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THE STABILIZATION OF THE FROBENIUS-HECKE
TRACES ON THE INTERSECTION COHOMOLOGY OF
ORTHOGONAL SHIMURA VARIETIES

Yihang Zhu

Abstract. — We study Shimura varieties associated with special orthogonal groups
over the field of rational numbers. We prove a version of Morel’s formula for the
Frobenius—Hecke traces on the intersection cohomology of the Baily—Borel compact-
ification. Our main result is the stabilization of this formula. As an application, we
compute the Hasse—Weil zeta function of the intersection cohomology in some special
cases, using the recent work of Arthur and Taibi on the endoscopic classification of
automorphic representations of special orthogonal groups.

Résumé. — Nous étudions les variétés de Shimura associées a des groupes spéciaux
orthogonaux sur le corps des nombres rationnels. Nous prouvons une version de la
formule de Morel pour les traces de Frobenius—Hecke sur la cohomologie d’intersection
de la compactification de Baily-Borel. Notre résultat principal est la stabilisation
de cette formule. Comme application, nous calculons la fonction zéta de Hasse—
Weil de la cohomologie d’intersection dans certains cas particuliers, en utilisant les
travaux récents d’ Arthur et Taibi sur la classification endoscopique des représentations
automorphes des groupes spéciaux orthogonaux.
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In the beginning,

All external vision and sound are suspended,

Perpetual thought itself gropes in time and space;

Then, the spirit at full gallop reaches the eight
limits of the cosmos,

And the mind, self-buoyant, will ever soar to new
insurmountable heights.

When the search succeeds,

Feeling, at first but a glimmer, will gradually
gather into full luminosity,

Whence all objects thus lit up glow as if each the
other’s light reflects[")

Excerpt from FEssay on Literature
by LU Ji (261-303 AD)

(D Translated from Chinese by CHEN Shixiang.






CONTENTS

MErOdUCEION] - .+« vttt 1
[Acknowledgments|. ... ... 9
Leftfadenl . . . ... 11
IConventions and notationsl........... .. .. 13
|L. The orthogonal Shimura varieties|................ ... ... .. ... . ..., 15
|1.1. General definitions concerning reductive groups|. ............c.c.ooeeevnn... 15
[1.2. Generalities on quadratic SPaCEs| . ......c.oueiiuiiiii i 16
|1.3. Generalities on Shimura data and rational boundary components|........ 21
[1.4. The group-theoretic setting|............... ... .o 26
[T.5. The orthogonal Shimura datlim]. .. .......vntrireretee e 28
[L.6. Shimura varietiesl . . ..o e 29
[L.7. Automorphic A-adic sheaves|......... ... . 30
|L.8. Intersection cohomology and Morel’s formulal.............. ... ... ... 32
2. Definition of the terms in Morel’s formulal.......................... ... 35
[2.1. Truncated Lie algebra cohomology|........... ... i 35
[2.2. The Kostant—Weyl term Las| ... 36
[2.3. Definitions related to Kottwitz’s fixed point formulal................. ... 38
12.4. Definition of Trps| ..o 40
[2.5. An equivalent form of Morel’s formulal................. ... ... L 42
B. Proof of Morel’s formulal. ................. i 47
13.1. Introduction to the proofl......... ... i 47

13.2. A fixed point formula for some double coverings of locally symmetric spaces| 49
13.3. Cohomological correspondences on some zero-dimensional Shimura |
[ 172 5 118 1<) S 53
13.4. Moditying Morel’s axioms|........ ..o 66




viii CONTENTS

[3.5. Integral models|............. ... 68

3.6. Finish of the proof]. . ... 73
4. Comparison with discrete series characters|............................ 75
4.1. Elliptic maximal tori in Levi subgroups|............cc.coooiiiiiiiii.. 75
4.2, Stable discrete series charactersl ... ... 76
(.3, Kostant’s theoreml. . ... ...vueeee e 82
4.4. Kostant—Weyl terms and discrete series characters, case My|.............. 84
4.5. Kostant—Weyl terms and discrete series characters, odd case Msf......... 85
14.6. Kostant—Weyl terms and discrete series characters, case Myof............. 86
|§ Endoscopic data for special orthogonal groups|......................... 101
H.1. e quasi-split inner forml. ......... ... 101
5.2. Some matrix groups over Cl....... ... i 103
b.3. Fixing the L-group| ... ... 103
b.4. The elliptic endoscopic datal........ ... i i i 106
9.5. The endoscopic GG-data for Levi subgroups|..................ooooo it 109
15.6. Admissible isomorphisms and embeddings|.................. ... ... . 118
|6. Transfer factors for real special orthogonal groups|.................... 121
16.1. Cuspidality and transfer of elliptic tori|............... ... ... ... . ... 121
16.2. Transfer factors, when d is not divisible by 4|............................. 126
[Transfer factors between H and GFl......... ... it 127
[Transfer factors between H and Gl .............coo i 131
16.3. Transfer factors, when d is divisible by 4]........ ... ... . .o i 137
[MTransfer factors between H and GFl.................o i it 137
ranster factors between H and GUJ.........cooo oo 138
|Comparison with Waldspurger’s explicit formulal.................. ... ... ... 139
|7. Transfer maps defined by the Satake isomorphism|.................... 143
[7.1. Recall of the Satake isomorphism|............. ... ... i 143
[7.2. The twisted transfer map|......... ..o 148
|7.3. Explicit description of the twisted transter map|.......................... 150
[7.4. Computation of twisted transfers|...............cooiiiiiiiiiiiiii i, 157
8. Stabilizationl. ..........coouiiii 163
I8.1. Standard definitions and facts on Langlands—Shelstad transfer|........... 163
8.2, Calculation of some Invariantsl . ......c.ovinie i 167
18.3. T'he simplified geometric side of the stable trace formulal................. 169
[8.4. Test functions on endoscopic groups|.................ooooiiiiiiiL 171
3.5. Statement of the main computation| ........... ... ..o 177
18.6. First simplifications]. . ... 178
18.7. Expanding the simplified geometric side ot the stable trace formulal. .. ... 180
18.8. Computation of Kl ... e 182
8.9. Computation of some Signs|. ........ ..ot 189

8.10. Symmetry of order n§/| .. ... it 197




CONTENTS ix

[8.11. Computation of J|....... ... i 199
[B12. Breaking symmetry, case Mgl .. vvnenen et 201
18.13. Breaking symmetry, case My and odd case Mo|.......................... 203
18.14. Main computation]. . ..... ..ot 205
18.15. A vanishing result, odd case]. ..o 215
18.16. A vanishing result, even casel. ... 232
18.17. The main identity ... ...c.ovnrin e 236
. Application: spectral expansion and Hasse—Well zeta functions|..... 239
[01 Tntroductory remarks]. . .. ....oornei e 239
9.2, Review of Arthur’s resultsl. ... 242
Self-dual cuspidal automorphic representations ot GLy| .............. ... ... 242
[Substitutes for global Arthur parameters|............. ... ... ... 243
[Local Arthur packets|................ . 246
[Onramified parameters and TepreSentations] .. .......ovveernirereinineneennn.. 251
[The spectral expansion of the discrete part of the stable trace formulal. ... ... 253
19.3. Taibi’s parametrization ot local packets for certain pure inner forms|. . . .. 254
.................................................................. 254
[The archimedean place|. ... ... i 256
19.4. The global group G| ... 258
19.5. Spectral evaluation|. ......... 261
19.6. Spectral expansion of the intersection cohomology|.................... ... 269
19.7. The Hasse-Weil zeta functionl. . ...t 273
19.8. More refined decompositions|. . ... ...ttt 276







INTRODUCTION

Inspired by the early works of Eichler, Shimura, Kuga, Sato, and Thara, the ongoing
study of expressing Hasse—Weil zeta functions of Shimura varieties through automor-
phic L-functions remains a focal point within the Langlands program. Langlands
approached this problem by proposing a comparison of the Frobenius-Hecke traces
on the cohomology of Shimura varieties with the stable Arthur—Selberg trace formu-
las, as detailed in [Lan77, [Lan79al, [Lan79b]. Kottwitz further formalized these
ideas into precise conjectures [Kot90), [Kot92b|. In this paper, we confirm a version
of Kottwitz’s conjecture specifically for the intersection cohomology of orthogonal
Shimura varieties.

The conjectures

Let (G,X) be a Shimura datum with reflex field E. For each sufficiently small
compact open subgroup K C G(Ay), we have the Shimura variety

Shy = Shx (G, X),

which is a smooth quasi-projective algebraic variety over E. Let Shx be the Baily—
Borel compactification of Shx. Let ITH* be the intersection cohomology of Shx ®p FE
with Q,-coefficients. (More generally, a non-trivial “automorphic” coefficient system
is allowed, which we ignore in the introduction.) Let p be a hyperspecial prime for
K, ie., K = K,K? with K, C G(Q,) a hyperspecial subgroup and K? C G(A’}) a
compact open subgroup. (Here Afc denotes the finite adeles away from p.) Assume
that p # £. On IH", we have commuting actions of Gal(E/FE) and the Hecke algebra
H(G(AY) | K P)g, consisting of the Q-valued smooth compactly supported KP-bi-
invariant distributions on G(A%}). Fix > € H(G(A}) / KP)g,, and let ® = &, be
a geometric Frobenius at a place p of 2 above p. Let a € Z>1.
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Conjecture 1 (Kottwitz, see [Kot90, §10] ). — The action of Gal(E/E) on TH*
1s unramified at p, and under simplifying assumptions of a group-theoretic nature, we
have
(0.1) S (DR Tr(fr x @ [ THY) = Y (G, H)STH ().

k H
On the right, H runs through the isomorphism classes of elliptic endoscopic data of
G. For each H, STH(.) is the geometric side of the stable trace formula for H, and
fH is a function on H(A) determined by the Shimura datum, f»°°, and a.

In addition, Kottwitz also formulated the following conjecture for the compact
support cohomology H of Sh @ FE.

Conjecture 2 (Kottwitz, see [Kot90, §7]). — The action of Gal(E/E) on H} is
unramified at p, and under simplifying assumptions we have
(0-2) D (CDFTR(f x @ | H) = Y oG, H)STI (7).

k H

Here H and f are the same as in Conjecture while STH (-) is the elliptic part of
the geometric side of the stable trace formula for H.

The main result

Let (V, q) be a quadratic space over Q of signature (n, 2), where n > 3. We assume
that V" has a 2-dimensional totally isotropic subspace, which is automatic if n > 5. Let
G = SO(V,q). We have a natural Shimura datum (G, X'), where X can be identified
with the set of oriented negative definite planes in Vg. This Shimura datum is of
abelian type (but not of Hodge type). The associated Shimura varieties are called
orthogonal Shimura varieties. They are n-dimensional varieties over the reflex field

Q.

Theorem 1 (Corollary|8.17.5)). — Conjecture 1s true for the orthogonal Shimura
varieties associate to (V,q), for almost all primes p and for all sufficiently large a.

We refer the reader to the statements of Theorem [I.8.4] and Corollary [8:I7.5] for
the precise meaning of “almost all primes p”. Here we just mention that the set of
primes to be excluded should depend on a fixed element f°° of the “full” Hecke algebra
H(G(Ay) / K)@Z, whereas P> in 1) should be the component of f* away from
p, after p has been chosen.

Some remarks

From a group-theoretic point of view, both sides of (0.2) are less complicated
compared to (0.1). In fact, the RHS of (0.2) has an elementary definition in terms of
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stable orbital integrals. For the LHS of , Kottwitz computed it for PEL Shimura
varieties of type A or C in [Kot92b] by counting (virtual) abelian varieties with
additional structures over finite fields and using the Grothendieck—Lefschetz—Verdier
trace formula. He obtained:

(03) S2DF T x 00 [HE) = 3 cly0,7.6)0, (F7)T05(6) Tr (70 | V).
k (70,76)

We do not explain the terms on the RHS in detail here, but only mention that they
are group-theoretic in nature and include orbital integrals O.(-) and twisted orbital
integrals TO;(+). In [Kot90], Kottwitz conjectured that should hold for general
Shimura varieties (at least under some simplifying assumptions of a group-theoretic
nature). In the same paper Kottwitz stabilized the RHS of , namely he foun
the functions f# such that the RHS of (0.3) is equal to the RHS of . In [KSZ],
both the formula and the stabilization step are generalized to arbitrary Shimura
varieties of abelian type, and Conjecture [2|is proved for these varieties.

One should view Conjecture [1] as one step forward from Conjecture From a
spectral perspective, it is ST rather than ST that sees the “whole picture”. More
specifically, STH has a spectral expansion, from which one can eventually make a link
to automorphic representations. By contrast it is unclear how ST can be directly
related to spectral information in general.

We also mention that the expectation that the intersection cohomology is the
correct cohomology to insert in is motivated by Zucker’s conjecture and Arthur’s
work on L?-cohomology, among other things. We refer the reader to [Mor10a] for a
more detailed discussion on these motivations.

Application: the Hasse—Weil zeta functions

In [Kot90], Kottwitz showed that one can combine Conjecture [1| with the conjec-
tural framework of Arthur parameters and Arthur’s multiplicity conjectures to infer
a description of the Galois—Hecke module TH*, and in particular a formula for the
Hasse—Weil zeta function associated to TH*.

Currently some of these premises related to Arthur’s conjectures have been estab-
lished in special cases. Most notably, Arthur [Art13] has established the multiplicity
conjectures for quasi-split classical groups In fact, our interest in delving into spe-
cial orthogonal groups within this paper is driven by a desire to connect with Arthur’s
work. This intentional decision distinguishes our focus from similar groups such as

() The construction of fH relies on the Langlands-Shelstad Transfer Conjecture and the Fundamen-
tal Lemma, which were unproven at the time of [Kot90]. They are now theorems thanks to the
work of numerous mathematicians, most notably Ngé and Waldspurger.

(3)The results in [Art13] are contingent on the release of several upcoming papers, including the
reference [A25], which have not appeared as of the time of writing.
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GSpin, whose Shimura varieties display a relative simplicity in various aspects, for
instance, being of Hodge type.

Unfortunately, when the rank is large the special orthogonal groups that have
Shimura varieties cannot be quasi-split even over R, because of the signature (n,2)
condition. Arthur’s work has been generalized to limited cases of inner forms by
Taibi [Tail9] (building on earlier work of Kaletha [Kall8l, [Kal16] and Arancibia—
Moeglin—-Renard [AMRI18], among others). We combine Theorem [I] with Arthur’s
and Taibi’s work to obtain the following theorem. Here we state it only for odd n for
simplicity.

Theorem 2 (Theorem Remark . — Assume that n is odd, and that
G = SO(V, q) is quasi-split at all finite places. For any finite set S of prime numbers,
let ¢5(IH*, s) be the S-partial Hasse-Weil zeta function associated to TH*. When S
is sufficiently large, we have

log ¢ (IH*, 5)
=3 3 dim(r®) m(n, ¢, v)(=1)"v(sy) log L5 (M(¥,v), 5).

P T v
Here v runs through a certain set of Arthur’s substitutes of global Arthur parameters,
© runs through the away-from-oo global packet of 1, and v runs through characters
of the centralizer group of ¥ (which is finite abelian). The three-fold summation is
over a finite range. The numbers m(w>°,v¢,v) € {0,1} and v(sy) € {£1} are defined
in terms of constructions in [Art13] and [Tail9]. The term L (M (3, v), s) is a finite
product of S-partial standard automorphic L-functions for general linear groups (with
some shifting in the variable s), and hence has meromorphic continuation to C. In

particular, the above formula implies that (°(IH*,s) has meromorphic continuation
to C.

™

In the proof of Theorem [2] one crucial ingredient is a relatively simple formula for
STH(fH) when the test function f is stable cuspidal at the real place; see Hypothesis
[0.1.2 This formula follows from Kottwitz’s stabilization of the L? Lefschetz number
formula in his unpublished notes, and is also used in Morel’s work [Mor10b), Mor11].
A self-contained proof of this formula for ST (f), from a different point of view, is
given in a recent paper by Z. Peng [Pen19].

We also prove a refinement of Theorem [2| concerning the decomposition of TH*
in the Grothendieck group of Galois—Hecke modules, under the same assumption on
G. When n is odd (as well as in some cases when n is even), we express IH* in
terms of the known Galois representations associated to regular algebraic cuspidal
automorphic representations of general linear groups, with multiplicities given in a
similar way as the multiplicities in Theorem [2} See Theorem [0.8.5 Corollary [9.8.8]
and Corollary When n is even, both the computation of the partial Hasse—
Weil zeta function and the decomposition of IH" proved in this paper are weaker than
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the conjectures in [Kot90], in that a certain ambiguity up to outer automorphism is
constantly present. This is due to the extra ambiguity in the endoscopic classification
of representations for even special orthogonal groups in [Art13] and [Tail9|, which
seems intrinsic to the methods therein.

As a byproduct of our refinement of Theorem 2] we prove that if an Arthur param-
eter 1 contributes to IH*, then the cuspidal automorphic representations of general
linear groups that constitute ¢ all satisfy the Ramanujan—Petersson conjecture at
almost all primes. These representations need not be regular algebraic, in which case
the conjecture was previously known. See Theorem (3) and Remark

Reduction to the stabilization of the boundary terms

We now discuss the structure of the proof of Theorem [I] For some period of time,
the study of the LHS of had been restricted to sporadic low dimensional cases;
see for instance [LR92]. The essential tools for treating arbitrary dimensions were
developed by Morel [Mor06), Mor08| (cf. [Mor10al), who went on to prove Conjec-
ture [I] for some unitary similitude Shimura varieties and the Siegel modular varieties
of arbitrary dimensions in [Mor10b] and [Mor11] respectively. We use Morel’s work
to obtain the following result for the orthogonal Shimura varieties associated to (V, q).
We fix a minimal parabolic subgroup of G = SO(V, ¢) and fix a Levi component of it.
Thus we get a notion of standard parabolic subgroups and standard Levi subgroups
of G.

Theorem 3 (Theorem [1.8.4). — For almost all primes p, we have
(0.4) S EDFTe(f7 x @0 | THF) = " Tryy,

k M
where M runs through the standard Levi subgroups of G.

Let us roughly describe the terms Trp;. For M = G, we have

Trg = ) (1" Te(f7> x &7 | Hy),
k
where Hf is the compact support cohomology of Sh K- For a proper M, the term
Trys is a more complicated mixture of the following ingredients.

~ The analogue of 3, (—1)% Tr(f»> x ®/ | HY) for a boundary stratum in Shy.
In another words, an enumeration of points on the stratum fixed under certain
Frobenius-Hecke operators.

— The topological fixed point formula of Goresky-Kottwitz—MacPherson as in
[GKMO97], for the trace of a Hecke operator on the compact support cohomology of
a certain locally symmetric space.
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— Kostant—Weyl terms. By this we mean characters for certain algebraic sub-

representations of Mp inside

H*(Lie Np, V),
where P is a standard parabolic subgroup of G containing M, and P = MpNp is
the standard Levi decomposition. These sub-representations are defined by certain
truncations of weights, and can be understood in terms Kostant’s theorem [Kos61]
describing H* (Lie Np, V).

As we have already mentioned, in [KSZ] the term Tr¢g is computed and stabilized
for all Shimura varieties of abelian type. Thus Trg is known to be equal to the RHS
of . In view of this, Theorem (1| follows from Theorem [3|and the following result,
which may be viewed as the “stabilization of the boundary terms”.

Theorem 4 (Theorem [B.17.2). — We have
(05) D T =3 UG H)[STH (F7) = ST (f1)].

MGG H

Stabilization of the boundary terms

The method for proving Theorem [4] is by calculating the two sides of (0.5) and
matching the explicit expressions. To calculate the RHS, we use Kottwitz’s formula
in his unpublished notes, as mentioned below Theorem [2] According to this formula
(to be recalled in , we have an expansion of the form

STH(F) = STH(F) = Y ST (F1),
M'4H
where M’ runs through standard proper Levi subgroups of H, and each term ST}, ()
has a relatively simple expression.
Roughly speaking, we label the pairs (H, M’) appearing in the above summation

by either a standard proper Levi subgroup M of G or the symbol (). We write
(H,M') ~ M, or (H,M') ~ (. In order to prove Theorem [4] we need to show

(0.6) Try = Y ST{L(f7),

(H,M')~M
where M is either a standard proper Levi subgroup of G or the symbol (J, and we
define Try to be 0. The proof of involves the following ingredients.

(i) Fixed point formula for a boundary stratum. — We need a formula that
enumerates points on a boundary stratum fixed under a Frobenius—Hecke operator,
of a form similar to (0.3). The boundary stratum in question is (a finite quotient of)
either a modular curve or a zero-dimensional Shimura variety, so such a formula is
essentially a classical result. However, the zero-dimensional case causes some extra
complication. We will come back to this technical point later in the introduction.
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(ii) Archimedean comparison. — We need a series of identities between the
archimedean contributions to the two sides of . These are identities between
terms of two different natures, namely discrete series character values (which appear
on the RHS of ) and Kostant—Weyl terms (which appear on the LHS of ;
see the discussion below Theorem . We establish such identities by explicit compu-
tation. On the discrete series side, we use formulas due to Harish-Chandra [HC65]
and Herb [Her79]. On the Kostant—Weyl side, we use Kostant’s theorem [Kos61]
and the Weyl character formula.

We point out that a priori it is not clear which identities between the archimedean
contributions would eventually lead to the proof of . Finding the correct forms
of the archimedean identities seems to be a harder task than proving them. It would
be desirable to have a more conceptual understanding of how the archimedean com-
parison should be woven into the proof of in general.

(iii) Computation at p. — We need to compute the p-adic contributions to the
two sides of explicitly. A priori there are more p-adic terms on the RHS than
the LHS. We will need to prove, among other things, that the extra terms eventually
cancel each other.

This finishes our discussion on the structure of the proof of Theorem [I] Next we
highlight three new features in the proof which did not show up in Morel’s work
[Mor11l, Mor10b| for symplectic similitude and unitary similitude groups.

Arithmetic feature: Shimura varieties of abelian type

The orthogonal Shimura varieties are of abelian type and not of PEL type. In this
paper we take as a black box the main result of [KSZ]| that proves Conjecture [2| for
these Shimura varieties. In Morel’s work, the Shimura varieties are of PEL type, and
for them Conjecture 2] was already proved by Kottwitz.

The reason that Theorem [I] is proved only for primes outside an unspecified finite
set is also due to a certain lack of understanding of Shimura varieties of abelian
type. Ideally one would like to prove the theorem for all hyperspecial primes p, but a
prerequisite for that would be a robust theory of integral models of the Baily—Borel
and toroidal compactifications. Such a theory has been established by Madapusi Pera
[MP19] in the case of Hodge type. For the Baily—Borel compactifications alone, a
“crude” construction of the integral models in the case of abelian type has been given
by Lan—Stroh [LS18]. However, for the above-mentioned purpose the integral models
of toroidal compactifications are equally important, and this is currently unavailable
beyond the case of Hodge type.

