b

c d

)
∈ GL2 | a = d, b = −c

}
.

When d is odd, we also fix an elliptic maximal torus TW1 in SO(W1), and obtain
an elliptic maximal torus T2 = Gm × TW1 in M2 = Gm × SO(W1).

4.1.2. — We define a maximal torus T ′ in GC as follows. Remember that V is the
orthogonal direct sum of span {e1, e

′
1}, span {e2, e

′
2}, and W2. We choose a hyperbolic

basis (see Definition 1.2.2) B = {f1, · · · , fd} of the quadratic space VC over C such
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that

f1 = e1, f2 = e2, fd = e′
1, fd−1 = e′

2.

As in §1.2.7, from B we obtain an embedding

ιB : Gmm,C
∼−→ T ′ ⊂ GC,

and a Borel subgroup B of GC containing T ′. By construction, T ′ is contained in MC
for each M ∈ {M1,M2,M12}, and B is contained in PC for each P ∈ {P1, P2, P12}.
Moreover, ιB identifies the first two copies of Gm with the split component G2

m =
GL(V1)×GL(V2/V1) of M12.

Let S be a non-empty subset of {1, 2} and assume that S ̸= {2} if d is even.
We fix an element gS ∈ MS(C) such that Int(gS)(TS,C) = T ′. Denote the standard
characters of Gmm,C ∼= T ′ by ϵ1, · · · , ϵm, and the standard cocharacters by ϵ∨1 , · · · , ϵ∨m.
We transport them to TS,C using Int(gS), and retain the same notation.

For S as above, we let RS be the subset of Φ(GC, TS,C) consisting of real elements,
and similarly we define R∨

S ⊂ Φ(GC, TS,C)∨. We view RS and R∨
S as subsets of

X∗(AMS
) and X∗(AMS

) respectively. In Tables 2 and 3 below, we determine RS and
R∨
S explicitly in the odd and even cases respectively. In the last rows of the two tables,

we record the type of the root datum (X∗(AMS
), RS , X∗(AMS

), R∨
S).

Table 2. Real root systems in the odd case
S {1} {2} {1, 2}
RS {±(ϵ1 + ϵ2)} {ϵ1} {±ϵ1,±ϵ2,±ϵ1 ± ϵ2}
R∨
S {±(ϵ∨1 + ϵ∨2 )} {2ϵ∨1 } {±2ϵ∨1 ,±2ϵ∨2 ,±ϵ∨1 ± ϵ∨2 }

X∗(AMS
) 1

2Z(ϵ1 + ϵ2) Zϵ1 Zϵ1 ⊕ Zϵ2
X∗(AMS

) Z(ϵ∨1 + ϵ∨2 ) Zϵ∨1 Zϵ∨1 ⊕ Zϵ∨2
type A1 A1 B2

Table 3. Real root systems in the even case
S {1} {1, 2}
RS {±(ϵ1 + ϵ2)} {±ϵ1 ± ϵ2}
R∨
S {±(ϵ∨1 + ϵ∨2 )} {±ϵ∨1 ± ϵ∨2 }

X∗(AMS
) 1

2Z(ϵ1 + ϵ2) Zϵ1 ⊕ Zϵ2
X∗(AMS

) Z(ϵ∨1 + ϵ∨2 ) Zϵ∨1 ⊕ Zϵ∨2
type A1 A1 × A1

4.2. Stable discrete series characters

4.2.1. — We keep the setting of §4.1. Fix an irreducible algebraic representation
V of GC. This gives rise to an L-packet Π(V) of discrete series representations of
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G(R). Let Θ = ΘV be the stable character associated to Π(V), i.e., the sum(1) of the
characters of the members of Π(V).

Let S be a non-empty subset of {1, 2}, and assume that S ̸= {2} if d is even. Let
M := MS . In §4.1 we fixed an elliptic maximal torus TS in M . In the sequel, unless
otherwise stated, we call an element γ ∈ TS(R) regular if it is regular in G, i.e., if
α(γ) ̸= 1 for all α ∈ Φ(GC, TS,C).

The normalized stable discrete series character ΦGM (·,Θ) is defined and studied
in [Art89] and [GKM97]; see also [Mor10b, §3.2]. It is a continuous function
TS(R)→ C such that

ΦGM (γ,Θ) =
∣∣DG

M (γ)
∣∣1/2
R Θ(γ)

for all regular γ ∈ TS(R). In the following we recall a formula for ΦGM (γ,Θ), for
regular γ ∈ TS(R).

4.2.2. — In §4.1 we fixed a Borel pair (T ′, B′) in GC, an elliptic maximal torus TS
in M , and an element gS ∈M(C) such that Int(gS)(TS,C) = T ′. We now denote by B
the Borel subgroup Int(gS)−1(B′) of GC containing TS,C. Remember that PS,C ⊃ B.
We let BM := MC ∩ B, which is a Borel subgroup of MC. We make the following
definitions:

– Denote by Φ+ the set of B-positive roots in Φ(GC, TS,C).
– Denote by Φ+

M the set of BM -positive roots in Φ(MC, TS,C).
– Denote by ρ ∈ X∗(TS)⊗ 1

2Z the half sum of the elements of Φ+.
– Denote by λ ∈ X∗(TS) the highest weight of the GC-representation V with

respect to the Borel pair (TS,C, B) in GC.
– Denote by Ω the complex Weyl group ΩC(G,TS).
– For ω ∈ Ω, denote by ωB the Borel subgroup ω̇Bω̇−1 of GC, where ω̇ ∈

NorG(C)(TS) is any representative of ω.
– Denote by ∆M the Weyl denominator of MC with respect to the Borel pair

(TS,C, BM ) in MC; see Definition 1.1.3. Thus ∆M =
∏
α∈Φ+

M
(1− α−1).

– For ω ∈ Ω, define

Φ(ω) := Φ+ ∩ (−ωΦ+),
l(ω) := |Φ(ω)| ,

ϵ(ω) := (−1)l(ω).

Thus l(ω) and ϵ(ω) are the length and sign of ω respectively.

(1)Our definition of the stable character is the same as [Mor11], whereas in [GKM97] a sign
(−1)q(G) is included.
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Recall that in §4.1 we explicitly identified the set RS of real roots in Φ(GC, TS,C).
Since S is currently fixed, we simply write R for RS . For γ ∈ TS(R), we define

Rγ := {α ∈ R | α(γ) > 0} ,
R+
γ := {α ∈ R | α(γ) > 1} ,

ϵR(γ) := (−1)|Φ
+∩(−R+

γ )| = (−1)#{α∈Φ+∩R|0<α(γ)<1}.

Then by the work of Harish-Chandra [HC65] and Herb [Her79], we have the follow-
ing formula for ΦGM (γ,Θ), for regular γ ∈ TS(R):

(4.2.2.1) ΦGM (γ,Θ) = (−1)q(G)ϵR(γ)δPS(R)(γ)1/2∆M (γ)−1

·
∑
ω∈Ω

ϵ(ω)n(γ, ωB)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

See also [GKM97, §4] and [Mor11, Fait 3.1.6]. Here q(G) and δPS(R) are defined
in §1.1, and n(γ, ωB) are certain integers, whose definition we now explain following
[GKM97, §4].

Let GSC be the simply connected cover of G, and write im(GSC(R)) for the image
of GSC(R) → G(R). Firstly, if γ /∈ ZG(R) im(GSC(R)), then n(γ, ωB) = 0 for all
ω ∈ Ω.

Remark 4.2.3. — In our case ZG(R) im(GSC(R)) = G(R)0. In fact, since G is
semi-simple, we have im(GSC(R)) = G(R)0 by the connectedness of GSC(R). Now
in the odd case ZG is trivial, and in the even case ZG(R) = {± idV } is contained in
G(R)0 (see [Kna02, I.17]).

4.2.4. — We now assume that γ ∈ TS(R) is regular and lies in ZG(R) im(GSC(R)),
and explain the definition of n(γ, ωB) in this case. First we need some preparations.

Let E∗ be a finite-dimensional R-vector space, and U ⊂ E∗ a root system. Let
E∗ denote the dual vector space of E∗, and let U∨ ⊂ E∗ be the set of coroots.
Assume that U spans E∗, and that the Weyl group of U contains −1 ∈ GL(E∗). Let
E∗,reg ⊂ E∗ and E∗

reg ⊂ E∗ be the regular loci with respect to U and U∨ respectively.
One associates to the datum (E∗, U) a function

c̄U : E∗,reg × E∗
reg −→ Z.(4.2.4.1)

This function appeared in the work of Herb [Her79], and can be inductively char-
acterized by the properties (1)–(5) listed in [GKM97, §3]. We will give explicit
formulas for c̄U in some special cases in Lemmas 4.2.8 and 4.2.10 below. Later in the
paper (§§8.15 and 8.16), we will recall Herb’s close formula for c̄U in more complicated
situations.

Now we write X∗(AM )R and X∗(AM )R for X∗(AM ) ⊗Z R and X∗(AM ) ⊗Z R re-
spectively, and identify X∗(AM )R with Lie(AM ). We view the Weyl group of the
root system Rγ as a subgroup of GL(X∗(AM )R). Let X∗(AM )R,reg ⊂ X∗(AM )R and
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X∗(AM )R,reg ⊂ X∗(AM )R be the regular loci, with respect to the root systems Rγ
and R∨

γ , respectively.

Lemma 4.2.5 ([GKM97, p. 499]). — For regular γ ∈ TS(R) which lies in
ZG(R) im(GSC(R)), the Weyl group of Rγ contains −1 ∈ GL(X∗(AM )R).

4.2.6. — Keep the setting of §4.2.4. In view of Lemma 4.2.5 and the general con-
struction (4.2.4.1), we obtain a function

c̄Rγ : X∗(AM )R,reg ×X∗(AM )R,reg −→ Z.

We can now define the integers n(γ, ωB) in terms of the function c̄Rγ . Let TS(R)1 be
the maximal compact subgroup of TS(R). We have a canonical decomposition

TS(R) = AM (R)0 × TS(R)1.

We write the projection of γ ∈ TS(R) in AM (R)0 as exp(xγ), with xγ ∈ Lie(AM ) =
X∗(AM )R. Our assumption that γ is regular ensures that

xγ ∈ X∗(AM )R,reg.

Let ℘ : X∗(TS)R → X∗(AM )R be the natural restriction map. Then for any ω ∈ Ω
we have

℘(ωλ+ ωρ) ∈ X∗(AM )R,reg.

Define

n(γ, ωB) := c̄Rγ (xγ , ℘(ωλ+ ωρ)).(4.2.6.1)

This finishes our explanation of (4.2.2.1).

Corollary 4.2.7. — Let γ ∈ TS(R) be a regular element such that the Weyl group
of Rγ does not contain −1 ∈ GL(X∗(AM )R). Then ΦGM (γ,Θ) = 0.

Proof. — By Lemma 4.2.5, we have γ /∈ ZG(R) im(GSC)(R). Hence n(γ, ωB) = 0 for
all ω ∈ Ω, and we have ΦGM (γ,Θ) = 0 by (4.2.2.1).

In the sequel we will need explicit descriptions of the function c̄U for certain root
systems U in R1 and R2. For i ∈ {1, 2}, we use the standard inner product on Ri to
identify Ri with its own dual space.

Lemma 4.2.8. — Let ϵ be the basis vector 1 of R1. The Weyl group of the root
system U = {±ϵ} contains −1. The regular loci in R1 with respect to U and with
respect to U∨ are both R1 − {0}. The function c̄U : (R1 − {0}) × (R1 − {0}) → Z is
given by:

c̄U (xϵ, yϵ) =
{

2, if xy < 0,
0, if xy > 0.

Proof. — This follows from a direct computation based on properties (1)–(5) listed
in [GKM97, §3].
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4.2.9. — We now consider certain root systems in R2. Let {ϵ1 = (1, 0), ϵ2 = (0, 1)}
be the natural basis of R2, and let x1 and x2 be the two coordinate functions on R2.
Let(2)

Uodd := {±ϵ1,±ϵ2,±ϵ1 ± ϵ2} ,
Ueds := {±ϵ1,±ϵ2}
Ueven := {±ϵ1 ± ϵ2} .

For each subscript ? ∈ {odd, eds, even}, U? is a root system in R2. The regular locus
in R2 with respect to U? is equal to the regular locus with respect to U∨

? . We denote
this locus by R2

?.
Explicitly, R2

odd is the complement of the two coordinate axes and the two di-
agonal lines. Thus it is the disjoint union of eight open cones. We label the cone
{(x1, x2) | 0 < x2 < x1} by the symbol (I), and label the other cones counterclock-
wise, by (II), (III), · · · , (VIII). See Figure 1.

Similarly, R2
eds is the complement of the two coordinate axes, and R2

even is the
complement of the two diagonal lines x1 = ±x2. We label the four open cones
constituting R2

even counterclockwise, starting with the cone {(x1, x2) | x1 > |x2|}, by
the symbols (A ), (B), (C ), (D). See Figure 2.

(I)

(II)(III)

(IV)

(V)

(VI) (VII)

(VIII)
x1

x2

x1 = x2x1 = −x2

Figure 1. Labeling of the eight open cones complement to the two coor-
dinate axes and the two diagonal lines in the x1-x2-plane. The union of
the cones is denoted by R2

odd.

(2)Here the subscript eds stands for “endoscopic”.
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(A )

(B)

(C )

(D)

x1

x2 x1 = x2x1 = −x2

Figure 2. Labeling of the four open cones complement to the two diagonal
lines in the x1-x2-plane. The union of the cones is denoted by R2

even.

We shall use the same symbols (I), (II), · · · , (A ), (B), · · · , to denote the
characteristic functions of the corresponding open cones. For each subscript
? ∈ {odd, eds, even}, the Weyl group of U? contains −1 ∈ GL(R2). Hence we have
the associated function

c̄U? : R2
? × R2

? −→ Z.
The following lemma describes this function. For each fixed x ∈ R2

?, we let f?,x : R2
? →

Z be the function that sends x′ ∈ R2
? to c̄U?(x, x′).

Lemma 4.2.10. — The following statements hold.
(1) If x ∈ (V), then

1
4 fodd,x = (II) + (VIII).(4.2.10.1)

If x ∈ (IV), then
1
4 fodd,x = (I) + (VII).(4.2.10.2)

(2) The function c̄Ueds : R2
eds × R2

eds → Z is given by

c̄Ueds(x, x′) =
{

4, if x and x′ lie in opposite quadrants,
0, otherwise.

(4.2.10.3)

In particular, if x ∈ (V), then
1
4 feds,x|R2

odd
= (I) + (II).(4.2.10.4)

If x ∈ (IV), then
1
4 feds,x|R2

odd
= (VII) + (VIII).(4.2.10.5)
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(3) If x ∈ (C ), then
1
4 feven,x = (A ).(4.2.10.6)

Proof. — This follows from a direct computation based on properties (1)–(5) listed
in [GKM97, §3].

Remark 4.2.11. — The complete descriptions of c̄Uodd and c̄Ueven follow immedi-
ately from Lemma 4.2.10 and the Weyl invariance of these functions (see property (5)
in [GKM97, §3]).

4.3. Kostant’s theorem

We apply Kostant’s theorem [Kos61] to compute the character of the virtual rep-
resentation in Definition 2.1.4.

Let S be a non-empty subset of {1, 2}, and let M := MS . Assume that S ̸= {2}
in the even case. Let TS be as in §4.1. We fix V as in §4.2.1, and continue to use the
notations introduced in §4.2.2. Let RΓ(LieNS ,V)>tS be as in Definition 2.1.4. Let
ϖ1 and ϖ2 be as in Definition 2.1.1.

Lemma 4.3.1. — For γ ∈ TS(C) regular in G (or more generally, regular in M),
we have

Tr(γ | RΓ(LieNS ,V)>tS ) = ∆M (γ)−1
∑
ω∈Ω

⟨ω(λ+ρ),ϖi⟩>0, ∀i∈S

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

Proof. — The proof is the same as a computation in the proof of [Mor11, Prop. 3.3.1].
Let ΩS := ΩC(M,TS), which is naturally a subgroup of Ω. For ω1 ∈ ΩS we define
l(ω1) and ϵ(ω1) = (−1)l(w) by viewing ω1 as in Ω; as a standard fact l(w1) is also the
length of w1 in ΩS with respect to the simple roots in Φ+

M . Consider

Ω′
S :=

{
ω ∈ Ω | Φ(ω) ⊂ {roots of TS,C on Lie(NS)C}

}
=
{
ω ∈ Ω | Φ(ω) ∩ Φ+

M = ∅
}
.

Then Ω′
S is the set of minimal length representatives of the cosets in ΩS\Ω; see

[Kos61, p. 361] or [GHM94, p. 165]. In particular, multiplication induces a bijection

ΩS × Ω′
S

∼−→ Ω.(4.3.1.1)

We have fixed the positive system Φ+
M inside Φ(MC, TS,C). As usual, we say that

an element λ′ ∈ X∗(TS) is M -dominant, if the pairing of λ′ with any positive coroot
in Φ(MC, TS,C)∨ is non-negative. For such λ′, we let VM,λ′ be the irreducible algebraic
representation of M(C) of highest weight λ′.



4.3. KOSTANT’S THEOREM 83

As recalled on p. 1700 of [Mor11], Kostant’s theorem states that as an algebraic
representation of M(C), we have

Hk(Lie(NS)C,V) ∼=
⊕
ω′∈Ω′

S

l(ω′)=k

VM,ω′(λ+ρ)−ρ.

Consequently,

Hk(Lie(NS)C,V)>tS ∼=
⊕
ω′∈Ω′

S

l(ω′)=k
⟨ω′(λ+ρ)−ρ,ϖi⟩>ti, ∀i∈S

VM,ω′(λ+ρ)−ρ.

By a simple computation, we have ti = ⟨−ρ,ϖi⟩ for i = 1, 2. Hence we have

Hk(Lie(NS)C,V)>tS ∼=
⊕
ω′∈Ω′

S

l(ω′)=k
⟨ω′(λ+ρ),ϖi⟩>0, ∀i∈S

VM,ω′(λ+ρ)−ρ.(4.3.1.2)

By the Weyl character formula (see for instance [Mor11, Fait 3.1.6 ]), for any
M -dominant λ′ ∈ X∗(TS) we have

Tr(γ | VM,λ′) = ∆M (γ)−1
∑

ω1∈ΩS

ϵ(ω1)(ω1λ
′)(γ)

∏
α∈Φ(ω1)

α−1(γ).(4.3.1.3)

(Here we have used the fact that for each ω1 ∈ ΩS , the set Φ(ω1) = Φ+ ∩ (−ω1Φ+) is
also equal to Φ+

M ∩ (−ω1Φ+
M ).)

Combining (4.3.1.2) and (4.3.1.3), we obtain

Tr(γ | RΓ(Lie(NS),V)>tS ) =
∑
ω′∈Ω′

S

⟨ω′(λ+ρ),ϖi⟩>0, ∀i∈S

(−1)l(ω
′) Tr(γ | VM,ω′(λ+ρ)−ρ)

=
∑
ω′∈Ω′

S

⟨ω′(λ+ρ),ϖi⟩>0, ∀i∈S

ϵ(ω′)∆M (γ)−1

·
∑

ω1∈ΩS

ϵ(ω1)
(
ω1(ω′(λ+ ρ)− ρ)

)
(γ)

∏
α∈Φ(ω1)

α−1(γ).

Since ϖi is invariant under ΩS for every i ∈ S, and since we have the bijection
(4.3.1.1), the above is equal to∑

ω∈Ω
⟨ω(λ+ρ),ϖi⟩>0, ∀i∈S

ϵ(ω)∆M (γ)−1(ωλ)(γ) ·
(
ωρ− p1(ω)ρ

)
(γ)

∏
α∈Φ(p1(ω))

α−1(γ),
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where for each ω ∈ Ω we set p1(ω) to be the unique element of ΩS such that ω ∈
p1(ω)Ω′

S . To finish the proof, we just need to check that for all ω ∈ Ω, we have

ω(ρ)− p1(ω)(ρ)−
∑

α∈Φ(p1(ω1))

α = −
∑

α∈Φ(ω)

α.

But this follows from the identity

ρ− θ(ρ) =
∑

α∈Φ(θ)

α

which holds for arbitrary θ ∈ Ω.

4.4. Kostant–Weyl terms and discrete series characters, case M1

4.4.1. — We keep the notations in §4.2 and §4.3. We take S = {1} and M = M1.
Recall from §4.1 that we have fixed an elliptic maximal torus T1 = T std

GL2
×TW2 in M .

Consider a regular element γ ∈ T1(R). We write

γ = (
(
a b

−b a

)
, γW2) ∈ T std

GL2
(R)× TW2(R),

with a, b ∈ R and a2 + b2 ̸= 0. Note that (ϵ1 + ϵ2)(γ) = a2 + b2. Hence we have

Rγ = {±(ϵ1 + ϵ2)} .

Let LM (γ) be as in Definition 2.2.3.

Proposition 4.4.2. — Suppose a2 + b2 < 1. Then we have

ΦGM (γ,Θ) = 2(−1)q(G)+1LM (γ).

Proof. — We first compute ΦGM (γ,Θ) using (4.2.2.1). Clearly T1(R) is connected.
Hence γ ∈ G(R)0, and so the integers n(γ, ωB) in (4.2.2.1) are defined by (4.2.6.1).

The subgroup AM (R)0 ⊂ T1(R) consists of
(
z 0
0 z

)
∈ T std

GL2
(R), z ∈ R>0. The

subgroup T1(R)1 ⊂ T1(R) is U(1)(R)× TW2(R), where U(1)(R) consists of(
z1 z2
−z2 z1

)
∈ T std

GL2
(R), z1, z2 ∈ R, z2

1 + z2
2 = 1.

Hence the projection of γ in AM (R)0 = R>0 is
√
a2 + b2, and

xγ = log
√
a2 + b2 ∈ R ∼= Lie(AM ) = X∗(AM )R.

Since a2 + b2 < 1, we have

xγ ∈ R<0 ∼= R>0(−ϵ∨1 − ϵ∨2 ).
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Since Rγ = {±(ϵ1 + ϵ2)}, by Lemma 4.2.8 we have

c̄Rγ (xγ , χ) =
{

2, if χ ∈ R>0(ϵ1 + ϵ2),
0, if χ ∈ R>0(−ϵ1 − ϵ2).

Hence by the definition (4.2.6.1), for ω ∈ Ω we have

n(γ, ωB) =
{

2, if ℘(ω(λ+ ρ)) ∈ R>0(ϵ1 + ϵ2),
0, if ℘(ω(λ+ ρ)) ∈ R>0(−ϵ1 − ϵ2).

Now the term ϵR(γ) in (4.2.2.1) is −1. By the above computation and by (4.2.2.1),
we obtain

(4.4.2.1) ΦGM (γ,Θ) = 2(−1)q(G)+1δP1(R)(γ)1/2∆M (γ)−1

·
∑
ω∈Ω

℘(ω(λ+ρ))∈R>0(ϵ1+ϵ2)

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

Next we compute 2(−1)q(G)+1LM (γ). By Proposition 2.2.4 and Lemma 4.3.1, we
have

(4.4.2.2) 2(−1)q(G)+1LM (γ) = 2(−1)q(G)+1δP1(R)(γ)1/2∆M (γ)−1

·
∑
ω∈Ω

⟨ω(λ+ρ),ϖ1⟩>0

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

Comparing (4.4.2.1) and (4.4.2.2), we see that the proof reduces to checking that for
all ω ∈ Ω, we have

⟨ω(λ+ ρ), ϖ1⟩ > 0⇐⇒ ℘(ω(λ+ ρ)) ∈ R>0(ϵ1 + ϵ2).

This is obvious.

4.5. Kostant–Weyl terms and discrete series characters, odd case M2

4.5.1. — We keep the notations in §4.2 and §4.3. We take S = {2} and M = M2.
Assume that d is odd. Recall from §4.1 that we have fixed an elliptic maximal torus
T2 = Gm × TW1 in M . Consider a regular element γ ∈ T2(R). We write

γ = (a, γW1),

with a ∈ R×. If a > 0, then Rγ = {±ϵ1}. Otherwise Rγ = ∅. Let LM (γ) be as in
Definition 2.2.3.

Proposition 4.5.2. — When a < 0, we have ΦGM (γ,Θ) = 0. When 0 < a < 1, we
have

ΦGM (γ,Θ) = (−1)q(G)+1LM (γ).
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Proof. — When a < 0, we have Rγ = ∅. It follows from Corollary 4.2.7 that
ΦGM (γ,Θ) = 0, as desired.

Now assume that 0 < a < 1. We first compute ΦGM (γ,Θ) using (4.2.2.1). We have
T2 ∼= Gm × U(1)m−1, and AM ∼= Gm, T2(R)1 = {±1} × U(1)(R)m−1. Hence the
projection of γ in AM (R)0 = R>0 is a, and

xγ = log a ∈ R ∼= Lie(AM ) = X∗(AM )R.

Since 0 < a < 1, we have
xγ ∈ R<0 ∼= R>0(−ϵ∨1 ).

Since Rγ = {±ϵ1}, by Lemma 4.2.8 we have

c̄Rγ (xγ , χ) =
{

2, χ ∈ R>0(ϵ1),
0, χ ∈ R>0(−ϵ1).

Hence by the definition (4.2.6.1), for ω ∈ Ω we have

n(γ, ωB) =
{

2, if ℘(ω(λ+ ρ)) ∈ R>0(ϵ1),
0, if ℘(ω(λ+ ρ)) ∈ R>0(−ϵ1).

Now the term ϵR(γ) in (4.2.2.1) is −1. By the above computation and by (4.2.2.1),
we obtain

(4.5.2.1) ΦGM (γ,Θ) = 2(−1)q(G)+1δP2(R)(γ)1/2∆M (γ)−1

·
∑
ω∈Ω

℘(ω(λ+ρ))∈R>0(ϵ1)

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

Next we compute (−1)q(G)+1LM (γ). By Proposition 2.2.4 and Lemma 4.3.1, we
have

(4.5.2.2) (−1)q(G)+1LM (γ) = 2(−1)q(G)+1δP2(R)(γ)1/2∆M (γ)−1

·
∑
ω∈Ω

⟨ω(λ+ρ),ϖ2⟩>0

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

Comparing (4.5.2.1) and (4.5.2.2), we see that the proof reduces to checking that for
all ω ∈ Ω, we have

⟨ω(λ+ ρ), ϖ2⟩ > 0⇐⇒ ℘(ω(λ+ ρ)) ∈ R>0(ϵ1).

This is obvious.

4.6. Kostant–Weyl terms and discrete series characters, case M12

4.6.1. — We keep the notations in §4.2 and §4.3. We take S = {1, 2} and M = M12.
(We drop the assumption that d is odd made in §4.5.) Recall from §4.1 that we have
fixed an elliptic maximal torus T12 = Gm × Gm × TW2 in M . Consider a regular
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element γ ∈ T12(R). We write

γ = (a, b, γW2),

with a, b ∈ R×. Let LM (γ) be as in Definition 2.2.3. We fix an element g0 ∈M2,l(Q)♯,
as in Definition 2.2.6.

Lemma 4.6.2. — We have

LM (γ) = δP12(R)(γ)1/2 Tr(γ | RΓ(LieN12,V)>t12)(4.6.2.1)

+ δP12(R)(g0γg
−1
0 )1/2 Tr(g0γg

−1
0 | RΓ(LieN12,V)>t12)

−
∣∣∣DM2

M (γ)
∣∣∣1/2

R
δP2(R)(γ)1/2 Tr(γ | RΓ(LieN2,V)>t2).

Proof. — The lemma follows from Proposition 2.2.8, the fact that dimAM/AM2 = 1,
and the fact that nM2

M = 2. Here nM2
M is clearly equal to the cardinality ofWM2,l

Ml
, and

we already showed in the proof of Proposition 2.2.8 that this group is Z/2Z.

Definition 4.6.3. — When d is odd, let

ω0 := sϵ2 ∈ Ω,
ω1 := sϵ1−ϵ2 ∈ Ω,
ω2 := sϵ1 ∈ Ω.

When d is even, let
ω0 := sϵ2+ϵ3sϵ2−ϵ3 ∈ Ω.

Here sα denotes the reflection in Ω corresponding to α ∈ Φ(GC, T12,C).

The following lemma is similar to an argument on p. 1702 of [Mor11].

Lemma 4.6.4. — Let s ∈ {ω0, ω1, ω2} if d is odd, and let s = ω0 if d is even.
(1) The automorphism of T12,C induced by s is defined over R.
(2) Let γ ∈ T12(R) be regular, and let γ′ := s(γ) ∈ T12(R). For any ω ∈ Ω we have

δP12(R)(γ′)1/2∏
α∈Φ(ω) α

−1(γ′)
δP12(R)(γ)1/2∏

α∈Φ(sω) α
−1(γ) =

∏
α∈Φ+

M

|α(γ′)|−1/2

|α(γ)|−1/2 ·
∏

α∈Φ(s)

|α(γ)|−1
α(γ).(4.6.4.1)

Here |·| denotes the usual absolute value on C, and as usual Φ(s) denotes Φ+∩(−sΦ+).

Proof. — (1) The automorphism in question is given by

(x, y, z) 7−→ (y, x, z), ∀(x, y) ∈ G2
m, z ∈ TW2,C,

when s = ω1, and is given by

(x, y, z) 7−→ (x−1, y, z), ∀(x, y) ∈ G2
m, z ∈ TW2,C,
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when s = ω2. In these cases the claim is obvious. When s = ω0, the automorphism
in question is of the form

(x, y, z) 7−→ (x, y−1, f(z)), (x, y) ∈ G2
m, z ∈ TW2,C,

for some automorphism f of TW2,C. Since TW2
∼= U(1)m−2, every automorphism of

TW2,C is defined over R. This proves the claim.
(2) Note that Φ+ is the disjoint union of Φ+

M and the set of roots of T12,C acting
on Lie(N12)C. Hence

δP12(R)(ν) =
∏
α∈Φ+

|α(ν)|
∏

α∈Φ+
M

|α(ν)|−1
, ∀ν ∈ T12(R).

For any ω ∈ Ω, we have

δP12(R)(γ′)1/2
∏

α∈Φ(ω)

α−1(γ′)

=
∏
α∈Φ+

|α(γ′)|1/2 ∏
α∈Φ+

M

|α(γ′)|−1/2 ∏
α∈Φ+∩(−ωΦ+)

α−1(γ′)

=
∏

α∈sΦ+

|α(γ)|1/2 ∏
α∈Φ+

M

|α(γ′)|−1/2 ∏
α∈sΦ+∩(−sωΦ+)

α−1(γ).

Also we have

δP12(R)(γ)1/2
∏

α∈Φ(sω)

α−1(γ) =
∏
α∈Φ+

|α(γ)|1/2 ∏
α∈Φ+

M

|α(γ)|−1/2 ∏
α∈Φ+∩(−sωΦ+)

α−1(γ).

Hence
δP12(R)(γ′)1/2∏

α∈Φ(ω) α
−1(γ′)

δP12(R)(γ)1/2∏
α∈Φ(sω) α

−1(γ)

=
∏

α∈Φ+
M

|α(γ′)|−1/2

|α(γ)|−1/2 ·
∏
α∈sΦ+ |α(γ)|1/2∏
α∈Φ+ |α(γ)|1/2 ·

∏
α∈sΦ+∩(−sωΦ+) α

−1(γ)∏
α∈Φ+∩(−sωΦ+) α

−1(γ) .

To finish the proof, we note that∏
α∈sΦ+ |α(γ)|1/2∏
α∈Φ+ |α(γ)|1/2 =

∏
α∈Φ+∩sΦ+ |α(γ)|1/2∏

α∈−Φ(s) |α(γ)|1/2∏
α∈Φ+∩sΦ+ |α(γ)|1/2∏

α∈Φ(s) |α(γ)|1/2 =
∏

α∈Φ(s)

|α(γ)|−1
,
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and that ∏
α∈sΦ+∩(−sωΦ+) α

−1(γ)∏
α∈Φ+∩(−sωΦ+) α

−1(γ) =
∏
α∈(−Φ+)∩sΦ+∩(−sωΦ+) α

−1(γ)∏
α∈Φ+∩(−sΦ+)∩(−sωΦ+) α

−1(γ)

=
∏
α∈Φ(s)∩(sωΦ+) α(γ)∏

α∈Φ(s)∩(−sωΦ+) α
−1(γ)

=
∏

α∈Φ(s)

α(γ).

The desired (4.6.4.1) follows.

Lemma 4.6.5. — For any g0 ∈ M2,l(Q)♯ (see Definition 2.2.6), there exists g ∈
SO(W2)(R) ⊂ G(R) such that gg0 normalizes T12 and the image of gg0 in Ω is ω0 as
in Definition 4.6.3.

Proof. — Recall that T12 = G2
m×TW2 , where G2

m = GL(V1)×GL(V2/V1), and TW2 is
an elliptic maximal torus in SO(W2). From the definition of M2,l(Q)♯, we know that
g0 normalizes G2

m, stabilizes W2 ⊂ V , and restricts to an element g0|W2 ∈ O(W2)(R)−
SO(W2)(R). Since all elliptic maximal tori in SO(W2) over R are conjugate under
SO(W2)(R), there exists g ∈ SO(W2)(R) such that gg0 normalizes T12. We let h
denote (gg0)|W2 , which is an element of O(W2)(R)− SO(W2)(R) normalizing TW2 .

If d is odd, we can take g to be − idW2 ·(g0|W2)−1. Then gg0 permutes {e2, e
′
2}

non-trivially, fixes e1 and e′
1, and acts as − idW2 on W2. It follows that the image of

gg0 in Ω is ω0, as desired.
Assume that d is even. Then m = d/2 ≥ 3. By our definition of the Z-basis

{ϵ1, · · · , ϵm} of X∗(T12), we know that {ϵ3, · · · , ϵm} is a Z-basis of X∗(TW2). More-
over,

Φ(SO(W2)C, TW2,C) = {±ϵi ± ϵj | 3 ≤ i < j ≤ m} .
It is easy to check that there exists an element h′ ∈ O(W2)(C) − SO(W2)(C) nor-
malizing TW2,C such that the automorphism σ′ of X∗(TW2) induced by h′ satisfies
σ′(ϵ3) = −ϵ3 and σ′(ϵi) = ϵi for 4 ≤ i ≤ m. Denote by σ the automorphism of
X∗(TW2) induced by h. It suffices to show that

σ ∈ ΩR(SO(W2), TW2)σ′ ⊂ Aut(X∗(TW2)).

Here ΩR(SO(W2), TW2) is the real Weyl group NorSO(W2)(R)(TW2)/TW2(R), viewed
as a subgroup of Aut(X∗(TW2)). Since h and h′ differ by left-multiplication by an
element of SO(W2)(C) normalizing TW2,C, we have σ ∈ ΩC(SO(W2), TW2)σ′. We
finish the proof by noting that ΩC(SO(W2), TW2) = ΩR(SO(W2), TW2), since SO(W2)
is anisotropic over R.
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Definition 4.6.6. — For ω ∈ Ω, define

N1(ω) :=
{

1, if ⟨ω(λ+ ρ), ϖi⟩ > 0 for i = 1, 2,
0, otherwise.

N2(ω) :=
{

1, if ⟨ω(λ+ ρ), ω0ϖi⟩ > 0 for i = 1, 2,
0, otherwise.

N3(ω) :=
{

1, if ⟨ω(λ+ ρ), ϖ2⟩ > 0,
0, otherwise.

Here ω0 is as in Definition 4.6.3.

Lemma 4.6.7. — Let γ = (a, b, γW2) be a regular element of T12(R). The quantity
L̃M (γ) := LM (γ) · (δP12(R)(γ)1/2∆M (γ)−1)−1 can be computed as follows.

(1) If d is odd, then

L̃M (γ) =
∑
ω∈Ω

[
N1(ω)− sgn(b)N2(ω)− sgn(1− b−1)N3(ω)

]
ϵ(ω)(ωλ)(γ)

∏
α∈Φ(ω)

α−1(γ).

(2) If d is even, then

L̃M (γ) =
∑
ω∈Ω

[
N1(ω) +N2(ω)−N3(ω)

]
ϵ(ω)(ωλ)(γ)

∏
α∈Φ(ω)

α−1(γ).

Proof. — Our starting point is (4.6.2.1). Let γ′ = ω0(γ). By Lemma 4.6.5, we may
replace g0γg

−1
0 in the second summand on the RHS of (4.6.2.1) by γ′. Now we would

like to rewrite the third summand. Define

η2(γ) :=
∏

α∈Φ+
M2

−Φ+
M

∣∣1− α−1(γ)
∣∣

1− α−1(γ) .

Then arguing as on p. 1701 of [Mor11], we have∣∣∣DM2
M (γ)

∣∣∣1/2
δP2(R)(γ)1/2∆M2(γ)−1 = η2(γ)δP12(R)(γ)1/2∆M (γ)−1.

Hence we can rewrite (4.6.2.1) as follows:

LM (γ) = δP12(R)(γ)1/2 Tr(γ | RΓ(LieN12,V)>t12)(4.6.7.1)

+ δP12(R)(γ′)1/2 Tr(γ′ | RΓ(LieN12,V)>t12)

− δP12(R)(γ)1/2∆M (γ)−1∆M2(γ)η2(γ) Tr(γ | RΓ(LieN2,V)>t2).
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Using Lemma 4.3.1 to compute the Tr(· · · ) terms in (4.6.7.1), we get

LM (γ) = δP12(R)(γ)1/2∆M (γ)−1
∑
ω∈Ω

⟨ω(λ+ρ),ϖi⟩>0, ∀i∈{1,2}

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ)

+ δP12(R)(γ′)1/2∆M (γ′)−1
∑
ω∈Ω

⟨ω(λ+ρ),ϖi⟩>0, ∀i∈{1,2}

ϵ(ω)(ωλ)(γ′)
∏

α∈Φ(ω)

α−1(γ′)

− δP12(R)(γ)1/2∆M (γ)−1η2(γ)
∑
ω∈Ω

⟨ω(λ+ρ),ϖ2⟩>0

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

By Lemma 4.6.4, the second summand in the above is equal to

δP12(R)(γ)1/2∆M (γ)−1A(γ, γ′)
∑
ω∈Ω

⟨ω(λ+ρ),ϖi⟩>0, ∀i∈{1,2}

ϵ(ω)(ωλ)(γ′)
∏

α∈Φ(ω0ω)

α−1(γ),

where

A(γ, γ′) := ∆M (γ)
∆M (γ′)

∏
α∈Φ+

M

|α(γ′)|−1/2

|α(γ)|−1/2

∏
α∈Φ(ω0)

α(γ)
|α(γ)| .

Therefore we have

L̃M (γ) =
∑
ω∈Ω

⟨ω(λ+ρ),ϖi⟩>0, ∀i∈{1,2}

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ)

+A(γ, γ′)
∑
ω∈Ω

⟨ω(λ+ρ),ϖi⟩>0,∀i∈{1,2}

ϵ(ω)(ωλ)(γ′)
∏

α∈Φ(ω0ω)

α−1(γ)

− η2(γ)
∑
ω∈Ω

⟨ω(λ+ρ),ϖ2⟩>0

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

Making the substitution ω 7→ ω0ω in the second summation and using the following
obvious relations:

ω2
0 = 1,

(ω0ωλ)(γ′) = (ωλ)(γ),
ϵ(ω0ω) = ϵ(ω0)ϵ(ω),

⟨ω0ω(λ+ ρ), ϖi⟩ = ⟨ω(λ+ ρ), ω0ϖi⟩,
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we obtain

L̃M (γ) =
∑
ω∈Ω

⟨ω(λ+ρ),ϖi⟩>0, ∀i∈{1,2}

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ)

+ ϵ(ω0)A(γ, γ′)
∑
ω∈Ω

⟨ω(λ+ρ),ω0ϖi⟩>0,∀i∈{1,2}

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ)

− η2(γ)
∑
ω∈Ω

⟨ω(λ+ρ),ϖ2⟩>0

ϵ(ω)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ)

=
∑
ω∈Ω

[
N1(ω) + ϵ(ω0)A(γ, γ′)N2(ω)− η2(γ)N3(ω)

]
(4.6.7.2)

·
[
ϵ(ω)(ωλ)(γ)

∏
α∈Φ(ω)

α−1(γ)
]
.

To finish the proof it remains to compute the quantities ϵ(ω0), A(γ, γ′), and η2(γ),
which we carry out separately in the odd and even cases.

First assume that d is odd. Then

ϵ(ω0) = −1.(4.6.7.3)

To compute A(γ, γ′), first note that ∆M (γ)/∆M (γ′) and∏
α∈Φ+

M

|α(γ′)|
−1
2 |α(γ)|

1
2

are both 1, since γ−1γ′ lies in the center of M . To compute∏
α∈Φ(ω0)

|α(γ)|−1
α(γ),

we have Φ(ω0) = {ϵ2} ∪ {ϵ2 ± ϵj | j ≥ 3}, and we know that ϵ2 + ϵj is the complex
conjugate of ϵ2 − ϵj for j ≥ 3, with respect to the real structure of T12. (In fact, the
complex conjugation acts on X∗(TW2) = spanZ {ϵ3, · · · , ϵm} as −1.) Hence we have

A(γ, γ′) =
∏

α∈Φ(ω0)

|α(γ)|−1
α(γ) = |ϵ2(γ)|−1

ϵ2(γ) = sgn(b).(4.6.7.4)

We are left to compute η2(γ). We have Φ+
M2
−Φ+

M = {ϵ2}∪{ϵ2 ± ϵj | j ≥ 3}. Since
ϵ2 + ϵj is the complex conjugate of ϵ2 − ϵj for j ≥ 3, we have

η2(γ) =
∣∣1− ϵ−1

2 (γ)
∣∣

1− ϵ−1
2 (γ)

= sgn(1− b−1).(4.6.7.5)

The proof is finished by combining (4.6.7.2), (4.6.7.3), (4.6.7.4), and (4.6.7.5).
Now assume that d is even. Then ϵ(ω0) = 1. To finish the proof it suffices to check

that A(γ, γ′) = η2(γ) = 1.



4.6. CASE M12 93

We compute A(γ, γ′). Let xj := ϵj(γ), 1 ≤ j ≤ m. We have
∆M (γ)
∆M (γ′) =

∏
α∈Φ+

M

1− α−1(γ)
1− α−1(γ′) =

∏
α∈{ϵ3±ϵj |j≥4}

1− α−1(γ)
1− α−1(γ′)(4.6.7.6)

=
∏
j≥4

1− x−1
3 x−1

j

1− x3x
−1
j

1− x−1
3 xj

1− x3xj
=
∏
j≥4

x−2
3 .

Also

∏
α∈Φ+

M

|α(γ′)|−1/2

|α(γ)|−1/2 =
∏

α∈{ϵ3±ϵj |j≥4}

|α(γ′)|−1/2

|α(γ)|−1/2 =
∏
j≥4

∣∣∣∣∣x−1
3 xj
x3xj

x−1
3 x−1

j

x3x
−1
j

∣∣∣∣∣
−1/2

=
∏
j≥4
|x3|2 .

(4.6.7.7)

To compute ∏
α∈Φ(ω0)

α(γ) |α(γ)|−1
,

we have
Φ(ω0) = {ϵ2 ± ϵj | j ≥ 3} ∪ {ϵ3 ± ϵj | j ≥ 4} .

Note that ϵ2 + ϵj is the complex conjugate of ϵ2 − ϵj , for j ≥ 3. Hence we have∏
α∈Φ(ω0)

α(γ)
|α(γ)| =

∏
α∈{ϵ3±ϵj |j≥4}

α(γ)
|α(γ)| =

∏
j≥4

x3xjx3x
−1
j∣∣x3xjx3x
−1
j

∣∣ =
∏
j≥4

x2
3

|x3|2
.(4.6.7.8)

Combining (4.6.7.6) (4.6.7.7) (4.6.7.8), we conclude that A(γ, γ′) = 1, as desired.
We are left to check that η2(γ) = 1. We have Φ+

M2
− Φ+

M = {ϵ2 ± ϵj | j ≥ 3}. As
we observed before, ϵ2 + ϵj is the complex conjugate of ϵ2 − ϵj for all j ≥ 3. Hence
η2(γ) = 1 as desired.

4.6.8. — Keep the setting of §4.6.1. In the following we compare LM (γ) with
ΦGM (γ,Θ). We will also introduce and study a variant of ΦGM (γ,Θ), denoted by
ΦGM (γ,Θ)eds.

We have AM = MGL = Gm × Gm, and T12(R)1 = {±1} × {±1} × TW2(R). The
projection of γ in AM (R)0 ∼= R>0 × R>0 is (|a| , |b|), and

xγ = (log |a| , log |b|) ∈ R2 ∼= Lie(AM ) = X∗(AM )R.

Let ℘ be the natural restriction mapX∗(T12)R → X∗(AM )R. We identifyX∗(AM )R
with R2, and let R2

odd,R2
eds,R2

even be the subsets of R2 defined in §4.2.9. Note that
when d is odd (resp. even), we have ℘(ω(λ+ ρ)) ∈ R2

odd (resp. ∈ R2
even) for all ω ∈ Ω.

Suppose f is a function R2
odd → C (resp. R2

even → C) when d is odd (resp. even). We
write [[f ]] for the function

[[f ]] : Ω −→ C
ω 7−→ f(℘(ω(λ+ ρ))).
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Recall from §4.2.9 that (I), (II), · · · , (VIII), (A ) denote the characteristic func-
tions of some open cones in R2.

Lemma 4.6.9. — When d is odd, we have the following identities between functions
on Ω:

N1(·) = [[(I) + (II) + (VIII)]],
N2(·) = [[(I) + (VII) + (VIII)]],
N3(·) = [[(I) + (II) + (VII) + (VIII)]].

When d is even, we have the following identities between functions on Ω:

N1(·) = [[(A ) + (II)]],
N2(·) = [[(A ) + (VII)]],
N3(·) = [[(A ) + (II) + (VII)]].

Proof. — This follows immediately from Definition 4.6.6.

4.6.10. — Recall from §4.2 that ΦGM (γ,Θ) can be computed by (4.2.2.1). Using the
notation [[f ]] introduced in §4.6.8, we recall the definition of n(γ, ωB) appearing in
(4.2.2.1) as follows:

n(γ, ωB) :=
{

[[c̄Rγ (xγ , ·)]](ω), if γ ∈ G(R)0,

0, if γ /∈ G(R)0.

Let Reds := {±ϵ1,±ϵ2} ⊂ X∗(AM )R. Under the identification X∗(AM )R ∼= R2, the
subset Reds is identified with the root system Ueds considered in §4.2.9. In particular,
the Weyl group of Reds contains −1, and the function c̄Reds associated to Reds is
identified with the function c̄Ueds : R2

eds × R2
eds → Z considered in §4.2.9.

When d is odd, we define

neds(γ, ωB) :=
{

[[c̄Reds(xγ , ·)]](ω), if a, b > 0,
0, otherwise,

(4.6.10.1)

for ω ∈ Ω. Here [[c̄Reds(xγ , ·)]] is well defined because R2
odd ⊂ R2

eds.
Analogous to (4.2.2.1), we define, when d is odd,

(4.6.10.2) ΦGM (γ,Θ)eds := (−1)q(G)ϵR(γ)δP12(R)(γ)1/2∆M (γ)−1

·
∑
ω∈Ω

ϵ(ω)neds(γ, ωB)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ).

Lemma 4.6.11. — For both parity of d, let ν = (s, t, u) ∈ T12(R) = R× × R× ×
TW2(R) be an element with s, t < 0. Then ν ∈ G(R)0.
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Proof. — Since TW2(R) is connected (being a product of copies of U(1)), we know
that ν is in the same connected component of G(R) as

ν1 := (−1,−1, 1) ∈ T12(R).

It remains to show that ν1 ∈ G(R)0. We know that ν1 acts as −1 on RX1 +RX2 and
on RY1 + RY2, where Xi = ei + e′

i and Yi = ei − e′
i. Now RX1 + RX2 is a positive

definite plane and RY1 +RY2 is a negative definite plane, and ν1 acts on both of them
with determinant 1. Also ν1 acts as the identity on the orthogonal complement of
these two planes. This implies that ν1 ∈ G(R)0, by the standard description of the
connected components of indefinite special orthogonal groups (see [Kna02, I.17]).

Proposition 4.6.12. — Assume that d is odd. Let γ = (a, b, γW2) ∈ T12(R) be a
regular element. Let (x1, x2) = (log |a| , log |b|). When ab < 0, we have

ΦGM (γ,Θ) = ΦGM (γ,Θ)eds = 0.

When ab > 0, assume that x1 < − |x2| . Then we have

4(−1)q(G)LM (γ) = ΦGM (γ,Θ) + ΦGM (γ,Θ)eds.

Proof. — We first treat the case ab < 0. Then ΦGM (γ,Θ)eds = 0 since all neds(γ, ωB)
vanish by definition. To show ΦGM (γ,Θ) = 0, note that Rγ = {±ϵ1} or {±ϵ2}. Thus
the Weyl group of Rγ (as a root system in X∗(AM )R = R2) does not contain −1. By
Corollary 4.2.7, we have ΦGM (γ,Θ) = 0.

We now treat the case ab > 0. First assume that a and b are both positive.
Under our assumption that x1 < − |x2|, there are two cases to consider, namely
0 < a < b < 1 or 0 < ab < 1 < b. (Here b ̸= 1 since γ is regular.) We have

ϵR(γ) =
{

1, if 0 < a < b < 1,
−1, if 0 < ab < 1 < b.

Comparing Lemma 4.6.7 with (4.2.2.1 and (4.6.10.2), we see that the current propo-
sition reduces to the following two statements:

– When 0 < a < b < 1, we have
1
4(n(γ, ωB) + neds(γ, ωB)) = N1(ω)−N2(ω) +N3(ω), ∀ω ∈ Ω.(4.6.12.1)

– When 0 < ab < 1 < b, we have
1
4(n(γ, ωB) + neds(γ, ωB)) = −N1(ω) +N2(ω) +N3(ω), ∀ω ∈ Ω.(4.6.12.2)

Since obviously γ ∈ T12(R)0 ⊂ G(R)0, we have

n(γ, ωB) = [[c̄Rγ (xγ , ·)]](ω), ∀ω ∈ Ω,
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by definition. Since Rγ = {±ϵ1,±ϵ2,±ϵ1 ± ϵ2} = Uodd, we have c̄Rγ (xγ , ·) = fodd,xγ .
(See §4.2.9 for the notation.) In other words we have

n(γ, ωB) = [[fodd,xγ ]](ω), ∀ω ∈ Ω.(4.6.12.3)

Similarly we have

neds(γ, ωB) = [[feds,xγ ]](ω), ∀ω ∈ Ω.(4.6.12.4)

When 0 < a < b < 1, we have xγ ∈ (V). By (4.2.10.1), (4.2.10.4), (4.6.12.3), and
(4.6.12.4), we have

1
4n(γ, ωB) = [[(II) + (VIII)]](ω),

1
4neds(γ, ωB) = [[(I) + (II)]](ω).

Thus the LHS of (4.6.12.1) is equal to [[(I)+2(II)+(VIII)]](ω). On the other hand,
by Lemma 4.6.9, the RHS of (4.6.12.1) is also equal to [[(I) + 2(II) + (VIII)]](ω).
Hence (4.6.12.1) holds, as desired.

When 0 < ab < 1 < b, we have xγ ∈ (IV). By (4.2.10.2) and (4.2.10.5), we have
1
4n(γ, ωB) = [[(I) + (VII)]](ω),

1
4neds(γ, ωB) = [[(VII) + (VIII)]](ω).

Thus the LHS of (4.6.12.2) is equal to [[(I)+2(VII)+(VIII)]](ω). By Lemma 4.6.9,
the RHS of (4.6.12.2) is also equal to [[(I) + 2(VII) + (VIII)]](ω). Hence (4.6.12.2)
holds, as desired.

We now assume that a and b are both negative. In this case ΦGM (γ,Θ)eds = 0 by
definition. We have ϵR(γ) = 1. Comparing Lemma 4.6.7 with (4.2.2.1), we see that
the current proposition reduces to the following identity:

1
4n(γ, ωB) = N1(ω) +N2(ω)−N3(ω), ∀ω ∈ Ω.(4.6.12.5)

By Lemma 4.6.11, we have γ ∈ G(R)0, and so

n(γ, ωB) = [[c̄Rγ (xγ , ·)]](ω), ∀ω ∈ Ω,

by definition. Since Rγ = {±ϵ1 ± ϵ2} = Ueven, we have c̄Rγ (xγ , ·) = feven,xγ . (See
§4.2.9 for the notation). Thus

n(γ, ωB) = [[feven,xγ ]](ω), ∀ω ∈ Ω.(4.6.12.6)

Since x1 < − |x2| < 0, we have xγ ∈ (IV) ∪ (V) ⊂ (C ). Hence by (4.2.10.6) and
(4.6.12.6), we have

1
4n(γ, ωB) = [[(A )]](ω) = [[(I) + (VIII)]](ω).

By Lemma 4.6.9, the RHS of (4.6.12.5) is also equal to [[(I) + (VIII)]](ω). Hence
(4.6.12.5) holds, as desired.
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The following proposition will also be needed in §8.12 below.

Proposition 4.6.13. — Assume that d is odd. Let γ = (a, b, γW2) ∈ T12(R) be a
regular element, with ab > 0. Let ω1, ω2 be as in Definition 4.6.3, and let

γ′ := ω1(γ) = (b, a, γW2) ∈ T12(R),
γ′′ := ω2(γ) = (a−1, b, γW2) ∈ T12(R).

Then we have

ΦGM (γ,Θ) = ΦGM (γ′,Θ) = ΦGM (γ′′,Θ),(4.6.13.1)
ϵR(γ)ϵReds(γ)ΦGM (γ,Θ)eds = −ϵR(γ′)ϵReds(γ′)ΦGM (γ′,Θ)eds,(4.6.13.2)
ϵR(γ)ϵReds(γ)ΦGM (γ,Θ)eds = ϵR(γ′′)ϵReds(γ′′)ΦGM (γ′′,Θ)eds.(4.6.13.3)

Here ϵReds(γ) is defined to be

(−1)#{α∈Φ+∩Reds|0<α(γ)<1},

and similarly for ϵReds(γ′) and ϵReds(γ′′).

Proof. — The equalities in (4.6.13.1) hold because ω1 and ω2 can be represented by
elements of (NorGM)(R), and ΦGM (·,Θ) is invariant under (NorGM)(R).

We now prove (4.6.13.2). We have ∆M (γ) = ∆M (γ′) because γ−1γ′ lies in the
center of M . Also ϵReds(γ) = ϵReds(γ′). Hence we have reduced the proof to showing
that

δP12(R)(γ)1/2
∑
ω

ϵ(ω)neds(γ, ωB)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ)
(4.6.13.4)

= −δP12(R)(γ′)1/2
∑
ω

ϵ(ω)neds(γ′, ωB)(ωλ)(γ′)
∏

α∈Φ(ω)

α−1(γ′).

We claim that for all ω ∈ Ω, we have neds(γ′, ωB) = neds(γ, ω1ωB). Indeed, if a
and b are both negative, then both sides are by definition zero. If a and b are both
positive, then our claim follows from the following property:

c̄Reds(y, y′) = c̄Reds(ω1y, ω1y
′), ∀y, y′ ∈ R2

eds,

which is a direct consequence of (4.2.10.3).
By the claim and Lemma 4.6.4, the RHS of (4.6.13.4) is equal to

− δP12(R)(γ)1/2
∑
ω

ϵ(ω)neds(γ, ω1ωB)(ωλ)(γ′)

·
∏

α∈Φ(ω1ω)

α−1(γ)
∏

α∈Φ+
M

|α(γ′)|−
1
2

|α(γ)|−
1
2

∏
α∈Φ(ω1)

α(γ)
|α(γ)| .
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Under the substitution ω 7→ ω1ω in the summation, the above becomes

δP12(R)(γ)1/2
∑
ω

ϵ(ω)neds(γ, ωB)(ωλ)(γ)

·
∏

α∈Φ(ω)

α−1(γ)
∏

α∈Φ+
M

|α(γ′)|−
1
2

|α(γ)|−
1
2

∏
α∈Φ(ω1)

α(γ)
|α(γ)| .

To finish the proof of (4.6.13.4) it suffices to check∏
α∈Φ+

M

|α(γ′)|−
1
2

|α(γ)|−
1
2

∏
α∈Φ(ω1)

α(γ)
|α(γ)| = 1.

Since γ−1γ′ lies in the center of M , the first product in the above is equal to 1. The
second product is also equal to 1, because Φ(ω1) = {ϵ1 − ϵ2}, and (ϵ1−ϵ2)(γ) = a/b >

0. We have thus proved (4.6.13.4). As we have already seen, this implies (4.6.13.2).
We now prove (4.6.13.3) in a completely analogous way. We have ∆M (γ) =

∆M (γ′), and ϵReds(γ) = − sgn(a)ϵReds(γ′), so we need to check

(4.6.13.5) δP12(R)(γ)1/2
∑
ω

ϵ(ω)neds(γ, ωB)(ωλ)(γ)
∏

α∈Φ(ω)

α−1(γ)

= − sgn(a)δP12(R)(γ′′)1/2
∑
ω

ϵ(ω)neds(γ′′, ωB)(ωλ)(γ′′)
∏

α∈Φ(ω)

α−1(γ′′).

Again it easily follows from the definition of neds and (4.2.10.3) that neds(γ′′, ωB) =
neds(γ, ω2ωB), for all ω ∈ Ω. By this fact and Lemma 4.6.4, the RHS of (4.6.13.5) is
equal to

− sgn(a)δP12(R)(γ)1/2
∑
ω

ϵ(ω)neds(γ, ω2ωB)(ωλ)(γ′′)

·
∏

α∈Φ(ω2ω)

α−1(γ)
∏

α∈Φ+
M

|α(γ′′)|−
1
2

|α(γ)|−
1
2

∏
α∈Φ(ω2)

α(γ)
|α(γ)| .

Under the substitution ω 7→ ω2ω in the summation the above becomes

sgn(a)δP12(R)(γ)1/2
∑
ω

ϵ(ω)neds(γ, ωB)(ωλ)(γ)

·
∏

α∈Φ(ω)

α−1(γ)
∏

α∈Φ+
M

|α(γ′′)|−
1
2

|α(γ)|−
1
2

∏
α∈Φ(ω2)

α(γ)
|α(γ)| .

To finish the proof of (4.6.13.5), it suffices to check∏
α∈Φ+

M

|α(γ′′)|−
1
2

|α(γ)|−
1
2

∏
α∈Φ(ω2)

α(γ)
|α(γ)| = sgn(a).
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Again the first product in the above is equal to 1, so we need to check that the second
product is equal to sgn(a). For this, we may replace the product over all α ∈ Φ(ω2)
by the product over those α ∈ Φ(ω2) that are real. This is because Φ(ω2) is stable
under complex conjugation, and we obviously have

α(γ)
|α(γ)|

ᾱ(γ)
|ᾱ(γ)| = 1

for any α, ᾱ ∈ Φ(ω2) that are complex conjugate to each other. Now the real roots in
Φ(ω2) are ϵ1, ϵ1 + ϵ2, ϵ1 − ϵ2. Hence∏

α∈Φ(ω2)

α(γ)
|α(γ)| =

∏
α∈{ϵ1,ϵ1+ϵ2,ϵ1−ϵ2}

α(γ)
|α(γ)| = a

|a|
ab

|ab|
ab−1

|ab−1|
= a

|a|
= sgn(a),

as desired. We have thus proved (4.6.13.5). As we have already seen, this implies
(4.6.13.3).

The following proposition is the counterpart of Proposition 4.6.12 in the even case.

Proposition 4.6.14. — Assume that d is even. Let γ = (a, b, γW2) ∈ T12(R) be a
regular element. Let (x1, x2) = (log |a| , log |b|). When ab < 0, we have

ΦGM (γ,Θ) = 0.

When ab > 0, assume that x1 < − |x2|. Then we have

4(−1)q(G)LM (γ) = ΦGM (γ,Θ).

Proof. — When ab < 0, we have Rγ = ∅. Thus ΦGM (γ,Θ) = 0 by Corollary 4.2.7.
Assume that ab > 0. Under our assumption that x1 < − |x2|, we have ϵR(γ) = 1.

In view of Lemma 4.6.7, to prove the current proposition it suffices to prove
1
4n(γ, ωB) = N1(ω) +N2(ω)−N3(ω), ∀ω ∈ Ω.(4.6.14.1)

By Lemma 4.6.11, we have γ ∈ G(R)0, and so

n(γ, ωB) = [[c̄Rγ (xγ , ·)]](ω), ∀ω ∈ Ω,

by definition. Since Rγ = {±ϵ1 ± ϵ2} = Ueven, we have c̄Rγ (xγ , ·) = feven,xγ . (See
§4.2.9 for the notation). Thus

n(γ, ωB) = [[feven,xγ ]](ω), ∀ω ∈ Ω.(4.6.14.2)

Since x1 < − |x2|, we have xγ ∈ (C ). By (4.2.10.6) and (4.6.14.2), we have
1
4n(γ, ωB) = [[(A )]](ω).

Now by Lemma 4.6.9, the RHS of (4.6.14.1) is also equal to [[(A )]](ω). Hence (4.6.14.1)
holds, as desired.





CHAPTER 5

ENDOSCOPIC DATA FOR SPECIAL ORTHOGONAL
GROUPS

In this chapter, let F be a local or global field of characteristic zero. Let V = (V, q)
be a quadratic space over F of dimension d and discriminant δ (see §1.2). Let G =
SO(V ). Let m = ⌊d/2⌋, which is the absolute rank of G. As usual, we refer to “the
odd case” and “the even case” according to the parity of d.

5.1. The quasi-split inner form

We need to explicitly fix an inner twisting between G and a quasi-split inner form.
For this, let V = (V , q) be the unique (up to isomorphism) quasi-split quadratic space
over F of dimension d and discriminant δ.

Definition 5.1.1. — We fix an isomorphism of quadratic spaces over F :

ϕV : (V, q)⊗F F
∼−→ (V , q)⊗F F .

If F = R, we may and shall assume that ϕV satisfies the following condition: Let
(a, b) be the signature of (V, q). If a > b (resp. a ≤ b), then there exists an orthogonal
basis {v1, · · · , vd} of V , and an orthogonal basis {v1, · · · , vd} of V , such that for each
1 ≤ j ≤ d, we have q(vj), q(vj) ∈ {±1}, and ϕV (vj) = vj⊗λj for some λj ∈

{
1,
√
−1
}

,
with λj =

√
−1 only if q(vj) = 1 (resp. only if q(vj) = −1).

5.1.2. — Let G∗ := SO(V , q), which is quasi-split over F by Proposition 1.2.8. Using
ϕV as in Definition 5.1.1, we define the isomorphism

ψV : GF
∼−→ G∗

F

g 7−→ ϕV gϕ
−1
V .

Define the function

uV : ΓF −→ GL(V ⊗F F )
ρ 7−→ ρϕV ϕ

−1
V .
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Clearly the image of uV is contained in O(V )(F ). If we fix F -bases of V and V , then
since q and q have the same discriminant, the square of the determinant of the matrix
of ϕV lies in F×,2, which implies that the determinant of the matrix of ϕV lies in F .
Hence uV (ρ) has determinant 1 for each ρ ∈ ΓF . Thus the image of uV is contained
in G∗(F ). Note that we have

ρψV ψ
−1
V = Int(uV (ρ)) ∈ Aut(G∗

F
), ∀ρ ∈ ΓF .(5.1.2.1)

It follows that ψV is an inner twisting.

Remark 5.1.3. — If we view SO(V ) and SO(V ) as abstract reductive groups over
F , then in the odd case there is a unique SO(V )(F )-conjugacy class of inner twistings
SO(V )F

∼−→ SO(V )F , whereas in the even case there are two such conjugacy classes,
interchanged under the conjugation by any element of O(V )(F ) − SO(V )(F ). If we
change the choice of ϕV to some ϕ′

V , then ϕ′
V = g ◦ ϕV for some g ∈ O(V )(F ). The

inner twisting ψ′
V arising from ϕ′

V stays in the same SO(V )(F )-conjugacy class as
ψV if and only if g ∈ SO(V )(F ). Thus for the purpose of realizing G∗ = SO(V )
as an inner form of G, it suffices to remember ϕV up to replacing it by g ◦ ϕV for
g ∈ SO(V )(F ).

Remark 5.1.4. — The pair (ψV , uV ) realizes G as a pure inner form of G∗ in the
sense of Vogan [Vog93]; cf. the introduction of [Kal16]. The pair (ψV , uV ) itself is
called a pure inner twist; cf. [Kal11, §2]. Fixing such a pure inner twist (or rather
its G∗(F )-conjugacy class, see below) is more refined than just fixing G∗ as an inner
form of G, and it plays an essential role in normalizing transfer factors when F is
a local field. Specifically, suppose (H, LH, s, η) is an elliptic endoscopic datum for
G, and suppose we have fixed a normalization of transfer factors between H and
G∗. Then the datum (ψV , uV ) allows one to “transport” that normalization to a
normalization of transfer factors between H and G, as observed by Kottwitz and
explained in [Kal11, §2.2]. For this purpose, it actually suffices to just remember ϕV
up to replacing it by g ◦ϕV for g ∈ G∗(F ) = SO(V )(F ), which will result in (ψV , uV )
being replaced by (Int(g) ◦ψV , ρ 7→ ρguV (ρ)g−1) and will not change the transported
normalization between H and G. By contrast, if one abstractly modifies (ψV , uV ) by
keeping ψV unchanged and replacing uV by ρ 7→ ρguV (ρ)g−1 for some g ∈ G∗(F ), the
resulting normalization of transfer factors between H and G can change, as observed
in [Wal10, §1.11 (4)].

Definition 5.1.5. — When d is even and δ is trivial, we fix an SO(V )(F )-orbit of
hyperbolic bases (Definition 1.2.2) of V once and for all, denoted by [BV ]. When d

is even and δ is non-trivial, we fix α ∈ F such that x = α2 ∈ F× is a lift of δ, and
we fix an SO(V )(F )-orbit [BV ] of near-hyperbolic bases of V such that all members
of this orbit have discriminant x (see Definition 1.2.2). If F = R, we identify F with
C and take α =

√
−1.
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5.2. Some matrix groups over C

5.2.1. — We define some algebraic groups over C, which we also identify with their
C-points. Let N be a positive even integer. Let {êk | 1 ≤ k ≤ N} be the standard
basis of CN . Define two N ×N matrices

I−
N :=


−1

1
−1

...
1

 , I+
N :=

(
IN/2

−IN/2

)
I−
N .

Thus I+
N and I−

N define a quadratic form and a symplectic form on CN respectively.
We use these forms to define the groups ON (C), SON (C), and SpN (C), as subgroups
of GLN (C). By convention, SO0(C) = Sp0(C) = GL0(C) = {1}.

We introduce a short-hand notation in order to conveniently denote certain diag-
onal matrices. For x1, · · · , xn ∈ C×, we write symdiag(x1, · · · , xn) for the 2n × 2n
diagonal matrix diag(x1, · · · , xn, x−1

n , · · · , x−1
1 ).

Definition 5.2.2. — Let m = d/2. In the reductive group SpN (C) (resp. SON (C)),
we fix once and for all a Borel pair (T ,B), together with an isomorphism (C×)m ∼−→
T , as follows. Let T be the intersection of SpN (C) (resp. SON (C)) with the diagonal
torus in GLN (C), and define the isomorphism (C×)m ∼−→ T by

(t1, · · · , tm) 7−→ symdiag(t1, · · · , tm).

Using this isomorphism we identify X∗(T ) and X∗(T ) with Zm. The root datum
of SpN (C) (resp. SON (C)) on (X∗(T ), X∗(T )) is dual to the standard root da-
tum RD(Bm) (resp. RD(Dm)) as in §1.2.5. We define B by the condition that the
based root datum BRD(T ,B) is dual to the standard based root datum BRD(Bm)
(resp. BRD(Dm)) as in §1.2.5. We call (T ,B) the standard Borel pair .

5.3. Fixing the L-group

5.3.1. — Let BRD(G) be the canonical based root datum of GF , namely the projec-
tive limit

BRD(G) = lim←−
(T,B)

BRD(T,B),

where (T,B) runs through the Borel pairs in GF , and the transition maps are the
canonical isomorphisms induced by inner automorphisms of GF . Since G is defined
over F , there is a canonical action of ΓF on BRD(G); see [Bor79, §1.3]. Recall that
the L-group of G consists of the following data (cf. [Bor79, §2], [KS99, §1.2]):

(1) a reductive group Ĝ over C.
(2) a Borel pair (T ,B) in Ĝ.
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(3) an action of ΓF on Ĝ via algebraic automorphisms such that there exists a
ΓF -stable splitting extending (T ,B). In particular, ΓF acts on the based root datum
BRD(T ,B).

(4) a ΓF -equivariant isomorphism

v : BRD(G) ∼−→ BRD(T ,B)∨,(5.3.1.1)

where BRD(T ,B)∨ denotes the dual of BRD(T ,B).
Given the above data, one defines

LG := Ĝ⋊ Γ′,

where Γ′ is taken to be one of the following groups depending on the context: If F is a
number field, we typically take Γ′ to be ΓF or a sufficiently large finite quotient of it.
When F = R, we typically take Γ′ to be the Weil group WR, which acts on Ĝ through
the map WR → ΓR. When F = C we take Γ′ to be trivial. (This case will never be
considered in the paper.) When F is a non-archimedean local field of characteristic
zero, we typically take Γ′ to be the Weil group WF acting on Ĝ through WF ↪→ ΓF , or
a sufficiently large (finite or infinite) quotient of WF . Here “sufficiently large” always
means that Γ′ should admit a quotient Gal(E/F ), where E/F is a Galois extension
sufficiently large such that the ΓF -action on Ĝ in (3) above factors through Gal(E/F ).
As a result, Γ′ acts on Ĝ. For our specific G, this means that when d is even and δ

is non-trivial, Γ′ should admit Gal(F (α)/F ) as a natural quotient, where α is as in
Definition 5.1.5.

We have a canonical ΓF -equivariant isomorphism between BRD(G) and BRD(G∗)
(coming from the fixed G∗(F )-conjugacy class of inner twistings GF

∼−→ G∗
F

repre-
sented by ψV ). Thus if Ĝ and (T ,B) are as in (1), (2), (3) above, then specifying v

as in (4) is equivalent to specifying a ΓF -equivariant isomorphism

v∗ : BRD(G∗) ∼−→ BRD(T ,B)∨.(5.3.1.2)

In other words, fixing an L-group of G is equivalent to fixing an L-group of G∗.

5.3.2. — We now explicitly present the L-group of G. We take Ĝ to be Spd−1(C)
(resp. SOd(C)) as in §5.2 if d is odd (resp. even). Define the action of ΓF on Ĝ as
follows. The action is trivial unless d is even and δ is non-trivial. In the latter case,
we define the action to factor through ΓF → Gal(F (α)/F ) (see Definition 5.1.5 for α),
and let the non-trivial element of Gal(F (α)/F ) act on Ĝ = SOd(C) by conjugation
by the permutation matrix on Cd that switches êm and êm+1 and fixes all the other
êi’s.

We take (T ,B) to be the standard Borel pair fixed in Definition 5.2.2. Then it
is easy to check that the condition in (3) in §5.3.1 is indeed satisfied. To complete
the presentation of the L-group, we have yet to specify (5.3.1.1). As we have already
noted, this is equivalent to specifying (5.3.1.2).
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Under the isomorphism (C×)m ∼−→ T specified in Definition 5.2.2, the based
root datum BRD(T ,B)∨ is identified with the standard based root datum BRD(Bm)
(resp. BRD(Dm)) in the odd (resp. even) case. Moreover the ΓF -action on BRD(Bm)
or BRD(Dm) induced by the ΓF -action on Ĝ fixed above is the trivial action un-
less d is even and δ is non-trivial, in which case it is given by the unique non-
trivial action of Gal(F (α)/F ) = Z/2Z on BRD(Dm). Hence to specify (5.3.1.2),
it suffices to specify a ΓF -equivariant isomorphism v∗′ : BRD(G∗) ∼−→ BRD(Bm) or
v∗′ : BRD(G∗) ∼−→ BRD(Dm), where ΓF acts on the right hand sides in the way just
described.

In the odd case, there is a unique choice of v∗′. In the even case, remember
that when δ is trivial (resp. non-trivial), we have fixed [BV ] (resp. α and [BV ]) in
Definition 5.1.5. Any member BV of [BV ] gives rise to a Borel pair (T,B) in G∗,
and it together with α gives rise to an isomorphism BRD(T,B) ∼−→ BRD(Dm), as
in §1.2.7. We thus obtain an isomorphism BRD(G∗) ∼−→ BRD(Dm), which we easily
check is ΓF -equivariant, and depends on BV only via [BV ]. This specifies v∗′.

The presentation of the L-group of G is complete.

5.3.3. — Suppose F = Q, and let v be a place of Q. Fix a field embedding Q→ Qv.
Then our above presentation of the L-group of G naturally gives rise to a presentation
of the L-group of GQv . On the other hand, if (V , q) is the quasi-split quadratic space
over Q fixed in §5.1, then V Qv = (V , q) ⊗Q Qv is up to isomorphism the unique
quasi-split quadratic space over Qv of dimension d and discriminant δ. Thus one
could choose the data as in Definitions 5.1.1, and 5.1.5 with respect to the base field
Qv and with V and V replaced by VQv and V Qv , say ϕVQv

, [BV Qv
], and αv, and

obtain from these data a presentation of the L-group of GQv = SO(VQv ) by going
through the above constructions again. These two presentations of the L-group of
GQv are identical in the odd case, and in the even case they are identical as long as
the following conditions are satisfied:

(1) We have ϕVQv
= gv ◦ (ϕV ⊗Q idQv

) for some gv ∈ G∗(Qv).
(2) The isomorphism BRD(G∗) ∼−→ BRD(Dm) arising from [BV ] and α is compat-

ible with the isomorphism BRD(G∗
Qv ) = BRD(SO(V Qv )) ∼−→ BRD(Dm) arising from

[BV Qv
] and αv.

In the rest of the paper these compatibility conditions are always implicitly assumed
when we simultaneously deal with Q and its localizations; note that when ϕV is
given, there indeed exists ϕVR satisfying simultaneously (1) in the above and the
extra condition in Definition 5.1.1. By contrast, we will not assume that the local
data ϕVQv

, [BV Qv
], αv are induced by the global data ϕV , [BV ], α on the nose. Under

condition (1) we also know that the inner class of the inner twisting ψV : GQ
∼−→ G∗

Q
(arising from ϕV ) induces the inner class of the inner twisting ψVQv

: GQv
∼−→ G∗

Qv
(arising from ϕVQv

) via base change.
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5.4. The elliptic endoscopic data

5.4.1. — Keep the setting of §5.3. Denote by E (G) the set of isomorphism classes
of elliptic endoscopic data for G, in the sense of [KS99, §2.1]. In the following we
construct explicit representatives of E (G), following [Wal10]. Recall from [KS99,
§2.1] that in general, the category of elliptic endoscopic data for G is a full subcategory
of the category of endoscopic data for G, and the latter is a full subcategory of the
groupoid category described as follows:

– The objects are tuples (H,H, s, η), where H is a quasi-split reductive group over
F , H is a group containing Ĥ as a subgroup, s is an element of Ĝ, and η is an injective
group homomorphism H → LG.

– An isomorphism from (H,H, s, η) to (H ′,H′, s′, η′) is an element g ∈ Ĝ such that
g im(η)g−1 = im(η′) and gsg−1 ≡ s′ mod Z(Ĝ).
We do not recall here the conditions characterizing the subcategories of endoscopic
data and elliptic endoscopic data.

In the following, all our explicit representatives of E (G) will be of the form
(H, LH, s, η). Thus in the terminology of [Kal11], we represent each isomorphism
class of elliptic endoscopic data by an extended endoscopic triple. The advantage
of doing so is that we could avoid introducing z-extensions, which is in general a
necessity for the theory of endoscopy when Gder is not simply connected; cf. [Täı19,
§2.3].

We first define a set of numerical parameters that will be used.

Definition 5.4.2. — Let V be a quadratic space over F of dimension d and dis-
criminant δ. Define a set PV as follows.

(1) When d is odd, we let PV be the set of pairs (d+, d−) of positive odd integers
such that d+ + d− = d+ 1. We define an involution sw on PV (called swapping) by
sending (d+, d−) to (d−, d+).

(2) When d is even, we let PV be the set of quadruples (d+, δ+, d−, δ−), where:
– d+ and d− are non-negative even integers such that d+ + d− = d.
– δ+ and δ− are elements of F×/F×,2 such that δ+δ− = δ.
– Neither of (d+, δ+) and (d−, δ−) is equal to (0, x) for any non-trivial x ∈

F×/F×,2. If d ≥ 4, then neither of (d+, δ+) and (d−, δ−) is equal to (2, 1).
We define an involution sw on PV by sending (d+, δ+, d−, δ−) to (d−, δ−, d+, δ+).
When d is odd, we sometimes write elements of PV also as (d+, δ+, d−, δ−), under-
standing that δ+ = δ− = 1.

5.4.3. — Fix an element (d+, δ+, d−, δ−) ∈ PV . We shall construct an elliptic
endoscopic datum for G = SO(V ) associated to this parameter. The endoscopic
datum will be of the form (H,H, s, η), where
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– H is given as H = H+×H−, with H± = SO(V ±), where V ± are the unique (up
to isomorphism) quasi-split quadratic spaces over F of dimension d± and discriminant
δ±; remember that δ± are understood to be trivial in the odd case.

– H = LH is the L-group of H; cf. the discussion in §5.4.1.
– s is a semi-simple element of Ĝ.
– η is an L-embedding LH → LG.

To be more precise, in the even case, we fix similar choices as in Definition 5.1.5
for V ±, which we shall denote by α± and [BV ± ]. (Here α+ is only needed when δ+ is
non-trivial, and similarly for α−.) We then use these choices to specify the analogues
of (5.3.1.2) for H± in both the odd and even cases, and present the L-groups LH±

as Ĥ± ⋊ Γ′ as in §5.3, where Ĥ± are the matrix groups Spd±−1(C) (resp. SOd±(C))
in the odd (resp. even) case. In the even case, Γ′ needs to be large enough so as to
admit Gal(F (α+)/F ) (resp. Gal(F (α−)/F ), resp. Gal(F (α+, α−)/F )) as a quotient
when δ+ is non-trivial (resp. δ− is nontrivial, resp. δ+ and δ− are both non-trivial).

We present the L-group LH of H as the fiber product of LH+ and LH− over Γ′.
Thus LH is a semi-direct product

(Ĥ+ × Ĥ−) ⋊ Γ′,

and Ĥ = Ĥ+ × Ĥ− is equipped with the standard Borel pair

(T
Ĥ
,B

Ĥ
) = (TV + × TV − ,BV + × BV −).

Here (TV ± ,BV ±) are as in Definition 5.2.2 for the matrix groups Ĥ±.
We now specify the components s and η. The element s ∈ Ĝ will always be a

diagonal matrix, with ±1’s on the diagonal. We write s = diag(s1, · · · , sd−1) or
diag(s1, · · · , sd), when d is odd or even respectively.

For w ∈ Γ′, we write(1)

η(w) = (ρ(w), w) ∈ LG = Ĝ⋊ Γ′.

To specify the map η : LH → LG it suffices to specify the map η|
Ĥ

: Ĥ → Ĝ and the
map ρ : Γ′ → Ĝ.

We now specify the numbers si ∈ C×, and the maps η|
Ĥ

and ρ.

(1)In practice, it can happen that LH is presented as Ĥ ⋊ Γ′
H whereas LG is presented as Ĝ ⋊ Γ′

G,
for different quotient groups Γ′

H and Γ′
G of the absolute Galois (or Weil) group of F . For instance,

in the even case, when δ is trivial and δ+ and δ− are both non-trivial, we can take Γ′
H to be

Gal(F (α+, α−)/F ) and take Γ′
G to be trivial. In all cases, we may and shall assume that Γ′

G is
always a quotient of Γ′

H . Then the formula η(w) = (ρ(w), w) is understood as η(w) = (ρ(w), π(w)),
where π is the quotient map Γ′

H → Γ′
G. In the text we slightly abuse notation to write Γ′ for both

Γ′
H and Γ′

G.
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5.4.3.1. The odd case. — Write m± := ⌊d±/2⌋. Define

sk :=
{

1, if m− + 1 ≤ k ≤ d−m− − 1,
−1, otherwise.

Define the map

η|
Ĥ

: Ĥ = Ĥ+ × Ĥ− = Spd+−1(C)× Spd−−1(C) −→ Ĝ = Spd−1(C)

to be the restriction of the map GLd+−1(C)×GLd−−1(C)→ GLd−1(C) given by the
identification

Cd
+−1 × Cd

−−1 ∼−→ Cd−1

(êk, 0) 7−→ êk+m−

(0, êk) 7−→
{
êk, if k ≤ m−,

êk+d+−1, if m− + 1 ≤ k ≤ d− − 1.
Finally, define ρ to be trivial.

5.4.3.2. The even case. — Write m± := d±/2. Define

sk :=
{

1, if m− + 1 ≤ k ≤ d−m−,

−1, otherwise.
Define the map

η|
Ĥ

: Ĥ = Ĥ+ × Ĥ− = SOd+(C)× SOd−(C) −→ Ĝ = SOd(C)

to be the restriction of the map GLd+(C)×GLd−(C)→ GLd(C) given by the identi-
fication

Cd
+
× Cd

− ∼−→ Cd(5.4.3.1)
(êk, 0) 7−→ êk+m− ,

(0, êk) 7−→
{
êk, if k ≤ m−,

êk+d+ , if m− + 1 ≤ k ≤ d−.

We define ρ : Γ′ → Ĝ as follows. First we define a matrix S ∈ GLd(C). If d+ ̸= 0,
we take S to be the permutation matrix that switches êm− and êd−m−+1, switches
êm and êm+1, and leaves all the other êi’s fixed. If d+ = 0, we take S to be Id. Thus
in all cases we have S ∈ Ĝ. We then let ρ : Γ′ → Ĝ be the map

w 7−→

{
1, if w|F (α−) = id,
S, otherwise.

(5.4.3.2)

Here remember that α− is a fixed square root in F of a fixed lift of δ− in F× when
δ− is non-trivial. If δ− is trivial, we understand F (α−) as F . The above formula
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(5.4.3.2) makes sense because when δ− is non-trivial we have assumed that Γ′ admits
Gal(F (α−)/F ) as a quotient.

5.4.4. — In both the odd and even cases, the construction in §5.4.3 associates to
each parameter p ∈PV an elliptic endoscopic datum

ep = ep(V ) = (H, LH, s, η)

for G. Moreover, the construction p 7→ ep induces a bijection

PV /sw ∼−→ E (G).

These facts are well known (see [Wal10, §1.8] or [Täı19, §2.3]) and can be proved
similarly as [Mor11, Prop. 2.1.1].

5.4.5. — Let p ∈ PV . The outer automorphism group Out(ep) of the endoscopic
datum ep = (H, LH, s, η) is defined in [KS99, §2.1]. Note that the group Z̄ dis-
cussed on p. 19 of [KS99] is trivial, as Z(Ĝ) is contained in η(Ĥ). Hence Out(ep)
is isomorphic to Aut(ep)/Ĥ (where Aut(ep) denotes the automorphism group of ep
in the category of endoscopic data), and can be naturally viewed as a subgroup of
OutF (H) := AutF (H)/Had(F ); see loc. cit. for details.

In the odd case, Out(ep) is trivial unless p = sw(p), in which case we have Out(ep) ∼=
Z/2Z, with the non-trivial element acting by swapping H+ and H−.

In the even case, write p = (d+, δ+, d−, δ−). Then Out(ep) is trivial when d+d− =
0. When d+ = d− = d/2 and δ = 1, we have Out(ep) ∼= Z/2Z × Z/2Z, where
the non-trivial element of the first Z/2Z induces simultaneously non-trivial outer
automorphisms on H+ and H−, and the non-trivial element of the second Z/2Z acts
by swapping H+ and H−. In the remaining cases, we have Out(ep) ∼= Z/2Z, with the
non-trivial element acting by the simultaneously non-trivial outer automorphisms on
H+ and H−.

5.5. The endoscopic G-data for Levi subgroups

5.5.1. — Let M be a Levi subgroup of G. The notion of an endoscopic G-triple for
M is introduced by Kottwitz in his unpublished notes, and recalled in [Mor10b, §2.4].
(For G = M , this is the usual notion of an endoscopic triple for M , as in [Kot84b,
§7.4].) Given an endoscopic datum (M ′,M′, sM , ηM ) for M , we shall say that it is
an endoscopic G-datum for M , if (M ′, sM , ηM |M̂ ′) is an endoscopic G-triple for M
in the sense of [Mor10b, Def. 2.4.1]. By an isomorphism between two endoscopic
G-data (M ′

1,M′
1, sM,1, ηM,1) and (M ′

2,M′
2, sM,2, ηM,2) for M , we mean an element

g ∈ M̂ such that g im(ηM,1)g−1 = im(ηM,2) and gsM,1g
−1 ≡ sM,2 mod Z(Ĝ). Here

Z(Ĝ) is canonically embedded in Z(M̂).
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We mention that the category of endoscopic G-data for M (where the morphisms
are the isomorphisms) is in fact equivalent to the category of endoscopic G-pairs for
M in Kottwitz’s unpublished notes.

It is easy to see that the association (M ′,M′, sM , ηM ) 7→ (M ′, sM , ηM |M̂ ′) defines
a bijection

{endoscopic G-data for M} /isom ∼−→ {endoscopic G-triples for M} /isom.

We also have a similar bijection

{endoscopic data for G} /isom ∼−→ {endoscopic triples for G} /isom.

As recalled in [Mor10b, §2.4], Kottwitz constructs a map

{endoscopic G-triples for M} /isom −→ {endoscopic triples for G} /isom.

We thus obtain a map

{endoscopic G-data for M} /isom −→ {endoscopic data for G} /isom.

We say that an endoscopic G-datum for M is bi-elliptic, if both the underlying en-
doscopic datum for M and the associated endoscopic datum for G (well-defined up
to isomorphism) are elliptic. We denote by EG(M) the set of isomorphism classes of
bi-elliptic endoscopic G-data for M . Thus we have natural maps EG(M)→ E (G) and
EG(M)→ E (M).

In the following we construct explicit representatives of EG(M). For later purposes,
it suffices to consider only certain Levi subgroups M specified as follows.

5.5.2. — Consider a subspace W of V such that the quadratic form on V is non-
degenerate on W and such that the orthogonal complement W⊥ of W in V is even-
dimensional and split as a quadratic space. We write dW for the dimension of W , and
let n = ⌊dW /2⌋. Recall that V has dimension d and discriminant δ, and as always m
denotes ⌊d/2⌋. Clearly the discriminant of W equals δ, and dW has the same parity
as d.

Fix r, t ∈ Z≥0 such that m = n + r + 2t. Thus dimW⊥ = 2(r + 2t). We fix a
hyperbolic basis (Definition 1.2.2)

BW⊥ =
{
f1, · · · , f2(r+2t)

}
of W⊥, which exists since W⊥ is split. Using this basis, we identify SO(W⊥) as a
subgroup of GL2(r+2t), and define an embedding

Grm ×GLt2 −→ SO(W⊥)(5.5.2.1)

by sending (z1, · · · , zr, w1, · · · , wt) to the block diagonal matrix

diag(z1, · · · , zr, w1, · · · , wt, J2(wT
t )−1J2, · · · , J2(wT

1 )−1J2, z
−1
r , · · · , z−1

1 ),
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where
J2 =

(
0 1
1 0

)
.

We denote the image of (5.5.2.1) by MGL, and define M to be MGL×SO(W ), viewed
as a subgroup of G. Then M is a Levi subgroup of G. We also write MSO for SO(W ).

5.5.3. — We proceed similarly as before to fix the quasi-split inner form of SO(W ),
present the L-group of SO(W ), and fix explicit representatives of the isomorphism
classes of the elliptic endoscopic data for SO(W ). We need to fix notation and impose
some compatibility conditions. Since dW has the same parity as d, in the following we
shall still refer to the “odd case” and the “even case” unambiguously. As in §5.1, we
fix the unique (up to isomorphism) quasi-split quadratic space W over F of dimension
dW and discriminant δ (which is the common discriminant of V and W ) and fix an
isomorphism

ϕW : W ⊗F F
∼−→W ⊗F F

of quadratic spaces over F , from which we get the inner twisting

ψW : SO(W )F
∼−→ SO(W )F

g 7−→ ϕW gϕ
−1
W .

Note that as quadratic spaces over F , V is isomorphic to the orthogonal direct sum
of W⊥ and W . We fix such an isomorphism

ϕVW : W⊥ ⊕W ∼−→ V ,

and use it to obtain an embedding

MGL × SO(W ) ↪→ G∗(5.5.3.1)

whose image is a Levi subgroup.
We remind the reader that when F = R we require both ϕV and ϕW to satisfy the

extra condition in Definition 5.1.1. In general, we assume the following compatibility
condition, which can obviously be arranged by adjusting ϕW .

(1) The diagram

(W⊥ ⊕W )⊗ F

id ⊕ϕW
��

V ⊗ F

ϕV
��

(W⊥ ⊕W )⊗ F
ϕVW // V ⊗ F

commutes up to an element of G∗(F ) = SO(V )(F ).
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As a consequence of this condition, we know that the diagram

MF = (MGL × SO(W ))F
inclusion //

(id,ψW )
��

GF

ψV

��
(MGL × SO(W ))F

(5.5.3.1) // G∗
F

commutes up to an inner automorphism of G∗
F

.
In the odd case, we present the L-group L SO(W ) as in §5.3. In the even case, we

make similar choices as in Definition 5.1.5 for W , to be denoted by αW (needed only
when δ is non-trivial) and [BW ], and use them to present the L-group L SO(W ) as in
§5.3. We may and shall assume the following compatibility conditions:

(2) There is a member BW ∈ [BW ] such that ϕVW sends the ordered basis
(BW⊥ ,BW ) to a member of [BV ].

(3) When δ is non-trivial, the choices αW and α are equal.

Note that the above two conditions are consistent: if (2) is already arranged then we
have α2 = α2

W when δ is non-trivial, and so we can arrange (3).
In both the odd and even cases, we canonically identify MGL with Grm ×GLt2 via

(5.5.2.1), and canonically present M̂GL as (C×)r × GL2(C)t. We now present the
L-group of M as

LM = M̂GL × L SO(W ).
The above compatibility conditions (1)–(3) ensure that the canonical Ĝ-conjugacy
class of maps LM → LG arising from the fact that M is a Levi subgroup of G is
represented by the following map:

(5.5.3.2) LM = (C×)r ×GL2(C)t × ŜO(W ) ⋊ Γ′ ∋ (g1, · · · , gr, h1, · · · , ht, k) ⋊ τ

7−→ diag(g1, · · · , gr, h1, · · · , ht, k, h†
t , · · · , h

†
1, g

−1
r , · · · , g−1

1 ) ⋊ τ

∈ LG = Ĝ⋊ Γ′,

where we define

h† :=
(

−1
1

)
(hT)−1

(
1

−1

)
, ∀h ∈ GL2(C),(5.5.3.3)

(i.e., h† is the adjoint of h−1 with respect to the symplectic form defined by
(

−1
1

)
).

We now construct explicit representatives of EG(M).

Definition 5.5.4. — Let PW be as in Definition 5.4.2 with respect to the quadratic
space W , and for each positive integer x we write [x] for the set {1, 2, · · · , x}. Also
set [0] = ∅. We define the following objects.
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(1) Let Pr,t be the set of pairs (A,B), where A is a subset of [r] and B is a subset
of [t]. For (A,B) ∈Pr,t, we write Ac for the complement of A in [r] and write Bc for
the complement of B in [t].

(2) Let Pr,t ×′ PW be the subset of Pr,t ×PW consisting of those

(A,B, d+, δ+, d−, δ−) ∈Pr,t ×PW

such that the quadruple

(d+ + 2 |A|+ 4 |B| , δ+, d− + 2 |Ac|+ 4 |Bc| , δ−)

belongs to PV . (In the odd case, we understand that δ+ = δ− = 1, and note that
Pr,t ×′ PW = Pr,t ×PW .)

(3) Note that (A,B, p) 7→ (Ac, Bc, sw(p)) is an involution on the set Pr,t ×′ PW .
We denote this involution still by sw.

Definition 5.5.5. — Let A be a subset of Z≥1. For each i ∈ Z≥1, we define

∇i(A) :=
{

1, if i ∈ A,
−1, if i /∈ A.

5.5.6. — Fix an element (A,B, p) ∈Pr,t ×′ PW . In the following we construct an
endoscopic G-datum for M associated to this parameter, denoted by eA,B,p. From
p ∈PW we obtain the endoscopic datum ep(W ) for SO(W ) as in §5.4, which we write
as

(M ′,SO, LM ′,SO, sSO, ηSO : LM ′,SO → L SO(W )).
We then set

eA,B,p := (M ′, LM ′, sM , ηM : LM ′ → LM)
with components given as follows. Let

M ′ := MGL ×M ′,SO.

Let sM be the element of M̂ = M̂GL × M̂SO whose component in M̂SO is sSO and
whose component in M̂GL = (C×)r ×GL2(C)t is

sGL = (∇1(A), · · · ,∇r(A),∇1(B)I2, · · · ,∇t(B)I2).(5.5.6.1)

We present the L-group LM ′ of M ′ as
LM ′ = M̂GL × LM ′,SO,

and define ηM to be the map

ηM = (id, ηSO) : LM ′ = M̂GL × LM ′,SO → LM = M̂GL × LMSO.

For each p ∈PW , we also set

ep(M) := (M ′, LM ′, s′
M , ηM ),
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where M ′, LM ′, ηM are as above, and s′
M is the element of M̂ = M̂GL × M̂SO whose

component in M̂SO is sSO and whose component in M̂GL is the trivial element. Then
ep(M) is an elliptic endoscopic datum for M .

Proposition 5.5.7. — For each (A,B, p) ∈ Pr,t ×′ PW , the tuple eA,B,p is a
bi-elliptic endoscopic G-datum for M whose underlying endoscopic datum for M is
isomorphic to ep(M). The construction (A,B, p) 7→ eA,B,p induces a bijection(

Pr,t ×′ PW

)
/sw ∼−→ EG(M).

Moreover, for (A,B, d+, δ+, d−, δ−) ∈ Pr,t ×′ PW , the image of eA,B,d+,δ+,d−,δ−

under the map EG(M)→ E (G) is represented by

ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ− .

(Remember that if the common parity of dW and d is odd, then we keep the convention
that δ± = 1 as in Definition 5.4.2.)

Proof. — This can be checked in a similar way as the proof of [Mor11, Lem. 2.3.3].
The key point is that MGL is a product of copies of Gm and GL2, and these groups
do not have any non-trivial elliptic endoscopic data.

5.5.8. — Let (A,B, p) ∈Pr,t×′PW . Write eA,B,p as (M ′, LM ′, sM , ηM ). We define
the outer G-automorphism group of eA,B,p to be

OutG(eA,B,p) := AutG(eA,B,p)/M̂ ′,

where AutG(eA,B,p) denotes the automorphism group of eA,B,p in the category of
endoscopic G-data for M (see §5.5.1). We make two remarks on this definition.
Firstly, OutG(eA,B,p) is naturally isomorphic to the outer automorphism group of the
endoscopic G-triple (M ′, sM , ηM |M̂ ′) defined in [Mor10b, §2.4]. (This is explained in
Kottwitz’s unpublished notes.) Secondly, OutG(eA,B,p) is naturally isomorphic to a
subgroup of the outer automorphism group Out(eA,B,p) of the underlying endoscopic
datum for M . (See §5.4.5 for the latter.)

We now explicitly determine OutG(eA,B,p). In the odd case, we always have
OutG(eA,B,p) = {1}. In the even case, write p = (d+, δ+, d−, δ−). Then OutG(eA,B,p)
is trivial if d+d− = 0. In the remaining cases, we have OutG(eA,B,p) ∼= Z/2Z, where
the non-trivial element acts via the non-trivial outer automorphism on MGL, and via
the simultaneously non-trivial outer automorphisms on the two special orthogonal
groups constituting M ′,SO.

5.5.9. — Let (A,B, d+, δ+, d−, δ−) ∈Pr,t×′PW . We have the endoscopic G-datum

eA,B,d+,δ+,d−,δ− = (M ′, LM ′, sM , ηM : LM ′ → LM)
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for M , and the endoscopic datum

ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ− = (H, LH, s, η : LH → LG)

for G. Thus the isomorphism class of (H, LH, s, η) in E (G) is equal to the image of the
isomorphism class of (M ′, LM ′, sM , ηM ) in EG(M), by Proposition 5.5.7. As explained
on p. 43 of [Mor10b], the endoscopic G-datum (M ′, LM ′, sM , ηM ) for M determines
an H(F )-conjugacy class of Levi subgroups of H, all of which are isomorphic to
M ′. In the following we upgrade this construction to an H(F )-conjugacy class of
F -embeddings M ′ ↪→ H with images Levi subgroups. (This depends on our explicit
presentation of the groups.) As a result we obtain a Ĥ-conjugacy class of embeddings
LM ′ → LH. Our construction will be such that the following diagram commutes up
to Ĝ-conjugation:

LH
η // LG

LM ′

OO

ηM // LM

OO(5.5.9.1)

Here the vertical arrow on the right is canonical up to Ĝ-conjugation, arising from
the fact that M is a Levi subgroup of G (cf. (5.5.3.2)).

Recall from §5.5.2 that MGL is a subgroup of SO(W⊥), and that W⊥ is equipped
with a hyperbolic basis

{
f1, · · · , f2(r+2t)

}
. Let

(W⊥)A,B := span{fi, f2(r+2t)+1−i | i ∈ A or ⌈ i− r2 ⌉ ∈ B},

(W⊥)Ac,Bc := span{fi, f2(r+2t)+1−i | i ∈ Ac or ⌈ i− r2 ⌉ ∈ Bc}.

The natural action of MGL on W⊥ stabilizes (W⊥)A,B and (W⊥)Ac,Bc . Let MGL
A,B

(resp. MGL
Ac,Bc) be the maximal quotient of MGL acting faithfully on (W⊥)A,B

(resp. (W⊥)Ac,Bc). Concretely, if we write A = {i1, · · · , iu} and B = {j1, · · · , jv}
where i1 < i2 < · · · < iu and j1 < j2 < · · · < jv, then MGL

A,B is identified with
Gum ×GLv2, and the quotient map

MGL ∼= Grm ×GLt2 −→MGL
A,B
∼= Gum ×GLv2

is given by

(z1, · · · , zr, w1, · · · , wt) 7−→ (zi1 , · · · , ziu , wj1 , · · · , wjv ).

Similarly we have a concrete description of the quotient map MGL →MGL
Ac,Bc .

We now specify the H(F )-conjugacy class of embeddings M ′ ↪→ H. First consider
the odd case. Choose an isometric isomorphism f+ from the orthogonal direct sum
of (W⊥)A,B and W+ to V +. (Such f+ indeed exists since both quadratic spaces are
split and have dimension d+ + 2 |A| + 4 |B|.) This choice, together with the natural
action of MGL

A,B on (W⊥)A,B and the natural action of SO(W+) on W+, determines
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an embedding
f+
∗ : MGL

A,B × SO(W+) −→ SO(V +).
We claim that the SO(V +)(F )-conjugacy class of f+

∗ is independent of the choice of
f+. Indeed, the O(V +)(F )-conjugacy class of f+

∗ is clearly independent of the choice
of f+. The element of O(V +)(F ) acting as 1 on f+((W⊥)A,B) and as −1 on f+(W+)
has determinant −1 and centralizes f+

∗ . Hence the O(V +)(F )-conjugacy class of f+
∗

is in fact equal to the SO(V +)(F )-conjugacy class of f+
∗ . Our claim follows.

Similarly, we choose an isometric isomorphism f− from the orthogonal direct sum
of (W⊥)Ac,Bc and W− to V −. We then obtain an embedding

f−
∗ : MGL

Ac,Bc × SO(W−) −→ SO(V −),

whose SO(V −)(F )-conjugacy class is independent of the choice of f−. Taking the
direct product of f+

∗ and f−
∗ , we obtain the desired embedding M ′ → H which is

canonical up to H(F )-conjugacy.
We now consider the even case. Since the orthogonal direct sum of (W⊥)A,B and

W+ is a quasi-split quadratic space of the same dimension and discriminant as V +,
we can choose an isometric isomorphism f+ between them just as in the odd case.
We then obtain the embedding

f+
∗ : MGL

A,B × SO(W+) −→ SO(V +).

At this point, only the O(V +)(F )-conjugacy of f+
∗ is well defined. We explain how

to narrow this down to an SO(V +)(F )-conjugacy class. As before we canonically
identify MGL

A,B with Gum ×GLv2 (where u = |A| and v = |B|). Consider the canonical
embedding ιGL

A,B : Gu+2v
m →MGL

A,B given by

(z1, · · · , zu+2v) 7−→ (z1, · · · , zu,
(
zu+1

zu+2

)
, · · · ,

(
zu+2v−1

zu+2v

)
).

We divide our discussion into the cases where δ+ is trivial and non-trivial.
Suppose δ+ is trivial. As in §5.4.3, W+ is equipped with an SO(W+)(F )-orbit

[BW+ ] of hyperbolic bases, and V + is equipped with an SO(V +)(F )-orbit [BV + ] of
hyperbolic bases. They determine an SO(W+)(F )-conjugacy class of embeddings

ιW+ = ιBW+ : Gd
+/2
m −→ SO(W+)

and an SO(V +)(F )-conjugacy class of embeddings

ιV + = ιBV+ : Gd
+/2+u+2v
m −→ SO(V +)

(cf. §1.2.7). We impose the condition that the embedding

f+
∗ ◦ (ιGL

A,B × ιW+) : Gu+2v
m ×Gd

+/2
m −→ SO(V +)
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should be SO(V +)(F )-conjugate to ιV + under the obvious identification

Gu+2v
m ×Gd

+/2
m

∼−→ Gd
+/2+u+2v
m

((z1, z2, · · · ), (w1, w2, · · · )) 7−→ (z1, z2, · · · , w1, w2, · · · ).

This extra condition narrows the O(V +)(F )-conjugacy class of f+
∗ to an SO(V +)(F )-

conjugacy class.
Now suppose δ+ is non-trivial. In this case, W+ is equipped with an SO(W+)(F )-

orbit [BW+ ] of near-hyperbolic bases, and we have fixed a square root α+,′ ∈ F

of the common discriminant of members of [BW+ ]. Similarly, V + is equipped with
an SO(V +)(F )-orbit [BV + ] of near-hyperbolic bases, and we have fixed a square root
α+ ∈ F of the common discriminant of members of [BV + ]. (Here α+ may not be equal
to α+,′.) These extra data determine an SO(W+)(F )-conjugacy class of embeddings

ιW+ = ια+,′,BW+ : Gd
+/2−1
m ×U(1)α+,′ −→ SO(W+),

and an SO(V +)(F )-conjugacy class of embeddings

ιV + = ια+,BV+ : Gd
+/2+u+2v−1
m ×U(1)α+ −→ SO(V +)

(cf. §1.2.7). Note that U(1)α+,′ is canonically identified with U(1)α+ , since the fields
F (α+,′) and F (α+) are the same. We impose the condition that

f+
∗ ◦ (ιGL

A,B × ιW+) : Gu+2v
m ×Gd

+/2−1
m ×U(1)α+,′ −→ SO(V +)

should be SO(V +)(F )-conjugate to ιV + under the obvious identification

Gu+2v
m ×Gd

+/2−1
m ×U(1)α+,′

∼−→ Gd
+/2+u+2v−1
m ×U(1)α+

((z1, z2, · · · ), (w1, w2, · · · ), y) 7−→ (z1, z2, · · · , w1, w2, · · · , y).

This extra condition narrows the O(V +)(F )-conjugacy class of f+
∗ to an SO(V +)(F )-

conjugacy class.
We have specified an SO(V +)(F )-conjugacy class of embeddings MGL

A,B ×
SO(W+) → SO(V +). Similarly, we specify an SO(V −)(F )-conjugacy class of
embeddings MGL

Ac,Bc × SO(W−)→ SO(V −). Taking the direct product we obtain the
desired embedding M ′ → H which is canonical up to H(F )-conjugacy.

Write A = {i1, · · · , iu}, B = {j1, · · · , jv}, Ac = {p1, · · · , pr−u} , and Bc =
{q1, · · · , qt−v} with increasing ordering (i.e., i1 < · · · < iu etc.). In both the odd
and even cases, the Ĥ-conjugacy class of embeddings LM ′ → LH arising from our
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construction is represented by the map

(5.5.9.2) LM ′ = (C×)r ×GL2(C)t × ̂SO(W+)× ̂SO(W−) ⋊ Γ′

∋ (g1, · · · , gr, h1, · · · , ht, k+, k−) ⋊ τ 7−→

diag(gi1 , · · · , giu , hj1 , · · · , hjv , k+, h†
jv
, · · · , h†

j1
, g−1
iu
, · · · , g−1

i1
)

× diag(gp1 , · · · , gpr−u , hq1 , · · · , hqt−v , k−, h†
qt−v , · · · , h

†
q1
, g−1
pr−u

, · · · , g−1
p1

)
⋊ τ

∈ LH = Ĥ+ × Ĥ− ⋊ Γ′,

where the notation † is as in (5.5.3.3). Using the formulas (5.5.3.2) and (5.5.9.2), one
sees that the diagram (5.5.9.1) indeed commutes up to Ĝ-conjugation.

5.6. Admissible isomorphisms and embeddings

5.6.1. — Keep the setting of §5.4. For any torus T over F , we denote by T̂ the dual
torus over C, whose group of characters is canonically identified with X∗(T ). If f :
T1 → T2 is a homomorphism of tori over F , we denote by f̂ the dual homomorphism
T̂2 → T̂1.

For any Borel pair (T,B) in GF and any Borel pair (T ,B) in G∗
F

, the fixed iso-
morphisms (5.3.1.1) and (5.3.1.2) give rise to isomorphisms T̂ ∼−→ T and T̂ ∼−→ T of
tori over C. We denote these isomorphisms by dB,B and dB,B respectively.

Now consider an elliptic endoscopic datum (H, LH, s, η) for G as in §5.4.3. Given
a Borel pair (TH , BH) in HF , there is a similar isomorphism

dBH ,B
Ĥ

: T̂H
∼−→ T

Ĥ
.

Here (T
Ĥ
,B

Ĥ
) is the standard Borel pair in Ĥ as in §5.4.3. Note that η : LH → LG

maps T
Ĥ

isomorphically onto T . Hence we obtain isomorphisms

d−1
B,B ◦ η ◦ dBH ,B

Ĥ

: T̂H
∼−→ T̂ ,

d−1
B,B ◦ η ◦ dBH ,B

Ĥ

: T̂H
∼−→ T̂ ,

or equivalently, isomorphisms

j : TH
∼−→ T ⊂ GF ,

j : TH
∼−→ T ⊂ G∗

F
.

We call j an admissible isomorphism between TH and T , and an admissible embedding
of TH into GF ; cf. [LS87, §1.3]. Similar terminology applies to j. We shall also say
that j is associated to the Borel pairs (TH , BH) and (T,B), and say that j is associated
to the Borel pairs (TH , BH) and (T ,B).

The following facts are well known and straightforward to verify.
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Lemma 5.6.2. — Fix maximal tori TH ⊂ HF , T ⊂ GF , and T ⊂ G∗
F

.
(1) The set of admissible isomorphisms between TH and T (resp. between TH and

T ) is a torsor under the Weyl group of (GF , T ) (resp. the Weyl group of (G∗
F
, T )).

(2) The set of admissible embeddings of TH into GF (resp. into G∗
F

) is a single
orbit under G(F )-conjugation (resp. G∗(F )-conjugation).

(3) Let j : TH → GF and j : TH → G∗
F

be arbitrary embeddings such that

j = Int(g) ◦ ψ−1
V ◦ j

for some g ∈ G(F ). (Here ψV is the fixed inner twisting between G and G∗; see §5.1.)
Then j is admissible if and only if j is admissible.





CHAPTER 6

TRANSFER FACTORS FOR REAL SPECIAL
ORTHOGONAL GROUPS

6.1. Cuspidality and transfer of elliptic tori

6.1.1. — We keep the notation in §5, specialized to F = R. Thus (V, q) is a quadratic
space over R of dimension d and discriminant δ, and G = SO(V, q) is a reductive group
over R. We are interested in the case where G contains anisotropic maximal tori.
When d is odd, this is always the case. When d is even, this is the case if and only if
δ = (−1)d/2 ∈ R×/R×,2. (Note that if (d, δ) = (2, 1), then G ∼= Gm contains elliptic
maximal tori but not anisotropic maximal tori.) In the following we assume that G
contains anisotropic maximal tori. We discuss a systematic way of parameterizing
anisotropic maximal tori in G. As usual, we let m := ⌊d/2⌋. Our assumption clearly
implies that V admits an elliptic decomposition defined as follows.

Definition 6.1.2. — By an elliptic decomposition of V , we mean an ordered tuple
(Vj , oj)1≤j≤m, where V1, · · · , Vm are mutually orthogonal definite planes in V , and oj
is an orientation on Vj . Thus the orthogonal direct sum of V1, · · · , Vm is a hyperplane
in V (resp. equal to V ) when d is odd (resp. even). We denote by ED(V ) the set of
all elliptic decompositions of V . By abuse of notation, we often write (Vj)j for an
element of ED(V ), understanding that each Vj is equipped with an orientation.

Definition 6.1.3. — By a parameterized anisotropic maximal torus in G, we mean
an anisotropic maximal torus TG in G together with an isomorphism U(1)m ∼−→ TG.

Definition 6.1.4. — By a fundamental pair in G, we mean a pair (TG, B), where
TG is an anisotropic maximal torus in G, and B is a Borel subgroup of GC containing
TG,C.

Remark 6.1.5. — Since any two anisotropic maximal tori in G are conjugate under
G(R), the number of G(R)-orbits of fundamental pairs in G is equal to the cardinality
of ΩC(G,TG)/ΩR(G,TG), where TG is an arbitrary anisotropic maximal torus in G.
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6.1.6. — Given D = (Vj)j ∈ ED(V ), we obtain a parameterized anisotropic maximal
torus from the embedding

fD : U(1)m ∼−→ TD ⊂ G,

where the j-th copy of U(1) acts by rotation on the oriented definite plane Vj . The
(absolute) root datum of G on

(X∗(TD), X∗(TD)) ∼−→
fD

(X∗(U(1)m), X∗(U(1)m)) = (Zm,Zm)

is the standard root datum RD(Bm) or RD(Dm) when d is odd or even. Hence the
standard based root datum BRD(Bm) or BRD(Dm) gives rise to a Borel subgroup
BD of GC containing TD,C. Thus we obtain a fundamental pair (TD, BD) from D ∈
ED(V ).

6.1.7. — Recall from §5.1 that we have fixed a quasi-split quadratic space (V , q)
and fixed an isomorphism ϕV : V ⊗R C ∼−→ V ⊗R C of quadratic spaces over C. By
definition we have G∗ = SO(V ). We have the obvious analogues of Definitions 6.1.2,
6.1.3, 6.1.4, and the constructions in §6.1.6, with V and G replaced by V and G∗.
Note that our assumption that G contains anisotropic maximal tori implies that G∗

also contains anisotropic maximal tori, since these conditions both boil down to the
numerical condition that either d is odd or d is even and δ = (−1)d/2. In particular
ED(V ) ̸= ∅.

Recall from Definition 5.1.5 that when d is even and when δ is trivial (resp. non-
trivial), we have fixed a G∗(R)-orbit [BV ] of hyperbolic bases (resp. near-hyperbolic
bases) of V . Note that all members of [BV ] induce the same orientation on V . We
denote this orientation by oV . Still under the assumption that d is even, we define an
orientation oV on V as follows. Let (a, b) be the signature of V . Since δ = (−1)d/2,
both a and b are even. Also V has signature

(a∗, b∗) = (2⌈d/4⌉, 2⌊d/4⌋).

We define oV to be (−1)(b−b∗)/2 times the pull-back of oV along the R-linear isomor-
phism

∧dϕV : ∧dV ∼−→ ∧dV .
Here ∧dϕV is indeed defined over R because V and V have the same discriminant.

When d is even, every elliptic decomposition of V (resp. V ) gives rise to an orien-
tation on V (resp. V ). We define ED(V , oV ) to be the set of elliptic decompositions
of V that induce the orientation oV , and similarly define ED(V, oV ). In order to have
uniform notation in the odd and even cases, we set

ED(V )o :=
{

ED(V ), if d is odd,
ED(V , oV ), if d is even,
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and

ED(V )o :=
{

ED(V ), if d is odd,
ED(V, oV ), if d is even.

Lemma 6.1.8. — Assume that d is even. Let {v1, · · · , vd} be an orthogonal basis
of V and {v1, · · · , vd} an orthogonal basis of V satisfying the condition in Definition
5.1.1. Then {v1, · · · , vd} induces the orientation oV if and only if {v1, · · · , vd} induces
the orientation oV .

Proof. — Comparing the signatures we see that the cardinality of the set{
j | 1 ≤ j ≤ d, ϕ(vj) = vj ⊗

√
−1
}

is congruent to b− b∗ (mod 2). Hence the determinant of the matrix of ϕV under the
given bases is equal to (−1)(b−b∗)/2. The lemma follows.

6.1.9. — Consider an elliptic endoscopic datum (H, LH, s, η) for G. We assume
that it is one of the explicit representatives constructed in §5.4. Recall that H =
SO(V +) × SO(V −), where V ± are quasi-split quadratic spaces over R. In the even
case, we denote by oV ± the orientation on V ± determined by [BV ± ]. (See §5.4.3 for
[BV ± ].) We assume that H contains anisotropic maximal tori, or equivalently, that
both SO(V +) and SO(V −) contain anisotropic maximal tori. In particular, ED(V ±)
are non-empty. Similarly as in §6.1.7, we set

ED(V ±)o :=
{

ED(V ±), if d± is odd,
ED(V ±, oV ±), if d± is even.

Let m± := ⌊d±/2⌋. We fix an element

DH = (D+
H ,D

−
H) ∈ ED(V +)o × ED(V −)o.

Then we get a parameterized anisotropic maximal torus

fDH : U(1)m
+
×U(1)m

− ∼−→ TD+
H
× TD−

H
= TDH ⊂ SO(V +)× SO(V −) = H,

and a fundamental pair (TDH , BDH ) in H, by the obvious generalization of Definitions
6.1.3 and 6.1.4. We also fix D ∈ ED(V )o and D ∈ ED(V )o. Let

fD : U(1)m ∼−→ TD ⊂ G∗,

fD : U(1)m ∼−→ TD ⊂ G

be the associated parameterized anisotropic maximal tori, and let (TD, BD), (TD, BD)
be the associated fundamental pairs inG∗ and inG. We define the following composite
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maps with Convention 6.1.10 below in force:

jDH ,D : TDH
f−1

DH−−−→ U(1)m
+
×U(1)m

− ∼= U(1)m fD−−→ TD,

jDH ,D : TDH
f−1

DH−−−→ U(1)m
+
×U(1)m

− ∼= U(1)m
fD−−→ TD.

Convention 6.1.10. — We identify U(1)m+ ×U(1)m− with U(1)m by the isomor-
phism

((g1, · · · , gm+), (h1, · · · , hm−)) 7−→ (h1, · · · , hm− , g1, · · · , gm+).

Our next goal is to show that jDH ,D and jDH ,D are admissible isomorphisms, in
the sense of §5.6.

Lemma 6.1.11. — In the setting of §6.1.9, the following diagram commutes:

Û(1)
m

T̂D
f̂Doo

dBD,B

��
(C×)m // T

Here the bottom horizontal map is the isomorphism fixed in Definition 5.2.2, and
dBD,B is as in §5.6.

Proof. — In the odd case, V is split, so we can fix a hyperbolic basis B of V . In
the even case, we fix a member B of the G∗(R)-orbit [BV ] of bases of V in Definition
5.1.5. When V is split (i.e., when either d is odd or d is even and δ is trivial), B is a
hyperbolic basis, and we let ιB : Gmm ↪→ G∗ be the associated embedding as in §1.2.7.
When V is not split (i.e., when d is even and δ is non-trivial), B is a near-hyperbolic
basis, and we let ιB : Gm−1

m × U(1) ↪→ G∗ be the associated embedding as in §1.2.7.
In all cases we write T ′

B for the image of ιB. We view the base change of ιB to C as
an isomorphism ιB,C : Gmm,C

∼−→ T ′
B,C (as we canonically identify U(1)C with Gm,C).

Now we claim that there exists g ∈ G∗(C) such that the diagram

U(1)mC
fD,C //

��

TD,C

Gmm,C
ιB,C // T ′

B,C

Int(g)

OO
(6.1.11.1)

commutes. Here the left vertical arrow is the canonical isomorphism.
To prove the claim, first we observe that the truth of the claim does not depend on

the choices of B and D (as long as they both induce the correct orientation oV in the
even case). Using this observation, we easily reduce the claim for both the odd and
even cases to the even case where V has signature (2, 2). In this case, take a basis
{u1, u2, u3, u4} of V under which the quadratic form has matrix diag(1, 1,−1,−1).
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Without loss of generality we assume that this basis induces the orientation oV . Let
V1 be the oriented plane spanned by {u1, u2}, and let V2 be the oriented plane spanned
by {u3, u4}. Then (V1, V2) ∈ ED(V , oV ). Define

x1 = 1
2(u1 + u3), y1 = u1 − u3, x2 = 1

2(u2 − u4), y2 = u2 + u4.

Then {x1, x2, y2, y1} is a hyperbolic basis of V , and it induces the orientation oV . We
may and shall assume that D = (V1, V2) and B = {x1, x2, y2, y1}. Let g ∈ End(V ⊗C)
be given by

x1 7−→
1
2(u1 − iu2), y1 7−→ u1 + iu2, x2 7−→ −

1
2(u3 − iu4), y2 7−→ u3 + iu4.

Then g ∈ O(V )(C), and the diagram (6.1.11.1) commutes. We have det g = 1 by
direct computation, which proves the claim.

Now by the definition of BD, we know that fD pulls back the based root datum
BRD(TD,C, BD) on (X∗(TD), X∗(TD)) to the standard based root datum BRD(Bm)
or BRD(Dm) on (Zm,Zm). By the commutative diagram (6.1.11.1), we know that
the isomorphism BRD(TD,C, BD) ∼−→ BRD(Bm or Dm) induced by fD is equal to
the isomorphism v∗′ fixed in §5.3. The lemma then follows from the definition of
dBD,B.

Lemma 6.1.12. — In the setting of §6.1.9, jDH ,D is admissible, and it is associated
to the Borel pairs (TDH ,C, BDH ) and (TD,C, BD).

Proof. — The map η : LH → LG restricts to an isomorphism T
Ĥ

= TV +×TV −
∼−→ T .

This isomorphism is given by

(C×)m
+
× (C×)m

−
−→ (C×)m

((g1, · · · , gm+), (h1, · · · , hm−)) 7−→ (h1, · · · , hm− , g1, · · · , gm+),

under the identifications TV + ∼= (C×)m+
, TV − ∼= (C×)m−

, T ∼= (C×)m as in Definition
5.2.2. This fact, together with Lemma 6.1.11 (applied to V and V ±), implies the
current lemma.

Lemma 6.1.13. — In the setting of §6.1.9, jDH ,D is admissible.

Proof. — Since ED(V )o is a single G(R)-orbit, the truth of the lemma does not de-
pend on the choice of D ∈ ED(V )o. Let {v1, · · · , vd} be a basis of V and {v1, · · · , vd}
a basis of V , satisfying the condition in Definition 5.1.1. Let m = ⌊d/2⌋. Up to re-
ordering, we may assume that q(vj) = q(vj+1) for all j ∈ {1, 3, · · · , 2m− 1}. When d
is even, we may further assume that {v1, · · · , vd} induces the orientation oV (because
we may switch the order of v1 and v2 without changing the other conditions). For each
1 ≤ j ≤ m, let Vj be the oriented plane spanned by {v2j−1, v2j}, and let V j be the
oriented plane spanned by {v2j−1, v2j}. Then (Vj)j ∈ ED(V )o and (V j)j ∈ ED(V ).
By Lemma 6.1.8, we have (V j)j ∈ ED(V )o. In §6.1.9, we can take D to be (Vj)j , and
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take D to be (V j)j . By Lemma 6.1.12, we know that jDH ,D is admissible. In view of
Lemma 5.6.2 (3), we complete the proof by noting that jDH ,D = ψ−1

V ◦ jDH ,D.

6.2. Transfer factors, when d is not divisible by 4

6.2.1. — We keep the setting of §6.1, and in particular keep the assumption that
G and G∗ contain anisotropic maximal tori. By an equivalence class of Whittaker
data for G∗, we mean a G∗(R)-conjugacy class of pairs (B, λ) consisting of a Borel
subgroup B of G∗ defined over R and a generic character λ : NB(R) → C×, where
NB denotes the unipotent radical of B. See [KS99, §5.3] for more details. It is a
standard result that the set of equivalence classes of Whittaker data for G∗ is a torsor
under the finite abelian group G∗,ad(R)/G∗(R).

Assume that d is not divisible by 4. Then the map G∗(R)→ G∗,ad(R) is surjective,
which can be seen by noting that ker(H1(R, ZG∗) → H1(R, G∗)) is trivial. Hence
G∗ has a unique equivalence class of Whittaker data. As in §6.1.9, we fix an elliptic
endoscopic datum (H, LH, s, η) for G, assumed to be one of the explicit representatives
constructed in §5.4. Thus we have H = SO(V +)× SO(V −), where V ± is quasi-split
and has dimension d± and discriminant δ±. As usual, both V ± are split in the odd
case. We write m = ⌊d/2⌋,m± = ⌊d±/2⌋. We assume that H contains anisotropic
tori.

In this paper, unless otherwise stated, “transfer factor” always means “absolute
geometric transfer factor”.

The Whittaker normalization of the transfer factors between H and G∗ was defined
by Kottwitz–Shelstad in [KS99, §5.3] (in the general setting of twisted endoscopy),
and a correction was later made in [KS12]. In this paper, we always use the classical
normalization of local class field theory as opposed to Deligne’s normalization; see
[KS12, §§4.1, 4.2]. Thus among the four ∆,∆′,∆D,∆′

D discussed at the end of
[KS12, §5.1], we only consider ∆ and ∆′. Moreover, since we always have s2 = 1, we
have ∆ = ∆′. We shall call the transfer factors ∆′

λ(·, ·) given in [KS12, (5.5.2)] the
Whittaker-normalized transfer factors. By the discussion at the end of [KS12, §5.5]
and by s2 = 1, we have

∆′
λ = ϵL(V, ψ)∆′

0 = ϵL(V, ψ)∆0,

where ∆0 is the Langlands–Shelstad normalization defined on p. 248 of [LS87].
In the following we denote the Whittaker-normalized transfer factors between H

and G∗ by ∆Wh(·, ·). Also, having fixed ψV : G → G∗ and uV : Γ∞ → G∗(C) as in
§5.1, we can derive from ∆Wh(·, ·) a normalization of the transfer factors between H

and G as in Remark 5.1.4, to be denoted by ∆Wh(·, ·). (See §6.2.7 below for more
details.)
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In [Kot90, §7], another normalization ∆j,B(·, ·) of the transfer factors between H
and G is considered, which is associated to a certain datum (j, B). The goal of this
section is to compare the two normalizations ∆Wh and ∆j,B .

In the following we assume that V is of signature (p, q) with p > q, and that
d = p+ q is not divisible by 4.

Transfer factors between H and G∗

Definition 6.2.2. — We define a subset ED(V )oWh of ED(V )o (see §6.1.7) as follows.
When d is odd, let ED(V )oWh consist of those (V j)1≤j≤m ∈ ED(V )o = ED(V ) such
that V j is (−1)j+1 sgn(δ)-definite for each 1 ≤ j ≤ m. When d is even (but not
divisible by 4), let ED(V )oWh consist of those (V j)1≤j≤m ∈ ED(V )o such that V j is
(−1)j+1-definite for each 1 ≤ j ≤ m.

Remark 6.2.3. — Let (V j)j be an arbitrary element of ED(V )o. Recall that V has
discriminant δ and determinant (−1)mδ. In the odd case, V has signature (m+ 1,m)
when δ > 0, and signature (m,m+1) when δ < 0. Therefore there are precisely ⌈m/2⌉
(resp. ⌊m/2⌋) positive definite planes among the V j ’s when δ > 0 (resp. when δ < 0).
It follows that there exists σ ∈ Sm such that (V σ(j))j ∈ ED(V )oWh. In the even case,
there are precisely ⌈m/2⌉ positive definite planes among the V j ’s no matter what
δ is, so again there exists σ ∈ Sm such that (V σ(j))j ∈ ED(V )oWh. (Here (V σ(j))j
automatically induces the same orientation on V as (V j)j does.) Moreover, in both
cases ED(V )oWh is a single G∗(R)-orbit with respect to the natural G∗(R)-action on
ED(V )o.

Lemma 6.2.4. — Let D ∈ ED(V )oWh. Let (TD, BD) be the associated fundamental
pair in G∗, as in §6.1.6. Then every BD-simple root in X∗(TD) is (imaginary) non-
compact. In other words, (TD, BD) is a fundamental pair of Whittaker type in the
terminology of [She15].

Proof. — Let {ϵ∨1 , · · · , ϵ∨m} be the standard basis of X∗(U(1)m), and let {ϵ1, · · · , ϵm}
be the standard basis of X∗(U(1)m). Let fD : U(1)m ∼−→ TD be the parameterized
anisotropic maximal torus associated to D, as in §6.1.6. We identify X∗(TD) with
X∗(U(1)m) via fD. Then the BD-simple roots are αj = ϵj − ϵj+1, 1 ≤ j ≤ m− 1, and
αm = ϵm (resp. αm = ϵm−1 + ϵm) in the odd (resp. even) case. Denote the complex
conjugation by τ . It suffices to check that for each 1 ≤ j ≤ m and for one (and hence
any) root vector Ej of αj , we have

[Ej , τEj ] = C(Ej)Hj ∈ LieG∗

for some C(Ej) ∈ R>0. Here Hj is the coroot α∨
j viewed as an element of LieG∗.

Write D = (V j)j . Since D ∈ ED(V )oWh, there exists an integer r such that V j
is (−1)r+j-definite for each 1 ≤ j ≤ m. Moreover, we have (−1)r = − sgn(δ) when



128 CHAPTER 6. TRANSFER FACTORS FOR REAL SO GROUPS

d is odd, and (−1)r = −1 when d is even. For each 1 ≤ j ≤ m, let {fj , f ′
j} be an

orthogonal basis of V j inducing the given orientation on V j such that

q(fj) = q(f ′
j) = (−1)r+j .

Let

ej := fj ⊗ 1− f ′
j ⊗ i ∈ V ⊗ C,

e′
j := (−1)r+j 1

2τ(ej) ∈ V ⊗ C.

In the odd case we also fix a non-zero vector l ∈ V which is orthogonal to each V j ,
and satisfies q(l) ∈ {±1} . Thus q(l) is the sign of the determinant of the quadratic
space V , which is (−1)m sgn(δ) = (−1)r+m+1.

Now {e1, · · · , em, e′
1, · · · , e′

m, l} (resp. {e1, · · · , em, e′
1, · · · , e′

m}) is a C-basis of V ⊗
C in the odd (resp. even) case, and we have

[ej , ek] = [e′
j , e

′
k] = [ej , l] = [e′

j , l] = 0, [ej , e′
k] = δj,k.

Note that for each 1 ≤ j ≤ m, the cocharacter fD ◦ ϵ∨j of G∗ acts on V with weight 1
on ej , weight −1 on e′

j , and weight 0 on ek, e
′
k for all k ̸= j. In the odd case, it also

acts with weight 0 on l.
For 1 ≤ j ≤ m− 1, we define Ej ∈ End(V ⊗ C) by

ej 7−→ 0, ej+1 7−→ ej , e′
j 7−→ −e′

j+1,

e′
j+1 7−→ 0, ek, e

′
k 7−→ 0 for k /∈ {j, j + 1} ,

l 7−→ 0 (if d is odd).

It is easy to see that Ej ∈ LieG∗
C and that it is indeed a root vector of αj . We

compute that τEj is given by

ej 7−→ ej+1, ej+1 7−→ 0, e′
j 7−→ 0,

e′
j+1 7−→ −e′

j , ek, e
′
k 7−→ 0 for k /∈ {j, j + 1} ,

l 7−→ 0 (if d is odd).

Then [Ej , τEj ] is given by

ej 7−→ ej , ej+1 7−→ −ej+1, e′
j 7−→ −e′

j ,

e′
j+1 7−→ e′

j+1 ek, e
′
k, 7−→ 0 for k /∈ {j, j + 1} ,

l 7−→ 0 (if d is odd).

Thus [Ej , τEj ] = Hj , as desired.
In the odd case, we define Em ∈ End(V ⊗ C) by

l 7−→ em, e′
m 7−→ −q(l)−1l = (−1)r+ml,

ek 7−→ 0 for 1 ≤ k ≤ m, e′
k 7−→ 0 for 1 ≤ k ≤ m− 1.
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Then Em ∈ LieG∗
C and it is a root vector of αm. We compute that τEm is given by

l 7−→ (−1)m+r2e′
m, em 7−→ 2l,

ek 7−→ 0 for 1 ≤ k ≤ m− 1, e′
k 7−→ 0 for 1 ≤ k ≤ m.

Then [Em, τEm] is given by

l 7−→ 0, em 7−→ 2em,
e′
m 7−→ −2e′

m, ek, e
′
k 7−→ 0 for 1 ≤ k ≤ m− 1.

Thus [Em, τEm] = Hm, as desired.
In the even case, we define Em ∈ End(V ⊗ C) by

e′
m 7−→ em−1, e′

m−1 7−→ −em,
ek 7−→ 0 for 1 ≤ k ≤ m, e′

k 7−→ 0 for 1 ≤ k ≤ m− 2.

Then Em ∈ LieG∗
C and it is a root vector of αm. We compute that τEm is given by

em 7−→ −e′
m−1, em−1 7−→ e′

m,

ek 7−→ 0 for 1 ≤ k ≤ m− 2, e′
k 7−→ 0 for 1 ≤ k ≤ m.

Then [Em, τEm] is given by

em 7−→ em, em−1 7−→ em−1,

e′
m 7−→ −e′

m, e′
m−1 7−→ −e′

m−1,

ek, e
′
k 7−→ 0 for 1 ≤ k ≤ m− 2.

Thus [Em, τEm] = Hm, as desired.

6.2.5. — As before, we fix the standard Borel pair (T ,B) in Ĝ, and the standard
Borel pair (TV + × TV − ,BV + × BV −) = (T

Ĥ
,B

Ĥ
) in Ĥ = ̂SO(V +) × ̂SO(V −); see

Definition 5.2.2 and §5.4.3. We extend (T ,B) to a Γ∞-stable splitting spl
Ĝ

, and
extend (T

Ĥ
,B

Ĥ
) to a Γ∞-stable splitting spl

Ĥ
.

Note that η : LH → LG maps (T
Ĥ
,B

Ĥ
) into (T ,B). Given this property, and given

the choices spl
Ĝ

and spl
Ĥ

, we have the following constructions (see [She19, §§7.3,
8.1], [She10b, §7], [She10a, §3]):

– Inside each equivalence class φ of discrete Langlands parameters for G∗, there
is a canonical T -conjugacy class of parameters, whose elements we shall call almost
canonical representatives. Similarly, inside each equivalence class of discrete Lang-
lands parameters for H, there are almost canonical representatives.

– Let φ be as above. Consider the set of equivalence classes of discrete Langlands
parameters for H that induce φ via η : LH → LG. Then this set is non-empty
(because H contains anisotropic maximal tori), and it contains a canonical element
φH , called well-positioned, which is uniquely characterized by the following property:
For one (and hence any) almost canonical representative φH of φH , the composition
η ◦ φH is an almost canonical representative of φ.
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We now choose an arbitrary equivalence class φ of discrete Langlands parameters
for G∗, and obtain φH from φ as above. Choose an almost canonical representative
φH of φH , and let φ := η ◦ φH . Thus φ is an almost canonical representative of
φ. By construction, the Borel pair in Ĝ (resp. Ĥ) determined by φ (resp. φH) as on
p. 182 of [Kot90] is (T ,B) (resp. (T

Ĥ
,B

Ĥ
)).

Let π0 be the unique generic member (with respect to the unique equivalence class
of Whittaker data) of the L-packet Πφ; see [Kos78] and [Vog78]. As proved by
Shelstad in [She08] (see [She10a, Thm. 3.6]), we have

∆spec
Wh (φH , π0) = 1.(6.2.5.1)

Here ∆spec
Wh (·, ·) are the (absolute) spectral transfer factors between H and G∗, un-

der the Whittaker normalization. (In fact, (6.2.5.1) holds for all discrete φH in-
ducing φ, not just the well-positioned one; cf. [Kal16, §5.6]. We will not need
this.) By [She10b, Lem. 12.3], the transfer factors ∆spec

Wh (·, ·) are compatible with
the Whittaker-normalized transfer factors ∆Wh(·, ·), in the sense that the endoscopic
character relations defined by the former are satisfied when the test functions satisfy
orbital integral relations with respect to the latter.

We now fix D and DH as in §6.1.9, and assume that D ∈ ED(V )oWh. We keep
the notation in §6.1.9. By Lemma 6.1.12, the map jDH ,D constructed in §6.1.9 is
an admissible isomorphism. We note that (jDH ,D, BD, BDH ) is aligned with φH in
the sense of [Kot90, p. 184], which follows from our assumption that φH is well-
positioned. In the following, we abbreviate jDH ,D as j, and abbreviate BD as B.

In [Kot90, §7], a normalization

∆j,B(·, ·)

of the transfer factors between H and G∗ is defined. Write ∆spec
j,B (·, ·) for the spectral

transfer factors normalized compatibly with ∆j,B(·, ·). Then since (j, B) is aligned
with φH , we have (see [Kot90, p. 185])

∆spec
j,B (φH , π(φ, ω−1B)) = ⟨aω, s⟩,(6.2.5.2)

for all ω ∈ ΩC(G∗, TD). Here aω is defined in [Kot90, §5], and we shall not need the
definition of ⟨aω, s⟩ except the fact that

⟨a1, s⟩ = 1.

Now by Vogan’s classification theorem for generic representations [Vog78, Thm. 6.2]
and by Lemma 6.2.4, we know that π0 = π(φ,B). Hence by setting ω = 1 in (6.2.5.2)
we obtain

∆spec
j,B (φH , π0) = 1.(6.2.5.3)

Comparing (6.2.5.1) and (6.2.5.3), we see that

∆spec
Wh = ∆spec

j,B .(6.2.5.4)
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Now as we recalled above, ∆spec
Wh is compatible with ∆Wh. Hence it follows from

(6.2.5.4) that
∆j,B = ∆Wh.

We record this in the following lemma.

Lemma 6.2.6. — Let D ∈ ED(V )oWh and DH ∈ ED(V +)o × ED(V −)o. Let j =
jDH ,D and let B = BD. Then ∆Wh = ∆j,B .

Transfer factors between H and G

6.2.7. — Recall from §5.1 that we have fixed an isomorphism ϕV : V ⊗C ∼−→ V ⊗C
between quadratic spaces over C, and used ϕV to define the inner twisting ψV : GC

∼−→
G∗

C and the cocycle uV : Γ∞ → G∗(C), satisfying (5.1.2.1). As we have explained in
Remark 5.1.4, these extra data allow us to derive from ∆Wh(·, ·) a normalization of
the transfer factors between H and G, which we denote by ∆Wh(·, ·).

We now recall the characterization of ∆Wh in terms of ∆Wh following [Kal11,
§2.2]. Let TH , T , and T be anisotropic maximal tori in H, G, and G∗, respectively.
(Recall that H, G, and G∗ all contain anisotropic maximal tori.) Assume that uV
takes values in T (C). (We shall see in §6.2.15 below that this can indeed be arranged.)
Let j : TH,C → TC and j : TH,C → TC be arbitrary admissible isomorphisms; see §5.6.
Note that TH , T , and T are all isomorphic to U(1)m, and so j and j are necessarily
defined over R. Let γH ∈ TH(R), and let

γ := j(γH), γ := j(γH).

Assume that γ and γ are strongly regular. Then ∆Wh is characterized by the following
formula:

∆Wh(γH , γ) = ∆Wh(γH , γ)⟨inv(γ, γ), sγH ,γ⟩−1,(6.2.7.1)

where inv(γ, γ) and sγH ,γ are defined as follows.

– Define inv(γ, γ) to be the image of the cocycle (ρ 7→ uV (ρ)) under the Tate–
Nakayama isomorphism H1(R, T ) ∼−→ Ĥ

−1
(Γ∞, X∗(T )). In our case, since T ∼=

U(1)m, the norm map on X∗(T ) is zero, and so Ĥ
−1

(Γ∞, X∗(T )) is simply X∗(T )Γ∞ .
– Define sγH ,γ to be the image of s ∈ Z(Ĥ) (which is part of the endoscopic datum)

under the composite map

Z(Ĥ) �
� // T̂H

ĵ
// T̂ .

Here the first map is the common restriction to Z(Ĥ) of any isomorphism T
Ĥ

∼−→ T̂H

of the form d−1
BH ,B

Ĥ

for any Borel subgroup BH of HC containing TH,C; see §5.6. We
know that sγH ,γ is invariant under Γ∞ since, in our case, it is of order at most 2 and
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the non-trivial element of Γ∞ acts on T̂ by inversion. Thus sγH ,γ can be paired with
inv(γ, γ).

Definition 6.2.8. — We call ∆Wh(·, ·) as in (6.2.7.1) the Whittaker-normalized
transfer factors between H and G.

Definition 6.2.9. — Let ED(V )oWh,ϕV be the set of tuples (V j , λj)1≤j≤m, where
(V j)j ∈ ED(V )oWh (see Definition 6.2.2), and λ1, · · · , λm ∈

{
1,
√
−1
}

, satisfying the
following conditions.

(1) For each 1 ≤ j ≤ m, we have ϕ−1
V (V j) ⊂ V ⊗ λ−1

j .
(2) There exists j0 ∈ Z such that for each 1 ≤ j ≤ m, we have λj =

√
−1 if and

only if V j is negative definite and j ≤ j0.
(3) If d is odd, then the restriction of ϕ−1

V : V ⊗ C → V ⊗ C to the orthogonal
complement of

⊕m
j=1 V j in V is defined over R.

Remark 6.2.10. — The set ED(V )oWh,ϕV is non-empty. This follows from the con-
dition in Definition 5.1.1, the fact that V and V have the same discriminant, and
Remark 6.2.3.

6.2.11. — Let (V j , λj)j ∈ ED(V )oWh,ϕV as in Definition 6.2.9. We construct an
element (Vj)j ∈ ED(V )o as follows. For each j, let {fj , f ′

j} be a basis of V j inducing
the given orientation on V j . Then the vectors λjϕ−1(fj), λjϕ−1(f ′

j) ∈ V ⊗ C lie
in V ⊗ 1. We identify V ⊗ 1 with V , and let Vj be the oriented plane spanned by
{λjϕ−1(fj), λjϕ−1(f ′

j)}. Then (Vj)j is an element of ED(V ). By Lemma 6.1.8, we
have (Vj)j ∈ ED(V )o. The construction (V j , λj)j 7→ (Vj)j gives a map

ED(V )oWh,ϕV −→ ED(V )o.(6.2.11.1)

Definition 6.2.12. — We define a subset ED(V )onice of ED(V )o as follows. When
d is odd, we let ED(V )onice consist of those (Vj)j ∈ ED(V )o = ED(V ) for which there
exists j0 ∈ Z such that

{j | 1 ≤ j ≤ m,Vj is negative definite}
=
{
j | 1 ≤ j ≤ m, j > j0, and (−1)j = sgn(δ)

}
.

When d is even (but not divisible by 4), we let ED(V )onice consist of those (Vj)j ∈
ED(V )o for which there exists j0 ∈ Z such that

{j | 1 ≤ j ≤ m,Vj is negative definite}
=
{
j | 1 ≤ j ≤ m, j > j0, and (−1)j = 1

}
.

Example 6.2.13. — Let D = (Vj)j be an arbitrary element of ED(V )o. Recall that
V has signature (p, q). If d is odd and q = 2, then D is in ED(V )onice if and only if
Vm is negative definite. If d is odd and q ≤ 1, then D is automatically in ED(V )onice.
If d is even (but not divisible by 4) and q = 2, then D is in ED(V )onice if and only if
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Vm−1 is negative definite. If d is even (but not divisible by 4) and q = 0, then D is
automatically in ED(V )onice.

Lemma 6.2.14. — The image of the map (6.2.11.1) is contained in ED(V )onice.

Proof. — This is clear from the definitions.

6.2.15. — Now let (V j , λj)j be an element of ED(V )oWh,ϕV , with image (Vj)j ∈
ED(V )onice under the map (6.2.11.1). Write D for the element (V j)j ∈ ED(V )oWh, and
write D for the element (Vj)j ∈ ED(V )onice. Write λ⃗ for the tuple (λj)j . Let

fD : U(1)m −→ TD

be the parameterized anisotropic maximal torus in G∗ associated to D, and let

fD : U(1)m −→ TD

be the parameterized anisotropic maximal torus in G associated to D. Also, let
(TD, BD) be the fundamental pair in G∗ associated to D, and let (TD, BD) be the
fundamental pair in G associated to D. We abbreviate (TD, BD) as (T ,B), and
abbreviate (TD, BD) as (T,B).

Note that we have

fD = ψV ◦ fD,(6.2.15.1)

which is clear from the definition of ψV in §5.1.2. In particular, the cocycle uV takes
values in T (C). More precisely, for ρ = τ the complex conjugation, uV (τ) acts as −1
on V j for those j such that λj =

√
−1, and acts as the identity on the orthogonal

complement of these V j ’s. It follows that uV (τ) ∈ T (R). Another consequence of the
relation (6.2.15.1) is that ψV sends the Borel pair (TC, B) in GC to the Borel pair
(TC, B) in G∗

C.
Take any DH ∈ ED(V +)o × ED(V −)o, and define

jDH ,D : TDH
∼−→ TD

jDH ,D : TDH
∼−→ TD

as in §6.1.9 (where D and D are fixed in the last paragraph.) We abbreviate jDH ,D
as j, and abbreviate jDH ,D as j. Let (TDH , BDH ) be the fundamental pair in H

associated to DH . We abbreviate (TDH , BDH ) as (TH , BH). Take a test element
γH ∈ TDH (R), and let

γ := j(γH), γ := j(γH).

Assume that γ and γ are strongly regular.