All the difficulty about integral models of compactifications can be circumvented
at the cost of excluding an unspecified finite set of primes, and this is the point of
view taken in this paper. We refer the reader to for a more detailed discussion.
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Geometric feature: zero-dimensional boundary strata as quotients of
Shimura varieties

In general, the boundary strata of the Baily—Borel compactification are naturally
isomorphic to finite quotients of Shimura varieties at certain natural levels. Often
these quotients are isomorphic to genuine Shimura varieties. However this is not true
for the zero-dimensional boundary strata in the present case. From a group-theoretic
point of view, this issue corresponds to the fact that the orthogonal Shimura datum
does not satisfy Morel’s axioms in [Mor10bl Chap. 1]. As a result, in the proof of
Theorem [3] we need to modify the axiomatic approach in loc. cit., and the terms
Trps in are also given by formulas that are slightly different from those in
[Mor10bl, Mor11].

Endoscopic-theoretic feature: normalizing transfer factors

In the proof of , signs are utterly important. One source of signs is the differ-
ence between the normalizations of transfer factors at the real place. The necessity of
computing these signs was not emphasized in [Mor10bl, Mor11]. For the orthogonal
Shimura varieties, these signs form a delicate pattern.

To understand these signs we need to compare the normalization A; g introduced
in [Kot90!, §7], and the Whittaker normalization. Here we explicitly fix Gg as a pure
inner form of its quasi-split inner form Gj and fix a Whittaker datum for Gg, so
the Whittaker normalizations for the transfer factors between Gr and its endoscopic
groups can be defined. The normalization A; p naturally shows up in the description
of the archimedean component of f7. To compare these two normalizations, we
compare the corresponding spectral transfer factors that appear in the endoscopic
character relations and compute the sign between them.

Extra complication arises when Gy has more than one equivalence class of Whit-
taker data. This happens if and only if dim V is divisible by 4, when there are precisely
two equivalence classes. In this case, we need to study how the two (different) Whit-
taker normalizations relate to the explicit formulas of Waldspurger [Wal10], the latter
having the merit of being easier to keep track of when passing to Levi subgroups. In
this direction we prove Theorem which may be of independent interest in
representation theory.
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LEITFADEN

In we recall the setting of orthogonal Shimura varieties and state Morel’s for-
mula in Theorem The terms in this formula are defined in and the proof is
given in §3] For a more detailed introduction to the structure of the proof see

In §4] we carry out the archimedean comparison between the Kostant—Weyl terms
and the stable discrete series characters. The results proved in this chapter to be used
later are Propositions [4.4.2] 4.5.2] [4.6.12] |4.6.13] and [4.6.14}

In §5| we review the endoscopic data for special orthogonal groups and give explicit

presentations which are important for the later computations.

In §6] we compare different normalizations of archimedean transfer factors for
special orthogonal groups. The goal is to explicitly determine certain signs.

In we calculate some Satake transforms at p that will be needed later in the
stabilization.

In §8] we prove the stabilization of the boundary terms by assembling the preceding
ingredients and explicit manipulation. We deduce the main result Theorem [I] of this
paper in Corollary B.I7.5]

In §9] we apply our main result to the actual computation of Hasse-Weil zeta
functions in some special cases, after reviewing results of Arthur and Taibi on the
endoscopic classification of automorphic representations. The main results in this

chapter are Theorems [9.6.4] [9.7.5] and [0.8.5]







CONVENTIONS AND NOTATIONS

— For # € R, we denote by |z| the largest integer < z and denote by [x] the

1/2 the non-negative square root of x.

smallest integer > x. If x > 0, we denote by =
~ We denote i € C alternatively by /—1.

— For any n € Z>1, we denote by [n] the set {1,2,--- ,n}. We denote by &,, the
symmetric group of the set [n].

— Let A be a subset of Z>;. For each i € Z>;, we set V,(A) =11ifi € A, and
Vi(A)=-1ifi ¢ A.

— When the symbol + appears for multiple times in a single expression, it is un-
derstood that all possible combinations of the signs are considered. For example, we
shall write {£x £ y} for the set {z +y,z —y,—x +y,—x — y}.

— A basis of a finite-dimensional vector space is always understood as an ordered

basis. We often just use the notation for a set such as {e, - ,e4} to denote a basis,
but the ordering is understood.

— For x4y, ,x, € C*, we write symdiag(zy,---,z,) for the 2n x 2n diagonal
matrix diag(zy, -+, T,z 2.

— For any square matrix A, we write AT for the transpose.

— If a group G acts on a set X, we write Centg X for the action kernel, namely the
largest subgroup of G acting trivially on X.

— When z is an element of a group, we write Int(x) for the automorphism y —
ryr L.
— If ¥ is a finite set of prime numbers, we denote by Z[1/X] the ring Z[1/p,p € X].

— For a € Z>1 and p a prime number, we denote by Qp« the degree a unramified
extension of Q,,, and by Zp. the valuation ring of Q.. We denote by o the arithmetic
p-Frobenius acting on Q..

— If H is either a locally profinite group or a real Lie group, we write C°(H) for
the set of compactly supported smooth C-valued functions on H.
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— We use the following abbreviations:

Ig=Gal@/Q), T,=Tg, =Gal(@,/Q,), T'u=Tx=GCal(C/R).
More generally, if F' is a field, we write I'p for the absolute Galois group of F.

— We say that a profinite Galois étale covering Y — X of schemes is a G-torsor,
where G is a profinite group, if G is the limit @iel G, of finite groups G;, and ¥ — X
is the limit of finite Galois étale coverings Y; — X that is a G;-torsor.

— By a reductive group, we always mean a connected reductive group.

— For a reductive group G over R and a maximal torus 7" in G defined over R, we
write Qc(G,T) for the complex Weyl group Norg(c)(T')/T(C), and write Qr(G,T')
for the real Weyl group Norgg)(T)/T(R).

— For a reductive group G over R, we denote by G(R)? the identity connected
component of the real Lie group G(R).

— In the structural theory of reductive groups, the words “pinning”, “splitting”,
and “épinglage” are synonyms. We use the word “splitting”.

— If P is a parabolic subgroup of a reductive group over a field, we write Np for
the unipotent radical of P. We reserve the notation Up for a different purpose. We
write Mp for P/Np. When it is clear from the context, Mp also denotes a fixed Levi
component of P.

— We freely use the language of abelianized Galois cohomology as developed in
[Bor98| and [Lab99]. For an overview, cf. [KSZ, §1]. We also use Kottwitz’s more
classical formulation [Kot86] in terms of centers of Langlands dual groups.

— Let G be a reductive group over Q. We denote by kerl((@, G) the kernel set

ker(H'(Q,G) — H*(A,G)).

It is well known that kerl(Q, G) has the canonical structure of an abelian group; see
for instance [Bor98].

— When normalizing transfer factors, we use the classical normalization of local
class field theory as opposed to Deligne’s normalization, cf. [KS12] §§4.1-4.2].

— Names of Dynkin types are denoted by sans serif letters, e.g., A,, B, etc.

— We sometimes use the abbreviations “LHS” and “RHS” for “left hand side” and
“right hand side”.



CHAPTER 1

THE ORTHOGONAL SHIMURA VARIETIES

1.1. General definitions concerning reductive groups

We collect some definitions that will appear repeatedly in the paper.

Definition 1.1.1. — Let G be a reductive group over a field F'. Let P be a parabolic
subgroup of G, with unipotent radical Np. Let M be a Levi component of P.

(1) We denote by Ay the split component of M, namely the maximal F-split torus
in the center of M.

(2) Let Norg(M) be the normalizer of M in G. We denote by WS, the quotient
group Norg(M)(F)/M(F), and denote by n§; the cardinality of W;.

(3) For any v € M(F'), we define

DS (7) := det (1 — Ad(y) | LieG/Lie M) € F.
(4) Assume that F' = Q, for a place v of Q. For any v € P(Q,), we define
dp,)(7) = ‘det (Ad(v) | Lie Np ®@U)|v € Ry,

where |-|, denotes the usual absolute value on @, .

Remark 1.1.2. — In Definition [I.1.1] (2), we in fact have Norg(M)(F) =
Norg (A )(F), and M(F) = Centg (A )(F). Hence WS, is isomorphic to the image
of Norg (A )(F) in Aut(Aar).

Definition 1.1.3. — Let G be a quasi-split reductive group over a field F. By
a Borel pair in G, we mean a pair (T, B) consisting of a maximal torus T in G
and a Borel subgroup B of G containing T. Given a Borel pair (T, B), we de-
note the sets of roots, coroots, positive roots, positive coroots by ®(G,T), ®(G,T)",
O(G,T)", ®(G,T)V'" respectively. We write BRD(T, B) for the based root datum
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(X*(T),®(G,T),2(G,T)", X.(T),®(G,T)V,®(G,T)V""). We define the Weyl de-
nominator

A= J] (-a'(9)€eF, vy € T(F).
ace®(G,T)*
Definition 1.1.4. — Let G be a reductive group over R. We denote by X the
symmetric space associated to G, namely Xg = G(R)/K Ag(R)?, where K is a max-
imal compact subgroup of G(R). Thus X is a smooth manifold. We let ¢(G) be the
half of the dimension of X.

Remark 1.1.5. — In Definition|1.1.4] K meets every connected component of G(R)
by Matsumoto’s theorem (see [BT65] 14.4]). Hence X is connected.

Definition 1.1.6. — We call a reductive group G over Q cuspidal if Gg contains el-
liptic maximal tori and Z2 has equal Q-split and R-split rank. Equivalently, (G/Ag)r
contains R-anisotropic maximal tori, where A¢ is the split component of G over Q.

Remark 1.1.7. — In this paper, every reductive group over Q that appears will
be a direct product of special orthogonal groups and general linear groups. Thus the
only case where the center can have different Q-split and R-split ranks is when we
have a direct factor SO2 which is non-split over Q but split over R.

Definition 1.1.8. — Let G be a reductive group over Q. We say that an element
~v € G(Q) is R-elliptic, if there is an elliptic maximal torus 7" in G such that v € T(R).

1.2. Generalities on quadratic spaces

1.2.1. — Let F be a field of characteristic zero, with a fixed algebraic closure F'. In
this paper, all quadratic spaces over F are assumed to be finite-dimensional and non-
degenerate. Let (V, q) be a quadratic space over F. We denote by [, ],: V@V — F
the associated bilinear pairing, defined as [z,y], = ¢(z,y) — ¢(x) — ¢(y). When no
confusion can arise we simply write V' for (V,q), and write [-, -] for [-,];. Recall that
the determinant of q, denoted by det ¢, is the image in F'* /F>2? of the determinant
of the matrix of ¢ under any basis of V. We define the discriminant of (V,q) to be

§ = (=)l V2 det g € F*/F2.
For m € Z>1, we write J,,, for the m x m matrix
1
o =
1

Definition 1.2.2. — Let (V,q) be a quadratic space over F' of dimension d and
discriminant 6. Let m = [d/2]|. We define the following notions.
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(1) A basis {e1, - ,eq} of V is called hyperbolic, if the matrix ([e;, e;]4) is of the
form

Im

Im

for some & € F'* when d is odd, and is equal to

(™)

when d is even. Note that when d is even, a hyperbolic basis exists only when ¢ is
trivial.

(2) Assume that d is even, and that § is non-trivial. In this case a basis {e,--- ,eq}
of V is called near-hyperbolic , if the matrix ([e;, e;]4) is equal to
Jm—l
1
—x
Jm—l

for some z € F*. Note that z is a lift of § € F*/F*2. We say that x is the
discriminant of {e1,--- ,eq}.

Definition 1.2.3. — We call (V, q) quasi-split, if there exists a hyperbolic basis or
a near-hyperbolic basis of V. If there exists a hyperbolic basis we also say that V'
is split; this is equivalent to requiring that V' contains a totally isotropic subspace of
dimension |dim V/2].

Example 1.2.4. — Let F' = R. Then a quadratic space over R of signature (p, q)
is quasi-split if and only p — ¢ € {1, —1,2}. For any p € Z>1, the quadratic spaces of
signature (p,p) and (p + 1,p — 1) are both quasi-split, and their discriminants are 1
and —1 € R*/R*? respectively.

1.2.5. — Let m € Z>;. We denote by RD(B,,,) the standard type B, root datum,
given by

(Z™ = spany, {e1, -+ ,em}, R, Z™ = spany {e), -+ e, }, RY),
where (e;,€/) = d; ;, and
R={%e|1<i<m}U{te te |1<i<j<m},
RY ={£2¢/ |1 <i<m}uU{Le €/ [1<i<j<m}.

(If m =1, then R = {e;},RY = {2¢Y}.) By the standard simple roots we mean the
following choice of simple roots:

€1 — €2, ,€m—1 — €m,Em.
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We denote by BRD(B,,,) the based root datum corresponding to the above choice of
simple roots, called the standard based root datum. The Weyl group of RD(B,,) is
naturally identified with {+1}" x &,,.

Similarly, for m € Z>1 we denote by RD(D,,) the standard type D, root datum,
given by

(Zm7 R7 Zm? Rv)7
where
R:{:l:elj:e]|1§1<]§m},
RY ={+e&/ £ [1<i<j<m}.

(If m = 1, then R = RV = (.) By the standard simple roots we mean the following
choice of simple roots:

€1 — €2, ,€m—1 — €Em,Em—1 T+ Em.

We denote by BRD(D,,) the corresponding based root datum. The Weyl group of
RD(D,,) is naturally identified with ({£1}") x &,,, where ({£1}")" denotes the
kernel of the homomorphism {£1}" — {£1} taking the product of the coordinates.

Definition 1.2.6. — Let a € F be an element such that a? € F* and o ¢ F. Let
U(1)a be the norm-one subtorus of Resp(a)/r G- We have a canonical isomorphism
U(1), 7 =G, F corresponding to the inclusion F(«) < F. In particular, we canon-
ically 7identify X *(U(1)q) and X.(U(1),) with Z. We also have a canonical injective
F-homomorphism ¢, : U(1), — GLo, which represents the multiplication action of
U(1), on F(a) under the F-basis {1,a} of F(a). If F = R, F = C,a = /-1, we
simply write U(1) for U(1),.

1.2.7. — Let V = (V, q) be a quadratic space over F' of dimension d and discriminant
0. Let G = SO(V). Then G is a reductive algebraic group over F, and semi-simple if
d # 2. The absolute rank of G is m = [d/2].

Assuming that (V, ¢) is quasi-split, we shall obtain an explicit description of a Borel
pair in G and the associated based root datum as follows. There are two cases to
consider.

The first case is when V has a hyperbolic basis B = {e1, - ,eq}. We then identify
G with a subgroup of GL; using the basis B. When d is odd, we obtain an F-
embedding

w: Gl — G, (21, s 2m) — diag(z1, -, 2Zm, Lzt - 20 b).
When d is even, we obtain an F-embedding
w: Gy — G, (21, s 2m) > diag(z1, , Zm, 2 5 21 ).

For both parities of d, the image T of (g is a split maximal torus in G. Also, the
intersection of G with the upper triangular Borel subgroup of GL, is a Borel subgroup
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B of G containing T'. Under tp, the based root datum BRD(T', B) is identified with the
standard based root datum BRD(B,,) (resp. BRD(D,,)) when d is odd (resp. even).

The second case is when d is even, ¢ is non-trivial, and V' has a near-hyperbolic
basis B = {e1, -+ ,eq}. Let x € F* be the discriminant of B (see Definition ,
and fix a square root o € F of x. We identify G with a subgroup of GLg using the
basis B, and obtain an F-embedding

taz G x U(l)g — G

(Zh' o azm—lazm) — diag(zla"' 7Zm—17Loc(Zm)7z;L1_1a"' 7Z1_1)

Here U(1)q and i : U(1)q = GLy are as in Definition [1.2.6f The image T of to,p is
a maximal torus in G. Recall from Definition that X*(U(1),) and X, (U(1),)
are canonically identified with Z, so X*(G™~! x U(1),) and X,(G™~! x U(1),) are
canonically identified with Z™. Under ¢4 5, the root datum of (7%, G%) is identified
with RD(D,;,). The standard based root datum BRD(D,,) thus gives rise to a Borel
subgroup B of G containing T%. The I'p-action on X*(G~t x U(1),) = Z™
factors through Gal(F(«)/F), and the non-trivial element of Gal(F(«)/F) acts by
" — 7™ (a1, ,am) — (a1, ,am—1, —am). Hence the I'p-action preserves the
set of standard simple roots. It follows that B comes from a Borel subgroup B of G.
Thus (T, B) is a Borel pair in G, and ¢, 5 induces an isomorphism between BRD(D,;,)
and BRD(T, B).

Proposition 1.2.8. — Let (V,q) be a quadratic space over F of dimension d and
discriminant §. Let G = SO(V'). Assume that d > 3. The following statements hold.

(1) The quadratic space V is split if and only if G is split.

(2) If d is odd, then G is split if and only if G is quasi-split.

(3) If d is even, then G is split if and only if G is quasi-split and ¢ is trivial.

(4) Assume that d is even, 0 is non-trivial, and V is quasi-split. Then G is quasi-
split.

(5) Assume that d is even, § is non-trivial, and G is quasi-split over F. Then G
is split over F(a), for any a € F whose square is a lift of 6.

(6) Keep the assumptions in (5), and assume that F is a non-archimedean local
field of characteristic zero. Then G is unramified if and only if F(«) is unramified
over F, if and only if 6 € F*/F*? has a representative in (’);/O;’z.

(7) Suppose F = Q, for an odd prime p. Then (V,q) is quasi-split if and only if
the Hasse invariant is (—1)172;1”1’(5)[%J. Here v,(0) is well defined in Z/27.

(8) Suppose F = Q. Then (V,q) ®q Q, is quasi-split for almost all primes p.

Proof. — (1) This is well known; see for instance [PR94l Prop. 2.14].
(2) This follows from the fact that the Dynkin diagram of type B(4_1)/2 does not
have non-trivial automorphisms.
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(3) If G is split, then V' is split by part (1), and so 0 is trivial. Conversely, assume
that G is quasi-split and ¢ is trivial. By the abstract classification of quasi-split semi-
simple groups of type D, (where m = g > 2), we know that the split rank of G is at
least % —1. This implies that V is an orthogonal direct sum of g —1 hyperbolic planes
and a 2-dimensional quadratic space Vp, by [PR94l Prop. 2.14]. The discriminant of
Vo is the same as that of V', which is trivial. Therefore there is a basis of V; under
which the matrix of the quadratic form on Vj is diag(a, —ab?®) for some a,b € F*.
Clearly this implies that Vj is a hyperbolic plane. Hence V is split, and therefore G
is split by (1).

(4) By G admits a Borel subgroup over F'.

(5) This follows from (3) by base changing both V' and G from F to F(«).

(6) Since 0 is non-trivial, by (1) we know that G is non-split. By the abstract
classification of quasi-split non-split semi-simple groups of type D, (with m > 2), we
know that G splits over a unique quadratic extension F/F inside F, and that any
splitting field of G inside F must contain E. Thus G is unramified if and only if E/F
is unramified. By (5), we know that F = F(«). Thus G is unramified if and only if
F(a) is unramified over F', which is also equivalent to that J has a representative in

0) /05>
(7) If (V, q) is quasi-split, then it has matrix representation
Tan
2
T
—Jas
2
when d is odd and
14
2
—x
_J i

when d is even, for some z € F* representing . Hence the Hasse invariant is
(x7—l)y2;1J = (—1)%1”1’(”””%]. This proves the “only if” direction. The “if”
direction follows since two quadratic spaces over @, with the same dimension, dis-
criminant, and Hasse invariant are isomorphic.

(8) For almost all p, v,(6) = 0 € Z/2Z and the Hasse invariant of (V,¢q) at p is
trivial. By (7) we know that (V, ¢) ®q Q) is quasi-split for such p. O

Remark 1.2.9. — From the assumptions that d is even, ¢ is non-trivial, and G =
SO(V) is quasi-split over F, it does not follow that V' is quasi-split. For example, the
quadratic spaces over R of signatures (n+2,n) and (n,n+2) define isomorphic special
orthogonal groups, but only the former quadratic space is quasi-split; cf. Example

CZ4
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1.3. Generalities on Shimura data and rational boundary components

In this section we collect some general facts concerning the formalism of mixed
Shimura data and rational boundary components in [Pin90].

1.3.1. — According to the definition of Pink [Pin90l Chap. 2], a mized Shimura
datum is a tuple (P,U, Y, h), where P is a connected linear algebraic group over Q, U
is a subgroup of the unipotent radical of P that is normal in P, ) is a left homogeneous
space under the subgroup P(R)U(C) of P(C), and h is a P(R)U(C)-equivariant map
Y — Hom(Sc, P), satisfying the axioms in [Pin90} 2.1]. (Here S := Resc/g Gyn.) If
h is clear from the context, we omit it from the notation. If U is trivial, we also
omit it from the notation. The mixed Shimura datum is called pure if P is reductive.
Note that the notion of a pure Shimura datum according to Pink’s definition is less
restrictive than Deligne’s definition in [Del79] 2.1], in that A is allowed to be non-
injective, cf. [Pin90} 2.2 (d)]. In the sequel all pure Shimura data are understood in
the sense of Pink.

Some comments on the homogeneous space ) are in order. First, note that
P(R)U(C) is the preimage of (P/U)(R) along the map P(C) — (P/U)(C), since
H'(R,U) is trivial. Tt follows that P(R)U(C) is a closed Lie subgroup of the real Lie
group P(C). Recall that for any real Lie group G, a left homogeneous space under
G is a set S equipped with a transitive left action of G such that the stabilizers are
closed Lie subgroups of G. Then S has the unique structure of a smooth manifold
such that the G-action is smooth. In the definition of a mixed Shimura datum, )
is required to be a left homogeneous space under the real Lie group P(R)U(C), and
so Y is canonically a smooth manifold. As explained in [Pin90l 2.2], Y has finitely
many connected components, and the smooth structure on ) can be upgraded to a
canonical complex structure, which is invariant under P(R)U(C).

1.3.2. — By definition ([Pin90, 2.3]), a morphism between two mixed Shimura data
(P,U,Y,h) and (P',U’,Y',h’) is a pair (7, F'), where 7 : P — P’ is a homomorphism
of Q-algebraic groups, and F' : Y — )’ is a map, required to satisfy the following
conditions:

— 7 maps U into U’.

— F is equivariant with respect to the homomorphism P(R)U(C) — P'(R)U’(C)
induced by 7.

— For any y € ), the homomorphism h'(F(y)) : S¢c — P[. is equal to the composite

homomorphism

Se 2% pe 5 Pl
As shown in [Pin90} 2.4], if (7, F') is a morphism as above, then F is automatically
holomorphic with respect to the canonical complex structures on ) and ).
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1.3.3. — Let (P,U,Y,h) be a mixed Shimura datum. In [Pin90] 2.9], Pink con-
structs the quotient of (P,U,Y,h) by a normal subgroup P, of P. This is a mixed
Shimura datum for the group P/Py equipped with a morphism from (P,U, Y, h) sat-
isfying a universal property. In the following, we give an alternative construction of
the quotient in the special case where Py is the unipotent radical of P.