Lemma 6.2.16. — Keep the setting of §6.2.15. Let ⟨inv(γ, γ), sγH ,γ⟩ be the pairing
defined in §6.2.7. Then we have

⟨inv(γ, γ), sγH ,γ⟩ = (−1)k(m−,λ⃗),
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where
k(m−, λ⃗) := #

{
j | 1 ≤ j ≤ m−, λj =

√
−1
}
.

Proof. — By [Kal11, Lem. 2.3.3], the element inv(γ, γ) ∈ X∗(T )Γ∞ is equal to the
image of any element µ ∈ X∗(T ) such that µ(−1) = uV (τ), where τ is the complex
conjugation. We identify X∗(T ) with Zm via fD : U(1)m ∼−→ T , and let {ϵ∨1 , · · · , ϵ∨m}
be the natural basis. By the description of uV (τ) in §6.2.15, we can take µ to be

µ =
∑

1≤j≤m,λj=
√

−1

ϵ∨j .

On the other hand, if we identify T̂ with (C×)m under f̂D, then the element sγH ,γ ∈ T̂
is given by

(−1, · · · ,−1︸ ︷︷ ︸
m−

, 1, · · · , 1︸ ︷︷ ︸
m+

) ∈ (C×)m.

(Remember that Convention 6.1.10 is in force in the definition of jDH ,D in §6.1.9.)
The lemma follows by evaluating µ at the above element.

Lemma 6.2.17. — Keep the setting of §6.2.15. We have

∆j,B(γH , γ) = (−1)q(G)+q(G∗)∆j,B(γH , γ).

Here ∆j,B (resp. ∆j,B) is the normalization of the transfer factors between H and
G∗ (between H and G), associated to (j, B) (resp. (j, B)), as defined in [Kot90, §7].
The numbers q(G) and q(G∗) are as in Definition 1.1.4.

Proof. — By the formula for ∆j,B on p. 184 of [Kot90], we have

∆j,B(γH , γ) = (−1)q(G∗)+q(H)χG∗,H(γ)∆B(γ−1)∆BH ((γH)−1)−1

∆j,B(γH , γ) = (−1)q(G)+q(H)χG,H(γ)∆B(γ−1)∆BH ((γH)−1)−1.

Here ∆B , ∆B , and ∆BH are as in Definition 1.1.3, and we do not explain the defini-
tions of χG∗,H and χG,H . Since ψ sends the Borel pair (TC, B) to (TC, B), we know
that

∆B(γ−1) = ∆B(γ−1).
It remains to show that

χG∗,H(γ) = χG,H(γ).
Unraveling the definitions of these terms on p. 184 of [Kot90], we are reduced to
checking that the following diagram commutes up to Ĝ-conjugation:

LT

��

ηB // LG

LT
ηB // LG
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where the left vertical arrow is induced by ψV |T : T ∼−→ T (defined over R). This is
true by the characterizations (a) (b) on p. 183 of [Kot90], in view of the fact that
ψV (B) = B.

Corollary 6.2.18. — Keep the setting of §6.2.15, and keep the notation in Lemmas
6.2.16 and 6.2.17. We have

∆j,B = (−1)q(G)+q(G∗)+k(m−,λ⃗)∆Wh.

Proof. — Comparing (6.2.7.1) with Lemmas 6.2.16 and 6.2.17, we have
∆Wh
∆j,B

= (−1)q(G)+q(G∗)+k(m−,λ⃗) · ∆Wh

∆j,B
.

By Lemma 6.2.6 we have ∆Wh = ∆j,B . The corollary follows.

Recall that V has signature (p, q), with d = p+ q not divisible by 4.

Lemma 6.2.19. — We have

(−1)q(G)+q(G∗) =
{

(−1)⌈m−p
2 ⌉, if d is odd,

1, if d is even.

Proof. — For any signature (a, b), we have q(SO(a, b)) = ab/2. In the odd case, V
has signature (p, q) = (p, 2m+ 1− p), and V has signature (m+ 1,m) or (m,m+ 1).
Hence

q(G∗)− q(G) ≡ (m+ 1)m
2 − p(2m+ 1− p)

2

= (m− p)(m+ 1− p)
2 ≡ ⌈m− p2 ⌉ mod 2.

In the even case, our assumption that G and G∗ contain anisotropic maximal tori
implies that the signatures of V and V are pairs of even numbers. Hence q(G) and
q(G∗) are both even.

Proposition 6.2.20. — Keep the running assumption that V has signature (p, q),
with p > q and d = p + q not divisible by 4. Let D be an arbitrary element of
ED(V )onice (see Definition 6.2.12), and let DH ∈ ED(V +)o×ED(V −)o. Define jDH ,D
and (TDH , BDH ) as in §6.1.9. We abbreviate (jDH ,D, BDH ) as (j, B). Let ∆j,B be the
normalization of the transfer factors between H and G associated to (j, B), as defined
in [Kot90, §7].

(1) Assume that d is odd. In this case, either assume that q is even and q/2 ≤
⌈m+/2⌉, or assume that q is odd and (q − 1)/2 ≤ ⌊m+/2⌋. Then

∆j,B =
{

(−1)⌈m2 ⌉+⌈m+
2 ⌉+⌈m−p

2 ⌉∆Wh, if q is even,
(−1)⌊m2 ⌋+⌊m+

2 ⌋+⌈m−p
2 ⌉∆Wh, if q is odd.
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In particular, we have

∆j,B =


(−1)⌈m+

2 ⌉∆Wh, when q = 0 and m+ is arbitrary,
(−1)⌊m+

2 ⌋∆Wh, when q = 1 and m+ is arbitrary,
(−1)1+⌈m+

2 ⌉∆Wh, when q = 2 and m+ > 0.

(2) Assume that d is even. Thus q is even since G contains anisotropic maximal
tori. We have

∆j,B =
{

(−1)⌊m−
2 ⌋∆Wh, if q/2 ≤ ⌊m+/2⌋,

(−1)m+1
2 ∆Wh, if m+ = 1 and q = 2.

In particular, we have

∆j,B =


(−1)⌊m−

2 ⌋∆Wh, when q = 0 and m+ is arbitrary,
(−1)⌊m−

2 ⌋∆Wh, when q = 2 and m+ ≥ 2,
(−1)1+⌊m−

2 ⌋∆Wh, when q = 2 and m+ = 1.

Proof. — First note that under the natural action of G(R) on ED(V )o, the subset
ED(V )onice of ED(V )o is a single orbit. Thus ∆j,B is in fact independent of the choice
of D ∈ ED(V )onice. Hence we may assume that D is the same as the element introduced
in §6.2.15. In view of Corollary 6.2.18 and Lemma 6.2.19, to prove the proposition it
suffices to compute the sign (−1)k(m−,λ⃗) in each case. We recall that

k(m−, λ⃗) := #
{
j | 1 ≤ j ≤ m−, λj =

√
−1
}
.

(1) Let N be the number of negative definite planes among the m+ planes

V m−+1, V m−+2, · · · , V m.

By Definition 6.2.2, V m is negative definite if and only if V has positive determinant,
which happens if and only if q is even. Hence we have N = ⌈m+/2⌉ when q is even,
and N = ⌊m+/2⌋ when q is odd. Thus our assumption on q can be rewritten as
⌊q/2⌋ ≤ N .

If there exists 1 ≤ j1 ≤ m− such that V j1
is negative definite and λj1 = 1, then

the integer j0 in condition (2) in Definition 6.2.9 would be strictly less than j1, from
which it easily follows that the number of negative definite planes among V1, · · · , Vm
is at least N + 1. Thus q ≥ 2(N + 1), a contradiction. Hence such j1 does not exist.
Then by condition (2) in Definition 6.2.9, we have

k(m−, λ⃗) = #
{
j | 1 ≤ j ≤ m−, Vj is negative definite

}
.

When q is even, we have

k(m−, λ⃗) =
{
⌈m−/2⌉, if m is odd
⌊m−/2⌋, if m is even

≡ ⌈m/2⌉+ ⌈m+/2⌉ mod 2.
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When q is odd, we have

k(m−, λ⃗) =
{
⌊m−/2⌋, if m is odd
⌈m−/2⌉, if m is even

≡ ⌊m/2⌋+ ⌊m+/2⌋ mod 2.

We conclude the proof by combining the above computation of k(m−, λ⃗) with Corol-
lary 6.2.18 and Lemma 6.2.19.

(2) Since d = 2m is not divisible by 4, we know that m is odd, and by Definition
6.2.2 we know that V m is positive definite. Hence among the m+ planes

V m−+1, V m−+2, · · · , V m,

the number of negative definite planes is ⌊m+/2⌋. When q/2 ≤ ⌊m+/2⌋, by the same
argument as in part (1) we have

k(m−, λ⃗) = #
{
j | 1 ≤ j ≤ m−, Vj is negative definite

}
,

and this is equal to ⌊m−/2⌋. When m+ = 1 and q = 2, we easily see that

k(m−, λ⃗) = m− 1
2 − 1.

In both cases we conclude the proof by combining the computation of k(m−, λ⃗) with
Corollary 6.2.18 and Lemma 6.2.19.

6.3. Transfer factors, when d is divisible by 4

6.3.1. — We keep the same setting as in §6.2.1, except that now we assume that d
is divisible by 4. We keep the assumption that G and G∗ contain anisotropic maximal
tori, which forces the signature of V to be a pair of even numbers. In particular, δ
is trivial, and so V and G∗ are split. We would like to establish analogues of the
results in §6.2 in the current case. The new feature is that there are now two different
equivalence classes of Whittaker data for G∗. As in §6.2.1, we fix (H, LH, s, η), with
H containing anisotropic maximal tori.

In the following we assume that V is of signature (p, q) with p > q, and that
d = p+ q is divisible by 4.

Transfer factors between H and G∗

Definition 6.3.2. — We define two subsets ED(V )oWh -I and ED(V )oWh -II of ED(V )o
(see §6.1.7) as follows. Let ED(V )oWh -I consist of those (V j)j ∈ ED(V )o such that V j
is (−1)j+1-definite for each j. Let ED(V )oWh -II consist of those (V j)j ∈ ED(V )o such
that V j is (−1)j-definite for each j.

6.3.3. — Let (T1, B1) (resp. (T2, B2)) be the fundamental pair associated to an el-
ement of ED(V )oWh -I (resp. an element of ED(V )oWh -II). Then (T1, B2) and (T2, B2)
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both satisfy the condition that every simple root is non-compact, which can be proved
in the same way as Lemma 6.2.4. As in [Täı17, §4.2.1], the two pairs (T1, B1) and
(T2, B2) correspond to two different equivalence classes of Whittaker data wI and wII
of G∗ respectively, characterized by the condition that in any L-packet of discrete se-
ries representations of G∗(R), the element corresponding to (T1, B2) (resp. (T2, B2))
is generic with respect to wI (resp. wII). Then wI and wII exhaust the equivalence
classes of Whittaker data. We call wI the equivalence class of type-I Whittaker data,
and call wII the equivalence class of type-II Whittaker data. See loc. cit. for more
details.

Definition 6.3.4. — We denote by ∆Wh(·, ·) the Whittaker-normalized transfer fac-
tors between H and G∗ with respect to wI, called the type-I Whittaker normalization.
Denote by ∆̃Wh(·, ·) the analogous objects with respect to wII.

Lemma 6.3.5. — Let D ∈ ED(V )oWh -I, and let DH ∈ ED(V +)o×ED(V −)o. Let j,
(TH , BH), and (T ,B) be the objects associated to D and DH as in §6.2.5. We have

∆Wh = ∆j,B ,(6.3.5.1)

∆̃Wh = (−1)m
−

∆j,B .(6.3.5.2)

In particular,
∆̃Wh = (−1)m

−
∆Wh.

Proof. — The proof of (6.3.5.1) is the same as the argument in §6.2.5 leading to
Lemma 6.2.6. For (6.3.5.2), by the same argument we are reduced to checking that

⟨aω, s⟩ = (−1)m
−
,(6.3.5.3)

where ω ∈ ΩC(G∗, T ) is an element such that (T , ωB) is the fundamental pair asso-
ciated to an element of ED(V )oWh -II. (Such ω is unique up to right multiplication by
ΩR(G∗, T ).) We can take

ω = (12)(34) · · · (m− 1,m) ∈ Sm ⊂ ΩC(G∗, T ),

and then the class aω ∈ H1(R, T ) (defined in [Kot90, §5]) is represented by the
cocycle sending the complex conjugation to −1 ∈ T (R). This implies (6.3.5.3).

Transfer factors between H and G.

Definition 6.3.6. — As in §6.2.7, having fixed ψV and uV , and having fixed the
Whittaker datum wI, we obtain a normalization of the transfer factors between H

and G, called the type-I Whittaker normalization. We denote this normalization by
∆Wh.

Remark 6.3.7. — Analogously we also have the type-II Whittaker normalization
between H and G. By (6.3.5.2), it is equal to (−1)m−∆Wh.
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Definition 6.3.8. — We let ED(V )onice be the subset of ED(V )o consisting of those
(Vj)j for which there exists j0 ∈ Z such that

{j | 1 ≤ j ≤ m,Vj is negative definite} =
{
j | 1 ≤ j ≤ m, j > j0, and (−1)j = 1

}
.

Recall our running assumption that V has signature (p, q), with p > q and d = p+q
divisible by 4. Recall that p and q are even since G contains anisotropic maximal tori.

Proposition 6.3.9. — Let D ∈ ED(V )onice and DH ∈ ED(V +)o×ED(V −)o. Define
jDH ,D and (TDH , BDH ) as in §6.1.9. We abbreviate (jDH ,D, BDH ) as (j, B). Let ∆j,B

be the normalization of the transfer factors between H and G associated to (j, B), as
defined in [Kot90, §7]. When q/2 ≤ ⌈m+/2⌉, we have

∆j,B = (−1)⌊m−
2 ⌋∆Wh.

In particular, we have

∆j,B =
{

(−1)⌊m−
2 ⌋∆Wh, when q = 0 and m+ is arbitrary,

(−1)⌊m−
2 ⌋∆Wh, when q = 2 and m+ ≥ 1.

Proof. — The proof is the same as Proposition 6.2.20. Note that the bound q/2 ≤
⌊m+/2⌋ in Proposition 6.2.20 (2) is replaced by q/2 ≤ ⌈m+/2⌉ here. This is because
in the current case, for any (V j)j ∈ ED(V )oWh -I, V m is always negative definite.

Comparison with Waldspurger’s explicit formula

6.3.10. — We fix the additive character ψ : R→ C×, x 7→ e2πix in all the discussion
below. Given any Borel subgroup B0 of G∗ defined over R, by the general construction
in [KS99, §5.3] we have a canonical map (depending only on ψ)

{R- splittings of G∗ relative to B0} −→
{

generic characters NB0(R)→ C×} ,(6.3.10.1)

where the left hand side is the set of R-splittings of G∗ of the form (T0, B0, {Xα}). In
our particular situation, since G∗ is split, R-splittings of G∗ are the same as splittings.

We denote by Split(G∗) the set of G∗(R)-conjugacy classes of (R-) splittings of
G∗, and denote by Whitt(G∗) the set of equivalence classes (i.e. G∗(R)-conjugacy
classes) of Whittaker data for G∗. The map (6.3.10.1) induces a canonical bijection
(depending only on ψ):

W G∗
: Split(G∗) ∼−→Whitt(G∗).

Here both sides are torsors under the abelian group G∗,ad(R)/G∗(R) ∼= Z/2Z.
The two elements of Whitt(G∗) are of course wI and wII; see §6.3.3. On the other

hand, there is an independent way to label the two elements of Split(G∗). Recall
that in [Wal10, §1.6], Waldspurger associates an element η ∈ R×/R×,2 ∼= {±1} to
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the quintuple (G∗, spl, V , q, ρstd), where spl is an arbitrary element of Split(G∗) and
ρstd is the standard representation G∗ → GL(V ). This gives rise to a map

ηV : Split(G∗) −→ {±1}(6.3.10.2)
spl 7−→ η(G∗, spl, V , q, ρstd).

This map is easily seen to be surjective, and hence bijective. Thus we can use it to
label the two elements of Split(G∗).

The following result will be used in the proof of Proposition 8.9.5 below, and it
may be of independent interest in representation theory.

Theorem 6.3.11. — Let splI = η−1
V (−1) ∈ Split(G∗). Then W G∗(splI) = wI.

Proof. — Write w′ for W G∗(splI). Consider an elliptic endoscopic datum

ed+,δ+,d−,δ− = (H, LH, s, η)

such that H contains anisotropic maximal tori. As in §6.1.1 we have δ± = (−1)d±/2.
Let m± := d±/2. Let ∆Wh and ∆̃Wh be the transfer factors between H and G∗ as in
Definition 6.3.4. By Lemma 6.3.5 we have

∆Wh = (−1)m
−

∆̃Wh.

Hence it suffices to show that ∆Wh is equal to the Whittaker normalization ∆w′

defined by the Whittaker datum w′, for one single choice of (d+, d−) with m− odd.
In the following we show that

∆Wh = ∆w′(6.3.11.1)

without assuming that m− is odd.
Let D = (V j)j and DH be as in Lemma 6.3.5, and keep the other notations in

that lemma. As usual, we use the isomorphism fD : U(1)m ∼−→ T associated to D to
identify X∗(T ) with Zm. By Lemma 6.3.5, we have

∆Wh = ∆j,B .(6.3.11.2)

We now recall the explicit formula for ∆j,B given in [Kot90, §7], cf. also [Mor11,
§3.2].(1) Let Λ be the set of B-positive roots for (G∗

C, TC) which do not come from H

via j. Namely,

Λ =
{
ϵi + ϵk, ϵi − ϵk | 1 ≤ i ≤ m−, m− + 1 ≤ k ≤ m

}
.

Fix a strongly regular element γ ∈ T (R), and let γH := j−1(γ) ∈ TH(R). Then

∆j,B(γH , γ) = (−1)q(G∗)+q(H)χB(γ)
∏
α∈Λ

(1− α(γ)) = χB(γ)
∏
α∈Λ

(1− α(γ)),
(6.3.11.3)

(1)Note the following typo in [Mor11, §3.2]: The term (1 − α(γ−1)) there should be (1 − α(γ)).
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where χB is a quasi-character on T (R) whose definition is recalled in [Mor11,
Def. 3.2.1]. In [Mor11, Ex. 3.2.4] Morel proves, in a special case, the following
formula:

χB = (ρBH ◦ j−1)ρ−1
B ,(6.3.11.4)

where ρB and ρBH are defined to be the half sums of the B-positive roots and the
BH -positive roots respectively, and they are actual (as opposed to square roots of)
quasi-characters in the special case considered in loc. cit. In our case, ρB and ρBH
are again actual quasi-characters. We explain why (6.3.11.4) still holds in our case.
In fact, in the proof of (6.3.11.4) in loc. cit., the only special property being used is
that the cocycle a ∈ Z1(WR, T̂ ) used to define χB could be arranged so that it sends
the element τ ∈ WR (see the beginning of [Mor11, §3.1]) to 1 ∈ T̂ . In our case, this
condition is not even needed. This is because T ∼= U(1)m, and so the image of a in
H1(WR, T̂ ), which determines χT via the local Langlands correspondence for T , only
depends on a|WC : WC → T̂ . Hence Morel’s proof of (6.3.11.4) remains valid in our
case.

By (6.3.11.4), we have

χB = −m+ϵ1 −m+ϵ2 − · · · −m+ϵm− .(6.3.11.5)

Having identified both T and TH with U(1)m (via fD and fDH respectively), we write

γH = γ = (y1, y2, · · · , ym)

with each yi ∈ U(1)(R) ⊂ C×. In conclusion, by (6.3.11.2), (6.3.11.3), and (6.3.11.5),
we have

∆Wh(γH , γ) =
∏

1≤i≤m−

m−+1≤k≤m

y−1
i (1− yiy−1

k )(1− yiyk) =
∏

1≤i≤m−

m−+1≤k≤m

2(ℜyi −ℜyk).
(6.3.11.6)

We now compute ∆w′ . Let ∆0 be the Langlands–Shelstad normalization associ-
ated to the splitting splI. In [Wal10] Waldspurger gives an explicit formula for ∆0
excluding the factor ∆IV . Let us denote the value of Waldspurger’s formula by ∆Wal,
so that ∆0 = ∆Wal∆IV . Thus we have (see [KS99, §5.3], [KS12, §5.5])

∆w′ = ϵL(U,ψ)∆0 = ϵL(U,ψ)∆Wal∆IV ,(6.3.11.7)

where U is the virtual Γ∞-representation X∗(T0) ⊗ C − X∗(TH,0) ⊗ C, with T0 a
maximal split torus in G∗ and TH,0 a maximal split torus in H, and ϵL(·, ψ) is the
local epsilon factor (according to the “Langlands normalization”; see [KS99, §5.3])
defined using the additive character ψ : R → C×, x 7→ e2πix and the usual Lebesgue
measure on R (which is self-dual with respect to ψ). Since G∗ is split, T0 is necessarily
split, so X∗(T0) is a direct sum of trivial representations of Γ∞. As for X∗(TH,0), it
is a direct sum of trivial representations when m− is even, and a direct sum of trivial
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representations and two copies of X∗(U(1)) when m− is odd. Therefore, by [Tat79,
(3.2.4), (3.4.1)] we have

ϵL(U,ψ) = (−1)m
−
.(6.3.11.8)

By definition we have

∆IV (γH , γ) =
∏
α∈Λ

∣∣α(γ)
∣∣−1/2 ∣∣1− α(γ)

∣∣ =
∏

1≤i≤m−

m−+1≤k≤m

2 |ℜyi −ℜyk| .(6.3.11.9)

Waldspurger’s explicit formula reads (see [Wal10, §1.10])

∆Wal(γH , γ) =
m−∏
i=1

sgn
(
ηV (splI)ci(1 + ℜyi)

∏
1≤k≤m
k ̸=i

(ℜyi −ℜyk)
)
,(6.3.11.10)

where ci ∈ {±1} is such that V i is ci-definite. Recall that (V i)i ∈ ED(V )oWh -I, which
implies ci = (−1)i+1. Note that 1 + ℜyi > 0, and we have∏

1≤i,k≤m−

i̸=k

sgn(ℜyi −ℜyk) = (−1)m
−(m−−1)/2 = (−1)⌊m−/2⌋,

m−∏
i=1

sgn ci =
m−∏
i=1

(−1)i+1 = (−1)⌊m−/2⌋.

Therefore (6.3.11.10) can be rewritten as follows (remember that ηV (splI) = −1)

∆Wal(γH , γ) = (−1)m
− ∏

1≤i≤m−

m−+1≤k≤m

sgn(ℜyi −ℜyk).(6.3.11.11)

Combining (6.3.11.6) (6.3.11.7), (6.3.11.8), (6.3.11.9), and (6.3.11.11), we obtain
(6.3.11.1), as desired.



CHAPTER 7

TRANSFER MAPS DEFINED BY THE SATAKE
ISOMORPHISM

In this chapter, we fix an odd prime p.

7.1. Recall of the Satake isomorphism

We recall the Satake isomorphism, following [Car79, Bor79, HR10, ST16]. Let
F be a finite extension of Qp. Let q be the residue cardinality of F and let ϖF be a
uniformizer of F . In this section we let G be an arbitrary unramified reductive group
over F .

7.1.1. — Let K be the hyperspecial subgroup of G(F ) determined by a hyperspecial
point v0 in the building of G. Let S be a maximal split torus in G whose apartment
contains v0, and let T be the centralizer of S in G. Let Ω (resp. Ω(F )) be the absolute
(resp. relative) Weyl group of G defined using T (resp. S). In other words,

Ω := NorG(T )/T,
Ω(F ) := NorG(S)/T.

There is a natural ΓF -action on Ω, and ΩΓF = Ω(F ). See [Bor79, §6.1] for more
details.

We equip G(F ) with the Haar measure giving volume 1 to K. Let H(G(F )�K) be
the Hecke algebra of C-valued compactly supported locally constant K-bi-invariant
distributions on G(F ). Using the fixed Haar measure, we identify H(G(F ) �K) with
the set of C-valued compactly supported locally constant K-bi-invariant functions on
G(F ). In the same way we define H(T (F ) � T (F ) ∩ K), and we simply write it as
H(T (F )/T (F ) ∩K) since T (F ) is abelian. For any choice of a Borel subgroup B of
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G containing T , the Satake isomorphism is the following C-algebra isomorphism:

SGK,S : H(G(F ) �K) ∼−→ H(T (F )/T (F ) ∩K)Ω(F )

(7.1.1.1)

f 7−→ fT , fT (t) = δB(F )(t)−1/2
∫
NB(F )

f(nt)dn, ∀t ∈ T (F ),

where NB is the unipotent radical of B, and we normalize the Haar measure dn on
NB(F ) such that NB(F ) ∩K has volume 1. It is known that SGK,S depends only on
K and S, not on B (see for instance [ST16, §6.1]).

7.1.2. — We explain how to make both sides of the Satake isomorphism more canon-
ical, that is, independent of the choices of K and S. First note that we have canonical
isomorphisms

H(T (F )/T (F ) ∩K) ∼= H(S(F )/S(F ) ∩K) ∼= C[X∗(S)];

see [Bor79, §9.5] and cf. [Car79, §7.2]. Moreover, if S′ is another maximal split
torus in G, then there is a canonical isomorphism

C[X∗(S)]Ω(F ) ∼−→ C[X∗(S′)]Ω
′(F )

induced by conjugation by any g ∈ G(F ) such that gSg−1 = S′. (Here Ω′(F ) denotes
the analogue of Ω(F ) with S replaced by S′.) Let

AG := lim←−
S

C[X∗(S)]Ω(F ),

where the projective limit is over all maximal split tori S in G, and the transition
maps are the above-mentioned canonical isomorphisms. For our fixed v0 and K, the
Satake isomorphisms (7.1.1.1) for various choices of S whose apartments contain v0
induce the same isomorphism

SGK : H(G(F ) �K) ∼−→ AG.(7.1.2.1)

This is because any such S extends to a maximal split torus in the reductive model
of G over OF corresponding to v0, and hence any two such choices of S must be
conjugate by an element of K; cf. [SGA70, XXVI, Prop. 6.16].

If K and K1 are two different hyperspecial subgroups of G(F ), we have a canonical
isomorphism

(SGK1
)−1 ◦ SGK : H(G(F ) �K) ∼−→ H(G(F ) �K1),

where SGK and SGK1
are as in (7.1.2.1). In fact, this isomorphism can be described

more concretely as follows. Recall that all hyperspecial subgroups of G(F ) are con-
jugate under Gad(F ). For any g ∈ Gad(F ) such that Int(g)(K1) = K, we have an
isomorphism H(G(F ) �K) ∼−→ H(G(F ) �K1) sending each f to f ◦ Int(g). We claim
that this isomorphism is equal to (SGK1

)−1 ◦ SGK , and is in particular independent of
the choice of g. To verify this, choose S with respect to K as in §7.1.1, and let
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S1 := Int(g−1)(S). Then S1 is a maximal split torus in G whose apartment contains
a hyperspecial point defining K1. Let T (resp. T1) be the centralizer of S (resp. S1).
By the functoriality of the definition (7.1.1.1), we only need to check that the map

H(T (F )/T (F ) ∩K)Ω(F ) −→ H(T1(F )/T1(F ) ∩K1)Ω(F )

f 7−→ f ◦ Int(g)

is compatible with the canonical isomorphisms

H(T (F )/T (F ) ∩K)Ω(F ) ∼= AG
∼= H(T1(F )/T1(F ) ∩K1)Ω(F ).

For this, it suffices to check that the isomorphism C[X∗(S)]Ω(F ) ∼−→ C[X∗(S1)]Ω(F )

induced by Int(g) : S ∼−→ S1 is the same as that induced by Int(g0) : S ∼−→ S1 for any
g0 ∈ G(F ) with Int(g0)(S) = S1. We can further reduce to the case where S = S1,
and then it suffices to check that γ = Int(g)|S ∈ Aut(S) comes from Ω(F ). This is
true because γ lies in Ω and it stabilizes S. The claim is proved. We let

Hur(G) := lim←−
K

H(G(F ) �K),

where the projective limit is over all hyperspecial subgroups K and the transition
maps are the canonical isomorphisms.

In conclusion, the Satake isomorphism can be viewed as a canonical C-algebra
isomorphism

SG : Hur(G) ∼−→ AG,(7.1.2.2)

where both sides are canonically associated to G, not depending on any extra choices.

7.1.3. — As in [Bor79, §6], the C-algebra AG has an alternative interpretation in
terms of the L-group of G. To explain this, fix a finite unramified extension F ′/F

splitting G, and let σF be the arithmetic Frobenius generator of Gal(F ′/F ). Since F ′

splits G, we may form the L-group of G using Gal(F ′/F ). We use the symbol LGur

to denote this version of the L-group, i.e.,
LGur := Ĝ⋊ Gal(F ′/F ) = Ĝ⋊ ⟨σF ⟩.

Inside the C-algebra of C-valued functions on the set of semi-simple Ĝ-conjugacy
classes in Ĝ⋊ σF , we let

C[ch(LGur)]
be the sub-algebra generated by the restrictions of characters of finite-dimensional
representations of LGur. Then there is a canonical isomorphism

AG
∼= C[ch(LGur)](7.1.3.1)

characterized as follows. Let f ∈ AG. Fix a maximal split torus S in G, and let T
be the centralizer of S. Then AG

∼= C[X∗(S)]Ω(F ) ⊂ C[X∗(T )], so we can view f as
a function on the C-torus T̂ . As usual (cf. §5.3.1), Ĝ is equipped with a Borel pair
(T ,B) and an isomorphism BRD(G) ∼−→ BRD(T ,B)∨. In particular, if we choose a
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Borel subgroup B of G containing T , then we get an isomorphism of C-tori T̂ ∼−→ T .
In this way we obtain from f a function fT : T → C. The construction f 7→ fT is
independent of the choices of S and B. The image of f under (7.1.3.1) is characterized
by the condition that its value at the Ĝ-conjugacy class of t ⋊ σF is equal to fT (t),
for all t ∈ T .

In the sequel, we shall often make the identification (7.1.3.1) without explicitly
mentioning it. Thus we can evaluate an element of AG at a semi-simple Ĝ-conjugacy
class in Ĝ⋊ σF to get a complex number.

In view of (7.1.3.1), we can also view the Satake isomorphism as a canonical iso-
morphism

SG : Hur(G) ∼−→ C[ch(LGur)].(7.1.3.2)

7.1.4. — Next we recall a result of Kottwitz. Let λ be a cocharacter of G defined
over F . Assume that λ is minuscule, in the sense that the representation Ad ◦ λ of
Gm on LieGF has no weights other than {−1, 0, 1}. Let K and S be as in §7.1.1, and
assume that λ factors through S. Denote by Ω(F ) · λ the Ω(F )-orbit of λ in X∗(S).
Let fK,λ ∈ H(G(F ) � K) be the characteristic function of Kλ(ϖF )K inside G(F ).
By the Cartan decomposition, the dependence of fK,λ on λ is only through the set
Ω(F ) · λ.

Theorem 7.1.5 ([Kot84a, Lem. 1.1.3, §2]). — We have

SGK,S(fK,λ) = q⟨ρ,λdom⟩
∑

λ′∈Ω(F )·λ

[λ′] ∈ C[X∗(S)]Ω(F ),

where ρ is the half sum of a fixed set of positive (absolute) roots in X∗(ZG(S)),
and λdom is any element of Ω(F ) · λ which is dominant with respect to the same
choice of positive roots. Moreover, the element of AG corresponding to SGK,S(fK,λ) ∈
C[X∗(S)]Ω(F ) depends only on the G(F )-conjugacy class of λ, not on K or S.

Definition 7.1.6. — Let λ be a minuscule cocharacter of G defined over F . We
write

fλ ∈ Hur(G)
for the element corresponding to fK,λ ∈ H(G(F )�K), for some choice of K and S as
in §7.1.1 such that λ factors through S. By Theorem 7.1.5, fλ depends only on the
G(F )-orbit of λ, not on any extra choices.

7.1.7. — We now discuss the compatibility between the Satake isomorphisms and
the constant term maps. Let K, S, and T be as in §7.1.1. Let M be a Levi component
of a parabolic subgroup P of G. Assume that M ⊃ T . Let NP be the unipotent radical
of P . Then M(F ) ∩K is a hyperspecial subgroup of M(F ). We define the constant
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term map

(·)M : H(G(F ) �K) −→ H(M(F ) �M(F ) ∩K)

(7.1.7.1)

f 7−→ fM , fM (m) = δP (F )(m)−1/2
∫
NP (F )

f(nm)dn, m ∈M(F ),

where the Haar measure dn on NP (F ) is normalized by the condition that NP (F )∩K
has volume 1.

Remark 7.1.8. — The constant term map can be defined more generally for C∞
c

functions; see for instance [GKM97, §7.13] or [ST16, §6.1]. In [ST16] the map
(7.1.7.1) is called the partial Satake transform. When M = T , the map (7.1.7.1) is
the same as SGK,S in (7.1.1.1).

Lemma 7.1.9. — In the setting of §7.1.7, let ΩM (F ) be the relative Weyl group of
M defined using S. Then ΩM (F ) is a subgroup of Ω(F ) when both groups are viewed
as subgroups of GL(X∗(S)). Moreover, we have a commutative diagram:

H(G(F ) �K)

(·)M
��

SGK,S // C[X∗(S)]Ω(F )

��
H(M(F ) �M(F ) ∩K)

SMM(F )∩K,S // C[X∗(S)]ΩM (F )

where the right vertical arrow is the inclusion.

Proof. — This is well known. See for instance [HR10, §12.3] or [ST16, §2, §6].

Proposition 7.1.10. — In the setting of §7.1.7, the constant term map (7.1.7.1)
induces a canonical map

(·)M : Hur(G) −→ Hur(M)(7.1.10.1)

which depends only on M , not on K,S, P .

Proof. — This follows from Lemma 7.1.9, and the fact that for all maximal split tori
S in M , the inclusion maps C[X∗(S)]Ω(F ) → C[X∗(S)]ΩM (F ) induce the same map
AG → AM .

Remark 7.1.11. — There is a canonical Ĝ-conjugacy class of embeddings LMur ↪→
LGur, and these embeddings induce via pull-back a common canonical map

C[ch(LGur)] −→ C[ch(LMur)].(7.1.11.1)

Under the canonical Satake isomorphism (7.1.3.2) and its analogue for M , the canon-
ical constant term map (7.1.10.1) corresponds to (7.1.11.1); cf. [ST16, Rmk. 2.8].
From this description, one sees that (7.1.10.1) depends on the embedding M ↪→ G

only up to G(F )-conjugacy.
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7.2. The twisted transfer map

We recall the formalism of the twisted transfer map. We keep the notation and
setting of §7.1. We still let G be an arbitrary unramified reductive group over F . Fix
a positive integer a and let Fa be the degree a unramified extension of F .

7.2.1. — We first recall some facts concerning Weil restriction of scalars.
Let R := ResFa/F G. Then R̂ together with the Gal(F ur/F )-action on it can

be identified with
∏a
i=1 Ĝ, on which the arithmetic Frobenius generator σF of

Gal(F ur/F ) acts by

σF (x1, · · · , xa) = (σF (x2), · · · , σF (xa−1), σF (x1)).

We have a canonical isomorphism AR
∼= AGFa

, where AGFa
is formed with respect

to GFa over the base field Fa instead of F . This isomorphism is characterized as
follows. Let S′ be a maximal Fa-split torus in GFa . Then ResFa/F S′ is an F -rational
torus in R, and its maximal F -split subtorus U is a maximal F -split torus in R. We
have

(ResFa/F S′)⊗F Fa ∼=
∏

ι∈Gal(Fa/F )

S′.

Let π : (ResFa/F S′) ⊗F Fa → S′ be the projection to the factor corresponding to
id ∈ Gal(Fa/F ). Composing the inclusion map U ↪→ ResFa/F S′ (or more precisely,
its base change to Fa) with π, we obtain a map UFa → S′, which is in fact an
Fa-isomorphism. The resulting isomorphism X∗(U) ∼−→ X∗(S′) then induces the
canonical isomorphism AR

∼= AGFa
.

Under the isomorphism AR
∼= AGFa

, suppose an element f ′ ∈ AR corresponds to
f ∈ AGFa

. We would like to have a formula, in terms of f , for the evaluation of f ′ at
an element

(g1, · · · , ga) ⋊ σF ∈ LRur = (
a∏
i=1

Ĝ) ⋊ ⟨σF ⟩,

where g1, · · · , ga are arbitrary semi-simple elements of Ĝ. (Here ⟨σF ⟩ is understood
as either the unramified Weil group W ur

F or a sufficiently large finite quotient of it. In
all cases σF is a generator.) Working through the definitions, we obtain the desired
formula as follows:

f ′((g1, · · · , ga) ⋊ σF ) = f(g1σ(g2) · · ·σa−1(ga) ⋊ σaF ).(7.2.1.1)

Here, g1σ(g2) · · ·σa−1(ga)⋊σaF is an element of L(GFa)ur = Ĝ⋊ ⟨σaF ⟩, the unramified
Langlands dual group of GFa formed with respect to the base field Fa (so the Galois
part is generated by σaF ), and hence we can evaluate f at this element.

7.2.2. — Consider an endoscopic datum (H,H, s, η) for G. For simplicity, assume
that H = LH and s ∈ η(Z(Ĥ)ΓF ); these assumptions will be met in our applications.
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We assume that (H, LH, s, η) is unramified, meaning that the following two conditions
are satisfied:

(1) The group H is unramified over F . In particular, the action of ΓF on Ĥ factors
through Gal(F ur/F ).

(2) The map η : LH → LG is induced by an L-embedding LHur → LGur. Here
LHur and LGur denote the L-groups formed with Γ′, where Γ′ is either the unramified
Weil group W ur

F or a sufficiently large finite quotient of it. In all cases we denote by
σF the arithmetic Frobenius generator of Γ′.

Let R = ResFa/F G. Define a homomorphism

η̃ : LHur = Ĥ ⋊ ⟨σF ⟩ −→ LRur =
(

a∏
i=1

Ĝ

)
⋊ ⟨σF ⟩,

by
Ĥ ∋ x 7−→ (η(x), · · · , η(x)) ⋊ 1,

and

1 ⋊ σF 7−→ (s−1η(σF )σ−1
F , η(σF )σ−1

F , · · · , η(σF )σ−1
F ) ⋊ σF .(7.2.2.1)

Let
η̃∗ : C[ch(LRur)] −→ C[ch(LHur)]

be the map induced by the pull-back along η̃. As we have explained in §7.1.3, the
source and target of η̃∗ are canonically identified with AR and AH respectively. Also,
as in §7.2.1 we have AR

∼= AGFa
. We can thus view η̃∗ as a map

η̃∗ : AGFa
−→ AH .

We call this map the twisted transfer map. If we identify the two sides with Hur(GFa)
and Hur(H) respectively using the canonical Satake isomorphisms, we obtain a map
Hur(GFa)→ Hur(H) which is also called the twisted transfer map.

Lemma 7.2.3. — Let f ∈ AGFa
, and let x be a semi-simple element of Ĥ. Write

η(x⋊σF )a = z⋊σaF , with z ∈ Ĝ. Then the evaluation of η̃∗(f) ∈ AH at x⋊σF ∈ LHur

is equal to
f(s−1z ⋊ σaF ).

Here we have s−1z ∈ Ĝ, and s−1z⋊σaF is an element of L(GFa)ur = Ĝ⋊ ⟨σaF ⟩, so we
can evaluate f at s−1z ⋊ σaF .

Proof. — Write y for η(x⋊ σF )σ−1
F ∈ Ĝ. Let f ′ ∈ AR be the element corresponding

to f under AR
∼= AGFa

. We compute

η̃∗(f)(x⋊ σF ) = f ′(η̃(x⋊ σF )) = f ′((s−1y, y, · · · , y) ⋊ σF )
= f(s−1yσ(y) · · ·σa−1(y) ⋊ σaF )
= f(s−1z ⋊ σaF ).



150 CHAPTER 7. TRANSFER MAPS DEFINED BY THE SATAKE ISOMORPHISM

Here the third equality follows from (7.2.1.1).

Remark 7.2.4. — In the above definition of η̃ we have taken advantage of the sim-
plifying assumptions H = LH and s ∈ η(Z(Ĥ)ΓF ). For the definition in more general
situations, see [Kot90, §7] or [KSZ, §7.4]. Under our simplifying assumptions, the
formula (7.2.2.1) can also be replaced by

1 ⋊ σF 7−→ (t1η(σF )σ−1
F , t2η(σF )σ−1

F , · · · , taη(σF )σ−1
F ) ⋊ σF

for any choices of t1, · · · , ta ∈ η(Z(Ĥ)ΓF ) such that t1t2 · · · ta = s−1. In fact, such a
replacement does not change the conclusion of Lemma 7.2.3. We have chosen t1 = s−1

and t2 = · · · = ta = 1 for definiteness.

7.2.5. — As a special case of the twisted transfer map, consider the trivial endoscopic
datum (G, LG, 1, id) for G, which makes sense since G is quasi-split. Then we obtain
the so-called base change map

AGFa
−→ AG,

also viewed as a map
Hur(GFa)→ Hur(G).

7.3. Explicit description of the twisted transfer map

We now make the construction in §7.2 explicit for unramified special orthogonal
groups.

7.3.1. — We first make explicit the group AG and the evaluation of its elements at
semi-simple Ĝ-conjugacy classes in Ĝ⋊ σF .

We now keep the setting and notation of §5, specialized to the case where F is a
finite extension of Qp. In particular, G denotes SO(V ) where V is a quadratic space
over F of dimension d and discriminant δ. As always we write m for ⌊d/2⌋. Assume
that G is unramified over F . By Proposition 1.2.8, if d is odd, or if d is even and δ

is trivial, our assumption implies that G is split. If d is even and δ is non-trivial, our
assumption implies that δ has a representative in O×

F /O
×,2
F , and that G is split over

F (α); here recall that α ∈ F is a fixed square root of a fixed lift of δ in F×.
To simplify notation, for each positive integer n we define

AB[X1, · · · , Xn] := C[X±1
1 , · · · , X±1

n ]{±1}n⋊Sn ,

AD[X1, · · · , Xn] := C[X±1
1 , · · · , X±1

n ]({±1}n)′⋊Sn .

Here the group {±1}n ⋊ Sn acts on C[X±1
1 , · · · , X±1

n ] as follows. The non-trivial
element of the i-th copy of {±1} acts by swapping Xi and X−1

i , and Sn acts by per-
muting the n variables X1, · · · , Xn (and simultaneously permuting X−1

1 , · · · , X−1
n ).

As usual, ({±1}n)′ is the kernel of the multiplication map {±1}n → {±1}. When
n = 1, by definition we have AD[X1] = C[X±1

1 ].
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First assume that d is odd. Then G is split. Fix a Borel pair (T,B) in G. We then
get an isomorphism BRD(T,B) ∼−→ BRD(T ,B)∨ from the L-group datum fixed in
§5.3. The right hand side is canonically identified with BRD(Bm). Thus we get an
isomorphism X∗(T ) ∼−→ Zm, and an isomorphism

AG
∼= C[X∗(T )]Ω ∼−→ C[Zm]{±1}m⋊Sm ∼= AB[X1, · · · , Xm],

which is independent of the choice of (T,B). If an element of AG corresponds
to F (X1, · · · , Xm) ∈ AB[X1, · · · , Xm], then the evaluation of this element at
symdiag(t1, · · · , tm) ⋊ σF ∈ T ⋊ σF (see §5.2.1 for the notation) is given by
F (t1, · · · , tm) ∈ C.

If d is even and δ is trivial, then G is still split, and similarly as in the odd case we
have a canonical identification

AG
∼= AD[X1, · · · , Xm].

(This is true for m = 1 as well.) As in the odd case, the evaluation of an element of AG

corresponding to F (X1, · · · , Xm) ∈ AD[X1, · · · , Xm] at symdiag(t1, · · · , tm) ⋊ σF ∈
T ⋊ σF is given by F (t1, · · · , tm).

Now consider the case where d is even and δ is non-trivial. Let S be a maximal split
torus in G, let T be the centralizer of S, and let B be a Borel subgroup of G containing
T . We then get an isomorphism BRD(T,B) ∼−→ BRD(T ,B)∨ from the L-group
datum fixed in §5.3. The right hand side is canonically identified with BRD(Dm). We
thus get an isomorphism X∗(T ) ∼−→ Zm. Under this isomorphism, X∗(S) = X∗(T )ΓF

corresponds to the subgroup Zm−1 × {0} = {(x1, · · · , xm−1, 0) | xi ∈ Z} of Zm, and
the Ω(F )-action on X∗(T ) corresponds to the natural action of ({±1}m)′ ⋊Sm−1 on
Zm, that is, the non-trivial element of the i-th copy of {±1} acts by multiplication by
−1 on the i-th coordinate, and Sm−1 acts by permuting the first m− 1 coordinates.
We have natural identifications

C[Zm−1 × {0}]({±1}m)′⋊Sm−1 ∼= C[Zm−1]{±1}m−1⋊Sm−1 ∼= AB[X1, · · · , Xm−1].

Hence we obtain an identification

AG
∼= AB[X1, · · · , Xm−1].

As in the previous cases, this identification is independent of the choices of S and
B. If an element of AG corresponds to F (X1, · · · , Xm−1) ∈ AB[X1, · · · , Xm−1], then
the evaluation of this element at symdiag(t1, · · · , tm) ⋊ σF ∈ T ⋊ σF is given by
F (t1, · · · , tm−1).

7.3.2. — Let G be as in §7.3.1. In §5.4, we constructed representatives ed+,δ+,d−,δ−

of the isomorphism classes of elliptic endoscopic data for G, where (d+, δ+, d−, δ−) be-
longs to a set PV as in Definition 5.4.2. In order to ensure ellipticity, in the definition
of PV we have the condition that if d is even and at least 4 then neither of (d+, δ+)
and (d−, δ−) is equal to (2, 1). We now take a quadruple (d+, δ+, d−, δ−) satisfying
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all the conditions in the definition of PV except the condition just mentioned. The
construction in §5.4 still applies to (d+, δ+, d−, δ−) and yields an endoscopic datum

ed+,δ+,d−,δ− = (H, LH, s, η)

for G, which may no longer be elliptic. In fact, the non-elliptic endoscopic data for G
arising in this way account for all the non-elliptic endoscopic data (up to isomorphism)
that can possibly appear as the localization of global elliptic endoscopic data, in the
case where G is the localization of a special orthogonal group over a number field.

Throughout we assume that d+ ̸= 0. We now assume that F = Qp, and write σ
for σF . We keep assuming that G is unramified. As in §7.2.2, we assume that the
endoscopic datum ed+,δ+,d−,δ− is unramified. In the odd case the last assumption
is automatic, and in the even case it implies that δ+ and δ− both have (unique)
representatives in Z×

p /Z×,2
p , in view of Proposition 1.2.8. It is easy to check that the

converse is also true. Note that Z×
p /Z×,2

p
∼= Z/2Z as p is odd. Hence each of δ, δ+, δ−

can take only two values: the trivial or the non-trivial element of Z×
p /Z×,2

p .
Fix a positive integer a. We still write Fa for the degree a unramified extension of

F = Qp. We now make explicit the twisted transfer map η̃∗ : AGFa
→ AH defined in

§7.2.2. As always we write m for ⌊d/2⌋, and write m± for ⌊d±/2⌋.

7.3.2.1. The odd case. — In this case, AGFa
is identified with AB[X1, · · · , Xm], and

AH = AH+ ⊗C AH− is identified with

AB[Z1, · · · , Zm+ ]⊗C AB[Y1, · · · , Ym− ],

which we identify with a C-subalgebra of C[Z±1
1 , · · · , Z±1

m+ , Y
±1

1 , · · · , Y ±1
m− ]. Consider

an element
t
Ĥ

= (symdiag(t1, · · · , tm+), symdiag(u1, · · · , um−))
of the maximal torus T

Ĥ
= TV + × TV − in Ĥ. We have

η(t
Ĥ
⋊ σ) = symdiag(u1, · · · , um− , t1, · · · , tm+) ⋊ σ ∈ T ⋊ σ.

Since σ acts trivially on T , we have

η(t
Ĥ
⋊ σ)a = symdiag(ua1 , · · · , uam− , ta1 , · · · , tam+) ⋊ σa,

s−1η(t
Ĥ
⋊ σ)a = symdiag(−ua1 , · · · ,−uam− , ta1 , · · · , tam+) ⋊ σa.

Suppose f ∈ AGFa
corresponds to F (X1, · · · , Xm) ∈ AB[X1, · · · , Xm]. By Lemma

7.2.3, the evaluation of η̃∗(f) at t
Ĥ
⋊ σ is equal to

F (−ua1 , · · · ,−uam− , ta1 , · · · , tam+).

Thus the map η̃∗ is explicitly given by

AB[X1, · · · , Xm] −→ AB[Z1, · · · , Zm+ ]⊗C AB[Y1, · · · , Ym− ]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am− , Za1 , · · · , Zam+).
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7.3.2.2. The even case, with trivial δ+ and trivial δ−. — In this case, δ is also trivial
since δ = δ+δ−. We have

AGFa
∼= AD[X1, · · · , Xm],

and
AH = AH+ ⊗C AH− ∼= AD[Z1, · · · , Zm+ ]⊗C AD[Y1, · · · , Ym− ].

By similar computation as in §7.3.2.1, we find that η̃∗ is explicitly given by

AD[X1, · · · , Xm] −→ AD[Z1, · · · , Zm+ ]⊗C AD[Y1, · · · , Ym− ]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am− , Za1 , · · · , Zam+).

7.3.2.3. The even case, with non-trivial δ+ and trivial δ−. — In this case, δ is non-
trivial in Z×

p /Z×,2
p . It is a square in F×

a if and only if a is even. Thus we have

AGFa
∼=
{

AD[X1, · · · , Xm], if a is even,
AB[X1, · · · , Xm−1], if a is odd,

and
AH = AH+ ⊗C AH− ∼= AB[Z1, · · · , Zm+−1]⊗C AD[Y1, · · · , Ym− ].

Consider an element

t
Ĥ

= (symdiag(t1, · · · , tm+), symdiag(u1, · · · , um−)) ∈ T
Ĥ

= TV + × TV − .

Since δ− is trivial, σ belongs to the first case in (5.4.3.2). Hence

η(t
Ĥ
⋊ σ) = symdiag(u1, · · · , um− , t1, · · · , tm+) ⋊ σ ∈ T ⋊ σ.

Now the action of σ on T sends symdiag(x1, · · · , xm) to symdiag(x1, · · · , xm−1, x
−1
m );

cf. §5.3.2. We introduce the notation

νa := (−1)a+1 + 1
2 .(7.3.2.1)

Hence

η(t
Ĥ
⋊ σ)a = symdiag(ua1 , · · · , uam− , ta1 , · · · , tam+−1, t

νa
m+) ⋊ σa,

s−1η(t
Ĥ
⋊ σ)a = symdiag(−ua1 , · · · ,−uam− , ta1 , · · · , tam+−1, t

νa
m+) ⋊ σa,

Suppose a is even. — Suppose f ∈ AGFa
corresponds to F (X1, · · · , Xm) ∈

AD[X1, · · · , Xm]. By Lemma 7.2.3, the evaluation of η̃∗(f) at t
Ĥ

⋊ σ is equal
to

F (−ua1 , · · · ,−uam− , ta1 , · · · , tam+−1, 1).
Thus the map η̃∗ is explicitly given by

AD[X1, · · · , Xm] −→ AB[Z1, · · · , Zm+−1]⊗C AD[Y1, · · · , Ym− ]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am− , Za1 , · · · , Zam+−1, 1).
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Suppose a is odd. — Suppose f ∈ AGFa
corresponds to F (X1, · · · , Xm−1) ∈

AB[X1, · · · , Xm−1]. By Lemma 7.2.3, the evaluation of η̃∗(f) at t
Ĥ
⋊ σ is equal to

F (−ua1 , · · · ,−uam− , ta1 , · · · , tam+−1).

Thus the map η̃∗ is explicitly given by

AB[X1, · · · , Xm−1] −→ AB[Z1, · · · , Zm+−1]⊗C AD[Y1, · · · , Ym− ]
F (X1, · · · , Xm−1) 7−→ F (−Y a1 , · · · ,−Y am− , Za1 , · · · , Zam+−1).

7.3.2.4. The even case, with trivial δ+ and non-trivial δ−. — In this case, δ is non-
trivial. We have

AGFa
∼=
{

AD[X1, · · · , Xm], if a is even,
AB[X1, · · · , Xm−1], if a is odd,

and
AH = AH+ ⊗C AH− ∼= AD[Z1, · · · , Zm+ ]⊗C AB[Y1, · · · , Ym−−1].

Consider an element

t
Ĥ

= (symdiag(t1, · · · , tm+), symdiag(u1, · · · , um−)) ∈ T
Ĥ

= TV + × TV − .

Since δ− is non-trivial, we are in the second case in (5.4.3.2). Hence

η(t
Ĥ
⋊ σ) = symdiag(u1, · · · , um− , t1, · · · , tm+) · S ⋊ σ ∈ LGur,

where S is the permutation matrix switching êm− and êd−m−+1, and switching êm
and êm+1. The conjugation action of S ⋊ σ on T is given by

symdiag(x1, · · · , xm) 7−→ symdiag(x1, · · · , xm−−1, x
−1
m− , xm−+1, · · · , xm).

Moreover, (S ⋊ σ)a = Sa ⋊ σa, and S is of order 2. Therefore, with the notation
(7.3.2.1), we have

s−1η(t
Ĥ
⋊ σ)a = symdiag(−ua1 , · · · ,−uam−−1,−u

νa
m− , t

a
1 , · · · , tam+) · Sνa ⋊ σa.

If a is even, the above element lies in T ⋊ σa. If a is odd, the above element is
conjugate by some g ∈ Ĝ to the element

symdiag(−ua1 , · · · ,−uam−−1, t
a
m+ , ta1 , · · · , tam+−1,−um−) ⋊ σa ∈ T ⋊ σa.

For instance, one can take g to be the permutation matrix in Ĝ switching êm− and êm
and switching êd−m−+1 and (−1)m−+mêm+1. Indeed, we have g−1 = g, (S ⋊ σa)g =
g ⋊ σa, and

g · symdiag(−ua1 , · · · ,−uam−−1,−um− , ta1 , · · · , tam+) · g
= symdiag(−ua1 , · · · ,−uam−−1, t

a
m+ , ta1 , · · · , tam+−1,−um−).

Suppose a is even. — Suppose f ∈ AGFa
corresponds to F (X1, · · · , Xm) ∈

AD[X1, · · · , Xm]. By Lemma 7.2.3, the evaluation of η̃∗(f) at t
Ĥ

⋊ σ is equal



7.3. EXPLICIT DESCRIPTION OF THE TWISTED TRANSFER MAP 155

to
F (−ua1 , · · · ,−uam−−1,−1, ta1 , · · · , tam+).

Thus the map η̃∗ is explicitly given by

AD[X1, · · · , Xm] −→ AD[Z1, · · · , Zm+ ]⊗C AB[Y1, · · · , Ym−−1]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am−−1,−1, Za1 , · · · , Zam+).

Suppose a is odd. — Suppose f ∈ AGFa
corresponds to F (X1, · · · , Xm−1) ∈

AB[X1, · · · , Xm−1]. By Lemma 7.2.3, the evaluation of η̃∗(f) at t
Ĥ
⋊ σ is equal to

F (−ua1 , · · · − uam−−1, t
a
m+ , ta1 , · · · tam+−1).

Thus the map η̃∗ is explicitly given by

AB[X1, · · · , Xm−1] −→ AD[Z1, · · · , Zm+ ]⊗C AB[Y1, · · · , Ym−−1]
F (X1, · · · , Xm−1) 7−→ F (−Y a1 , · · · ,−Y am−−1, Z

a
m+ , Za1 , · · · , Zam+−1).

7.3.2.5. The even case, with non-trivial δ+ and non-trivial δ−. — In this case, δ is
trivial. We have

AGFa
∼= AD[X1, · · · , Xm]

and
AH = AH+ ⊗C AH− ∼= AB[Z1, · · · , Zm+−1]⊗C AB[Y1, · · · , Ym−−1].

Consider an element

t
Ĥ

= (symdiag(t1, · · · , tm+), symdiag(u1, · · · , um−)) ∈ T
Ĥ

= TV + × TV − .

Since δ− is non-trivial, we are in the second case in (5.4.3.2). Hence

η(t
Ĥ
⋊ σ) = symdiag(u1, · · · , um− , t1, · · · , tm+) · S ⋊ σ ∈ LGur,

where S is the permutation matrix switching êm− and êd−m−+1, and switching êm
and êm+1. Since δ is trivial, the action of σ on Ĝ is trivial. We know that S2 = 1,
and the conjugation action of S on T is given by

symdiag(x1, · · · , xm) 7−→ symdiag(x1, · · · , xm−−1, x
−1
m− , xm−+1, · · · , xm−1, x

−1
m ).

Hence with the notation (7.3.2.1) we have

s−1η(t
Ĥ
⋊ σ)a = symdiag(−ua1 , · · · ,−uam−−1,−u

νa
m− , t

a
1 , · · · , tam+−1, t

νa
m+) · Sνa ⋊ σa.

If a is even, the above element lies in T ⋊ σa. If a is odd, we claim that the above
element is Ĝ-conjugate to

symdiag(−ua1 , · · · ,−uam−−1,−1, ta1 , · · · , tam+−1, 1) ⋊ σa ∈ T ⋊ σa.

To show the claim, it suffices to show that symdiag(x1, · · · , xm− , y1, · · · , ym+) · S
is Ĝ-conjugate to symdiag(x1, · · · , xm−−1,−1, y1, · · · , ym+−1, 1) for arbitrary xi, yi ∈
C×. Let J be the special orthogonal group of the 4-dimensional quadratic space
span {êm− , êm, êm+1, êd−m−+1} over C. We write elements of J as 4 × 4 matrices
using the given basis. We identify J as a subgroup of Ĝ, by letting elements of J
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act trivially on êi for all i /∈ {m−,m,m+ 1, d−m− + 1}. Then S ∈ J , and the 4× 4
matrix of S is 

1
1

1
1

 .

Let U and K be elements of J whose 4 × 4 matrices are symdiag(xm− , ym+) and
symdiag(−1, 1) respectively. Now since US is semi-simple (as can be easily seen in
GL4), it must be conjugate in J to some element of the diagonal maximal torus
{symdiag(a, b) | a, b ∈ C×} in J , which must be either K or −K by considering the
characteristic polynomial. But K and −K are actually conjugate in J . Hence US is
conjugate to K in J . Now inside Ĝ we have

symdiag(x1, · · · , xm− , y1, · · · , ym+)S
= symdiag(x1, · · · , xm−−1, 1, y1, · · · , ym+−1, 1)US,

and symdiag(x1, · · · , xm−−1, 1, y1, · · · , ym+−1, 1) commutes with J . Hence the above
element is Ĝ-conjugate to

symdiag(x1, · · · , xm−−1, 1, y1, · · · , ym+−1, 1)K
= symdiag(x1, · · · , xm−−1,−1, y1, · · · , ym+−1, 1),

as desired. Our claim follows.
Now suppose f ∈ AGFa

corresponds to F (X1, · · · , Xm) ∈ AD[X1, · · · , Xm]. By
Lemma 7.2.3 and the above claim, the evaluation of η̃∗(f) at t

Ĥ
⋊ σ is equal to

F (−ua1 , · · · ,−uam−−1,−1, ta1 , · · · , tam+−1, 1)

for both parities of a. Thus the map η̃∗ is explicitly given by

AD[X1, · · · , Xm] −→ AB[Z1, · · · , Zm+−1]⊗C AB[Y1, · · · , Ym−−1]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am−−1,−1, Za1 , · · · , Zam+−1, 1).

7.3.3. — In the following, we collect the explicit description of η̃∗ in all the cases
obtained in §7.3.2.

7.3.3.1. The odd case. —

AB[X1, · · · , Xm] −→ AB[Z1, · · · , Zm+ ]⊗C AB[Y1, · · · , Ym− ]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am− , Za1 , · · · , Zam+).

7.3.3.2. The even case, with trivial δ+ and trivial δ−. —

AD[X1, · · · , Xm] −→ AD[Z1, · · · , Zm+ ]⊗C AD[Y1, · · · , Ym− ]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am− , Za1 , · · · , Zam+).

7.3.3.3. The even case, with non-trivial δ+ and trivial δ−. —
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Suppose a is even. —

AD[X1, · · · , Xm] −→ AB[Z1, · · · , Zm+−1]⊗C AD[Y1, · · · , Ym− ]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am− , Za1 , · · · , Zam+−1, 1).

Suppose a is odd. —

AB[X1, · · · , Xm−1] −→ AB[Z1, · · · , Zm+−1]⊗C AD[Y1, · · · , Ym− ]
F (X1, · · · , Xm−1) 7−→ F (−Y a1 , · · · ,−Y am− , Za1 , · · · , Zam+−1).

7.3.3.4. The even case, with trivial δ+ and non-trivial δ−. —

Suppose a is even. —

AD[X1, · · · , Xm] −→ AD[Z1, · · · , Zm+ ]⊗C AB[Y1, · · · , Ym−−1]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am−−1,−1, Za1 , · · · , Zam+).

Suppose a is odd. —

AB[X1, · · · , Xm−1] −→ AD[Z1, · · · , Zm+ ]⊗C AB[Y1, · · · , Ym−−1]
F (X1, · · · , Xm−1) 7−→ F (−Y a1 , · · · ,−Y am−−1, Z

a
m+ , Za1 , · · · , Zam+−1).

7.3.3.5. The even case, with non-trivial δ+ and non-trivial δ−. —

AD[X1, · · · , Xm] −→ AB[Z1, · · · , Zm+−1]⊗C AB[Y1, · · · , Ym−−1]
F (X1, · · · , Xm) 7−→ F (−Y a1 , · · · ,−Y am−−1,−1, Za1 , · · · , Zam+−1, 1).

7.4. Computation of twisted transfers

7.4.1. — We keep the setting of §7.3.1, assume that F = Qp, and import the con-
structions and notations in §§5.5.2–5.5.3. In particular, we fix W, r, t, and a hyperbolic
basis BW⊥ of W⊥, and from these data we obtain a Levi subgroup M ⊂ G (defined
over Qp). Since G is by assumption unramified over Qp, so is M .

Let p = (d+, δ+, d−, δ−) be a quadruple satisfying all the conditions in the defi-
nition of the set PW , except that even when dimW is even and at least 4 we still
allow (d+, δ+) = (2, 1) or (d−, δ−) = (2, 1) (or both); cf. the discussion at the be-
ginning of §7.3.2. Let A be a subset of [r] and B be a subset of [t]. Although
(A,B, d+, δ+, d−, δ−) is more general than an element of Pr,t×′ PW as in Definition
5.5.4, the construction in §5.5.6 still applies to it and yields an endoscopic G-datum
for M :

eA,B,p = (M ′, LM ′, sM , ηM ),
which may no longer be bi-elliptic. Also, we obtain an endoscopic datum for M :

ep(M) = ed+,δ+,d−,δ−(M) = (M ′, LM ′, s′
M , ηM )

and an endoscopic datum for G:

ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ− = (H, LH, s, η),
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both of which are possibly non-elliptic (due to the possible appearance of (2, 1) in the
subscripts). Note that the last two endoscopic data are unramified if and only if both
δ+ and δ− have even p-adic valuations. (In the odd case this is automatic.) In the
following we assume that this is the case.

Fix a positive integer a. As in §7.2, we have the twisted transfer map induced by
the unramified endoscopic datum (H, LH, η, s) for G:

b : Hur(GQpa ) −→ Hur(H).

Let µ be the cocharacter of G such that the Gm-action on V via µ has weight
1 on f1 ∈ BW⊥ , weight −1 on f2(r+2t) ∈ BW⊥ , and weight zero on the orthogonal
complement of these two vectors. Thus µ is given by

Gm −→ Grm ×GLt2
(5.5.2.1)−−−−−→ SO(W⊥) −→ G

z 7−→ (z, 1, · · · , 1, I2, · · · , I2)

if r > 0, and is given by

Gm −→ GLt2
(5.5.2.1)−−−−−→ SO(W⊥) −→ G

z 7−→ (diag(z, 1), I2, · · · , I2)

if r = 0. Let
f−µ ∈ Hur(GQpa )

be as in Definition 7.1.6, with F = Qpa and λ = −µ. Define

fH := b(f−µ) ∈ Hur(H).

The construction in §5.5.9 still applies to the current slightly more general situation
(with the possibly non-elliptic data). Hence M ′ is identified with a Levi subgroup
of H (up to H(F )-conjugation). We have the canonical constant term map (see
Proposition 7.1.10):

(·)M ′ : Hur(H) −→ Hur(M ′).
In the following we describe (fH)M ′ .

Recall from §5.5.2 that M = MGL×MSO, where MGL is identified with Grm×GLt2
via (5.5.2.1), and MSO = SO(W ). The maximal split torus in MGL given by the
product of Grm with the diagonal tori in the copies of GL2 is naturally identified with
Gr+2t
m . Correspondingly, the algebra AMGL is naturally identified with

C[ξ±1
1 ]⊗C · · · ⊗C C[ξ±1

r ]⊗C C[ζ±1
1 , ζ±1

2 ]S2 ⊗C · · · ⊗C C[ζ±1
2t−1, ζ

±1
2t ]S2 .

(Here S2 acts on each C[ζ±
j , ζ

±
j+1] by swapping ζj and ζj+1.) In the sequel we

shall view elements of the above algebra, such as ζ1 + ζ2, as an element of AMGL

or Hur(MGL). We have M ′ = MGL ×M ′,SO (see §5.5.6), and correspondingly we
have

Hur(M ′) = Hur(MGL)⊗C Hur(M ′,SO).
We retain the notation ∇i(·) as in Definition 5.5.5.
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Proposition 7.4.2. — The element pa(2−d)/2(fH)M ′ ∈ Hur(M ′) is of the form

k(A,B)⊗ 1 + 1⊗ h,

with k(A,B) ∈ Hur(MGL) and h ∈ Hur(M ′,SO). The element h depends only on the
parameter p = (d+, δ+, d−, δ−), not on (A,B). The element k(A,B) is given by

k(A,B) =
r∑
i=1
∇i(A)(ξai + ξ−a

i ) +
t∑

j=1
∇j(B)(ζa2j−1 + ζ−a

2j−1 + ζa2j + ζ−a
2j ).

Proof. — Write Fa for Qpa . Fix a maximal Fa-split torus S in GFa . In this proof we
omit notations for the Satake isomorphisms. We use Theorem 7.1.5 to compute (the
Satake transform of) f−µ. We have ⟨ρ, (−µ)dom⟩ = (d− 2)/2, and so

pa(2−d)/2f−µ =
∑

λ∈Ω(F )·(−µ)

[λ] ∈ C[X∗(S)]Ω(F ) ∼= AGFa

by that theorem. Let m = ⌊d/2⌋ be the absolute rank of G. As in §7.3.1, AGFa
is

identified with one of the three algebras

AB[X1, · · · , Xm], AD[X1, · · · , Xm], AB[X1, · · · , Xm−1].

Correspondingly, we have

pa(2−d)/2f−µ =


X1 +X−1

1 + · · ·+Xm +X−1
m ∈ AB[X1, · · · , Xm],

X1 +X−1
1 + · · ·+Xm +X−1

m ∈ AD[X1, · · · , Xm],
X1 +X−1

1 + · · ·+Xm−1 +X−1
m−1 ∈ AB[X1, · · · , Xm−1].

For any positive integer l, we introduce short-hand notations

AB[Yl] := AB[Y1, · · · , Yl], AD[Yl] := AD[Y1, · · · , Yl],
AB[Zl] := AB[Z1, · · · , Zl], AD[Zl] := AD[Z1, · · · , Zl],

and

Yal :=
l∑
i=1

Y ai + Y −a
i , Zal :=

l∑
i=1

Zai + Z−a
i .

We then compute, according to §7.3.3, that (the Satake transform of) pa(2−d)/2fH in
AH is given by:



−Yam− + Zam+ ∈ AB[Zm+ ]⊗AB[Ym− ], d odd
−Yam− + Zam+ ∈ AD[Zm+ ]⊗AD[Ym− ], d even, δ+ = δ− = 1,
−Yam− + Zam+−1 + 1 + (−1)a ∈ AB[Zm+−1]⊗AD[Ym− ], d even, δ+ ̸= 1, δ− = 1,
−Yam−−1 + Zam+ − 1− (−1)a ∈ AD[Zm+ ]⊗AB[Ym−−1], d even, δ+ = 1, δ− ̸= 1,
−Yam−−1 + Zam+−1 ∈ AB[Zm+−1]⊗AB[Ym−−1], d even, δ+ ̸= 1, δ− ̸= 1.

(7.4.2.1)
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Recall that M ′,SO = SO(W+) × SO(W−). Write n± for the absolute rank of
SO(W±). Similar to AH+ , we identify ASO(W+) with one of

AB[Zn+ ], AD[Zn+ ], AB[Zn+−1],

in the odd case, in the even case with δ+ = 1, and in the even case with δ+ ̸= 1
respectively. Similarly, we identify ASO(W−) with one of

AB[Yn− ], AD[Yn− ], AB[Yn−−1],

in the odd case, in the even case with δ− = 1, and in the even case with δ− ̸= 1
respectively. The constant term map AH → AM ′ is of the form

AB[Zm+ ]⊗AB[Ym− ]→ AMGL ⊗AB[Zn+ ]⊗AB[Yn− ],
AD[Zm+ ]⊗AD[Ym− ]→ AMGL ⊗AD[Zn+ ]⊗AD[Yn− ],
AB[Zm+−1]⊗AD[Ym− ]→ AMGL ⊗AB[Zn+−1]⊗AD[Yn− ],
AD[Zm+ ]⊗AB[Ym−−1]→ AMGL ⊗AD[Zn+ ]⊗AB[Yn−−1],
AB[Zm+−1]⊗AB[Ym−−1]→ AMGL ⊗AB[Zn+−1]⊗AB[Yn−−1],

where the division into the five cases is the same as in (7.4.2.1). In each case, using
Lemma 7.1.9, we see that the map is determined by the following rule: Write

A = {i1, · · · , iu} , Ac =
{
ĩ1, · · · , ĩr−u

}
,

B = {j1, · · · , jv} , Bc =
{
j̃1, · · · , j̃t−v

}
.

We send Z1, · · · , Zu to ξi1 , · · · , ξiu , send Y1, · · · , Yr−u to ξĩ1 , · · · , ξĩr−u
, send

Zu+1, · · · , Zu+2v to

ζ2j1−1, ζ2j1 , ζ2j2−1, ζ2j2 , · · · , ζ2jv−1, ζ2jv ,

send Yr−u+1, · · · , Yr−u+2t−2v to

ζ2j̃1−1, ζ2j̃1
, ζ2j̃2−1, ζ2j̃2

, · · · , ζ2j̃t−v−1, ζ2j̃t−v ,

send the remaining Zi’s to Z1, Z2, · · · , and send the remaining Yi’s to Y1, Y2, · · · . From
this description of the constant term map and the previous computation (7.4.2.1) of
pa(2−d)/2fH , we see that pa(2−d)/2(fH)M ′ ∈ Hur(M ′) is of the form

k(A,B)⊗ 1 + 1⊗ h,

where k(A,B) is given as in the statement of the proposition, and

h ∈ ASO(W+) ⊗ASO(W−)
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is given by 

−Yan− + Zan+ ∈ AB[Zn+ ]⊗AB[Yn− ],
−Yan− + Zan+ ∈ AD[Zn+ ]⊗AD[Yn− ],
−Yan− + Zan+−1 + 1 + (−1)a ∈ AB[Zn+−1]⊗AD[Yn− ],
−Yan−−1 + Zan+ − 1− (−1)a ∈ AD[Zn+ ]⊗AB[Yn−−1],
−Yan−−1 + Zan+−1 ∈ AB[Zn+−1]⊗AB[Yn−−1],

in the five cases as before. Clearly h depends only on p, not on (A,B).





CHAPTER 8

STABILIZATION

8.1. Standard definitions and facts on Langlands–Shelstad transfer

8.1.1. — For any field F of characteristic zero and homomorphism I → J of alge-
braic groups over F , we write

D(I, J ;F ) := ker(H1(F, I)→ H1(F, J)).

Now let F be a non-archimedean local field of characteristic zero, and G a reductive
group over F . We recall the definition of κ-orbital integrals in the fashion of [Lab99,
§2.7]. Let γ ∈ G(F ) be a semi-simple element, and write Iγ for (Gγ)0. Recall
from [Lab99, §2.3] that there is a natural surjection from D(Iγ , G;F ) to the set of
conjugacy classes in the stable conjugacy class of γ, which is a bijection if Iγ = Gγ .
We have a short exact sequence of pointed sets

1 −→ Iγ(F )\G(F ) −→ H0(F, Iγ\G) −→ D(Iγ , G;F ) −→ 1,(8.1.1.1)

and a natural map (see [Lab99, §1.8])

H0(F, Iγ\G) −→ H0
ab(F, Iγ\G),

where H0
ab(F, Iγ\G) is a locally compact topological abelian group. Denote by

K(Iγ , G;F ) the Pontryagin dual group of H0
ab(F, Iγ\G). (1)

Choose Haar measures on Iγ(F ) and on G(F ), and equip D(Iγ , G;F ) with the
counting measure. Then the short exact sequence (8.1.1.1) defines a measure dx on
H0(F, Iγ\G); see [Lab99, §2.7]. For f ∈ C∞

c (G(F )) and κ ∈ K(Iγ , G;F ), define the
κ-orbital integral

Oκγ (f) :=
∫
x∈H0(F,Iγ\G)

e(Ix−1γx)κ(x)f(x−1γx)dx,

(1)Under the assumption that F is non-archimedean, K(Iγ , G; F ) is isomorphic to the group K(Iγ/F )
defined in [Kot86, §4.6].
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where e(Ix−1γx) is the Kottwitz sign of Ix−1γx (see [Lab99, Def. 1.7.1]). Also define
the stable orbital integral

SOγ(f) := O1
γ(f).

Remark 8.1.2. — We give a more concrete description of Oκγ (f). For each [x] ∈
D(Iγ , G;F ), fix an element x ∈ G(F ) mapping to [x] under the composite map

G(F ) −→ H0(F, Iγ\G) −→ D(Iγ , G;F ).

Then γx := x−1γx is in G(F ) and Int(x) induces an inner twisting Iγ → Iγx . In
particular, the Haar measure on Iγ(F ) transfers to a Haar measure on Iγx(F ). Using
this and the fixed Haar measure on G(F ), we define the orbital integral

Oγx(f) :=
∫
x∈Iγx (F )\G(F )

f(x−1γx).

Then we have
Oκγ (f) =

∑
[x]∈D(Iγ ,G;F )

e(Iγx)κ(x)Oγx(f).

8.1.3. — Fix an inner twisting ψ : G→ G∗ with G∗ quasi-split, and fix an L-group
datum for G, as in [LS87]. Let (H,H, s, η) be an endoscopic datum for G. For
simplicity, we assume that H = LH (cf. the discussion in §5.4.1). The notion of
when a semi-simple element γH ∈ H(F ) (not necessarily G-regular) is an image of a
semi-simple element γ ∈ G(F ) is defined in [LS90, §1.2].

Under the additional assumption that Gder is simply connected, Langlands–
Shelstad [LS90, §2.4] have defined transfer factors for (G,H)-regular elements. Thus
after fixing a normalization we have a number

∆(γH , γ) ∈ C,

for each semi-simple (G,H)-regular γH ∈ H(F ) and each semi-simple γ ∈ G(F ).
Moreover, ∆(γH , γ) depends on γH (resp. γ) only via its stable conjugacy class
(resp. conjugacy class) over F , and we have ∆(γH , γ) = 0 unless γH is an image
of γ.

Since we have assumed that H = LH, we can in fact define ∆(γH , γ) for (G,H)-
regular γH without assuming that Gder is simply connected. In the more restrictive
G-regular case, this is done in [LS87]; below we explain the (G,H)-regular case. For
this, consider a z-extension 1 → Z → G1 → G → 1. This determines a central
extension 1 → Z → H1 → H → 1 as in [LS87, §4.4]. As explained in loc. cit., we
have a homomorphism η1 : LH1 → LG1 such that (H1,

LH1, s, η1) is an endoscopic
datum for G1. The restriction of η1 to Ĥ1 is canonical, but η1 itself is canonical
only up to twisting by a cocycle in the center of Ĥ1. In our current situation (with
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H = LH), we can take η1 such that the diagram
LH

��

η // LG

��
LH1

η1 // LG1

(8.1.3.1)

commutes, where the vertical arrows are the natural ones associated to H1 → H

and G1 → G. This pins down η1 canonically. We then define ∆(γH , γ) to be zero
if γH is not an image of γ, and otherwise to be ∆(γH1 , γ1) where γH1 ∈ H1(F )
(resp. γ1 ∈ G1(F )) is a lift of γH (resp. γ) such that γH1 is an image of γ1, and
∆(γH1 , γ1) is defined with respect to the endoscopic datum (H1,

LH1, s, η1) for G1
as in [LS90, §2.4]. In the latter case, the pair (γH1 , γ1) always exists, and is unique
up to simultaneous translation by Z(F ). To show that this definition of ∆(γH , γ) is
independent of the lifts, it suffices to check that ∆(zγH1 , zγ1) = ∆(γH1 , γ1) for all
z ∈ Z(F ). For this it suffices to treat the case where γH1 is strongly G1-regular. Then
the desired statement is proved on p. 254 of [LS87] (with λ = 1). One can also check
that the above definition is independent of the choice of the z-extension G1. For this,
using the standard fact (see [Kot82, Lem. 1.1]) that any two z-extensions of G can
be dominated by a third z-extension, one is reduced to checking that when Gder is
simply connected, for strongly G-regular γH ∈ H(F ), the definition of ∆(γH , γ) as
above (i.e., ∆(γH , γ) := ∆(γH1 , γ1) with a given z-extension G1 and with η1 pinned
down as above) agrees with the original definition of ∆(γH , γ) in [LS87]. This is a
routine exercise which involves checking suitable functorial properties of all the terms
∆I , · · · ,∆IV in loc. cit..

The Langlands–Shelstad Transfer Conjecture and the Fundamental Lemma are now
unconditional theorems thanks to the work of Ngô [Ngô10], Waldspurger [Wal97,
Wal06], Cluckers–Loeser [CL10], and Hales [Hal95]. We recall these statements in
the following theorem(2), taking into account the extension to (G,H)-regular elements
in [LS90, §2.4].

Theorem 8.1.4. — Let G be a reductive group over a non-archimedean local field
F of characteristic zero. Let (H, LH, s, η) be an endoscopic datum for G.

(1) (Langlands–Shelstad Transfer.) Fix a normalization of the transfer factors,
and fix Haar measures on G(F ) and H(F ). For any f ∈ C∞

c (G(F )), there exists
fH ∈ C∞

c (H(F )), called the Langlands–Shelstad transfer of f , with the following

(2)We state only the Fundamental Lemma for the unit element of the unramified Hecke algebra. The
references [Ngô10], [Wal06], and [CL10] give this result for characteristic zero local fields with
sufficiently large residue characteristic. In [Hal95] it is shown that the Fundamental Lemma for
the unit for all sufficiently large residue characteristic is enough to imply the Fundamental Lemma
(for the full unramified Hecke algebra) for characteristic zero local fields with arbitrary residue
characteristic. See also [LMW18].
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properties: For any semi-simple (G,H)-regular γH ∈ H(F ), we have

(8.1.4.1) SOγH (fH) =
{

0, γH is not an image from G,

∆(γH , γ)Osγ(f), γH is an image of γ ∈ G(F )ss.

In the second situation of (8.1.4.1) we have the following explanations.
– The component s in (H, LH, s, η) defines an element of K(Iγ , G;F ) still

denoted by s, and we use that to define Osγ .
– We define SOγH (fH) and Osγ(f) using the fixed Haar measures on G(F )

and H(F ) and compatible Haar measures on G0
γ(F ) and H0

γH (F ).
(2) (Fundamental Lemma.) Suppose G and (H, LH, s, η) are unramified (see

§7.2.2). Normalize the Haar measures on G(F ) and H(F ) such that all hyperspecial
subgroups have volume 1. Let K (resp. KH) be an arbitrary hyperspecial subgroup
of G(F ) (resp. H(F )). Then 1KH is a Langlands–Shelstad transfer of 1K as in part
(1), for the unramified normalization canonically associated to K of transfer factors
defined in [Hal93].

(3) (Adelic Transfer.) Let G0 be a reductive group over a number field F0 and let
(H0,

LH0, s0, η0) be an endoscopic datum for G0 over F0. Suppose there is a finite
set Σ of finite places of F0 and a reductive model G of G0 over OF0 [1/Σ] such that
for all finite places v of F0 outside Σ the endoscopic datum (H0,

LH0, s0, η0) localizes
to an unramified endoscopic datum over F0,v, and the transfer factors between HF0,v

and GF0,v are normalized under the canonical unramified normalization associated to
G(OF0,v ). Let S be the union of Σ and the set of all archimedean places of F0, and let
ASF0

denote the adeles over F0 away from S. For any f ∈ C∞
c (G0(ASF0

)), there exists
fH ∈ C∞

c (H0(ASF0
)) such that the ASF0

-analogue of (8.1.4.1) holds. Here the notion
of an adelic (G0, H0)-regular element is defined in [Kot90, §7, pp. 178–179], and all
the orbital integrals are defined with respect to adelic Haar measures.

Remark 8.1.5. — Part (1) of Theorem 8.1.4 appears to be stronger than the orig-
inal form of the Langlands–Shelstad Conjecture in two ways. Firstly, the original
conjecture is about transferring functions on G to functions on a central extension H1
of H. More precisely, fix a z-extension 1 → Z → G1 → G → 1 and obtain H1 as in
§8.1.3. For a choice of η1 : LH1 → LG1 (recall that η1|Ĥ1

is canonical), the conjecture
concerns transferring functions in C∞

c (G(F )) to functions in C∞
c (H1(F ), λ). Here λ is

a character on Z(F ) determined by η1, and C∞
c (H1(F ), λ) denotes the set of functions

in C∞(H1(F )) that transform under Z(F ) by λ and whose supports are compact mod-
ulo Z(F ). Now under our assumption that H = LH, we may and shall pin down η1
as in §8.1.3, and then λ = 1. In view of the definition of the transfer factors discussed
in §8.1.3, we know that under the natural bijection C∞

c (H1(F ), 1) ∼−→ C∞
c (H(F )),

a Langlands–Shelstad transfer of f ∈ C∞
c (G(F )) to C∞

c (H1(F ), 1) in the original
sense corresponds to a Langlands–Shelstad transfer of f to C∞

c (H(F )) in the sense
of Theorem 8.1.4.
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Secondly, in the original conjecture the identity (8.1.4.1) is only required to hold
for all G-regular γH . In [LS90, §2.4], Langlands–Shelstad prove that this indeed
implies (8.1.4.1) for all (G,H)-regular γH , under the assumption that Gder is simply
connected. In view of the last paragraph, we know that this implication is still valid
without assuming that Gder is simply connected (but always under the assumption
that H = LH).

Similar remarks also apply to part (2) of Theorem 8.1.4.

8.2. Calculation of some invariants

In this section let G be the special orthogonal group of an arbitrary quadratic space
of dimension d ≥ 2 over Q. Let m := ⌊d/2⌋.

Proposition 8.2.1. — Assume that G is not the split SO2. Then the Tamagawa
number τ(G) = 2.

Proof. — By [Kot84b, (5.1.1)] and Weil’s conjecture on Tamagawa numbers proved
in [Kot88], we have

τ(G) =
∣∣∣π0(Z(Ĝ)ΓQ)

∣∣∣ / ∣∣∣ker1(Q, Z(Ĝ))
∣∣∣ .(8.2.1.1)

First assume that d ≥ 3. Then Ĝ is a symplectic group of rank at least 1 or an even
orthogonal group of rank at least 2, so Z(Ĝ) ∼= µ2. In particular, ker1(Q, Z(Ĝ)) = 0 by
Chebotarev’s density theorem. On the other hand π0(Z(Ĝ)ΓQ) = Z(Ĝ) has cardinality
2. Hence τ(G) = 2.

Now assume that d = 2. Since G is not split, it is isomorphic to the norm-
1 subtorus of ResK/Q Gm for some quadratic extension K/Q. We have Z(Ĝ) =
Ĝ = C×. The action of ΓQ on Z(Ĝ) factors through Gal(K/Q), and the non-trivial
element of Gal(K/Q) acts by z 7→ z−1. Hence Z(Ĝ)ΓQ = {±1}. On the other hand,
ker1(Q, Z(Ĝ)) is the dual group of the finite abelian group ker1(Q, T ) by [Kot84b,
(3.4.5.1)], and the latter is trivial by the Hasse norm theorem (cf. [PR94, pp. 307–
308]). Hence τ(G) = 2.

Definition 8.2.2. — Let H be reductive group over R assumed to contain elliptic
maximal tori. Define

k(H) :=
∣∣im(H1(R, T SC

e )→ H1(R, Te))
∣∣ ,

where Te denotes an elliptic maximal torus in H and T SC
e denotes the inverse image

of Te in HSC. Since all elliptic maximal tori in H are conjugate under H(R), k(H) is
well defined.

Proposition 8.2.3. — Assume that GR contains elliptic maximal tori. Then k(G) =
2m−1.
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Proof. — If d = 2, then GR is a torus, so obviously k(G) = 1. In this case m = 1, so
the proposition is true. Now assume that d ≥ 3. Let Te be an elliptic maximal torus
in GR, which is in fact anisotropic. As argued in the proofs of [Mor10b, Lem. 5.4.2]
and [Mor11, Lem. 5.2.2], we have(3)

k(G) =
∣∣∣π0(T̂e

Γ∞)
∣∣∣ / ∣∣∣π0(Z(Ĝ)Γ∞)

∣∣∣ .
We have π0(Z(Ĝ)Γ∞) ∼= Z(Ĝ) ∼= Z/2Z, and since Te ∼= U(1)m we have π0(T̂e

Γ∞) ∼=
(Z/2Z)m. Hence k(G) = 2m−1.

Recall that GLj,R contains elliptic maximal tori precisely when j = 1, 2.

Proposition 8.2.4. — For any j ≥ 1, τ(GLj) = 1. For j = 1, 2, k(GLj,R) = 1.

Proof. — For j ≥ 1, Z(ĜLj) = C×, on which ΓQ acts trivially. Hence

π0(Z(ĜLj)ΓQ) = π0(C×) = 1,

and
ker1(Q, Z(ĜLj)) = 1

by Chebotarev’s density theorem. Thus τ(GLj) = 1 by (8.2.1.1). Since GL1,R is a
torus, we have k(GL1,R) = 1. Any elliptic maximal torus Te in GL2,R is isomorphic
to ResC/R Gm, and H1(R, Te) is trivial by Shapiro’s lemma. Hence k(GL2,R) = 1.

Corollary 8.2.5. — Let M be a Levi subgroup of G defined over Q. Let M ′ be the
group in a bi-elliptic endoscopic G-datum for M . Let H ′ be the induced endoscopic
group for G. Assume that M is not a direct product of copies of GL1 and GL2 over
Q, and assume that all four R-groups GR,MR,M

′
R, HR contain elliptic maximal tori.

Then we have
τ(G)
τ(H)

τ(M ′)
τ(M) = k(H)

k(G)
k(M)
k(M ′) .

Proof. — We have M ∼= MGL ×MSO, where MGL is a product of copies of GL1 and
GL2, and MSO is a special orthogonal group which is not the split SO2 over Q. Then
M ′ is either a direct product of MGL with one special orthogonal group S0 of the
same parity and absolute rank as MSO, or a direct product of MGL with two special
orthogonal groups S1, S2 of the same parity as MSO whose absolute ranks add up to
that of MSO. In both cases, none of Si is the split SO2 over Q since M ′ is an elliptic
endoscopic group for M .

In the first case, H is a special orthogonal group of the same parity and absolute
rank as G. By Proposition 8.2.1 we have τ(G) = τ(H) and τ(M) = τ(M ′). By

(3)In loc. cit. it is stated that
∣∣im(H1(R, Te ∩ Gder) → H1(R, Te))

∣∣ =
∣∣∣π0(T̂e

Γ∞ )
∣∣∣ / ∣∣π0(Z(Ĝ)Γ∞ )

∣∣,
and in that context Gder is simply connected. For the correct generalization, one replaces the left
hand side by k(G).
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Proposition 8.2.3 we have k(G) = k(H) and k(M) = k(M ′). The desired identity
holds.

In the second case, H is a direct product of two special orthogonal groups H1, H2
whose absolute ranks m1,m2 add up to that of G, and neither of the two is the
split SO2 over Q since H is an elliptic endoscopic group for G. By Proposition 8.2.1
and the multiplicativity of τ(·) with respect to direct products, we have τ(G) = 2,
τ(H) = τ(H1)τ(H2) = 4, and

τ(M ′) = τ(S1)τ(S2)τ(MGL) = 4τ(MGL) = 2τ(MSO)τ(MGL) = 2τ(M).

Hence the LHS of the desired identity is 1. By Proposition 8.2.3 and the multiplica-
tivity of k(·) with respect to direct products, we have

k(G) = 2m−1 = 2 · 2m1−12m2−1 = 2k(H1)k(H2) = 2k(H),

and similarly

k(M) = k(MGL)k(MSO) = 2k(MGL)k(S1)k(S2) = 2k(M ′).

Hence the RHS of the desired identity is also 1.

8.3. The simplified geometric side of the stable trace formula

We recall the definition of the simplified geometric side of the stable trace formula,
applicable to test functions which are stable cuspidal at infinity. This stems from
Kottwitz’s work in his unpublished notes. Our exposition follows [Mor10b, §5.4].
More discussion on the relationship between the simplified geometric side given here
and the “usual” stable trace formula appearing in Arthur’s work is given in §9.1 below.

Definition 8.3.1. — Let M be a reductive group over R containing elliptic maximal
tori. Fix a Haar measure on M(R). Let M̄ be the inner form of M over R that is
anisotropic modulo center (which exists by our assumption on M). Define

v̄(M) := e(M̄) vol(M̄(R)/AM (R)0),

where e(M̄) is the Kottwitz sign of M̄ , M̄(R) is equipped with the Haar measure
transferred from that on M(R), and AM (R)0 is equipped with the canonical Haar
measure obtained by choosing an R-algebraic group isomorphism ϕ : AM

∼−→ Gnm
and pulling back the Lebesgue measure along the composite isomorphism

log ϕ : AM (R)0 ϕ−→ (R>0)n (xi)i 7→(log xi)i−−−−−−−−−−→ Rn.

(This measure on AM (R)0 is indeed canonical since a different choice of ϕ would
replace log ϕ by g ◦ log ϕ for some g ∈ GLn(Z).)

Definition 8.3.2. — Let G be a reductive group over R. Fix a quasi-character
ν : AG(R)0 → C×. Let M be a Levi subgroup of G such that M contains elliptic
maximal tori (of M), and let f ∈ C∞

c (G(R), ν−1) be a stable cuspidal function (see
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[Art89, §4], [Mor10b, §5.4]). For γ ∈M(R) semi-simple elliptic, we define

SΦGM (γ, f) := (−1)dimAMk(M)k(G)−1v̄(M0
γ )−1

∑
Π

ΦM (γ−1,ΘΠ) Tr(f | Π),

where Π runs through the discrete series L-packets belonging to ν, ΘΠ denotes the
stable character associated to Π, and ΦM (·,ΘΠ) is the normalized stable discrete series
character as in §4.2.1. This definition depends on the choices of a Haar measure on
M0
γ (R) (used to define v̄(M0

γ )) and a Haar measure on G(R) (used to define Tr(f | Π)).

Definition 8.3.3. — Let G be a reductive group over Q. Assume that G is cus-
pidal in the sense of Definition 1.1.6. For f = f∞f∞ ∈ C∞

c (G(A)) with f∞ ∈
C∞
c (G(R), ν−1) stable cuspidal (where ν is a fixed quasi-character AG(R)0 → C×),

and for M ⊂ G a Levi subgroup that is cuspidal, define

STGM (f) := τ(M)
∑
γ

ῑM (γ)−1SOγ(f∞
M )SΦGM (γ, f∞),

where γ runs through a set of representatives of the stable conjugacy classes of the
R-elliptic semi-simple elements of M(Q), and

ῑM (γ) :=
∣∣(Mγ/M

0
γ )(Q)

∣∣ .
For M ⊂ G a Levi subgroup that is not cuspidal, define

STGM (f) := 0.

We define
STG(f) :=

∑
M

(nGM )−1STGM (f),

where M runs through the Levi subgroups of G up to G(Q)-conjugacy, and nGM is as
in Definition 1.1.1.

Remark 8.3.4. — We explain how the Haar measures are normalized in the def-
initions of STGM (f) and STG(f) so that the results are independent of the Haar
measures. For each SOγ(f∞

M ), we need Haar measures on M0
γ (Af ) and M(Af ) to de-

fine the stable orbital integral SOγ(·), and need Haar measures on M(Af ) and G(Af )
to define the constant term f∞

M . We assume that the two measures on M(Af ) are the
same. Then SOγ(f∞

M ) depends only on the Haar measures on M0
γ (Af ) and G(Af ).

Now in the definition of SΦGM (γ, f∞), we need Haar measures on M0
γ (R) and G(R)

(cf. Definition 8.3.2). We assume that the measures on M0
γ (Af ) and M0

γ (R) multiply
to the Tamagawa measure on M0

γ (A), and assume that the measures on G(Af ) and
G(R) multiply to the Tamagawa measure on G(A). Then STGM (f) and STG(f) are
independent of the choices of Haar measures.
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8.4. Test functions on endoscopic groups

8.4.1. — We now keep the notation and setting in §1.8.3 and Theorem 1.8.4. In
particular, G = SO(V, q), where (V, q) is a quadratic space over Q of dimension d ≥ 5,
signature (d−2, 2), and discriminant δ ∈ Q×/Q×,2. Assume that the G-representation
V fixed in §1.7.1 is absolutely irreducible. Fix a prime p /∈ Σ(O(V ),V, λ,K, f∞), and
fix an integer a ≥ a0(O(V ),V, λ,K, f∞, p). Let fp,∞ be as in §1.8.3.

Let ed+,δ+,d−,δ− = (H, LH, s, η) be an elliptic endoscopic datum for G = SO(V ),
presented in the explicit form as in §5.4. In the following we will always assume that
d+ ≥ 2, or equivalently, that in the decompositionH = H+×H− = SO(V +)×SO(V −)
the factor H+ is non-trivial. By §5.4.4, every isomorphism class in E (G) can be
represented by such a datum.

We follow [Kot90, §7] to define a test function fH ∈ C∞
c (H(A)). By definition,

fH = 0 unless the following condition is satisfied:
(†) The R-group HR contains anisotropic maximal tori(4), and the Qp-group HQp

is unramified.
Note that for our explicit representative (H, LH, s, η), the group HQp is unramified if
and only if the localization of the endoscopic datum (H, LH, s, η) over Qp is unrami-
fied. Also, if HR contains anisotropic maximal tori, then H is cuspidal as a Q-group,
and neither of H±

R is isomorphic to the split SO2 over R. It easily follows from the last
condition that the localization of the (globally elliptic) endoscopic datum (H, LH, s, η)
over R remains elliptic, as an endoscopic datum over R. Conversely, if H is cuspidal,
then since AH is trivial by the (global) ellipticity of (H, LH, s, η), we know that HR
contains anisotropic maximal tori. In conclusion, (†) is equivalent to the following
condition:

(‡) The Q-group H is cuspidal, and the Qp-group HQp is unramified.
Moreover, as we have seen, these conditions imply that the endoscopic datum
(H, LH, s, η) is elliptic over R and unramified over Qp. In the following we assume
that (†) and (‡) hold.

By definition fH is of the form

fH = fH∞fHp f
H,p,∞

with fH∞ ∈ C∞
c (H(R)) stable cuspidal, and fHp ∈ C∞

c (H(Qp)), fH,p,∞ ∈ C∞
c (H(Apf )).

(As Z0
H is anisotropic over R we do not need to specify central characters for the

notion of stable cuspidal functions.)
We fix a Haar measure on H(Apf ) arbitrarily, and fix the Haar measure on H(Qp)

such that hyperspecial subgroups have volume 1. Then there is a unique Haar measure

(4)In [Kot90, §7], the more general condition at the archimedean place is that elliptic maximal tori
in GR should “come from” HR. In our situation, since GR contains anisotropic maximal tori, the
condition simplifies to the one in the text.
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on H(R) such that the product measure on H(A) is the Tamagawa measure. We fix
this measure on H(R) as well.

8.4.2. — The definition of fH∞ will depend on the choice of an auxiliary datum
(j, BG,H), which we now specify. Here j : TH

∼−→ TG is an admissible isomorphism
between anisotropic maximal tori TH ⊂ HR and TG ⊂ GR; see §5.6 for the notion of
admissible isomorphisms over C, and note that any C-isomorphism TH,C

∼−→ TG,C is
automatically defined over R since both TH and TG are anisotropic over R. The other
part BG,H is a Borel subgroup of GC containing TG,C; in other words, (TG, BG,H)
is a fundamental pair in GR. Later we shall also use the choice of (j, BG,H) to
normalize the archimedean transfer factors between H and G. The dependence of fH∞
on (j, BG,H) is analogous to the dependence of a transfer of a function from G to H
on the normalization of transfer factors. However this is only an analogy, as fH∞ is
not defined to be the transfer of a function on G.

We now fix (j, BG,H) once and for all in the following way. We let the fundamental
pair (TG, BG,H) arise, in the way described in §6.1.6, from an elliptic decomposition
(Definition 6.1.2) DH ∈ ED(VR). Moreover, in the even case we assume that DH gives
rise to the orientation oV on VR fixed in §6.1.7. In other words, DH ∈ ED(VR)o in the
notation of §6.1.7. As the notation suggests, we shall make possibly different choices
of DH for different (H, LH, s, η); a uniform choice is sometimes not possible because
of some further conditions to be imposed in the following paragraph. Once DH has
been chosen, we choose j as follows. Recall that H is of the form H = H+ ×H− =
SO(V +) × SO(V −). To define j : TH

∼−→ TG, we choose an elliptic decomposition
DH = (DH+ ,DH−) of (V +

R , V
−
R ) which should induce the fixed orientations on V ± in

the even case; in other words DH ∈ ED(V +
R )o × ED(V −

R )o in the notation of §6.1.9.
Then we define j to be jDH ,DH in the notation of §6.1.9. By Lemma 6.1.13, this j is
indeed an admissible isomorphism.

Now let us specify further conditions on DH . Since the signature of VR is (d−2, 2),
we know that DH involves exactly one negative definite plane as its member. In the
odd case, we assume that DH lies in ED(VR)onice as in Definition 6.2.12. This means
that the unique negative definite member of DH is the last member; cf. Example
6.2.13. In the even case, unless m = d/2 is odd and d+ = 2, we assume that DH lies
in ED(VR)onice as in Definitions 6.2.12 and 6.3.8, meaning that the unique negative
definite member is the last (resp. second last) member if m is even (resp. odd). If
in the even case m is odd and d+ = 2, we assume that the unique negative definite
member of DH is the last member. In this case, DH is not in ED(VR)onice, but it differs
from an element thereof by the transposition (m− 1,m) ∈ Sm.

As long as d is not ≡ 2 mod 4, we can clearly choose DH satisfying all the above
conditions independently of (H, LH, s, η). When d ≡ 2 mod 4, we need to adjust the
choice of DH according to whether d+ = 2 or not. For instance, for all (H, LH, s, η)
with d+ ̸= 2 we may choose DH to be some common D, and then we may choose
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DH for d+ = 2 to be (m − 1,m) · D, i.e., D with the last two members swapped. In
particular, we see that in all cases, we may and shall arrange that TG is independent
of (H, LH, s, η), which justifies our notation.

Since SO(V +) is non-trivial, our assumptions on DH imply that the factor U(1)
of TG corresponding to the unique negative definite member of DH is sent under j−1

into SO(V +) ⊂ H.

8.4.3. — The fixed choice of (j, BG,H) determines a Borel subgroup BH of HC con-
taining TH,C, a subset Ω∗ of Ω = ΩC(G,TG), and a bijection induced by multiplication

ΩH × Ω∗ −→ Ω

as follows. Here ΩH := ΩC(H,TH) is viewed as a subgroup of Ω via

ΩH ↪→ Aut(TH,C) ∼−→
j

Aut(TG,C) ⊃ Ω.

The Borel subgroup BH is characterized by the condition that the BH -positive roots
on TH,C are transported via j to BG,H -positive roots on TG,C. (Note that (TH , BH)
is nothing but the fundamental pair in HR determined by DH as in §6.1.6, where DH
is as in §8.4.2.) The subset Ω∗ ⊂ Ω consists of those ω ∈ Ω such that the BH -positive
roots on TH,C are transported via j to ωBG,H -positive roots on TG,C.

Let V∗ be the contragredient representation of V. Let φV∗ be the discrete Langlands
parameter of GR corresponding to V∗, i.e., the L-packet of φV∗ consists of discrete
series representations of G(R) having the same infinitesimal character as the G(C)-
representation V∗ ⊗E C (which is irreducible). Let ΦH(φV∗) be the set of equivalence
classes of discrete Langlands parameters of HR that induce the equivalence class of
φV∗ via η : LH → LG. As on [Kot90, p. 185], we have a bijection

ω∗(·) : ΦH(φV∗) ∼−→ Ω∗, φH 7−→ ω∗(φH),

characterized by the condition that φH is aligned with (ω∗(φH)−1 ◦ j, BG,H , BH) in
the sense of [Kot90, p. 184].

For any φH ∈ ΦH(φV∗), define

fφH := d(H)−1
∑

π∈Π(φH)

fπ ∈ C∞
c (H(R)),(8.4.3.1)

where the terms are explained in the following.
– The summation is over the discrete series representations π of H(R) inside the

L-packet Π(φH) of φH .
– For each π, the function fπ ∈ C∞

c (H(R)) is a pseudo-coefficient for π; see
[CD85]. Note that this notion depends on the choice of a Haar measure on H(R).
We use the one fixed in §8.4.1.

– We define d(H) to be the cardinality of Π(φH). Note that this number is an
invariant of HR, equal to the cardinality of the complex Weyl group divided by the
cardinality of the real Weyl group of an elliptic (i.e., anisotropic) maximal torus.
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The function fφH is stable cuspidal. Using this, we build the function fH∞ in the
following definition; cf. [Kot90, p. 186], [Mor10b, §6.2].

Definition 8.4.4. — We define

fH∞ := (−1)q(GR)⟨µTG , s⟩j
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))fφH ∈ C∞
c (H(R)).

Here µTG ∈ X∗(TG) is the Hodge cocharacter of any h in the Shimura datum X that
factors through TG. The number ⟨µTG , s⟩j is defined to be the image of (j−1 ◦µTG , s)
under the canonical pairing

X∗(TH)× Z(Ĥ)→ π1(H)× Z(Ĥ) = X∗(Z(Ĥ))× Z(Ĥ)→ C×.

For each ω ∈ Ω, we write det(ω) for the sign of ω.(5)

Remark 8.4.5. — By construction fH∞ is stable cuspidal.

Lemma 8.4.6. — We have ⟨µTG , s⟩j = 1.

Proof. — Using the observation made at the end of §8.4.2, we compute that the image
of j−1 ◦ µTG ∈ X∗(TH) in π1(H) ∼= π1(H+) × π1(H−) has non-trivial projection in
π1(H+) ∼= Z/2Z and trivial projection in π1(H−). We conclude the proof by recalling
that s has trivial component in Z(Ĥ+).

8.4.7. — We normalize the transfer factors between (H, LH, s, η) and G at various
places as follows.

We use the canonical unramified normalization associated to Kp of the transfer
factors at p (see [Hal93]), denoted by (∆G

H)p. Associated to the datum (j, BG,H)
fixed in §8.4.2, we have Kottwitz’s normalization [Kot90, §7] for the transfer factors
at ∞, which we denote by ∆j,BG,H (cf. §§6.2–6.3) and also by (∆G

H)∞. We normalize
the transfer factors away from p and ∞ such that at almost all unramified places we
have the canonical unramified normalization (associated to the hyperspecial subgroup
determined by some reductive model of G over Z[1/Σ] for some finite set Σ of primes)
and such that the global product formula with (∆G

H)p and (∆G
H)∞ is satisfied (see

[LS87, §6]). For each place v /∈ {p,∞}, we denote our normalization by (∆G
H)v.

We are now ready to give the definitions of the other two parts fH,p,∞ and fHp in
fH .

Definition 8.4.8. — Define fH,p,∞ ∈ C∞
c (H(Apf )) to be a Langlands–Shelstad

transfer of fp,∞ as in Theorem 8.1.4 with respect to the Haar measure dgp,∞ on
G(Apf ) fixed in §1.8.3 and the Haar measure on H(Apf ) fixed in §8.4.1. Here the
transfer factors are normalized as in §8.4.7.

(5)This is indeed equal to the determinant of ω acting on the finite free Z-module X∗(TG), which
explains the notation. In §4.2.2 the sign function is denoted by ϵ(·), but in the current chapter we
prefer the notation det(·).
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Definition 8.4.9. — Let µ : Gm → GQp be a Hodge cocharacter of the Shimura
datum O(V ) defined over Qp (see §1.5.1). Let f−µ be the element of Hur(GQpa )
associated to −µ as in Definition 7.1.6. Let fHp = b(f−µ) be the image of f−µ under
the twisted transfer map b : Hur(GQpa ) → Hur(HQp) as in §7.2.2. We identify fHp
with a realization of it in C∞

c (H(Qp)); see Remark 8.4.10 below.

Remark 8.4.10. — Once an element fHp ∈ Hur(H) is specified, it still corresponds
ambiguously to different functions on H(Qp). Namely, for each choice of a hyperspe-
cial subgroup KH,p of H(Qp) there is a corresponding KH,p-bi-invariant function in
H(H(Qp) � KH,p). These functions have the same stable orbital integrals, as noted
in [Kot90, §7]. Indeed, as we saw in §7.1.2, these functions are related to each other
under pull-back by inner automorphisms of HQp , and these automorphisms do not
permute the stable conjugacy classes. The same remark applies to the various canon-
ical constant terms (see Proposition 7.1.10) (fHp )M ′ ∈ Hur(M ′) for Levi subgroups
M ′ of H defined over Qp. It follows that the evaluation of STH (Definition 8.3.3) at
the test function fH = fH∞fHp f

H,p,∞ is unaffected by the ambiguity in fHp .

Remark 8.4.11. — The function fH depends on a via the component fHp .

8.4.12. — Now suppose M is a standard proper Levi subgroup of G (i.e., one of
M1,M2,M12 as in §1.4) and consider a bi-elliptic endoscopic G-datum for M

eA,B,p = eA,B,d+,δ+,d−,δ− = (M ′, LM ′, sM , ηM )

presented in the explicit form as in §5.5.6. More precisely, the construction in §5.5.6
depends on the choice of a hyperbolic basis as in §5.5.2. Thus we need to fix a hy-
perbolic basis of W⊥

1 = V1 ⊕ V/V ⊥
1 (resp. W⊥

2 = V2 ⊕ V/V ⊥
2 ) when M ∈ {M2,M12}

(resp. M = M1). We always take the hyperbolic basis {e1, e
′
1} of W⊥

1 and the hyper-
bolic basis {e1, e2, e

′
2, e

′
1} of W⊥

2 , where ei, e′
i are as in §1.4.3.

As in §5.5.6 and Proposition 5.5.7, eA,B,p induces the endoscopic datum

ep(M) = (M ′, LM ′, s′
M , ηM )

for M , and the endoscopic datum

ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ− = (H, LH, s, η)

for G. Moreover, recall that we have fixed in §5.5.9 an H(Q)-conjugacy class of
embeddings M ′ ↪→ H with images Levi subgroups, and in particular we have the
diagram (5.5.9.1) commuting up to Ĝ-conjugation. We now fix such an embedding
M ′ ↪→ H on the nose.

We assume that H satisfies condition (†) in §8.4.1. It follows that M ′ is unramified
at p, and the endoscopic datum (M ′, LM ′, s′

M , ηM ) for M is unramified at p. Also we
assume that the parameter p is such that the component of sM in M̂SO is not −1,
from which it follows that H+ is non-trivial. Thus the preceding discussion in this
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section can be applied to (H, LH, s, η). We normalize the transfer factors between
(M ′, LM ′, s′

M , ηM ) and M as follows.
Away from p and∞, we normalize the transfer factors by inheriting the normaliza-

tion between (H, LH, s, η) and G fixed in §8.4.7, with respect to our fixed embedding
M ′ ↪→ H; see Remark 8.4.13 below. At p, we use the canonical unramified normal-
ization associated to the hyperspecial subgroup of M(Qp) determined by Kp (i.e., the
image of P (Qp) ∩ Kp under P → M , where P ⊂ G is the standard parabolic sub-
group such that M = MP ; cf. Remark 2.4.5), which is also the same as the normal-
ization inherited from the canonical unramified normalization between (H, LH, s, η)
and G associated to Kp. For later reference, for each finite place v, we denote the
above-mentioned normalization by (∆M

M ′)A,Bv or simply (∆M
M ′)A,B . We denote the

above-mentioned hyperspecial subgroup of M(Qp) by M(Zp). At ∞, we do not yet
fix a normalization. In fact, precise knowledge about signs between different normal-
izations in this case is key to our later computation; this will be investigated in §8.9
below.

Remark 8.4.13. — At each place v of Q, there is a notion of the normalization of the
transfer factors between (M ′, LM ′, s′

M , ηM ) and M inherited from the normalization
of the transfer factors between (H, LH, s, η) and G with respect to our fixed M ′ ↪→ H.
It is described via a simple formula as in [Mor10b, §5.2] or [Mor11, §5.1]. Roughly
speaking, this means that apart from the difference in ∆IV , the transfer factor between
M ′ and M is equal to the transfer factor between H and G for any G-regular element
of M ′(Qv) ⊂ H(Qv) and any preimage of it in M(Qv) ⊂ G(Qv). Here it is crucial
that the diagram (5.5.9.1) commutes up to Ĝ-conjugacy.

An important property is that if the normalizations between H and G at all places
satisfy the global product formula, then so do the inherited normalizations between
M ′ and M at all places; this is due to the fact that our choice of M ′ ↪→ H is global.
To see this, one simply notes that the term ∆IV can be ignored from the definition of
transfer factor when deciding whether local normalizations satisfy the global product
formula.

We now say a few words on the proof of the existence of the inherited normalization.
The original source is Kottwitz’s unpublished notes, where this result is marked as
an easy consequence of the definition of transfer factors in [LS87]. Indeed it can
be proved similarly as [Hal93, Lem. 9.2]. Alternatively, in our particular situation,
one can prove this without much difficulty using the explicit formulas for the transfer
factors in [Wal10].

Proposition 8.4.14. — Keep the setting of §8.4.12. The function (fH,p,∞)M ′ ∈
C∞
c (M ′(Apf )) is a Langlands–Shelstad transfer of (fp,∞)M ∈ C∞

c (M(Apf )) in the sense
of Theorem 8.1.4, with respect to the normalization of transfer factors (∆M

M ′)A,B as
in §8.4.12.
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Proof. — In view of the Fundamental Lemma we can pass to a local setting over some
Qv (with v ̸= p,∞) instead of the adelic setting. The statement can then be proved
similarly as [Mor10b, Lem. 6.3.4], with the following two modifications.

Firstly, we replace Gγ and Mγ by G0
γ and M0

γ in the proof of part (i) of loc. cit..
Secondly, in the proof of part (ii) of loc. cit., Morel cites [LS90, Lem. 2.4.A]

in order to reduce the proof to checking the matching of orbital integrals for those
γ′ ∈ M ′(Qv)ss that are M -regular, or even G-regular (meaning that all matching
elements of M(Qv)ss are G-regular).(6) Since Mder is not simply connected in our
case, we cannot directly apply [LS90, Lem. 2.4.A], but this can be circumvented
by the following argument. To simplify notation, we understand that all reductive
groups and endoscopic data are over Qv. Suppose we have already established that
ϕ ∈ C∞

c (M(Qv)) and ϕ′ ∈ C∞
c (M ′(Qv)) have matching orbital integrals for all G-

regular γ′ ∈ M ′(Qv)ss, and want to deduce the same for all (M,M ′)-regular γ′ ∈
M ′(Qv)ss. As in §8.1.3, we pick a z-extension 1 → Z → M1 → M → 1, and obtain
from it a central extension 1→ Z → M ′

1 → M ′ → 1 as well as an endoscopic datum
(M ′

1,
LM ′

1, s
′
M1
, ηM1) for M1 such that the diagram analogous to (8.1.3.1) commutes.

As in Remark 8.1.5, we identify ϕ with a function ϕ1 ∈ C∞
c (M1(Qv), 1Z), and identify

ϕ′ with a function ϕ′
1 ∈ C∞

c (M ′
1(Qv), 1Z), where in both cases 1Z denotes the trivial

character on Z. We say that an element of M ′
1(Qv)ss is G-regular if all the matching

elements of M1(Qv)ss are preimages of G-regular elements of M(Qv)ss. Then ϕ1 and
ϕ′

1 have matching orbital integrals for all G-regular elements of M ′
1(Qv)ss. Now note

that for any maximal torus T ⊂ M ′
1, there is a dense subset of T (Qv) consisting of

G-regular elements. By this and the proof of [LS90, Lem. 2.4.A], ϕ1 and ϕ′
1 have

matching orbital integrals for all (M1,M
′
1)-regular elements of M ′

1(Qv)ss. It follows
that ϕ and ϕ′ have matching orbital integrals for all (M,M ′)-regular elements of
M ′(Qv)ss, as desired.

8.5. Statement of the main computation

8.5.1. — Let M be a standard proper Levi subgroup of G. Define

Tr′
M = (nGM )−1

∑
eA,B,p=(M ′,LM ′,sM ,ηM )

∈ĖG(M)

|OutG(eA,B,p)|−1
τ(G)τ(H)−1STHM ′(fH).

(8.5.1.1)

Here the summation is over a subset ĖG(M) of the set of explicitly presented bi-
elliptic endoscopic G-data for M as in §5.5.6 (in other words, ĖG(M) is a subset of
the parameter set Pr,t ×′ PW = {(A,B, p)} in the notation of §5.5.6) such that the
component of sM in M̂SO is not −1 and such that each isomorphism class in EG(M)

(6)Note the following typo: In the second line of the second paragraph of the proof of [Mor10b,
Lem. 6.3.4], “regular in H” should be “regular in M”.
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is represented exactly once. (Clearly the two conditions can be simultaneously met.)
For each (M ′, LM ′, sM , ηM ) ∈ ĖG(M), we let (H, LH, s, η) be the induced endoscopic
datum for G. More precisely, for (M ′, LM ′, sM , ηM ) = eA,B,d+,δ+,d−,δ− , we let

(H, LH, s, η) := ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ−

as in Proposition 5.5.7. Note that H+ is non-trivial by our assumption on sM . The
function fH is defined in §8.4. We fix M ′ ↪→ H as in §8.4.12 so as to view M ′ as a
Levi subgroup of H, and define STHM ′(fH) as in Definition 8.3.3.

Note that our definition of Tr′
M is independent of the choice of ĖG(M). Indeed, one

directly checks that the summand associated to (A,B, p) is equal to that associated
to (Ac, Bc, sw(p)) (in the case where both parameters satisfy the condition on sM
imposed before). Hence such a summand depends only on the isomorphism class of
eA,B,p in EG(M).

Recall that the definition of fH depends on the fixed integer

a ≥ a0(O(V ),V, λ,K, f∞, p).

Clearly the definitions of both fH and Tr′
M make sense for all integers a ≥ 1. We

shall henceforth view Tr′
M as a function in a ∈ Z≥1. On the other hand, we have

TrM (fp,∞dgp,∞,K, a) as in Definition 2.4.3. We abbreviate it as TrM , and also view
it as a function in a ∈ Z≥1.

Theorem 8.5.2. — For all large enough a we have TrM = Tr′
M .

8.5.3. — Note that in the even case and for M = M2, we have TrM = 0 since
(Ml)R does not contain elliptic maximal tori (see Remark 2.4.6). In this case, we
also know that each M ′ appearing in (8.5.1.1) is non-cuspidal, and hence STHM ′ ≡ 0.
Indeed, recall that M ′ = MGL × M ′,SO, where M ′,SO is the group in the elliptic
endoscopic datum ed+,δ+,d−,δ−(W1) for MSO

2 = SO(W1). This ellipticity, together
with the fact that MSO

2 is not the split SO2 over Q, implies that neither of (d±, δ±)
is (2, 1) in Z≥0 × (Q×/Q×,2). Hence if M ′ is cuspidal, then (M ′,SO)R must contain
anisotropic maximal tori, and so as in §6.1.1 we have δ± = (−1)d±/2 in R×/R×,2, from
which δ = (−1)(d++d−)/2 = (−1)d/2−1 in R×/R×,2, contradicting with the fact that
δ = (−1)d/2 in R×/R×,2. Thus in the even case with M = M2 we have already proved
the theorem. The proof of the theorem in the remaining cases occupies §§8.6–8.14.

8.6. First simplifications

8.6.1. — We keep the setting of §8.5.1, and assume that we are not in the even case
with M = M2, since in that case Theorem 8.5.2 is already proved. As in §1.4.3, we
have M = Grm×GLt2×SO(W ) for some r ∈ {0, 1, 2} , t ∈ {0, 1} ,W ∈ {W1,W2}. De-
note by E (M)c,ur the subset of E (M) consisting of isomorphism classes of endoscopic
data whose groups M ′ are cuspidal and unramified over Qp. For each isomorphism
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class in E (M)c,ur, we fix a representative of the form ep(M) for some p ∈PW , where
the notation is as in Definitions 5.4.2, 5.5.4, and §5.5.6. Thus there are a priori up to
two choices of p for each isomorphism class, and we fix one choice. We may and shall
also assume that each choice p = (d+, δ+, d−, δ−) satisfies d+ ≥ 2. In the following,
we denote this set of representatives by Ė (M)c,ur.

Note that MSO is never isomorphic to the split SO2 over Q. Hence the same argu-
ment as in §8.4.1 shows that every element ep(M) of Ė (M)c,ur satisfies the following
conditions:

(1) As in §5.5.6, write the group in ep(M) as M ′ = MGL × M ′,SO. Then the
R-group (M ′,SO)R contains anisotropic maximal tori.

(2) The localization of ep(M) over R is still elliptic as an endoscopic datum over
R.

Lemma 8.6.2. — We have

nGM Tr′
M =

∑
ep(M)∈Ė (M)c,ur

|OutM (ep(M))|−1∑
A,B

τ(G)τ(H)−1STHM ′(fH).

Here the second summation is over the following ranges:
– In the odd case for M = M12, we have A ∈ {∅, {1} , {2} , {1, 2}} , B ∈ {∅}.
– In the even case for M = M12, we have A ∈ {∅, {1, 2}} , B ∈ {∅}.
– For M = M1, we have A ∈ {∅} , B ∈ {∅, {1}}.
– In the odd case for M = M2, we have A ∈ {∅, {1}} , B ∈ {∅}.

For each triple (ep(M) = ed+,δ+,d−,δ−(M), A,B) appearing in the summation, we set

(H, LH, s, η) := ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ− ,

write M ′ for the group in ep(M), and as in §8.5.1 identify M ′ with a Levi subgroup
of H so as to define STHM ′(fH) .

Proof. — We first note that the formula ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ− indeed
gives an elliptic endoscopic datum for G, i.e., neither of (d+ + 2 |A| + 4 |B| , δ+) and
(d− + 2 |Ac|+ 4 |Bc| , δ−) is equal to (2, 1) ∈ Z≥0 × (Q×/Q×,2). Indeed, since MSO is
not the split SO2 over Q, we know that neither of (d±, δ±) is equal to (2, 1), which
immediately implies our assertion. Also, we have d+ + 2 |A| + 4 |B| ≥ 2 since we
have already assumed that d+ ≥ 2 in §8.6.1. Thus STHM ′(fH) in the lemma is indeed
defined.

It is clear from the definitions that if a term STHM ′(fH) on the RHS of (8.5.1.1)
is non-zero, then H is cuspidal and unramified over Qp (since otherwise fH = 0),
and M ′ is cuspidal (since otherwise STHM ′ ≡ 0). Clearly the condition that H is
unramified over Qp is equivalent to the condition that M ′ is unramified over Qp. In
the odd case, the cuspidality conditions are automatic. In the even case, suppose
we have (M ′, LM ′, sM , ηM ) = eA,B,d+,δ+,d−,δ− ∈ ˙EG(M) such that M ′ is cuspidal.
Then as we have mentioned in §8.6.1, (M ′,SO)R contains anisotropic maximal tori,
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so by the same argument as in §8.5.3 we have δ± = (−1)d±/2 in R×/R×,2. On the
other hand the condition that H is cuspidal is equivalent to HR having anisotropic
maximal tori by the discussion in §8.4.1, and hence is equivalent to the conditions
that δ+ = (−1)d+/2+|A|+2|B| and that δ− = (−1)d−/2+|Ac|+2|Bc| in R×/R×,2. Thus
given that M ′ is cuspidal and given that d is even, H is cuspidal if and only if |A|
and |Ac| are both even.

The above discussion shows that in (8.5.1.1), we can replace the summation set
ĖG(M) by the subset ĖG(M)c,ur consisting of elements eA,B,p = (M ′, LM ′, sM , ηM )
such thatM ′ is cuspidal and unramified over Qp, and such that |A| and |Ac| are even in
case d is even. Thus up to re-choosing ˙EG(M) (which does not affect the definition of
Tr′
M ), we may assume that whenever eA,B,p ∈ ˙EG(M)c,ur we have ep(M) ∈ Ė (M)c,ur.

We thus have a well-defined map F : ˙EG(M)c,ur → Ė (M)c,ur sending each eA,B,p to
ep(M). For each ep(M) ∈ Ė (M)c,ur, we let Γ(p) denote the set of (A,B) as in the
summation range in the current lemma. We divide our analysis into two different
cases.

Case 1. Suppose p = (d+, δ+, d−, δ−) with (d+, δ+) ̸= (d−, δ−). Then one
checks that F−1(ep(M)) = {eA,B,p | (A,B) ∈ Γ(p)}. Moreover, for each eA,B,p ∈
F−1(ep(M)), we have |OutG(eA,B,p)| = |OutM (ep(M))|. (See §§5.4.5 and 5.5.8 for
the computation of these two groups.) Thus the summand indexed by ep(M) in the
current lemma is equal to the sum over all eA,B,p ∈ F−1(ep(M)) in (8.5.1.1).

Case 2. Suppose p = (d+, δ+, d−, δ−) with (d+, δ+) = (d−, δ−). Then

{eA,B,p | (A,B) ∈ Γ(p)} = F−1(ep(M)) ⊔
{
eAc,Bc,p | eA,B,p ∈ F−1(ep(M))

}
.

(The union is disjoint.) Moreover, for each (A,B) ∈ Γ(p), we have |OutM (ep(M))| =
2 |OutG(eA,B,p)|, and we know that the summand τ(G)τ(H)−1STHM ′(fH) indexed by
(A,B) in the current lemma is equal to the term τ(G)τ(H)−1STHM ′(fH) in (8.5.1.1)
arising from either eA,B,p or eAc,Bc,p, whichever lies in ĖG(M). Thus we again see
that the summand indexed by ep(M) in the current lemma is equal to the sum over
all eA,B,p ∈ F−1(ep(M)) in (8.5.1.1). The proof of the lemma is complete.

8.7. Expanding the simplified geometric side of the stable trace formula

Let (ep(M), A,B) be a summation index as in Lemma 8.6.2. We study the term
STHM ′(fH) arising from this index.

Definition 8.7.1. — Let Σ(M ′) be a set of representatives in M ′(Q) of the stable
conjugacy classes in M ′(Q) that are R-elliptic.

Lemma 8.7.2. — We have an expansion

STHM ′(fH) = τ(M ′)
∑

γ′∈Σ(M ′)

ῑM
′
(γ′)−1SOγ′(fH,∞M ′ )SΦHM ′(γ′, fH∞).(8.7.2.1)
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Here fH,∞ := fH,p,∞fHp . Moreover, in (8.7.2.1), only those γ′ that are (M,M ′)-
regular contribute non-trivially.

Proof. — The first statement follows from the definitions. To show the second state-
ment, suppose γ′ ∈ Σ(M ′) is not (M,M ′)-regular. We show that SΦHM ′(γ′, fH∞)
already vanishes. For this, it suffices to show the vanishing of∑

Π
ΦHM ′(γ′−1,ΘΠ) Tr(fH∞ | Π),

where the summation is over the discrete series L-packets Π for HR. For this it suffices
to show the vanishing of∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1
,ΘΠ(φH)).

By [Mor11, Prop. 3.2.5, Rem. 3.2.6], the above quantity is zero provided that γ′ is
not (M,M ′)-regular.

8.7.3. — We continue the study of (8.7.2.1). By Lemma 8.7.2, we only need to sum
over those γ′ ∈ Σ(M ′) that are (M,M ′)-regular. By Proposition 8.4.14, we may
further restrict to those γ′ that is an image of a semi-simple element γM ∈ M(Apf ),
and in this case we have

SOγ′(fH,p,∞M ′ ) = (∆M
M ′)A,B(γ′, γM )Os

′
M
γM (fp,∞M ),(8.7.3.1)

where s′
M is given by the endoscopic datum ep(M) = (M ′, LM ′, s′

M , ηM ) for M , and
(∆M

M ′)A,B(γ′, γM ) denotes the product of the local transfer factors over finite places
v ̸= p, normalized as in §8.4.12. We remind the reader that s′

M is different from sM
as in ep,A,B = (M ′, LM ′, sM , ηM ), and s′

M is independent of (A,B). By contrast, the
normalization (∆M

M ′)A,Bv of transfer factors between M ′ and M at v depend on (A,B).
Nevertheless, for almost all v, (∆M

M ′)A,Bv is the canonical unramified normalization
(associated to the hyperspecial subgroup determined by some reductive model of M
over some Zariski open in SpecZ). Hence for almost all v, (∆M

M ′)A,Bv is independent
of (A,B).

Definition 8.7.4. — For each v ̸= p,∞, let ϵv(A,B) ∈ C× be the constant such
that (∆M

M ′)A,Bv = ϵv(A,B)(∆M
M ′)∅,∅

v . Let

ϵp,∞(A,B) =
∏

v ̸=p,∞
ϵv(A,B),

where almost all terms in the product are 1.

Definition 8.7.5. — Let Σ(M ′)1 be the set of γ′ ∈ Σ(M ′) such that γ′ is (M,M ′)-
regular and is an image of a semi-simple element of M(Apf ). For each γ′ ∈ Σ(M ′)1,
let γM ∈M(Apf ) be a semi-simple element such that γ′ is an image of γM , and define
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I(ep(M), γ′) := ῑM
′
(γ′)−1(∆M

M ′)∅,∅(γ′, γM )Os
′
M
γM (fp,∞M )

·
∑
A,B

ϵp,∞(A,B)τ(G)τ(H)−1τ(M ′)SOγ′(fHp,M ′)SΦHM ′(γ′, fH∞),

where the terms (∆M
M ′)∅,∅(γ′, γM ) and Os

′
M
γM (fp,∞M ) are the same as in (8.7.3.1) (except

that (A,B) is replaced by (∅, ∅)), and the summation
∑
A,B as well as the terms

involving H have the same meaning as in Lemma 8.6.2. By (8.7.3.1) we know that
this definition is independent of the choice of γM . For each (A,B) as above, we also
define

K(ep(M), γ′, A,B) := (−1)q(GR)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ),

where ΘφH := ΘΠ(φH) is the sum of the characters of the members of the L-packet
Π(φH), ΦHM′(·,ΘφH ) is the normalized stable discrete series character as in §4.2.1, and
the other notations are as in §8.4.3.

Lemma 8.7.6. — We have

nGM Tr′
M =

∑
ep(M)=(M ′,LM ′,s′

M
,ηM )∈Ė (M)c,ur

|OutM (ep(M))|−1 ∑
γ′∈Σ(M ′)1

I(ep(M), γ′),

and

I(ep(M), γ′) = ῑM
′
(γ′)−1(∆M

M ′)∅,∅(γ′, γM )Os
′
M
γM (fp,∞M )τ(M)k(M)k(G)−1

· (−1)dimAM′ v̄((M ′)0
γ′)−1

∑
A,B

ϵp,∞(A,B)SOγ′(fHp,M ′)K(ep(M), γ′, A,B).

Here the summation range for
∑
A,B is the same as in Lemma 8.6.2.

Proof. — The first identity follows from Lemma 8.6.2, Lemma 8.7.2, §8.7.3, and the
definitions. The second identity follows from Corollary 8.2.5, Lemma 8.4.6, and the
definitions.

8.8. Computation of K

8.8.1. — We keep the notation of Definition 8.7.5 and study K(ep(M), γ′, A,B).
As usual we write ep(M) = (M ′, LM ′, s′

M , ηM ). We would like to apply [Mor11,
Prop. 3.2.5] to compute K. First we need some preparations.

By construction M ′ = MGL×M ′,SO and M ′,SO is a product of two special orthog-
onal groups M ′,SO,+,M ′,SO,− such that the component of sM in the dual group of
M ′,SO,± is the scalar matrix ±1. Fix an elliptic maximal torus TM ′ in M ′

R such that
γ′ ∈ TM ′(R). Then TM ′ is of the form

TM ′ = TMGL × TM ′,SO,+ × TM ′,SO,−
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where TMGL (resp. TM ′,SO,±) is an elliptic maximal torus in MGL
R (resp. M ′,SO,±

R ).
Moreover, as we have already seen in §8.6.1, the tori TM ′,SO,± are in fact anisotropic
over R. Note that when M = M12 or M2, we have necessarily TMGL = MGL. When
M = M1, we have MGL = GL2, and TMGL is GL2(R)-conjugate to T std

GL2
; cf. §4.1.1.

We then fix an elliptic maximal torus TM in MR, and an admissible isomorphism
jM : TM ′

∼−→ TM . Recall from §1.4 that M = MGL ×MSO = MGL × SO(W ), where
W = W2 if M = M1 or M12, and W = W1 if M = M2. We may and shall assume that
TM is of the form TMGL × TMSO , where TMSO is an elliptic (and in fact anisotropic)
maximal torus in MSO

R , and TMGL is as above. We may and shall also assume that
jM is the product of the identity on TMGL and an admissible isomorphism

jMSO : TM ′,SO,+ × TM ′,SO,−
∼−→ TMSO ,

where the notion of admissibility is with respect to the endoscopic datum ep(W ) for
MSO.

For any choice of a Borel subgroup B0 of GC containing TM,C, we get a canonical
isomorphism dB0,B : T̂M

∼−→ T as in §5.6, where (T ,B) is the standard Borel pair in
Ĝ fixed in Definition 5.2.2. Identifying T with (C×)m as in Definition 5.2.2, we have
m standard characters on T forming a basis of X∗(T ), and they give rise, via dB0,B,
to m cocharacters of TM,C. We denote them (in order) by

τ01 , τ02 , τ1, τ2, · · · , τm−2, if M = M12 or M1,

and by
τ0, τ1, τ2, · · · , τm−1, if M = M2 (in the odd case).

We now fix a choice of B0 such that the resulting cocharacters (just mentioned) satisfy
the following conditions, the second of which depends on the choice of jM .

(1) When M = M12, we require that τ01 and τ02 are respectively the identity
cocharacters of the first Gm (i.e. GL(V1)) and the second Gm (i.e. GL(V2/V1)) in
TMGL = Gm×Gm ⊂ TM . When M = M1, we require that τ01 and τ02 are cocharacters
of TMGL,C ⊂ TM,C, and that they are of the form

z 7−→ g

(
z

1

)
g−1 and z 7−→ g

(
1

z

)
g−1

for some fixed g ∈ MGL(C) conjugating the diagonal torus in MGL
C = GL2,C to

TMGL,C. (Clearly this pins down τ01 and τ02 up to swapping the two.) When M = M2,
we require that τ0 is the identity cocharacter of TMGL = GL(V1) = Gm ⊂ TM .

(2) We require that j−1
M ◦ τi is a cocharacter of TM ′,SO,−,C, for each 1 ≤ i ≤ n−.

Here n− is the dimension of TM ′,SO,−,C.
Indeed, the above conditions can be arranged because of the following observations:
– For an arbitrary choice of B0, the resulting τ ’s have the following property: The

prescribed cocharacter(s) in (1) which we ask τ01 and τ02 , or τ0, to equal, are among
the τ ’s and their inverses. This is because these prescribed cocharacter(s) can be
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extended to a Z-basis of X∗(TM ) under which the root datum of (GC, TM,C) becomes
the standard type B or type D root datum on (Zm,Zm).

– By making different choices of B0, we can arbitrarily permute the order of the
τ ’s and replace an arbitrary number (resp. an even number) of them by their inverses
in the odd (resp. even) case. In the even case with M = M12 or M1, we can replace
either one or two of τ01 , τ02 by their inverses as we wish, since m ≥ 3. Thus we can
always arrange (1).

– Once (1) is satisfied, the cocharacters τ1, τ2, · · · form a basis of X∗(TMSO) under
which the root datum of (MSO

C , TMSO,C) becomes the standard type B or type D root
datum. Since jMSO is admissible, exactly n− of the τi’s are such that j−1

M ◦ τi (equal
to j−1

MSO ◦ τi) is a cocharacter of TM ′,SO,−,C. We can rechoose B0 in such a way that
τ01 and τ02 , or τ0, are unchanged, but the order of τ1, τ2, · · · is permuted so that (2)
is satisfied.

8.8.2. — Up to now our discussion has not involved (A,B). We now take them into
account, so we have an endoscopic datum (H, LH, s, η) for G that is determined by
(ep(M), A,B) as in Lemma 8.6.2 and Definition 8.7.5. Recall from §8.4.2 that we
have fixed (TH , TG, j, BG,H). Similarly as in §8.8.1, the pair (TG, BG,H) determines
an ordered m-tuple of cocharacters of TG,C (via dBG,H ,B : T̂G

∼−→ T ∼= (C×)m). We
denote them by

ρ1, ρ2, · · · , ρm.
By the construction of j in §8.4.2 (which uses §6.1.9 and especially Convention 6.1.10),
we know that

{
j−1 ◦ ρi | 1 ≤ i ≤ m−} is a basis of X∗(TH−) (where TH− := TH∩H−)

under which the root datum of (H−
C , TH−,C) becomes the standard type B or D root

datum. Similarly,
{
j−1 ◦ ρi | m− + 1 ≤ i ≤ m

}
is a basis of X∗(TH+) under which

the root datum of (H+
C , TH+,C) becomes the standard type B or D root datum.

Definition 8.8.3. — Define an isomorphism iG(A,B) : TM,C
∼−→ TG,C as follows.

When M = M12 (so B ≡ ∅), let iG(A,B) map τ01 , τ02 , τ1, · · · , τm−2 respectively to
ρ1, ρ2, · · · , ρm, A = ∅,
ρm−+1, ρ1, ρ2, · · · , ρm− , ρm−+2, · · · , ρm, A = {1} ,
ρ1, ρm−+1, ρ2, · · · , ρm− , ρm−+2, · · · , ρm, A = {2} ,
ρm−+1, ρm−+2, ρ1, · · · , ρm− , ρm−+3, · · · , ρm, A = {1, 2} .

(In the even case the parameter A can only assume {1, 2} and ∅, cf. Lemma 8.6.2,
and we use only these two cases in the above formula). When M = M1 (so A ≡ ∅),
let iG(A,B) map τ01 , τ02 , τ1, · · · , τm−2 respectively to{

ρ1, ρ2, · · · , ρm, B = ∅,
ρm−+1, ρm−+2, ρ1, · · · , ρm− , ρm−+3, · · · , ρm, B = {1} .
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When M = M2 (so B ≡ ∅), let iG(A,B) map τ0, τ1, · · · , τm−1 respectively to{
ρ1, · · · , ρm, A = ∅,
ρm−+1, ρ1, · · · , ρm− , ρm−+2, · · · , ρm, A = {1} .

In the following lemma, recall from §8.5.1 that we have identified M ′ with a Levi
subgroup of H.

Lemma 8.8.4. — Let iH(A,B) be the unique isomorphism TM ′,C
∼−→ TH,C fitting

in the following commutative diagram:

TH,C
j // TG,C

TM ′,C
jM //

iH(A,B)

OO

TM,C

iG(A,B)

OO
(8.8.4.1)

Then iG(A,B) (resp. iH(A,B)) is induced by an inner automorphism of GC
(resp. HC).

Proof. — Firstly, the isomorphism iG(∅, ∅) : TM,C
∼−→ TG,C is compatible with the

two canonical isomorphisms BRD(TM,C, B0) ∼= BRD(G) and BRD(TG,C, BG,H) ∼=
BRD(G), where BRD(G) is the canonical based root datum of GC (see §5.3.1). Hence
iG(∅, ∅) is induced by an inner automorphism of GC. For general (A,B), iG(A,B)
differs from iG(∅, ∅) by an automorphism of TG,C which permutes the order of the ρi’s.
Such an automorphism is in the Weyl group (because under the basis {ρ1, · · · , ρm} of
X∗(TG) the root datum of (GC, TG,C) becomes the standard type B or D root datum),
and is hence still induced by an inner automorphism of GC.

We now prove that iH(A,B) is induced by an inner automorphism of HC. For
brevity, we only illustrate the proof in the special case where M = M12 and (A,B) =
({1} , ∅), the other cases all being similar. Also, we only treat the even case, as the odd
case is easier. We freely use the notation of §5.5.9; in particular M ′,SO,± = SO(W±),
H± = SO(V ±), and d± = dimW±. As in §5.5.9, we have a canonical SO(W+)(C)-
conjugacy class of embeddings

ιW+ : Gd
+/2
m −→ SO(W+)C

and a canonical SO(V +)(C)-conjugacy class of embeddings

ιV + : Gd
+/2+1
m −→ SO(V +)C.
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(Here, if δ+ = −1, we identify U(1)C with Gm.) By the two conditions satisfied by
B0 in §8.8.1 and the admissibility of jMSO , we know that the embedding(7)

(j−1
M ◦ τd−/2+1, · · · , j−1

M ◦ τm−2) : Gd
+/2
m −→ SO(W+)C

is SO(W+)(C)-conjugate to ιW+ , and that j−1
M ◦ τ01 is the identity cocharacter of

GL(V1), namely ιGL
A,B in the notation of §5.5.9. Thus by the construction in §5.5.9,

the embedding

(j−1
M ◦ τ01 , j

−1
M ◦ τd−/2+1, · · · , j−1

M ◦ τm−2) : Gd
+/2+1
m −→ GL(V1)C × SO(W+)C

(8.8.4.2)

is SO(V +)(C)-conjugate to ιV + when we view GL(V1) × SO(W+) as a subgroup of
SO(V +) according to the rule in §5.5.9. On the other hand, the embedding

(j−1 ◦ ρm−+1, · · · , j−1 ◦ ρm) : Gd
+/2+1
m −→ SO(V +)C(8.8.4.3)

is also SO(V +)(C)-conjugate to ιV + . Hence (8.8.4.2) and (8.8.4.3) are SO(V +)(C)-
conjugate. Similarly, we know that the embeddings

(j−1
M ◦ τ02 , j

−1
M ◦ τ1, · · · , j−1

M ◦ τd−/2) : Gd
−/2+1
m −→ GL(V2/V1)C × SO(W−)C

and

(j−1 ◦ ρ1, · · · , j−1 ◦ ρm−) : Gd
−/2+1
m −→ SO(V −)C

are SO(V −)(C)-conjugate. We conclude that the embeddings

(j−1
M ◦ τ01 , j

−1
M ◦ τ02 , j

−1
M ◦ τ1, · · · , j−1

M ◦ τm−2) : Gmm −→ HC

and

(j−1 ◦ ρm−+1, j
−1 ◦ ρ1, · · · , j−1 ◦ ρm− , j−1 ◦ ρm−+2, · · · , j−1 ◦ ρm) : Gmm −→ HC

are H(C)-conjugate. But these two embeddings have images TM ′,C and TH,C respec-
tively, and if we invert the first and compose with the second we precisely get the
isomorphism iH(A,B). This finishes the proof.

Definition 8.8.5. — Define the three Borel subgroups:
– BM , a Borel of MC containing TM,C, defined to be B0 ∩M .
– BG, a Borel of GC containing TG,C, defined to be iG(A,B)∗B0. This can be

different from BG,H fixed in §8.4.2.
– B′

H , a Borel of HC containing TH,C, defined to be the one induced by (j, BG). In
other words, j carries the B′

H -positive roots on TH,C to BG-positive roots on TG,C.

Lemma 8.8.6. — We have B′
H = BH , where BH is defined in §8.4.3.

(7)Here we use the following notation: If µ1, · · · , µk are cocharacters of a torus T contained in a
reductive group R (everything being over C), we write (µ1, · · · , µk) for the homomorphism Gkm →
T ⊂ R, (z1, · · · , zk) 7→

∏
i

µi(zi).
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Proof. — We use j to identify TH,C and TG,C. Thus we have an inclusion of root
systems

ΦH := Φ(HC, TH,C) ⊂ ΦG := Φ(GC, TG,C).
To prove the lemma, we need to prove that for all α ∈ ΦH , it is BG-positive if and only
if it is BG,H -positive. We denote the permutation of ρi’s that appears in Definition
8.8.3 by

ρσ(1), ρσ(2), · · · , ρσ(m), σ ∈ Sm.

(For instance, if A = {1}, then σ sends 1, 2, · · · ,m respectively to m− +
1, 1, · · · ,m−,m− + 2, · · · ,m.) Let {ρ∨

1 , · · · , ρ∨
m} be the basis of X∗(TG,C) dual

to the basis {ρ1, · · · , ρm} of X∗(TG,C). The BG,H -positive roots in ΦG are
{
ρ∨
i ± ρ∨

j | i > j
}
∪ {ρ∨

i | i} , odd case,

{
ρ∨
i ± ρ∨

j | i > j
}
, even case.

The BG-positive roots in ΦG are
{
ρ∨
σ(i) ± ρ

∨
σ(j) | i > j

}
∪ {ρ∨

i | i} , odd case,

{
ρ∨
σ(i) ± ρ

∨
σ(j) | i > j

}
, even case.