Let W be the unipotent radical of P. We write G for P/W, and write = for the
projection P — G. Since H'(R, W) is trivial, and since W (R) and U(C) are con-
nected, the natural map P(R)U(C) — G(R) is surjective and induces an isomorphism
7o(P(R)U(C)) — mo(G(R)). In particular, mo(G(R)) acts on mo()).

Suppose we have a left mo(G(R))-set T' and a mo(G(R))-equivariant map
A:m(Y) = I'. We define the map

Hy:Y —TITx Hom(S@,GC).
y— (A([y]), 7o h(y)).

We have a diagonal G(R)-action on I' x Hom(S¢, G¢ ), where the action on the second
factor is by conjugation. The map H), is equivariant with respect to the natural
homomorphism P(R)U(C) — G(R). Let Xy := im(H,). Let hy : X — Hom(S¢, G¢)
be the projection map to the second factor. It is easy to check that (G, Xy, hy) is a
pure Shimura datum, and that the pair (7 : P — G, H) : ¥ — X)) is a morphism
(P,U,Y,h) — (G, X\, hy) between mixed Shimura data. Since Hy : Y — X, is
surjective by the definition of X}, it induces a surjection mo(Hy) : mo(Y) — mo(Xy).

Lemma 1.3.4. — Let T' and X\ be as above. The following statements hold.

(1) The map X\ — T given by the projection to the first factor induces an injection
71'0()(,\) — T

(2) The surjection mo(Hy) : mo(Y) — mo(Xy) is a bijection if and only if X\ is
injective.

(3) If X\ is injective, then the morphism (w,Hy) : (P,U, Y, h) — (G, X\, hy) identi-
fies (G, Xy, hy) with the quotient of (P,U,Y,h) by W.

Proof. — (1) A connected component of X) is the same thing as a G(R)%orbit in
Xy, but G(R)? acts trivially on T

(2) The composition of my(H)) followed by the injection m(Xy) — T in part (1)
is equal to A.

(3) Let (m, F) : (P,U,Y,h) — (G, Xabs, habs) be the abstract quotient by W,
which is characterized by a universal property and constructed in [Pin90] 2.9]. By
the universal property, there is a unique G(R)-equivariant map j : Xups — Xy such
that hy o j = haps and j o F' = H). We only need to show that j is a bijection. Since
Hy : Y — X, is surjective, so is j. By part (2), j induces an injection m(Xaps) —
mo(Xy). It remains to show that the restriction of j to each connected component of
Xaps 18 injective. For this, it is enough to show that the restriction of hy o j = haps to
each connected component of X,ps is injective. But this is [Pin90] 2.12]. O
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1.3.5. — We recall the formalism of rational boundary components developed in
[Pin90, Chap. 4]. Let (G, X) = (G, X, h) be a pure Shimura datum. For simplicity,
we assume that G® is Q-simple, which will suffice for our applications. We denote by
AdmPar(G) the set of admissible parabolic subgroups of G, namely G itself and the
maximal proper parabolic subgroups of G (defined over Q). For any P € AdmPar(G),
Pink [Pin90, 4.7, 4.8] defines a canonical normal subgroup PY™ of P, and a canonical
normal subgroup Up of PP"k contained in the unipotent radical of PPirlk As G is
reductive, the proof of [Pin90} 4.8] shows that the unipotent radical of PYk is equal
to the unipotent radical Np of P. In particular, the subgroup P C G uniquely
determines P. We shall write Mp for P/Np and write Gp for PYink /Np.
We define
Wp = 7o(X) X Hom(S@,Pgink),

equipped with the diagonal action of P(R)Up(C). Here the action on the first factor
is via mo(P(R)Up(C)) = mo(P(R)) — mo(G(R)), and on the second factor via conju-
gation. We write pI” and p& for the projection maps from #p to the two factors. In
[Pin90, 4.11], Pink defines a canonical P(R)-equivariant map

wp: X — %p

such that pf” o wp is the natural projection X — mo(X).

By definition ([Pin90l 4.11]), a rational boundary component of (G,X) is a pair
(P,Y), where P € AdmPar(G), and Y is any PY"K(R)Up(C)-orbit in Zp such that
Y Nim(wp) # 0. We denote by RBC(G, X) or simply RBC the set of all rational
boundary components. For each P € AdmPar(G), we denote by RBCp(G,X) or
simply RBCp the set of all rational boundary components whose first coordinate is
P. For (P,Y) € RBC, we write XY for the subset wp'()) of X. We have the following
facts (see [Pin90}, Chap. 4]):

(I) For (P,Y) € RBC, the PP"k(R)Up(C)-action on Y and the map pL|y : Y —
Hom(Sc, PE™¥) make the tuple (PP Up,Y) a mixed Shimura datum.

(I) For (P,Y) € RBC, the set XY is the union of some connected components of
X. The map wp maps XY injectively and holomorphically into ), inducing a bijection

(1.3.5.1) vy (XYY =5 mo (V).
Moreover, the map 7()) — mo(X) induced by pf|y : ¥ — mo(X) is the inverse of
Ty
(III) For each fixed P € AdmPar(G), X is the disjoint union
(1.3.5.2) x= ]I &~

(P,Y)ERBCp

(W Our P, PPink and Up are denoted respectively by Q, P;, and U; in [Pin90l 4.7, 4.8].
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1.3.6. — We keep the setting of Let P € AdmPar(G). For each (P,Y) €
RBCp, we let (Gp, Xy) be the quotient of the mixed Shimura datum (PFk Up, Y)
by the unipotent radical Np of P (which is also the unipotent radical of PF"¥) and
let Fy : ¥ — Xy be the canonical P*(R)Up(C)-equivariant map. By Lemmall.3.4]
we know that Fy induces a bijection between the sets of connected components.

Let my be the composition

Ty XY 8y Dy
Then 7y is holomorphic and induces a bijection between the sets of connected com-
ponents, since both wp|yy and Fy, have these properties. Moreover, 7y is equivariant
with respect to the surjective Lie group homomorphism PF"8(R)Up(C) — Gp(R).
In particular, 7y is a surjective submersion, since XY (resp. Xy) is a left homogeneous
space under PPK(R)Up(C) (resp. Gp(R)).
Let Xp be the disjoint union

Xp = H Xy,

(P,Y)ERBCp
as a complex manifold with a Gp(R)-action. In view of (|1.3.5.2), we have a map
Tp = H Ty : X — Xp.
(P,Y)eERBCp

Then wp is holomorphic, surjective, submersive, equivariant with respect to
PPik(R)Up(C) — Gp(R), and induces a bijection between the sets of connected
components, since each 7wy has these properties. When P = G, the map 7¢g is an
isomorphism.
Consider the set-theoretic disjoint union
(1.3.6.1) = I = ]I 2.
PcAdmPar(G) (P,Y)ERBC

There is a natural G(Q)-action on X*, satisfying the following properties (see [Pin90]
4.16, 6.2)):

— The action respects the stratification of X* by the subsets Xy.

— For g € G(Q) and P € AdmPar(G), we have g(Xp) = &X;py-1. In particular,
Stabg(Q)Xp = P(Q)

— For P € AdmPar(G), the map np : X — Xp is P(Q)-equivariant. Here P(Q)
acts on Xp since StabggyXp = P(Q). Moreover, the P(Q)-action on Xp factors
through the quotient map P(Q) — Mp(Q).

Let P € AdmPar(G). As discussed above we have an Mp(Q)-action on X'p. Since
Mp(Q) is dense in Mp(R), there is at most one way to extend this action to a

(2)While we shall only consider X'* as a set, there is a natural Satake topology on X*; see [Pin90}
6.2]. Under this topology, X* contains X as a dense open subset.
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continuous Mp(R)-action. It is shown in [Pin90] 3.6] that such an extension indeed
exists. Since we need to explicitly describe this Mp(R)-action later for the orthogonal
Shimura datum, we give its construction in the following proposition.

Proposition 1.3.7. — Keep the setting of and let P € AdmPar(G). The
following statements hold.

(1) There is a unique extension of the Gp(R)-action on Xp to an Mp(R)-action
such that the map mp : X — Xp is equivariant with respect to the homomorphism
PR) — Mp(R).

(2) The Mp(R)-action on Xp in (1) factors through the natural homomorphism

(1.3.7.1) Mp(R) — mo(Mp(R)) x Aut(Gpr)
m — ([m], Int m).

(3) The Mp(R)-action on Xp in (1) is transitive and continuous. Its restriction
to Mp(Q) coincides with the Mp(Q)-action discussed in §1.5.6

Proof. — (1) The uniqueness immediately follows from the surjectivity of mp. We
prove the existence. Using the canonical isomorphism mo(P(R)Up(C)) = mo(Mp(R)),
we view mo(X) as a mo(Mp(R))-set. In particular, mo(X) is a mo(Gp(R))-set. To
simplify notation, we write Hp for the set mo(X) x Hom(Sc, Gp,c), which is equipped
with the diagonal Gp(R)-action as in §1.3.3| (where we take I' to be mo(X)). The
Gp(R)-action on Hp extends to an Mp(R)-action in the obvious way (using the
normality of Gp in Mp). We have a natural map

Fp: Wp = mo(X) x Hom(Sc, PE™) — Hp = 7mo(X) x Hom(S¢, Gpc)
([21,0) — ([a], (Sc = PE™ = Gp)),

which is equivariant with respect to P(R) — Mp(R).
Let (P,)Y) € RBCp. We denote by Ay the injective map

o) 22 7o (XY 5 o (),

where vy is as in (1.3.5.1). As in §1.3.3, Ay induces a map Hy,, : Y — Hp, whose
image is denoted by X),. By Lemma [[.3.4 we may assume that Xy is equal to
Xy, and that the map Fy : Y — &y is equal to the map Hy,. Then we have a

commutative diagram
Ve——s%p

iFy \LQP
Xyc—> HP
For different elements (P,)) # (P,)’) € RBCp, the subsets Xy and Xy of Hp

are disjoint, because their projections in mo(X) are the disjoint subsets mo(X?') and
Fo(Xy/). Therefore we may identify A'p with the union of the Xy’s inside Hp. Under
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this identification, the map np : X — Xp is given by the composite map
X <2 @ 0 Hp

Since wp : X — Xp is surjective, and since .%p owp : X — Hp is equivariant with
respect to P(R) — Mp(R), we see that Xp is an Mp(R)-stable subset of Hp. We
define the desired Mp(R)-action on Xp to be the one inherited from the Mp(R)-action
on Hp. Then 7p is indeed equivariant with respect to P(R) — Mp(R).

(2) It suffices to observe that the Mp(R)-action on Hp factors through (1.3.7.1)),
which is obvious.

(3) Firstly, by [Pin90} 4.7], the G(R)-action on X restricts to a transitive P(R)-
action on X. Since mp : X — Xp is surjective, the Mp(R)-action on Xp is transitive.
Secondly, the continuity of the Mp(R)-action on X'p follows from the continuity of the
P(R)-action on X, and the fact that the maps 7p : X — Xp and P(R) — Mp(R) are
surjective submersions. Finally, the last statement in (3) follows from the surjectivity
and P(Q)-equivariance of 7p : X — Xp, where P(Q) acts on X'p in the way described

in {3 O

Remark 1.3.8. — In the above exposition, we started with the rational bound-
ary components in the sense of [Pin90|, and used them to construct the Mp(R)-
homogeneous space Xp, the P(R)-equivariant map np : X — Xp, and the G(Q)-set
X*. This is the approach taken in [Pin90]. Alternatively, one could apply the clas-
sical (i.e. non-adelic) formalism of rational boundary components in [AMRT10] to
each connected component of the Hermitian symmetric domain X in order to con-
struct each connected component of Xp and each connected component of X*. One
could then construct the whole Xp and X* by taking suitable disjoint unions, and
reconstruct the subsets Xy C Xp as the Gp(R)-orbits in X'p. This alternative ap-
proach is the point of view taken in [Pin92a]. These two approaches are logically
equivalent. Our usage of the notations X* and Xp agrees with [Pin92al, §3.6] and
[Mor10bl §1.1].

1.4. The group-theoretic setting

In this section we fix the group-theoretic setting for our discussion of orthogonal
Shimura varieties.

1.4.1. — Let (V,q) be a quadratic space over Q, of signature (n,2). We always
assume that n > 3. Let d = dimV = n + 2, and let m = |d/2]. Let G = SO(V).
Throughout the paper, we shall refer to “the odd case” and “the even case” according
to the parity of d.

Since n > 3, the maximal totally isotropic subspaces of Vg are of dimension 2.
Throughout the paper we assume that the maximal totally isotropic subspaces of V'
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are also of dimension 2. If n > 5, this assumption is automatic by Meyer’s theorem
(see [Ser73| §IV.3.2 Cor. 2]). We fix a flag
(1.4.1.1) ocvicVcVicvitcy,
where V; is an i-dimensional totally isotropic Q-subspace of V. We set
W, := Vit Vi,

for i € {1,2}. Define

Py := Stabg(V2) C G,

P, := Stabg (V1) C G,

P =P NP CAGqG.
Then Pj5 is a minimal parabolic subgroup of G, and P; and P, are the only proper

parabolic subgroups of G strictly containing Pj5. If S is a non-empty subset of {1, 2},
we write Pg for the one of P, P», and P corresponding to S.

1.4.2. — We fix once and for all a splitting of the flag (1.4.1.1). Then we obtain a
Levi component Mg of Pg for each non-empty S C {1,2}. We have

Ml = GL(VQ) X SO(WQ),

Mg = GL(Vl) X SO(Wl),
(1.4.2.1) My, = GL(Vl) X GL(‘/Q/V]) X SO(WQ)

In the sequel we call parabolic subgroups of G containing Pj5 standard. For each

standard parabolic subgroup P, we denote by Mp the Levi component of P containing
M4, also called standard, and denote by Np the unipotent radical of P. Thus the

standard proper parabolic subgroups are P, Py, P15, and for P = Ps we have Mp =
Ms. We also write Ng for Np,.

1.4.3. — We fix a basis {e1} of V4 and a basis {es} of Vo/V;. By the fixed splitting
of the flag , we can view ey as a vector in Vo C V. Let ¢ € V/Vi and
eh € Vit /V5+ be determined by the conditions [e;, e}] = 1,7 = 1,2. We view ¢}, €} as
vectors in V as well. Under these choices we have identifications

GL(V;) = GL;, i € {1,2}, and GL(V3/Vi) = GL,

which we shall use freely in the sequel. In particular, the decomposition
becomes

Mo = Gm X Gm X SO(WQ)
We shall refer to the factor corresponding to GL(V;) as the first G,,, and refer to the
factor corresponding to GL(Va2/V1) as the second Gy,.
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1.4.4. — Let M be a standard proper Levi subgroup of G. We set

GL(Va), SO(Wa),

MSY .= { GL(W), M€ = { sO(Wy),

GL(V1) x GL(V2/V1), SO(W2),

GL(V2), SO(Ws),

M), == { GL(W), M, :=  SO(W7),
GL(V), GL(V2/V1) x SO(Wy),

where the three cases are when M = Mj, My, and M;s respectively. (Here h stands
for “hermitian” and [ stands for “linear”.) We have

M = MY x MS© = M), x M;.

1.5. The orthogonal Shimura datum

1.5.1. — Let (V,q) and G = SO(V) be as in In this paper we are concerned
with the orthogonal Shimura datum on G. In the following we recall its definition and
some basic facts. More details can be found in [MP16].

Consider the set X of oriented, negative definite, two-dimensional subspaces of Vg.
Then X is a left homogeneous space under the natural action of G(R). Moreover, X
has two connected components, and the action of mo(G(R)) = Z/2Z on m(X) is the
non-trivial one.

Let 2 € X. For any re? € C* (with 7 € Rsg,6 € R), we let

h(z)(ré) € G(R)

be the element which acts on Vg = @z as the rotation on x by angle —26 (according
to the given orientation on x) and as the identity on z+. The map h(z) : C* — G(R)
comes from an R-algebraic group homomorphism

h(l‘) :S — G]R.

Moreover, the association = — h(z) is G(R)-equivariant and identifies X with a
G(R)-conjugacy class of homomorphisms S — Gg. The tuple (G,X,h) is a pure
Shimura datum, called the orthogonal Shimura datum. From now on we also denote
this Shimura datum by O(V'). It is known that O(V) is of abelian type. In fact, the
pair (GSpin(V'), X) can be upgraded to a Shimura datum of Hodge type, and O(V)
is the quotient of that by the central G, in GSpin(V).

The Hodge cocharacter y : G, — G of O(V) (well-defined up to G(Q)-conjugacy)
is given as follows. Choose an arbitrary hyperbolic basis B of Vo and let v : G} —
Gg be the embedding constructed in Let {€Y, -+, €%} be the standard basis of
X,(G™). Then p is conjugate to tgoe) . Moreover, it is possible to find a representative
i : Gy, — G defined over Q. In fact, we may assume that the first and the last vectors
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in B are respectively e; and e;. Then g o €} is defined over Q. Consequently, the
reflex field of O(V) is Q.

Next we determine some explicit information about the rational boundary compo-
nents of O(V'). We follow the notation in In the present case the set AdmPar(G)
consists of G and the G(Q)-conjugates of P; and Ps.

Proposition 1.5.2. — The following statements hold.

(1) For each P € AdmPar(G), the set RBCp(O(V)) is a singleton.

(2) For i = 1,2, we have PF'™ = M; ,N;. In particular, Gp, = PF"%/N; is
naturally identified with M; p,.

(3) For ¢ = 1,2, under the identification M, = GLj3_,, the Shimura datum
(Mj p, Xp,) is identified with the Siegel Shimura datum (GLs_;, Ha2—s)) (see [Pin90,
2.7, 2.8]).

(4) The action of the subgroup M ;(R) C M7(R) on Xp, is trivial.

(5) The groups mo(Man(R)), mo(Ma2(R)), and mo(G(R)) are all isomorphic to
Z/2Z. The map

mo(M2(R)) = mo(Ma,n(R)) x 70 (M2,1(R)) — mo(G(R))
induced by the inclusion Ma(R) — G(R) is given by
Z/27 x L./27, — Z./27
(a,b) — a+b.
The action of My(R) on Xp, as in Proposition m is given by the composite

map Ma(R) — mo(M2(R)) — mo(G(R)) followed by the unique non-trivial action of
mo(G(R)) = Z/2Z on the two-element set Xp, = Hy.

Proof. — Statements (1) (2) (3) follow from [Hor14l Prop. 2.4.5]. To show (4), note
that My (R) = SO(n—2,0)(R) is connected, and that it commutes with Gp, = My .
The statement then follows from Proposition [I.3.7] (2). We now show (5). We have

Myp(R)=R*,  Myy(R)=SO(n—1,1)(R),  G(R)=SO(n,2)(R).

The first two statements in (5) follow from the standard description of the connected
components of special orthogonal groups; see for instance [Kna02| 1.17]. The third
statement follows from the fact that the map 7p, : X — Xp, is Po(R)-equivariant and
induces a bijection mo(X) — 7o (Xp,) = Xp,; see and Proposition m O

1.6. Shimura varieties

From now on until the end of we let O(V) = (G,X,h) be the orthogonal
Shimura datum fixed in Let K be a neat compact open subgroup of G(Ay).
(See [Pin90} 0.6] for the meaning of “neat”.) As usual we define

Sh (O(V))(C) := GQ\X x G(Ay)/ K.
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This is the set of C-points of the canonical model Shi(O(V)), which is a smooth
quasi-projective variety of dimension n = d — 2 over the reflex field Q. As O(V) is
of abelian type, the existence of the canonical model follows from [Del79]. We write
Shg for Shi (O(V)).

Let K and K be neat compact open subgroups of G(Ay), and let g be an element
of G(Ay) such that K; C gK2g~'. We have a finite étale Q-morphism

['Q}Kl,KQ : ShKl — Sth
called a Hecke operator. On C-points, it is induced by
X x G(Af) — X x G(Af)
(z,k) — (z, kg).
When the context is clear we will simply write [-g] for [-¢]k, k.-

We recall the following facts proved in [Pin90] 12.3]. For any neat compact open
subgroup K C G(Ay), the Shimura variety Shx has the canonical Baily-Borel com-
pactification

j : ShK — ShK,
where Shy is a normal projective variety over Q, and j is a dense open embedding
defined over Q. At the level of C-points, we have
Shi (C) = GQ\X™ x G(Ay)/K,
where X* is the G(Q)-set defined in (1.3.6.1), and j is induced by wg : X — Xg —
X*. For Ki, K>, and g as in the last paragraph, the morphism [-g] : Shi, — Shg,
uniquely extends to a finite Q-morphism [-g] = [-g]y, x, : Shx, — Shk,.

1.7. Automorphic A-adic sheaves

1.7.1. — Let V be a finite-dimensional vector space over a number field E equipped
with a G-representation, i.e., an E-algebraic group homomorphism Gg — GL(V). Let
A be a finite place of E. Then by a well-known construction, for any neat compact
open subgroup K C G(Ay) there is an Ey-sheaf on Shx associated to V, which we
denote by FEV. Moreover, for each Hecke operator [-g] : Shx, — Shg, (with Ky, Ko
neat), there is a canonical isomorphism

(1.7.1.1) Frg t FEOV = g FR2V.
We refer the reader to [Pin92al §5.1] and [KSZI| §1.5] for more details.
Let ¢ be the rational prime below ), and fix a Q-algebra embedding Ey < Q,.

Let K be as above. We view the Ey-sheaf FXV as a Q,-sheaf and keep the same
notation. We have the intersection complex

ICRV = (jl*(@fKV) [n})) [~n] € D¢(Shk, Q).
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Here j is the open embedding Shx < Shg, and remember that n = dim Shg.

1.7.2. — We have analogues of the canonical isomorphisms for the intersec-
tion complexes, which we now explain. Consider a Hecke operator [-g] : Shx, — Shg,
and its extension [-g] : Shr, — Shg,. To ease notation we write g for [-g] and write
g for m For i = 1,2, we write F; and IC; for FXiV and ICX* V respectively, and
write j; for the open embedding Shy, — Shg,.

For any .% € D%(Shg,,Q,), we have the commutative diagram

G*Rj2\F — Rj1.19*F

i i

G Rj2 ¥ —— Rj1.g"F

where the horizontal maps are the base change maps, and the vertical maps are
induced by the natural maps Rj;(-) = Rji«(-), ¢ = 1,2. Since g is finite (see ,
g* is exact with respect to the (middle-perversity) perverse t-structures. Therefore
the above commutative diagram induces a natural map

(1.7.2.1) T joneF — j11ug" F.
Taking .% to be Fa[n|, we obtain a map
G" 2,15 (Fa[n]) — j11.9" (F2[n]).
The composition of the above map followed by jlﬁg*(f[fgﬁ) gives a map
g jo 1 (F2ln]) — ji(Filn]).
Shifting by [—n] we obtain a map
(1.7.2.2) G 1C, — 1C; .
Similarly, using the base co-change maps (see [SGAT73| XVIII])
Rj119'F — §'Rj2, 7,

Rj1+9 7, — §'Rj2.s 7,
we obtain a map
(1.7.2.3) g F — G o F

as a counterpart of (1.7.2.1). Note that because g is finite étale (see §1.6)), we have
g' = g*. Again, taking .Z to be F[n] in (1.7.2.3)), pre-composing with I+ (Fl.g1),
and shifting by [—n], we obtain a map

(1.7.2.4) IC; — §'1C,.
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Now for Hecke operators [-91]x k, and [-go] k' k,, we obtain a canonical cohomo-
logical correspondence

(1.7.2.5) Hy go K1 Kok G ICTTV — ghICK2 v
by composing (|1.7.2.2)) for g = g; with (1.7.2.4)) for g = go.