On the other hand, by the last observation in §8.8.2, we have

ΦH =


{
±ρ∨

i ± ρ∨
j | i, j ≤ m−, i ̸= j

}
∪
{
±ρ∨

i ± ρ∨
j | i, j > m−, i ̸= j

}
∪ {ρ∨

i | i} ,

{
±ρ∨

i ± ρ∨
j | i, j ≤ m−, i ̸= j

}
∪
{
±ρ∨

i ± ρ∨
j | i, j > m−, i ̸= j

}
,

in the odd and even cases respectively. It remains to check that σ−1|{1,2,··· ,m−} and
σ−1|{m−+1,··· ,m} are increasing, which is true.

8.8.7. — We now transport [Mor11, Prop. 3.2.5] to our setting. For any t ∈ TM (R),
let ϵR(t) ∈ {±1} be −1 to the number of B0-positive roots α of (GC, TM,C) such that
α is real and 0 < α(t) < 1. (Compare with the definition in §4.2.2.) Similarly, for
t′ ∈ TM ′(R), we let ϵRH (t′) ∈ {±1} be −1 to the number of iH(A,B)−1

∗ (B′
H)-positive

(or equivalently, iH(A,B)−1
∗ (BH)-positive, by Lemma 8.8.6) roots α of (HC, TM ′,C)

such that α is real and 0 < α(t′) < 1. We set (8)

∆A,B
jM ,BM

:= (−1)q(GR)+q(HR)+q(MR)+q(M ′
R)∆jM ,BM ,

where ∆jM ,BM is Kottwitz’s normalization of the archimedean transfer factors be-
tween ep(M) = (M ′, LM ′, s′

M , ηM ) and M associated to (jM , BM ) (see [Kot90, §7],

(8)In [Mor11, Prop. 3.2.5], our ∆A,B
jM ,BM

is denoted simply by ∆jM ,BM . However, this object is not
intrinsic to (jM , BM ), since its definition involves the number q(HR) which depends on (A, B).
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cf. §§6.2–6.3). Let ΘV∗ denote the analogue of ΘV in §4.2.1 with V replaced by V∗.
The following result is [Mor11, Prop. 3.2.5].

Proposition 8.8.8. — We have

ϵR(jM (γ′−1))ϵRH (γ′−1)∆A,B
jM ,BM

(γ′, jM (γ′))ΦGM (jM (γ′)−1,ΘH
V∗)

=
∑

φH∈ΦH(φV∗ )

det(ω′
∗(φH))ΦHM ′(γ′−1,ΘφH ),

Here the elements ω′
∗(φH) ∈ Ω are the analogues of the elements ω∗(φH) ∈ Ω in

§8.4.3 with (j, BG,H) replaced by (j, BG). The term ΦGM (·,ΘH
V∗) is given as follows.

Only when M = M12 and A = {1} or {2} (which in particular implies that we are in
the odd case; see Lemma 8.6.2), it is equal to ΦGM (·,ΘV∗)eds (defined as in (4.6.10.2),
but with V replaced by V∗). In all the other cases, it is equal to ΦGM (·,ΘV∗).

8.8.9. — For a fixed φH as in Proposition 8.8.8, we investigate the relation between
ω∗(φH) and ω′

∗(φH). Write ω∗ := ω∗(φH) and ω′
∗ := ω′

∗(φH). By definition, φH is
aligned with (ω−1

∗ ◦ j, BG,H , BH) and also aligned with ((ω′
∗)−1 ◦ j, BG, B′

H). Suppose
ω0 ∈ Ω(GC, TG,C) measures the difference between BG and BG,H , so that the map
T̂G → Ĝ determined by BG and φH (namely the first row of the commutative diagram
on the bottom of [Kot92a, p. 184]) is equal to the composition of ω̂0 : T̂G → T̂G with
the analogous map T̂G → Ĝ determined by BG,H and φH . By the definition of “being
aligned” and by Lemma 8.8.6, we know that the composition

T̂
ω̂0−→ T̂

̂ω′,−1
∗ ◦j−−−−−→ T̂H

is equal to the map
ω̂−1

∗ ◦ j : T̂ −→ T̂H .

Hence
ω′

∗(φH) = ω∗(φH)ω0.

In particular,

det(ω′
∗(φH)) = det(ω∗(φH)) det(ω0).(8.8.9.1)

Lemma 8.8.10. — We have

(8.8.10.1) det(ω0) =


1, A = ∅,
(−1)m−

, A = {1} ,
(−1)m−+1, A = {2} ,
1, A = {1, 2} .

(Here the formula works in all cases considered in Lemma 8.6.2. For instance, A =
{1} could only happen in the odd case either when M = M12 or when M = M2.)
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Proof. — From the description of the BG,H -positive and BG-positive roots in ΦG in
the proof of Lemma 8.8.6, we see that det(ω0) is equal to the sign of the permutation
σ in that proof. Thus (8.8.10.1) follows from direct calculation of this sign.

Proposition 8.8.11. — We have

K(ep(M), γ′, A,B) = (−1)q(GR) det(ω0)ϵR(jM (γ′−1))ϵRH (γ′−1)

·∆A,B
jM ,BM

(γ′, jM (γ′))ΦGM (jM (γ′)−1,ΘH
V∗),

where det(ω0) is given in (8.8.10.1).

Proof. — This is a consequence of Proposition 8.8.8 and (8.8.9.1).

8.9. Computation of some signs

We keep the notation of §8.8.

Definition 8.9.1. — Let �(A,B) ∈ C× be the constant such that the normalization
�(A,B) · ∆A,B

jM ,BM
of transfer factors between ep(M) and M at ∞ together with

the normalizations (∆M
M ′)A,Bv at all finite places (fixed in §8.4.12) satisfy the global

product formula. Here ∆A,B
jM ,BM

is defined in §8.8.7.

Lemma 8.9.2. — The normalization �(A,B)∆A,B
jM ,BM

of transfer factors between
ep(M) and M at ∞ is inherited from ∆j,BG,H in the sense of Remark 8.4.13. Let
ϵp,∞(A,B) be as in Definition 8.7.4. We have

∆A,B
jM ,BM

· ϵp,∞(A,B) = ∆∅,∅
jM ,BM

· �(A,B)−1
�(∅, ∅).

Proof. — The first assertion follows from the fact that (∆G
H)v for all v satisfy the

global product formula (see §8.4.7), and the fact that inheritance of normalizations
respects the global product formula (see Remark 8.4.13). To prove the second asser-
tion, by the definition of �(A,B) we must have

�(A,B)∆A,B
jM ,BM

∏
v ̸=∞

(∆M
M ′)A,Bv = �(∅, ∅)∆∅,∅

jM ,BM

∏
v ̸=∞

(∆M
M ′)∅,∅

v .

But (∆M
M ′)A,Bp = (∆M

M ′)∅,∅
p because they are both the canonical unramified normal-

ization associated to M(Zp). (See §8.4.12 for M(Zp).) Hence

�(A,B)∆A,B
jM ,BM

∏
v ̸=p,∞

(∆M
M ′)A,Bv = �(∅, ∅)∆∅,∅

jM ,BM

∏
v ̸=p,∞

(∆M
M ′)∅,∅

v .

Our assertion follows from comparing the above equality with Definition 8.7.4.

8.9.3. — As usual we denote by W,W± the underlying quadratic spaces for
MSO,M ′,SO,±, i.e., MSO = SO(W ),M ′,SO,± = SO(W±). Denote by MSO,∗ the fixed
quasi-split inner form of MSO as in §5.5.3. Namely we have MSO,∗ = SO(W ),
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and as in §5.5.3 we have fixed isomorphisms ϕWR : WC
∼−→ WC (with re-

spect to F = R and satisfying the extra condition in Definition 5.1.1) and
ψWR : MSO

C
∼−→MSO,∗

C , g 7→ ϕWRgϕ
−1
WR

.
By the two conditions noted in §8.6.1, we know that the localization over R of

the endoscopic datum ep(W ) for MSO
R = SO(WR) satisfies the hypotheses in §6 (with

V, V , V ± there replaced by WR,WR,W
±
R .) In other words, this is an elliptic endo-

scopic datum over R, and the group in it contains R-anisotropic maximal tori. Define
ED(WR)o,ED(WR)o,ED(W±

R )o as in §6.1.7 and §6.1.9. Inside ED(WR)o we have the
subset ED(WR)onice as in Definitions 6.2.12 and 6.3.8. Let BMSO be the Borel sub-
group of MSO

C given by BM ∩MSO
C , and let jMSO : TM ′,SO,+ × TM ′,SO,−

∼−→ TMSO be
as in §8.8.1. Thus (TMSO , BMSO) is a fundamental pair in MSO

R = SO(WR).

Lemma 8.9.4. — There exist D1 ∈ ED(WR)onice and D2 = (D+
2 ,D

−
2 ) ∈ ED(W+

R )o×
ED(W−

R )o such that the fundamental pair (TMSO , BMSO) arises from D1 as in §6.1.6,
and jMSO = jD2,D1 where jD2,D1 is as in §6.1.9.

Proof. — Firstly, since the signature of WR is (d − 4, 0) or (d − 3, 1), we have
ED(WR)o = ED(WR)onice. Since all anisotropic maximal tori in MSO

R are conjugate
under MSO(R), we can find D1 ∈ ED(WR)o such that TMSO = TD1 (notation as in
§6.1.6). By reordering the members of D1, and in the odd (resp. even) case changing
the orientations of an arbitrary (resp. even) number of the members of D1, we may
and shall assume that the fundamental pair (TMSO , BMSO) arises from D1. Let m′

be the absolute rank of MSO. Using Lemma 6.1.8 and the same argument as in the
proof of Lemma 6.1.13, we see that there exist g ∈ MSO(R) and D0 ∈ ED(W )o such
that Int(g) ◦ fD1 = ψ−1

W ◦ fD0 . (Here fD0 and fD1 are as in §6.1.6.) Then by Lemma
6.1.11, the isomorphism

(τ1, · · · , τm′) : Gm
′

m,C
∼−→ TMSO,C

(see §8.8.1 for the τi’s) is equal to the base change to C of fD1 : U(1)m′ ∼−→ TMSO ,

where we identify U(1)C with Gm,C.
To simplify notation below we write T± for TM ′,SO,± . Since jMSO is admissible, by

condition (2) in §8.8.1 we know that the isomorphisms

(j−1
MSO ◦ τn−+1, · · · , j−1

MSO ◦ τm′) : Gm
′−n−

m,C
∼−→ T+

C(8.9.4.1)

and

(j−1
MSO ◦ τ1, · · · , j−1

MSO ◦ τn−) : Gn
−

m,C
∼−→ T−

C(8.9.4.2)

are induced by the isomorphisms

dB±,B± : T̂± ∼−→ T ± ∼= (C×)m
′−n−

or (C×)n
−

associated to some Borel subgroups B± of M ′,SO,±
C containing T±

C . Here (T ±,B±)
are the standard Borel pairs in the dual groups of M ′,SO,±, and the notation d·,·
is as in §5.6. By the same argument as before, we can find D2 = (D+

2 ,D
−
2 ) ∈
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ED(W+
R )o×ED(W−

R )o such that D±
2 gives rise to the fundamental pair (T±, B±). By

Lemma 6.1.11, the isomorphisms (8.9.4.1) and (8.9.4.2) are equal to fD+
2 ,C

and fD−
2 ,C

respectively. Combining this with the previously established fact that (τ1, · · · , τm′) =
fD1,C, we conclude that jMSO = jD2,D1 .

Proposition 8.9.5. — For (A,B) taking values as in Lemma 8.6.2, we have

�(∅, ∅) = −1,

�(A,B)−1
�(∅, ∅) =


1, if (A,B) = (∅, ∅),
−1, if A = {1, 2} or B = {1} ,
(−1)m−+1, in all other cases.

Proof. — In this proof we pass to the local notation over R. For instance, we write M
for MR. We use the phrase “Whittaker normalization” when we mean the Whittaker-
normalized transfer factors between H and G∗ or between H and G, associated to the
unique (resp. the type-I) equivalence of Whittaker data for G∗ when d is not divisible
by 4 (resp. d is divisible by 4); see §6.2.1, Definition 6.2.8, Definition 6.3.4, and
Definition 6.3.6. We shall also apply this notion to the transfer factors between M ′,SO

and MSO,∗, and between M ′,SO and MSO. By extending trivially across MGL, we also
obtain the “Whittaker normalization” of transfer factors between M ′ = MGL×M ′,SO

and M∗ = MGL ×MSO,∗, and between M ′ and M = MGL ×MSO. As in §5.5.3, we
view M∗ as a Levi subgroup of G∗ via (5.5.3.1).

We claim that the Whittaker normalization between M ′ and M is inherited from
the Whittaker normalization between H and G as in Remark 8.4.13.

To prove the claim, first assume d is odd. Then G∗ has a unique Whittaker datum
(up to equivalence) and a unique R-splitting (up to G∗(R)-conjugacy). The same
also holds for M∗. Thus the unique Langlands–Shelstad normalization of transfer
factors between M ′ and M∗ is inherited from the unique Langlands–Shelstad normal-
ization between H and G∗. (Indeed, one can see this by going through the definitions
in [LS87]; alternatively, one can see this by using Waldspurger’s explicit formula
[Wal10, §1.10] while noting that the constant η in [Wal10, §1.6] attached to the
unique splitting of G∗ = SO(V ) is equal to the discriminant δ, and hence equal
to the analogous constant for MSO,∗ = SO(W ).) Moreover, the local epsilon fac-
tor relating the Whittaker normalization and the Langlands–Shelstad normalization
(cf. (6.3.11.7)) is 1 in both the (H,G∗)-scenario and the (M ′,M∗)-scenario. This
implies that the Whittaker normalization between M ′ and M∗ is inherited from the
Whittaker normalization between H and G∗. Our claim then follows from the three
compatibility conditions in §5.5.3.

Second, assume d is even and not divisible by 4. Then by assumption M = M1 or
M12, and so MSO = SO(W ) with dimW = d− 4 again not divisible by 4. Hence we
still have uniqueness of Whittaker datum and uniqueness of R-splitting for G∗ and
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M∗. As in the odd case, the unique Langlands–Shelstad normalization between M ′

and M∗ is inherited from the analogous normalization between H and G∗. (Again,
one can see this by using Waldspurger’s explicit formula, noting that this time the
constant η is equal to 1 for both G∗ = SO(V ) and MSO,∗ = SO(W ).) As in the
odd case, the epsilon factor is still 1 in both the (H,G∗)-scenario and the (M ′,M∗)-
scenario (since a maximal R-split torus in each of G∗, H,M∗,M ′ is of the form a
direct sum of a split torus and one copy of U(1)). Our claim follows, as in the odd
case.

Finally, assume d is divisible by 4. As in the previous case we have dimW = d−4,
and this is divisible by 4. Using Waldspurger’s explicit formula [Wal10, §1.10], we
observe that the normalization between M ′ = MGL × M ′,SO and M∗ = MGL ×
MSO,∗ induced by the Langlands–Shelstad normalization between M ′,SO and MSO,∗

associated to some splM ∈ Split(MSO,∗) is inherited from the Langlands–Shelstad
normalization between H and G∗ associated to some spl ∈ Split(G∗) provided that
ηW (splM ) = ηV (spl). Here ηV (·) : Split(G∗) → {±1} and ηW (·) : Split(MSO,∗) →
{±1} are as in §6.3.10. We now take splM and spl such that ηW (splM ) = ηV (spl) =
−1. By the above observation and by Theorem 6.3.11, we see that the Whittaker
normalization between M ′ and M∗ is inherited from the Whittaker normalization
between H and G∗ times the following constant. The constant is the ratio between
the two local epsilon factors appearing in (6.3.11.7) and the analogue of (6.3.11.7)
for (M ′,M). By (6.3.11.8) and a similar computation for (M ′,M), we see that the
two epsilon factors are equal to (−1)m− and (−1)n− respectively, where m− is the
absolute rank of H− and n− is the absolute rank of M ′,SO,−. Since we are in the even
case, we have m− ≡ n− mod 2. Thus the Whittaker normalization between M ′ and
M∗ is inherited from the Whittaker normalization between H and G∗, and our claim
follows as in the previous two cases.

It follows from the above claim and Lemma 8.9.2 that �(A,B) is the product of
the following three signs:

(1) the sign between ∆A,B
jM ,BM

and ∆jM ,BM , namely (−1)q(G)+q(H)+q(M)+q(M ′);
(2) the sign between ∆jM ,BM and the Whittaker normalization betweenM ′ andM ,

which is also equal to the sign between ∆j
MSO ,BMSO and the Whittaker normalization

between M ′,SO and MSO;
(3) the sign between ∆j,BG,H and the Whittaker normalization between H and G.

Denote by m± (resp. n±) the absolute ranks of H± (resp. M ′,SO,±). Denote by m

the absolute rank of G. We divide our computation into cases.
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The odd case with M = M12: In this case B is always ∅, and A is any subset of
{1, 2}. We have

q(G) = (2m− 1)2
2 = 2m− 1, q(H) = m+(m+ + 1) +m−(m− + 1)

2 ,

q(M) = 0, q(M ′) = n+(n+ + 1) + n−(n− + 1)
2 .

When A = ∅, we have m+ = n+ and m− = n− + 2. Then

q(G) + q(H) + q(M) + q(M ′)

= 2m− 1 + 2m+(m+ + 1) +m−(m− + 1) + (m− − 2)(m− − 1)
2

≡ 1 +m+(m+ + 1) + 2(m−)2 − 2m− + 2
2

≡ 1 +m+(m+ + 1) +m−(m− − 1) + 1
≡ 0 mod 2.

When A = {1, 2}, we have m+ = n+ + 2 and m− = n−. Observing symmetry we
again get

q(G) + q(H) + q(M) + q(M ′) ≡ 0 mod 2.
Now assume A = {1} or {2}. Then m+ = n+ + 1,m− = n− + 1. We have

q(G) + q(H) + q(M) + q(M ′)

= 2m− 1 + m+(m+ + 1) +m+(m+ − 1) +m−(m− + 1) +m−(m− − 1)
2

≡ 1 + 2(m+)2 + 2(m−)2

2
≡ 1 +m+ +m−

≡ m+ 1 mod 2.

We conclude that

(−1)q(G)+q(H)+q(M)+q(M ′) =
{

1, A = {1, 2} or ∅,
(−1)m+1, A = {1} or {2} .

The sign between ∆j
MSO ,BMSO and the Whittaker normalization is (−1)⌈n+/2⌉ by

Lemma 8.9.4 and the q = 0 case of Proposition 6.2.20 (1). (We have already noted in
§8.9.3 that the results in §6 indeed applies to MSO together with its endoscopic group
M ′,SO.) The sign between ∆j,BG,H and the Whittaker normalization is (−1)⌈m+/2⌉+1

by the q = 2 case of Proposition 6.2.20 (1); here the hypothesis m+ > 0 (i.e., H+ is
non-trivial) is guaranteed in §8.5.1, and the hypothesis that (j, BG,H) arises from an
element of ED(V )onice and an element of ED(V +)o×ED(V −)o is guaranteed in §8.4.2.
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Thus we have

�(∅, ∅) = (−1)⌈n+/2⌉+⌈m+/2⌉+1 = (−1)⌈m+/2⌉+⌈m+/2⌉+1 = −1,

�({1, 2} , ∅) = (−1)⌈n+/2⌉+⌈m+/2⌉+1 = (−1)⌈(m+−2)/2⌉+⌈m+/2⌉+1 = 1,

�({1} , ∅) = �({2} , ∅) = (−1)m+1+⌈n+/2⌉+⌈m+/2⌉+1

= (−1)m+1+⌈(m+−1)/2⌉+⌈m+/2⌉+1 = (−1)m+m+
= (−1)m

−
.

This finishes the proof in this case.
The even case with M = M12: In this case B is always ∅, and A is either

∅ or {1, 2}. Note that q(G), q(H), q(M), q(M ′) are all even. This is because each
of G,H,M,M ′ is a product of a split torus and one or two cuspidal even spe-
cial orthogonal group(s), namely some SO(a, b) with a, b even, for which we have
q(SO(a, b)) = ab/2 ≡ 0 mod 2. It follows that the sign in part (1) is 1.

The sign between ∆j
MSO ,BMSO and the Whittaker normalization is (−1)⌊n−/2⌋ by

Lemma 8.9.4 and the q = 0 case of Proposition 6.2.20 (2) and Proposition 6.3.9.
Assume it is not the case that m is odd and m+ = 1. Then DH which was used

to define (j, BG,H) in §8.4.2 lies in ED(V )onice. We have m+ ≥ 2 since m+ > 0 (see
§8.5.1). Applying the (q = 2,m+ ≥ 2) case of Proposition 6.2.20 (2) and Proposi-
tion 6.3.9, we see that the sign between ∆j,BG,H and the Whittaker normalization is
(−1)⌊m−/2⌋.

Now assume m is odd and m+ = 1. In this case DH used to define (j, BG,H) differs
from an element of ED(V )onice by the transposition (m−1,m) ∈ Sm. Let B′

G,H be the
image of BG,H under (m − 1,m), viewed as an element of the complex Weyl group.
An argument similar to the proof of the second statement of Lemma 6.3.5 shows that

∆j,BG,H = ⟨a(m−1,m), s⟩∆j,B′
G,H

= −∆j,B′
G,H

.

Hence the sign between ∆j,BG,H and the Whittaker normalization is −1 times the
sign (−1)⌊m−/2⌋+1 in the (q = 2,m+ = 1) case of Proposition 6.2.20 (2). Namely, it
is again (−1)⌊m−/2⌋.

We conclude that �(A,B) = (−1)⌊n−/2⌋+⌊m−/2⌋. Specifically,

�(∅, ∅) = (−1)⌊(m−−2)/2⌋+⌊m−/2⌋ = −1, �({1, 2} , ∅) = (−1)⌊m−/2⌋+⌊m−/2⌋ = 1.

This finishes the proof in this case.
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The odd case with M = M1: In this case A is always ∅, and B is any subset of
{1}. We have

q(G) = (2m− 1)2
2 = 2m− 1,

q(H) = m+(m+ + 1) +m−(m− + 1)
2 ,

q(M ′) = q(M ′,SO) + q(MGL) = n+(n+ + 1) + n−(n− + 1)
2 + 1,

q(M) = q(GL2) = 1.

When B = ∅, we have m+ = n+,m− = n− + 2, and so

q(G) + q(H) + q(M) + q(M ′)

= 2m+ 1 + 2m+(m+ + 1) +m−(m− + 1) + (m− − 2)(m− − 1)
2

≡ m+(m+ + 1) + 2(m−)2 − 2m− + 2
2 + 1

≡ m+(m+ + 1) +m−(m− − 1)
≡ 0 mod 2.

When B = {1}, we have m+ = n+ + 2,m− = n−, and observing symmetry we again
get

q(G) + q(H) + q(M) + q(M ′) ≡ 0 mod 2.
Hence the sign in part (1) is 1.

The sign between ∆j
MSO ,BMSO and the Whittaker normalization is (−1)⌈n+/2⌉ by

Lemma 8.9.4 and the q = 0 case of Proposition 6.2.20 (1). The sign between ∆j,BG,H

and the Whittaker normalization is (−1)⌈m+/2⌉+1 by the q = 2 case of Proposition
6.2.20 (1). Thus �(A,B) = (−1)⌈n+/2⌉+⌈m+/2⌉+1, and specifically

�(∅, ∅) = (−1)⌈m+/2⌉+⌈m+/2⌉+1 = −1, �(∅, {1}) = (−1)⌈(m+−2)/2⌉+⌈m+/2⌉+1 = 1.

This finishes the proof in this case.
The even case with M = M1: As in the previous case, A is always ∅, and B

is any subset of {1}. Now q(G), q(H) are even, and q(M), q(M ′) are odd. Hence
the sign in part (1) is 1. Similarly as in the even case with M = M12 treated
before, the sign between ∆j

MSO ,BMSO and the Whittaker normalization is (−1)⌊n−/2⌋,

and the sign between ∆j,BG,H and the Whittaker normalization is (−1)⌊m−/2⌋. Thus
�(A,B) = (−1)⌊n−/2⌋+⌊m−/2⌋, and specifically

�(∅, ∅) = (−1)⌊(m−−2)/2⌋+⌊m−/2⌋ = −1, �(∅, {1}) = (−1)⌊m−/2⌋+⌊m−/2⌋ = 1.

This finishes the proof in this case.
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The odd case with M = M2: In this case B is always ∅, and A is any subset of
{1}. We have

q(G) = (2m− 1)2
2 = 2m− 1,

q(H) = m+(m+ + 1) +m−(m− + 1)
2 ,

q(M) = d− 3
2 = m− 1,

q(M ′) = n+(n+ + 1) + n−(n− + 1)
2 .

When A = ∅, we have m+ = n+,m− = n− + 1, and so

q(G) + q(H) + q(M) + q(M ′)

= 3m− 2 + 2m+(m+ + 1) +m−(m− + 1) + (m− − 1)m−

2

≡ m+m+(m+ + 1) + 2(m−)2

2
≡ m+m+(m+ + 1) + (m−)2

≡ m+m−

≡ m+ mod 2.

When A = {1}, we have m+ = n+ + 1,m− = n−, and a similar computation yields

q(G) + q(H) + q(M) + q(M ′) ≡ m− mod 2.

We conclude that

(−1)q(G)+q(H)+q(M)+q(M ′) =
{

(−1)m+
, A = ∅,

(−1)m−
, A = {1} .

The sign between ∆j
MSO ,BMSO is (−1)⌊n+/2⌋ by Lemma 8.9.4 and the q = 1 case of

Proposition 6.2.20 (1). The sign between ∆j,BG,H and the Whittaker normalization
is (−1)⌈m+/2⌉+1 by the q = 2 case of Proposition 6.2.20 (1). Thus we have

�(∅, ∅) = (−1)m
++⌊n+/2⌋+⌈m+/2⌉+1

= (−1)m
++⌊m+/2⌋+⌈m+/2⌉+1 = (−1)m

++m++1 = −1,

�({1} , ∅) = (−1)m
−+⌊n+/2⌋+⌈m+/2⌉+1 = (−1)m

−+⌊(m+−1)/2⌋+⌈m+/2⌉+1 = (−1)m
−
.

This finishes the proof in this case.

Definition 8.9.6. — For (A,B) as in Lemma 8.6.2, define the sign

.(A,B) :=
{
−1, if 1 ∈ A or 1 ∈ B,
1, otherwise.
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Suppose g is a function that assigns to each choice of (A,B) an element g(A,B) ∈
Hur(M ′

Qp). Define

J(ep(M), γ′, g) = J(ep(M), γ′, (A,B) 7→ g(A,B))

:=
∑
A,B

.(A,B)SOγ′(g(A,B))ϵR(jM (γ′−1))ϵRH (γ′−1)ΦGM (jM (γ′)−1,ΘH
V∗),

where the sum is over all choices of (A,B).

Definition 8.9.7. — With notation as in Definition 8.7.5 and §8.8.7, we define

Q(ep(M), γ′) := ῑM
′
(γ′)−1(∆M

M ′)∅,∅(γ′, γM )Os
′
M
γM (fp,∞M )τ(M)k(M)k(G)−1

· (−1)dimAM′ v̄(M ′0
γ′)−1(−1)q(GR)∆∅,∅

jM ,BM
(γ′, jM (γ′)).

Here, we choose γM ∈M(Apf ) as in Definition 8.7.5, which does not affect the defini-
tion.

Corollary 8.9.8. — With J as in Definition 8.9.6 and Q as in Definition 8.9.7, we
have

I(ep(M), γ′) = Q(ep(M), γ′)J(ep(M), γ′, (A,B) 7→ fHp,M ′).
Here the mapping (A,B) 7→ fHp,M ′ is defined via the dependence of H on (A,B) as in
Lemma 8.6.2.

Proof. — By (8.8.10.1) and Proposition 8.9.5, we have

.(A,B) = �(A,B)−1
�(∅, ∅) det(ω0).

The corollary then follows from the second equality in Lemma 8.7.6, Proposition
8.8.11, and Lemma 8.9.2.

8.10. Symmetry of order nGM
Definition 8.10.1. — We define a subgroup W ⊂ Aut(MGL) as follows. When
M = M12, so that MGL = G2

m, we define W to be {±1}2 ⋊ S2, where each factor
{±1} acts on each factor Gm non-trivially and S2 acts by swapping the two copies
of Gm. When M = M1, so that MGL = GL2, we define W to be Z/2Z with the
non-trivial element acting on GL2 by transpose inverse. When M = M2 in the odd
case, so that MGL = Gm, we define W to be equal to Aut(MGL) = Aut(Gm) = Z/2Z.
When the context is clear we also view W as a subgroup of Aut(M) or Aut(M ′), by
extending its action on MGL trivially across MSO or M ′,SO.

Lemma 8.10.2. — The natural homomorphism W → Aut(AM ) is an injection,
and its image is equal to the image of NorG(M)(Q) in Aut(AM ). In particular, W is
naturally isomorphic to WG

M and |W| = nGM (see Definition 1.1.1 and Remark 1.1.2).

Proof. — This is straightforward to check.
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8.10.3. — The action of W on the set of stable conjugacy classes in M ′(Q)ss pre-
serves the following conditions:

– being R-elliptic,
– being (M,M ′)-regular,
– being an image of a semi-simple element of M(Apf ).

(Indeed, the only non-trivial assertion here is that W preserves being R-elliptic in
the case M = M1, and this follows from the fact that MGL

1 = GL2 contains the R-
elliptic maximal torus T std

GL2
which is W-stable.) Moreover, if M = M12 or M2, then

two different elements of M ′(Q)ss in the same W-orbit are never stably conjugate to
each other. Therefore in these cases we may and shall assume that the sets Σ(M ′)
and Σ(M ′)1 chosen in Definitions 8.7.1 and 8.7.5 are stable under W. If M = M1,
then two different R-elliptic elements of M ′(Q) in the same W-orbit are either not
stably conjugate to each other, or such that their components in MGL(Q) = GL2(Q)
both have determinant 1. (To see this, note that if g ∈ GL2(Q)ss is stably conjugate
to its transpose inverse, then det g = ±1, and we have det g > 0 if g is R-elliptic.)
Therefore in this case we may and shall assume that Σ(M ′)1 contains a subset Σ(M ′)2
such that Σ(M ′)2 is stable under W and the component in MGL(Q) of every element
of Σ(M ′)1 − Σ(M ′)2 has determinant 1. To unify notation, when M = M12 or M2,
we set Σ(M ′)2 to be Σ(M ′)1.

Lemma 8.10.4. — For γ′ ∈ Σ(M ′)2 and w ∈ W, we have Q(ep(M), γ′) =
Q(ep(M), w(γ′)). (See Definition 8.9.7 for Q).

Proof. — By (8.7.3.1), we have

Q(ep(M), γ′) = C × SOγ′(fH(∅,∅),p,∞
M ′ )∆∅,∅

jM ,BM
(γ′, jM (γ′)),

where C is an expression that is invariant under W, and H(∅, ∅) is the particular
choice of H arising from (A,B) = (∅, ∅). Note that the subgroup W ⊂ Aut(M ′) is
contained (9) in the image of the natural map NorH(∅,∅)(M ′)(Q)→ Aut(M ′).

Since w comes from NorH(∅,∅)(M ′)(Q), we have

SOγ′(fH(∅,∅),p,∞
M ′ ) = SOw(γ′)(fH(∅,∅),p,∞

M ′ )

by exactly the same argument (using Kazhdan density and descent) as in the proof
of Lemma 2.5.4. We are left to check

∆∅,∅
jM ,BM

(γ′, jM (γ′)) = ∆∅,∅
jM ,BM

(w(γ′), jM (w(γ′))),

or equivalently,

∆jM ,BM (γ′, jM (γ′)) = ∆jM ,BM (w(γ′), jM (w(γ′))).

(9)Note that this would no longer be not true, for instance, if H(∅, ∅) is replaced by the choice of H

arising from (A, B) = ({1} , ∅) when M = M12.
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The last equality holds because both sides depend only on the common component
of γ′ and w(γ′) in M ′,SO. More precisely, if we denote this common component by
γ′,SO , then both sides are equal to

∆j
MSO ,BMSO (γ′,SO, jMSO(γ′,SO)),

where jMSO and BMSO are as in §8.8.1 and §8.9.3. This finishes the proof.

Proposition 8.10.5. — For each e = (M ′, s′
M , ηM ) ∈ E (M), choose a set Σ(M ′)1

as in Definition 8.7.5 and §8.10.3. In view of Lemma 8.10.4, for each γ′ ∈ Σ(M ′)1
we write Q(e,Wγ′) for Q(e, γ′). We have

nGM Tr′
M =

∑
ep(M)=(M ′,LM ′,s′

M
,ηM )∈Ė (M)c,ur

|OutM (ep(M))|−1

·
( ∑
γ′∈Σ(M ′)2

Q(ep(M), γ′) |W|−1 ∑
w∈W

J(ep(M), w(γ′), (A,B) 7→ fHp,M ′)

+
∑

γ′∈Σ(M ′)1−Σ(M ′)2

Q(ep(M), γ′)J(ep(M), γ′, (A,B) 7→ fHp,M ′)
)
.

Proof. — This is a consequence of Lemma 8.7.6, Corollary 8.9.8, Lemma 8.10.4.

8.11. Computation of J

We compute the term J(ep(M), γ′, (A,B) 7→ fHp,M ′) in Corollary 8.9.8 using results
from §7.4. We simply write e for ep(M). Recall the functions ϵR(·) : TM (R)→ {±1}
and ϵRH (·) : TM (R) → {±1} from §8.8.7. The former depends only on ep(M), while
the latter depends on ep(M) and (A,B).

Lemma 8.11.1. — For M = M12 in the odd case, we have

ϵR(jM (γ′−1)) = ϵRH (γ′−1)|A={1,2} = ϵRH (γ′−1)|A=∅,

ϵRH (γ′−1)|A={1} = ϵRH (γ′−1)|A={2}.

In all the other cases of M , we have

ϵR(jM (γ′−1)) = ϵRH (γ′−1).

Proof. — This follows directly from the definitions.

8.11.2. — We introduce some notations. Write p∗ := pa(d−2)/2. Write

fHp,M ′ = p∗k(A,B) + p∗h ∈ Hur(M ′
Qp),

as in Proposition 7.4.2. When M = M12, we further write

k(A,B) = k1(A) + k2(A),
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where ki(A) ∈ Hur(M ′
Qp) has Satake transform ∇i(A)(ξai + ξ−a

i ), as in Proposition
7.4.2. Thus we have

J(e, γ′, (A,B) 7→ fHp,M ′) = p∗J(e, γ′, k) + p∗J(e, γ′, h),(8.11.2.1)

and when M = M12 we further have

J(e, γ′, (A,B) 7→ fHp,M ′) = p∗J(e, γ′, k1) + p∗J(e, γ′, k2) + p∗J(e, γ′, h).(8.11.2.2)

Here we use the abbreviated notation J(e, γ′, k) := J(e, γ′, (A,B) 7→ k(A,B)), etc. In
the following computation We write

ΦGM := ΦGM (jM (γ′)−1,ΘV∗),
ΦGM,eds := ΦGM (jM (γ′)−1,ΘV∗)eds,

ϵRϵRH := ϵR(jM (γ′−1))ϵRH (γ′−1).

8.11.3. Odd case M12. — With the above notations, it follows from Lemma 8.11.1
and the fact that ϵR is independent of (A,B) that we have

J(e, γ′, h) = SOγ′(h)
∑
A,B

.(A,B)ϵRϵRHΦGM (jM (γ′)−1,ΘH
V∗)

(8.11.3.1)

= SOγ′(h)
[
ΦGM − ΦGM − (ϵRϵRH )|A={1}ΦGM,eds + (ϵRϵRH )|A={2}ΦGM,eds

]
= 0.

Similarly

J(e, γ′, k1)

(8.11.3.2)

= SOγ′(k1(∅))
[
ΦGM + ΦGM + (ϵRϵRH )|A={1}ΦGM,eds + (ϵRϵRH )|A={2}ΦGM,eds

]
= 2SOγ′(k1(∅))

[
ΦGM + (ϵRϵRH )|A={1}ΦGM,eds

]
,

and

J(e, γ′, k2) = 2SOγ′(k2(∅))
[
ΦGM − (ϵRϵRH )|A={1}ΦGM,eds

]
.(8.11.3.3)

8.11.4. Even case M12. — With similar computations as above, we get

J(e, γ′, h) = 0,
J(e, γ′, k1) = 2SOγ′(k1(∅))ΦGM ,
J(e, γ′, k2) = 2SOγ′(k2(∅))ΦGM .
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8.11.5. Case M1 and odd case M2. — Similar computations give

J(e, γ′, h) = 0(8.11.5.1)
J(e, γ′, k) = 2SOγ′(k(∅, ∅))ΦGM .(8.11.5.2)

8.12. Breaking symmetry, case M12

We keep the notation in Proposition 8.10.5 and §8.11.

Definition 8.12.1. — Suppose M = M12. We say that an element of M ′(R) is good
at ∞ if its component in MGL(R) = R××R× lies in (R>0×R>0)∪ (R<0×R<0). We
say that an element of M ′(Qp) is good at p if its component in MGL(Qp) = Q×

p ×Q×
p

has p-adic valuations (−a, 0). Here the first Gm-factor is GL(V1) and the second is
GL(V2/V1).

Proposition 8.12.2. — Let M = M12. We have

nGM Tr′
M =

∑
ep(M)=(M ′,LM ′,s′

M
,ηM )∈Ė (M)c,ur

|OutM (ep(M))|−1

·
∑
γ′

Q(ep(M), γ′)4p∗J(ep(M), γ′, k1),

where γ′ runs through the elements of Σ(M ′)1 that are good at ∞ and good at p.

Proof. — We start with the formula for nGM Tr′
M in Proposition 8.10.5, and recall

that in that formula Σ(M ′)1 = Σ(M ′)2 for our M = M12. Fix e = ep(M) =
(M ′, LM ′, s′

M , ηM ) ∈ Ė (M)c,ur.
We first treat the odd case. Let w1 := (−1, 1) ∈ {±1}2 ⊂ W = {±1}2 ⋊ S2,

and let w12 be the non-trivial element of S2 ⊂ W. For γ′ ∈ Σ(M ′)1, combining the
computation of J(e, γ′, k1) and J(e, γ′, k2) in §8.11.3 and the vanishing statement in
Proposition 4.6.12, we know that

J(e, γ′, k1) = J(e, γ′, k2) = 0

unless γ′ is good at ∞. We also note that being good at ∞ is a property invariant
under W. Now by (8.11.2.2) and (8.11.3.1) we have

J(e, γ′, (A,B) 7→ fHp,M ′) = p∗J(e, γ′, k1) + p∗J(e, γ′, k2).(8.12.2.1)

Therefore, if γ′ ∈ Σ(M ′)1 is such that∑
w∈W

J(e, w(γ′), (A,B) 7→ fHp,M ′) ̸= 0,(8.12.2.2)

then γ′ is good at ∞,
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Suppose γ′ ∈ Σ(M ′)1 is good at ∞. Then by Proposition 4.6.13, (8.11.3.2), and
(8.11.3.3), we have

J(e, γ′, k1) = J(e, w12(γ′), k2)(8.12.2.3)
J(e, γ′, k1) = J(e, w1(γ′), k1)(8.12.2.4)

because the functions k1(∅) and k2(∅) are pull-backs of each other under w12, and the
function k1(∅) is invariant under w1. Combining (8.12.2.1) and (8.12.2.3), we obtain

∑
w∈W

J(e, w(γ′), (A,B) 7→ fHp,M ′) =
∑
w∈W

p∗J(e, w(γ′), k1) + p∗J(e, w12w(γ′), k1)
(8.12.2.5)

= 2
∑
w∈W

p∗J(e, w(γ′), k1).

Assume (8.12.2.2) holds. Then by (8.12.2.5), there exists γ′′ ∈ Wγ′ such that
J(e, γ′′, k1) ̸= 0. By (8.11.3.2), the last condition implies that SOγ′′(k1(∅)) ̸= 0, from
which it easily follows that either γ′′ or w1(γ′′) (but not both) is good at p. Note that
in W, there are either zero or two elements w such that w(γ′) is good at p. In the latter
case, the two elements differ by left multiplication by w2 := (1,−1) ∈ {±1}2 ⊂ W.
Combining this analysis with (8.12.2.4) and (8.12.2.5), we have∑

w∈W

J(e, w(γ′), (A,B) 7→ fHp,M ′)(8.12.2.6)

= 2p∗
∑

w∈W,w(γ′) good at p

J(e, w(γ′), k1) + J(e, w1w(γ′), k1)

= 4p∗
∑

w∈W,w(γ′) good at p

J(e, w(γ′), k1)

=
{

0, if ∄γ′′ ∈Wγ′ good at p,
4p∗(J(e, γ′′, k1) + J(e, w2(γ′′), k1)

)
, if γ′′ ∈Wγ′ is good at p.

Moreover, if γ′′ ∈Wγ′ is good at p, then we have

|Wγ′| =
{
|W| , if w2(γ′′) ̸= γ′′,

|W| /2, if w2(γ′′) = γ′′.
(8.12.2.7)
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Combining the discussion about being good at ∞ at the beginning of the proof,
the formulas (8.12.2.6) and (8.12.2.7), and Lemma 8.10.4, we obtain:∑

γ′∈Σ(M ′)1

Q(e, γ′) |W|−1 ∑
w∈W

J(e, w(γ′), (A,B) 7→ fHp,M ′)

=
∑

γ′′∈Σ(M ′)1
γ′′ good at p,∞
γ′′ ̸=w2γ

′′

Q(e, γ′′) |W|−1 |Wγ′′| 4p∗J(e, γ′′, k1)

+
∑

γ′′∈Σ(M ′)1
γ′′ good at p,∞
γ′′=w2γ

′′

Q(e, γ′′) |W|−1 |Wγ′′| 8p∗J(e, γ′′, k1)

=
∑

γ′′∈Σ(M ′)1
γ′′ good at p,∞

Q(e, γ′′)4p∗J(e, γ′′, k1).

This together with Proposition 8.10.5 implies the current proposition in the odd case.
The even case is proved in a similar way. The only differences are that we now use

the vanishing statement in Proposition 4.6.14 rather than Proposition 4.6.12, and that
we simply use the invariance of ΦGM (·,ΘV∗) under NorG(M)(R) to deduce (8.12.2.3)
and (8.12.2.4) .

8.13. Breaking symmetry, case M1 and odd case M2

We keep the notation in Proposition 8.10.5 and §8.11.

Definition 8.13.1. — Suppose M = M1. We say that an element of M ′(Qp) is good
at p if its component in MGL(Qp) = GL2(Qp) has determinant of p-adic valuation
−a. We say that all elements of M ′(R) are good at ∞.

Suppose M = M2 in the odd case. We say that an element of M ′(Qp) is good at
p if its component in MGL(Qp) = Q×

p has valuation −a. We say that an element of
M ′(R) is good at ∞ if its component in MGL(R) = R× is positive.

Proposition 8.13.2. — Suppose M = M1, or M = M2 in the odd case. We have

nGM Tr′
M =

∑
ep(M)=(M ′,LM ′,s′

M
,ηM )∈Ė (M)c,ur

|OutM (ep(M))|−1

·
∑
γ′

Q(ep(M), γ′)2p∗J(ep(M), γ′, k),

where γ′ runs through the elements of Σ(M ′)1 that are good at ∞ and good at p.

Proof. — We start with the formula for nGM Tr′
M in Proposition 8.10.5. Fix e =

ep(M) = (M ′, LM ′, s′
M , ηM ) ∈ Ė (M)c,ur. Let γ′ ∈ Σ(M ′)1. Let w1 ∈ W be the
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non-trivial element. In view of (8.11.5.2), it follows from the obvious invariance of
k(∅, ∅) under w1 and the invariance of ΦGM (·,ΘV∗) under NorG(M)(R) that we have

J(e, γ′, k) = J(e, w1(γ′), k).(8.13.2.1)

By (8.11.2.1) and (8.11.5.1) we have

J(e, γ′, (A,B) 7→ fHp,M ′) = p∗J(e, γ′, k).(8.13.2.2)

If this is non-zero, then SOγ′(k(∅, ∅)) ̸= 0 by (8.11.5.2), and it easily follows that
either γ′ or w1γ

′ is good at p. This implies that γ′ ∈ Σ(M ′)2 (as a ≥ 1). Thus∑
γ′∈Σ(M ′)1−Σ(M ′)2

Q(e, γ′)J(e, γ′, (A,B) 7→ fHp,M ′) = 0.(8.13.2.3)

Now suppose γ′ ∈ Σ(M ′)2. By (8.13.2.1) and (8.13.2.2) we have∑
w∈W

J(e, w(γ′), (A,B) 7→ fHp,M ′) = 2p∗J(e, γ′, k) = 2p∗J(e, w1(γ′), k).

Suppose this is non-zero. Then one of γ′ and w1(γ′) is good at p, by the same
argument as before. Also, by (8.11.5.2), we have ΦGM (jM (γ′)−1,ΘV∗) ̸= 0. By the
vanishing statement in Proposition 4.5.2, the last condition implies that γ′ (and hence
also w1(γ′)) is good at ∞ when M = M2. Note that at most one of γ′ and w1(γ′)
can be good at p. Hence∑

γ′∈Σ(M ′)2

Q(e, γ′) |W|−1 ∑
w∈W

J(e, w(γ′), (A,B) 7→ fHp,M ′)(8.13.2.4)

=
∑

γ′∈Σ(M ′)2
γ′ good at p,∞

Q(e, γ′)2−12p∗J(e, γ′, k)

+
∑

γ′∈Σ(M ′)2
w1(γ′) good at p,∞

Q(e, γ′)2−12p∗J(e, w1(γ′), k)

=
∑

γ′∈Σ(M ′)2
γ′ good at p,∞

Q(e, γ′)2−12p∗J(e, γ′, k)

+
∑

γ′∈Σ(M ′)2
γ′ good at p,∞

Q(e, γ′)2−12p∗J(e, γ′, k)

=
∑

γ′∈Σ(M ′)2
γ′ good at p,∞

Q(e, γ′)2p∗J(e, γ′, k).

Here for the second equality, we made the substitution γ′ 7→ w1(γ′) in the second
summation and used Lemma 8.10.4. The proposition follows from Proposition 8.10.5,
(8.13.2.3), and (8.13.2.4).
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8.14. Main computation

We keep letting M denote one of M1,M2,M12, and excluding M2 in the even case.

Proposition 8.14.1. — Let CM = 1 for M = M12 or M1, and let CM = 2 for
M = M2 (in the odd case). When a ∈ Z>0 is large enough (for a fixed fp,∞), we have

(8.14.1.1)
CM Tr′

M = 4p∗
∑

ep(M)=(M ′,LM ′,s′
M
,ηM )∈Ė (M)c,ur

(−1)dimAM′ +q(GR) |OutM (ep(M))|−1

·
∑
γ′

Q(ep(M), γ′)SOγ′(k1(∅))LM (jM (γ′)),

where γ′ runs through the elements of Σ(M ′)1 that are good at ∞ and good at p. Here
we understand that k1(∅) := k(∅, ∅) when M = M1 or M2; see §8.11.2 for k1 and
k. Moreover, (−1)dimAM′ depends only on M , and is 1 if M = M12 and −1 other
wise.(10)

Proof. — The claim about (−1)dimAM′ is straightforward. To prove (8.14.1.1), we
first treat the odd case with M = M12. By Lemma 8.10.2, we have nGM = 8. Then by
Proposition 8.12.2 and (8.11.3.2), we have

8 Tr′
M =

∑
e=(M ′,LM ′,s′

M
,ηM )∈Ė (M)c,ur

|OutM (e)|−1∑
γ′

Q(e, γ′)4p∗J(e, γ′, k1)

(8.14.1.2)

=
∑
e

|OutM (e)|−1∑
γ′

Q(e, γ′)8p∗SOγ′(k1(∅))·

·
[
ΦGM (jM (γ′)−1,ΘV∗) + ϵR(jM (γ′−1))ϵRH (γ′−1)|A={1}ΦGM (jM (γ′−1),ΘV∗)eds

]
,

where γ′ runs through the elements in Σ(M ′)1 that are good at ∞ and good at p.
Suppose that γ′ contributes non-trivially to the above sum. Then Q(e, γ′) ̸= 0. From
Definition 8.9.7, we have

O
s′
M
γM (fp,∞M ) ̸= 0,

where γM is as in that definition. Therefore the component of γM in MGL(Apf ) lies in
a compact subset that depends only on fp,∞ and not on a. Because γ′ is an image of
γM , the component of γ′ in MGL(Q) is equal to the component of γM in MGL(Apf ).
When a is large enough, this observation together with the assumption that γ′ is good
at p implies that the real absolute value of the component of γ′ in the first Gm is
strictly smaller than the ±1-st power of that of the second. In other words, jM (γ′) is

(10)This dichotomy is to be compared with the dichotomy of behaviors of signs in Propositions 4.6.12
and 4.6.14 for M12 on the one hand, and in Propositions 4.4.2 and 4.5.2 for M1 and M2 on the other
hand.
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in the range x1 < − |x2| considered in Propositions 4.6.12 and 4.6.14. Observe

ΦGM (jM (γ′)−1,ΘV∗) = ΦGM (jM (γ′),ΘV),
ΦGM (jM (γ′)−1,ΘV∗)eds = ΦGM (jM (γ′),ΘV)eds,

and
ϵR(jM (γ′−1))ϵRH (γ′−1)|A={1} = 1

for jM (γ′−1) in the range mentioned above. Therefore by Proposition 4.6.12, the sum
in the bracket in (8.14.1.2) is 4(−1)q(GR)LM (jM (γ′)). Substituting this into (8.14.1.2),
dividing both sides by 8, and inserting the sign (−1)dimAM′ = 1 on the right hand
side, we obtain the desired (8.14.1.1).

The even case M12, odd and even case M1, and odd case M2, are proved in a similar
way, by applying the corresponding computation in §8.11 and Propositions 8.13.2,
4.6.14, 4.4.2, and 4.5.2. (The number nMG can again be computed using Lemma 8.10.2,
and is seen to be 8, 2, 2 for M12,M1,M2.) We only add the following details: When
M = M1, we only know that the component of γ′ in MGL(Q) = GL2(Q) is (stably)
conjugate to the component of γM in MGL(Apf ) = GL2(Apf ) (as opposed to knowing
that they are equal), but this already implies that they have equal determinant. Again
from the assumption that a is large and γ′ is good at p, we deduce that jM (γ′) is in
the range det < 1 considered in Proposition 4.4.2. When M = M2 in the odd case,
we deduce that jM (γ′) is in the range 0 < a < 1 considered in Proposition 4.5.2 in
the same way as when M = M12. Finally, we note that the constant nGM appearing in
Proposition 8.13.2 is the same for M1 and M2 (equal to 2), but in Propositions 4.4.2
there is an extra factor 2 on the right hand side compared to Proposition 4.5.2. This
is why in the current proposition we have CM1 = 1 and CM2 = 2.

8.14.2. — We now plug the definition of Q(e, γ′) (Definition 8.9.7) into the formula
(8.14.1.1), and obtain:

(8.14.2.1) CM Tr′
M = 4p∗τ(M)k(M)k(G)−1

∑
e=(M ′,LM ′,s′

M
,ηM )∈Ė (M)c,ur

|OutM (e)|−1

·
∑
γ′

SOγ′(k1(∅))LM (jM (γ′))ῑM
′
(γ′)−1(∆M

M ′)∅,∅(γ′, γM )

·Os
′
M
γM (fp,∞M )v̄(M ′0

γ′)−1∆∅,∅
jM ,BM

(γ′, jM (γ′)).

(The sign (−1)dimAM′ appears both in the definition of Q(e, γ′) and in (8.14.1.1), and
hence it gets canceled in the above.) Observe that when γ′ ∈ Σ(M ′)1 is good at p,
we have

SOγ′(k1(∅)) = SOγ′(ka ⊗ 1M ′,SO,p),(8.14.2.2)
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where, in the notation of Proposition 7.4.2, ka ∈ Hur(MGL
Qp ) is given by

(8.14.2.3)
{
−ξ−a

1 , M = M12 or M2 (so that MGL = G2
m or Gm resp.),

−ζ−a
1 − ζ−a

2 , M = M1 (so that MGL = GL2),

and 1M ′,SO,p denotes the unit element of Hur(M ′,SO
Qp ). (Thus ka differs from k(∅, ∅) in

that we throw away the positive powers of the variables ξi, ζi, as well as powers of ξ2
when M = M12.) Conversely, if the right hand side of (8.14.2.2) is non-zero, then γ′ is
necessarily good at p. Thus after making the substitution (8.14.2.2) inside (8.14.2.1),
we no longer need to impose the condition of being good at p in the summation over
γ′.

Let γ′
p,GL (resp. γ′

p,SO) be the component of γ′ in MGL(Qp) (resp. M ′,SO(Qp)).
Then we can rewrite (8.14.2.2) as

SOγ′(k1(∅)) = SOγ′
p,GL

(ka)SOγ′
p,SO

(1M ′,SO,p).(8.14.2.4)

Since γ′ is (M,M ′)-regular (being in Σ(M ′)1), γ′
p,SO is (MSO,M ′,SO)-regular. By the

Fundamental Lemma (Theorem 8.1.4 (2)), we know that

SOγ′
p,SO

(1M ′,SO,p) ̸= 0

only if γ′
p,SO is an image of a semi-simple element γp,SO ∈MSO(Qp), and in this case

we have

SOγ′
p,SO

(1M ′,SO) = ∆MSO

M ′,SO(γ′
p,SO, γp,SO)Os

SO

γp,SO
(1MSO,p),(8.14.2.5)

where ∆MSO

M ′,SO is the canonical unramified normalization of transfer factors at p as-
sociated to the hyperspecial subgroup MSO(Qp) ∩M(Zp) ⊂ MSO(Qp), and 1MSO,p

denotes the unit element of H(MSO(Qp) � (MSO(Qp) ∩M(Zp))).
When γ′

p,SO is an image of γp,SO ∈ MSO(Qp) as above, note that γ′ = γ′
p,GLγ

′
p,SO

is an image of γ′
p,GLγp,SO ∈M(Qp), and for the canonical unramified normalizations

of transfer factors we have

∆MSO

M ′,SO(γ′
p,SO, γp,SO) = ∆M

M ′(γ′, γ′
p,GLγp,SO).(8.14.2.6)

From (8.14.2.1) (8.14.2.4) (8.14.2.5) (8.14.2.6), we obtain

(8.14.2.7) CM Tr′
M = 4p∗τ(M)k(M)k(G)−1

∑
e=(M ′,LM ′,s′

M
,ηM )∈Ė (M)c,ur

|OutM (e)|−1

·
∑
γ′

ῑM
′
(γ′)−1v̄(M ′0

γ′)−1SOγ′
p,GL

(ka)LM (jM (γ′))Os
′
M
γM (fp,∞M )Os

SO

γp,SO
(1MSO,p)

· (∆M
M ′)∅,∅(γ′, γM )∆∅,∅

jM ,BM
(γ′, jM (γ′))∆M

M ′(γ′, γ′
p,GLγp,SO),

where γ′ runs through the elements of Σ(M ′)1 that are good at ∞, and for each γ′

we choose γM ∈ M(Apf ) and γp,SO ∈ MSO(Qp) such that γ′ is an image of γM (over
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Apf ) and an image of γ′
p,GLγp,SO (over Qp). Here we no longer need the condition that

γ′ is good at p, as we have already seen.

Lemma 8.14.3. — If γ′ ∈ M ′(Q)ss is R-elliptic and is an image from M(Af )ss,
then it is an image from M(Q)ss. Moreover, if γ∞ ∈ M(R)ss is a prescribed elliptic
element of which γ′ is an image, then γ′ is an image of some γ ∈ M(Q)ss such that
γ is conjugate to γ∞ in M(R).

Proof. — We recall a construction from [Lab99] in our setting. Let γ∗ ∈ M∗(Q)ss
be such that γ′ is an image of it. By hypothesis γ′ is an image from M(Af )ss, and
note that γ′ is also an image from M(R)ss since it is R-elliptic. Thus let γA ∈M(A)ss
be such that γ′ is an image of it. When γ∞ is prescribed as in the statement of the
lemma, we take γA such that its archimedean component is γ∞. From γ∗ and γA,
Labesse constructs a non-empty subset

obsγ∗(γA) ⊂ E(I∗,M∗;A/Q) := H0
ab(A/Q, I∗\M∗)/H0

ab(A,M∗),

generalizing the construction of Kottwitz in [Kot86]; see [Lab99, §2.6], with L =
M,H = M∗. By [Lab99, Thm. 2.6.3], the condition that 1 ∈ obsγ∗(γA) would imply
the existence of an element of M(Q)ss that is conjugate to γA ∈M(A), and the current
lemma would follow. Thus it suffices to prove that 1 ∈ obsγ∗(γA) for a suitable choice
of γA.

Note that to prove the lemma we may always modify γA by replacing its v-adic
component with another element stably conjugate to it over Qv, for some finite place
v. We claim that after such a modification we can achieve 1 ∈ obsγ∗(γA). In fact, we
know that E(I∗,M∗;A/Q) is isomorphic to the Pontryagin dual group K(I∗/Q)D of
the finite abelian group K(I∗/Q) (for I∗ ⊂M∗) considered in [Kot86, §4.6]; cf. [KSZ,
Cor. 1.7.4]. The same argument as the second paragraph of [Kot90, p. 188] implies
that the natural map K(I∗/Qv)D → K(I∗/Q)D is a surjection for some finite place v.
On the other hand,

K(I∗/Qv)D ∼= E(I∗,M∗;Qv) ∼= D(I∗,M∗;Qv) = ker(H1(Qv, I∗)→ H1(Qv,M∗)).

From the construction of Labesse we know that if we twist γA within its stable con-
jugacy class by a class c ∈ D(I∗,M∗;Qv), then obsγ∗(γA) gets shifted by the image
of c in the abelian group E(I∗,M∗,A/Q). The claim follows.

8.14.4. — By Lemma 8.14.3, we may assume that each γ′ in (8.14.2.7) is an image
of some γ ∈M(Q)ss, and that γ is conjugate to jM (γ′) in M(R). Note that we have
LM (jM (γ′)) = LM (γ). (In fact LM (·) depends only on C-conjugacy classes.) We
may and shall take γM and γ′

p,GLγp,SO to be localizations of γ in M(Apf ) and M(Qp)
respectively.

We have seen that �(∅, ∅) = −1 in Proposition 8.9.5. Therefore with the above as-
sumptions on γM and γ′

p,GLγp,SO, the product of the three transfer factors in the third
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line of (8.14.2.7) becomes −1. We summarize the above discussion in the following
proposition.

Proposition 8.14.5. — When a ∈ Z>0 is large enough (for a fixed fp,∞), we have

(8.14.5.1)
CM Tr′

M = −4p∗τ(M)k(M)k(G)−1
∑

e=(M ′,LM ′,s′
M
,ηM )∈Ė (M)ur,c

|OutM (e)|−1

·
∑
γ′

ῑM (γ)−1v̄(M0
γ )−1SOγGL(ka)LM (γ)Os

′
M
γ (fp,∞M )Os

SO

γSO
(1MSO,p)

·∆∅,∅
jM ,BM

(γ′, jM (γ′))∆∅,∅
jM ,BM

(γ′, γ)−1,

where γ′ runs through the elements of Σ(M ′)1 that are good at ∞, and such that γ′

is an image of some γ ∈M(Q)ss. For each γ′, we fix a corresponding γ, and use γGL
and γSO to denote the (localizations over Qp of) the components of γ in MGL and
MSO respectively.

Definition 8.14.6. — For any reductive group I over R that contains elliptic maxi-
mal tori, let D(I) be the cardinality of D(T, I;R) = ker(H1(R, T )→ H1(R, I)), where
T is any elliptic maximal torus in I.

Lemma 8.14.7. — Let I and T be as in Definition 8.14.6.
(1) We have D(I) = |ΩC(I, T )/ΩR(I, T )| . In particular D(I) is independent of the

choice of T .
(2) If D(I) = 1, then any two elliptic elements of I(R) that are stably conjugate

to each other are conjugate under I(R).
(3) If D(I) = 1, then for any elliptic element x ∈ I(R), we have D(I0

x) = 1.

Proof. — Statement (1) follows from [Lab11, Prop. 6.4.2], and the fact that all el-
liptic maximal tori are conjugate under I(R). For (2), it suffices to prove that for any
(connected) reductive subgroup J of I containing an elliptic maximal torus T in I,
we have D(J, I;R) = 1. But this follows from [Kot86, Lem. 10.2], which says that
H1(R, T ) surjects onto H1(R, J). Finally, (3) follows from the fact that I0

x contains
a maximal torus which is elliptic in both I0

x and I.

Lemma 8.14.8. — We have D(MR) = 1.

Proof. — If M = M1 or M12, then MR is a product of copies of GL2 or Gm and an
anisotropic group, so D(M) = 1. Now suppose M = M2 in the odd case. Write n
for d − 2, and recall that n ≥ 3. We have MR ∼= Gm × SO(n − 1, 1), so D(MR) =
D(SO(n − 1, 1)). To compute D(SO(n − 1, 1)), consider an elliptic (anisotropic)
maximal torus T ∼= U(1)(n−1)/2 in SO(n− 1, 1), which is inside the maximal compact
subgroup S(O(n−1)×O(1)) of SO(n−1, 1). It is well known (see for instance [AT18,
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Prop. 6.16]) that we have

|ΩR(SO(n− 1, 1), T )| =
∣∣NorS(O(n−1)×O(1))(C)(T (C))/T (C)

∣∣ .
On the other hand one can directly check that as subgroups of Aut(TC) we have

NorS(O(n−1)×O(1))(C)(T (C))/T (C) = ΩC(SO(n− 1, 1), T ) ∼= {±1}(n−1)/2 ⋊S(n−1)/2.

It then follows from Lemma 8.14.7 (1) that D(SO(n− 1, 1)) = 1.

Proposition 8.14.9. — Keep the setting and notation of Proposition 8.14.5. We
have
(8.14.9.1)

CM Tr′
M = −4p∗τ(M)k(M)k(G)−1

∑
γ0

∑
κ

ῑM (γ0)−1v̄(I0)−1SOγ0,GL(ka)LM (γ0)

·Oκγ0
(fp,∞M )Oκ

SO

γ0,SO
(1MSO,p),

where
– γ0 runs through a fixed set of representatives of the stable conjugacy classes in

M(Q) that are elliptic over R and good at ∞. We let γ0,GL and γ0,SO denote the
(localizations over Qp of) the components of γ0 in MGL and MSO respectively.

– I0 := M0
γ0

.
– κ runs through K(I0/Q) = E(I0,M ;A/Q)D.

Proof. — By Lemma 8.14.7 (2) and Lemma 8.14.8, every γ in (8.14.5.1) is conjugate
to jM (γ′) over R. Hence the quotient of the two transfer factors at the end of (8.14.5.1)
is equal to 1. Thus we have

CM Tr′
M = −4p∗τ(M)k(M)k(G)−1

∑
e=(M ′,LM ′,s′

M
,ηM )∈Ė (M)ur,c

|OutM (e)|−1

·
∑
γ′

ῑM (γ)−1v̄(M0
γ )−1SOγGL(ka)LM (γ)Os

′
M
γ (fp,∞M )Os

SO

γSO
(1MSO,p).

This implies (8.14.9.1) by the usual conversion from summation over (e, γ′) to sum-
mation over (γ0, κ) in the theory of stabilization (see [Lab04, Cor. IV.3.6] and [KSZ,
§8.3]).

8.14.10. — Now by Fourier analysis on the finite abelian groups K(I0/Q)D =
E(I0,M ;A/Q), (cf. [Kot86, p. 395], [Kot90, p. 174], [KSZ, §8.1]), from Proposition
8.14.9 we deduce
(8.14.10.1)

CM Tr′
M = −4p∗τ(M)k(M)k(G)−1

∑
γ0,γ1

ῑM (γ0)−1v̄(I0)−1e(I0,R)SOγ0,GL(ka)

·LM (γ0)Oγ1(fp,∞M )Oγ1,SO(1MSO,p)
[
τ(M)−1τ(I0)

∣∣ker(ker1(Q, I0)→ ker1(Q,M))
∣∣ ],
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where

– γ0 runs through a fixed set of representatives of the stable conjugacy classes in
M(Q) that are elliptic over R and good at ∞.

– I0 := M0
γ0

.
– γ1 runs through the subset of D(I0,M ;A) := ker(H1(A, I0) → H1(A,M)) con-

sisting of elements whose images in E(I0,M ;A/Q) are trivial. Each such γ1 determines
a conjugacy class in M(A) which we also denote by γ1. We let γ1,SO be the component
of γ1 in MSO(Qp).

– The number
[
τ(M)−1τ(I0)

∣∣ker(ker1(Q, I0)→ ker1(Q,M))
∣∣ ] is none other than

the cardinality of K(I0/Q). (This can be shown by combining [Kot86, §9] and Weil’s
conjecture on the Tamagawa number proved by Kottwitz [Kot88], cf. [Kot90, §4].)

8.14.11. — The last major operation to be applied to (8.14.10.1) is the Base Change
Fundamental Lemma, which relates SOγ0,GL(ka) to the twisted orbital integrals in
Kottwitz’s point counting formula. We only need this result for Gm, in which case it
is trivial, and for GL2, in which case it was initially proved by Langlands [Lan80].
For an account of the theory for GLn see [AC89] and for the proof in the general
case see [Clo90a, Lab90].

Observe that the function ka ∈ Hur(MGL
Qp ) defined in (8.14.2.3) is equal to the

image under the base change map (see §7.2.5)

Hur(MGL
Qpa ) −→ Hur(MGL

Qp )

of the element p−a/2ϕMh
a , resp. −ϕMh

a , resp. −ϕMh
a ⊗ 1, where ϕMh

a is as in Definition
2.3.9, when M = M1, resp. M2, resp. M12. Here when M = M12 we have MGL =
Mh × Gm, and we write −ϕMh

a ⊗ 1 corresponding to this decomposition, where 1 is
the unit of Hur(Gm,Qpa ). By the Base Change Fundamental Lemma, we have, for
any semi-simple conjugacy class (which is the same as stable conjugacy class) γ0,GL
in MGL(Q), the following identity:

SOγ0,GL(ka) =


−
∑
δ e(δ)TOδ(ϕMh

a ), if M = M2,

−p−a/2∑
δ e(δ)TOδ(ϕMh

a ), if M = M1,

−
∑
δ e(δ)TOδ(ϕMh

a )1Z×
p

(y), if M = M12,

(8.14.11.1)

where δ runs through the σ-conjugacy classes in Mh(Qpa) such that it has norm the
Mh-component of γGL, e(δ) denotes the Kottwitz sign of the twisted centralizer of δ
(a reductive group over Qp), and in the last case we write γ0,GL = (x, y) ∈Mh×Gm.
(In fact, by [AC89] or direct verification, the above summation over δ is either empty
or over a singleton.)

The next lemma is sometimes called “pre-stabilization” in the literature.
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Lemma 8.14.12. — Let F (x, y) be a C-valued function on the set of compatible
pairs (x, y) of a stable conjugacy class x in M(Q) and a conjugacy class y in M(A).
Then we have∑

γ

ιM (γ)−1F (γ, γ) =
∑
γ0,γ1

ῑM (γ0)−1 ∣∣ker(ker1(Q, I0)→ ker1(Q,M))
∣∣F (γ0, γ1),

where on the LHS γ runs through the conjugacy classes in M(Q) which are R-elliptic,
and on the RHS γ0 runs through an arbitrary set of representatives of the stable
conjugacy classes in M(Q) that are R-elliptic, and γ1 runs through the subset of
D(I0,M ;A) consisting of elements whose images in E(I0,M ;A/Q) are trivial. Here
we have denoted I0 := M0

γ0
. Moreover, if we restrict the summation on the LHS to

only those γ good at ∞, and restrict the summation on the RHS to only those γ0 good
at ∞, we still get an equality.

Proof. — The multiplicity of a M(Q)-conjugacy class γ appearing in the set
D(I0,M ;Q) is equal to ῑM (γ0) · ιM (γ)−1. The fibers of the map D(I0,M ;Q) →
D(I0,M,A) all have size ∣∣ker(ker1(Q, I0)→ ker1(Q,M))

∣∣ .
The lemma then easily follows.

We are now ready to prove Theorem 8.5.2.

Proof of Theorem 8.5.2. — By (8.14.10.1) and Lemma 8.14.12, we have

(8.14.12.1) CM Tr′
M = −4p∗k(M)k(G)−1

∑
γ

ιM (γ)−1
[
v̄(M0

γ )−1e(M0
γ,R)τ(M0

γ )
]

· SOγGL(ka)LM (γ)Oγ(fp,∞M )OγSO(1MSO,p),

where γ runs through conjugacy classes in M(Q) that are elliptic over R and good at
∞. By Harder’s formula (see [GKM97, §7.10]), we have

χ(M0
γ ) = v̄(M0

γ )−1e(M0
γ,R)D(M0

γ,R)τ(M0
γ ).

By Lemma 8.14.7 (3) and Lemma 8.14.8, D(M0
γ,R) = 1. Hence the product in the

bracket in (8.14.12.1) is equal to χ(M0
γ ), and therefore

(8.14.12.2) CM Tr′
M = −4p∗k(M)k(G)−1

∑
γ

ιM (γ)−1χ(M0
γ )

· SOγGL(ka)LM (γ)Oγ(fp,∞M )OγSO(1MSO,p).

Denote

p∗∗ :=
{
p∗, if M = M2 or M12,

p−a/2p∗, if M = M1.
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By (8.14.11.1) and (8.14.12.2) we have

(8.14.12.3) CM Tr′
M = 4p∗∗k(M)k(G)−1

·
∑
γ,δ

ιM (γ)−1χ(M0
γ )e(δ)TOδ(ϕMh

a )LM (γ)Oγ(fp,∞M )OγL(1Ml(Zp)),

where γL denotes the component of γ in Ml under the decomposition M = Mh ×Ml

(which only differs from the decomposition M = MGL ×MSO when M = M12), and
1Ml(Zp) is as in Definition 2.4.3. To finish the proof we divide into different cases.

Case M = M12.
In Definition 2.4.3, δ runs through those elements of Q×

pa with norm γ0 and such
that the Kottwitz invariant of δ in π1(Mh)Γp = X∗(Gm) = Z is equal to the image of
−µ. The last condition is equivalent to requiring that vp(δ) = −1, which is a necessary
(and also sufficient) condition for TOδ(ϕMh

a ) ̸= 0. Hence we may drop this condition
in the summation in Definition 2.4.3. Every term c(γ0, γ, δ) is easily computed to
be 2−1 (with c1 = vol(Gm(R)/Gm(R)0)−1 = 2−1, c2 = 1). On the other hand, in
(8.14.12.3) every term e(δ) is 1. Comparing Definition 2.4.3 and (8.14.12.3), we see
that it suffices to prove that

2−1δ
1/2
P12(Qp)(γh) = 4p∗k(M)k(G)−1χ(Mh,γh)(8.14.12.4)

for γ = γhγL contributing to (8.14.12.3). (Here γh and γL denote the components of
γ in Mh(Q) and Ml(Q).) We have χ(Mh,γh) = χ(Gm) = 2−1 by Harder’s formula,
and we have k(M) = 2m−3, k(G) = 2m−1 by Propositions 8.2.3 and 8.2.4. Moreover,
if γ = γhγL contributes then vp(γh) = −a (because δ should exist) , and therefore in
the odd case

δP12(Qp)(γh) =
∏

α∈Φ+−Φ+
M

|α(γh)|p = |γh|2m−1
p = p(d−2)a = (p∗)2,

where the contributing roots are ϵ1, ϵ1 ± ϵj , j ≥ 2. Similarly, in the even case,

δP12(Qp)(γh) =
∏

α∈Φ+−Φ+
M

|α(γh)|p = |γh|2m−2
p = p(d−2)a = (p∗)2,

where the contributing roots are ϵ1 ± ϵj , j ≥ 2. The equality (8.14.12.4) follows, and
the proof is finished in this case.

Case M = M1.
First we claim that if γ0 ∈ GL2(Q) is semi-simple and R-elliptic, then

c2(γ0) = τ(GL2,γ0) = 1.

In particular, we have (11),

c(γ0) = c1(γ0)c2(γ0) = vol(AGL2(R)0\GL2,γ0(R))−1.

(11)This equality also follows from the formula for c on p. 174 of [Kot90], the fact that τ(GL2) = 1,
and Lemma 2.3.5
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We prove the claim. Write I0 for GL2,γ0 . If I0 = GL2, then τ(I0) = 1 by Proposi-
tion 8.2.4, and c2(γ0) = 1 by definition. Otherwise I0 = T is a maximal torus in GL2
that is elliptic over R. Observe that T = ResF/Q Gm for some imaginary quadratic
field F , so H1(Q, T ) = 0 by Shapiro’s lemma and Hilbert 90. Hence c2(γ0) = 1. Now
by [Kot84b, (5.1.1)] and Weil’s conjecture on Tamagawa numbers proved in [Kot88],
we have

τ(T )c2(γ0) = τ(T )
∣∣ker1(Q, T )

∣∣ = τ(T )
∣∣∣ker1(Γ, T̂ )

∣∣∣ =
∣∣∣π0(T̂Γ)

∣∣∣ .
Thus to show τ(T ) = 1 it suffices to show that T̂Γ is connected. We have seen in the
proof of Lemma 2.3.5 that T̂Γ∞ ⊂ Z(ĜL2). On the other hand Z(ĜL2) ⊂ T̂Γ. Hence
T̂Γ = Z(ĜL2) = C×, which is connected as desired. The claim is proved.

We continue to consider such γ0 ∈ GL2(Q) as in the claim, and write I0 for GL2,γ0 .
By Harder’s formula we have

χ(I0) = e(I0,R)v̄−1(I0)τ(I0) |D(I0,R)| .

Since I0,R is either GL2,R or an elliptic maximal torus in GL2,R, we have e(I0,R) =
|D(I0,R)| = 1. Hence

χ(I0) = e(I0) vol(AGL2(R)0\I0)−1τ(I0)

where I0 is the inner form over R of I0,R that is anisotropic modulo center.
If δ ∈ G(Qpa) has norm stably conjugate to some γ0 ∈ GL2(Q) and γ0 is good

at p (i.e., its determinant has valuation −a), then we have e(δ) = e(I0), where I0 is
defined in terms of γ0 as above. In fact, this follows from the existence of the (global)
inner form I of I0 as in §2.3.6, the product formula for the Kottwitz signs for I, and
the observation that for any place finite v ̸= p, e(I0,Qv ) = 1 since I0,Qv is either a
torus or GL2,Qv .

From the discussion so far we deduce that for δ and γ0 as in the last paragraph we
have

c(γ0) = e(δ)χ(I0).
Moreover, if δ ∈Mh(Qpa) is such that TOδ(ϕMh

a ) ̸= 0, then necessarily vp(det δ) = −1,
and it follows easily that the Kottwitz invariant of δ in π1(Mh)Γp

∼= Z is equal to the
image of −µ. It remains to show that

δP1(Qp)(γh)1/2 = 4p∗∗k(M)k(G)−1,

for any γ = γhγL contributing to (8.14.12.3). We have k(M) = 2m−3, k(G) = 2m−1

by Propositions 8.2.3 and 8.2.4. For γ = γhγL contributing, we have vp(det γh) = −a
(because δ should exist), and therefore in the odd case

δP1(Qp)(γh) =
∏

α∈Φ+−Φ+
M

|α(γh)|p = |det(γh)|2m−2
p = p(d−3)a = (p∗∗)2,
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where the contributing roots are ϵ1, ϵ2, ϵ1 + ϵ2, ϵ1± ϵj , ϵ2± ϵj , j ≥ 3. In the even case,
the contributing roots are ϵ1 + ϵ2, ϵ1± ϵj , ϵ2± ϵj , j ≥ 3, and |det(γh)|2m−2

p is replaced
by |det(γh)|2m−3

p , which is still equal to (p∗∗)2 . The proof is finished in this case.
Case M = M2 (odd case).
Similarly to the case M = M12, we reduce the proof to proving the following

equality:
2−1δ

1/2
P12(Qp)(γ) = 2−14p∗k(M)k(G)−1χ(Mh,γh).

The extra factor 2−1 on the RHS in comparison to (8.14.12.4) appears due to the fact
that CM = 2 for M = M2. We have χ(Mh,γh) = χ(Gm) = 2−1 by Harder’s formula,
and k(M) = 2m−2, k(G) = 2m−1 by Propositions 8.2.3 and 8.2.4. Also as in the M12
case, if γ = γhγL contributes then

δP2(Qp)(γh) =
∏

α∈Φ+−Φ+
M

|α(γh)|p = |γh|2m−1
p = p(d−2)a = (p∗)2,

where the contributing roots are ϵ1, ϵ1±ϵj , j ≥ 2. The proof is finished in this case.

At this point we have completed the proof of Theorem 8.5.2. In the next two
sections we prove vanishing results that are complementary to Theorem 8.5.2.

8.15. A vanishing result, odd case

8.15.1. — Assume we are in the odd case. Consider a Levi subgroup M∗ of G∗ =
SO(V ) of the form considered in §5.5. Thus we fix r, t ∈ Z≥0, a non-degenerate sub-
space W of V of codimension 2(r+2t), a hyperbolic basis BW⊥ of W⊥, an embedding

Grm ×GLt2
∼−→M∗,GL ⊂ SO(W⊥)

as in (5.5.2.1), and obtain M∗ as M∗ = M∗,GL × SO(W ) ⊂ G∗. We write M∗,SO for
SO(W ). As in §5.5.6 and Proposition 5.5.7, isomorphism classes in EG∗(M∗) have ex-
plicit representatives eA,B,p for parameters (A,B, p) ∈Pr,t×′ PW . In complete anal-
ogy with §8.5.1, we fix ĖG∗(M∗) to be a subset of these eA,B,p = (M ′, LM ′, sM∗ , ηM∗)
such that the component of sM∗ in M̂∗,SO is not −1 and such that each isomorphism
class in EG∗(M∗) is represented exactly once. For each eA,B,p = eA,B,d+,δ+,d−,δ− =
(M ′, LM ′, sM∗ , ηM∗) ∈ ĖG∗(M∗), we let

(H, LH, s, η) := ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ−

which is the induced elliptic endoscopic datum for G∗ as in Proposition 5.5.7. We also
view (H, LH, s, η) as an elliptic endoscopic datum for G. Since H+ is non-trivial by
our assumption on sM∗ , the function fH is defined as in §8.4. Moreover, as in §8.4,
we have the fixed pair (j : TH → TG, BG,H), and a normalization for transfer factors
between H and G at all finite places. We fix M ′ ↪→ H as in §5.5.9 so as to view M ′

as a Levi subgroup of H, and define STHM ′(fH) as in Definition 8.3.3. In analogy with
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(8.5.1.1), we define

(8.15.1.1)
Tr′
M∗ := (nG

∗

M∗)−1
∑

e=(M ′,LM ′,sM∗ ,ηM∗ )
∈ĖG∗ (M∗)

|OutG∗(e)|−1
τ(G)τ(H)−1STHM ′(fH).

Theorem 8.15.2. — Assume that M∗ does not transfer to G. Then Tr′
M∗ = 0.

Proof. — By hypothesis at least one of the following conditions holds:

rt > 0 or r ≥ 3 or t ≥ 2.

Let E (M∗)c,ur be the subset of E (M∗) consisting of isomorphism classes of endo-
scopic data whose groups are cuspidal over Q (which is automatic in the odd case)
and unramified over Qp. Define a set Ė (M∗)c,ur of representatives of E (M∗)c,ur in
exactly the same way as in §8.6.1. Thus Ė (M∗)c,ur consists of ep(M∗) for certain
p = (d+, δ+, d−, δ−) ∈PW , which all satisfy that d+ ≥ 2. Then the same arguments
as in §§8.6–8.7 yield a decomposition of Tr′

M∗ into a sum as follows. The indexing set
for the sum is the set of pairs (e, γ′), where e = (M ′, LM ′, s′

M∗ , ηM∗) runs through
Ė (M∗)c,ur, and for each fixed e, γ′ runs through a set of representatives in M ′(Q) of
the semi-simple R-elliptic (M∗,M ′)-regular stable conjugacy classes. For each (e, γ′),
the summand is a complex number times

∑
A,B

SOγ′((fH,p,∞)M ′)SOγ′(fHp,M ′)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH )
(8.15.2.1)

where:
– The first summation is over all subsets A of [r] (recall that this is our short-hand

notation for {1, 2, · · · , r}) and all subsets B of [t].
– For each (A,B), we define (H, LH, s, η) with respect to e and (A,B), and view

M ′ as a Levi subgroup of H, as explained in §8.15.1.
We now fix (A,B) and analyze the terms SOγ′((fH,p,∞)M ′) and SOγ′(fHp,M ′).

If there is one finite place v ̸= p such that M∗
Qv does not transfer to GQv , then

SOγ′((fH,p,∞)M ′) = 0 by the proof of [Mor10b, Lem. 6.3.5 (ii)]. In this case
(8.15.2.1) is zero for all (e, γ′), and the theorem is already proved. Thus we as-
sume that M∗

Qv transfers to a Levi subgroup Mv of GQv at each finite place v ̸= p.
In this case, the localization at v of e can be viewed as an endoscopic datum for
Mv, and there is a normalization (∆Mv

M ′ )A,Bv of transfer factors between M ′ and Mv

inherited from the normalization (∆G
H)v of transfer factors between H and G at v

fixed in §8.4.7. For almost all v, (∆Mv

M ′ )A,Bv is the canonical unramified normalization
(associated to the hyperspecial subgroup of Mv(Qv) determined by the hyperspecial
subgroup of G(Qv) determined by some reductive model of G over some Zariski open
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in SpecZ), and is hence independent of (A,B). Define

ϵp,∞(A,B) :=
∏

v ̸=p,∞

(∆Mv

M ′ )A,Bv

(∆Mv

M ′ )∅,∅
v

,

which is a finite product. Then as an analogue of Proposition 8.4.14, SOγ′((fH,p,∞)M ′)
is equal to ϵp,∞(A,B) times a number independent of (A,B).

By Proposition 7.4.2, we know that SOγ′(fHp,M ′) is a linear combination of ∇i(A),
∇j(B), and 1 (where i ∈ [r] and j ∈ [t]) with coefficients independent of (A,B). We
conclude that (8.15.2.1) is a linear combination of the following r+ t+ 1 expressions:

Ri :=
∑
A,B

∇i(A)ϵp,∞(A,B)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ), 1 ≤ i ≤ r,

Tj :=
∑
A,B

∇j(B)ϵp,∞(A,B)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ), 1 ≤ j ≤ t,

S :=
∑
A,B

ϵp,∞(A,B)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ).

We shall show that these r + t + 1 expressions are all zero, which will prove the
theorem.

We first seek to compute the term
∑
φH∈ΦH(φV∗ ) det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ) for

each fixed (A,B), in a way similar to §8.8. Fix an elliptic maximal torus TM ′ of M ′
R

such that γ′ ∈ TM ′(R). As usual we have M ′ = M∗,GL×M ′,SO, so necessarily TM ′ is
a direct product of (1) the direct factor Grm of M∗,GL, (2) an elliptic maximal torus
in the direct factor GLt2 of M∗,GL, and (3) an elliptic (anisotropic) maximal torus
TM ′,SO = TM ′,SO,+ × TM ′,SO,− in M ′,SO = M ′,SO,+ ×M ′,SO,−. We denote the product
of (1) and (2) by TM∗,GL . Note that all of Ri, Tj , S can be viewed as continuous
functions in γ′ varying in TM ′(R) (cf. §4.2.1). Hence we may and shall assume the
following condition:

(†) The r components of γ′ in Grm ⊂ M∗,GL are distinct from each other and
distinct from the inverse of each other.

Let r′ be the number such that exactly r′ among the r components of γ′ in Grm are
positive.

Fix an elliptic maximal torus TM∗ in M∗
R of the form TM∗,GL × TM∗,SO , where

TM∗,GL is as above and TM∗,SO is an elliptic (anisotropic) maximal torus in M∗,SO.
Fix an admissible isomorphism jM∗ : TM ′

∼−→ TM∗ of the form idT
M∗,GL ×jM∗,SO ,

where jM∗,SO is an admissible isomorphism TM ′,SO
∼−→ TM∗,SO . As in §8.8.1, for any

choice of Borel subgroup B0 of G∗
C containing TM∗,C, we obtain m cocharacters of

TM∗,C forming a basis of X∗(TM∗). We denote them by

τ01 , · · · , τ0r+2t , τ1, · · · , τm−r−2t.
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Since we are in the odd case, by making different choices of B0 we can arbitrarily
permute the τ ’s and replace an arbitrary number of them by their inverses. By
similar arguments as in §8.8.1, we can choose B0 such that the following conditions
are satisfied. (Here condition C depends on the assumption (†) above.)

A : For each 1 ≤ i ≤ r, τ0i is a cocharacter of the direct factor Grm of M∗,GL. Moreover,
there is a permutation δ ∈ Sr such that for each 1 ≤ i ≤ r, τ0i is either the identity
cocharacter or the inverse of the identity cocharacter of the δ(i)-th copy of Gm.

B : For each 1 ≤ j ≤ t, τ0r+2j−1 and τ0r+2j are cocharacters of the j-th copy of GL2
in M∗,GL. Moreover, these two are simultaneously GL2-conjugate to the following
cocharacters of GL2:

z 7−→
(
z

1

)
and z 7−→

(
1

z

)
.

C : Let {ϵ1, · · · , ϵr} be the basis of X∗(Grm) dual to the basis {τ01 , · · · , τ0r} of X∗(Grm).
We also view each ϵi as a character on TM∗ , via the projection from TM∗ to the direct
factor Grm of TM∗,GL . For each 1 ≤ i ≤ r, we require that

ϵi(γ′) > 0 if and only if i ≤ r′.(8.15.2.2)

For all 1 ≤ i < j ≤ r′, or r′ + 1 ≤ i < j ≤ r, we require that
ϵi(γ′−1)
ϵj(γ′−1) ∈]0, 1[,(8.15.2.3)

and ∣∣ϵi(γ′−1)
∣∣ < 1.(8.15.2.4)

D : Let n− be the dimension of TM ′,SO,−,C. For each 1 ≤ i ≤ n−, j−1
M∗ ◦τi is a cocharacter

of TM ′,SO,−,C.

The pair (j : TH
∼−→ TG, BG,H) fixed in §8.4 can be transferred to a pair (j :

TH
∼−→ TG∗ , BG∗,H) as follows. We fix an anisotropic maximal torus TG∗ in G∗

R and
an isomorphism ν : TG

∼−→ TG∗ coming from any inner twisting GC
∼−→ G∗

C in the
canonical G∗(C)-conjugacy class of such inner twistings. Then we define j := ν ◦ j,
and define BG∗,H to be the Borel subgroup of G∗

C containing TG∗ such that ν relates
all BG,H -positive roots on TG,C with BG∗,H -positive roots on TG∗,C. From (j, BG∗,H),
we obtain an ordered m-tuple of cocharacters of TG∗,C

ρ1, · · · , ρm
similarly as in §8.8.2. Define an isomorphism iG∗(A,B) : TM∗,C

∼−→ TG∗,C by the
following rule. Write m± for the absolute ranks of H±, and n± for the absolute ranks
of M ′,SO,±. Thus we have

m+ = n+ + |A|+ 2 |B| ,
m− = n− + |Ac|+ 2 |Bc| .
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Let σ ∈ Sm be the unique permutation such that σ−1 is increasing on {1, 2, · · · ,m−}
and on {m− + 1,m− + 2, · · · ,m}, and

σ−1(
{

1, · · · ,m−})
= Ac ∪ {r + 2j − 1, r + 2j | j ∈ Bc} ∪

{
r + 2t+ 1, · · · , r + 2t+ n−} .

We then require that iG∗(A,B) sends τ01 , · · · , τ0r+2t , τ1, · · · , τm−r−2t respectively to
ρ
σ(1), · · · , ρσ(m). Our iG∗(A,B) is a direct analogue of iG(A,B) in Definition 8.8.3,

an it enjoys similar properties as in Lemmas 8.8.4 and 8.8.6, with j and jM replaced
by j and jM∗ . Let BM∗ := B0 ∩M∗, and let

∆A,B
jM∗ ,BM∗ := (−1)q(GR)+q(HR)+q(M∗

R )+q(M ′
R)∆jM∗ ,BM∗ .(8.15.2.5)

By [Mor11, Prop. 3.2.5] (cf. Proposition 8.8.8) and similar arguments as in §8.8.9,
and the proof of Lemma 8.8.10, we have

(8.15.2.6)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH )

= sgn(σ)ϵR(jM∗(γ′−1))ϵRH (γ′−1)∆A,B
jM∗ ,BM∗ (γ′, jM∗(γ′))ΦG

∗

M∗(jM∗(γ′−1),ΘH
V∗).

Here,

– σ is the permutation as above, used to define iG∗(A,B).
– R is the set of real roots of (G∗

C, TM∗,C), and ϵR(t) is −1 to the number of
B0-positive roots α in R such that 0 < α(t) < 1.

– RH is the set of real roots of (HC, TM ′,C), and ϵRH (t′) is −1 to the number of
α ∈ RH such that 0 < α(t′) < 1 and such that α◦(jM∗)−1 ◦ iG∗(A,B)−1 ◦j ∈ X∗(TH)
is a BH -positive root.

– ΦG∗

M∗(·,ΘH
V∗) is defined analogously as ΦGM (·,Θ)eds in (4.6.10.1) and (4.6.10.2),

with the role of V played by V∗, and the role of Reds in (4.6.10.1) played by the root
system

RH,γ′ := {α ∈ RH | α(γ′) > 0} .
We analyze how the terms on the right hand side of (8.15.2.6) depend on (A,B).

We observe that ϵR(jM∗(γ′−1)) is independent of (A,B), while RH and RH,γ′ as above
depend only on A, not on B. To simplify notation we denote

Φ(γ′, A) := ΦG
∗

M∗(jM∗(γ′−1),ΘH
V∗).(8.15.2.7)

and

RA := RH , RA,γ′ := RH,γ′ .(8.15.2.8)

We claim that ϵRH (γ′−1) is independent of (A,B). Indeed, the roots α ∈ RH
such that α ◦ (jM∗)−1 ◦ iG∗(A,B)−1 ◦ j are BH -positive are exactly ϵi + ϵj and
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ϵi − ϵj where i < j and i, j simultaneously belong to one of A and Ac, to-
gether with ϵi for all i ∈ [r], together with certain characters of the direct factor
TM∗,GL ∩ GLt2 of TM∗ constituting a set independent of (A,B). Among them,
those satisfying 0 < α(γ′−1) < 1 are, by (8.15.2.2) (8.15.2.3) (8.15.2.4), exactly
ϵi + ϵj and ϵi − ϵj where i < j and i, j simultaneously belong to one of the four
sets {u ∈ A | u ≤ r′} , {u ∈ Ac | u ≤ r′} , {u ∈ A | u > r′} , {u ∈ Ac | u > r′}, together
with certain other roots constituting a set independent of (A,B). The total number
of ϵi + ϵj and ϵi − ϵj where i < j and i, j simultaneously belong to one of the four
sets as above is obviously even. Our claim follows.

In the rest of the proof, we write “Const.” for any quantity that is independent of
(A,B). By (8.15.2.5), (8.15.2.6), and the above analysis, we have

∑
φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ) = Const. sgn(σ)(−1)q(HR)Φ(γ′, A).
(8.15.2.9)

We now simplify sgn(σ) and (−1)q(HR). Define ω0(A) to be the sign of the element
σA ∈ Sr which sends {1, 2, · · · , |Ac|} increasingly toAc and sends {|Ac|+ 1, · · · , r} in-
creasingly to A. If we view σA as an element of Sm, then σ−1

A ◦σ−1 sends {1, · · · ,m−}
increasingly to

{1, · · · , |Ac|} ∪ {r + 2j − 1, r + 2j | j ∈ Bc} ∪
{
r + 2t+ 1, · · · , r + 2t+ n−} ,

and sends {m− + 1, · · · ,m} increasingly to

{|Ac|+ 1, · · · , r} ∪ {r + 2j − 1, r + 2j | j ∈ Bc} ∪
{
r + 2t+ n− + 1, · · · ,m

}
.

From this, one sees that the sign of σ−1
A ◦ σ−1 is (−1)|A|n− (since all n− elements of

{r + 2t+ 1, · · · , r + 2t+ n−} are greater than all |A| elements of {|Ac|+ 1, · · · , r}).
Hence we have

sgn(σ) = ω0(A)(−1)|A|n−
.(8.15.2.10)

As for (−1)q(HR), we compute

2q(HR) = m+(m+ + 1) +m−(m− + 1)
= (n+ +|A|+2 |B|)(n+ +|A|+2 |B|+1)+(n− +|Ac|+2 |Bc|)(n− +|Ac|+2 |Bc|+1),

and so

q(HR) ≡ Const.+(m+ 1)(|A|+ 2 |B|) ≡ Const.+(m+ 1) |A| mod 2.(8.15.2.11)

Plugging (8.15.2.10) and (8.15.2.11) into (8.15.2.9), we get∑
φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ) = Const. ω0(A)(−1)|A|(n−+m+1)Φ(γ′, A).
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Hence

Ri = Const.
∑
A,B

∇i(A)ϵp,∞(A,B)ω0(A)(−1)|A|(n−+m+1)Φ(γ′, A),(8.15.2.12)

Tj = Const.
∑
A,B

∇j(B)ϵp,∞(A,B)ω0(A)(−1)|A|(n−+m+1)Φ(γ′, A),(8.15.2.13)

S = Const.
∑
A,B

ϵp,∞(A,B)ω0(A)(−1)|A|(n−+m+1)Φ(γ′, A).(8.15.2.14)

We now compute ϵp,∞(A,B). Let (H, LH, s, η) be determined by (A,B). For each
place v, as explained in Remark 5.1.4, the choice of ϕVQv

: VQv⊗Qv
∼−→ V Qv⊗Qv and

the resulting pure inner twist (ψVQv
, uVQv

) allows us to pass between normalizations
of transfer factors between H and G and between H and G∗ at v. Hence we obtain
from (∆G

H)v a normalization (∆G∗

H )v of transfer factors between H and G∗ at v, and
then inherit from the latter a normalization (∆M∗

M ′ )A,Bv of transfer factors between M ′

and M∗ at v. For each finite v ̸= p, we have
(∆M∗

M ′ )A,Bv

(∆M∗
M ′ )∅,∅

v

= (∆Mv

M ′ )A,Bv

(∆Mv

M ′ )∅,∅
v

,

and so
ϵp,∞(A,B) =

∏
v ̸=p,∞

(∆M∗

M ′ )A,Bv

(∆M∗
M ′ )∅,∅

v

.

Recall that the normalizations (∆G
H)v for all places v satisfy the global product

formula. We claim that (∆M∗

M ′ )A,Bv for all v also satisfy the global product for-
mula, for which we provide an argument that also works in the even case. Recall
from Remarks 5.1.3 and 5.1.4 that for each v we have the freedom of changing
ϕVQv

: VQv ⊗Qv Qv
∼−→ V Qv ⊗Qv Qv by composing it with an element of G∗(Qv).

Also recall the compatibility condition (1) imposed in §5.3.3. Thus for the sake of
proving the claim, we may replace each ϕVQv

by the isomorphism V ⊗QQv
∼−→ V ⊗QQv

induced by the global ϕV : V ⊗QQ ∼−→ V Q⊗QQ. Then one sees that (∆G∗

H )v for all v
satisfy the global product formula, since the local cocycles uVQv

: ρ 7→ ρϕVQv
ϕ−1
VQv

come
from the global cocycle uV : ρ 7→ ρϕV ϕ

−1
V . Therefore the inherited normalizations

(∆M∗

M ′ )A,Bv also satisfy the global product formula.
By our claim, the product

∏
v(∆M∗

M ′ )A,Bv over all places v is independent of (A,B).
Hence

ϵp,∞(A,B) =
∏

v∈{p,∞}

(∆M∗

M ′ )∅,∅
v

(∆M∗
M ′ )A,Bv

.

Now VQp is quasi-split by our assumption that GQp is unramified (in particular split)
and by Proposition 1.2.8. Hence there exists g ∈ G∗(Qp) such that g ◦ϕVQp

is defined
over Qp. (Clearly we can find g′ ∈ O(V )(Qp) such that g′ ◦ ϕVQp

is defined over
Qp. We can then construct g by left multiplying g′ by any element of O(V )(Qp)
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of determinant −1, which exists.) It then follows that (∆M∗

M ′ )A,Bp is the canonical
unramified normalization associated to a hyperspecial subgroup of M∗(Qp) that is
independent of (A,B).(12) Hence (∆M∗

M ′ )A,Bp is independent of (A,B). We conclude
that

ϵp,∞(A,B) = (∆M∗

M ′ )∅,∅
∞

(∆M∗
M ′ )A,B∞

.

By the same argument as in the proof of Proposition 8.9.5 (see the “claim” in that
proof), the Whittaker normalization between M ′ and M∗ at ∞ is inherited from the
Whittaker normalization between H and G∗ at ∞. The former is independent of
(A,B). Hence ϵ(A,B) is up to a non-zero multiplicative constant equal to the ratio of
the Whittaker normalization between H and G∗ at ∞ to the normalization (∆G∗

H )∞.
This ratio is the same as the ratio of the Whittaker normalization between H and G
to (∆G

H)∞ = ∆j,BG,H , which is equal to

(−1)⌈m+/2⌉+1 = (−1)⌈n
++|A|+2|B|

2 ⌉+1

as shown in the proof of Proposition 8.9.5. When n+ is even, the above is equal to
Const.(−1)⌈|A|/2⌉+|B|. When n+ is odd, the above is equal to Const.(−1)⌊|A|/2⌋+|B|.
In both cases, taking into account the equality m = n+ + n− + r + 2t, we obtain:

ϵp,∞(A,B)(−1)|A|(n−+m+1) = Const.(−1)r|A|+⌊|A|/2⌋+|B|.

Plugging this into (8.15.2.12), (8.15.2.13), and (8.15.2.14), we obtain

Ri = Const.
∑
A,B

∇i(A)ω0(A)(−1)r|A|+⌊|A|/2⌋+|B|Φ(γ′, A),(8.15.2.15)

Tj = Const.
∑
A,B

∇j(B)ω0(A)(−1)r|A|+⌊|A|/2⌋+|B|Φ(γ′, A),(8.15.2.16)

S = Const.
∑
A,B

ω0(A)(−1)r|A|+⌊|A|/2⌋+|B|Φ(γ′, A),(8.15.2.17)

where A runs through subsets of [r] andB runs through subsets of [t]. We need to show
that the right hand sides are all zero. This we accomplish in the next proposition.

Proposition 8.15.3. — Assume rt > 0, or r ≥ 3, or t ≥ 2. The right hand sides
of (8.15.2.15) (8.15.2.16) (8.15.2.17) are all zero.

(12)In the current odd case, all hyperspecial subgroups of M∗(Qp) are conjugate under M∗(Qp), so
the canonical unramified normalizations associated to all hyperspecial subgroups are actually equal
to each other. This is no longer true in the even case. Nevertheless, the statement in the text remains
true in the even case, as long as there exists g ∈ G∗(Qp) such that g ◦ ϕVQp

is defined over Qp.
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Proof. — We first treat the case t ≥ 2, which is the easiest. In this case we have the
elementary combinatorial identities∑

B⊂[t]

(−1)|B| = 0(8.15.3.1)

and

∑
B⊂[t]

∇j(B)(−1)|B| =
t∑

k=0
(−1)k

[
# {B | |B| = k, j ∈ B} −# {B | |B| = k, j /∈ B}

](8.15.3.2)

=
t∑

k=0
(−1)k

[(
t− 1
k − 1

)
−
(
t− 1
k

)]

= −2
t−1∑
k=0

(−1)k
(
t− 1
k

)
= 0.

(Note that for t = 1, (8.15.3.1) still holds, but
∑
B ∇1(B)(−1)|B| = −2.) Hence we

have Ri = Tj = S = 0 in this case, and the proof is finished.
Before treating the other cases, we observe that

ω0(A)ω0(Ac) = (−1)|A||Ac|,

from which

ω0(A)(−1)r|A|+⌊|A|/2⌋ω0(Ac)(−1)r|Ac|+⌊|Ac|/2⌋ = (−1)⌈r/2⌉.(8.15.3.3)

Now suppose rt > 0 and r ∈ {1, 2}. Again (8.15.3.1) holds, so Ri = S = 0. To
show Tj = 0, observe that Φ(γ′, A) = Φ(γ′, Ac), so it suffices to show that (8.15.3.3)
is −1, which is indeed true for r = 1, 2.

Finally we treat the case r ≥ 3, which is the most complicated. We need a compu-
tation that is similar to [Mor11, pp. 1698-1699], applying the result of Herb [Her79].
In the following we will view γ′ and B as being fixed, and let A vary.

We have
AM ′ = AM∗ = Grm ×Gtm,

where the factor Grm is the canonical copy of Grm in M∗,GL = Grm×GLt2, and the factor
Gtm is the product of the centers of the t copies of GL2 in M∗,GL. Let ϵ1, · · · , ϵr ∈
X∗(Grm) be as in condition C satisfied by B0 in the proof of Theorem 8.15.2. Let
{α1, · · · , αt} be the standard basis of X∗(Gtm). Define

I+ := {i ∈ [r] | ϵi(γ′) > 0} , I− := [r]− I+,

A+ := A ∩ I+, A− := A ∩ I−,

Ac,+ := Ac ∩ I+, Ac,− := Ac ∩ I−.

By (8.15.2.2), we know that I+ = [r′].
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Let RA,γ′ = RH,γ′ be the real root system involved in the definition of Φ(γ′, A);
see (8.15.2.7) and (8.15.2.8). Then RA,γ′ is of type

B|A+| × B|Ac,+| × D|A−| × D|Ac,−| × A×t
1 ,(8.15.3.4)

where B|A+| consists of the roots

ϵi, ϵi ± ϵj , i, j ∈ A+, i ̸= j

and D|A−| consists of the roots

ϵi ± ϵj , i, j ∈ A−, i ̸= j,

and similarly for B|Ac,+| and D|Ac,−|. The part A×t
1 consists of the roots(13)

±2α1, · · · ,±2αt.

By (8.15.3.4), we see that the Weyl group of RA,γ′ contains −1 if and only if |A−|
and |Ac,−| (and a fortiori |I−|) are even, if and only if γ′ ∈ H(R)0. These conditions
are necessary for Φ(γ′, A) to be non-zero. Assume that these conditions are satisfied.
Then

Φ(γ′, A) =
∑
ω∈Ω

C(γ′, ω)nA(γ′, ωB0),

where Ω is the complex Weyl group of G∗, the coefficients C(γ′, ω) are independent
of A, and

nA(γ′, ωB0) := c̄RA,γ′ (x, ℘(ωλB0 + ωρB0)),
with notations explained below:

– x ∈ X∗(AM∗)R is characterized by the condition

jM∗(γ′−1) ∈ exp(x)TM∗(R)1 ⊂ TM∗(R),(8.15.3.5)

where TM∗(R)1 is the maximal compact subgroup of TM∗(R).
– ℘ : X∗(TM∗)R → X∗(AM∗)R is the natural restriction map.
– ρB0 is the half sum of the B0-positive (absolute) roots in X∗(TM∗), and λB0 ∈

X∗(TM∗) is the B0-highest weight of V∗.
– c̄RA,γ′ (·, ·) is the function associated to the root system RA,γ′ ⊂ X∗(AM∗)R as

in (4.2.4.1).
We note that

χ := ℘(ωλB0 + ωρB0) ∈ X∗(AM∗)R
is independent of A. In the following we will use only this property of χ.

Thus to show that Ri = Tj = S = 0, it suffices to show that the following quantities
are zero, where the summations are over A ⊂ [r] such that |A−| and |Ac,−| are both

(13)This follows from the following argument: Let ϵ1, ϵ2 denote the two standard characters on the
diagonal torus in GL2, and identify them with two characters on an elliptic maximal torus in GL2,R.
Then with respect to the real structure of the latter, ±(ϵ1 + ϵ2) are the only real characters among
ϵ1, ϵ2, ϵ1 ± ϵ2, −ϵ1 ± ϵ2.
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even:

Mi :=
∑
A

∇i(A)ω0(A)(−1)r|A|+⌊|A|/2⌋c̄RA,γ′ (x, χ), 1 ≤ i ≤ r(8.15.3.6)

N :=
∑
A

ω0(A)(−1)r|A|+⌊|A|/2⌋c̄RA,γ′ (x, χ).(8.15.3.7)

More precisely, the vanishing of Mi implies the vanishing of Ri, and the vanishing of
N implies the vanishing of Tj and S. We show the vanishing of Mi and N (for r ≥ 3)
in the next proposition.

Proposition 8.15.4. — Let x ∈ X∗(AM∗)R be characterized by the condition
(8.15.3.5), where γ′ ∈ TM ′(R) satisfies the conditions (8.15.2.2), (8.15.2.3), and
(8.15.2.4). Let χ ∈ X∗(AM∗)R be an element independent of A. When r ≥ 3, the
quantities Mi and N in (8.15.3.6) and (8.15.3.7) are zero.

8.15.5. — In the proof of Proposition 8.15.4 we need to apply Herb’s formula for
c̄RA,γ′ , which we now recall. We will follow the notation and definitions of [Mor11,
pp. 1698-1699]. Note that in loc. cit. root systems of types C and D are considered,
whereas we need to consider root systems of types B and D. Nevertheless the formulas
for type B and type C root systems are identical; see [Her79].

For a, b ∈ R, we define

c1(a) :=
{

1, if a > 0,
0, otherwise.

c2,B(a, b) :=
{

1, if 0 < a < b or 0 < −b < a,

0, otherwise.

c2,D(a, b) :=
{

1, if a > |b| ,
0, otherwise.

Our c2,B is equal c2,C in [Mor11].
Let I be a finite set. We will denote an unordered partition p of I by p =

{Iz | z ∈ Z}, where Z is the indexing set, and I =
∐
z∈Z Iz. Let P0

≤2(I) be the
set of unordered partitions {Iz | z ∈ Z} of I such that all Iz have cardinality 2 or 1
and at most one Iz has cardinality 1. If I is equipped with a total order ≤, we can
define a sign function

ϵ : P0
≤2(I) −→ {±1}(8.15.5.1)

as follows. Given p ∈ P0
≤2(I), we enumerate the elements of p as I1, · · · , Ik, and let

σ be the unique bijection I
∼−→ I satisfying the following conditions:

– For all i, j ∈ [k] with i < j, and for all s ∈ σ(Ii) and s′ ∈ σ(Ij), we have s < s′.
– If i ∈ [k] is such that |Ii| = 2, then σ is increasing on Ii.
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With respect to the total order on I, the permutation σ of I has a well-defined sign.
We define ϵ(p) to be that sign. This definition does not depend on the enumeration
of the elements of p.

For µ ∈ Rr and J a subset of [r] of cardinality 1 or 2, we make the following
definitions. If J = {s}, define

cJ,B(µ) := c1(µs).

If J = {s1, s2} with s1 < s2, define

cJ,B(µ) := c2,B(µs1 , µs2),
cJ,D(µ) := c2,D(µs1 , µs2).

Now for I ⊂ [r] and p = {Iz | z ∈ Z} ∈ P0
≤2(I), define

cB(p, µ) :=
∏
z∈Z

cIz,B(µ).

If in addition |I| is even, define

cD(p, µ) :=
∏
z∈Z

cIz,D(µ).

Let χ ∈ X∗(AM∗)R and let µ be its projection to X∗(Grm)R. We identify X∗(Grm)R
with Rr using the basis {ϵ1, · · · , ϵr} fixed in the proof of Theorem 8.15.2 (as opposed
to the standard basis), and view µ as an element of Rr. Let x be as in the statement
of the Proposition 8.15.4. Then Herb’s formula states that

(8.15.5.2) c̄RA,γ′ (x, χ) = Const.
∑

p+
1 ∈P0

≤2(A+)

∑
p−

1 ∈P0
≤2(A−)

∑
p+

2 ∈P0
≤2(Ac,+)

∑
p−

2 ∈P0
≤2(Ac,−)

ϵ(p+
1 )ϵ(p−

1 )ϵ(p+
2 )ϵ(p−

2 )cB(p+
1 , µ)cB(p+

2 , µ)cD(p−
1 , µ)cD(p−

2 , µ),

where Const. is independent of A.

Remark 8.15.6. — To compare (8.15.5.2) with the formula on p. 1699 of [Mor11],
note that the root system considered in loc. cit. is of type C|A−

1 | × C|A+
1 | × D|A−

2 | ×
D|A+

2 | ×A×t
1 , whereas our root system is B|A+|×B|Ac,+|×D|A−|×D|Ac,−|×A×t

1 . Our
γ′−1 plays the same role as γM in loc. cit..

Proof of Proposition 8.15.4. — We divide the proof into two cases according to the
parity of r .

The case where r ≥ 3 is odd.
Since |A−| and |Ac,−| must be even, we know that |A+| and |Ac,+| must have

different parity. In particular I+ has odd cardinality. Write |I+| = 2k−1 with k ≥ 1,
and write |I−| = 2l with l ≥ 0.

For p+
1 ∈ P0

≤2(A+) and p+
2 ∈ P0

≤2(Ac,+), we have p+ := p+
1 ∪ p

+
2 ∈ P0

≤2(I+). Also
for p−

1 ∈ P0
≤2(A−) and p−

2 ∈ P0
≤2(Ac,−), we have p− := p−

1 ∪ p
−
2 ∈ P0

≤2(I−). We also
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have
ω0(A)ϵ(p+

1 )ϵ(p−
1 )ϵ(p+

2 )ϵ(p−
2 ) = ϵ(p+)ϵ(p−).

In this way we have “encoded” the quadruple (p+
1 , p

+
2 , p

−
1 , p

−
2 ) and the left hand side

of the above equality into (p+, p−).
Conversely, we explain how to recover (p+

1 , p
+
2 ) from p+ with extra data, and recover

(p−
1 , p

−
2 ) from p− with extra data. Given p+ ∈ P0

≤2(I+), write p+ = p+(2) ⊔ p+(1),
where p+(2) consists of the cardinality-2 members of p+ and p+(1) consists of the
singleton member of p+. (Note that |p+(2)| = k − 1 and |p+(1)| = 1.) To recover
(p+

1 , p
+
2 ) is the same as to recover the subset A+ of I+. For that it suffices to specify a

subset U of p+(2) and a subset V of p+(1) such that A+ =
⋃
I∈U∪V I. Thus we have

established a bijection from the set of (A+, p+
1 , p

+
2 ) to the set of (p+, U, V ). Under

this bijection, we have |A+| = 2 |U | + |V |. For a fixed i ∈ I+, we can also encode
the function A+ 7→ ∇i(A+) into a function in the variables p+, U , and V as follows.
Define

∇i(p+, U, V ) :=
{

1, if i ∈ I for some I ∈ U ∪ V,
−1, otherwise.

Then we have ∇i(A+) = ∇i(p+, U, V ) if (A+, p+
1 , p

+
2 ) corresponds to (p+, U, V ) as

above.
Similarly, given p− ∈ P0

≤2(I−), to recover (p−
1 , p

−
2 ) or equivalently A−, it suffices to

specify a subset W of p− such that A− =
⋃
I∈W I. This again establishes a bijection

from the set of (A−, p−
1 , p

−
2 ) to the set of (p−,W ). We have |A−| = 2 |W | . For a fixed

i ∈ I−, define

∇i(p−,W ) :=
{

1, if i ∈ I for some I ∈W,
−1, otherwise.

Then we have ∇i(A−) = ∇i(p−,W ).
In conclusion, we may change the summation index (p+

1 , p
−
1 , p

+
2 , p

−
2 ) in (8.15.5.2)

into the new summation index (p+, p−, U, V,W ), and obtain

N = Const.
∑

p+∈P0
≤2(I+)

∑
p−∈P0

≤2(I−)

ϵ(p+)ϵ(p−)cB(p+, µ)cD(p−, µ)

·
∑

U⊂p+(2),V⊂p+(1),W⊂p−

(−1)r(2|U |+|V |+2|W |)+⌊(2|U |+|V |+2|W |)/2⌋

= Const.
∑

U⊂[k−1],V⊂[1],W⊂[l]

(−1)|U |+|V |+|W |,
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and for i ∈ [r]

Mi = Const.
∑

p+∈P0
≤2(I+)

∑
p−∈P0

≤2(I−)

ϵ(p+)ϵ(p−)cB(p+, µ)cD(p−, µ)

·
∑

U⊂p+(2),V⊂p+(1),W⊂p−

(−1)|U |+|V |+|W |∇i(p+, p−, U, V,W ),

where

∇i(p+, p−, U, V,W ) :=
{
∇i(p+, U, V ), if i ∈ I+,

∇i(p−,W ), if i ∈ I−.

Note that ∑
V⊂[1]

(−1)|V | = 0.(8.15.6.1)

Hence N = 0 as desired. To show Mi = 0, it suffices to prove that for each fixed
p+ ∈ P0

≤2(I+) and p− ∈ P0
≤2(I−), the quantity

L :=
∑

U⊂p+(2),V⊂p+(1),W⊂p−

(−1)|U |+|V |+|W |∇i(p+, p−, U, V,W )

is zero. By definition, depending on the relative position of (p+, p−, i), the term
∇i(p+, p−, U, V,W ) is either independent of V , or independent of (U,W ). In the first
case, we know L = 0 because of (8.15.6.1). In the second case, unless k = 1 and l = 0,
we have either ∑

U⊂p+(2)

(−1)|U | =
∑

U⊂[k−1]

(−1)|U | = 0

or ∑
W⊂p−

(−1)|W | =
∑
W⊂[l]

(−1)|W | = 0,

and therefore L = 0. But if k = 1 and l = 0, then r = |I+|+ |I−| = 2k− 1 + 2l = 1, a
contradiction. Thus L = 0 as desired. The proof of the proposition for odd r ≥ 3 is
complete.

The case where r ≥ 3 is even.
Now |I+| and |I−| are both even. Write |I+| = 2k and |I−| = 2l, with k, l ≥ 0 and

k + l = r/2 ≥ 2.
We need some combinatorial preparations. For a finite set I of even cardinality,

we define P ′(I) to be the set of unordered partitions p = {Iz | z ∈ Z} of I equipped
with a marked element of p such that exactly two members of p are singletons, all the
other members of p have cardinality 2, and the marked element of p is one of the two
singleton members. When I is equipped with a total order ≤, we define a map

ϵ : P ′(I) −→ {±1}
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as follows. Given p ∈ P ′(I), we can merge the two singletons in p into a cardinality-2
set and obtain an element p0 ∈ P0

≤2(I). Then we define ϵ(p) to be ϵ(p0) if the marked
singleton in p is greater than the other singleton in p, and define ϵ(p) to be −ϵ(p0)
otherwise. Here ϵ(p0) is as in (8.15.5.1). If I is a subset of [r] and p ∈ P ′(I), we define

cB(p, µ) :=
∏
z∈Z

cIz (µ),

where {Iz | z ∈ Z} is the partition of I underlying p.
We now seek to change the summation index in (8.15.5.2) in a similar manner as

in the previous case with odd r. If |A+| is odd then so is |Ac,+|. In this case k ≥ 1,
and from each p+

1 ∈ P0
≤2(A+) and p+

2 ∈ P0
≤2(Ac,+), we obtain an element p+ :=

p+
1 ∪p

+
2 ∈ P ′(I+), where the marked singleton in p+ is defined to be the singleton in p+

1 .
Conversely, suppose k ≥ 1 and suppose p+ ∈ P ′(I+). Write p+ = p+(2)⊔

{
Iup+ , Imp+

}
,

where p+(2) consists of the cardinality-2 members of p+, and we denote by Iup+ and
Imp+ the unmarked and marked singleton members of p+ respectively. (Note that
|p+(2)| = k− 1.) Then we can recover A+ from p+ together with a subset U of p+(2)
such that A+ =

⋃
I∈U I ∪ Imp+ . We have |A+| = 2 |U |+ 1. For i ∈ I+, define

∇i(p+, U) :=
{

1, if i ∈ I for some I ∈ U or i ∈ Imp+ ,

−1, otherwise.

Then we have ∇i(A+) = ∇i(p+, U).
If |A+| is even, then so is |Ac,+|. From each p+

1 ∈ P0
≤2(A+) and p+

2 ∈ P0
≤2(Ac,+),

we obtain p+ := p+
1 ∪ p

+
2 ∈ P0

≤2(I+). Conversely, given p+ ∈ P0
≤2(I+), to recover A+

it suffices to specify a subset U of p+ such that A+ =
⋃
I∈U I. We have |A+| = 2 |U |.

For i ∈ I+, define

∇i(p+, U) :=
{

1, if i ∈ I for some I ∈ U,
−1, otherwise.

Then ∇i(A+) = ∇i(p+, U).
Similarly, since |A−| and |Ac,−| are always even, from p−

1 ∈ P0
≤2(A−) and p−

2 ∈
P0

≤2(Ac,−) we obtain an element p− := p−
1 ∪ p

−
2 ∈ P0

≤2(I−), and conversely, given
p− ∈ P0

≤2(I−), to recover A− it suffices to specify a subset W of p− such that
A− =

⋃
I∈W I. We have |A−| = 2 |W |. For i ∈ I−, define

∇i(p−,W ) :=
{

1, if i ∈ I for some I ∈W,
−1, otherwise.

Then we have ∇i(A−) = ∇i(p−,W ).
For both parities of |A+|, we have

ω0(A)ϵ(p+
1 )ϵ(p+

2 )ϵ(p−
1 )ϵ(p−

2 ) = ϵ(p+)ϵ(p−).
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We now split

N =
∑

A⊂[r],|A−| even

ω0(A)(−1)r|A|+⌊|A|/2⌋c̄RA,γ′ (x, χ)

as N = N(1) + N(2), where N(1) (resp. N(2)) is the sum of the terms indexed by A

such that |A+| is odd (resp. even). Similarly, for i ∈ [r], we split

Mi =
∑

A⊂[r],|A−| even

∇i(A)ω0(A)(−1)r|A|+⌊|A|/2⌋c̄RA,γ′ (x, χ)

as Mi = Mi,(1) +Mi,(2). We shall prove that N(1) = N(2) = Mi,(1) = Mi,(2) = 0. Note
that when dealing with N(1) and Mi,(1) we may assume that k ≥ 1, since otherwise
they are obviously zero.

The above discussion shows that

N(1) = Const.
∑

p+∈P′(I+)

∑
p−∈P0

≤2(I−)

ϵ(p+)ϵ(p−)cB(p+, µ)cD(p−, µ)

·
∑

U⊂p+(2),W⊂p−

(−1)r(2|U |+1+2|W |)+⌊(2|U |+1+2|W |)/2⌋

= Const.
∑

U⊂[k−1],W⊂[l]

(−1)|U |+|W |.

This is zero because by k + l ≥ 2 we have either l ≥ 1 or k − 1 ≥ 1. Also,

N(2) = Const.
∑

p+∈P0
≤2(I+)

∑
p−∈P0

≤2(I−)

ϵ(p+)ϵ(p−)cB(p+, µ)cD(p−, µ)

·
∑

U⊂p+,W⊂p−

(−1)r(2|U |+2|W |)+⌊(2|U |+2|W |)/2⌋

= Const.
∑

U⊂[k],W⊂[l]

(−1)|U |+|W |,

which is zero because kl > 0.
Similarly, we have

(8.15.6.2) Mi,(1) = Const.
∑

p+∈P′(I+)

∑
p−∈P0

≤2(I−)

ϵ(p+)ϵ(p−)cB(p+, µ)cD(p−, µ)

·
∑

U⊂p+(2),W⊂p−

(−1)|U |+|W |∇i(p+, p−, U,W ),

and

(8.15.6.3) Mi,(2) = Const.
∑

p+∈P0
≤2(I+)

∑
p−∈P0

≤2(I−)

ϵ(p+)ϵ(p−)cB(p+, µ)cD(p−, µ)

·
∑

U⊂p+,W⊂p−

(−1)|U |+|W |∇i(p+, p−, U,W ),
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where

∇i(p+, p−, U,W ) :=
{
∇i(p+, U), if i ∈ I+,

∇i(p−,W ), if i ∈ I−.

(Here the formula for Mi,(1) presupposes that k ≥ 1; otherwise we already know that
Mi,(1) = 0.) In the rest of the proof we show that Mi,(1) = Mi,(2) = 0. We introduce
two auxiliary definitions. For q+ ∈ P ′(I+), p+ ∈ P0

≤2(I+), p− ∈ P0
≤2(I−), let

Li,(1)(q+, p−) :=
∑

U⊂q+(2),W⊂p−

(−1)|U |+|W |∇i(q+, p−, U,W ),

Li,(2)(p+, p−) :=
∑

U⊂p+,W⊂p−

(−1)|U |+|W |∇i(p+, p−, U,W ).

We first show that Mi,(1) = 0. We may assume that k ≥ 1. If i ∈ I−, then the
function P ′(I+) × P0

≤2(I−) ∋ (p+, p−) 7→ Li,(1)(p+, p−) is constant with respect to
the variable p+ . Hence by (8.15.6.2) we have

Mi,(1) = Const.
∑

p+∈P′(I+)

ϵ(p+)cB(p+, µ).

This is zero because on P ′(I+) we have a non-trivial involution p+ 7→ p+ where p+

has the same underlying partition as p+ but has different marked singleton, and this
involution satisfies ϵ(p+) = −ϵ(p+), cB(p+, µ) = cB(p+, µ).

It remains to treat the case where i ∈ I+. Let p+ ∈ P ′(I+). If one of the singletons
in p+ contains i, then for arbitrary p− ∈ P0

≤2(I−), Li,(1)(p+, p−) is equal to a certain
number times ∑

U⊂[k−1],W⊂[l]

(−1)|U |+|W |,

which is zero since either k − 1 ≥ 1 or l ≥ 1. Thus the contribution of such p+ to
(8.15.6.2) is zero. If one of the cardinality-2 members of p+ contains i, then so does
one of the cardinality-2 members of p+. For such a pair

{
p+, p+

}
, the contribution

of p+ to (8.15.6.2) is equal to the negative of the contribution of p+, since for any
fixed p− ∈ P0

≤2(I−) we have Li,(1)(p+, p−) = Li,(1)(p+, p−), and as before we have
ϵ(p+) = −ϵ(p+), cB(p+, µ) = cB(p+, µ). We have completed the proof that Mi,(1) = 0.

We now show thatMi,(2) = 0. By (8.15.6.3), it suffices to show that Li,(2)(p+, p−) =
0 for all p+ ∈ P0

≤2(I+), p− ∈ P0
≤2(I−). To show this, by symmetry we may assume

without loss of generality that s ∈ I−. Enumerate the elements of p− as I1, · · · , Il
such that i ∈ I1. Using this enumeration we identify the sets p− and [l]. (Here l ≥ 1.)
Then ∇i(p+, p−, U,W ) = ∇1(W ) for all W ⊂ p− = [l]. Hence

Li,(2)(p+, p−) =
∑

U⊂p+,W⊂[l]

(−1)|U |+|W |∇1(W ) =
∑

U⊂[k],W⊂[l]

(−1)|U |+|W |∇1(W ).
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If k > 0, then Li,(2)(p+, p−) = 0 because
∑
U⊂[k](−1)|U | = 0. If k = 0, then l ≥ 2, and

we have
∑
W⊂[l](−1)|W |∇1(W ) = 0 as in (8.15.3.2), from which Li,(2)(p+, p−) = 0.

The proof of the proposition for even r ≥ 3 is complete.

8.16. A vanishing result, even case

8.16.1. — Assume we are in the even case. We are to state and prove the analogue
of Theorem 8.15.2. We only point out some new features in the even case, without
repeating most of the identical steps.

As in §8.15.1, we consider a Levi subgroup M∗ of G∗ of the form Grm ×
GLt2×SO(W ). Without loss of generality, we may and shall assume that SO(W ) is
not the split SO2 over Q, since in that case we can “absorb” it into the factor Grm (or
more precisely, we can replace W⊥ by the whole V , and extend the hyperbolic basis
BW⊥ to a hyperbolic basis of V , after which we obtain the same Levi subgroup M∗

but presented in the form M∗ = M∗,GL = Gr+1
m ×GLt2). In the current even case we

impose the assumption that M∗ is cuspidal. This is equivalent to SO(W )R having
anisotropic maximal tori (since SO(W ) is not the split SO2 over Q), and equivalent
to r being even.

Define ĖG∗(M∗) in the same way as in §8.15.1. As in §8.15.1, for each eA,B,p =
eA,B,d+,δ+,d−,δ− = (M ′, LM ′, sM∗ , ηM∗) ∈ ĖG∗(M∗), we let

(H, LH, s, η) := ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ−

(viewed as an elliptic endoscopic datum for G), fix an embedding M ′ ↪→ H as in
§5.5.9, and define STHM ′(fH) as in Definition 8.3.3. Then as in (8.15.1.1), we define

(8.16.1.1)
Tr′
M∗ := (nG

∗

M∗)−1
∑

e=(M ′,LM ′,sM∗ ,ηM∗ )
∈ĖG∗ (M∗)

|OutG∗(e)|−1
τ(G)τ(H)−1STHM ′(fH).

In the odd case, since GQp is unramified, it is split, and this already implies that
the quadratic space (V, q) is (quasi)-split over Qp (see Proposition 1.2.8). In the even
case, it no longer follows from the unramifiedness of GQp that (V, q) is quasi-split over
Qp. However, we shall impose this as a hypothesis(14) in the following theorem. By
Proposition 1.2.8, given the unramifiedness of GQp , in order for (V, q) to be quasi-split
over Qp it is sufficient and necessary that the Hasse invariant of (V, q) at p is trivial.

Theorem 8.16.2. — Keep the assumptions on M∗ in §8.16.1, and assume that M∗

does not transfer to G. Assume that the quadratic space (V, q) is quasi-split over Qp.
Then Tr′

M∗ = 0.

(14)This is equivalent to asking that GQp as a pure inner form of G∗
Qp is trivial.
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Proof. — The proof is similar to the proof of Theorem 8.15.2. We follow most of the
notations introduced in the proofs of Theorem 8.15.2 and Propositions 8.15.3, 8.15.4.

Recall that r is even. By hypothesis at least one of the following conditions holds:

rt > 0 or r ≥ 4 or t ≥ 2.

As in the proof of Theorem 8.15.2 we reduce the current proof to showing the vanishing
of

Ri :=
∑
A,B

∇i(A)ϵp,∞(A,B)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ), 1 ≤ i ≤ r,

Tj :=
∑
A,B

∇j(B)ϵp,∞(A,B)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ), 1 ≤ j ≤ t,

S :=
∑
A,B

ϵp,∞(A,B)
∑

φH∈ΦH(φV∗ )

det(ω∗(φH))ΦHM ′(γ′−1,ΘφH ),

for an arbitrary element e = (M ′, LM ′, s′
M∗ , ηM∗) ∈ Ė (M∗)c,ur. Here Ė (M∗)c,ur is

defined in the beginning of the proof of Theorem 8.15.2, and in its definition we do
impose that its elements (M ′, LM ′, s′

M∗ , ηM∗) should be such that M ′ is cuspidal
(which was automatic in the odd case). In all the above summations, B runs through
all subsets of [t], while A only runs through even-cardinality subsets of [r], because
otherwise the resulting group H will not be cuspidal. On the other hand, indeed all
choices of (A,B) with A having even cardinality will contribute, in the sense that if we
write e = ed+,δ+,d−,δ−(M∗), then the usual formula ed++2|A|+4|B|,δ+,d−+2|Ac|+4|Bc|,δ−

as in §8.16.1 defines an elliptic endoscopic datum (H, LH, s, η) for G. In other words,
neither of (d+ + 2 |A| + 4 |B| , δ+) and (d− + 2 |Ac| + 4 |Bc| , δ−) is equal to (2, 1) ∈
Z≥0× (Q×/Q×,2). To see this, we recall that MSO is assumed not to be the split SO2
over Q, so neither of (d±, δ±) is (2, 1). Then since |A| and |Ac| are even it is clear
that neither of (d+ + 2 |A|+ 4 |B| , δ+) and (d− + 2 |Ac|+ 4 |Bc| , δ−) is (2, 1).

Since we are in the even case, when choosing B0 as in the proof of Theorem 8.15.2,
by making a different choice we can only replace an even number of the τ ’s by their
inverses. This means that in condition C, we may not be able to arrange (8.15.2.4).
Nevertheless, it is easy to see that we can always arrange either of the following two
conditions:

– The original condition C.
– The modification of condition C where (8.15.2.2) and (8.15.2.3) are still in force,

and (8.15.2.4) is replaced by the following condition:∣∣ϵi(γ′−1)
∣∣ < 1 for all i < r, and 1 <

∣∣ϵr(γ′−1)
∣∣ < min

r′<i<r

∣∣ϵi(γ′−1)
∣∣−1

.

In either case, it is still true that ϵRH (γ′−1) is independent of (A,B). Moreover,
(8.15.2.10) still holds, and it reads sgn(σ) = ω0(A) since |A| is even. Instead of
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(8.15.2.11) we have q(HR) ≡ 0 mod 2 by the cuspidality of H. Hence

Ri = Const.
∑
A,B

∇i(A)ϵp,∞(A,B)ω0(A)Φ(γ′, A),

Tj = Const.
∑
A,B

∇j(B)ϵp,∞(A,B)ω0(A)Φ(γ′, A),

S = Const.
∑
A,B

ϵp,∞(A,B)ω0(A)Φ(γ′, A).

To compute ϵp,∞(A,B), in the proof of Theorem 8.15.2 we used the fact that the
quadratic space VQp is quasi-split. This is now an assumption in the current theorem.
When we showed that the Whittaker normalization between M ′ and M∗ at ∞ is
inherited from the Whittaker normalization between H and G∗ at∞ in the even case
in the proof of Proposition 8.9.5, we used that m− ≡ n− mod 2. This is indeed
true here since m− = n− + |Ac| + 2 |Bc| and we know that |Ac| = r − |A| is even.
Thus by the same argument as in the proof of Theorem 8.15.2, ϵp,∞(A,B) is up to a
multiplicative constant equal to the ratio of the Whittaker normalization between H
and G at ∞ to the normalization ∆j,BG,H . This ratio is equal to

(−1)⌊m−/2⌋ = (−1)⌊n
−+|Ac|+2|Bc|

2 ⌋

as shown in the proof of Proposition 8.9.5. Hence

ϵp,∞(A,B) = Const.(−1)|B|+|A|/2,

and we have

Ri = Const.
∑
A,B

∇i(A)(−1)|B|+|A|/2ω0(A)Φ(γ′, A),

Tj = Const.
∑
A,B

∇j(B)(−1)|B|+|A|/2ω0(A)Φ(γ′, A),

S = Const.
∑
A,B

(−1)|B|+|A|/2ω0(A)Φ(γ′, A).

Since |A| is even, we have ω0(A) = ω0(Ac). In particular,

ω0(A)(−1)|A|/2ω0(Ac)(−1)|Ac|/2 = (−1)r/2.(8.16.2.1)

We now start to show the vanishing of Ri, Tj , S. As in the proof of Proposition
8.15.3, the case where t ≥ 2 is the easiest. In this case we have∑

B

(−1)|B| =
∑
B

∇j(B)(−1)|B| = 0,

so Ri = Tj = S = 0. Now consider the case where t = 1 and r = 2. Then Ri = S = 0
because

∑
B(−1)|B| = 0. To show Tj = 0, we use the fact that (8.16.2.1) is equal to

−1 and Φ(γ′, A) = Φ(γ′, Ac).
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Finally we treat the case where r ≥ 4. The corresponding discussion in §8.15 for
r ≥ 3 needs almost no change to be carried over here. The only differences are:

– All the sets I+, I−, A+, Ac,+, A−, Ac,− have to have even cardinality in the
present case.

– The root system RA,γ′ in the present case is of type D|A+| × D|Ac,+| × D|A−| ×
D|Ac,−|.

– Herb’s formula reads

(8.16.2.2) c̄RA,γ′ (x, χ) = Const.
∑

p+
1 ∈P0

≤2(A+)

∑
p−

1 ∈P0
≤2(A−)

∑
p+

2 ∈P0
≤2(Ac,+)

∑
p−

2 ∈P0
≤2(Ac,−)

ϵ(p+
1 )ϵ(p−

1 )ϵ(p+
2 )ϵ(p−

2 )cD(p+
1 , µ)cD(p+

2 , µ)cD(p−
1 , µ)cD(p−

2 , µ).

As in the proof of Proposition 8.15.3, define

Mi :=
∑
A

∇i(A)ω0(A)(−1)|A|/2c̄RA,γ′ (x, χ),

N :=
∑
A

ω0(A)(−1)|A|/2c̄RA,γ′ (x, χ),

where A runs through subsets of [r] such that |A±| and |Ac,±| are all even. Then the
desired vanishing of Ri, Tj , S reduces to the vanishing of Mi and N , which we now
show.

Write k = |I+| /2, l = |I−| /2. (They are both integers.) For i ∈ I+, p+ ∈ P0
≤2(I+),

and U ⊂ p+, define

∇i(p+, U) :=
{

1, if i ∈ I for some I ∈ U,
−1, otherwise.

.

Similarly, for i ∈ I−, p− ∈ P0
≤2(I−), and W ⊂ p−, we define ∇i(p−,W ).

Herb’s formula (8.16.2.2) together with a similar argument as in the proof of Propo-
sition 8.15.4 implies that

N =
∑

p+∈P0
≤2(I+)

∑
p−∈P0

≤2(I−)

ϵ(p+)ϵ(p−)cD(p+, µ)cD(p−, µ)
∑

U⊂p+,W⊂p−

(−1)|U |+|W |

= Const.
∑

U⊂[k],W⊂[l]

(−1)|U |+|W |,

and for i ∈ [r]

Mi =
∑

p+∈P0
≤2(I+)

∑
p−∈P0

≤2(I−)

ϵ(p+)ϵ(p−)cD(p+, µ)cD(p−, µ)

·
∑

U⊂p+,W⊂p−

(−1)|U |+|W |∇i(p+, p−, U,W ),
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where

∇i(p+, p−, U,W ) :=
{
∇i(p+, U), if i ∈ I+,

∇i(p−,W ), if i ∈ I−.

Since lk ̸= 0, we have N = 0. We now show Mi = 0. Fix p+ ∈ P0
≤2(I+), p− ∈

P0
≤2(I−). It suffices to show that

L :=
∑

U⊂p+,W⊂p−

∇i(p+, p−, U,W )(−1)|U |+|W |

is zero. By symmetry we may assume that i ∈ I−. After fixing an enumeration of
the elements of p− such that the first element contains i, we get

L =
∑

U⊂[k],W⊂[l]

∇1(W )(−1)|U |+|W |.

If k ≥ 1, then L = 0 because
∑
U⊂[k](−1)|U | = 0. If k = 0, then l = r/2 ≥ 2,

and L = 0 because
∑
W⊂[l]∇1(W )(−1)|W | = 0 as in (8.15.3.2). This concludes the

proof.

8.17. The main identity

8.17.1. — Keep the notation and setting in §1.8.3 and Theorem 1.8.4. Fix a prime
p /∈ Σ(O(V ),V, λ,K, f∞). In the even case, assume that the quadratic space (V, q) is
quasi-split over Qp, or equivalently, that its Hasse invariant at p is trivial (cf. §8.16.1).
Let fp,∞ and dgp,∞ be as in §1.8.3. Fix a set Ė (G) of representatives of the isomor-
phism classes in E (G) such that each element of Ė (G) is of the form ep for some
p = (d+, δ+, d−, δ−) ∈ PV with d+ ≥ 2 (cf. §8.4.1). As in §8.4.1, assume that V
is absolutely irreducible. Then for each ep = (H, LH, s, η) ∈ Ė (G), we have a test
function fH ∈ C∞

c (H(A)) fixed in §8.4.

Corollary 8.17.2. — For a ∈ Z≥1 large enough, we have

TrM1(fp,∞dgp,∞,K, a) + TrM2(fp,∞dgp,∞,K, a) + TrM12(fp,∞dgp,∞,K, a) =∑
(H,LH,s,η)∈Ė (G)

ι(G,H)[STH(fH)− STHe (fH)].

Here ι(G,H) := τ(G)τ(H)−1
∣∣Out(H, LH, s, η)

∣∣−1, and STHe (fH) := STHH (fH) as
defined in §8.3.

Proof. — The right hand side of the desired identity is by definition∑
(H,LH,s,η)∈Ė (G)

∣∣Out(H, LH, s, η)
∣∣−1∑

L

(nHL )−1τ(G)τ(H)−1STHL (fH),

where L runs through a set of representatives of the H(Q)-conjugacy classes of proper
Levi subgroups of H (cf. §8.3). By an observation of Kottwitz which can be verified
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directly in our case (see also [Mor10b, Lem. 2.4.2]), the above is equal to∑
M∈{M1,M2,M12}

Tr′
M +

∑
M∗

Tr′
M∗ ,

where
– For each M ∈ {M1,M2,M12}, the term Tr′

M is as in §8.5.1.
– The second sum is over cuspidal Levi subgroups M∗ of G∗ of the form consid-

ered in §8.15.1 and §8.16.1 in such a way that each conjugacy class of cuspidal Levi
subgroups of G∗ that does not transfer to G is represented exactly once, and that no
other conjugacy classes show up.(15)

– For each M∗, the term Tr′
M∗ is as in (8.15.1.1) and (8.16.1.1).

The corollary then follows from Theorems 8.5.2, 8.15.2, 8.16.2.

Remark 8.17.3. — In Corollary 8.17.2 we defined STHe (fH) to be STHH (fH), where
STHH is defined only when the test function at the archimedean place is stable cuspidal
(see §8.3). On the other hand, STHe has a more general definition, namely it is the
elliptic part of the stable trace formula for H as in [Kot86]. Of course it is expected
(and proved in Kottwitz’s unpublished notes) that these two definitions agree when
the test function at the archimedean place is stable cuspidal. For our particular
fH∞, this compatibility is essentially proved in [Kot90, §7]. In fact, if we substitute
the archimedean stable orbital integrals in the general definition of STHe (fH) by the
formula [Kot90, (7.4)], then we obtain precisely STHH (fH).

The following is a special case of the main result of [KSZ].

Theorem 8.17.4. — Keep the setting of §8.17.1. For a ∈ Z≥1 large enough, we
have

Tr(Frobap ×f∞dg∞ | H∗
c(ShK ,V)) =

∑
(H,LH,s,η)∈Ė (G)

ι(G,H)STHe (fH).

Corollary 8.17.5. — For a ∈ Z≥1 large enough, we have

Tr(Frobap ×f∞dg∞ | IH∗(ShK ,V)) =
∑

(H,LH,s,η)∈Ė (G)

ι(G,H)STH(fH).(8.17.5.1)

Proof. — This follows from Theorem 1.8.4, Corollary 8.17.2, and Theorem 8.17.4.

(15)Note that in general G∗ has Levi subgroups which have direct factors GLj with j ≥ 3. These
Levi subgroups are not conjugate to the ones considered in §8.15.1 and §8.16.1, but none of them are
cuspidal. On the other hand, every cuspidal Levi subgroup of G∗ is conjugate to the ones considered
in §8.15.1 and §8.16.1.
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Remark 8.17.6. — The right hand side of (8.17.5.1) is a priori a number in C.
However, as we have seen in Theorem 1.8.4, the left hand side is in fact a number in
E, the number field over which V is defined.



CHAPTER 9

APPLICATION: SPECTRAL EXPANSION AND
HASSE–WEIL ZETA FUNCTIONS

9.1. Introductory remarks

9.1.1. — In [Kot90, Part II], Kottwitz explained how the formula in Corollary
8.17.5 would imply a description of

∑
i(−1)i IHi(ShK ,V) in the Grothendieck group

of H(G(Af ) � K)Q × ΓQ-modules over Qℓ. More precisely, the Grothendieck group
is taken with respect to the category of H(G(Af ) � K)Q ⊗Q Qℓ-modules which are
finite-dimensional over Qℓ and are equipped with a continuous (with respect to the
ℓ-adic topology) ΓQ-action that commutes with H(G(Af ) �K)Q⊗QQℓ. This descrip-
tion is in terms of the conjectural parametrization of automorphic representations by
Arthur parameters. The main hypotheses assumed by Kottwitz are the following (see
[Kot90, §8]):

(1) Arthur’s conjectural parametrization and multiplicity formula for automorphic
representations.

(2) The closely related conjectural spectral expansion of the stable trace formula
in terms of Arthur parameters.

Recent developments have seen the proof of variations of these hypotheses in spe-
cific instances. For the groups that are relevant to this paper, Arthur [Art13] has
established (1) and (2) for quasi-split special orthogonal groups over number fields,
and Täıbi [Täı19] has generalized (1) to some inner forms of these groups (and under
a regular algebraic assumption). Among the inputs to Täıbi’s work are the theory of
rigid inner forms established by Kaletha [Kal16, Kal18] and results of Arancibia–
Moeglin–Renard [AMR18] on archimedean Arthur packets. (For the special orthog-
onal groups of interest to us, only the special case of Kaletha’s theory, namely that
of pure inner forms, is needed.) We mention that Arthur’s work [Art13] depends
on the stabilization of the twisted trace formula as a hypothesis, and the latter has
been established by Moeglin–Waldspurger [MW17].(1) It is thus possible to combine

(1)However, see footnote 3 on p. 3.
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Corollary 8.17.5 with the results from [Art13] and [Täı19] to obtain an unconditional
description of IH∗(ShK ,V) in certain special cases. In the following we carry this out,
for the special cases described in Lemma 9.4.2.

In the sequel, we shall assume the following hypothesis.

Hypothesis 9.1.2. — Let H be a quasi-split reductive group over Q. For test func-
tions f on H(A) which are stable cuspidal at infinity, we have STH(f) = SH(f).
Here STH(f) denotes Kottwitz’s simplified geometric side of the stable trace formula
(see §8.3), and SH(f) denotes Arthur’s stable trace formula [Art02, Art01, Art03].

This hypothesis essentially follows from Kottwitz’s stabilization of the trace formula
with stable cuspidal test functions at infinity in his unpublished notes. Recently an
alternative proof has been given by Z. Peng [Pen19]. Let us make some comments
on the former. Firstly we state and prove two lemmas that are well known and
independent of Hypothesis 9.1.2.

Lemma 9.1.3. — Let H be a semi-simple (for simplicity) reductive group over R.
Assume that H is cuspidal (Definition 1.1.6). Let f : H(R)→ C be a stable cuspidal
function (see [Art89, §4], [Mor10b, 5.4]). The following statements hold.

(1) The function f is equal to a finite linear combination
∑
φ cφfφ, cφ ∈ C, where

φ runs through the discrete Langlands parameters for H and each fφ is a stable
pseudo-coefficient for the L-packet of φ as in (8.4.3.1).