1.8. Intersection cohomology and Morel’s formula

1.8.1. — Keep the setting of §1.7.1} Let K be a neat compact open subgroup of
G(Ay). Define

TH* (Shg, V) := H}, (Shx ®¢ Q, ICX V),
H; (Shg, V) := Hj, (Shg ©¢ Q, FV),

which we view as graded Q,-vector spaces. We denote by H(G(A}) J K)g the Hecke
algebra of Q-valued smooth compactly supported K-bi-invariant distributions on
G(Ay). If we choose a Haar measure dg™ on G(Ay) that gives rational volumes
to compact open subgroups, then each element of H(G(Ayf) / K)g can be uniquely
written as f*dg>, where f°° is a smooth compactly supported K-bi-invariant func-
tion G(Af) — Q. We have commuting actions of Gal(Q/Q) and H(G(Ay) / K)g on
IH"(Shg,V) and H}(Shg, V). Here the H(G(Ay) J K)g-action on ITH*(Shy, V) is
characterized as follows. For any g € G(Ay), the element

Licgic - Volagee (K) "1dg™ € H(G(Ay) | K)o

depends only on g and not on the choice of dg®>°. We require that this element acts
on IH*(Shg, V) via the endomorphism induced by the cohomological correspondence

Hoy 1k kgrg-ink - 9 ICKV — T'1CK Y,

where the notation is as in (L.7.2.5)). By linearity, this determines the #(G(Ay) / K)q-
action on IH*(Shg, V). The H(G(Af) / K)g-action on H}(Shg, V) is characterized
similarly.

If p is a prime and K? is a compact open subgroup of G(A}]’p), we denote by
H(G(AY) J KP)q the Hecke algebra of Q-valued smooth compactly supported K-
bi-invariant distributions on G(A%). Similarly as before, its elements can be written
as fP°dgh >, where fP*° is a function G(AZJZ) — Q and dgP*° is a Haar measure on
G (Az}) giving rational volumes to compact open subgroups.

Definition 1.8.2. — Let K be a compact open subgroup of G(As) and let p be a
prime number.

(1) We say that p is a hyperspecial prime for K, if we have K = K?K,,, with K,
a hyperspecial subgroup of G(Q,), and K? a compact open subgroup of G(A’}).

(2) Let f*dg™ € H(G(Ay) J K)g. We say that p is an unramified prime for
fo°dg®, if p is hyperspecial for K, and we have f*dg> = fP*°dg?*°1k dg,, where
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fPoedgP> is an element of H(G(AY) / KP)qg, 1k, : G(Qp) — Q is the characteristic
function of K, and dg, is a Haar measure on G(Q,) giving rational volumes to
compact open subgroups.

1.8.3. — Fix a neat compact open subgroup K of G(Ay), and fix f>®dg>™ €
H(G(Ay) ) K)g. Let £y be the finite set consisting of the prime ¢, the primes not
hyperspecial for K, and the primes not unramified for f*°dg>°. For each prime
p ¢ Yo, we write K = KPK,, and f*dg> = fP*°dg"*1k, dg, as in Deﬁnition
Without loss of generality, we may and shall assume that volg,, (/K,) = 1 by rescaling
Jreedghee.

Recall from that we have fixed an embedding Ey — Q,. We now also fix
a field embedding E < C. For any endomorphism u of the graded Q,-vector space
IH*(Shg, V), we write Tr(u | IH*(Shg, V)) for the alternating sum

> (=1)* Tr(u | TH*(Shy, V) € Q.
k

(The sum is finite, since the terms are zero unless 0 < k < 2dim Shg.) The same
convention is applied to H(Shg, V).

Theorem 1.8.4 (Morel’s formula). — In the setting of there exists a finite
set of prime numbers ¥ = S(0O(V), V, \, K, f>°) containing Xo such that the following
statements hold for all primes p ¢ X.

(1) The actions of Gal(Q/Q) on IH*(Shk, V) and on H:(Shg, V) are both unram-
ified at p.

(2) Let Frob, € Gal(Q/Q) be a geometric Frobenius at p. There exists a positive
integer ag = ag(O(V), V, A, K, f*°,p) such that for all integers a > ay we have

(1.8.4.1)  Tr(Frob? x f*dg> | TH"(Shy, V)
= Tr(Froby x f*dg™ | Hj(Shx,V)) + Y Tra(f7>dg">, K, a).
M

Here in the summation M runs through the standard proper Levi subgroups of G, and
Tras (fP°dgP >, K, a) will be given in Deﬁm’tion below (which depends on the
embedding E — C). The two sides of are a priori numbers in Q, and C
respectively, but they actually both lie in E.

The proof of Theorem [I.8:4] will be given in §3

Remark 1.8.5. — We expect that Theorem [I.8:4] should in fact hold for ¥ = .
The proof of this would require a robust theory of integral models of the Baily—Borel
compactification and the toroidal compactifications of Shx at all hyperspecial primes,
which is currently unavailable. See below for a more detailed discussion.






CHAPTER 2

DEFINITION OF THE TERMS IN MOREL’S FORMULA

In this chapter we define the terms Try,(fP*°dgP>°, K, a) in Theorem We
keep the setting in In particular, we fix E < C as in §1.8.3

2.1. Truncated Lie algebra cohomology

Definition 2.1.1. — For i € {1,2}, let w; : G,,, — M, }, be the weight cocharacter
of the Shimura datum (M; j, Xp,), and let t; = dim Xp, — dim X'. (Here dim means
the complex dimension.)

Lemma 2.1.2. — The following statements hold.

(1) The cocharacter wy of My = GL(Va2) = GLy is given by z — diag(z, z).
(2) The cocharacter wy of Maj, = GL(V1) 2 G, is given by z — 2°.
(3) We have t1 =3 —d, and to =2 —d.

Proof. — By Proposition we have (M;n, Xp,) = (GLa—;, Ha2—i)). The state-
ments about w; and wsy are clear. To determine t; and t3, we use that dimX =n =
d—2,dimXp, =1, and dim Xp, = 0. O

2.1.3. — Let S be a non-empty subset of {1,2}. By Kostant’s theorem [Kos61]
(cf. [GHM94, §11] or below), the Lie algebra cohomology

H"(Lie(Ns)c,V @ C)

is a finite-dimensional algebraic representation of Mg(C), and is non-zero only for
finitely many non-negative integers k. For ¢ € §, since we have M; = M, x M;;
and since w; is a central cocharacter of M; ; defined over QQ, we know that w; is a
cocharacter of the split component Ay, of M;, and a fortiori a cocharacter of the
split component Ar, of Ms.
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Definition 2.1.4. — Let S be a non-empty subset of {1,2}. We write
H"(Lie(Ns)c, V&g C) g

for the maximal Mg(C)-sub-representation of H* (Lie(Ng)c, V®g C) on which w; has
weights strictly greater than ¢; for each i € S. (Here we say that a G,,-representation
has weights greater than a number ¢ if all the appearing characters z — z* satisfy
k > t.) We define the virtual Mg(C)-representation:
RT(Lie Ng,V)sss := Y _(—1)* H*(Lie(Ng)c, V @5 C)ss-
k>0

When P = Py is fixed in the context, we also replace the symbol “> tg” by “> tp”.

2.2. The Kostant—Weyl term L,

In this section, let M be a standard proper Levi subgroup of G, ie., M €
{M17M27M12}~

Definition 2.2.1. — Let P(M) be the set of pairs (P, g), where P is a standard
proper parabolic subgroup of G, and ¢ is an element of G(Q), satisfying the following
conditions.

(1) We have My, = Mpy, and M; is a Levi subgroup of Mp;. In particular,
M C Mp.

(2) The element g centralizes M;, C G, and normalizes M; C G. In particular, g
normalizes M C G.
Let ~ be the equivalence relation on P(M) such that (P, g) ~ (P’,¢') if and only if
P =P and g € Mp(Q)g’M(Q). (Here Mp is the standard Levi component of P,
which may not be the same as M.) For any standard proper parabolic subgroup @
of G, let

P(M,Q) :={(P,g) e P(M) | P =Q} C P(M).

Definition 2.2.2. — Set my; to be 1 if M = My, and 2 if M € {Ms, Mi2}. For
v € M(R) and (P,g) € P(M), define the complex number

) 1/2
Loty (7) i= mag (~1) 5 A% Ap (1)~ | DY (g9

Opmy (919~ ") ? Tr(gyg™" | RT(Lie Np,V)sy,.).

Here the terms n2”, D7 (), dpw)(+) are all defined in i‘ and RT'(Lie Np,V)s,
is as in Definition 2.1.4

It is easy to see that Lz pq(7y) depends on (P, g) only via the ~-equivalence class
of (P, g). We use this fact in the next definition.
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Definition 2.2.3. — For v € M(R), define the Kostant—Weyl term

(2.2.3.1) Lu(v):= Y [P(M,P)/~"" Lupy(7) €C.
(P.g)EP(M)/~

Proposition 2.2.4. — Leti =1 or2. Then every element of P(M;) is ~-equivalent
to (P;,1). In particular, for v € M;(R) we have

Ly, (v) = mMi(SPi(R)(’Y)l/Z Tr(vy | RT'(Lie Ny, V)s,).

Proof. — Tt is clear that (P;,1) € P(M;). Let (P,g) € P(M;). By condition (1) in
Deﬁnition@, we have P = P;. Since M, ; contains Ay, , the centralizer of M, j in
G is contained in M;. Hence by condition (2) in Definition 2.2.1} we have g € M;(Q).
It then follows that (P,g) ~ (P;,1). O

2.2.5. — Next we give an explicit description of the set P(Mpz)/~. Recall from
that we have identified V' with the orthogonal direct sum of spang {e1, €]} and
Wi, and identified W; with the orthogonal direct sum of spang {ez, e5} and Wy. Also
recall that MQJ = SO(W1> C M, = GL(‘/l) X SO(Wl)

Definition 2.2.6. — Let M, ;(Q)* be the set consisting of g € Ms;(Q) satisfying
the following conditions:

(1) gle2) = €3, gley) = €.

(2) g stabilizes W3, and g|w, is an element of O(W3)(Q) with determinant —1.

Remark 2.2.7. — Since dim Wy = n — 2 > 1, the group O(W3)(Q) indeed contains
elements with determinant —1. It is then clear that My ;(Q)* # 0.

Proposition 2.2.8. — The set P(Mia, P1) is empty. Every element of P(Mia, Ps)
is ~-equivalent to (Pa,1). The set P(Mja, P12) is the union of exactly two ~-
equivalence classes, and they are represented by (Pi2,1) and (Pi2,go), where go is
any element of Ms (Q)*.

Proof. — Since Mz, is not contained in M ;, we have P(Miz, P1) = 0. Since
My, = GL(V1) = Ay, by condition (2) in Definition [2.2.1]we know that any (P, g) €
P(Mi2) must satisfy g € Norpy, (Mi2,)(Q). Conversely, for any g € Norpy, (Mi2,)(Q),
we have (Pz, g), (Pi2,9) € P(Mi2). The statement about P(M2, P2) immediately fol-
lows.

To show the last statement about P(Mjs, Pi2), we know from the above discussion
that we have a surjection

Noras, (M12,1)(Q) — P(Miz2, P12)/~
g (P12,9).
This surjection restricts to a surjection

Norng, , (Mi2,:1)(Q) — P(Miz, P12)/~,
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which induces a bijection (see Definition for the notation)

Wl\j\jlel ;> P(Mlg, Plg)/N.

Now note that GL(V2/V1) = G, is the split component of Mz ;. As in Remark
we have an injective homomorphism

Wi — Aut(GL(Va/V1)) & Z/2Z
g+ Int(g)|aLva/vi)-

The desired statement follows from the fact that for all gg € MQ)[(Q)ﬁ, we have
go € Norpy, ,(Mi2,)(Q), and Int(go)|qr(vs/v;) is non-trivial. O

2.3. Definitions related to Kottwitz’s fixed point formula

2.3.1. — Let M}, be the reductive group GL; over QQ, where i = 1 or 2. We equip
M}, with the Siegel Shimura datum Hy—;) (see [Pin90} 2.7, 2.8]). We define some
group-theoretic terms that appear in Kottwitz’s fixed point formula for the Shimura
varieties associated to (M}, Ha(2—s)). The main reference is [Kot90, Part I]; see also
[Mor10bl §1.6]. We fix a prime p, and an integer a > 1.

Define a cocharacter p of M}, as follows. When M, = G,,, let i be the identity
cocharacter. When M}, = GLo, let p be 2z — diag(z,1). Thus u is a Hodge cocharacter
for the Shimura datum (Mp, Haa—s)).

The following definition is equivalent to the standard definition as in [Kot92b)
§19] or [Mor10Db), §1.6]; it appears simpler since in the group M}, stable conjugacy is
the same as conjugacy.

Definition 2.3.2. — A Kottwitz triple in M}, (of level p®, for the Shimura datum
(Mp, Ha2—4y)) is a triple (0,7,0), with 7o € Mp(Q), v € Mu(A}), 0 € Mp(Qype),
satisfying the following conditions:

(1) The element -y, is semi-simple and R-elliptic (see Definition [1.1.8)).

(2) The element v is conjugate to v in Mp(A%).

(3) The element N § := §o(8) - - - 0% 1(8) € Mp(Qpa) is conjugate to vo in My, (Qpe ).

(4) If Mp, = Gy, then the p-adic valuation of § € Q;a is —1. If My = GLo, then
the p-adic valuation of the determinant of § € GL2(Qpa) is —1.

Two Kottwitz triples (vo,7,9) and (v},7,d’) are said to be equivalent, if vy is con-
jugate to 7} in My (Q), and 0 is o-conjugate to ¢’ inside M}, (Qpa). In the sequel, it
is understood that whenever Kottwitz triples appear in a summation, they are taken
up to equivalence.

Remark 2.3.3. — Abstractly, condition (4) in Definition says that the image
of § in m (Mh)pp under the Kottwitz map is equal to that of —pu.
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2.3.4. — Let (70,7, 9) be a Kottwitz triple. Let Iy = M, -, be the centralizer (which
is connected) of vo in Mj,. Define £(Iy/Q) to be the finite abelian group consisting of
those elements of Wo([Z(.ﬁ))/Z(@)]F@) whose images in H' (g, Z(M;)) are locally
trivial; see [Kot86), §4.6]. In [Kot90l §2] Kottwitz defines an invariant

a(’707 s 5) € R(IO/@>D
of the triple (vo,7,d). Here £(I5/Q)P is the Pontryagin dual of &(1y/Q).

Lemma 2.8.5. — For My, = GL; or GLg, we always have K(Iy/Q) = 0.

Proof. — If Iy = M), then obviously K(Ip/Q) = 0. Thus we may assume that M), =
GLsy and that vy in non-central. Then I is a maximal torus 7" in GLo defined over
Q. In this case Z(Iy) = Iy = T. Since the Galois action on Z(@) is trivial, by
Chebotarev’s density theorem the only locally trivial element of H'(I'g, Z (@)) is
the trivial element. In view of the exact sequence

m0(Z(GL2)™?) — mo(T72) — mo([T/Z(GL2)]™?) — H' (I, Z(GLy)),
it suffices to show that
T" C Z(GLy).
Since 7o is R-elliptic, Tk is an elliptic maximal torus in GLy r. Hence there exists
an identification T" = C* x C* such that the non-trivial element of I'o. acts on T

by switching the two coordinates. It follows that 70> C Z (6172), and a fortiori
TTe ¢ Z(GLy). O

2.3.6. — Let (70,7, d) be a Kottwitz triple. By Lemma|2.3.5} the invariant a(vo, v, )
automatically vanishes. Hence as in [Kot90} §3], there is an inner form I of I over
Q satisfying the following conditions.

— The group Iy is anisotropic modulo center.

— For any finite place v of Q not equal to p, Ig, is the trivial inner form of I g, .

— The inner form Ig, of Iy g, is isomorphic (as an inner from) to the o-centralizer
(Mp)so of 6 in M}, (which is denoted by I(p) in loc. cit.).

We refer the reader to loc. cit. for more details.

Fix Haar measures on 1(Qp), I(A%), and I(R) such that the product Haar mea-
sure on I(A) is the Tamagawa measure. Fix a Haar measure on M}, (Qp«) such that
M}, (Zye) has volume 1. Fix Haar measures on M, (R) and M;L(A?) arbitrarily.

Definition 2.3.7. — In the setting of we define
¢(70,7,9) := e1(70,7,0)c2(70, 7, 9),
where
c1(70,7,0) = vol(L(Q)\I (Ay)) = 7(I) vol (A, (R)*\I(R)) ",
2(70,7,0) = [ker(ker' (Q, Ip) — ker' (Q, My))| .
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Here 7(I) is the Tamagawa number of 1.

Definition 2.3.8. — In the setting of §2.3.6] we define the orbital integral along ~y
to be the functional

O, : C(Mj (A7) — C
e 04(f) = / g ),
Mp, 1 (AD)\M;, (A7)

with respect to the fixed Haar measure on M, (A”) and the Haar measure on My (A%)
transferred from [ (A?). We define the twisted orbital integral along § to be the
functional

TOs : C°(My(Qpe)) — C

fr10x) = | f(g~60(9),
(Mn)so (Qp)\Mn(Qpa)

with respect to the fixed Haar measure on M;(Qp«) and the Haar measure on
(M})s0(Qp) transferred from I(Q,). For more details see [Kot90, §3].

Definition 2.8.9. — Let ¢2* : My (Qpe) — Q be the characteristic function of
My (Zye )pu(p) = Mp(Zpe ).

2.4. Definition of Try,

In this section, let P be a standard parabolic subgroup of G, and let M = Mp
be the standard Levi component of P. We define the term Try/(fP*°dgP>°, K, a) in

EELD.

Definition 2.4.1. — For vy € M,(R) and v € M;(R), we write 79 ~g 7L, if one
of the following conditions holds.

(1) We have M), = GLs.
(2) We have My, = G,,, 70 € M (R)?, and ~;, € M;(R)°.
(3) We have Mh = Gm, Yo ¢ Mh(R)O, and YL ¢ Ml(R)O.

Remark 2.4.2. — When M = My, we have M) = GLo, and so the condition
Yo ~r 7L is by definition automatic. When M = Mjs or Ms, we have mo(Mp(R)) =
mo(M;(R)) & Z/27Z. Thus the condition vy ~g vz depends only on the M;(R)-

conjugacy class of 79 and the M;(R)-conjugacy class of 7r,.

Definition 2.4.3. — Let K be a compact open subgroup of G(Ay). Let p be a
hyperspecial prime for K, and let K, K? be as in Definition Let fP°°dgPh> e
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H(G(AY) | KP)qg, and let a € Z>1. We define the complex number

(2431) TrM(fp’oodgp’oovK7a) ::Z’/ML(PYL)_1X((MI,’YL)O) Z 0(705775)
L ('707'\/76)

’ 5P(Qp)(’70)1/2O’YL’Y( IIC/}OO)O’YL(1Ml(Zp))TO5(¢£zV[h)LM('VL’VO)a

where ~y7, runs through the semi-simple conjugacy classes in M;(Q) that are R-elliptic
(see Definition [[.1.8} if no such ~y, exists, then the sum is empty), and (40,7, d) runs
through the equivalence classes of Kottwitz triples in M}, of level p* (see Definition

2.3.2) such that vy ~g 71 (see Definition and Remark [2.4.2)). The other terms
are defined as follows:

(1) We write (M (31) for [Mi, (Q)/(Min,)*(@)].

(2) We write x((M;,)°) for the Euler characteristic of the reductive group
(M 5,)% over Q, as defined in [GKM97, §7.10].

(3) The term c(7o,7,d) is as in Definition [2.3.7}

(4) We let f7;° € C°(M(A%)) be the constant term of fP>° as defined in
[GKMO97, §7.13]. This function depends on auxiliary choices, but its orbital
integrals are well defined once all the relevant Haar measures are fixed.

(5) We have a canonical identification

C(M(AF)) = CF (Mn(A})) ®c O (Mi(A}))-

In view of this, we define the functional O, : C°(M(A%})) — C to be the ten-
sor product of the functional O, : C2°(Mj(A%})) — C in Definition and the
functional

(2.4.3.2) O,, : C° (M, (A’JZ)) — C
fr—=04(f) = / f(g v9)dg,
M, (AD)\M; (A7)
where the relevant Haar measures are to be specified in Remark below.
(6) We let M;(Z,) be the hyperspecial subgroup of M;(Q,) given by

(2.4.3.3) Mi(Zy) = [K, 0 (M1 (Qp)Np(Qp))]/ (Kp N Np(Qp)).

See Remark [2.4.5 below for more explanations.
(7) We define

(2.4.3.4) 0y iz = [ Lat ) (97 129)do.
My~ (Qp)\Mi(Qp)
where the relevant Haar measures are to be specified in Remark [2.4.4] below.

(8) The term TOs(¢pMn) is as in Definitions and
(9) The term Ly;(-) is as in Definition [2.2.3]

Remark 2.4.4. — We make precise the choices of various Haar measures in Defi-
nition We choose an arbitrary Haar measure on Ml(A];), and choose arbitrary
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Haar measures on M ., (A%) and M., (Qp) for each vz. We then define the Haar
measure on M(A%) = Mj,(A%) x M;(A%) to be the product of the Haar measure on
M;(A%) chosen above and the Haar measure on Mj,(A%;) chosen in §2.3.6 We then
specify various normalizations:

(1) Use the Haar measure on M(A%) as above and the Haar measure dg”> on
G(A%) to define the constant term fy;>

(2) Use the Haar measures on M;(A%}) and M;,, (A}) chosen above to define
E133).

(3) Use the Haar measure on M;(Q,) giving volume 1 to M;(Z,), and the Haar
measure on M; ~, (Q,) chosen above, to define .

(4) Use the Haar measures on M; ., (A%) and M., (Q,) chosen above to define
the product measure on (M; -, )°(A), and use the latter to define x((M;-,)°) as in
[GKM97, §7.10).