(2) Let (H ′,H′, s, η : H′ → LH) be an elliptic endoscopic datum for H. For
simplicity assume H′ = LH ′. Then a Langlands–Shelstad transfer of fφ as in (1) to
H ′ can be taken to be a stable cuspidal function on H ′(R) that is supported on those
discrete Langlands parameters φ′ for H ′ such that η ◦ φ′ is equivalent to φ.

Proof. — (1) is a formal consequence of the definitions. In fact, by the definition
of being stable cuspidal, we know there exists a function f ′ of the desired form∑k
i=1 cifφi , ci ∈ C× such that δ := f − f ′ has zero trace on all tempered repre-

sentations of H(R). By definition we have fφ1 =
∑
π fπ, where π runs through the

L-packet of φ1 and each fπ is a pseudo-coefficient of π. Then for one such π we may
replace fπ by fπ + δ/c1, which is still a pseudo-coefficient of π. After making this
replacement f is precisely equal to

∑k
i=1 cifφi , with the new definition of fφ1 .

(2) follows from the fact, due to Shelstad (see for instance [She10b, She08]), that
the spectral transfer factor between a tempered Langlands parameter φ′ for H ′ and a
tempered representation π for H vanishes unless π lies in the L-packet of η ◦ φ′. For
a summary of Shelstad’s theory of spectral transfer factors see [Kal16, p. 621].

Lemma 9.1.4. — Let H be a semi-simple (for simplicity) reductive group over Q.
Assume that H is cuspidal (Definition 1.1.6). Let f∞ ∈ C∞

c (H(R)) be a stable cusp-
idal function, and let f∞ ∈ C∞

c (H(Af )). Let IH denote the invariant trace formula
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for H and let IH,disc =
∑
t≥0 Idisc,t denote its discrete part; see [Art88] and [Art89,

§3]. Then
IH(f∞f

∞) = IH,disc(f∞f
∞),

and they are also equal to

Tr(f∞f
∞ | L2

disc(H(Q)\H(A))).

Proof. — By Lemma 9.1.3 we may assume that f∞ = fφ for a discrete Langlands
parameter φ. Then the lemma follows from [Art89, §3] (where our fφ is equal to the
function denoted by fµ up to a multiplicative constant).

9.1.5. — We now explain how Kottwitz’s stabilization in the aforementioned unpub-
lished notes is related to Hypothesis 9.1.2. For f∞ = fφ as in the above proof, Arthur
[Art89] shows that the value IH(fφf∞) has the interpretation as the L2 Lefschetz
number of a Hecke operator on a locally symmetric space, with coefficients in a sheaf
determined by φ. This Lefschetz number is evaluated by Arthur [Art89] and indepen-
dently by Goresky–Kottwitz–MacPherson [GKM97]. Hence the general IH(f∞f

∞)
with stable cuspidal f∞ as in the above lemma is just a linear combination of these
Lefschetz number formulas. Based on this, Kottwitz proves in his unpublished notes
a stabilization

IH(f∞f
∞) =

∑
H′∈E (H)

ι(H,H ′)STH
′
(fH

′
),(9.1.5.1)

where the terms are explained below:

– The left hand side is as in Lemma 9.1.4.
– In the sum H ′ runs through the elliptic endoscopic data for H up to isomorphism.
– For each H ′ ∈ E (H), the function fH

′ is of the form fH
′

∞ fH
′,∞, where fH

′

∞
(resp. fH′,∞) is a Langlands–Shelstad transfer of f∞ (resp. of f∞). Here by Lemma
9.1.3 we may and do take fH′

∞ to be stable cuspidal.
– For each H ′ ∈ E (H), the term STH

′(fH′) is the simplified geometric side of the
stable trace formula, as recalled in §8.3.

– For each H ′ ∈ E (H), the term ι(H,H ′) ∈ Q is the usual constant in the stabi-
lization of trace formulas; cf. Corollary 8.17.2.

On the other hand, according to Arthur’s stabilization [Art02] [Art01] [Art03],
we have

IH(f∞f
∞) =

∑
H′∈E (H)

ι(H,H ′)SH
′
(fH

′
),(9.1.5.2)

IH,disc(f∞f
∞) =

∑
H′∈E (H)

ι(H,H ′)SH
′

disc(fH
′
)(9.1.5.3)
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where SH′ (resp. SH′

disc) is Arthur’s stable trace formula for H ′ (resp. the discrete part
thereof(2); see [Art13, §§3.1, 3.2]), and the rest of the notations are the same as in
(9.1.5.1). Comparing (9.1.5.1) and (9.1.5.2) for H quasi-split (so that H ∈ E (H)) and
by induction on the dimension of the group in Hypothesis 9.1.2, we conclude that

STH(f∞f
∞) = SH(f∞f

∞).

Thus Hypothesis 9.1.2 is proved. Moreover, comparing Lemma 9.1.4 and (9.1.5.2),
(9.1.5.3) for H quasi-split and by induction, we also draw the following conclusion
independently of Hypothesis 9.1.2:

Proposition 9.1.6. — Keep the setting of Lemma 9.1.4 and assume in addition
that H is quasi-split. Then

SH(f∞f
∞) = SHdisc(f∞f

∞).

Corollary 9.1.7. — We may replace each STH in Corollary 8.17.5 by SHdisc.

Proof. — This follows from Hypothesis 9.1.2 and Proposition 9.1.6.

9.2. Review of Arthur’s results

We loosely follow [Täı19, §2] to recall some of the main constructions and results
in [Art13]. We fix a quasi-split quadratic space (V , q) over Q, of dimension d and
discriminant δ ∈ Q×/Q×,2. (See §1.2 for what we mean by a quasi-split quadratic
space.) Let G∗ := SO(V , q). As usual we explicitly fix the L-group LG∗, and fix
explicit representatives (H,H = LH, s, η : LH → LG∗) for the isomorphism classes of
elliptic endoscopic data for G∗, as discussed in §5.

Self-dual cuspidal automorphic representations of GLN
9.2.1. — Let N ∈ Z≥1. Let π be a self-dual cuspidal automorphic representation of
GLN over Q. Arthur [Art13, Thm. 1.4.1] associates to π a quasi-split orthogonal or
symplectic group Gπ over Q, such that Ĝπ is isomorphic to SpN (C) or SON (C). We
view SpN (C) and SON (C) as standard subgroups of GLN (C) as in §5.2. There is a
standard representation

Stdπ : LGπ −→ L GLN = GLN (C)

(2)More precisely, each of IH,disc and SH
′

disc is formally a sum over a parameter t ∈ R≥0 of respective
contributions IH,disc,t and SH

′
disc,t, and (9.1.5.3) could be stated parameter-wise for each t.
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extending the inclusion Ĝπ ↪→ GLN (C) determined as follows. The central character
ωπ of π determines a character ηπ : ΓQ → {±1}. Let E/Q be the degree one or two
extension given by ηπ. When E = Q, the group Gπ is split. In this case we may
take LGπ = Ĝπ and there is nothing to do. When E ̸= Q, the group Gπ is either
symplectic, or the non-split quasi-split even special orthogonal group over Q which
is split over E. Thus when E ̸= Q we have Ĝπ = SON (C), and we may take LGπ
to be Ĝπ ⋊ Gal(E/Q) (which is a direct product when Gπ is symplectic). When
Gπ is symplectic, we define Stdπ to send the non-trivial element of Gal(E/Q) to
−1 ∈ GLN (C). When Gπ is the non-split quasi-split even special orthogonal group,
we define Stdπ to send the non-trivial element of Gal(E/Q) to the permutation matrix
switching êN/2 and ê1+N/2 in the notation of §5.2. Thus in the last case Stdπ maps
LGπ isomorphically onto the subgroup ON (C) of GLN (C) as in §5.2.

Let v be a place of Q. Under the local Langlands correspondence for GLN , estab-
lished by Langlands [Lan89] in the archimedean case and by Harris–Taylor [HT01],
Henniart [Hen00], and Scholze [Sch13] in the non-archimedean case, the local com-
ponent πv of π corresponds to a Langlands parameter φπv : WDv → GLN (C). Here
WDv denotes the Weil–Deligne group of Qv (denoted by LQv in [Art13]), which is by
definition the Weil group when Qv = R, and the direct product of the Weil group with
SU2(R) when Qv is non-archimedean. Arthur shows [Art13, Thm. 1.4.1, Thm. 1.4.2]
that φπv is conjugate to Stdπ ◦φv for some Langlands parameter

φv : WDv −→ LGπ.(9.2.1.1)

The Aut(LGπ)-orbit of φv is uniquely determined by φπv . (See [Täı19, §2.1] for
Aut(LGπ), also cf. Remark 9.2.6 below.) Define

sgn(π) :=
{

1, if Ĝπ is orthogonal,
−1, if Ĝπ is symplectic.

Substitutes for global Arthur parameters

9.2.2. — Similar to the definition of Stdπ above, we have a standard representation

StdG∗ : LG∗ −→ GLN (C)(9.2.2.1)

where N = d− 1 (resp. N = d) when d is odd (resp. even).
Let Ψ(N) denote the set of formal unordered sums

ψ = ⊞
k∈Kψ

πk[dk],

where Kψ is a finite indexing set, each πk is a unitary cuspidal automorphic represen-
tation of GLNk over Q for some Nk ∈ Z≥1, and each dk is a positive integer, satisfying
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∑
kNkdk = N . Let Ψ̃(N) denote the set of

ψ = ⊞
k∈Kψ

πk[dk] ∈ Ψ(N)

satisfying the condition that there is an involution k 7→ k∨ on the indexing set Kψ

such that (πk)∨ ∼= πk∨ and dk = dk∨ for all k ∈ Kψ. Let Ψ̃ell(N) be the subset of
Ψ̃(N) defined by the conditions that each πk should be self-dual and that the pairs
(πk, dk) should be distinct (i.e., for k ̸= k′, either πk is not isomorphic to πk′ or
dk ̸= dk′).

For any ψ ∈ Ψ̃(N), we write

ψ = ⊞
i∈I
πi[di] ⊞

j∈J
(πj [dj ] ⊞ π∨

j [dj ]),

where πi is self-dual for each i ∈ I and πj is not self-dual for each j ∈ J . Let Lψ be
the fiber product over ΓQ of LGπi and GLNj (C) for all i ∈ I, j ∈ J . For j ∈ J , we
define

StdNj ⊕Std∨
Nj : GLNj (C) −→ GL2Nj (C)

g 7−→ g ⊕ (gT)−1.

Define

ψ̃ := (
⊕
i∈I

Stdπi ⊗νdi)⊕
⊕
j∈J

(StdNj ⊕Std∨
Nj )⊗ νdj : Lψ × SL2(C)→ GLN (C),

where νk denotes the irreducible representation of SL2(C) of dimension k for any
positive integer k. Let Ψ̃(G∗) be the set of ψ ∈ Ψ̃(N) for which there exists

ψ̇ : Lψ × SL2(C) −→ LG∗

such that StdG∗ ◦ψ̇ is conjugate under GLN (C) to ψ̃. Let Ψ(G∗) be the set of pairs
(ψ, ψ̇) where ψ ∈ Ψ̃(G∗) and ψ̇ is a choice as above. For ψ ∈ Ψ̃(G∗), we define

mψ := the number of ψ̇ modulo Ĝ∗-conjugation such that (ψ, ψ̇) ∈ Ψ(G∗).
(9.2.2.2)

We define(3)

Ψ̃2(G∗) := Ψ̃ell(N) ∩ Ψ̃(G∗),
and define Ψ2(G∗) to be the preimage of Ψ̃2(G∗) in Ψ(G∗) along the forgetful map
Ψ(G∗) → Ψ̃(G∗). Recall that d and δ denote the dimension and discriminant of the
quadratic space V . For ψ = ⊞kπk[dk] ∈ Ψ̃ell(N), the following condition is equivalent
to the condition that ψ ∈ Ψ̃2(G∗):

– The character ΓQ → {±1} given by
∏
k η

dk
πk

is trivial if G∗ is split, and corre-
sponds to the quadratic extension Q(

√
δ)/Q if G∗ is non-split, i.e., if d is even and

(3)In [Täı19], our Ψ̃2(G∗) and Ψ2(G∗) are denoted by Ψ̃disc(G∗) and Ψdisc(G∗) respectively. How-
ever, in [Art13], the usage of the subscript “disc” is different; see p. 172. We follow [Art13] to use
the subscript “2” here.
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δ /∈ Q×,2. Moreover

sgn(πk)(−1)dk−1 = (−1)d(9.2.2.3)

for all k.
For ψ ∈ Ψ̃2(G∗), we know that mψ ≤ 2, and mψ = 2 if and only if d and all Nkdk

are even; see [Art13, p. 47]. In the latter case the two Ĝ∗-conjugacy classes of ψ̇ are
interchanged by the non-trivial outer automorphism of Ĝ∗ = SOd(C).

For (ψ, ψ̇) ∈ Ψ(G∗), we define

Sψ̇ := Cent(ψ̇, Ĝ∗),

Sψ̇ := Sψ̇/S
0
ψ̇
Z(Ĝ∗)ΓQ .

In fact Sψ̇ is isomorphic to a finite power of Z/2Z. Moreover, Sψ̇ is finite if and only if
(ψ, ψ̇) ∈ Ψ2(G∗), in which case Sψ̇ is a finite power of Z/2Z. These statements follow
easily from the description [Art13, (1.4.8)] of Sψ̇. By abuse of notation we shall
write Sψ and Sψ for Sψ̇ and Sψ̇ respectively.(4) In the case where (ψ, ψ̇) ∈ Ψ2(G∗)
(which is the only case relevant to us in practice), our abuse of notation is essentially
harmless for the following reason. Since Sψ̇ is abelian, it depends on ψ̇ only via
its Ĝ∗-conjugacy class, up to canonical isomorphism. Moreover, in the even case
with mψ = 2, it follows from the description [Art13, (1.4.9)] of Sψ̇ that there is an
element of ON (C)− SON (C) = ON (C)− Ĝ∗ centralizing Sψ̇. Hence in both the odd
and even cases, for (ψ, ψ̇) ∈ Ψ2(G∗), the group Sψ̇ depends only on ψ up to canonical
isomorphism. The similar remark applies to Sψ̇. Moreover, it also follows from the
above discussion that the Ĝ∗-conjugacy class of the subgroup Sψ̇ ⊂ Ĝ∗ depends only
on ψ.

For ψ ∈ Ψ̃(G∗), we define sψ ∈ Sψ by

sψ := ψ̇(−1), where − 1 ∈ SL2(C).(9.2.2.4)

(Here we implicitly fix a lift (ψ, ψ̇) ∈ Ψ(G∗).) We will also need the canonical character

ϵψ : Sψ −→ {±1}(9.2.2.5)

defined on p. 48 of [Art13] using symplectic root numbers. We do not recall its
definition here.

Let (H, LH, s, η : LH → LG∗) be an elliptic endoscopic datum for G∗, presented
in the explicit form as in §5.4. Recall that H is a direct product H+ × H− of two
quasi-split special orthogonal groups over Q. The above discussion for G∗ applies

(4)Here we follow the notation of [Art13], which differs slightly from that in [Kot84b] and [Täı19].
In the latter two papers the notation Sψ refers to a larger group, which in the present case is equal to
SψZ(Ĝ∗) in our notation. More specifically, in our notation we have Sψ ⊃ Z(Ĝ∗) = Z(Ĝ∗)ΓQ unless
G∗ is a non-split SO2, in which case Sψ = Z(Ĝ∗)ΓQ and Z(Ĝ∗) = Ĝ∗. In particular, we see that the
formula Sψ/S0

ψZ(Ĝ∗)ΓQ defines the same group Sψ with both interpretations of the notation Sψ .
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equally to H+ and H−. We define

Ψ̃(H) := Ψ̃(H+)× Ψ̃(H−),
Ψ(H) := Ψ(H+)×Ψ(H−).

Similarly we define Ψ̃2(H) and Ψ2(H). For ψ′ = (ψ+, ψ−) ∈ Ψ̃(H), we define

Sψ′ := Sψ+ × Sψ− ,

Sψ′ := Sψ+ × Sψ− ,

sψ′ := (sψ+ , sψ−) ∈ Sψ′ ,

mψ′ := mψ+mψ− ,

ϵψ′ := ϵψ+ ⊗ ϵψ− : Sψ′ −→ {±1} .

We have a natural map

Ψ̃(H) −→ Ψ̃(G∗)
(ψ+, ψ−) 7−→ ψ+ ⊞ ψ−,

which we shall denote by
ψ′ 7−→ η ◦ ψ′.

Local Arthur packets

9.2.3. — Let v be a place of Q. We abbreviate G∗
v := G∗

Qv . Let Ψ+(G∗
v) be the set

of all Arthur–Langlands parameters over Qv
ψ : WDv ×SL2(C) −→ LG∗

v

satisfying the usual axioms (without the requirement that ψ(WDv) is bounded); see
[Täı19, §2.5]. Let Ψ(G∗

v) be the set of ψ ∈ Ψ+(G∗
v) such that ψ(WDv) is bounded.

Following [Art13, §1.5] we define a subset Ψ+
unit(G∗

v) of ψ ∈ Ψ+(G∗
v) as follows.

For any ψ ∈ Ψ+(G∗
v), the parameter

StdG∗ ◦ψ : WDv ×SL2(C) −→ GLN (C)

gives rise to an irreducible representation π1 ⊠ · · · ⊠ πr of a standard Levi subgroup∏r
i=1 GLNi(Qv) of GLN (Qv); see [Art13, p. 45] and [KMSW14, §1.2.2] for this

construction (using the local Langlands correspondence for general linear groups).
By definition, ψ is an element of Ψ+

unit(G∗
v) if and only if the normalized parabolic

induction π1 × · · ·πr of π1 ⊠ · · · ⊠ πr to GLN (Qv) is irreducible and unitary. As on
p. 45 of [Art13], we have a chain of subsets

Ψ(G∗
v) ⊂ Ψ+

unit(G∗
v) ⊂ Ψ+(G∗

v).
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For ψ ∈ Ψ+
unit(G∗

v), we define

Sψ := Cent(ψ, Ĝ∗),

Sψ := Sψ/S
0
ψZ(Ĝ∗)Γv .

As in the global case, the group Sψ is a finite abelian 2-group. We write SDψ for its
Pontryagin dual group. Denote by sψ ∈ Sψ the image of −1 ∈ SL2(C) under ψ.

We fix a Qv-splitting splv for G∗
v. When d is even, let θv be the unique non-

trivial automorphism of G∗
v fixing splv (which is of order 2). When d is odd we take

θv = idG∗
v
. For both parities of d, we fix a Whittaker datum wv for G∗

v that is fixed
by θv. (For instance, in the even case we can construct wv from splv and the choice
of a non-trivial character Qv → C× in the usual manner.)

In the even case, if we let splv vary over all Qv-splittings of G∗
v, then the resulting

θv’s are all of the form Int(g)|G∗
v

for certain g ∈ O(V )(Qv) − G∗(Qv). In fact, by
explicit construction it is easy to see that there is one choice of θv that is of the
asserted form. To see that all choices of θv are of the asserted form, use that all Qv-
splittings of G∗

v are conjugate under G∗,ad(Qv), and that G∗,ad(Qv) naturally acts on
O(V )(Qv) by conjugation since the center of G∗ is central in O(V ). As a consequence
of this observation, if we have two choices θv and θ′

v, then θv = θ′
v ◦ Int(g0) for some

g0 ∈ G∗
v(Qv). In particular, the way in which θv permutes isomorphism classes of

representations of G∗
v(Qv) (resp. conjugacy classes in G∗

v(Qv)) is the same as the way
in which θ′

v permutes these objects.
Let ψ ∈ Ψ+

unit(G∗
v). Then Arthur [Art13, §1.5] associates to ψ a finite multi-set(5)

Π̃ψ(G∗
v). Here each element of Π̃ψ(G∗

v) is a {1, θv}-orbit of isomorphism classes of
finite-length smooth representations(6) of G∗(Qv), and such an element is allowed to
repeat itself for finitely many times in Π̃ψ(G∗

v) (thus “multi-set”). If ψ ∈ Ψ(G∗
v)

then these representations are all irreducible and unitary. Moreover, for general ψ ∈
Ψ+

unit(G∗
v), there is a canonical map (depending on the choice of wv)

Π̃ψ(G∗
v) −→ SDψ(9.2.3.1)
π 7−→ ⟨·, π⟩.

Definition 9.2.4. — We define the Hecke algebra H(G∗
v) as follows. When v is

finite, we define H(G∗
v) to be C∞

c (G∗(Qv)). When v =∞, we fix a maximal compact
subgroup K∞ ⊂ G∗(R), and define H(G∗

v) to consist of smooth compactly supported
functions on G∗(R) that are bi-finite under K∞. Moreover for each place v we define

H̃(G∗
v) := H(G∗

v)θv=1,

(5)In [Täı19], this set is simply denoted by Πψ .
(6)By construction these representations are obtained as parabolic inductions of irreducible repre-
sentations, and are hence finite-length smooth representations.
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and define
H̃st(G∗

v) ⊂ H(G∗
v)

to be the subspace consisting of f ∈ H(G∗
v) such that f − θ∗

vf has all stable orbital
integrals equal to 0.

9.2.5. — Let ψ ∈ Ψ+
unit(G∗

v). In [Art13, Thm. 2.2.1], Arthur gives a characterization
of Π̃ψ(G∗

v) and the map π 7→ ⟨·, π⟩, and proves that the linear form

Λψ : H̃(G∗
v) −→ C(9.2.5.1)

f 7−→
∑

π∈Π̃ψ(G∗
v)

⟨sψ, π⟩Tr(π(fdg))

is stable, in the sense that Λψ(f) = 0 if all stable orbital integrals of f vanish. (In
loc. cit. these results are explicitly stated only for ψ ∈ Ψ(G∗

v), but see Remark 9.2.10
below.) We explain the notations. Here dg is a fixed Haar measure on G∗(Qv).
The summation takes into account the multiplicities of the elements π in the multi-
set Π̃ψ(G∗

v). For each such element π, which is a {1, θv}-orbit of representations of
G∗(Qv), we let π̇ be any element of this orbit, and define Tr(π(fdg)) := Tr(π̇(fdg)).
Since f ∈ H̃(G∗

v) is by definition fixed by θv and since dg is obviously fixed by θv (as
θv has order at most 2), this definition is independent of the choice of π̇.

It is clear from the characterization in [Art13, Thm. 2.2.1] that Λψ is independent
of the choice of wv, although the definition of the map π 7→ ⟨·, π⟩ depends on wv.
Moreover, since Λψ is stable, we can naturally extend its domain of definition to
H̃st(G∗

v), and still obtain a stable distribution

Λψ : H̃st(G∗
v) −→ C

f 7−→ Λψ(f + θ∗
vf

2 ).

In §9.2.3, we observed that different choices of θv permute conjugacy classes in G∗
v(Qv)

in the same way. In particular, H̃st(G∗
v) is independent of the choice of θv. If we view

Λψ as being defined over H̃st(G∗
v), then it is also independent of the choice of θv, as

follows from the characterization in [Art13, Thm. 2.2.1].

Remark 9.2.6. — We note that Π̃ψ(G∗
v) depends on ψ ∈ Ψ+

unit(G∗
v) only via its

orbit under Aut(LG∗
v). In the odd case such an orbit is the same as a Ĝ∗-conjugacy

class, since Aut(LG∗
v) = (Ĝ∗)ad. In the even case, by contrast, such an orbit could

contain up to two Ĝ∗-conjugacy classes. This is because Aut(LG∗
v) is identified with

ON (C)ad, whose action on LG∗
v is determined by the following two conditions:

(1) The projection map from LG∗
v to the Galois factor is preserved.

(2) The map LG∗
v →

LG∗ StdG∗−−−−→ ON (C) ⊂ GLN (C) is ON (C)ad-equivariant, where
ON (C)ad acts on ON (C) by conjugation.
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In particular, (Ĝ∗)ad is of index 2 in Aut(LG∗
v). When the Aut(LG∗

v)-orbit of ψ
contains two Ĝ∗-conjugacy classes, one should regard Π̃ψ(G∗

v) as the concoction of
two conjectural Arthur packets.

Remark 9.2.7. — As remarked in [Art13, §1.5], it follows from the work of Moeglin
[Mœg11] that the multi-set Π̃ψ(G∗

v) for ψ ∈ Ψ(G∗
v) (and therefore also for ψ ∈

Ψ+
unit(G∗

v) by construction) is in fact multiplicity free in the non-archimedean case.

9.2.8. — Let (H, LH, s, η) be an endoscopic datum for G∗
v, and assume that it is

the localization of an elliptic endoscopic datum for G∗ over Q. Thus H = H+ ×H−

is the direct product of two quasi-split special orthogonal groups over Qv. (Under
our assumption, the endoscopic datum (H, LH, s, η) over Qv itself may still be non-
elliptic. More precisely, in the odd case it is always elliptic, while in the even case it
is elliptic if and only if either G∗

v is the split SO2 over Qv or neither of H± is the split
SO2 over Qv; cf. the discussion at the beginning of §7.3.2.)

As in §9.2.3, let Ψ+(H),Ψ+(H+),Ψ+(H−) be the sets of all Arthur–Langlands
parameters for H,H+, H− over Qv respectively. We have a natural identification
Ψ+(H) ∼= Ψ+(H+)×Ψ+(H−), to be viewed as the identity. We define Ψ+

unit(H) to be
the preimage of Ψ+

unit(G∗
v), defined in §9.2.3, under the map Ψ+(H)→ Ψ+(G∗

v), ψ 7→
η ◦ ψ. Also, we define Ψ+

unit(H±) in a similar way as in §9.2.3, with G∗
v replaced by

the quasi-split special orthogonal group H±. We have

Ψ+
unit(H+)×Ψ+

unit(H−) ⊂ Ψ+
unit(H).

Indeed, this containment boils down to the fact that every representation of GLN (Qv)
that is the normalized parabolic induction of an irreducible unitary representation
of a Levi subgroup is irreducible unitary. In the non-archimedean case this fact is
Bernstein’s theorem [Ber84]. In the archimedean case this fact is implicit in the
work of Vogan [Vog86] and also follows from Kirillov’s conjecture proved by Baruch
[Bar03] plus the work of Sahi [Sah89]. We note, however, that in general

Ψ+
unit(H+)×Ψ+

unit(H−) ⫋ Ψ+
unit(H).

Now let ψ ∈ Ψ+
unit(H), and write ψ± for the components of ψ in Ψ+(H±). Similarly

as in §9.2.5, we have stable distributions

Λψ+ : H̃st(H+) −→ C,

Λψ− : H̃st(H−) −→ C,

(after fixing Haar measures). We define

H̃st(H) := H̃st(H+)⊗C H̃st(H−).

Taking the product of Λψ+ and Λψ− , we obtain a stable distribution

Λψ : H̃st(H) −→ C.
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We have an expansion of Λψ similar to (9.2.5.1). To make this precise, similarly as
in §9.2.3, we fix a Qv-splitting splH± of H±, and let θH± be the unique non-trivial
automorphism of H± fixing splH± in the even case, and the identity on H± in the
odd case. Fix a Whittaker datum wH± for H± that is fixed by θH± . Then similarly
as in §9.2.3, we have the local packet Π̃ψ+(H+), which is a multi-set whose elements
are ⟨θH+⟩-orbits of isomorphism classes of representations of H+(Qv). Similarly we
have Π̃ψ−(H−). Define the packet Π̃ψ(H) as the product of Π̃ψ±(H±), and we regard
its elements as ⟨θH+⟩ × ⟨θH−⟩-orbits of isomorphism classes of representations of
H(Qv) = H+(Qv) ×H−(Qv). We have maps Π̃ψ±(H±) → SDψ± as in (9.2.3.1), and
taking the product we obtain a map Π̃ψ(H)→ SDψ , which we still denote by π 7→ ⟨·, π⟩.
Define

H̃(H±) := H(H±)θH± =1,

and
H̃(H) := H̃(H+)⊗ H̃(H−).

We then have the expansion

Λψ(h) =
∑

π∈Π̃ψ(H)

⟨sψ, π⟩Tr(π(h)), ∀h ∈ H̃(H).(9.2.8.1)

Here, as in (9.2.5.1), the summation takes into account the multiplicities, and for each
π we define Tr(π(h)) to be Tr(π̇(h)) for any π̇ ∈ π, the Haar measure on H(Qv) being
implicit.

We comment that the constructions of the packets Π̃ψ±(H±), the maps from them
to SDψ± , and the stable distributions Λψ± , are of a slightly more general nature than the
previous constructions for G∗

v in §§9.2.3 and 9.2.5, since ψ± may not lie in Ψ+
unit(H±).

Nevertheless, the assumption that ψ = (ψ+, ψ−) lies in Ψ+
unit(H) implies that ψ± can

be constructed from a Levi subgroup M ⊂ H±, a parameter in Ψ(M), and a point
λ ∈ a∗

M as on p. 45 of [Art13], in exactly the same way as any element of Ψ+
unit(H±)

can be constructed from such data. The proof of this fact, which is implicitly used in
[Art13], is an elementary exercise using [Tad86, Thm. D] in the non-archimedean
case and [Tad09] in the archimedean case. Thus the construction using parabolic
induction on the representation side and analytic continuation on the character side
as indicated on pp. 45–46 of [Art13] works for the current ψ± in the same way as it
works for elements of Ψ+

unit(H±).

9.2.9. — Fix ψ ∈ Ψ+
unit(G∗

v) and fix a semi-simple element s ∈ Sψ. Then there is
an induced endoscopic datum (H,H, s, η : H → LG∗

v) over Qv. Arthur has proved an
endoscopic character relation for such ψ and s. For our applications, we only need the
case where the endoscopic datum (H,H, s, η) is the localization over Qv of an elliptic
endoscopic datum for G∗ over Q, so we assume this for simplicity. Thus as in §9.2.8,
H = H+×H− is the direct product of two quasi-split special orthogonal groups over
Qv, and as usual we choose an identification H ∼= LH. We have ψ = η◦ψ′ for a unique
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ψ′ ∈ Ψ+
unit(H). As in §9.2.8, we have the stable distribution Λψ′ : H̃st(H) −→ C after

fixing a Haar measure dh on H(Qv).
The Whittaker datum wv for G∗

v determines a normalization of the transfer factors
between H and G∗

v; cf. §6.2.1. For any f ∈ H̃(G∗
v), let f ′ be a Langlands–Shelstad

transfer in H(H), with respect to the normalization of transfer factors just mentioned
and the Haar measures dg on G∗

v(Qv), dh on H(Qv). Then f ′ ∈ H̃st(H); see [Art13,
§2.1] or [Täı19, Prop. 3.3.1]. We have the following endoscopic character relation
([Art13, Thm. 2.2.1 (b)]):∑

π∈Π̃ψ(G∗
v)

⟨sψs, π⟩Tr(π(fdg)) = Λψ′(f ′).(9.2.9.1)

Remark 9.2.10. — In [Art13, Thm. 2.2.1], the stability of Λψ′ and the relation
(9.2.9.1) are explicitly stated only in the case where ψ ∈ Ψ(G∗

v) and ψ′ ∈ Ψ(H).
The generalization to the case where ψ ∈ Ψ+

unit(G∗
v) and ψ′ ∈ Ψ+

unit(H) can be easily
obtained by analytic continuation, as explained on p. 46 of [Art13].

Unramified parameters and representations

9.2.11. — We complement our exposition with a discussion on how unramified repre-
sentations appear in local Arthur packets. Keep the setting and notation of §9.2.3, and
assume that the place v is finite. We say that a parameter ψ : WDv ×SL2(C)→ LG∗

v

in Ψ+(G∗
v) is unramified, if the reductive group G∗

v over Qv is unramified, and the
restriction of ψ to WDv = WQv×SU2(R) is trivial on SU2(R) and sends every element
τ of the inertia subgroup of WQv to 1 ⋊ τ ∈ LG∗

v.
The existence of an unramified ψ ∈ Ψ+(G∗

v) by definition presupposes that G∗
v

is unramified. We assume that this is the case. Then inside G∗(Qv), there is a
unique G∗(Qv)-conjugacy class of hyperspecial subgroups which are compatible with
the fixed Whittaker datum wv, in the sense of [CS80]. Let K∗

v be such a hyperspecial
subgroup. Since θv fixes wv, we know that θv stabilizes the G∗(Qv)-conjugacy class of
K∗
v . In particular, θv permutes isomorphism classes of K∗

v -unramified representations
of G∗(Qv).

Lemma 9.2.12. — Assume that G∗
v is unramified, and let K∗

v be a hyperspecial
subgroup of G∗(Qv) as in §9.2.11. Let ψ ∈ Ψ+

unit(G∗
v). The following statements hold.

(1) The packet Π̃ψ(G∗
v) contains at most one element that is a {1, θv}-orbit of K∗

v -
unramified representations of G∗(Qv). It contains one if and only if ψ is unramified.

(2) Assume that ψ is unramified, and let π ∈ Π̃ψ(G∗
v) be the unique element that

is a {1, θv}-orbit of K∗
v -unramified representations, as in (1). Then for any π̇ ∈ π,

we have dim(π̇K∗
v ) = 1, or equivalently, π̇ has a unique K∗

v -unramified Jordan–Hölder
constituent. Moreover, the unramified Langlands parameter WDv → LG∗

v of that
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Jordan–Hölder constituent (with respect to the unramified local Langlands correspon-
dence) is in the same Aut(LG∗

v)-orbit (see Remark 9.2.6) as the Langlands parameter
φψ associated to ψ. Here φψ(w) := ψ(w,diag(∥w∥1/2

, ∥w∥−1/2)) for w ∈WDv .

(3) Let ψ and π be as in (2). We have ⟨·, π⟩ = 1 ∈ SDψ .

Proof. — If ψ ∈ Ψ(G∗
v), then parts (1) and (3) are proved in [Täı17, Lem. 4.1.1],

and part (2) follows from the characterization in [Art13, Thm. 2.2.1]. (In this case,
all elements of Π̃ψ(G∗

v) are {1, θv}-orbits of smooth irreducible representations of
G∗(Qv).) For general ψ ∈ Ψ+

unit(G∗
v), we know that ψ arises from a standard Levi

subgroup M ⊂ G∗, an element ψM ∈ Ψ(M) (i.e., a local Arthur–Langlands parameter
for M which is bounded on WDv), and an element λ ∈ a∗

M , as on p. 45 of [Art13].
The packet Π̃ψ(G∗

v) is constructed from the packet Π̃ψM (M) of M(Qv)-representations
associated to ψM via a certain parabolic induction process which involves λ; see
loc. cit. for more details. It is easy to see that ψ is unramified if and only if ψM is
unramified. Moreover, the obvious analogue of the current lemma holds for (M,ψM )
in place of (G∗

v, ψ). (More precisely, M is a direct product of several general linear
groups and one unramified special orthogonal group. The special case of the lemma
for parameters bounded on WDv, which we have already proved, takes care of the
special orthogonal factor of M . The general linear factors are taken care of by the local
Langlands correspondence.) The lemma for (G∗

v, ψ) then follows from the lemma for
(M,ψM ), by basic properties of the parabolic induction process used in the definition
of Π̃ψ(G∗

v). (More specifically, we may assume that the standard parabolic subgroup
P ⊂ G∗

v containing M as the Levi component is compatible with K∗
v in the sense

that G∗(Qv) = P (Qv)K∗
v . Let KM be the hyperspecial subgroup of M(Qv) given

by the image of P (Qv) ∩ K∗
v under the projection P (Qv) → M(Qv). Then for any

irreducible smooth representation τ of M(Qv), the parabolic induction IP (τ) of τ to
G∗(Qv) satisfies dim IP (τ)K∗

v = dim τKM ∈ {0, 1}. Moreover, when this number is
1, we have compatibility between the unramified Langlands parameter of the unique
K∗
v -unramified constituent of IP (τ) and that of τ .)

9.2.13. — We have an obvious analogue of Lemma 9.2.12 with G∗
v replaced by the

group H = H+×H− over Qv as in §9.2.8. To set up the notation, we assume that H
is unramified, and let KH± be a hyperspecial subgroup of H±(Qv) that is compatible
with the Whittaker datum wH± for H± (so KH± is unique up to H±(Qv)-conjugacy).
Let KH := KH+ × KH− ⊂ H(Qv). Since wH± is fixed by θH± , we know that
elements of the group ⟨θH+⟩ × ⟨θH−⟩ ⊂ Aut(H) stabilize the H(Qv)-conjugacy class
of KH . In particular, ⟨θH+⟩×⟨θH−⟩ permutes isomorphism classes of KH -unramified
representations of H(Qv).

Lemma 9.2.14. — Keep the setting of §9.2.13. Let ψ ∈ Ψ+
unit(H). The following

statements hold.
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(1) The packet Π̃ψ(H) contains at most one element that is a ⟨θH+⟩ × ⟨θH−⟩-
orbit of KH-unramified representations of H(Qv). It contains one if and only if ψ is
unramified.

(2) Assume that ψ is unramified. Let π ∈ Π̃ψ(H) be the unique element that is a
⟨θH+⟩×⟨θH−⟩-orbit of KH-unramified representations, as in (1). Then for any π̇ ∈ π,
π̇ has a unique KH-unramified Jordan–Hölder constituent. Moreover, the unramified
Langlands parameter WDv → LH of that Jordan–Hölder constituent is in the same
Aut(LH)-orbit as the Langlands parameter φψ associated to ψ.

(3) Let ψ and π be as in (2). We have ⟨·, π⟩ = 1 ∈ SDψ .

Proof. — This follows from Lemma 9.2.12 applied to H+ and H− separately. More
precisely, write ψ = (ψ+, ψ−) with ψ± ∈ Ψ+(H±). Although ψ± may not lie in
Ψ+

unit(H±), the proof of Lemma 9.2.12 still applies to (H±, ψ±) in place of (G∗
v, ψ),

in view of the comment at the end of §9.2.8.

The spectral expansion of the discrete part of the stable trace formula

9.2.15. — Consider an elliptic endoscopic datum (H = H+ ×H−, LH, s, η) for G∗

over Q, presented in the explicit form as in §5.4. Let ψ ∈ Ψ̃(H). For each place v of
Q, there is a natural localization

ψv = (ψ+
v , ψ

−
v ) ∈ Ψ+

unit(H+
Qv )×Ψ+

unit(H−
Qv ) ⊂ Ψ+

unit(HQv )

of ψ that is well defined up to the action of Aut(LHQv ) = Aut(LH+
Qv )× Aut(LH−

Qv ),
and there are natural homomorphisms Sψ → Sψv and Sψ → Sψv ; see [Art13, §1.4
and pp. 46–47]. Note that the image of sψ ∈ Sψ under Sψ → Sψv is precisely sψv .

Let H̃st(H) be the restricted tensor product of H̃st(HQv ) over all places v. More
precisely, consider a large enough finite set of prime numbers Σ such that H extends
to a reductive group scheme H ′ over Z[1/Σ], and such that the image of a fixed
admissible splitting Out(H)→ Aut(H) is contained in Aut(H ′) ⊂ Aut(H). Then for
all primes p /∈ Σ, the function 1H′(Zp) is in H̃st(HQp). We form the restricted tensor
product with respect to these distinguished elements for almost all p. As usual, the
result is independent of the choices of Σ and H ′.

The discrete part of Arthur’s stable trace formula for H is a formal sum

SHdisc =
∑
t≥0

SHdisc,t

of stable distributions over all real numbers t ≥ 0; see [Art13, §§3.1, 3.2], and cf. §9.1.
For each t ≥ 0 and any f ∈ H̃st(H), we have the following spectral expansion by
[Art13, Lem. 3.3.1, Prop. 3.4.1, Thm. 4.1.2]:

SHdisc,t(f) =
∑

ψ∈Ψ̃(H),t(ψ)=t

mψ |Sψ|−1
σ(S̄0

ψ)ϵψ(sψ)Λψ(f),(9.2.15.1)
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where Λψ is the product(7) of the local stable distributions Λψv : H̃st(HQv ) → C as
in §9.2.8, and σ(S̄0

ψ) is an invariant associated to the following connected complex
reductive group (see [Art13, Prop. 4.1.1]):

S̄0
ψ := (Sψ/Z(Ĥ)ΓQ)0.

Thus formally we have

SHdisc(f) =
∑

ψ∈Ψ̃(H)

mψ |Sψ|−1
σ(S̄0

ψ)ϵψ(sψ)Λψ(f).(9.2.15.2)

9.3. Täıbi’s parametrization of local packets for certain pure inner forms

9.3.1. — We keep the setting of §9.2. In particular, we fix G∗ = SO(V , q). For each
place v of Q, we shall consider a pure inner form (Gv,Ξv, zv) of G∗

v = G∗
Qv , by which

we mean the following data:
– a reductive group Gv over Qv;
– an isomorphism Ξv : G∗

Qv

∼−→ (Gv)Qv defined over Qv;
– a (continuous) cocycle zv ∈ Z1(Γv, G∗

v) such that ρΞ−1
v Ξv = Int(zv(ρ))−1 for all

ρ ∈ Γv.
We recall Täıbi’s parametrization in [Täı19] of the Arthur packets forGv under special
hypotheses. For each place v, note the equivalence of the following conditions:

(1) The image of zv in H1(Qv, G∗,ad) is trivial.
(2) The reductive group Gv over Qv is quasi-split.

Indeed, that (1) implies (2) is clear, and the converse amounts to the asser-
tion that only the trivial element of H1(Qv, G∗,ad) goes to the trivial element of
H1(Γv,Aut(G∗

Qv
)). This is clear in the odd case since all automorphisms of G∗

Qv
are inner. In the even case, this is true because the inner automorphisms form an
index 2 subgroup of Aut(G∗

Qv
), and in the complement there is an element invariant

under Γv, for instance the conjugation action on G∗
v by any element of O(V )(Qv) of

determinant −1.

Finite places

9.3.2. — Let v be a finite place of Q. We assume that the image of zv in
H1(Qv, G∗,ad) is trivial, or equivalently (see §9.3.1), that Gv is quasi-split as an
abstract reductive group over Qv. We caution the reader that under our assumption
it could still happen that zv has non-trivial image in H1(Qv, G∗) (when d is even).

(7)Here it is implicit that if we fix a finite set Σ of primes and fix a reductive model H′ of H over
Z[1/Σ], then for almost all primes p /∈ Σ we have Λψp (1H′(Zp)) = 1. It follows that Λψ is well defined
on H̃st(H), i.e., there is no issue with infinite products.
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In the odd case, let θGv be the identity automorphism of Gv. In the even case, fix
a Qv-splitting of Gv and let θGv be the unique non-trivial automorphism of Gv fixing
that splitting (which is of order 2). As we have observed in §9.2.3, the way in which
θGv permutes isomorphism classes of representations of Gv(Qv) or conjugacy classes
in Gv(Qv) is canonical.

Fix a Whittaker datum wv forG∗
v. As explained in [Kal11, §2.2] (cf. Remark 5.1.4),

the datum (wv,Ξv, zv) determines a normalization of transfer factors between any en-
doscopic datum H for Gv and Gv. We denote this normalization by ∆Gv

H (wv,Ξv, zv).
We summarize in the next proposition the construction in [Täı19, §3.3].

Proposition 9.3.3. — For each ψ ∈ Ψ+
unit(G∗

v), there is a finite multi-set(8) Π̃ψ(Gv)
of {1, θGv}-orbits of isomorphism classes of finite-length smooth representations of
Gv(Qv), and a canonical map (depending on (wv,Ξv, zv))

Π̃ψ(Gv) −→ π0(Sψ)D

π 7−→ ⟨·, π⟩.

Moreover, if all the representations in Π̃ψ(G∗
v) are irreducible, then so are those in

Π̃ψ(Gv). For each semi-simple s ∈ Sψ inducing an endoscopic datum (H,H, s, η)
over Qv, we have an endoscopic character relation. For simplicity, we describe it only
under the same assumption on (H,H, s, η) as in §9.2.9. As usual fix an identification
LH ∼= H. Let ψ′ ∈ Ψ+

unit(H) be such that ψ = η ◦ ψ′. Fix Haar measures on Gv(Qv)
and H(Qv). Let f ∈ H(Gv), and assume that the orbital integrals of f are invariant
under θGv . Let f ′ ∈ H(H) be a Langlands–Shelstad transfer of f with respect to the
normalization ∆Gv

H (wv,Ξv, zv) of transfer factors. Then we have f ′ ∈ H̃st(H), and∑
π∈Π̃ψ(Gv)

⟨sψs, π⟩Tr(π(f)) = Λψ′(f ′).

Here we understand that s, sψ ∈ Sψ are naturally mapped into π0(Sψ) in writing
⟨sψs, π⟩.

Proof. — In [Täı19, §3.3], it is assumed that ψ ∈ Ψ(G∗
v), and ⟨·, π⟩ is constructed

as a character on S+
ψ rather than a character on π0(Sψ). Here S+

ψ is a certain finite
extension of Sψ sitting in a chain of surjective group homomorphisms

S+
ψ −→ π0(Sψ) −→ Sψ.

We indicate why the reformulation as in the present proposition is valid.
We first note that the construction in [Täı19, §3.3] generalizes verbatim from ψ ∈

Ψ(G∗
v) to ψ ∈ Ψ+

unit(G∗
v), based on the “Ψ+

unit-version” of Arthur’s results recalled in
§§9.2.3–9.2.9 and Remark 9.2.10. Moreover the finite-length and irreducible properties
stated in the proposition follow from the corresponding properties of Π̃ψ(G∗

v), since

(8)This is denoted by Πψ(Gv) in [Täı19, §3.3]. By its construction and by Remark 9.2.7, this
multi-set is actually multiplicity free.
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by construction Π̃ψ(Gv) contains the same representations as Π̃ψ(G∗
v), with respect

to a certain Qv-isomorphism G∗
v

∼−→ Gv which we do not explain.
It remains to explain why it is valid to replace S+

ψ by π0(Sψ) (which is denoted
by π0(Cψ) in [Täı19]). The reason that one needs to consider S+

ψ in general is due
to the fact that when Gv is fixed as a rigid inner form of G∗

v, in order to normal-
ize transfer factors between an endoscopic datum and Gv one needs to upgrade the
former to a “refined endoscopic datum”, which roughly means picking a lift in S+

ψ

of the image of s ∈ Sψ in π0(Sψ). In our present case, this is not necessary thanks
to the fact that (Gv,Ξv, zv) is a pure inner form of G∗: Each semi-simple element
s ∈ Sψ determines an endoscopic datum (H,H, s, η), and the datum (wv,Ξv, zv) al-
ready determines canonically a normalization of transfer factors between H and Gv.
Moreover, as noted in [Täı19, Rmk. 3.3.2], the pairing ⟨·, π⟩ for π ∈ Π̃(Gv) descends
to a character on π0(Sψ) in our case. In conclusion it is valid to replace the group
S+
ψ in [Täı19, §3.3] by π0(Sψ) in our case.

The archimedean place

9.3.4. — Let v = ∞. Assume that G∗
v contains anisotropic maximal tori. Let

(Gv,Ξv, zv) be an arbitrary pure inner form of G∗
v as in §9.3.1. Thus Gv also con-

tains anisotropic maximal tori. As in the non-archimedean case, we fix a Whittaker
datum wv for G∗

v, and then the datum (wv,Ξv, zv) determines a normalization of
transfer factors between any endoscopic datum H for Gv and Gv, which we denote
by ∆Gv

H (wv,Ξv, zv).
Recall that any Arthur–Langlands parameter ψ ∈ Ψ+(G∗

v) (through its associ-
ated Langlands parameter φψ) has a well-defined infinitesimal character, which is an
ΩC(G,T )-orbit in X∗(T ) ⊗Z C. Here T is any maximal torus in G∗

C, and ΩC(G,T )
is the complex Weyl group. For an account see for instance [Täı17, §4.1.2], where
the infinitesimal character is denoted by µ1. Following the terminology of Buzzard–
Gee [BG14], we say that the infinitesimal character is C-algebraic (resp. regular
C-algebraic) if it is the ΩC(G,T )-orbit of an element of ρ + X∗(T ) (resp. a regular
element of ρ + X∗(T )), where ρ ∈ 1

2X
∗(T ) is the half sum of a system of positive

roots.
For ψ ∈ Ψ+(G∗

v), we say that it is Adams–Johnson if it is bounded on WR (i.e.,
ψ ∈ Ψ(G∗

v)) and has regular C-algebraic infinitesimal character. For more details
see [Täı17, §4.2.2] and [AMR18, §8.1]. We denote by ΨAJ(G∗

v) the set of Adams–
Johnson parameters for G∗

v. We know that all ψ ∈ ΨAJ(G∗
v) are discrete, in the sense

that Sψ = π0(Sψ).
For each ψ ∈ ΨAJ(G∗

v), Adams–Johnson [AJ87] have explicitly constructed a
packet ΠAJ

ψ (Gv) of representations of Gv(R). Using the rigidifying datum (wv,Ξv, zv),
Täıbi [Täı19, §§3.2.2–3.2.3] associates to each π ∈ ΠAJ

ψ (Gv) a character ⟨·, π⟩ of S+
ψ .
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Here as in the proof of Proposition 9.3.3 the finite group S+
ψ sits in a chain of surjective

group homomorphisms
S+
ψ −→ π0(Sψ) −→ Sψ,

and its introduction is in fact unnecessary in our situation thanks to the fact that we
have fixed Gv as a pure inner form of G∗

v (as opposed to a more general rigid inner
form). Namely, for each ψ ∈ ΨAJ(G∗

v) and π ∈ ΠAJ
ψ (Gv), the pairing ⟨·, π⟩ descends

to a character on π0(Sψ) = Sψ. This assertion could either be directly checked by
going through Täıbi’s construction, or be proved as follows: By the well-definedness
of the normalization ∆Gv

H (wv,Ξv, zv) of transfer factors between an endoscopic datum
H and the pure inner form Gv, we know that the right hand side of the endoscopic
character relation in [Täı19, Prop. 3.2.5] depends on ṡ ∈ S+

ψ only via its image in
π0(Sψ) = Sψ. It follows that so does the left hand side, which means that ⟨·, π⟩
descends to Sψ as desired.

With the above modification, we summarize the results in [Täı19, §§3.2.2–3.2.3]
together with a comparison result in [AMR18] as follows.

Proposition 9.3.5. — For any ψ ∈ ΨAJ(G∗
v), let ΠAJ

ψ (Gv) be the associated (finite)
Adams–Johnson packet. There is a canonical map (depending on (wv,Ξv, zv))(9)

ΠAJ
ψ (Gv) −→ π0(Sψ)D = SDψ

π 7−→ ⟨·, π⟩AJT.

Fix s ∈ Sψ, and let (H,H, s, η) be the induced endoscopic datum over R, which is nec-
essarily an elliptic endoscopic datum because Sψ is discrete. We have an endoscopic
character relation described as follows. As usual fix an identification LH ∼= H, and
let ψ′ ∈ Ψ+(H) be such that ψ = η ◦ ψ′. Then ψ′ ∈ ΨAJ(H). Fix Haar measures on
Gv(R) and H(R). The following statements hold.

(1) Fix a Haar measure dh on H(R). The distribution

ΛAJ
ψ′ : C∞

c (H(R)) −→ C

f ′ 7−→
∑

π′∈ΠAJ
ψ′ (H)

⟨sψ′ , π′⟩AJT Tr(π′(f ′dh))

is stable.
(2) For f ′ ∈ H̃st(H), we have

ΛAJ
ψ′ (f ′) = Λψ′(f ′).

Here Λψ′ is as in §9.2.8.
(3) Fix a Haar measure dg on Gv(R). Let f ∈ C∞

c (Gv(R)), and let f ′ be a
Langlands–Shelstad transfer of f in C∞

c (H(R)), with respect to the normalization

(9)Here the subscript “AJT” stands for Adams–Johnson–Täıbi.
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∆Gv
H (wv,Ξv, zv) of transfer factors and the Haar measures dg, dh. We have

e(Gv)
∑

π∈ΠAJ
ψ

(Gv)

⟨sψs, π⟩AJT Tr(π(f)) = ΛAJ
ψ′ (f ′).(9.3.5.1)

Here e(Gv) is the Kottwitz sign of Gv.

Remark 9.3.6. — By the formula ⟨sψ, πψ,Q,L⟩ = e(L) in the proof of [Täı19,
Prop. 3.2.5], the distribution ΛAJ

ψ′ in part (1) of Proposition 9.3.5 is none other than
the distribution that appears in [AJ87, Thm. 2.13]. With this understanding, part
(1) is the same as [AJ87, Thm. 2.13], and part (2) is proved in [AMR18].

9.4. The global group G

9.4.1. — Fix d = 2m+ 1 or 2m where m ∈ Z≥1, and fix δ ∈ Q×/Q×,2. Assume that
(−1)mδ > 0. Let (V , q) be the quasi-split quadratic space (in the sense of Definition
1.2.3) over Q of dimension d and discriminant δ, which is unique up to isomorphism.
Let G∗ = SO(V , q). We note that by our assumption on δ, there exist inner twistings
between the R-groups SO(d − 2, 2) and G∗

R. We fix a G∗(C)-conjugacy class(10) of
such inner twistings, and thereby view SO(d− 2, 2) as an inner form of G∗

R.

Lemma 9.4.2. — The following statements hold.
(1) There exists at most one isomorphism class G of inner forms of G∗ such that

G is isomorphic to SO(d−2, 2) as inner forms of G∗ over R and G is quasi-split over
Qv as a reductive group (or equivalently, GQv is isomorphic to G∗

Qv as inner forms of
G∗

Qv ; see §9.3.1) for all finite places v.
(2) Assume either of the following two conditions:

– d ≡ 2, 3, 4, 5, 6 mod 8.
– d ≡ 0 mod 8 and δ ̸= 1 ∈ Q×/Q×,2.

Then there is a quadratic space (V, q) over Q, of dimension d, discriminant δ, and
signature (d− 2, 2) at ∞, such that G := SO(V, q) is quasi-slit at all finite places.

Proof. — Let F be Q or Qv. The set H1(F,G∗) classifies isomorphism classes of pure
inner forms of G∗ over F , and it also classifies isomorphism classes of quadratic spaces
(V, q) over F whose dimension is d and discriminant is δ. Thus the lemma is just a
reformulation of parts 1,2 of [Täı19, Prop. 3.1.2], in the special case where the base
number field is Q. In fact, the condition in part 1 of that proposition reads d ≡ 3, 5
mod 8. The condition in part 2 (a) reads d ≡ 2, 6 mod 8. The condition in part 3
reads d ≡ 4 mod 8, or (d ≡ 0 mod 4 and δ ̸= 1).

(10)In the even case there are two such conjugacy classes to choose from. Nevertheless, the resulting
two ways of viewing SO(d − 2, 2) as an inner form of G∗

R give rise to isomorphic inner forms of
G∗

R. This is because the two G∗(C)-conjugacy classes of inner twistings are interchanged under any
non-inner automorphism of SO(d − 2, 2)C, and there exists one such automorphism defined over R.
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Remark 9.4.3. — In part (2) of the above lemma, the isomorphism class of (V, q)
may not be unique in the even case. The quadratic space (V, q) ⊗Q Qv may not be
quasi-split (in the sense of Definition 1.2.3) for all finite places v.

9.4.4. — In the rest of the paper we fix d ≥ 5, δ, (V , q), G∗ as in §9.4.1, and fix
(V, q), G as in part (2) of Lemma 9.4.2. We shall apply the preceding parts of this
paper, in particular Corollary 8.17.5, to (V, q) and G. As in §5.1, we fix an isometry
ϕV : (V, q) ⊗ Q ∼−→ (V , q) ⊗ Q, and use it to define the inner twisting ψV : GQ

∼−→
G∗

Q, g 7→ ϕV gϕ
−1
V as well as the function uV : ΓQ → G∗(Q), ρ 7→ ρϕV ϕ

−1
V . To

conform with the convention of [Täı19], we let Ξ be ψ−1
V and let z be the function

ΓQ → G∗(Q), ρ 7→ uV (ρ)−1. Then according to that convention it is z rather than uV
that is a cocycle, and (G,Ξ, z) is a global pure inner form of G∗ over Q.

At each place v of Q, by localization we obtain a pure inner form (Gv,Ξv, zv) of
G∗
v, where Gv := GQv . By construction this pure inner form satisfies the hypothesis

in §9.3.2 when v is finite.
We fix once and for all a global Whittaker datum w for G∗.
We also fix an automorphism θG of G once and for all, as follows. In the odd

case let θG = idG. In the even case, we fix an element r of O(V )(Q) − G(Q) of
order 2 (for instance, the reflection on V associated to an anisotropic vector), and let
θG = Int(r)|G. Thus in this case θG is of order 2.

We know that there exists a large enough finite set Σ of prime numbers such
that G∗ (resp. G) admits a reductive model G (resp. G∗) over Z[1/Σ]. In particular,
for any prime p /∈ Σ, the group G∗ (resp. G) is unramified over Qp, and G∗(Zp)
(resp. G(Zp)) is a hyperspecial subgroup of G∗(Qp) (resp. G(Qp)). Moreover, we may
and shall assume that θG stabilizes G(Zp) for all p /∈ Σ, up to enlarging Σ. In fact,
the Q-automorphism θG of G extends to a Z[1/Σ]-automorphism of the model G after
suitably enlarging Σ.

As argued in [Täı19, §3.4], we may further enlarge Σ to a finite set of prime
numbers, denoted by Σ(G∗,G,Ξ, z,w, θG), such that the following conditions hold for
all primes p outside the set:

(1) As we have already assumed, θG stabilizes G(Zp).
(2) The localization wp of w, which is a Whittaker datum for G∗

p, is compatible
with the hyperspecial subgroup G∗(Zp) ⊂ G∗(Qp) in the sense of [CS80].

(3) The pure inner form (Gp,Ξp, zp) of G∗
p over Qp is trivial. Equivalently, the

quadratic spaces (V, q)⊗Qp and (V , q)⊗Qp are abstractly isomorphic over Qp (but
ϕV itself may not be defined over Qp). In particular, we have a canonical G(Qp)-
conjugacy class of Qp-isomorphisms G∗

p
∼−→ Gp, consisting of isomorphisms induced

by isometries V ⊗ Qp
∼−→ V ⊗ Qp that differ from ϕV by elements of G∗(Qv) (as

opposed to O(V )(Qv)).
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(4) Inside the canonical G(Qp)-conjugacy class of Qp-isomorphisms G∗
p

∼−→ Gp as
in (3), there is one that extends to a Zp-isomorphism G∗

Zp
∼−→ GZp .

Definition 9.4.5. — Let S be a finite set of places of Q. Let ϑS be the infinite
direct product group

∏
v/∈S Z/2Z, where the product is over all places of Q outside S.

Let ϑS act on G(AS) by

(ϵv)v · (gv)v := (θϵvG (gv))v, ∀(ϵv)v ∈ ϑS , (gv)v ∈ G(AS).

Since θG fixes G(Zp) for almost all primes p, this action is well defined, and each
element of ϑS acts via a topological group automorphism of G(AS). Similarly, we
define ϑS :=

∏
v∈S Z/2Z and let ϑS act on

∏
v∈S G(Qv) by the same formula.

9.4.6. — Let v be a finite place of Q and let ψv ∈ Ψ+
unit(G∗

v). As in Proposition
9.3.3 the local packet Π̃ψv (Gv) is a set of {1, θGv}-orbits of isomorphism classes of
representations of G(Qv), where θGv ∈ Aut(Gv) is chosen as in §9.3.2. Since θGv is of
the form Int(gv)|Gv for some gv ∈ O(V )(Qv)−G(Qv), we have θG = θGv ◦ Int(hv) for
some hv ∈ G(Qv). Therefore we can view each element of Π̃ψv (Gv) as a {1, θG}-orbit,
or equivalently, a ϑv-orbit, of isomorphism classes of representations of G(Qv). We
normalize the map Π̃ψv (Gv) → π0(Sψv )D, πv 7→ ⟨·, πv⟩ as in Proposition 9.3.3 with
respect to the localization (wv,Ξv, zv) of (w,Ξ, z) at v, where (w,Ξ, z) is fixed in
§9.4.4. Similarly, for any ψ∞ ∈ ΨAJ(G∗

∞), we have the local packet ΠAJ
ψ (G∞) as in

Proposition 9.3.5, and we normalize the map π 7→ ⟨·, π⟩AJT in that proposition with
respect to the localization (w∞,Ξ∞, z∞) of (w,Ξ, z) at ∞. In the sequel we always
keep these normalizations, without explicitly mentioning them.

Now let ψ ∈ Ψ̃(G∗). For each place v of Q, we fix a localization ψv ∈ Ψ+
unit(G∗

v)
of ψ; see §9.2.15. Let S be a finite set of places of Q containing ∞. We define the
global (away from S) Arthur packet Π̃S

ψ(G) to be the set of (πv)v/∈S ∈
∏
v/∈S Π̃ψv (Gv)

such that πv is a ϑv-orbit of isomorphism classes of G(Zv)-unramified representations
for almost all v. (Here note that for almost all v, ϑv permutes isomorphism classes of
G(Zv)-unramified representations.) Now for all primes v not in Σ(G∗,G,Ξ, z,w, θG),
the packet Π̃ψv (Gv) together with the map from it to π0(Sψv )D is constructed from
Π̃ψv (G∗

v) via an isomorphism Gv
∼−→ G∗

v as in §9.4.4 (4); see [Täı19, §3.3]. More-
over, ψv is unramified for almost all v. Thus for almost all v, by Lemma 9.2.12
applied to (G∗

v, ψv,G∗(Zv)), there is a unique πv ∈ Π̃ψv (Gv) which is a ϑv-orbit of
G(Zv)-representations, and moreover for this πv we have ⟨·, πv⟩ = 1 ∈ π0(Sψv )D and
dim(π̇v)G(Zv) = 1 for any π̇v ∈ πv. We conclude that for πS = (πv)v/∈S ∈ Π̃S

ψ(G), we
have ⟨·, πv⟩ = 1 ∈ π0(Sψv )D for almost all v.

For πS = (πv)v/∈S ∈ Π̃S
ψ(G), we choose a member π̇v ∈ πv for each v, and form

the restricted tensor product π̇S :=
⊗′

v/∈S π̇v, which makes sense as a smooth ad-
missible representation of G(AS) since almost all π̇v satisfy dim(π̇v)G(Zv) = 1. The
isomorphism class of the G(AS)-representation π̇S is well defined up to the ϑS-action.
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9.5. Spectral evaluation

9.5.1. — In the following we keep the setting and notation of §1.8.3, Theorem 1.8.4,
and Corollary 8.17.5, for the quadratic space (V, q) fixed in §9.4.4. In particular we
fix a neat compact open subgroup K ⊂ G(Af ), and fix f∞dg∞ ∈ H(G(Af ) �K)Q.

We need a modified version of Corollary 8.17.5 as follows. In §8.4.1, we assumed
that V is absolutely irreducible. In the odd case we keep that assumption, but in the
even case we assume either one of the following two conditions:

(1) The algebraic GE-representation V is absolutely irreducible, and the isomor-
phism class of the GQ-representation V⊗E Q is preserved by outer automorphisms of
GQ.

(2) We have V ∼= V0⊕V1, where V0 and V1 are absolutely irreducible algebraic GE-
representations such that the isomorphism classes of the GQ-representations V0⊗E Q
and V1 ⊗E Q are unequal and interchanged with each other under an outer automor-
phism of GQ.
We shall call case (1) the even symmetric case, and case (2) the even composite
case. In the odd case and the even symmetric case, Corollary 8.17.5 directly ap-
plies. In the even composite case, as in Theorem 1.8.4, for each fixed f∞dg∞ we
obtain two finite sets of prime numbers Σ(O(V ),Vi, λ,K, f∞) for i = 0, 1. We define
Σ(O(V ),V, λ,K, f∞) to be the union of these two sets. Clearly (8.17.5.1) still holds
in this case, for any prime p outside Σ(O(V ),V, λ,K, f∞) and satisfying the assump-
tion in §8.17.1, if on the right hand side we define fH∞ to be the sum of the two test
functions corresponding to V0 and V1. Indeed one obtains this by simply summing
the two cases of (8.17.5.1) corresponding to V0 and V1.

In all of the odd case, the even symmetric case, and the even composite case, we
define the finite sets of primes

Σ′
bad(K, f∞) := Σ(O(V ),V, λ,K, f∞) ∪ Σ(G∗,G,Ξ, z,w, θG),

and

Σbad(K, f∞) := Σ′
bad(f∞) ∪ {p /∈ Σ′

bad(K, f∞) | Kp ̸= G(Zp)} .(9.5.1.1)

We now fix a prime p /∈ Σbad(K, f∞), and apply (the modified) (8.17.5.1) to p. Note
that the extra assumption on p in the even case in §8.17.1 is satisfied here by condition
(2) in §9.4.4. We thus obtain

Tr(Frobap ×f∞dg∞ | IH∗(ShK ,V)) =
∑

(H,LH,s,η)∈Ė (G)

ι(G,H)STH(fH),(9.5.1.2)

for every sufficiently large a. On the right hand side, as we have already indicated, the
archimedean test function fH∞ is defined to be the sum of the test functions constructed
in §8.4 corresponding to V0 and V1 in the even composite case. Here we view the two
sides of (9.5.1.2) as numbers in C, but recall from Theorem 1.8.4 and Remark 8.17.6
that the left hand side is actually in E.
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Remark 9.5.2. — In the even composite case, IH∗(ShK ,V) is the direct sum of
IH∗(ShK ,V0) and IH∗(ShK ,V1) as H(G(Af ) �K)Q × ΓQ-modules. We explain how
the latter two are related to each other. Let K ′ = K ∩ θG(K). Then K ′ is a compact
open subgroup of K, and the H(G(Af ) �K)Q×ΓQ-module IH∗(ShK ,Vi) is obtained
from the H(G(Af ) � K ′)Q × ΓQ-module IH∗(ShK′ ,Vi) by taking K-invariants. It
is easier to describe the relation between IH∗(ShK′ ,Vi) and IH∗(ShK′ ,Vi), so we
replace K by K ′. Write H for H(G(Af ) � K)Q. Then θG induces a ring automor-
phism of H. Now observe(11) that the automorphism θG = Int(r)|G of G induces an
automorphism of the Shimura datum O(V ) = (G,X , h), since r ∈ O(V )(Q) induces
an automorphism of the space X of oriented negative definite planes in VR, and h

intertwines this automorphism with the automorphism f 7→ θG ◦ f of Hom(S, GR).
Moreover θG interchanges the isomorphism classes of the GQ-representations V0,Q and
V1,Q. Therefore by transport of structure we have an H× ΓQ-module isomorphism

IH∗(ShK ,V1) ∼= IH∗(ShK ,V0)⊗H,θG H

Lemma 9.5.3. — Suppose that f∞, as a function on G(Af ), is fixed by the group
ϑ∞ (see Definition 9.4.5). Then for each (H, LH, s, η) ∈ Ė (G) we have fH ∈ H̃st(H),
where H̃st(H) is defined in §9.2.15.

Proof. — If (H, LH, s, η) does not satisfy the conditions (†) and (‡) in §8.4.1, then
by definition fH = 0. In the following we assume that these conditions are satisfied.
We can factorize f∞,p as fSf∞,p,S , where S is a finite set of primes not containing
p, fS ∈ C∞

c (
∏
v∈S G(Qv)), and f∞,p,S = 1G(Ẑp,S) ∈ C

∞
c (G(A∞,p,S)). Moreover, up

to enlarging S, we may assume that 1G(Ẑp,S) is fixed by ϑ∞,p,S . Since p is not in
Σbad(f∞), we also know that 1Kp = 1G(Zp) is fixed by ϑp. Hence our assumption that
f∞ is invariant under ϑ∞ implies that fS is invariant under ϑS . By induction on |S|,
it is an elementary exercise to show that fS can be written as a sum of functions in
C∞
c (
∏
v∈S G(Qv)) each of which is completely factorizable (i.e., a product over v ∈ S

of functions in C∞
c (G(Qv))) and invariant under ϑS . Hence f∞,p is a sum of functions

in C∞
c (G(Apf )) each of which is completely factorizable and invariant under ϑS . We

have thus reduced to the case where f∞,p =
∏
v ̸=∞,p fv, with each fv ∈ C∞

c (G(Qv))
invariant under θG, and fv = 1G(Zv) for almost all v.

For each finite place v ̸= p, we can choose an automorphism θGv of Gv as in §9.3.2.
As we have observed in §9.4.6, θG = θGv ◦Int(hv) for some hv ∈ G(Qv). Therefore the
fact that fv is invariant under θG implies that fv has θGv -invariant orbital integrals.
By Proposition 9.3.3 we know that fHv , which is a Langlands–Shelstad transfer of fv,
lies in H̃st(HQv ). It remains to check that fHv ∈ H̃st(HQv ) for v =∞, p.

The fact that fH∞ ∈ H̃st(HR) follows from the following ingredients:

(11)We thank the anonymous referee for bringing this observation to our attention.
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– The implicit fact that we may (and do) take fH∞ inside H(HR) ⊂ C∞
c (H(R)).

(By the construction in §8.4, this reduces to the fact [Art89, Lem. 3.1] that for any
discrete series representation of H(R), a pseudo-coefficient of it may be taken to be
bi-finite under a prescribed maximal compact subgroup of H(R).)

– The formula [Kot90, (7.4)] for the stable orbital integrals of fH∞.
– The invariance properties of the transfer factors shown in the proof of [Täı19,

Prop. 3.2.6].
– The fact that for any semi-simple elliptic element γ0 ∈ G(R) the term

e(I) vol−1 Tr ξC(γ0) (where ξC = VC) in [Kot90, (7.4)] is invariant under re-
placing γ0 by its image under any automorphism of GR. (Note that in the even case
this is false if we take ξC to be a general irreducible representation of GC.)

We now prove that fHp ∈ H̃st(HQp). By the discussion in §7.1.2, we have canonical
actions of Aut(HQp) onHur(HQp) and on AHQp

, under which the subgroup Had(Qp) ⊂
Aut(HQp) (consisting of inner automorphisms) acts trivially. Thus the outer automor-
phism group Out(HQp) = Aut(HQp)/Had(Qp) acts on Hur(HQp) and AHQp

. Moreover
the canonical Satake isomorphism Hur(HQp) ∼−→ AHQp

is Out(HQp)-equivariant. We
need only show that the Satake transform of fHp in AHQp

= AH+
Qp
⊗ AH−

Qp
, which is

computed in (7.4.2.1), is invariant under Out(HQp) = Out(H+
Qp) × Out(H+

Qp). In all
the five cases in (7.4.2.1), the image of Out(HQp) in Aut(AHQp

) is generated by the
automorphism Z1 7→ −Z1 of AH+

Qp
(non-trivial in the second and fourth cases) and

the automorphism Y1 7→ −Y1 of AH−
Qp

(non-trivial in the second and third cases). By
(7.4.2.1), the Satake transform of fHp is indeed invariant under Out(HQp).

9.5.4. — We keep the assumption in Lemma 9.5.3 that f∞ is fixed by ϑ∞. We
assume Hypothesis 9.1.2. By Corollary 9.1.7, the expansion (9.2.15.2), and Lemma
9.5.3, we can rewrite (9.5.1.2) as

(9.5.4.1) Tr(Frobap ×f∞dg∞ | IH∗(ShK ,V))

=
∑

(H,LH,s,η)∈Ė (G)

ι(G,H)
∑

ψ′∈Ψ̃(H)

mψ′ |Sψ′ |−1
σ(S̄0

ψ′)ϵψ′(sψ′)Λψ′(fH).

Lemma 9.5.5. — Assume that ψ′ ∈ Ψ̃(H) contributes non-trivially to the RHS
of (9.5.4.1). Then H is cuspidal, and η ◦ ψ′

∞ ∈ ΨAJ(G∗
∞). (In particular, ψ′

∞ ∈
ΨAJ(HR).) Moreover, η ◦ ψ′

∞ has the same infinitesimal character as that of V∗
C

(resp. that of V∗
0,C or V∗

1,C) in the odd case and the even symmetric case (resp. the
even composite case).

Proof. — We only treat the even composite case, the other two cases being similar.
Recall that fH∞ = fH∞,0 + fH∞,1 where fH∞,i is the analogue of fH∞ constructed in §8.4
with V replaced by Vi. Thus fH∞ = 0 unless H is cuspidal; see §8.4.1. Assume that
H is cuspidal. By [Täı17, Lem. 4.1.3] we know that for any ψ′′

∞ ∈ Ψ(HR), all the



264 CHAPTER 9. SPECTRAL EXPANSION AND HASSE–WEIL ZETA FUNCTIONS

representations in Π̃ψ′′
∞

(HR) have the same infinitesimal character as that of ψ′′
∞. By

analytic continuation (see [Art13, p. 46] and cf. Remark 9.2.10), the same conclusion
holds for all ψ′′

∞ ∈ Ψ+
unit(HR). Hence in order that Λψ′

∞
(fH∞) ̸= 0, the infinitesimal

character of η ◦ ψ′
∞ must be the same as that of V∗

0,C or V∗
1,C, which are regular

C-algebraic. It remains to check that η ◦ ψ′
∞ is bounded on WR. But this follows

from the fact that η ◦ ψ′
∞ is the localization of the global parameter η ◦ ψ′, the fact

that it has C-algebraic infinitesimal character, and Clozel’s purity lemma [Clo90b,
Lem. 4.9]. (For a similar argument cf. [Täı17, p. 309].)

9.5.6. — Let (H, LH, s, η) ∈ Ė (G). For each place v of Q, let (wv,Ξv, zv) be the
localization at v of (w,Ξ, z) fixed in §9.4.4. In §9.3.2 and §9.3.4, we introduced
a normalization ∆Gv

HQv
(wv,Ξv, zv) of transfer factors between HQv and Gv for each

place v. In §8.4.7 we also introduced a normalization (∆G
H)v. Thus we have

aGH,v∆Gv
HQv

(wv,Ξv, zv) = (∆G
H)v,

for a constant aGH,v ∈ C×. By construction, the normalizations (∆G
H)v are the canon-

ical unramified normalizations at almost all places v (associated to hyperspecial sub-
groups determined by a reductive model of G over some Zariski open of SpecZ),
and satisfy the global product formula. The same holds for the normalizations
∆Gv
HQv

(wv,Ξv, zv), since wv for various v are localizations of the global Whittaker
datum w, and (Ξv, zv) for various v are localizations of a global pure inner twist
(Ξ, z); see [Art13, p. 137] or [Kal18, Prop. 4.4.1]. It follows that∏

v

aGH,v = 1,(9.5.6.1)

where almost all terms in the product are 1.
Let ψ′ ∈ Ψ̃(H). In the following we compute the contribution of ψ′ to the RHS of

(9.5.4.1), based on Kottwitz’s results in [Kot90, §9]. For each place v, let

ψ′
v ∈ Ψ+

unit(HQv )

be a localization of ψ′ as in §9.2.15. Let

ψv := η ◦ ψ′
v ∈ Ψ+

unit(G∗
v),

and let
ψ := η ◦ ψ ∈ Ψ̃(G∗)

as in §9.2.2. For each place v, ψv is indeed a localization of ψ, so our notation is
consistent. In Lemma 9.5.5, we have already seen that a necessary condition for ψ′

to contribute non-trivially to the RHS of (9.5.4.1) is that ψ∞ is Adams–Johnson with
infinitesimal character determined by V. In the following we assume this condition
(but we do not assume that ψ′ has a non-zero contribution a priori). In particular, ψ′

∞
is discrete, and so S̄0

ψ′ = {1}. Thus by the definition of σ(S̄0
ψ′) in [Art13, Prop. 4.1.1],
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we have

σ(S̄0
ψ′) = 1.(9.5.6.2)

We make several observations and definitions which will be understood in the
statement of the next lemma. Recall from §9.4.6 that for each finite place v we
view elements of Π̃ψv (Gv) as ϑv-orbits of isomorphism classes of representations of
G(Qv). Since p /∈ Σbad(K, f∞), we know that Kp = G(Zp) and that ϑp stabilizes
G(Zp). Hence ϑp permutes the isomorphism classes of Kp-unramified representations
of G(Qp). Thus we can speak of whether an element of Π̃ψp(Gp) is a ϑp-orbit of
Kp-unramified representations. We write Λp,∞ψ′ for the product of the local stable
distributions Λψ′

v
over all places v /∈ {∞, p}, so we have

Λψ′(fH) = Λψ′
∞

(fH∞)Λψ′
p
(fHp )Λp,∞ψ′ (fH,p,∞).

As in §9.4.6, we define the global packet Π̃p,∞
ψ (G), and for each πp,∞ ∈ Π̃p,∞

ψ (G) we
define the G(Apf )-representation π̇p,∞ (which depends on arbitrary choices).

Lemma 9.5.7. — Let (H, LH, s, η), ψ′, ψ, ψ′
v, ψv be as in §9.5.6, and keep assuming

that ψ∞ is Adams–Johnson with infinitesimal character determined by V as in Lemma
9.5.5. The following statements hold.

(1) We have

ΛAJ
ψ′

∞
(fH∞) = (−1)q(G∞)⟨sψs, λπ∞⟩⟨sψs, π∞⟩AJT aGH,∞.

Here
– π∞ is any element of ΠAJ

ψ∞
(GR).

– ⟨·, λπ∞⟩ is a character on Sψ∞ = π0(Sψ∞) defined on p. 195 of [Kot90].
– The pairing ⟨sψs, π∞⟩AJT is as in Proposition 9.3.5, defined with respect to

(w∞,Ξ∞, z∞).
– The product ⟨sψs, λπ∞⟩⟨sψs, π∞⟩AJT is independent of the choice of π∞.

(2) We have

Λψ′
∞

(fH∞) = (−1)q(G∞)⟨sψs, λπ∞⟩⟨sψs, π∞⟩AJT aGH,∞

(3) For each finite place v, ψv is unramified if and only if G∗
v is unramified and ψ′

v

is unramified.
(4) If Λψ′

p
(fHp ) ̸= 0, then ψp is unramified. Conversely, assume that ψp is un-

ramified. Then inside Π̃ψp(Gp), there is a unique element πp that is a ϑp-orbit of
Kp-unramified representations of G(Qp). Each π̇p ∈ πp satisfies dim(π̇p)Kp = 1. We
have

Λψ′
p
(fHp ) = ⟨sψs, πp⟩pan/2 Tr(sφψp(Frobap) | StdG) aGH,p.(9.5.7.1)

Here
– n = d− 2 is the dimension of the Shimura variety; see §1.5.
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– StdG = StdG∗ is the standard representation (9.2.2.1) of LG = LG∗.
– Frobp denotes any choice of a lift of the geometric Frobenius in WQp .

(5) We have

Λp,∞ψ′ (fH,p,∞) =
∑

πp,∞=(πv)v∈Π̃p,∞
ψ

(G)

Tr
(
π̇p,∞(fp,∞dgp,∞)

) ∏
v ̸=p,∞

⟨sψs, πv⟩aGH,v,

where fp,∞dgp,∞ is determined by f∞dg∞ in the same manner as in §1.8.3.

Proof. — (1) This follows from [Kot90, Lem. 9.2]. More precisely, we know (Remark
9.3.6) that ΛAJ

ψ′
∞

is the stable distribution considered by Adams–Johnson [AJ87] and
Kottwitz [Kot90, §9], and the latter is Kottwitz’s definition of [Kot90, (9.4)]. We
know from Proposition 9.3.5 (3) that ⟨sψs, π∞⟩AJT serves as the spectral transfer
factor that is denoted by ∆∞(ψH , π) (for ψH = ψ′, π = π∞) in [Kot90, Lem. 9.2],
up to the correction factor aGH,∞. Here aGH,∞ arises because the spectral transfer fac-
tors used in loc. cit. are assumed to be compatible with the normalization (∆G

H)∞ =
aGH,∞∆G∞

HR
(w∞,Ξ∞, z∞) of the geometric transfer factors, whereas the endoscopic

character relation (9.3.5.1) is with respect to the normalization ∆G∞
HR

(w∞,Ξ∞, z∞).
Note that in the even symmetric case, the fact that fH∞ is a sum fH∞,0 + fH∞,1, where
fH∞,i corresponds to Vi, does not affect the validity of [Kot90, Lem. 9.2]. This is
because the infinitesimal characters of V0,C and V1,C are unequal, and in the evalua-
tion ΛAJ

ψ′
∞

(fH∞) only one of fH∞,i will contribute, according to whether the infinitesimal
character of η ◦ ψ′

∞ is equal to that of V∗
0,C or V∗

1,C.
(2) This follows from part (1) together with Proposition 9.3.5 (2) and the fact that

fH∞ ∈ H̃st(HR) shown in the proof of Lemma 9.5.3.
(3) Write Iv for the inertia subgroup of WQv . For each τ ∈ Iv, write ψ′

v(τ) = aτ⋊τ ,
with aτ ∈ Ĥ.

Assume that ψv is unramified. Then by definition G∗
v is unramified. It also imme-

diately follows that ψ′
v is trivial on SU2(R), and η(τ) = η(a−1

τ )⋊τ for all τ ∈ Iv. Since
τ acts trivially on Ĝ∗, for all x ∈ Ĥ we have η(τx) = η(τ)η(x)η(τ)−1 = η(a−1

τ xaτ ).
Therefore Iv acts on Ĥ via inner automorphisms, which implies that HQv is un-
ramified. Then by our explicit presentation we know that the endoscopic datum
(H, LH, s, η) is unramified over Qv (cf. §8.4.1), that is, η(τ) = 1 ⋊ τ for all τ ∈ Iv.
This implies that aτ = 1 for all τ ∈ Iv. Since HQv is unramified and we have already
seen that ψ′

v is trivial on SU2(R), we know that ψ′
v is unramified.

Conversely, assume that ψ′
v is unramified and G∗

v is unramified. Then HQv is
unramified, and as before the endoscopic datum (H, LH, s, η) is unramified over Qv.
Since ψv = η ◦ ψ′

v, we know that ψv is trivial on SU2(R) and sends every τ ∈ Iv to
1 ⋊ τ . Thus ψv is unramified since G∗

v is unramified.
(4) Suppose Λψ′

p
(fHp ) ̸= 0. Then fHp ̸= 0, so by the definition of fHp we know

that H is unramified over Qp. Fix a Whittaker datum wH,p = (wH+
Qp
,wH−

Qp
) for HQp ,

and fix a hyperspecial subgroup KH,p of H(Qp) that is compatible with wH,p, as in



9.5. SPECTRAL EVALUATION 267

§§9.2.8 and 9.2.13. Recall from Definition 8.4.9 and Remark 8.4.10 that fHp is well
defined as an element of the canonical unramified Hecke algebra Hur(HQp), and its
stable orbital integrals are independent of how we realize fHp in C∞

c (H(Qp)). Thus
we may assume that fHp ∈ H(H(Qp) � KH,p) without loss of generality. Then by
(9.2.8.1) and Lemma 9.2.14 (1), we know that ψ′

p is unramified. By part (3) above,
this implies that ψp is unramified.

Conversely, assume that ψp is unramified. By part (3) above, ψ′
p is unramified

(since we know that G∗
Qp is unramified), so in particular HQp is unramified. Fix wH,p

and KH,p as in the preceding paragraph. Inside G∗(Qp), we have the hyperspecial
subgroup G∗(Zp), and it is compatible with the Whittaker datum wp for G∗

p since
p /∈ Σ(G∗,G,Ξ, z,w, θG); see §9.4.4. We normalize the Haar measures on G∗(Qp)
and H(Qp) once and for all such that hyperspecial subgroups have volume 1. By
Lemmas 9.2.12 and 9.2.14, we know that inside Π̃ψp(G∗

p) (resp. Π̃ψ′
p
(HQp)) there is a

unique element πp,G∗ (resp. πp,H) whose members are G∗(Zp)-unramified (resp. KH,p-
unramified), and moreover the members of πp,G∗ (resp. πp,H) have 1-dimensional fixed
spaces under G∗(Zp) (resp. KH,p). As in the preceding paragraph we may assume that
fHp ∈ H(H(Qp) �KH,p). Then by (9.2.8.1), we have

Λψ′
p
(fHp ) = ⟨sψ′

p
, πp,H⟩Tr(πp,H(fHp )).

Here the pairing ⟨sψ′
p
, πp,H⟩ is defined with respect to wH,p. In view of the compatibil-

ity between local unramified Arthur parameters and unramified Langlands parameters
in Lemma 9.2.14 (2), the same argument as Kottwitz’s proof that [Kot90, (9.3)] is
equal to [Kot90, (9.7)] gives

Tr(πp,H(fHp )) = pan/2 Tr(sφψp(Frobap) | StdG).

Indeed, one easily checks that the irreducible representation of LG determined by the
Shimura datum appearing in [Kot90, (9.7)] is StdG, and that the ambiguity in φψp
up to the Aut(LG∗

p)-action disappears when we consider the GLN (C)-conjugacy class
of the composition of φψp with StdG : LG = LG∗ → GLN (C). In conclusion we have

Λψ′
p
(fHp ) = ⟨sψ′

p
, πp,H⟩pan/2 Tr(sφψp(Frobap) | StdG).

As we have already mentioned in §9.4.6, since p /∈ Σ(G∗,G,Ξ, z,w, θG), the packet
Π̃ψp(Gp) together with the map to SDψp is constructed from Π̃ψp(G∗

p) by identifying
Gp with G∗

p via an isomorphism G∗
p

∼−→ Gp as in condition (4) in §9.4.4. Hence the
existence and uniqueness of πp and the fact that members of πp have 1-dimensional
fixed spaces under Kp = G(Zp) follow from the existence and uniqueness of πp,G∗ and
the fact that members of πp,G∗ have 1-dimensional fixed spaces under G∗(Zp). Also
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we have ⟨·, πp⟩ = ⟨·, πp,G∗⟩ ∈ SDψp . To finish the proof it suffices to show that(12)

⟨sψ′
p
, πp,H⟩ = ⟨sψs, πp,G∗⟩aGH,p.(9.5.7.2)

Comparing the Fundamental Lemma (Theorem 8.1.4 (2)) with the endoscopic char-
acter relation (9.2.9.1) and the expansion (9.2.8.1), we get

∑
ξ∈Π̃ψp (G∗

p)

⟨sψs, ξ⟩Tr(ξ(1G∗(Zp))) = (aGH,p)−1
∑

ξ′∈Π̃ψ′
p

(HQp )

⟨sψ′
p
, ξ′⟩Tr(ξ′(1KH,p)).

(9.5.7.3)

Here, the pairing ⟨sψ′
p
, ξ′⟩ is defined with respect to wH,p, and the factor (aGH,p)−1

appears because it is (aGH,p)−11KH,p , rather than 1KH,p , that is a Langlands–Shelstad
transfer of 1G∗(Zp) with respect to the Whittaker normalization of transfer factors
between HQp and G∗

p associated to wp. By Lemmas 9.2.12 and 9.2.14, the two sides
of (9.5.7.3) are equal to ⟨sψs, πp,G∗⟩ and (aGH,p)−1⟨sψ′

p
, πp,H⟩ respectively. This proves

(9.5.7.2).
(5) First observe that for each πp,∞ ∈ Π̃p,∞

ψ (G), the ambiguity in the
G(Apf )-representation π̇p,∞ up to the ϑp,∞-action does not affect the value of
Tr
(
π̇p,∞(fp,∞dgp,∞)

)
. Indeed, since θG is an automorphism of G of order at most 2,

it is clear that dgp,∞ is fixed by ϑp,∞. In the proof of Lemma 9.5.3 we observed that
fp,∞ is fixed by ϑp,∞ (under the overall assumption that f∞ is fixed by ϑ∞). Hence
the trace of fp,∞dgp,∞ on a G(Apf )-representation depends only on the ϑp,∞-orbit of
the isomorphism class of that representation.

Now as in the proof of Lemma 9.5.3, we may assume that fp,∞ =
∏
v ̸=p,∞ fv

with each fv ∈ H(Gv) being fixed by ϑv. The desired statement then follows from
the endoscopic character relation in Proposition 9.3.3 applied to each fv. Here the
term aGH,v appears because it is (aGH,v)−1fHv , rather than fHv , that is a Langlands–
Shelstad transfer of fv with respect to the normalization ∆Gv

HQv
(wv,Ξv, zv) of transfer

factors.

We summarize the results we have obtained so far in the following proposition.

Proposition 9.5.8. — Let (H, LH, s, η) ∈ Ė (G) and ψ′ ∈ Ψ̃(H). For each place v
of Q, let ψ′

v ∈ Ψ+
unit(HQv ) be a localization of ψ′, and let ψv := η ◦ ψ′

v ∈ Ψ+
unit(G∗

v).
Let ψ = η ◦ ψ′ ∈ Ψ̃(G∗). The following statements hold:

(1) For ψ′ to contribute non-trivially to the RHS of (9.5.4.1), it is necessary that H
is cuspidal, and that ψ∞ is Adams–Johnson with infinitesimal character determined
by V as in Lemma 9.5.5.

(12)By Lemmas 9.2.12 and 9.2.14 we know that ⟨·, πp,H⟩ and ⟨·, πp,G∗ ⟩ are trivial, but in the current
proof we do not need this.
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(2) Assume that the necessary conditions in (1) are satisfied. Then the contribution
of ψ′ to the RHS of (9.5.4.1), without the factor ι(G,H), is equal to

(9.5.8.1) mψ′ |Sψ′ |−1
ϵψ′(sψ′)⟨sψs, λπ∞⟩⟨sψs, π∞⟩AJT A(ψ, s, p, a)∑

π∞=(πv)v∈Π̃∞
ψ

(G)

Tr
(
π̇∞(f∞dg∞)

) ∏
v ̸=∞

⟨sψs, πv⟩.

with notations explained below:
– The product ⟨sψs, λπ∞⟩⟨sψs, π∞⟩AJT is as in Lemma 9.5.7 (1).
– We define

A(ψ, s, p, a) := (−1)q(G∞)pan/2 Tr(sφψp(Frobap) | StdG).

The notations n, Frobp, and StdG are as in Lemma 9.5.7 (3), and we have
q(G∞) = n.

Proof. — This follows from Lemma 9.5.5, Lemma 9.5.7, (9.5.6.1), (9.5.6.2), and the
following simple observations:

(1) For any finite-length smooth representation τp of G(Qp), we have

Tr(τp(1Kpdgp)) = dim τKpp .

Here, as in §1.8.3, dgp is the Haar measure on G(Qp) giving volume 1 to hyperspecial
subgroups.

(2) If ψp is ramified, then no element of Π̃ψp(Gp) is a ϑp-orbit of Kp-unramified
representations. Indeed, as we have mentioned in the proof of Lemma 9.5.7 (4),
the packet Π̃ψp(Gp) is constructed from the packet Π̃ψp(G∗

p) via an isomorphism
G∗
p

∼−→ Gp as in condition (4) in §9.4.4. Hence the current assertion follows from
Lemma 9.2.12 applied to G∗

p and ψp.

9.6. Spectral expansion of the intersection cohomology

We keep the same setting and notation as in §9.5. In particular, V is as in §9.5.1,
and we speak of the odd case, the even symmetric case, and the even composite case.

Definition 9.6.1. — We denote by Ψ̃(G∗)V the set of ψ ∈ Ψ̃(G∗) such that the
localization ψ∞ of ψ at ∞ lies in ΨAJ(G∗

∞) and has the same infinitesimal character
as that of V∗

C in the odd case and the even symmetric case, and the same infinitesimal
character as that of V∗

0,C or V∗
1,C in the even composite case. (This condition is

insensitive to the ambiguity in ψ∞ up to the Aut(LG∗
∞)-action.) In particular, for

any ψ ∈ Ψ̃(G∗)V, we have ψ ∈ Ψ̃2(G∗), and Sψ = π0(Sψ) is a finite abelian group.
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Definition 9.6.2. — We say that a compact open subgroup K ⊂ G(Af ) is com-
pletely symmetric, if K =

∏
vKv where v runs through all primes, with each Kv a

compact open subgroup of G(Qv) that is stable under θG.

Remark 9.6.3. — Completely symmetric compact open subgroups of G(Af ) form
a cofinal system of compact open subgroups. Indeed, given any compact open sub-
group W of G(Af ), we know that W contains a compact open subgroup of the
form

∏
v∈S Uv ×

∏
v/∈S G(Zv), where S is a sufficiently large finite set of primes, G

is as in §9.4.4, and Uv is a compact open subgroup of G(Qv) for each v ∈ S. If
S is sufficiently large, we know that G(Zv) is θG-stable for all v /∈ S; see §9.4.4.
Note that U ′

v := Uv ∩ θG(Uv) is a θG-stable compact open subgroup of G(Qv) for
each v ∈ S. Hence W contains the completely symmetric compact open subgroup∏
v∈S U

′
v ×

∏
v/∈S G(Zv).

Theorem 9.6.4. — Assume Hypothesis 9.1.2. Fix a neat compact open subgroup K
of G(Af ), and fix f∞dg∞ ∈ H(G(Af )�K)Q. Assume that K is completely symmetric,
and that f∞ is fixed by ϑ∞. Let p be a prime not in the set Σbad(K, f∞) as in
(9.5.1.1). Let a ∈ Z be arbitrary. We have

(9.6.4.1) Tr(Frobap ×f∞dg∞ | IH∗(ShK ,V))

=
∑

ψ∈Ψ̃(G∗)V

mψ

∑
π∞∈Π̃∞

ψ
(G)

Tr
(
π̇∞(f∞dg∞)

)
|Sψ|−1 ∑

s∈Sψ

B(ψ, s, π∞, p, a),

with notations explained below:

– For each ψ, mψ ∈ {1, 2} is as in (9.2.2.2).
– For each ψ ∈ Ψ̃(G∗)V, π∞ = (πv)v ∈ Π̃∞

ψ (G), and s ∈ Sψ, we define

B(ψ, s, π∞, p, a) := ϵψ(s)⟨s, λπ∞⟩⟨s, π∞⟩AJT A(ψ, sψs, p, a)
∏
v ̸=∞

⟨s, πv⟩,

where the terms ⟨s, λπ∞⟩⟨s, π∞⟩AJT and A(ψ, sψs, p, a) are as in Proposition 9.5.8,
but with a change of variable from s to sψs. (Recall that sψ ∈ Sψ and s2

ψ = 1.)

Moreover, the summands on the right hand side of (9.6.4.1) vanish outside a finite
set of summation indices (ψ, π∞) which depends only on K,V,w,Ξ, z and not on
f∞dg∞, p, a.

Proof. — Throughout the proof, it will always be understood that the data
K,V,w,Ξ, z are fixed. Also, since varying f∞dg∞ is equivalent to varying f∞

while keeping dg∞ fixed, we will omit dg∞ in the notations throughout. We first
prove that when f∞ and p are fixed, (9.6.4.1) holds for all sufficiently large a (in
a way depending on f∞ and p). By (9.5.4.1) and Proposition 9.5.8, we know that
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when a is sufficiently large, the LHS of (9.6.4.1) is equal to∑
ψ∈Ψ̃(G∗)V

∑
s∈Sψ

C(ψ, s)
∑

π∞∈Π̃∞
ψ

(G)

Tr
(
π̇∞(f∞)

)
B(ψ, sψs, π∞, p, a),

if we define

C(ψ, s) :=
∑

e=(H,LH,s1,η)∈Ė (G)
H is cuspidal

∑
ψ′∈Ψ̃(H)

(e,ψ′)7→(ψ,s)

ι(G,H)mψ′ |Sψ′ |−1
ϵψ′(sψ′)ϵψ(sψs)−1,

where the second summation is over ψ′ ∈ Ψ̃(H) such that (H, LH, s1, η, ψ
′) gives

rise to (ψ, s) as on p. 36 of [Art13]. Now in the definition of C(ψ, s) we can drop
the condition that H is cuspidal in the first summation, for the following reason. If
there exists ψ′ ∈ Ψ̃(H) such that (H, LH, s1, η, ψ

′) gives rise to (ψ, s), then by the
argument in the last paragraph of [Kot90, p. 196], elliptic maximal tori in G∗

R (which
are anisotropic) must come from HR since ψ∞ is Adams–Johnson. It follows that HR
contains anisotropic maximal tori, and hence H is cuspidal.

Thus the proof of (9.6.4.1) reduces to the proof of the identity

mψ |Sψ|−1 =
∑

e=(H,LH,s1,η)∈Ė (G)

∑
ψ′∈Ψ̃(H)

(e,ψ′)7→(ψ,s)

ι(G,H)mψ′ |Sψ′ |−1
ϵψ′(sψ′)ϵψ(sψs)−1

for all ψ ∈ Ψ̃(G∗)V and s ∈ Sψ. This step is identical to the corresponding step in the
proof of [Täı19, Thm. 4.0.1]. Without the extra complication in the even case (i.e.,
the integers mψ′ ,mψ being possibly larger than 1), this step is also given in [Kot90,
§10]. Both references rely on Arthur’s identity ϵψ′(sψ′) = ϵψ(sψs), which is known in
our case by [Art13, Lem. 4.4.1].

Before showing that (9.6.4.1) holds for all a ∈ Z, we show that the summands
on the right hand side of it vanish outside a finite set of summation indices (ψ, π∞)
independently of f∞, p, a. Here f∞ is allowed to range over all ϑ∞-fixed elements of
H(G(Af )�K)Q, p is allowed to range over all primes that are hyperspecial for K and
unramified for f∞, and a is allowed to range over all positive integers, not necessarily
“sufficiently large” with respect to f∞ and p in the previous sense. (Afterwards we
will show the stronger finiteness result when a is allowed to range over all integers.)

Since K is completely symmetric, we have K =
∏
vKv with each Kv a θG-stable

compact open subgroup of G(Qv). Let Σ0 be a finite set of primes containing the
set Σ(G∗,G,Ξ, z,w, θG) from §9.4.4 such that Kv = G(Zv) for all v /∈ Σ0. Now
since f∞ is bi-invariant under K, any π∞ = (πv)v appearing in (9.6.4.1) such that
Tr
(
π̇∞(f∞dg∞)

)
̸= 0 must satisfy the condition that πv is a ϑv-orbit of G(Zv)-

unramified representations for all primes v /∈ Σ0. By the discussion in §9.4.6, we
know that for each ψ ∈ Ψ̃(G∗)V, there are only finitely many elements π∞ ∈ Π̃∞

ψ (G)
satisfying the aforementioned condition, and these elements exist only when the local-
izations ψv of ψ are unramified for all primes v /∈ Σ0. By our above proof of (9.6.4.1),
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the desired finiteness of the summation range independently of f∞, p, a follows from
the following statements:

(1) If (H, LH, s, η) ∈ Ė (G) and ψ′ ∈ Ψ̃(H) are such that η ◦ψ′
v is unramified for a

prime v, then ψ′
v is unramified, and in particular HQv is unramified.

(2) There are only finitely many elements (H, LH, s, η) ∈ Ė (G) such that HQv is
unramified for all primes v /∈ Σ0.

(3) Fix (H, LH, s, η) ∈ Ė (G). For each choice of (f∞, p, a) (with a ∈ Z≥1), define
fH = fH(f∞,p,a) ∈ C∞

c (H(A)) as in §8.4 (cf. Lemma 9.5.3). Then in the expansion
(9.2.15.2) with respect to the test function fH , the summands vanish outside a finite
subset of Ψ̃(H) which is independent of (f∞, p, a).

Now statement (1) follows from Lemma 9.5.7 (3). By the explicit presentation of
(H, LH, s, η) and by Proposition 1.2.8, statement (2) reduces to the fact that there
are only finitely many elements in Q×/Q×,2 that have even valuations at all primes not
in Σ0. For (3), we may assume that H is cuspidal, as otherwise fH = 0. Now note that
for our given test function fH∞ on H(R), there are only finitely many values of t ≥ 0
(depending only on V) that contribute non-trivially to the expansion SHdisc(fH) =∑
t≥0 S

H
disc,t(fH) (see §9.2.15) by Lemma 9.5.5. Thus it suffices to show that for a

fixed t the summands in (9.2.15.1) with respect to fH vanish outside a finite subset
of Ψ̃(H) independently of (f∞, p, a). By [Art13, Thm. 1.3.2, Lem. 3.3.1], we need
only check that fH has a Hecke type (see [Art13, p. 129]) that is independent of
(f∞, p, a). Since fH∞ is independent of (f∞, p, a), this amounts to the existence of a
compact open subgroup KH ⊂ H(Af ) such that fH,∞ = fH,p,∞fHp can be chosen to
be bi-invariant under KH independently of (f∞, p, a).

We now construct KH . Let S be the set of primes v such that either GQv is
ramified or HQv is ramified. For each prime v /∈ S, we pick a hyperspecial subgroup
Uv ⊂ H(Qv), in such a way that

∏
v/∈S Uv is a compact open subgroup of H(ASf ).

By the two main theorems of [Art96, §6] (cf. the proof of [Art13, Lem. 3.3.1]), we
know that for every prime v there is a compact open subgroup Vv ⊂ H(Qv) with the
property that every Kv-bi-invariant function in C∞

c (G(Qv)) has a Langlands–Shelstad
transfer in C∞

c (H(Qv)) that is bi-invariant under Vv. By the Fundamental Lemma for
the full unramified Hecke algebra proved by Hales [Hal95] (which is conditional on
the Fundamental Lemma for the unit as recalled in Theorem 8.1.4), for every prime
v /∈ S we may and shall take Vv to be Uv. We take KH to be the product of Vv
over all primes, which is a compact open subgroup of H(Af ). Now for every choice of
(f∞, p, a), the corresponding function fH,∞ is non-zero only when p /∈ S, and in the
latter case we can choose fH,p,∞ to be bi-invariant under

∏
v ̸=p Vv, and choose fHp

to be bi-invariant under Up = Vp, as is clear from the construction in §8.4. It follows
that fH,∞ is bi-invariant under KH as desired.

We have proved that the summands on the RHS of (9.6.4.1) vanish outside a finite
set of summation indices (ψ, π∞) independently of f∞, p, a ∈ Z≥1. Note that the same
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holds even if a is allowed to range over all integers. This is because each summand,
as a function in a ∈ Z, is of the form

∑k
i=1 ciz

a
i , where ci, zi ∈ C are independent of

a. Thus if a summand is zero for all a ∈ Z≥1, then it is zero for all a ∈ Z.
To finish the proof it remains to show that (9.6.4.1) holds for all a ∈ Z. By what

we have already shown, for each fixed f∞ and p, the right hand side of (9.6.4.1) is of
the form

∑k
i=1 ciz

a
i , where ci, zi ∈ C are independent of a. It is easy to see that the

left hand side is also of a similar form as a function in a. Hence the identity (9.6.4.1)
holding for all sufficiently large a implies that it holds for all a ∈ Z.

Remark 9.6.5. — A form of Theorem 9.6.4 is conjectured in [Kot90, (10.2)].

9.7. The Hasse–Weil zeta function

We deduce an immediate consequence of Theorem 9.6.4 concerning the Hasse–Weil
zeta function associated to IH∗(ShK ,V)).

Definition 9.7.1. — Let p be a prime number. Let M be a finite-dimensional
representation over C of WDp.

(1) We view M as a Weil–Deligne representation of WQp , and define its local L-
factor at p in the usual way as in [Tat79], denoted by Lp(M, s). In particular, when
the representation is unramified (i.e. trivial on SU2(R) and on the inertia subgroup),
we have

Lp(M, s) :=
(

exp(
∑
a≥1

Tr(Frobap | M)p−as/a)
)−1 = det(1− Frobp p−s | M)−1

where Frobp is any lift of geometric Frobenius in WQp .
(2) For any real number α, we define ∥·∥αM to be the twist of M by the quasi-

character ∥·∥α on WQp . Here the normalization is such that ∥Frobp∥ = p−1.
(3) For any positive integer n, we define M(n) to be

∥·∥(n−1)/2M⊕∥·∥(n−3)/2M⊕ · · · ⊕ ∥·∥(1−n)/2M.

Remark 9.7.2. — We have

Lp(∥·∥αM, s) = Lp(M, α+ s),

and

Lp(M(n), s) = Lp(M, s+ n− 1
2 )Lp(M, s+ n− 3

2 ) · · ·Lp(M, s+ 1− n
2 ).

9.7.3. — Let ψ ∈ Ψ̃2(G∗). Recall from §9.2.2 that Sψ is a finite power of Z/2Z. Let
ν : Sψ → C× be a character. Let V = CN be the vector space used to define GLN (C).
The group Sψ acts on V via

Sψ ⊂ LG∗ StdG∗−−−−→ GLN (C).
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Let Vν ⊂ V be the ν-eigenspace for this action. For each prime number p, consider
the action of WDp on V defined by

WDp

φψp−−→ LG∗ StdG∗−−−−→ GLN (C).

(Note that in the even case, although ψp is not always well defined up to Ĝ∗-conjugacy,
the above composite map is always well defined up to GLN (C)-conjugacy.) This action
commutes with the action of Sψ, so we have an action of WDp on Vν . We denote this
WDp-representation on Vν by Vp(ψ, ν). Define

Mp(ψ, ν) := ∥·∥−n/2 Vp(ψ, ν),

where n = d−2 is the dimension of the Shimura variety ShK . The motivation for this
twist is to account for the factor pan/2 in the definition of A(ψ, s, p, a) in Proposition
9.5.8.

We can classify the WDp-representations Vp(ψ, ν) and Mp(ψ, ν) more explicitly
in terms of the local Langlands correspondence for general linear groups, as follows.
Since ψ ∈ Π̃2(G∗), it is of the form

ψ = ⊞i∈Iπi[di],

where each πi is a self-dual cuspidal automorphic representation of GLNi , di are
positive integers such that

∑
Nidi = N , and the pairs (πi, di) are distinct. For any

irreducible admissible representation πp of a general linear group over Qp, we write
V(πp) for the representation of WDp corresponding to πp under the local Langlands
correspondence. By the explicit description of Sψ in [Art13, (1.4.9)] (the notation Ni
in loc. cit. corresponding to our Nidi), we have the following classification of Vp(ψ, ν).

(1) The odd case. We have Sψ ∼= {±1}I . Set Iν = {i} if ν is given by the i-th
projection {±1}I → {±1} for some i ∈ I. Otherwise, set Iν = ∅.

(2) The even case. Let Iodd be the set of i ∈ I such that Ĝπi is odd orthogonal
(or equivalently, Nidi is odd), and let Ieven = I − Iodd. We have Sψ ∼= {±1}Ieven ×
{±1}Iodd,′, where as usual we write {±1}J,′ for the kernel of the map {±1}J →
{±1} , (zj)j 7→

∏
j zj for any finite set J . Suppose ν is the restriction to {±1}Ieven ×

{±1}Iodd,′ of the i-th projection {±1}I → {±1} for some i ∈ I. Then we set Iν = {i}
unless i ∈ Iodd and |Iodd| = 2, in which case we set Iν = Iodd. In all the other cases,
set Iν = ∅.
Then in both the odd and even cases we have

Vp(ψ, ν) =
⊕
i∈Iν

V(πi,p)(di)

for all p.
For any finite set S of prime numbers, we define

LS(M(ψ, ν), s) :=
∏
p/∈S

Lp(Mp(ψ, ν), s),
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where M(ψ, ν) is just a formal symbol, and the product is over all prime numbers
p /∈ S. By the previous classification, LS(M(ψ, ν), s) is nothing but a finite product
of the S-partial standard L-functions associated to automorphic representations of
general linear groups with some shifting in the variable s. Therefore the infinite
product defining LS(M(ψ, ν), s) converges absolutely in some right half plane and
continues to a meromorphic function in s over the whole C. Specifically, letting
Iν ⊂ I be as above, we have

LS(M(ψ, ν), s) =
∏
i∈Iν

di−1∏
j=0

LS(πi, s−
n

2 + di − 1
2 − j).

9.7.4. — Let V be as in §9.5.1, and fix a neat compact open subgroup K of G(Af )
assumed to be completely symmetric (see Definition 9.6.2). In the following we fix
an isomorphism Qℓ ∼= C. For each prime p unequal to ℓ and unramified for the
ΓQ-module IH∗(ShK ,V) over Qℓ (that is, unramified for each degree ∗), we define

ζp(IH∗(ShK ,V), s) :=
∏
j

det(1− Frobp p−s | IHj(ShK ,V))(−1)j+1
,

where on the right hand side IHj(ShK ,V) is viewed as a vector space over C. (The
product is finite, since IHj(ShK ,V) is non-zero only for 0 ≤ j ≤ 2 dim ShK .) This
is the Euler factor at p of the Hasse–Weil zeta function of IH∗(ShK ,V), and it is a
rational function in ps. If S is a finite set of primes containing ℓ such that every prime
p outside S is unramified for IH∗(ShK ,V), then we define the formal Dirichlet series

ζS(IH∗(ShK ,V), s) :=
∏
p/∈S

ζp(IH∗(ShK ,V), s).

This is the S-partial Hasse–Weil zeta function of IH∗(ShK ,V).

Theorem 9.7.5. — Assume Hypothesis 9.1.2. Let S be the set Σbad(K, 1K) as in
(9.5.1.1), applied to f∞ = 1K . For all primes p /∈ S we have

log ζp(IH∗(ShK ,V), s) =
∑

ψ∈Ψ̃(G∗)V

∑
π∞∈Π̃∞

ψ
(G)

dim(π̇∞)K

·
∑
ν∈SD

ψ

m(π∞, ψ, ν)(−1)nν(sψ) logLp(Mp(ψ, ν), s)

with notations explained below.

– The set Ψ̃(G∗)V is as in Definition 9.6.1.
– The number mψ ∈ {1, 2} is defined in (9.2.2.2). In the odd case it is always 1.
– For each ψ ∈ Ψ̃(G∗)V, π∞ = (πv)v ∈ Π̃∞

ψ (G), and ν ∈ SDψ , the number
m(π∞, ψ, ν) ∈ {0, 1} is defined as follows. Fix an arbitrary π∞ ∈ ΠAJ

ψ∞
(G∞). On
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Sψ we have the character:

s 7−→ ν(s)−1ϵψ(s)⟨s, λπ∞⟩⟨s, π∞⟩AJT
∏
v ̸=∞

⟨s, πv⟩,

where ⟨s, λπ∞⟩ is defined on p. 195 of [Kot90], and ϵψ is as in (9.2.2.5). We define
m(π∞, ψ, ν) to be 1 if this character is trivial and 0 otherwise.

– The number ν(sψ) is 1 or −1 since s2
ψ = 1; see (9.2.2.4) for the definition of

sψ ∈ Sψ.
In particular, we have

log ζS(IH∗(ShK ,V)), s) =
∑

ψ∈Ψ̃(G∗)V

∑
π∞∈Π̃∞

ψ
(G)

dim(π̇∞)K

·
∑
ν∈SD

ψ

m(π∞, ψ, ν)(−1)nν(sψ) logLS(M(ψ, ν), s),

for s in some right half plane. This expresses ζS(IH∗(ShK ,V)), s) as a finite product
of integral powers of LS(M(ψ, ν), s) for various ψ and ν, and gives a meromorphic
continuation of ζS(IH∗(ShK ,V)), s) to the whole C.

Proof. — This immediately follows from Theorem 9.6.4 applied to f∞dg∞ =
vol(K)−11Kdg∞.

Remark 9.7.6. — Theorem 9.7.5 can be slightly generalized as follows. We can
replace the completely symmetric K by a more general neat compact open subgroup
K ′ of G(Af ) stable under ϑ∞, and replace S by a sufficiently large, finite set of primes
depending on K ′. For the proof of this generalization, we can take a completely
symmetric K contained in K ′ (see Remark 9.6.3), and apply Theorem 9.6.4 to K and
the element vol(K ′)−11K′dg∞ of H(G(Af ) �K)Q.

9.8. More refined decompositions

9.8.1. — Throughout we assume the setting of Theorem 9.6.4. In particular we fix
V as in §9.5.1 and assume that K is completely symmetric. By Remark 9.6.3, this
assumption on K is harmless for the understanding of IH∗(ShK ,V) for general K.
We also keep assuming Hypothesis 9.1.2 without further mentioning.

In the sequel, we write IHj for IHj(ShK ,V). This is non-zero only for 0 ≤ j ≤
2 dim ShK = 2n. We fix an isomorphism C ∼= Qℓ, and do not distinguish between
representations over C and over Qℓ, nor between C-valued functions and Qℓ-valued
functions. Nevertheless, we remember that ΓQ-representations on vector spaces over
C ∼= Qℓ are always continuous with respect to the ℓ-adic topology. Let HK :=
H(G(Af ) �K)Q ⊗Q Qℓ.
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We shall apply Theorem 9.6.4 to obtain information about more refined decom-
positions of IHj as a HK × ΓQ-module. Ideally, one would like to decompose IHj

into π∞-isotypic components IHj [π∞], for π∞ running through all irreducible admis-
sible representations of G(Af ), and to describe the Galois module structure of each
IHj [π∞]. However there are the following two technical obstructions (which can be
overcome in the odd case, as we shall eventually see):

(1) In the even case, each element of a global packet Π̃∞
ψ (G) as in §9.4.6 does not

give rise to a well-defined isomorphism class of G(Af )-representations, but rather it
gives rise to an ϑ∞-orbit of such isomorphism classes. This obstruction is intrinsic in
the endoscopic classification in [Art13] and [Täı19]. As a result, we are only able
to describe the Galois module structure for the direct sum of IHj [π∞] over all π∞

in the same ϑ∞-orbit, as opposed to each individual IHj [π∞]. We mention that in
the even case the need to assume that V is of the special form as in §9.5.1 also stems
from the same obstruction in the endoscopic classification.

(2) In both the odd and even cases, for a general ψ ∈ Ψ̃2(G∗) it is not known
(although expected, as would follow from the Ramanujan–Petersson conjecture for
general linear groups) that the localization ψv is bounded on WDv for all finite places
v. As a result of this drawback, the G(Qv)-representations in the local packet Π̃ψv (Gv)
are not known to be irreducible.

We make several comments on (2). Recall that for any ψ ∈ Ψ̃2(G∗), the localization
ψv of ψ lies in Ψ+

unit(G∗
v). For arbitrary ψv ∈ Ψ+

unit(G∗
v) (which may not arise as

the localization of a global parameter), Arthur has conjectured that the G∗(Qv)-
representations in the local packet Π̃ψv (G∗

v) are irreducible. See [Art13, §§1.3–1.5,
Conjecture 8.3.1] for more details. This conjecture would imply that the G(Qv)-
representations in Π̃ψv (Gv) are irreducible. In the even case, if ψ is “trivial on SL2”
in the sense that ψ = ⊞iπi[di] with all di equal to 1, then this conjecture has been
proved(13) by B. Xu [Xu18, Appendix].

We can sometimes circumvent Arthur’s conjecture by using known cases of the
Ramanujan–Petersson conjecture. To wit, assume that ψ = ⊞iπi[di] ∈ Ψ̃2(G∗) satis-
fies the following condition:

(†) The constituents πi, which we recall are self-dual unitary cuspidal automorphic
representations of GLNi over Q, are all regular C-algebraic or regular L-algebraic.(14)

Then we know that ψv is bounded on WDv for all finite places v, since the Ramanujan–
Petersson conjecture for πi is known at all v. Indeed, let π′

i be the twist of πi

(13)We thank the referee for pointing this out to us.
(14)The meaning of “regular C-algebraic” here is that the infinitesimal character of πi,∞ should be
regular C-algebraic as in §9.3.4. In the more classical literature this condition is usually referred to
as “regular algebraic”. The meaning of “regular L-algebraic” is that the infinitesimal character of
πi,∞ should be the Weyl orbit of a regular integral character of a maximal torus. The two notions
are the same for GLNi precisely when Ni is odd.
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by GLNi(A) → R×, g 7→ |det(g)|1/2 if πi is L-algebraic and Ni is even, and let
π′
i = πi in all the other cases. Then π′

i regular C-algebraic, cuspidal, and essentially
self-dual, and by the work of a long list of authors culminating in Caraiani’s work
[Car12, Thm. 1.2], (π′

i)v is essentially tempered for all finite places v (cf. [BLGGT14,
Thm. 2.1.1] for the essentially self-dual case, as well as a list of references). It then
follows that πi,v is tempered for all finite places v, for instance by the unitarity of
the central character. In conclusion, if ψ satisfies (†), we know that all the G(Qv)-
representations in Π̃ψv (Gv) are irreducible for all finite places v.

9.8.2. — Fix ψ = ⊞iπi[di] ∈ Ψ̃(G∗)V. We investigate when ψ satisfies (†) in §9.8.1.
Let Ni be the integer such that πi is a self-dual cuspidal automorphic representation
of GLNi .

For any positive integer r, let Tr denote the diagonal matrix in GLr, and identify
X∗(Tr) with Zr as usual. The half sum of the standard system of positive roots is
( r−1

2 , r−3
2 , · · · , 1−r

2 ). Hence an infinitesimal character µ ∈ (X∗(Tr)⊗C)/Sr = Cr/Sr

for GLr is C-algebraic if and only if it lies in Zr/Sr when r is odd, and lies in
(( 1

2 , · · · ,
1
2 ) + Zr)/Sr when r is even.

When G is an odd special orthogonal group, we choose a Borel pair in GC, and
identify the based root datum with BRD(Bm) (see §1.2.5). Let ρ be the half sum of
the positive roots, and let λ be the highest weight of V∗. Thus

λ = x1ϵ1 + · · ·+ xmϵm

with xi ∈ Z satisfying x1 ≥ x2 ≥ · · · ≥ xm ≥ 0, and

ρ = (m− 1)ϵ1 + (m− 2)ϵ2 + · · ·+ ϵm−1 + 1
2(ϵ1 + · · ·+ ϵm).

Under StdG : Ĝ → ĜL2m, the infinitesimal character λ + ρ of ψ∞ gives rise to the
infinitesimal character

(m− 1 + 1
2 + x1,m− 2 + 1

2 + x2, · · · ,
1
2 + xm,−(1

2 + xm), · · · ,−(m− 1 + 1
2 + x1))

for GL2m. We see that it is always regular. It immediately follows that the in-
finitesimal character of each πi,∞ must be regular. Moreover, if di is odd, then the
infinitesimal character of πi,∞ must lie in (( 1

2 , · · · ,
1
2 )+ZNi)/SNi , so πi is C-algebraic

if and only if Ni is even. In fact this is automatic, since for di odd Ĝπi must be sym-
plectic; see (9.2.2.3). If di is even, then the infinitesimal character of πi,∞ must lie in
ZNi/SNi , so πi is L-algebraic. We conclude that (†) holds automatically.

When G is an even special orthogonal group, we choose a Borel pair in GC, and
identify the based root datum with BRD(Dm). Let ρ be the half sum of the positive
roots, and let λ0 be the highest weight of V∗

C (resp. V∗
0,C) in the even symmetric case

(resp. the even composite case). (See §9.5.1 for this dichotomy.) Thus

λ0 = x1ϵ1 + · · ·+ xmϵm
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with xi ∈ Z satisfying x1 ≥ x2 ≥ · · · ≥ xm−1 ≥ |xm|, and

ρ = (m− 1)ϵ1 + (m− 2)ϵ2 + · · ·+ ϵm−1.

We have xm = 0 in the even symmetric case, and xm ̸= 0 in the even composite
case. Under StdG : Ĝ → ĜL2m, the infinitesimal character λ0 + ρ gives rise to the
infinitesimal character

(m− 1 + x1,m− 2 + x2, · · · , xm,−xm, · · · ,−(m− 1 + x1))

of GL2m. We see that in the even symmetric case, we cannot guarantee that the
infinitesimal characters of πi,∞ are regular, whereas in the even composite case this
is guaranteed. Moreover, by a similar analysis as in the odd case, πi is C-algebraic if
di and Ni are even, and πi is L-algebraic if di is odd. Now when di is even, Ĝπi must
be symplectic, so Ni is automatically even. We conclude that (†) automatically holds
in the even composite case.

We summarize the above discussion in §9.8.1 and §9.8.2 in the following lemma.

Lemma 9.8.3. — Let ψ = ⊞iπi[di] ∈ Ψ̃(G∗)V. In the odd case and the even com-
posite case, the G(Qv)-representations in Π̃ψv (Gv) are irreducible for all finite places
v. If we are in the even symmetric case and all di are equal to 1, then the same
conclusion also holds.

9.8.4. — As in [Art13, §3.4] we define a set C̃A(G∗) of Hecke systems for G∗ mod-
ulo a certain equivalence relation. Here a Hecke system for G∗ is a family (cv)v,
where v runs through all primes outside an unspecified finite set of primes containing
all the ramified primes for G∗, and each cv is a semi-simple conjugacy class in LG∗

v

(where we take LG∗
v to be Ĝ∗ ⋊ Gal(Qur

v /Qv) here for convenience) whose projection
to Gal(Qur

v /Qv) is the Frobenius. Two such families (cv)v and (dv)v are said to be
equivalent and thus define the same element of C̃A(G∗), if for almost all v, the conju-
gacy classes cv and dv are in the same Aut(LG∗

v)-orbit, or equivalently, the images of
cv and dv under LG∗

v →
LG∗ StdG∗−−−−→ GLN (C) are conjugate. (The equivalence of the

two conditions follows easily from the description of Aut(LG∗
v) in Remark 9.2.6 and

the fact that two elements of ON (C) are conjugate if and only if they are conjugate
in GLN (C).)

Recall that as a fundamental construction in [Art13], we have a canonical injection

Ψ̃(G∗) −→ C̃A(G∗)(9.8.4.1)
ψ 7−→ c(ψ)

whose well-definedness is guaranteed by [Art13, Thm. 1.3.2, Thm. 1.4.1]. This map
has the following characterization: Let ψ ∈ Ψ̃(G∗), and for almost all primes v for
which ψv is unramified, denote by πv the unique element of Π̃ψv (Gv) that is a ϑv-
orbit of G(Zv)-unramified representations (see §9.4.6). Then for almost all v, for
every π̇v ∈ πv the Satake parameter of the H(G(Qv) � G(Zv))-module π̇G(Zv)

v (which
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is 1-dimensional over C, cf. Lemma 9.2.12) belongs to the Aut(LG∗
v)-orbit of the

component of c(ψ) at v.
As in Definition 9.6.2, we have K =

∏
vKv. We have a canonical (finite) direct

sum decomposition of HK × ΓQ-modules:

IHj =
⊕

c∈C̃A(G∗)

IHj
c,

where IHj
c is characterized by the property that for almost all primes v for which Kv

is hyperspecial, the action of the unramified Hecke algebra H(G(Qv) � Kv) on IHj
c

is via characters which correspond under the Satake isomorphism to elements of the
Aut(LG∗)-orbit of the component of c at v.

We denote by Irr(G(Af )) the set of isomorphism classes of irreducible admissible
representations of G(Af ) (over C ∼= Qℓ). For each c ∈ C̃A(G∗) and τ ∈ Irr(G(Af )), let

W j
c (τ) := HomHK

(τK , IHj
c).

We then have direct sum decompositions of HK × ΓQ-modules

IHj
c =

⊕
τ∈Irr(G(Af ))

τK ⊗Qℓ
W j
c (τ),

IHj =
⊕

c∈C̃A(G∗)

⊕
τ∈Irr(G(Af ))

τK ⊗Qℓ
W j
c (τ),(9.8.4.2)

where on the right hand sides HK acts on τK and ΓQ acts on W j
c (τ). Here we

have used the fact that IHj is a semi-simple HK-module, which follows from the
“Matsushima formula” for L2-cohomology [BC83, Thm. 4.5] and Zucker’s conjec-
ture comparing L2-cohomology with intersection cohomology, proved by Looijenga
[Loo88], Saper–Stern [SS90], and Looijenga–Rapoport [LR91].

Theorem 9.8.5. — Assume Hypothesis 9.1.2. Let c ∈ C̃A(G∗). The following state-
ments hold.

(1) If c is not in the image of Ψ̃(G∗)V under the map (9.8.4.1), then

IHj
c = 0

for all j.
(2) Assume that c = c(ψ) for ψ ∈ Ψ̃(G∗)V. The for almost all primes p and all

integers a we have

(9.8.5.1)
∑
j

(−1)j Tr(Frobap | IHj
c)

= mψ

∑
π∞∈Π̃∞

ψ
(G)

dim(π̇∞)K
∑
ν∈SD

ψ

m(π∞, ψ, ν)(−1)nν(sψ) Tr(Frobap | Mp(ψ, ν)),
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where the terms on the right hand side are defined in the same way as in Theorem
9.7.5, with Mp(ψ, ν) defined in §9.7.3.

(3) Keep the assumption in (2), and assume that IHj
c ̸= 0 for some j. Write

ψ = ⊞i∈Iπi[di]. Then for each i ∈ I and for almost all primes p, πi,p is tempered.(15)

(4) Keep the assumption in (2), and assume that the conclusion of Lemma 9.8.3
holds for ψ. Thus each π∞ ∈ Π̃∞

ψ (G) determines a ϑ∞-orbit [π∞] in Irr(G(Af )), as
in §9.4.6. Let τ0 ∈ Irr(G(Af )) be such that τK0 ̸= 0 and τ0 /∈ [π∞],∀π∞ ∈ Π̃∞

ψ (G).
Then

W j
c (τ0) = 0

for all j. Moreover, for each π∞ ∈ Π̃∞
ψ (G), we have

(9.8.5.2)
∑
j

(−1)j Tr(Frobap |
⊕

τ∈[π∞]

dim(τK) ·W j
c (τ))

= mψ dim(π̇∞)K
∑
ν∈SD

ψ

m(π∞, ψ, ν)(−1)nν(sψ) Tr(Frobap | Mp(ψ, ν)),

for almost all primes p and all integers a.

Proof. — Throughout the proof we use the following notations: We fix the Haar
measure dg∞ on G(Af ) giving volume 1 to K. Let H̃ = (HK)ϑ∞ . Then H̃ is a
C-subalgebra of HK with unit 1Kdg∞. By the same argument as in the proof of
Lemma 9.5.3, we know that as a C-vector space H̃ is generated by elements of the
form (

∏
v fv)dg∞, where the product is over all primes v, fv ∈ C∞

c (G(Qv) � Kv)θG
for all v, and fv = 1Kv for almost all v. For any finite set of primes S such that Kv

is hyperspecial for all v /∈ S, we let H̃S be the C-vector subspace of H̃ spanned by
elements of the form (

∏
v fv)dg∞, where fv ∈ C∞

c (G(Qv)�Kv)θG for all v, and the set
of v such that fv ̸= 1Kv is finite and disjoint from S. Then H̃S is a commutative unital
subring of H̃, identified with the restricted tensor product of the ϑv-fixed subrings of
the unramified Hecke algebras C∞

c (G(Qv) �Kv) over all v /∈ S.
For each ψ ∈ Ψ̃(G∗)V and each π∞ ∈ Π̃∞

ψ (G), recall from §9.4.6 that the G(Af )-
representation π̇∞ is the restricted tensor product of π̇v over all primes v, where for
each v we choose a member π̇v ∈ πv. The H̃-module (π̇∞)K depends only on π∞, not
on the extra choices. We henceforth denote it (π∞)K .

(1) By the finiteness statement in Theorem 9.6.4, on the RHS of (9.6.4.1) only a
finite subset Ψ0 ⊂ Ψ̃(G∗)V would potentially contribute non-trivially, and for each
ψ ∈ Ψ0 only a finite subset Uψ ⊂ Π̃∞

ψ (G) would potentially contribute non-trivially.
Moreover Ψ0 and (Uψ)ψ∈Ψ0 are independent of f∞dg∞, p, a. We may and shall take
each Uψ such that its members π∞ satisfy (π∞)K ̸= 0.

Suppose c is as in (1) and IHj
c ̸= 0 for some j. Let S be a finite set of primes such

thatKv is hyperspecial for all v /∈ S. Then the set of characters through which H̃S acts

(15)We thank the anonymous referee for suggesting this result to us.
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on IHj
c (i.e., the isomorphism classes of the simple H̃S-submodules of IHj

c) is disjoint
from the set of characters through which H̃S acts on IHj′

c′ for all j′ and all c′ ̸= c, and
on (π∞)K for all π∞ ∈

∐
ψ∈Ψ0

Uψ. Indeed, this follows from the observation that for
any two characters χ1, χ2 : C∞

c (G(Qv) �Kv)→ C having the same restriction to the
ϑv-fixed subring, χ1 and χ2 must be related by ϑv, and hence the Satake parameters
of χ1 and χ2 must be related by Aut(LG∗

v). The observation itself follows from the
identity χ1 + θG(χ1) = χ2 + θG(χ2) (which holds since for all F ∈ C∞

c (G(Qv) �Kv),
F +θ∗

GF lies in the ϑv-fixed subring) and the linear independence of characters. Since
all these H̃S-modules are finite-dimensional over Qℓ ∼= C and there are only finitely
many of them which are non-zero, there exists f∞dg∞ ∈ H̃S ⊂ H̃ that acts as the
identity on IHj

c for all j, as zero on IHj′

c′ for all j′ and all c′ ̸= c, and as zero on (π∞)K
for all π∞ ∈

∐
ψ∈Ψ0

Uψ. We then apply Theorem 9.6.4 (generalized in the obvious
manner from ϑ∞-fixed elements of H(G(Af ) �K)Q to elements of H̃) to f∞dg∞ and
obtain ∑

j

(−1)j Tr(Frobap | IHj
c) = 0

for all sufficiently large primes p and all integers a. By Chebotarev’s density theorem
and the Brauer–Nesbitt theorem, this implies that in the Grothendieck group of ΓQ-
representations over Qℓ we have ∑

j

(−1)j [IHj
c] = 0.

By a purity result of Pink [Pin92a, Prop. 5.6.2] applied to our Shimura datum O(V )
of abelian type, and by the purity of intersection cohomology, we know that for
almost all primes p the action of Frobp on IHj has weight j. (Note that the weight
cocharacter of the Shimura datum which appears in [Pin92a, §5.4] is trivial in our
case.) It then follows that there is no cancellation between [IHj

c] for different j in the
Grothendieck group. Hence IHj

c = 0 for all j, which proves (1).
(2) Similarly as in the proof of (1), the set of characters through which H̃S acts

on IHj
c for all j and on (π∞)K for all π∞ ∈ Uψ, is disjoint from the set of characters

through which H̃S acts on IHj′

c′ for all j′ and all c′ ̸= c and on (π∞)K for all π∞ ∈∐
ψ′∈Ψ0−{ψ} Uψ′ . Thus we can find f∞dg∞ ∈ H̃S ⊂ H̃ which acts as the identity on

IHj
c for all j, as the identity on (π∞)K for all π∞ ∈ Uψ, as zero on IHj′

c′ for all j′ and
all c′ ̸= c, and as zero on (π∞)K for all π∞ ∈

∐
ψ′∈Ψ0−{ψ} Uψ′ . Applying Theorem

9.6.4 to f∞dg∞ then gives the desired result.
(3) For almost all p, part (2) gives a multiplicative relation

det(T − Frobp | Mp(ψ, ν))kν =
∏
j

det(T − Frobp | IHj
c)(−1)j

for each ν ∈ SDψ , where kν is an integer (independent of p). By the purity results used
in the proof of (1) and by our assumption that IHj

c ̸= 0 for some j, we conclude that
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kν ̸= 0 (since the right hand side of the above relation cannot be 1). It then follows
from the above relation that Frobp acts onMp(ψ, ν) with integer weights for each ν.
On the other hand we have an isomorphism of WDp-representations⊕

ν∈SD
ψ

Vp(ψ, ν) ∼=
⊕
i∈I
V(πi,p)(di),

where Vp(ψ, ν) is as in §9.7.3, and V(πi,p) is the WDp-representation corresponding
to πi,p under the local Langlands correspondence. Clearly πi,p is unitary since πi is.
By [Sha74], πi,p is generic. Hence by [JS81, Cor. 2.5], all eigenvalues λ of Frobp
on V(πi,p) satisfy p−1/2 < |λ| < p1/2. Therefore if πi,p is not tempered for one i,
then there is at least one eigenvalue of Frobp on

⊕
ν Vp(ψ, ν) whose absolute value

is not an integer power of p1/2. This contradicts with the fact that Frobp acts on
Mp(ψ, ν) = ∥·∥−n/2 Vp(ψ, ν) with integer weights for each ν. We have proved (3).

(4) Pick S large enough such that H̃S acts on (π∞)K for all π∞ ∈ Uψ through
a common character χS : H̃S → C. Since τ0 is an irreducible admissible G(Af )-
representation, we know that H̃S must act on τK0 via a character χS0 (as opposed to
several different characters). Assume for the sake of contradiction that W j

c (τ0) ̸= 0.
Then up to enlarging S we must have χS = χS0 , by the definition of IHj

c. In the
following we assume that this is the case. We have τ0 =

⊗′
v τ0,v, where each τ0,v is

an irreducible admissible representation of G(Qv). Write GS for
∏
v∈S G(Qv), and

write KS for
∏
v∈S Kv. By a similar argument as in the proof of (1), our assumption

that χS = χS0 implies that for each v /∈ S, the ϑv-orbit of the isomorphism class of
the irreducible admissible G(Qv)-representation τ0,v agrees with the ϑv-orbit arising
from every π∞ ∈ Uψ. Therefore our assumption on τ0 implies that the ϑS-orbit
of the isomorphism class of the irreducible admissible GS-representation

⊗
v∈S τ0,v

is disjoint from the ϑS-orbit arising from any π∞ ∈ Uψ. We can therefore find
fS ∈ C∞

c (GS �KS) =
⊗

v∈S C
∞
c (G(Qv) �Kv) such that (for a certain normalization

of Haar measure) it acts as the identity on every ϑS-translate of (
⊗

v∈S τ0,v)KS and
as zero on (

⊗
v∈S π̇v)KS for all π∞ = (πv)v ∈ Uψ and all choices (π̇v ∈ πv)v∈S . Note

that the defining property of fS is invariant under the action of ϑS on C∞
c (GS �KS).

Hence we can replace fS by its average under the finite group ϑS , and assume that
fS is fixed by ϑS .

After suitable scaling, the element (fS ·
∏
v/∈S 1Kv )dg∞ ∈ H̃ acts as the identity

on every ϑ∞-translate of τK0 and as zero on (π∞)K for all (π∞) ∈ Uψ. By a similar
argument, we can also construct an element of H̃ which acts as the identity on every
ϑ∞-translate of τK0 and as zero on τK for every τ ∈ Irr(G(Af )) such that τ is not
isomorphic to a ϑ∞-translate of τ0 and τK ̸= 0,W j

c (τ) ̸= 0. We have a third element of
H̃, as constructed in the proof of (2), which acts as the identity on IHj

c for all j, as zero
on IHj′

c′ for all j′ and all c′ ̸= c, and as zero on (π∞)K for all π∞ ∈
∐
ψ′∈Ψ0−{ψ} Uψ′ .

Multiplying these three elements together, we obtain an element of H̃ which acts on
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IHj for each j as the projection to
⊕

τ∈[τ0] τ
K ⊗W j

c (τ) with respect to (9.8.4.2), and
acts as zero on (π∞)K for all π∞ ∈

∐
ψ∈Ψ0

Uψ. Here [τ0] denotes the ϑ∞-orbit of τ0
in Irr(G(Af )). Applying Theorem 9.6.4 to this element we obtain∑

j

(−1)j Tr(Frobap |
⊕
τ∈[τ0]

τK ⊗W j
c (τ)) = 0

for almost all primes p and all integers a. By a similar argument as in (1), this implies
that τK ⊗W j

c (τ) = 0 for all τ ∈ [τ0], and in particular W j
c (τ0) = 0, as desired.

Finally we prove (9.8.5.2). Since different elements π∞ ∈ Uψ give rise to disjoint
ϑ∞-orbits [π∞], essentially the same argument as before gives us an element of H̃
which acts on IHj for each j as the projection to

⊕
τ∈[π∞] τ

K ⊗W j
c (τ) with respect

to (9.8.4.2), acts as zero on (π∞,′)K for all π∞,′ ∈ (
∐
ψ′∈Ψ0−{ψ} Uψ′) ⊔ (Uψ − {π∞}),

and acts as the identity on (π∞)K . Applying Theorem 9.6.4 to this element we obtain
(9.8.5.2).

Remark 9.8.6. — Part (3) of Theorem 9.8.5 proves the Ramanujan–Petersson con-
jecture for πi for almost all primes. As we have discussed in §9.8.1 and §9.8.2, this is
known in the odd case and in the even composite case (where the conjecture is known
for all primes). In the even symmetric case, however, the infinitesimal character of
πi,∞ can be non-regular, and thus πi ⊗ |det|α is not cohomological for any α ∈ C.
For such πi our result proves new instances of the conjecture. We postpone a more
systematic treatment to future work.

9.8.7. — By utilizing Theorem 9.8.5 (3), we can separate the contributions of dif-
ferent degrees j to the right hand sides of (9.8.5.1) and (9.8.5.2) as follows.

Let ψ = ⊞i∈Iπi[di] ∈ Ψ̃(G∗)V, and keep the notation in §9.7.3 for ψ. Let ν ∈ SDψ .
Recall from §9.7.3 that there is a subset Iν of I of cardinality at most 2 such that
Vp(ψ, ν) =

⊕
i∈Iν V(πi,p)(di) for all primes p. Recall that n = dim ShK . For each

integer j, define

Mp(ψ, ν, j) :=
⊕
i∈Iν

di−1≥|n−j|
di−1≡n−j mod 2

∥·∥−j/2 V(πi,p).

Thus

Mp(ψ, ν) =
⊕
j∈Z
Mp(ψ, ν, j).(9.8.7.1)
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Corollary 9.8.8. — Let c = c(ψ). For each integer j, we have

(9.8.8.1) (−1)j Tr(Frobap | IHj
c)

= mψ

∑
π∞∈Π̃∞

ψ
(G)

dim(π̇∞)K
∑
ν∈SD

ψ

m(π∞, ψ, ν)(−1)nν(sψ) Tr(Frobap | Mp(ψ, ν, j))

for almost all primes p and all integers a. If all di are 1, then

IHj
c = 0

for all j ̸= n. If we assume that the conclusion of Lemma 9.8.3 holds for ψ, then for
each integer j and each π∞

0 ∈ Π̃∞
ψ (G), we have

(−1)j Tr(Frobap |
⊕

τ∈[π∞
0 ]

dim(τK) ·W j
c (τ))

= mψ dim(π̇∞
0 )K

∑
ν∈SD

ψ

m(π∞
0 , ψ, ν)(−1)nν(sψ) Tr(Frobap | Mp(ψ, ν, j)),

for almost all primes p and all integers a.

Proof. — By Theorem 9.8.5 (3), we know that for almost all primes p, Frobp acts
on Mp(ψ, ν, j) with weight j. By the purity results used in the proof of Theorem
9.8.5 (1), Frobp acts on IHj with weight j, for almost all p. The first and third
statements in the corollary follow from these two facts, the decomposition (9.8.7.1),
and the two formulas (9.8.5.1) and (9.8.5.2). For the second statement, for j ̸= n we
haveMp(ψ, ν, j) = 0 for all ν ∈ SDψ . Applying (9.8.8.1) to a = 0 gives the result.

9.8.9. — Keep the notation of §9.8.7, and assume that we are in the odd case or the
even composite case. From the discussion in §9.8.2, one easily sees that for each i ∈ I
and j ∈ Z such that di − 1 ≡ n− j mod 2, the cuspidal automorphic representation
πi⊗ |det|−j/2 of GLNi is essentially self-dual and regular L-algebraic. Thus the semi-
simple ℓ-adic ΓQ-representation associated to πi ⊗ |det|−j/2 is known to exist and
satisfies local-global compatibility; see for instance [BLGGT14, Thm. 2.1.1].(16) It
follows that for each j ∈ Z and ν ∈ SDψ , there is a semi-simple ℓ-adic ΓQ-representation
M(ψ, ν, j), obtained by taking a direct sum of the ones just mentioned over i ∈ Iν
such that di − 1 ≥ |n− j| and di − 1 ≡ n − j mod 2, such that for every prime
p ̸= ℓ the localization of M(ψ, ν, j) gives the WDp-representation Mp(ψ, ν, j) up to
semi-simplification.

Corollary 9.8.10. — Let c = c(ψ), and let π∞
0 ∈ Π̃∞

ψ (G). Assume that we are in the
odd case or the even composite case. Up to semi-simplification, the ΓQ-representations

(16)In that reference, π is assumed to be a regular C-algebraic cuspidal essentially self-dual repre-
sentation of GLn, but the Galois representation is associated to π ⊗ |det|(1−n)/2, which is regular
L-algebraic.
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IHj
c and

⊕
τ∈[π∞

0 ] dim(τK) ·W j
c (τ) are isomorphic to the virtual representations

mψ

⊕
π∞∈Π̃∞

ψ
(G)

dim(π̇∞)K
⊕
ν∈SD

ψ

(−1)j+nν(sψ)m(π∞, ψ, ν)M(ψ, ν, j)

and
mψ dim(π̇∞

0 )K
⊕
ν∈SD

ψ

(−1)j+nν(sψ)m(π∞
0 , ψ, ν)M(ψ, ν, j)

respectively. In the odd case, the semi-simplification of W j
c (π∞

0 ) is isomorphic to⊕
ν∈SD

ψ

(−1)j+1ν(sψ)m(π∞
0 , ψ, ν)M(ψ, ν, j).

Proof. — This follows from Lemma 9.8.3, Corollary 9.8.8, Chebotarev’s density the-
orem, and the Brauer–Nesbitt theorem.

Remark 9.8.11. — In the even symmetric case, for ψ = ⊞i∈Iπi[di] ∈ Ψ̃(G∗)V, the
infinitesimal character of πi,∞ can be non-regular. Thus the conjectural ℓ-adic ΓQ-
representation associated to (an L-algebraic twist of) πi has not been constructed.
To this end our Corollary 9.8.8 can be utilized for the construction of such a Galois
representation. We will investigate this on another occasion.
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Ĥ
,B

Ĥ
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ĖG(M), 177
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êk, 103
f̂ , 118
inv(γ, γ), 131
ιMl(·), 41
ια,B, 19
ια, 18
ιB, 18
ker1(Q, G), 14
λ ∈ X∗(TS), 77
λ (a finite place of E), 30
LG, 104
LGur, 145
LM ′, 113
⟨·, π⟩, 247, 250, 255
⟨·, π⟩AJT, 257
E, 30
Hλ, 22
S, 21
V, 30, 76
V∗, 173

O(V ), 28
fodd,x, feds,x, feven,x, 81
r, 259
H∗
c(ShK ,V), 32

Hk(Lie(NS)C,V⊗E C)>tS , 36
IH∗(ShK ,V), 32
FKW, 50
FKshW, 50
FKM,⋄×Z/2Z(−), 57
FKV, 30
F Ȟ′
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p. 485–563.



BIBLIOGRAPHY 303

[LS18] K.-W. Lan & B. Stroh – “Nearby cycles of automorphic étale sheaves,
II”, in Cohomology of arithmetic groups, Springer Proc. Math. Stat., vol.
245, Springer, Cham, 2018, p. 83–106.

[LS20] J. Lust & S. Stevens – “On depth zero L-packets for classical groups”,
Proc. Lond. Math. Soc. (3) 121 (2020), no. 5, p. 1083–1120.
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(4) 50 (2017), no. 2, p. 269–344.
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