Remark 2.4.5. — We explain why M;(Z,) defined by is a hyperspecial
subgroup of M;(Q,) by collecting standard facts about reductive group schemes from
[SGAT0, XXVI]. Since K, is a hyperspecial subgroup of G(Q,), there is a reductive
group scheme G over Z, with generic fiber Gg, such that K, = G(Z,) C G(Q,). By
[SGAT0, XXVI, Cor. 3.5], the parabolic subgroup Py, of Gg, extends to a unique
parabolic subgroup P of G. Since parabolic subgroups are closed (see [SGAT0, XX VT,
Prop. 1.2]), we have P(Z,) = P(Q,) N K,. Now the reductive quotient M of P (see
[SGAT0, XXVI, Cor. 1.5, Prop. 1.6]) is a reductive group scheme over Z, whose
generic fiber is M. Since SpecZ, is affine, by [SGAT0, XXVI, Cor. 2.3] we know
that P admits a Levi component. It follows that the natural map P(Z,) — M(Z,)
is surjective. Therefore, the subgroup M(Z,) of M(Q,) is equal to the image of
P(Q,) N K, under P(Q,) — M(Q,). Now since M = M; x M;, any hyperspecial
subgroup of M(Q,) (such as M(Z,)) must be the direct product of a hyperspecial
subgroup of My (Q,) and a hyperspecial subgroup of M;(Q,). Hence the kernel of
M(Z,) = M(Q,) — Mp(Q,), which is M;(Z,), must be a hyperspecial subgroup of
M;(Qp).

Remark 2.4.6. — When M = M, or Mo, every element of M;(Q) is semi-simple
R-elliptic, because M; g is isomorphic to either SO(n —2,0) or G,, g x SO(n — 2,0),
and SO(n — 2,0)(R) is compact. When d is even and M = M,, we know that
M;r = SO(n —1,1) does not have elliptic maximal tori (as n is even and at least 4),
so there are no R-elliptic elements of M;(Q) in the sense of Definition In this
case it is understood that Trps (fP*>°dg? >, K, a) = 0.

2.5. An equivalent form of Morel’s formula

At this point we have defined the terms in (1.8.4.1). In this section we give an
equivalent form of (1.8.4.1)). It is this equivalent form that we shall prove in §3| In
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the following, we fix K, p, fP*°dgP>°, and a as in Definition [2.4.3] and we shall
omit them from the notation when convenient. For instance, we shall write Tr; for
Tras (fP°dgP>, K, a).

2.5.1. — Let M € {M;, My, M15}. We set

{My,}, M = My,
StdLev(Ml) = {Mg’l, M12,l}a M = MQ,
{Mia,;}, M = My,.

Thus in each case StdLev(M;) is a set of representatives of the M;(Q)-conjugacy
classes of Levi subgroups of M;.

Definition 2.5.2. — Let M € {M;, My, M2} and let (Q, g) € P(M) (see Definition

2.2.1]). We define Trps,g,q by the same formula (2.4.3.1)) used to define Trps, but with
L(+) replaced by Las,g,g(-) (see Definition [2.2.2)). Thus

(252.1) Trargg =Y M () (M) D e(70,7,6)
YL (v0,7,9)

- 0p@,)(70) 2 0n (F57) 05, (Lar, 2,)) TOs (62 ) Lt .4 (7L 0)

Definition 2.5.3. — For Q € {Py, P2, P12}, we define
Tb = ZTrM’Q’l’
M

where the sum is over M € {M;, My, Mi2} such that M; € StdLev(Mg,;). Indeed,
for each such M, we have (Q,1) € P(M), and so Tra,g,1 is defined as in Definition

Lemma 2.5.4. — We have
Tras, 4+ Trag, + Tragy, = Th, + Tp, + T .

Proof. — By (2.2.3.1)), for each M € {M;, M, M1} we have

Try= Y  [P(MQ)/~"Tragy-
(Q.9)EP(M)/~
By Propositions and if (Q,9) € P(M), then (Q,1) € P(M). We
claim that in this case Tras,g,q = Trar,g,1. Indeed, by definition Lsq ¢(vr70) =
La.o.1(97L9 1 0), so it suffices to show that the expression

LMl (VL)_1X((M1,WL)O)OWL7( ]1\24700)0'7L (lMl(Zp))

on the RHS of is invariant under the replacement vz, — ¢gyrg~'. The invari-
ance of 1Mt () and x((M,,)°) follows from the fact that g normalizes M;. To show
the invariance of O.,, ,(f4;°°), it suffices to show that f1;°° and its composition with
the automorphism Int(g) of M (A’;) have equal orbital integrals at all elements. By
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Kazhdan’s density result [Kaz86] it suffices to check this only at regular semi-simple
elements. Since orbital integrals are locally constant on the regular semi-simple locus,
we further reduce to (G, M)-regular semi-simple elements. That is, we only need to
show the invariance of O.,,(f4;>°) under v, + gyLg~' under the assumption that
v is (G, M)-regular. This follows from the descent formula (see [ST16l Lem. 6.1]
or [vD72])
Ony (F57) = DS ]} Oran (£7)

and the fact that g normalizes M {'"| Finally, to show the invariance of O., (11,(z,)),
it suffices to show that gM;(Z,)g~" is conjugate to M;(Z,) in M;(Qp). By the de-
scriptions in Propositions[2.2.4land we are left to show that for any hyperspecial
subgroup U C SO(W2)(Q,) and any = € O(W2)(Q,) — SO(W2)(Q,), we have zUz~*
is conjugate to U in SO(W3)(Q,). For this it suffices to exhibit one element of
O(W2)(Qp) — SO(W2)(Qp) normalizing U. But U is the stabilizer of a Z,-lattice A
in Wy (cf. [LS20} §2]). Since p > 2, if we take v € A such that v,((v,v)) is minimal,

then the projection w — w — izqu)) v preserves A, and hence A is the orthogonal direct

sum of Z,v and its orthogonal complement in A. We can therefore take the desired
element of O(W5)(Q,) —SO(W2)(Q,) to be the reflection along v, which stabilizes A.
This finishes the proof of the claim.
By the claim we have
Tryy =Y Traga,
Q
where the sum is over Q € { Py, Py, Pj2} such that P(M,Q) # (. We finish the proof

by noting that for M € {M;, My, M12} and Q € { Py, P2, P12}, we have P(M,Q) # 0
if and only if M; € StdLev(Mg ). O

Definition 2.5.5. — For Q € {Py, P, P12}, we define

(2551) To=mug  »,  (-)"" e e
LeStdLev(Mg ;)

L —1 0 1/2
S ) (I, ) |
YL

M,
DY ()

oo Mg n
Z C(VO”Y’5)5Q(Qp)(70)1/20%7(f11\7/ﬁ )OVL(lL(Zp))TO6( o )
(70,7,6)

Som) (7270)"? Tr(y270 | RT(Lie Ng, V)54, ).

Here, for each L € StdLev(Mg ), we let My, be the unique element of {M7, Mo, M2}
such that My, ; = L. In other words, My, = Mg x L. The second sum is over all

(D The above argument of reducing to the (G, M)-regular case and then applying the descent formula
is quite standard. In fact, one uses a similar argument to show, in the first place, that the choices
made in the definition of the constant term do not affect its orbital integrals; cf. [ST16) §6.1].
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semi-simple conjugacy classes 7y, in L(Q) which are R-elliptic in the sense of Definition
(If no such element exists, then the summand labeled by L is zero.) The third
sum is over equivalence classes of Kottwitz triples (vo,7,d) in Mg j, with vo ~g YL
The definition of L(Z,) is given by applied to M := My,. All the other terms
are defined in the same way as in Definition 2.4.3]

Lemma 2.5.6. — For Q € {P1, Py, P12}, we have T, = Tg.

Proof. — For each L € StdLev(Mg,), let P, be the unique element of {Py, P, P12}
such that Mp, = My,. Combining Definitions [2.2.2] 2.5.2] 2.5.3] and using the fact
that for L € StdLev(Mg ;) we have My, ,, = Mg p, we obtain

/ dim Apyp /AM Mgy —1
T =mug >, D e ()
LeStdLev(Mg ;)

M) T,

1/2

M,
DMS (VL'YO)‘R

') M
> c10:7: 0002, (10) 2 Ory (3i2) 05, (L2, TOs (904"
(70,7,9)
~So@) (vL70)"? Tr(y270 | RT(Lie Ng, V)sy,,)-
Here the three summations are the same as on the RHS of (2.5.5.1). To finish the
proof, we only need to check the following four identities for each L € StdLev(Mg,):

(].) dlmAML/AMQ = dlmAL/AMQI

M M
(2) npyy =g, @

(3) Digg () = DL ().

(4) 5PL(Qp)(’YO) = 5@(@,,)(70)-
The first three identities follow from the fact that My = Mg x L and Mg =
Mo.n X Mg,. For the fourth identity, we have P, C @, and the subgroup Np, /Ng
of Q/Ng = Mg is contained inside Mg,; C Mg. Hence vy € Mg »(Q) acts trivially
on Lie Np, /Lie Ng, and the desired identity follows. O

Proposition 2.5.7. — The formula (1.8.4.1) in Theorem is equivalent to the

following formula.
(2.5.7.1)  Tr(Froby x f*dg> | IH*(Shx, V)) — Tr(Frob, x f*dg™ | H(Shg, V))

= TPl + TP2 + TP12'
Proof. — This follows from Lemmas [2.5.4) and [2.5.6] O






CHAPTER 3

PROOF OF MOREL’S FORMULA

In this chapter we prove Theorem

3.1. Introduction to the proof

3.1.1. — Our goal is to prove the formula (|1.8.4.1). In Proposition we have
shown that (1.8.4.1) is equivalent to (2.5.7.1). This last formula is a variant of

[Mor10bl Thm. 1.7.1], and our proof will be a modification of the proof in loc. cit..

First we review some key ingredients in [Mor10bl Thm. 1.7.1]. The proof is
axiomatic in nature, building on the earlier work of Morel [Mor06), Mor08|, and the
work of Pink [Pin92al. Other ingredients needed in this axiomatic approach include:

(1) Deligne’s conjecture on local terms in the Grothendieck—Lefschetz—Verdier
trace formula, which was proved in special cases that are already enough for Shimura
varieties by Pink [Pin92b|, and in general by Fujiwara [Fuj97] and Varshavsky
[Var05].

(2) The fixed point formula of Goresky—Kottwitz—MacPherson [GKM97].

(3) The fixed point formula of Kottwitz [Kot92b].

The ingredient (1) is of course still valid in our case. As regards (2), we will need the
original formula as well as a variant of it (see Proposition below). As regards
(3), we will apply this formula to the boundary pure Shimura data (G,,,Ho) and
(GL2, Hz2). The Shimura datum (GLg, Hz) gives rise to the usual modular curves, and
Kottwitz’s formula is valid. For (G,,, Ho), we need a version of Kottwitz’s fixed point
formula for certain variants of the usual zero-dimensional Shimura varieties associated
to the datum (see Proposition below). Finally, note that in Theorem we
have not provided a formula for the term Tr(- | H:(Shk,V)). Such a formula is
eventually needed in order to fully understand the LHS of . This ingredient
is provided in [KSZ]| (for all Shimura varieties of abelian type), and is treated as a
black box in the present paper when we prove Corollary below.
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3.1.2. — Let P be a standard proper parabolic subgroup of G. There are the follow-
ing differences between our Tp in Definition and Morel’s definition [Mor10bl
p. 23]. We do not explicitly assume that the Kottwitz triples should have trivial Kot-
twitz invariant, but this is automatic by Lemma [2.3.5] Also, in the first summation
in we do not explicitly assume that L is cuspidal (see Definition , but
in our case if L is non-cuspidal then the sum over v, is empty. (Indeed, the possible
choices of L are My ;, M2, M12,. In the odd case all of them are cuspidal. In the even
case, Mi; and Mo, are cuspidal, whereas (Mz,;)r does not contain elliptic maximal
tori, as noted in Remark ) The sole essential difference is that we impose the
condition 7y ~gr L, which is not imposed by Morel, and this is due to the fact that
our orthogonal Shimura datum O(V') does not satisfy the axioms in [Mor10bl §1.1].

Recall that Morel’s axioms require that for each P € AdmPar(G), the Levi quotient
Mp of P should admit a decomposition Mp = Gp x Lp such that Gp(R) acts
transitively on Xp and Lp(R) acts trivially on Xp, among other things. In our case,
by Proposition m (5), such a decomposition is clearly impossible for P = P,. This
is in fact related to the following geometric phenomenon. In general, each boundary
stratum of the Baily—Borel compactification of a Shimura variety can be identified
with the quotient of a smaller Shimura variety by the action of a finite group. If
Morel’s axioms are satisfied, then this finite quotient can be “absorbed” by a change
of level. By contrast, in our case, the zero-dimensional boundary strata corresponding
to P, cannot be identified as Shimura varieties without taking quotients.

To resolve this problem, we need to systematically modify the arguments in
[Mor10b, Chap. 1] whenever they concern zero-dimensional boundary strata.
Roughly speaking, Morel’s formula for Tp is a mixture of two formulas: the fixed
point formula of Kottwitz for a Shimura variety associated to G p, and the fixed point
formula of Goresky—Kottwitz—MacPherson for a locally symmetric space associated
to Lp. In our case, we need to replace the “Shimura variety associated to Gp” by a
finite quotient of it, and meanwhile replace the “locally symmetric space associated
to Lp” by a finite covering of it. Fortunately, we only need these generalizations
in very simple situations, and the extra complication is mainly of a combinatorial
nature.

3.1.3. — We now discuss another ingredient in Morel’s proof of [MorlOb)
Thm. 1.7.1], namely the construction of suitable integral models. In [MorlObl
§1.3] Morel provides two approaches to the construction of the integral model of the
Baily—Borel compactification, for which Pink’s formula (see [Mor10bl Thm. 1.2.3]
and [Morl0Ob, p.8 item (6)]) holds, among other things. The first approach,
[Mor10b| Prop. 1.3.1], applies Lan’s work [Lan13| to construct the integral model
away from a controlled finite set of bad primes. This approach is valid in the
PEL-type case. The second approach, [Mor10bl Prop. 1.3.4], is applicable in much
more general situations, but it only constructs the integral model away from an
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uncontrolled finite set of primes. Although Lan’s work has been generalized by
Madapusi Pera [MP19] to the case of Hodge type, our Shimura datum O(V) of
abelian type is still beyond the applicability Hence we have to follow Morel’s
second approach, losing control of the set of bad primes. This explains why in
Theorem the set 3 is not made specific and may also depend on A and f°.

Nevertheless, we shall show (see Lemma below) that the localizations to
almost all primes of the abstract integral models constructed by Morel’s second ap-
proach can be compared with other known integral models of Shimura varieties in the
expected way. In particular, for sufficiently large primes we are in a position to apply
the result of Lan—Stroh [LS18| Thm. 4.19], which relates the intersection cohomology
and compact support cohomology of the special fiber of the integral model to those
of the generic fiber respectively.

Outline of the proof. — In we prove an analogue of the fixed point formula
of Goresky—Kottwitz—MacPherson for certain double coverings of locally symmetric
spaces. The main result is Proposition 3:2.3] In §3.3] we study certain finite quo-
tients of zero-dimensional Shimura varieties that will appear on the boundary of Shy.
We develop the analogues of various constructions in [Mor10bl Chap. 1] for these
quotients. The main results are Propositions [3.3.14] and [3.3.16} In we explain
how Morel’s axioms in [Mor10b} §1.1] should be modified to suit our situation. In
we construct the integral models away from an uncontrolled set of bad primes,
and compare the localizations of these models at almost all primes with other known
integral models. In we assemble all the ingredients and explain how to modify
the proof of [Mor10b, Thm. 1.7.1] to prove our Theorem [1.8.4}

3.2. A fixed point formula for some double coverings of locally symmetric
spaces

3.2.1. — Let L be a reductive group over Q. We assume that mo(L(R)) & Z/27Z.
By the real approximation theorem, L(Q)T := L(Q) N L(R)? is of index 2 in L(Q).
We also assume that a minimal Levi subgroup Lo of Lg satisfies mo(Lo(R)) = Z/27Z.
Then by Matsumoto’s theorem (see [BT65, 14.4]), for any Levi subgroup L’ of Lg,
the inclusion L'(R) < L(R) induces an isomorphism (L' (R)) — mo(L(R)). Now
for each Levi subgroup L’ of L defined over Q, we set

Q" =r@nr'®?",
which is of index 2 in L'(Q).

(MDn [LS18], Lan-Stroh have given a “crude” construction of the integral models of the Baily—
Borel compactifications in the case of abelian type. However, since good integral models of toroidal
compactifications are also implicitly needed in order to verify Pink’s formula, their construction does
not seem sufficient for our purpose.
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3.2.2. — Let L be as in §3.2.1] Let K be a neat compact open subgroup of L(Ay).
Let X7 be the symmetric space associated to Ly as in Definition We have the
usual locally symmetric space

M* .= L(Q)\X L, x L(Ay)/K,

as considered in [GKM97, §7] and [Mor10bl Chap. 1]. We shall consider the fol-
lowing variant of M*:

MEA = L(Q)"\ XL x L(Ay)/K.

We call Mffl a shallower locally symmetric space. Both M¥ and Mffl are smooth real
manifolds, and the natural map M5 — MZX is easily seen to be a double covering.

Let W be an algebraic representation of Lc. Denote by FXW the sheaf on M¥ of
local sections of the map

LQ\(W x X1 x L(As)/K) — M¥.

Denote by RT (K, W) the virtual alternating sum of the compact support cohomology
H)(MX, FEW). Similarly, we let FEW be the sheaf on MX of local sections of the
map
LT (QNW x X1 x L(Ag)/K) — M,

and denote by RI';¢n(K,W) the virtual alternating sum of the compact support
cohomology H (ML, FXW), cf. [Mor10b), §1.2].

Fix g € L(Ay), and let K C L(Ay) be another compact open subgroup such that
K' ¢ KNgKg~!. Analogous to [Mor10b) p. 22], we have finite étale Hecke operators

Ty, T, : ME — ME

sh sh-
As in [Mor10bl Thm. 1.6.6], the natural cohomological correspondence
T; FAW — T{FEW
gives rise to an endomorphism wu, of R 4, (K, W).

Let ly denote the non-trivial element of L(Q)/L(Q)". We have a natural action
of L(Q)/L(Q)" on MX , induced by the diagonal left action of L(Q) on X, x L(Ay).
Under this action the covering MX — M¥ is a L(Q)/L(Q)*-torsor. The sheaf FEW
has a natural L(Q)/L(Q)"-equivariant structure, and so ly induces an endomorphism,
still denoted by ly, of RT. ¢ (K,W). This endomorphism commutes with u,. The

following result is a variant of [Mor10bl Thm. 1.6.6], the latter being a special case
of [GKM97, Thm. 7.14 BJ.

(2)Note that Morel [Mor10b, Thm. 1.6.6] and Coresky—Kottwitz—MacPherson [GKM97] follow
different conventions concerning the definition of uy; see [Morl0bl Rmk. 1.6.7]. We follow Morel’s
convention here.
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Proposition 3.2.3. — In the setting of we have

(3.2.3.1)
Tr(ug | RTean(K,W)) =2 (—=1)HmA /A0 (nf )71 ™0 F (9) 71 x (L))
L ¥
L0,(15) |DE () Ty | W),
and
(3.2.3.2)
Tr(uglo | RFC’Sh(K, W)) =2 Z(—l)dim(AL//AL)(nf/)*l Z LL/ (,y)le((Lfy)O)
L’ ¥
0,4 DR ()] Ty | W),
Here:

— In both (3.2.83.1) and (3.2.3.2), the first sum is over L(Q)-conjugacy classes of
Levi subgroups L' of L.

- In (resp. (5.2.3.9)), the second sum is over L'(Q)-conjugacy classes 7y in
L'(Q)" (resp. L'(Q) — L'(Q)*") that are R-elliptic in L'(R) in the sense of Definition
1.8

~ We denote by f*> the function 14k /vol(K') € C(L(Ay)), and let f75 be the
constant term of f> along L', cf. Definition [2.4.3.

— All the other terms on the right hand sides of (3.2.3.1) and (5.2.3.2) are defined
in the same way as in [Morl0b, Thm. 1.6.6], cf. Definition [2.4.3

Proof. — The formula follows from similar arguments as in [GKM97, §7].
The key point is that the main tools used in loc. cit., namely the reductive Borel—
Serre compactification and the weighted complexes on it, are still available in the
current setting. In fact, these objects were studied in [GHM94]| in the non-adelic
setting, where one is allowed to replace any given arithmetic subgroup by an arbitrary
finite-index subgroup. Hence by the standard translation between the adelic and the
non-adelic languages, we can consider the reductive Borel-Serre compactification of
Msifl, as well as weighted complexes on it. The arguments in [GKMO97, §7] can be
easily transported to this new setting.

We explain some more details. Fix a minimal parabolic subgroup Py of L, and fix a
Levi component Ly of Py. For any standard parabolic subgroup P of L (i.e. one that
contains Fy), we denote by Lp the Levi component of P containing Ly, and denote
by Np the unipotent radical of P. As in [GKM97, §7], the reductive Borel-Serre
compactification of the usual locally symmetric space M¥ has a stratification indexed
by the standard parabolic subgroups P of L. The stratum indexed by P is of the
form

(32.3.3) Lp(QN[(Np(Ap\L(Af)/K) x XLp].
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In [GKMO97, §7], one considers the spaces Fix(P, z,7), where P runs through the
standard parabolic subgroups of L, xy runs through representatives of the double
cosets in P(Af)\L(Ay)/K’, and 7 runs through conjugacy classes in Lp(Q). Each
space Fix(P, zg,7) is of the form

Fix(P, zo,7) = Lp~(Q)\ (Y x Y).

We refer the reader to [GKMO97, p. 523] for the definition of Y and Y.

For us, the reductive Borel-Serre compactification of MX still has a stratification
indexed by the standard parabolic subgroups P of L, and the stratum indexed by P
is of the form

(3.2.3.4) Lp(@\[(Np(Ap\L(Af)/K) x X1,]-

Comparing (3.2.3.3)) and (3.2.3.4), it is clear that if one is to count the fixed points of
the cohomological correspondence in the same way as in [GKM97, §7], one should

consider

(3.2.3.5) [T Fix'(P,20,7),
P,xo,y
where P runs through the standard parabolic subgroups of L, zy runs through repre-
sentatives of the double cosets in P(Af)\L(A)/K’, v runs through conjugacy classes
in Lp(Q)", and
Fix' (P, z9,7) = Lp(@)j\(YOO X Yoo).
Here Lp(Q)F denotes the centralizer of v in Lp(Q)*

Let P be a standard parabolic subgroup of L. For v € Lp(Q)™, we say that + is
of first kind if Lp~(Q) C Lp(Q)", and of second kind if otherwise. When + is of first
kind, the Lp(Q)-conjugacy class of 7 is the disjoint union of two Lp(Q)T-conjugacy
classes, and we have Fix'(P,zo,7) = Fix(P,z0,v). When 7 is of second kind, the
Lp(Q)-conjugacy class of v is the same as the Lp(Q)"-conjugacy class of v, and
Fix'(P, z0,7) is a double covering of Fix(P, zo,~). From this discussion, we see that

the space (3.2.3.5) is the same as
(3.2.3.6) IT Fix"(P o, v),

P,xo,y
where P and xg run through the same indexing sets as before, v runs through Lp(Q)-
conjugacy classes in Lp(Q)*, and Fix” (P, z,~) is the disjoint union of two copies of
Fix(P, xg,7) if v is of first kind, and is equal to Fix'(P, xo,) if v is of second kind.

From the above discussion, the compact support Euler characteristic (see
[GKMO97, §7.10, §7.11]) of Fix" (P, zg,y) is equal to twice that of Fix(P, xg, ).

In the qualitative discussion in [GKM97, §7.12], the contribution from
Fix(P,zg,y) to the Lefschetz formula is a product of three factors (1), (2), and
(3), where factor (1) is the compact support Euler characteristic of Fix(P, xq, 7). For
us the contribution from Fix" (P, z¢,7) is also a product of three analogous factors,
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where our factors (2) and (3) are identical to those in loc. cit., and our factor (1) is
two times the factor (1) in loc. cit. as we have already seen. Therefore, analogous to
[GKMO97, (7.12.1)], we have the following expression for the Lefschetz formula:

(323.7) YN o(-pdmAdmAie 1, (@)/L9(Q)| T X(EYLEM ()0, (fr),
P v

where v runs through the Lp(Q)-conjugacy classes in Lp(Q)™ (instead of Lp(Q)),
and the other notations are the same as in loc. cit. except that we write LGKM(.) for
the function denoted by Lp(-) in loc. cit..

Now the rest of the arguments in [GKM97, §7] that deduce [GKM97, Thm. 7.14
B] from [GKM97, (7.12.1)] can be applied to (3.2.3.7). Also the elementary trans-
lation from [GKM97, Thm. 7.14 B, §7.17] to the formula of [Mor10b, Thm. 1.6.6]
carry over to imply .

We have proved . We now prove . We claim that

(3.2.3.8) Tr(uy | RTean (K, W)) + Tr(ugly | RTean (K, W)) = 2 Tx(uy | RT (K, W)).

Here we abuse notation and write u, also for the endomorphism of RI'.(K, W) induced
by g. Once (3.2.3.8) is proved, the desired identity follows from 7
(3:2.3.8), and the formula for Tr(u, | RT(K,W)) given in [Mor10b, Thm. 1.6.6].

We now prove (3.2.3.8). Let 7 denote the double covering map M4 — MX. We
write g, (resp. #) for the sheaf FXW (resp. FEW) on ME (resp. M¥). Since
Fn = *F, and since 7 is a finite covering, we have

(3.2.3.9) H(ME, 7)) = H:(ME  n*.F) = H:(ME | 1,.0* F).

For each character x of the deck group A = Z/27Z of w, we let ¢, be the local system
on M¥ given by the covering 7 and the character Y. Combining and the
projection formula
T F 2 F R @ b,
x:A—CX
we obtain a decomposition
HZ(MsKhzysh) = @ H:(MK”%‘@%X)_
xX:A—Cx

This decomposition is equivariant with respect to uy, and the direct summand
H' (MK, Z ® 9.) corresponds to the x-eigenspace for the A-action on the left hand
side. The desired follows. O

3.3. Cohomological correspondences on some zero-dimensional Shimura
varieties

3.3.1. — Let (G, Ho) be the zero-dimensional Siegel Shimura datum as in [Pin90|
2.8]. Recall that Hy consists of two elements, and G,,,(R) acts on Hg via the unique
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non-trivial action of my(Gy, (R)) = Z/2Z. We now recall the construction of the asso-
ciated zero-dimensional Shimura varieties, following [Pin90}, 11.3, 11.4] and [Pin92al,
§5.5].

As usual, we fix a neat compact open subgroup K of G,,(Ay), and define the set
of C-points of the Shimura variety as

Shi (C) = Shi (G, Ho)(C) := G (Q)\Ho x Gy (Ay)/ K.

There is a natural action of mo(G,,(A)/G,,(Q)) on the finite set Sh (C), from which
we obtain an action of Gal(Q/Q) on Sh(C) via the isomorphism

(3.3.1.1) Gal(Q™"/Q) == m0(Gm(A) /G (Q))

from class field theory (normalized such that geometric Frobenius elements correspond
to uniformizers). The canonical model

Shg = Shg (G, Ho)

is by definition the finite étale Q-scheme corresponding to the Gal(Q/Q)-set Shx (C).

In fact, using the transitivity of the m(G,,(A)/G,,(Q))-action on Shg (C), we can
describe Shx more explicitly as follows. The inclusion Z* C G (Ay) induces an
isomorphism Z* = 71(Gyn(A) /G, (Q)). We thus identify Z* with Gal(Q?/Q) via
(3-3.1.1). (According to our normalization, this identification is induced by the Gauss
isomorphisms (Z/mZ)* — Gal(Q((m)/Q), k+mZ +— ((m + CE).) Let Fi/Q be the
finite abelian extension corresponding to the open subgroup K C 7% Gal(Q**/Q).
Then we have a canonical identification

Shx = Spec F.

From this description, it is clear that @K Shy = Spec Q2P.

Observe that the non-identity bijection Hy — Ho induces a bijection Shg (C) —
Shg (C) which is 79(G, (A)/G,, (Q))-equivariant. From this we obtain an automor-
phism of the Q-scheme Shg, denoted by o.. If we identify Shx with Spec F as
above, then o, is given by the complex conjugation acting on Fg. Moreover, since
K is neat, we have Q* N K = {1}, and it follows that o, is always a non-trivial
automorphism of Shy (or equivalently, Fix is always totally complex).

We denote by Shl}< the quotient of Shx by 0. Thus Shz( = Spec F}b(, where F}’(
is the maximal totally real subfield of F. Alternatively, Sth is the Shimura variety
at level K associated to the Shimura datum (G,,, {N@/R :S — GmR}).

We shall need a common generalization of the Q-schemes Shx and Sh%. First we
define the generalization of a level subgroup.

Definition 3.3.2. — We say that a subgroup U of G,,,(As) X Z/2Z is an admissible
level, if there are neat compact open subgroups K; and Ks of G, (Ay) such that

K1X{O}CUCK2XZ/2Z
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3.3.3. — Note that for any neat compact open subgroup K C G,,(Ays), we have
K c 7%, and the element —1 € Z* is not in K. Thus K x Z/27Z can be identified with
a subgroup of ZX, where the non-trivial element of Z/2Z corresponds to —1 € 7% Tt
follows that every admissible level U as in Definition[3.3.2]can be canonically identified
with an open subgroup of Z* = Gal(Q**/Q), and thus determines a finite abelian
extension Fyy/Q. We define

Shy = Shy (G, Ho) := Spec Fy.
When U C Gy, (Ay), the current definition of Shyy agrees with the one in §3.3.1} Also,
if K is a neat compact open subgroup of G,,(Ay), then K x Z/2Z is an admissible
level and we have Shg 7,27 = Shi}(.

The usual Hecke operators can be generalized to this new setting as follows. Let U
be an admissible level, and let g € G,,,(Af) x Z/27Z. We shall define an automorphism

[-g]U : ShU — ShU
For this we identify g with an element of G,,,(A) by identifying Z /27 with {1} C R*.
Then g determines an element p(g) € Gal(Q*/Q) via the inverse of (3.3.1.1). We

define [-¢]y to be the automorphism of Shyy = Spec Fyy corresponding to the restriction

of p(g) to Fy.
If U’ is another admissible level contained in U, then we have a natural map
Shyr — Shy, and the two compositions

Shy Shy —2% Shy,,

Shyr VL Qhyy Shy

are equal. We denote them by [-g]u.v.

If K is a neat compact open subgroup of G,,(Af) and g € G,,(Ay), then the
above definition of [-g]x recovers the usual Hecke operator on Shy. If e denotes the
non-trivial element of Z/2Z, then [-¢]x is the automorphism oo, of Shy as in §3.3.1]

For an admissible level U, we define

yU = yU(Gm,'Ho) = SpeCOFU,

and call it the canonical integral model of Shyy. The Hecke operators [-g]y and [-glur.u
as above uniquely extend to the canonical integral models.

Lemma 3.3.4. — Let Uy and Uy be two admissible levels with Uy C Uy. Then the
following statements hold.

(1) The natural map Shy, — Shy, is a Galois covering and a Uz /U;-torsor.
(2) Let p be a prime number such that Z, C Uy. (Here Z,; is viewed as a subgroup
of Gm(Ay) C Gu(Ay) x ZJ2Z.) Then Sy, ®z Ly are finite étale over Zyy for
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i =1,2. Moreover, the natural map Sy, ®z L) — Sv, @z L) is a Galois covering
and a Uy /U -torsor.

Proof. — Statement (1) is just Galois theory. To show (2), we observe that p is
unramified in Fy;, and Fy, by class field theory. O

3.3.5. — Let L be a reductive group over Q, and fix a continuous action of L(R)
on the set Ho. We write L(Q)? for Centyg)Ho. Thus L(Q)* is a normal subgroup of
L(Q) of index at most 2. We have a canonical injection

(3.3.5.1) L(Q)/L(Q)* — Aut(Ho) = Z/27Z.

Let M = G,, x L. Thus the group M(R) acts on Hg, where we let G,,(R) act as
in §3.3.1} Let Kjs be a neat compact open subgroup of M (Ay). Define

Ko = Ky /(K N L(Ay)).
We identify Kso with the image of Ky under the projection M(Af) — Gy (Ay).
Since Ky is a neat compact open subgroup of M (Ay), we know that Ky, is a neat
compact open subgroup of G,,,(Ay). Define the following subgroup of M(Ay):
(3.3.5.2) H = Ky N (G (Ay)L(Q)),
(3.3.5.3) H? := Ky N LQ)E.
Note that P_Ii is a normal subgroup of H. We define
H .= ﬁ/ﬁi
We have a natural homomorphism H — G (Ay) induced by the projection map
K — Gp(Ay), and a natural homomorphism H — Z/27 induced by the composi-
tion
B3351)
Gm(A7)L(Q) = L(Q) = L(Q)/L(Q° == Z/2Z,

where the first map is the projection to the second factor. Taking the product, we

obtain a homomorphism H — G,,(A) x Z/27 which is injective. We use it to view
H as a subgroup of G, (Af) x Z/27Z.

Lemma 3.3.6. — In the setting of the following statements hold.
(1) We have HE ZVKM N (Cent pr(g)Ho)-
(2) The subgroup H of G,,(Ay) X Z/2Z is an admissible level.

Proof. — For (1), the containment IETIhJ C KpN(Centpy(gyHo) is clear. For the reverse
containment, let g € G,,(Q) and [ € L(Q) be such that gl € Ky N (Cent s (q)Ho).
Then g € Ky o NG, (Q), which is the trivial group by the neatness of Ky . Hence

(3)In the application, typically M will be the Levi quotient of a parabolic subgroup P of a reductive
group G, and we reserve the notations H, HY for certain subgroups of P(A ) whose images in M (A )

are the subgroups H, P_Ii defined here, cf. 5
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gl =1, and | € L(Q)" This shows (1). For (2), we let K1 = Ky N G, (Af) and
Ky = Kpro. Then K; and K, are neat compact open subgroups of G,,,(Ay), and we
have K| x {0} ¢ H C Ky x Z/2Z. O

3.3.7. — We keep the setting of By Lemma m (2), H is an admissible
level. Applying the construction in §3.3.3 we obtain a Q-scheme Sh; and a Z-scheme
Sy

By definition, the profinite Galois covering Spec Q*® — Shy is a H-torsor. We
may thus construct étale sheaves on Shy associated to suitable H-modules. More
precisely, let Rep,, be the category of finite-dimensional algebraic representations
of M on Ejy-vector spaces (where E and A are as in . Let D°(Rep,,) be the
bounded derived category of Rep,, (i.e., the category of graded objects of Rep,; of
finite length, as Rep,, is semi-simple). As explained in [Mor10b) §1.2] and [Mor06
§2.1.4], we have an additive triangulated functor

(3.3.7.1) FHRT(H?,—) : D"(Repy) — DA(Shy;, Ey).

Roughly speaking, to compute this functor at W € D?(Repy), one first applies the
right derived functor of HO(HE, —) to W to get a complex of H-modules, and then
uses this complex and the H-tower Spec Q*" — Shy to construct a complex of Ej-
sheaves on Sh ;. We refer the reader to [Mor06, §2.1.4, Généralisation] for the precise
construction

Using , we define the following functor, which can be viewed as a compact
support analogue:

(3.3.7.2) FHRT(H?, —) : D"(Repy,) — D2(Shy,, Ey),
W D (fﬁRr(Hg,w*)[zq(LR)o,

where D(-) denotes the Verdier dual, W* denotes the contragredient of W, and ¢(Lg)
is as in Definition [.1.4

Similarly, let Repg, 7 /22 be the category of finite-dimensional algebraic represen-
tations of G,, X Z/27Z on E-vector spaces, and let Db(RemeXz/QZ) be the bounded
derived category. (Here we view Z/27Z as a constant group scheme.) We have an
additive triangulated functor

(3.3.7.3)
FronexBI22(_) : D*(Repg,, xz22) — DE(Shiy o xz/22, Ex) = DY(Shi,, ,Ey)
given as follows. Let W € Repg, 707 First viewing W as an algebraic rep-

resentation of G,,, we obtain the associated automorphic Ey-sheaf on Shg,, , as
usual (see §1.7.1). We then use the Z/2Z-action on W to define the descent datum

1t is assumed in loc. cit. that L(Q) = L(Q), but this assumption can be removed without affecting
any of the arguments.
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with respect to the double covering Shg,, , — Shz(M ,» and obtain an Ey-sheaf on
SthM,O. Equivalently, we let the Galois group I' of SpecQ* — Shz{M,o, namely
I'=Kyo X Z/2Z C Z*, act on W via the projection I' — G,,,(Qg) x Z/2Z followed
by the canonical action of G,,(Q¢) X Z/2Z on W. We then obtain an Ey-sheaf on
Shz(M_<> via the I-torsor Spec Q" — Shi}(M ., and the I'-representation W.

3.3.8. — We keep the setting of 3 Let D°(Rep,,) and Db(RemeXz/QZ) be as
in §3.3.7 For any neat compact open subgroup U C L(Ay), we shall construct a
functor

(3.3.8.1) RIy(U,—) : D"(Repy;) — D"(Repg,, xz/97)-

The construction is similar to the one described in [Mor10bl, Rmk. 1.5.2 (1)]. Con-
sider the space
M{ = LQ\Xp, x L(Af)/U,

where Xy, is asin Deﬁnitionlml Thus Méj is a variant of the usual locally symmetric
space MY, cf. §3.2.2, We know that M{/ is a smooth manifold, and the natural map
Méf — MV is a covering map of degree [L(Q) : L(Q)%]. (In our later application, L
will satisfy the assumptions in and we will have L(Q)! = L(Q)*, so Méj is the
same as MY discussed in )

Fix a system of representatives (I;)icr of the double cosets in L(Q)*\L(A;)/U.
Here the indexing set I is finite, since the set L(Q)\L(Af)/U is finite and [L(Q) :
L(Q)f] < 2. Then we have

M = []T\X.,
i€l
where each T'; := L;Ul;' N L(Q)? is a neat arithmetic subgroup of L(Q). For W €
D’(Rep,,), we define

(3.3.8.2) RIy (U, W) := P RI(I';, W),

iel
where each RI'(I';,—) is the functor D’(Rep,;) — D°(Repg ) as in [MorlOb)
Rmk. 1.2.2] such that the cohomology of RT'(T';, W) computes the group cohomol-
ogy H*(T';, W).

We further equip RTy(U,W) with a Z/2Z-action as follows: If L(Q)/L(Q)% is
trivial, we define this action to be trivial. Assume that L(Q)/L(Q)? & Z/27Z. Then
left-multiplication by the non-trivial element of L(Q)/L(Q)# induces an involution on
the set L(Q)*\L(A;)/U, and hence an involution on I. If {i,j} is a size-two orbit
in I under the involution, then there is a canonical coset in I';\L(Q) consisting of
l € L(Q) satisfying ll; € [;U. For any such [, the isomorphism W — W given by the
action of [ intertwines with the isomorphism I'; — I'; given by Int(), and we obtain
an isomorphism 7; ; : R['(T';, W) — RI'(T';, W), which is independent of the choice of
l. Moreover, the isomorphism 7;; : R['(I';, W) — RI'(I';, W) obtained in the similar
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way is inverse to 7; ;. Now consider a size-one orbit {i¢} in I under the involution.
Then T'; is a subgroup of ;Ul;* N L(Q) of index 2. For any I € (,UIl;* N L(Q)) — T,
the isomorphism W — W given by the action of | intertwines with the isomorphism
[; — T; given by Int(l), and we obtain an automorphism 7; of RI'(T;, W), which
is independent of the choice of I and has order at most 2. The collection of 7; ; and
7; as above thus gives a canonical Z/2Z-action on RI',(U, W), and we thereby view
RT',(U, W) as an object in Db(RemeXz/gz).

At this point, we have constructed the desired functor , after fixing the
choice of a system of representatives (l;);c;. It can be checked that changing the
system of representatives does not change the functor up to natural isomorphism.

Using , we define the following functor as a compact support analogue:

(3.3.8.3) RT3 (U,—) : D"(Repy,) — D(Repg,, «z,/22)

W (Rryw, W*)[zq@m])*,

where * denotes taking contragredient, and ¢(Lg) is as in Definition [I.1.4]

Remark 3.3.9. — For W € Rep,,, the object R['j(U, W) (resp. R, (U, W)) is an
incarnation of the cohomology (resp. cohomology with compact support) of the space
Méj “with coefficients in W”. To explain this, fix a field embedding Ey < C. Then W
determines an algebraic representation W¢ of L¢ over C. Consider the sheaf J-"uU (We)
of local sections of
LQ"\We x X1 x L(Ay) /U — MY,

cf. [Mor10b) §1.2] and Then for each k € Z, the base change to C of the k-
th cohomology of RI'y(U, W) (resp. RT.;(U, W)) is isomorphic to Hk(MhU, ]:hU (We))
(resp. H’Z(Méj,ff(wc)))

3.3.10. — We keep the setting of Consider the following situation, which
is a special case of the situation described below [MorlObl Notation 1.5.1]. Fix
m € G (Af)L(Q) C M(Ay). Let K); be a compact open subgroup of M(Ay) such
that
Ky € KyynmKym™?.

Let H' and (ﬁi)’ be defined by the formulas (3.3.5.2)) and but with Kps
replaced by K,. Note that we have H' ¢ H NnmHm™!.

Let H' := H’/(HE)’ Let 6, : H' — H be the homomorphism induced by
Int(m~') : H — H, and let 6 : H — H be the homomorphism induced by the
inclusion H' C H. As a generalization of the functor , for i € {1,2} we have

a functor

(3.3.10.1) FH' 9 RT(H?, —) : D"(Repy,) — D2(Shy,, Ey).
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To compute this functor at W € DP(Rep,,), roughly speaking one first applies the
right derived functor of Ho(ﬁi, —) to W to get a complex of H-modules, then pulls
this complex back via 8] to obtain a complex of H ‘_modules, and then uses the last
complex and the H'-tower Spec Q*" — Sh 1+ to construct a complex of Ey-sheaves on
Shy;,. The precise construction of is along similar lines as the construction

of (3.3.7.1)), for which we refer to [Mor10bl, §1.5].
Let m be the image of m in G,,(A;) x (L(Q)/L(Q)) C G,n(Ay) x Z/2Z. As in

§3.3.3l we have Hecke operators
[~ 7]1{1/,15[ : ShH, — ShH,
[ g
In the sequel we denote them simply by [-m] and [-1].
Let W € D?(Rep,,). Applying the functor (3.3.7.1)) to W, we obtain

% = FHRT(H} W) € DY(Sh;, Ey).

As explained in [Mor10bl §1.5], it follows from Prop. 1.11.5] that there are
canonical isomorphisms

,IjI : Shg, — Shf[

FI9;RU(HE W) = [m]".2,
FH g5 RU(HE W) = [1]".2.

Using these isomorphisms, as in [Mor10Dbl §1.5] one constructs a canonical cohomo-
logical correspondence

(3.3.10.2) Cma [ — [ =[1]"2.

(Both sides are complexes of sheaves on Shy,.) Similarly, applying the functor
(13.3.7.2) we obtain

%, .= FURD (H}, W) € D'(Sh,;,Ey),
and there is a canonical cohomological correspondence

(3.3.10.3) ema: [m]* L — [1)' L = [1]* ..

)

Now let p be a prime number which is coprime to A and hyperspecial for Kj; (see
Definition [1.8.2). Assume in addition that m € G,,(A%)L(Q). Then there exists K},
as in the above discussion such that p is also hyperspecial for K),;. For such K},
it is clear from Lemma W (2) that the Hecke operators [-m] : Shy, — Shy and
[-1] : Shy;, — Shy extend to finite étale morphisms .7y, ®z Z,) — -/ @z Ly (still
denoted by [-m] and [1]), that .Z and .Z, extend to complexes of lisse Ey-sheaves
on .y ®z L), and that the cohomological correspondences (3.3.10.2) and (i3.3.10.3)
also extend. We denote by .Z (resp. .Z,) the pull-back to Sy ®zF, of the extension
of & (resp. £,) over Sy @z L. As in Notation 1.5.1], for any a € Z>,
we can twist the reductions of (3.3.10.2)) and over [F,, by the a-th power of
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the absolute Frobenius, and obtain cohomological correspondences
Dy, : [m]' L — [1]'Z,
Oyt [M]* L — [1]'2
Definition 3.3.11. — In the setting of §3.3.10] we define
Try(a,m, Kar, Ky, W) i= Y (=1  Te(®%crn 1 | HY (S @2 Fy, 2)),
k
Trage(a,m, Ko, Ky, W) i= > (= 1)F Te(@%m | H (S @2 Fp, Z2).
k

3.3.12. — We keep the setting of 5 Let U € Db(RemeXz/QZ). Applying the
functor (3.3.7.3)) to U we obtain

M = FEuoxE2E() € DY(Shy,, w202, Ex).-
Let p be a prime number coprime to A such that ZJ C K. (For instance, if p is

hyperspecial for Ky, then Z) C Kyr,.) Let g € Gy, (Afc). As in * we have the
Hecke operator

['Q]KM,QxZ/zz : ShKM,QxZ/zz — ShKM,QxZ/zzy

which we denote simply by [-g]. Similarly as in we have a canonical cohomo-
logical correspondence

u(0,9) : [g]" M — M,
and we can pass to the special fiber of the canonical integral model mod p, twist by
the a-th power of the absolute Frobenius (where a € Z>1), and obtain a cohomological
correspondence

(3.3.12.1) u(a, g) = ®u(0,9) : [-9]* M — M.
Definition 3.3.13. — In the setting of §3.3.12] we define
Tr(a, 9, Karo % Z/22,0) := Y (=1)* Tr(u(a, g) | B*(Sk,, ,xz/22 @2 Fp, A)).
k
The following result is a variant of [Mor10bl Rmk. 1.6.5].

Proposition 3.3.14. — Keep the setting of §3.5.14. We have

(3.3.14.1) Tr(a,g, Karo X Z/22,U) = > c(y0,7,6)04(fF)TOs(¢5™ ) Tr(v0 | ).
(70,7,0)

Here the terms on the right are as follows.
(1) The summation is over Kottwitz triples (Yo,7,9) in G, of level p®, as in .
(2) The terms c(v0,7,6), O4(), and TOs(-) are defined as in §2.3

(3) We define fr = 1gK§LO/v01(K§\’LQ) € CX (G (AY)), where K}, is the sub-
group of G, (AY) such that Ko = Zy Ky .. The function #%m is as in Definition
233
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(4) For any vy € G (Q) = Q*, we set

TI'(’)/Q | U)7 ZfWo > 0,

Tr U) :=
(o 19) {Tr(% xelU), ifv <0,

where € denotes the non-trivial element of Z/27Z.

Proof. — We write K for Ky, and write S for the set Sk, | xz/22(FFp). We identify
the three sets S, Sh’(C), and G (Q\G(Af)/K = QX\A; /K. Let ® be the en-
domorphism of S induced by the absolute Frobenius on the F-scheme Sk,  vz/22-
We denote by p;, the image of p under the embedding Q, — A;. Then the endomor-
phism ®o[.g] of S is given by the multiplication by pjg on Q* \A; /K. Similarly, we
write S for (), and identify it with Shx (C) = Q*\Ho x A7 /K = Q50\AF /K.

Since we are in the zero-dimensional case, we can compute Tr(a, g, K0 X Z/2Z,U)
by summing the naive local terms over the fixed points of .S under ®“ o [-g].

Let € S be a fixed point under ®® o [-g]. Then x has a representative & € A;f
for which there exists fo € Q satisfying foZ € pjgZK, or equivalently fo € ppgK.
Hence the set of fixed points is non-empty if and only if Q* NpggK # (), and when it
is non-empty it is equal to S.

If Q* NpjgK = 0, then Tr(a,g, Kno x Z/22,U) = 0 since there are no fixed
points. In this case it is straightforward to check that the RHS of is also
Zero.

Assume that Q* NpjgK # (. In this case, this set has a unique element fq, since
we have Q* N K = {1} by the neatness of K. We have seen that in this case every
point in S is a fixed point. There are two cases to consider.

First suppose that fo > 0. Then every point in S is fixed by ®® o [-g]. Write
ge € G, (Qp) for the f-adic component of g. In this case, the naive local term at each
point in S is equal to the naive local term at any one of the two lifts of that point
in S, and the latter is equal to the trace on the algebraic G,,(Q)-representation U
of the product of g, 1 and the f-adic component of fo 1p;g € K (cf. the argument
on [Kot92b| p. 433]). Hence the native local term is equal to Tr(f; ' | U), which is
equal to ﬁ(f(;l | U) since fy > 0.

Now suppose that fo < 0. Then for every point in S, the two lifts of it in S are
permuted non-trivially by ®® o [-g]. In this case, the naive local term at each point
in S is equal to the trace on the algebraic G,,(Q¢) x Z/2Z-representation U of the
product of g;l and the projection to Q) x Z/2Z of f(;lpgg x € € K x Z/2Z, which
is Te(fy ' x €| U) =Tr(fy ! | D).

We conclude that in both cases the naive local term at each point in S is equal to
:fvr(fo_1 | U). Hence

Tr(a, g, Karo x Z/22,U) = Te(f3 ' | U) |S] .
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To compute the RHS of , we note that every Kottwitz triple (vyo,7,0) that
makes a non-zero contribution must satisfy vy = f;, L (In fact all Kottwitz triples sat-
isfying this condition are in one equivalence class.) On the other hand, by [Mor10b)
Rmk. 1.6.5] we know that

1~
> c0:7:0)05(fTOs(85™) = 5 |5
(70,7,9)
which is nothing but |S|. Hence the RHS of 1} is equal to :fvr( ot US| as
well. The proof is complete. O

3.3.15. — We now state a variant of [Mor10bl Prop. 1.7.2]. We keep the setting of
§3.3.5 Let p be a prime number which is coprime to A and hyperspecial for K;. Fix
m € M(A%) (not necessarily in G,,,(A%)L(Q)). Let Kj; be a compact open subgroup
of M(Ay) such that p is hyperspecial for K}, and such that

Kh; € Ky nmKym™ .
Fix a system of representatives (m;);cs of those double cosets e in
G (Ap)L(Q\M (Af)/ Ky
satisfying
emKy = eK)yy.
For every i € I, let g; € G,,,(Af) and I; € L(Q) be such that
gilim; € m;mKy;.

We may and shall assume that m; € M(A%}) and g; € G, (A%) for each i € I.
Let W € D’(Rep,,), and let

U := RUy(Ky N L(As), W) € D°(Repg,, wz/22);
Ue := R y(Ky N L(Af), W) € D*(Repg, , xz/22)

where the notations are as in (3.3.8.1]) and (3.3.8.3). The following result is a variant
of [Mor10bl Prop. 1.7.2].

Proposition 3.3.16. — Keep the setting and notation of §3.3.15 Write g for the
projection of m in G (A%), and write K}, , for Ki/(Kjy N L(Ay)). Assume that
[L(Q) : L(Q)?] = 2. Then for each a € Z>1 we have

(3.3.16.1) Y Try(a, gils, miKarm; ' miKjm; ' W)
i€l
=Tr(a,9, Kpmo X Z/2Z,U) - (Ko K}VLO],
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and

(3.3.16.2) ZTrH,C(a,gili,miKMmi_l,minvfmi_l,W)
iel
=Tr(a, g9, Kpmo X Z/2Z,U.) - (Ko K}V[,O].
Here the terms Try(---), Tryo(--+), and Tr(---) are as in Definitions |3.53.11| and
5.5, 15

Remark 3.3.17. — The RHS of is indeed the analogue of the RHS of
[Mor10b, Prop. 1.7.2 (1)]. We have the seemingly extra factor [Ks o : K}y ], but this
is due to the fact that in our definition of the cohomological correspondence
we used the Hecke operator [-g] as an endomorphism of Shg,,  «z/2z, as opposed to

using the correspondence Shy,  «z/22 Ll Shi: xz/22 1, Shig o x2/22-
Similarly, the RHS of (3.3.16.2)) is the analogue of the RHS of [Mor10bl Prop. 1.7.2
2)]-

Proof. — By duality, (3.3.16.1) implies (3.3.16.2). The proof of (3.3.16.1)) is essen-
tially the same as that of [Mor10bl Prop. 1.7.2(1)], the only difference being that

we need to modify Morel’s functor RI'(K s, —) (and its analogue for K,). Below we
explain this modification.

Consider the space

MhKM = M(Q)\(HO X XL X M(Af))/KM = (CentM(@)’Ho)\XL X M(Af)/KM,

where M (Q) acts on Ho x X1 x M(Ay) diagonally, and for the action of M(Q) on
Ho both the factors G,,(Q) and L(Q) act non-trivially. (The action of L(Q) on Hg
is via the unique non-trivial action of L(Q)/L(Q) = Z/27Z.) Thus MfM is a double
covering of the usual locally symmetric space

MEY = M(Q)\Xar x M(Ay)/ K,
where X = X, since Xg,, is a point. Let RT'y (K, W) be the “cohomology of MfM
with coefficients in W” (cf. Remark |3.3.9). Namely, we write MHKM as
H (TLjKMTLj_l N CentM(Q)HQ)\XL,
jeJ
where (n;) e is a system of representatives of the double cosets in
(CentM(Q)HQ)\M(Af)/KM,
and define
RTy (K, W) := €D RT(n; Kym; ' N Cent yy(g)Ho, W)
JjeJ
inside the derived category of finite-dimensional Ey-vector spaces.
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Observe that we have a fibration
(3.3.17.1) M — Gr(Q\Gim (A f)/ Ko

induced by the projection Ho x X1, x M(Af) = G,,,(Af). The fibers of (3.3.17.1)) are
naturally identified with

L(Q\Ho x Xp x L(Ag)/(Knm N L(Ay)),

which we observe is the same as M/ *"***) defined in $, since [L(Q) : L(Q)"] =

2. The base of the fibration (3.3.17.1)) is identified with Shg,, . «z/22(C). Hence we
have identifications
(3.3.17.2)

Ry (K, W) = RU(Shg,,  xz/22 ©0C, A ) = RU(Sk ), 222 @ Fp, M),

where # = FXmexZ/22(U) and A is the reduction of ./ (cf. §3.3.12).
On the other hand, we have a fibration

(3.3.17.3) MM — G (Ap)LQ\M (Ay) /K

induced by the projection Ho x Xy, x M(Ay) — M(Ay). For each e € M(Ay), we
denote by MDKM (e) the fiber of over the double coset of e. Then MHKM (e) is
identified with
Gm(Q)\HO X Gm(Af) X XL/HS,

where H, := eKye™ ' N (G, (Af)L(Q)) is the analogue of H in §3.3.5( with eK et
replacing the role of Ky, and the right action of H, on Hgy X Gy, (Ay) x X, is given
as follows. The action of H, on Ho x G, (Ay) is the restriction of the G,,(Af)L(Q)-
action, where G,, (A ) acts on G,, (A ) by multiplication and L(Q) acts on H, via the
non-trivial action of L(Q)/L(Q)%. The action of H, on X, is given by the restriction
of the projection map G,,(A;)L(Q) — L(Q) followed by the inversion on L(Q) and
followed by the natural left L(Q)-action on X7,.

Let Hi,e = eKpe ' N L(Q)" and H, := ﬁe/ﬁi’e, which are the analogues of EE
and H in with eKjre~ ! replacing the role of Kj;. Then we have a fibration

(3.3.17.4) M (€) — G (Q)\Ho X G (Ay)/He,

where the H,-action on HoxG,, (A ) is induced by the H-action on HoxG,, (Ap)xXp,
in the above. The fibers of (3.3.17.4)) are identified with XL/P_IE’E, while the base is
identified with Shy; (C). Hence we have an identification

(3.3.17.5) RTy(Ku, W) = @D RT(Shy; @qC, Z(e)) = @ RI(Sy. @1 F,, Z(e)),

where e runs through a system of representatives of the double cosets in

Gm(Af)LQ\M(Af)/Kn,
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and for each e we define .Z(e) := FHe RI‘(FIE’S, W) and define Z(e) to be its reduction
(. 30)

In view of (3.3.17.2)) and (3.3.17.5]), we can replace Morel’s functor RT'(K s, —) by
RT', (K, —) (and also for K,) and proceed in exactly the same way as in [Mor10b),
Prop. 1.7.2] to conclude the proof. O

3.4. Modifying Morel’s axioms

3.4.1. — Let (G, X) be a pure Shimura datum. We keep the notation in We
replace the axioms on p. 2 of [Mor10b] by the following axioms:

AO0. — For each P € AdmPar(G), the Levi quotient Mp of P admits a decomposition
Mp = Gp x Lp, where Gp is the image of PP"k C P as in
A1. — For each P € AdmPar(G), the set RBCp(G, X) is a singleton. In particular,

Xp is equal to Xy for the unique element (P,)) € RBCp(G,X), and we have a
Shimura datum (Gp, Xp); cf. §1.3.6]

A2. — For each P € AdmPar(G), the action of Lp(R) on Xp (see Proposition [1.3.7)
is trivial unless Xp is zero-dimensional.

A3. — For each P € AdmPar(G), let Lp(Q)* := Centr,qXp. For each neat
compact open subgroup K of Mp(Ay), we have KjyNCentyy,, ) Xp = KyNLp(Q)L.

Remark 3.4.2. — Our axiom AO is slightly more restrictive than the first two
conditions on p. 2 of [Mor10b], where Gp is allowed to be different from the image
of PPk Assuming A0, our axiom A1l is equivalent to the first part of the fourth
condition in loc. cit., and our axiom A2 is weaker than the second part of that
condition. Our axiom A3 is identical to the fifth condition in loc. cit.. We have
deleted the third condition in loc. cit. from the axioms as a general correction. Indeed,
this condition is neither used in [Morl0b] nor satisfied by any of the Shimura data
considered in [Mor10b]|, [Mor11], or the present paper.

3.4.3. — From now on we assume the axioms in §3.4.1} Let P € AdmPar(G) and g €
G(Ay). On p. 2 of [Mor10b|, Morel defines the groups Hp, Hr, Kq, K associated
to the pair (P, g). We define:

Hp :=gKg~' N P(Q)P""™(A),
H! = gKg~ ' N Lp(Q)*Np(Ajf),
Kq = gKg~' NP (Ay),

Ky :=gKg ' N Np(Ay).

Our Hp, Kq, Ky are the same as Morel’s definitions, and our HE is equal to Morel’s
Hj, (defined to be gK g~ ' N Lp(Q)Np(Ay)) when Lp(Q) = Lp(Q) (which is always
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true under Morel’s axioms). In general, Hi may be different from Hj,, and Hi is the
correct replacement of Hp in the discussion on the structure of the boundary strata
in [Mor10bl Chap. 1]. The point is that under the axioms in the group HE is
always equal to Pink’s group H¢ in [Pin92al §3.7], which has a canonical definition.
More precisely, as on p. 2 of [Morl0b], the boundary stratum in the Baily—Borel
compactification corresponding to (P, g) is of the for

(3.4.3.1) Shig/rn(Gp, Xp)/Hp,

and the action of Hp factors through the finite quotient group Hp/ HEKQ (instead
of HP/HL KQ)

In Table|l| below we compare Pink’s notation in [Pin92al, §3.7], Morel’s notation in
[Mor10b! p. 2], and our notation. The symbols in the first column all have canonical
definitions, independent of the axioms in [Morl0b] or §3.4.1] Under the axioms in
the three symbols in every row denote the same object, with the only exception
that Morel’s Hy, is not equal to Pink’s H¢o in general.

TABLE 1. Comparison of notations

Pink’s notation Morel’s notation | Our notation
Q P P

Pl QP PPink
W1 NP NP
Gy Gp Gp
Xl XP XP
Xo Xp Xp

Stabg ) M1 PQ) P@Q)
Hg Hp Hp
H¢ H, 2 H
Kw Ky Ky
Kp Kg Ko

ﬂl(Kp):Kp/KW KQ/KN KQ/KN

2: Hp# Hi unless Lp(Q) = Lp(Q)5.

3.4.4. — We make the following crucial assumption CA, in addition to the axioms
in §3.4.1]
CA. — If P € AdmPar(G) is such that Xp is zero-dimensional, then the Shimura

datum (Gp, Xp) is the Siegel Shimura datum (G,,, Ho). For such P we also assume
that Lp satisfies the assumptions in §3.2.1] Namely, we assume that 7o(Lp(R)) =

G)We systematically replace Morel’s notation MKq/Kn (Gp,Xp) for the Shimura variety by the
notation ShKQ/KN(Gp,Xp).
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mo(Lo(R)) = Z/2Z, where Ly is any minimal Levi subgroup of Lpgr. Moreover, for
such P we assume that 7o(Lp(R)) acts non-trivially on Hy. In particular, we have

Lp(Q)Ff = Lp(Q)*.

3.4.5. — Under CA, we know that for any P € AdmPar(G) such that Xp is zero-
dimensional, and for any g € G(Ay), the boundary stratum corresponding to
(P, g) is related to the generalized Shimura varieties in in the following way. In
§3:35] we identify G,, with Gp, and take L = Lp, M = Mp. Let Ky be the image
of gKg~' N P(Ay) under the projection P(Af) — M(Ay), and define H,H’i, H as in
@ Then H (resp. I:[i) is the image of Hp (resp. HE) under P(Ay) — M(Ay),

and (3.4.3.1)) is the same as Shj; defined in §3.3.7

3.4.6. — Our orthogonal Shimura datum O(V) satisfies A0-A3 in and CA
in Indeed, it suffices to verify these conditions for the standard maximal proper
parabolic subgroups F;, ¢ = 1,2. We take Lp, to be M; ;. Then the desired conditions
follow from Proposition and Lemma [3.3.6] (1).

3.5. Integral models

3.5.1. — We now turn to construct the integral models of the Baily—Borel com-
pactification Shx and its strata. For this let us specialize to the orthogonal Shimura
datum (G, X) = O(V). Recall that the standard maximal proper parabolic subgroups
of G are P; and P,. We write (G5, &;) for the Shimura datum (Gp, = M, 5, Xp,) for
i € {1,2}, and write (Gp, Xp) for (G, X). (Our numbering of the P; and G; is the
same as the abstract numbering in [Mor10bl §1.1].) For i € {1,2}, we set Lp, to
be M; ;. In accordance with loc. cit., we define Lp,, to be Mz, so that M, is the
direct product of G2 and Lp,,.

Without loss of generality, we assume that the function f°° in Theorem [1.8.4]is of
the form 1 g5/ vol(K NgKg™') for some fixed g € G(Ay). Since O(V) is of abelian
type, we can apply [MorlObl Prop. 1.3.4] to construct the following objects:

— a finite set ¥ of prime numbers containing ¥y (where ¥y is as in .

— a set K; of neat compact open subgroups of G;(Ay) for i € {0,1} such that K
and K N gKg~! are elements of Cg.

— a set Ko of admissible levels, in the sense of Definition [3.3.2]

— a subset A; of G;(Ay) for i € {0,1,2} such that 1 and g are elements of Aj.

— a smooth quasi-projective scheme 7y (G;, X;) over Z[1/X] with generic fiber
Shy (G, &;), for each i € {0,1,2} and each U € K;. Here when i = 2, the Shimura
variety Shyr (G, &») at the admissible level U is understood as in

— a normal projective scheme .77 (G}, X;) over Z[1/¥] containing %7 (G;, &X;) as
a dense open subscheme, whose generic fiber is the Baily—Borel compactification
Shy (Gy, &;) of Shy (Gy, &;), for each i € {0,1} and each U € K;.
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These objects should satisfy all the requirements in [Mor10bl Prop. 1.3.4] and the
paragraph following it. To be more precise, the formulations of these requirements
need to be suitably modified when they concern zero-dimensional boundary strata. In
the above, we have already modified the formulation of [Mor10bl, Prop. 1.3.4] when
it concerns Ko, i.e., our Ky is a set of admissible levels, which are more general than
neat compact open subgroups of G2(Af) = G,,(Af). The conditions (a), (b), and
(1)—=(7) in [Mor10bl §1.3] also need to be modified as follows.

— In condition (a), if j = 2, we need to replace Lp:/(Q) with Lp/(Q)T. (Here
P’ is either Py or Pip, and Lp/(Q)" is the same as Lp/(Q) N Lp,(Q)?.) After this
replacement, the quotient group in question is naturally a subgroup of Ga(Ay) x
Z/27 = G, (Ay) x Z/2Z, and the requirement is that this subgroup should be a
member of Cs.

— As in the paragraph following [Mor10bl Prop. 1.3.4], we may and shall assume
that the IC; are minimal in the following sense. We assume that Ky is the union of
the G(Ay)-conjugacy class of K and that of K N gKg~'. Then we determine K; as
the minimal set that is stable under G (Ay)-conjugacy and such that condition (a)
is satisfied for (i, j) = (0, 1). Having determined Ky and Ky, we determine K as the
minimal set such that the modified version of condition (a) as above is satisfied for
(2,7) € {(0,2),(1,2)}. In particular, £y is finite modulo G1(A)-conjugacy, and Ko
is finite.

— In condition (b), if j = 2, we still keep Lp(Q), and do not replace it with Lp(Q)".

— In conditions (3) and (4), if ¢ < 2, then the relevant requirements about zero-
dimensional boundary strata should be reinterpreted in the obvious way, taking into
account that in the generic fiber these strata are given by the generalized Shimura
varieties Shy (G, Ho) at admissible levels U; cf.

— In conditions (5)—(7), for ¢ = 2 and U € K3, the sheaves on the integral model
U (Ge, Xy) in question should be extensions of those sheaves on the generic fiber
Shy (G2, X») that are constructed by the functors (3.3.7.1), (3.3.7.2), and (3.3.7.3).
(Indeed, by the minimality of Ko assumed above, each U € K5 is of the form either
H/f[i or K6, for a suitable choice of L and Ky as in @ cf. )

With the above modifications, the same proof of [Mor10b, Prop. 1.3.4] still goes
through.

Remark 3.5.2. — The construction in §3.5.1| can be easily generalized to an arbi-
trary abelian-type Shimura datum satisfying A0-A3 in and CA in

Next we would like to to compare the localizations of the integral models con-
structed in §3.5.1] with other known integral models, at least at almost all primes. We
need some preparations.

Definition 3.5.3. — Let S be a scheme of finite type over Q.
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(1) By a family of local integral models of S, we mean the choice of an integral
model S, of S over Z, (i.e. a Z,-scheme with generic fiber S ®g Q,) for almost all
primes p. Two such families (Sp)ps.0 and (S,)p0 are called equivalent, if for almost
all p there exists a Z,-isomorphism S, — S, extending the identity on the generic
fiber.

(2) Given a finite-type Z-scheme S with generic fiber S, we obtain a family of local
integral models (S ®z Z,)ps0 of S. Any family of local integral models equivalent to
such a family is called eventually globalizable.

Remark 3.5.4. — By the “spreading out” property of isomorphisms (see [Gro66),
Thm. (8.10.5) (i)] or [Pool7, Thm. 3.2.1]), the eventually globalizable condition
characterizes the family of local integral models up to equivalence.

Lemma 3.5.5. — Let R be an integral domain, with fraction field F. Let Y be a
scheme flat and locally of finite presentation over R. Let X be a scheme over F, and
letm:YQrF — X be an F-morphism. Then there exists at most one separated R-
scheme X with generic fiber X such that w extends to an fppf R-morphismmy : Y — X.

Proof. — Let X and X’ be two separated R-schemes with generic fiber X, together
with fppf R-morphisms 7y : Y — X and 7 : Y — X’ extending w. We claim that 7,
factors uniquely through my. The lemma follows from the claim by symmetry.

To prove the claim, form the fiber product Y Xy ) with respect to mg : Y — X.
Since mq is an fpqc covering and therefore a universal effective epimorphism, it suffices
to check the equality of the two morphisms

gi Y xx Y 2y 1oy i=1,2.

Since both my and the structure morphism ) — Spec R are flat and locally of finite
presentation, the same holds for the structure morphism ) Xy ) — Spec R, which
implies that it is open. Hence the generic fiber of ) Xy Y is dense in ) X x ). Since
the R-morphisms g; and go agree on the dense generic fiber, and since the target X’ is
separated over R (which implies that the locus where g1 = g5 is closed), we conclude
that g1 = g2 on a closed subscheme of ) X » Y whose underlying topological space is
that of Y x x V. In particular ¢g; and gs induce the same map at the level of topolgical
spaces. To finish the proof, we can reduce to the affine case, namely we can replace
X' by an affine R-scheme Spec A, and replace )) X ¥ ) by an affine R-scheme Spec B
flat over R. We know that ¢1,g2 : A — B induce the same map A ®gr F — B®p F.
Hence we can conclude that g1 = g2 since B — B ®p F' is injective. O

3.5.6. — We keep the notation in §3.5.1] In the following, by “enlarging ¥” we
always mean replacing ¥ by a finite set of primes containing . Also, when we write
p ¢ % it is understood that p is a prime.
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Let (GSpin(V),X’) be the GSpin Shimura datum associated to the quadratic
space V', which is of Hodge type and has reflex field Q. The natural homomor-
phism GSpin(V) — G extends to a morphism (GSpin(V), X’) — (G, X) of Shimura
data, inducing an isomorphism between the adjoint Shimura data. For more details
see [MP16, §3].

We fix a neat compact open subgroup K C GSpin(V)(Ay) such that its image
in G(Ay) is contained in K. We denote by Shj the canonical model over Q of the
Shimura variety associated to (GSpin(V),X”) at level K, and denote by Shz the
Baily-Borel compactification over Q. Thus Shz is smooth quasi-projective over Q,
and % is normal projective over Q. There are natural Q-morphisms 7 : Shz — Shg
and 7 : Shz — Shg.

Note that 7 is finite étale surjective. Indeed, by fpqc descent, it suffices to check
these properties for the base change of 7 to C, which is clear from the adelic description
of the Shimura varieties over C and Hilbert 90 applied to ker(GSpin(V) — G) = G;
cf. [MP16 §3.2].

Recall that K € Ky. We let S5 = Sk (G, X) be the smooth quasi-projective
scheme over Z[1/X] with generic fiber Shx as given in By standard “spreading
out” (see [Pool7, Thm. 3.2.1]), we may and shall assume that the following objects
exist after enlarging 3::

a smooth quasi-projective scheme . over Z[1/X] with generic fiber Shy;.
— a normal projective scheme .7 over Z[1/3] with generic fiber Sh .

— a dense open embedding .¥% < ¥ extending the embedding Shz < Shz.
— a finite étale surjective morphism m : /5 — Sk extending 7.

We also enlarge ¥ so that the following condition holds:

— For each p ¢ ¥, there are reductive group schemes Gp and G, over Z, with generic
fibers GSpin(V)q, and G, respectively such that the homomorphism GSpin(V)q, —
Go, extends to a homomorphism G, — G,. Moreover, we have K = G,(Z,)KP
and K = G,(Z,)KP? for some compact open subgroups K? C GSpin(V)(N}) and

K? C G(A}).

Lemma 3.5.7. — In the setting of §3.5.0, it is possible to further enlarge ¥ and
find a number field F' unramified outside ¥ such that the following conditions hold for
all p ¢ ¥. Here all isomorphisms between integral models are required to extend the
identity on the generic fiber.

(1) For each U € Ky, (G2, X2) @ Z,, is isomorphic to the base change to Z, of
the canonical integral model of Shy (Ga, Xs) in .

(2) For each U € K1, Sy (G1, X1) ®Z,, is isomorphic to the canonical hyperspecial
integral model over Z,, of the modular curve Shy(Gy, X1).
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3) The integral model S5 ® Z, (resp. Lz @ ZL,) is isomorphic to the canonical
K p K P

hyperspecial integral model S ,, .., (Tesp. L ) over Z,, constructed in [Kis10]
(resp. in [MP19]).

(4) The integral model S @Z,, is isomorphic to the canonical hyperspecial integral
model Sk p can over Z, constructed in [Kis10].

(5) For each place v of F above p, .Sk @z OF,, is isomorphic to the base change

to O, of the integral model over Z, of Shy constructed in [LS18| Prop. 2.4].

,P,can

Proof. — First note that for (1) and (2) it suffices to show that we can enlarge ¥
for each U separately, since K is finite modulo G1(Af)-conjugacy and IC, is finite.
(Indeed, as is implicit in the proof of [Mor10bl Prop. 1.3.4], the integral models at
conjugate levels are by construction isomorphic to each other.)

For (1)-(3), we know that the canonical integral models in each case form an
eventually globalizable family of local integral models (Definition as p varies.
We are done by Remark

For (4), we would like to apply Lemma to characterize -k p can in terms of
% pean- Let p & 3. By the construction in [Kis10] (cf. [LS18, Prop. 2.4, Remark
2.6]) and by the surjectivity of m, the morphism mg, : Shz ®Q, — Shx ®Q,

pcan — y[(ypycan. We
also know that % .. is flat of finite presentation over Z,. By ILS18l, Prop. 2.4],
K p.can 1S quasi-projective and hence separated over Z,. By part (3), we may assume
that Sz ) an = L&k ®2Lyp. Since S @y Ly, — Sk Qz Ly is also finite ¢tale surjective
and since Sk ®z Z, is also separated over Z, (as it is quasi-projective), we know from
Lemma that .“x ®z Z, is isomorphic to .7k p can as integral models of Sh.

For (5), we let (C; geom)icr be the connected components of Shiz ®g Q, and let
(Dj geom)je. be the connected components of Shx ©gQ. For eachi € I, let C7 ., be
the intersection of C; geom With Shz ®oQ, and similarly define D?,geom' The morphism

extends to a finite étale surjective (hence fppf) morphism .73

7 : Shz — Shy induces a surjection I — J, which we still denote by 7. As in the proof
of [LS18] Prop. 2.4], we know that for each i € I, the morphism C; geom — Dx(i),geom
induced by 7 is the quotient by a finite group A; acting on Cj geom, in the sense of
[LS18, Rmk. 2.6]. Moreover, A; acts freely on C? and the Galois étale cover

i,geom
Cﬁgeom — Dg(i%geom is a A;-torsor. We pick a numbir field F' such that each C; geom
is the base change of a connected component C; of Shz ®g F, and such that the
action of A; on C geom descends to C;. For each i € I, define D; to be the quotient
Ci/A;, in the sense of [LS18] Rmk. 2.6]. We fix a section ¢ : J — I of the surjection
I — J. Then it is clear that Shx ®g F can be identified with HjeJ D, -

Since our choice of F' is independent of 3, we can enlarge X such that F' is un-
ramified outside . After further enlarging ¥, we may and shall assume that each
C; is contained in a unique connected component %; of ?f{ ®z Op, and that the
action of A; on C; extends to %;. Since the formation of the quotient of a quasi-

projective scheme by the action of a finite group commutes with flat base change, we
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know that the generic fiber of [[;c; Z,(;) is the same as [[;.;
already identified with E@Q F. Thus Hje] P,(;) and S ®7,0F are two finite-type
OF @z Z[1/%]-schemes with the common generic fiber, and we can hence enlarge ¥ to
assume that they are Op-isomorphic. It is then clear from parts (3) and (4) above,
and the construction in the proof of [LS18| Prop. 2.4], that the condition in (5) holds
for all p ¢ 3 and all places v of F above p. O

D,;), which we have

3.6. Finish of the proof

Essentially all arguments in [Mor10bl Chap. 1] can be easily modified to suit
our new axiomatic setting (i.e. A0O-A3 in plus CA in . With each
appearance of Hj replaced by HE, the results of [Morl0bl §1.4, §1.5] all carry
over. More precisely, in [Mor10bl, Prop. 1.4.5], if the index n, corresponds to zero-
dimensional boundary data, then we replace the functor F*/H#t RT'(H /Ky, —) with
the functor (applied to M = Mp, H = the image of H under P(A;) —
Mp(Ay), and H] = the intersection of H with L, (Q)*). We then modify [Mor10b)
Cor. 1.4.6] correspondingly (by replacing the functor F#/Hr RT (Hy /Ky, —) with
the functor ), and modify the definitions of Lo, and Le, on pp. 17-18 of
[Mor10bl §1.5] correspondingly.

Let .#k be the integral model constructed in We now explain the modifica-
tion of the proof of [Mor10b, Thm. 1.7.1], applied to the special fiber of .#x modulo
aprime p ¢ 3, where ¥ is as in Lemma We follow the notation in loc. cit.. Mod-
ifications are only needed when n, corresponds to zero-dimensional boundary data.
In this case, the definitions of v, and ujs need to be modified in accordance with the
modifications in [Mor10b, Cor. 1.4.6, §1.5] mentioned above. To get the relation be-
tween Tr(vy,) and Tr(up ), we need to apply Proposition in place of [Mor10bl
Prop. 1.7.2]. Finally, in the calculation of Tr(v;) on the bottom of [Mor10bl p. 25],
we apply Propositionin place of [Mor10b, Rmk. 1.6.4, Rmk. 1.6.5], and apply
Proposition in place of [Morl0b, Thm. 1.6.6]. Note that Proposition is
applicable thanks to condition (1) in Lemma Also, the fixed point formula of
Kottwitz for the one-dimensional boundary strata is applicable thanks to condition
(2) in Lemma [3.5.7]

After calculating Tr(vp), the same arguments as those on pp. 26-27 of [Morl0b]
lead to a modified version of [Mor10bl Thm. 1.7.1], where the right hand side of the
equality in that theorem is replaced by

Tr(Frob? x f*dg™ | Hi (S, @z Fp, F*V)) + Tp, + Tp, + Tp,,,
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with the terms Tp,, Tp,, and Tp,, as in Definition )| From this, we deduce the
analogue of the identity for the special fiber. Namely we have proved
for a sufficiently large, but with Shx and Shg replaced by the mod p reductions of
the integral models.

To prove itself, we apply [LS18| Thm. 4.19]. This result confirms Theorem
1.8.4] (1) and asserts that the terms Tr(--- | IH*(Shg, V)) and Tr(--- | H(Shg,V))
in (2.5.7.1) are unchanged if we replace Shx and Shg by the mod p reductions of the
integral models Indeed, by [LS18, Thm. 4.19] and conditions (4), (5) in Lemma
[3:5.7 we know that the compact support cohomology and the intersection cohomology
(with coefficients in V) of Sh K, ate respectively isomorphic to those of YK’FP under

the canonical adjunction morphisms (which are Hecke-equivariant and Gal(Q,/Q,)-
equivariant). Note that in Lemmam (5) we only compare the integral models over
an extension of Z,, but this already suffices for the current purpose since whether the
canonical adjunction morphisms are isomorphisms is insensitive to finite base change.

This finishes the proof of Theorem (1) and (2.5.7.1). In Proposition we
have already proved that is equivalent to the identity in Theorem
1.8.4](2).

Finally, we explain why the two sides of lie in E for all sufficiently large
a. In the above proof of , it is already implicit that the LHS of lies
in the algebraic closure Q of Q inside Q,, and that the equality holds when we view
the LHS as a number in C by choosing an arbitrary E-algebra embedding Q < C.
(Remember that at the outset we fixed field embeddings E) — Q, and E — C, and
that the RHS of is a number in C.) Since the definition of the RHS of
depends only on the embedding E < C but not on the choice of Q < C, we
see that both sides of (2.5.7.1)) are in E since they must be fixed by Gal(Q/E). Thus
it remains to check

Tr(Froby x f*dg> | H;(Shg,V)) € E.

But this follows from the point counting formula in [KSZ].
The proof of Theorem is complete.

(6)Note that the factor my; in Definition comes from the factor 2 in Proposition which is
an analogue of Thm. 1.6.6]. By contrast, in Morel’s case the extra factor 2 comes from
[Mori0bl Rmk. 1.6.5].

(M1In [LS18] §3], an extra assumption is made on the relation between the level K and the prime £.
This assumption can be easily removed if we consider the system of levels in [Pin92al, §4.9] instead
of the system H(¢"),r > 0 in the notation of [LS18] §3].



CHAPTER 4

COMPARISON WITH DISCRETE SERIES
CHARACTERS

4.1. Elliptic maximal tori in Levi subgroups

4.1.1. — We now pass to a local setting over R. The symbols V, V;, W;, G, Ps,
and Mg will now denote the base change to R of the corresponding objects in
We note that over R, Pj5 is still a minimal parabolic subgroup of G, and Pis, P, P;
are still the only proper parabolic subgroups of G containing Pj5. Also note that the
split component of Mg over R is just the base change to R of the split component
over Q. For this reason we still use the notation Ay, for the split component over R.

Note that Wo and W are quadratic spaces of signatures (n — 2,0) and (n —1,1)
respectively. We have

M1 = GL2 X SO(WQ), M2 = GL1 X SO(Wl), M12 = G?’n X SO(WQ)

Hence M; and M5 always contain elliptic maximal tori (over R), whereas My contains
elliptic maximal tori if and only if d is odd (recall that when d is even we assume that
n=d—2>4). We fix an elliptic maximal torus Ty, in SO(W2). We then obtain
elliptic maximal tori:

Ty :=Tg x Tw, C My = GLy x SO(W),

T12 = G72n X 11{/[/2 C M12 = an X SO(WQ),

std a b
TGtL2:{<C d) EGL2|a:d,b:—c}.

When d is odd, we also fix an elliptic maximal torus Ty, in SO(W7), and obtain
an elliptic maximal torus T = G,,, X Ty, in My = G, x SO(W7).

where

4.1.2. — We define a maximal torus 7”7 in G¢ as follows. Remember that V is the

orthogonal direct sum of span {ey, €] }, span {ez, €5}, and W5. We choose a hyperbolic
basis (see Definition [1.2.2) B = {f1,---, fa} of the quadratic space V¢ over C such
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that

f1=e1, fa=eq, fa=¢l, fa—1 = €.
As in from B we obtain an embedding
B G ¢ =T C Gc,
and a Borel subgroup B of G¢ containing T". By construction, 7" is contained in M¢
for each M € {My, My, Mi2}, and B is contained in Pg for each P € {Py, P2, Pi2}.
Moreover, g identifies the first two copies of G,, with the split component G2, =
GL(Vl) X GL(VQ/Vl) of M12.

Let S be a non-empty subset of {1,2} and assume that S # {2} if d is even.
We fix an element gs € Mg(C) such that Int(gs)(Ts,c) = T”. Denote the standard
characters of Gy, ¢ &= T’ by €1, , €m, and the standard cocharacters by €, - , €Y.
We transport them to Tg ¢ using Int(gs), and retain the same notation.

For S as above, we let Rg be the subset of ®(G¢,Ts,c) consisting of real elements,
and similarly we define R} C ®(Gc,Tsc)”. We view Rg and RY as subsets of
X*(Aprs) and X, (Apsg) respectively. In Tables 2/ and [3| below, we determine Rg and
RY explicitly in the odd and even cases respectively. In the last rows of the two tables,
we record the type of the root datum (X*(Anr), Rs, X«(Ams), RY).

TABLE 2. Real root systems in the odd case
S {1} {2} {1,2}
RS {:l:(Gl +€2)} {61} {:tﬁl,:tEQ,:l:El :|:€2}
R} {x(ef +€3)} | {267} | {£2¢€), £2¢ey, te) L€}

X*(AMS) %Z(El + 62) Zﬁl Z€1 D ZEQ
Xe(Apg) | Z(ef +€Y) Zel Zel ® Zey
type Aq Aq B2

TABLE 3. Real root systems in the even case
S {1} {1,2}
Rg {:l:(€1 + 62)} {:|:61 + 62}
Ry [ {£(ef +eg)} | {6 £e5}
X*(AMS) %Z(El + 62) Zey D Zes
Xo(Are) | Z +¢Y) | Zey &2y
type A1 A1 X A1

4.2. Stable discrete series characters

4.2.1. — We keep the setting of Fix an irreducible algebraic representation
V of G¢. This gives rise to an L-packet TI(V) of discrete series representations of



4.2. STABLE DISCRETE SERIES CHARACTERS 77

G(R). Let © = Oy be the stable character associated to II(V), i.e., the su of the
characters of the members of II(V).

Let S be a non-empty subset of {1,2}, and assume that S # {2} if d is even. Let
M := Mg. In §4.1] we fixed an elliptic maximal torus Ts in M. In the sequel, unless
otherwise stated, we call an element v € Tg(R) regular if it is regular in G, i.e., if
a(vy) # 1 for all @ € ®(Ge, Tsc)-

The normalized stable discrete series character ®§;(-,0) is defined and studied
in [Art89] and [GKMO9T]|; sce also [MorlObl §3.2]. It is a continuous function

Ts(R) — C such that
1/2
©f(7,0) = [DF(]y e()

for all regular v € Ts(R). In the following we recall a formula for ®$,(v, ), for
regular v € Ts(R).

4.2.2. — In we fixed a Borel pair (77, B’) in G, an elliptic maximal torus Tg
in M, and an element gg € M(C) such that Int(gs)(Ts,c) = 7’. We now denote by B
the Borel subgroup Int(gs)~1(B’) of G¢ containing T c. Remember that Psc D B.
We let By; := Mg¢ N B, which is a Borel subgroup of Mc. We make the following
definitions:

— Denote by ®* the set of B-positive roots in ®(Gc,Ts c).

— Denote by <I>X/I the set of Bp-positive roots in ®(Mc, Ts ).

— Denote by p € X*(Ts) ® £Z the half sum of the elements of ®.

— Denote by A € X*(Ts) the highest weight of the Gg¢-representation V with
respect to the Borel pair (Ts ¢, B) in Ge.

— Denote by 2 the complex Weyl group Q¢ (G, Ts).

— For w € Q, denote by wB the Borel subgroup wBw™! of G¢, where w €
Norg(c)(Ts) is any representative of w.

— Denote by Aj; the Weyl denominator of Mg with respect to the Borel pair
Tsc,By) in Mc; see Definition [1.1.3] Thus Ay, = +(1=a7h).
( — For w)e Q, define Ha€<1>M( )

O(w) =0T N (—wd™),
lw) = [2(w)],
(w)

e(w) == (=11,

Thus I(w) and €(w) are the length and sign of w respectively.

(M Qur definition of the stable character is the same as [Morii], whereas in [GKM97] a sign
(—1)%(%) is included.
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Recall that in we explicitly identified the set Rg of real roots in ®(G¢,Tsc).
Since S is currently fixed, we simply write R for Rg. For v € Ts(R), we define

Ry = {acR|a() >0},
RY :={aeR|a(y)>1},

er(y) = (—1)|‘I>+m(*Rf,“)\ _ (—1)#{a€‘1’+03\0<a(v)<1}.

Then by the work of Harish-Chandra [HC65] and Herb [Her79|, we have the follow-
ing formula for ®§; (v, ©), for regular v € Ts(R):

(422.1) 05(7,0) = ()" Den(1)pe@y (7) /> Ans(7) !
D e@n(v,wB)wN@) [ o'

weQ a€d(w)
See also [GKM97, §4] and [Morl1], Fait 3.1.6]. Here ¢(G) and dpg ) are defined
in §1.1} and n(vy,wDB) are certain integers, whose definition we now explain following
[GKMO97| §4].
Let G3€ be the simply connected cover of G, and write im(GS(R)) for the image
of G3¢(R) — G(R). Firstly, if v ¢ Zg(R)im(GSC(R)), then n(y,wB) = 0 for all
w € Q.

Remark 4.2.3. — In our case Zg(R)im(G5“(R)) = G(R)°. In fact, since G is
semi-simple, we have im(GS®(R)) = G(R)? by the connectedness of GS¢(R). Now
in the odd case Z¢ is trivial, and in the even case Zg(R) = {£idy } is contained in
G(R)" (see [Kna02, 1.17]).

4.2.4. — We now assume that v € T5(R) is regular and lies in Zg(R) im(G5C(R)),
and explain the definition of n(v,wB) in this case. First we need some preparations.

Let E* be a finite-dimensional R-vector space, and U C E* a root system. Let
E, denote the dual vector space of E* and let UY C E, be the set of coroots.
Assume that U spans E*, and that the Weyl group of U contains —1 € GL(E,). Let
E. reg C E. and E},, C E* be the regular loci with respect to U and U" respectively.
One associates to the datum (E*,U) a function

(4.2.4.1) & : Bureg X Eloy — L.

This function appeared in the work of Herb [Her79|, and can be inductively char-
acterized by the properties (1)—(5) listed in [GKM97, §3]. We will give explicit
formulas for ¢y in some special cases in Lemmas and below. Later in the
paper (§ and, we will recall Herb’s close formula for ¢;; in more complicated
situations.

Now we write X, (An)r and X*(Ap)r for X.(An) ®z R and X*(Ay) @z R re-
spectively, and identify X,(Ap)r with Lie(Ays). We view the Weyl group of the
root system R, as a subgroup of GL(X,(Aam)r). Let X\ (An)rreg C Xu(Arr)r and
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X (Anm)rreg C X*(Aar)r be the regular loci, with respect to the root systems R,
and RY, respectively.

Lemma 4.2.5 (|[GKMO97, p. 499]). — For regular v € Ts(R) which lies in
Zc(R)im(GSC(R)), the Weyl group of R., contains —1 € GL(X.(An)r)- O

4.2.6. — Keep the setting of In view of Lemma [£.2.5] and the general con-
struction (4.2.4.1}), we obtain a function
ER“/ : X*(AM)R,reg X X*(AM)R,reg — 7.
We can now define the integers n(y,wB) in terms of the function cg, . Let Ts(R); be
the maximal compact subgroup of Ts(R). We have a canonical decomposition
Ts(R) = Ay (R)° x Ts(R);.
We write the projection of v € Ts(R) in Ap(R)? as exp(x,), with z., € Lie(Ay) =
X« (Apr)r. Our assumption that v is regular ensures that
Ty € X*(AM)]R,reg-
Let p : X*(Ts)r — X*(An)r be the natural restriction map. Then for any w € Q

we have
p(wA +wp) € X™ (A )R reg-
Define

(4.2.6.1) n(vy,wB) = cr, (T, p(WA + wp)).
This finishes our explanation of (4.2.2.1)).

Corollary 4.2.7. — Let v € Ts(R) be a regular element such that the Weyl group
of R, does not contain —1 € GL(X. (A )r). Then ®§;(v,0) = 0.

Proof. — By Lemma [4.2.5] we have v ¢ Zg(R) im(G5°)(R). Hence n(vy,wB) = 0 for
all w € Q, and we have ®%;(v,0) = 0 by (4.2.2.1). O

In the sequel we will need explicit descriptions of the function ¢y for certain root
systems U in R! and R2. For i € {1,2}, we use the standard inner product on R to
identify R? with its own dual space.

Lemma 4.2.8. — Let € be the basis vector 1 of R'. The Weyl group of the root
system U = {%e} contains —1. The regular loci in R with respect to U and with
respect to UV are both RY — {0}. The function ¢y : (RY — {0}) x (R — {0}) — Z is
given by:

2, ifxy <O,

cu (e, ye) = {0 ifxy >0

Proof. — This follows from a direct computation based on properties (1)—(5) listed
in [GKM97, §3]. O
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4.2.9. — We now consider certain root systems in R2. Let {e; = (1,0),e = (0,1)}
be the natural basis of R2, and let z; and x5 be the two coordinate functions on R2.

Let(®)]
Uodd = {£e1,tea, teg L ea},
Ueds := {%e€1,£ea}
Ueven := {t€1 L €2} .

For each subscript ? € {odd, eds, even}, U; is a root system in R?. The regular locus
in R? with respect to Us is equal to the regular locus with respect to Uy'. We denote
this locus by R%.

Explicitly, Rgdd is the complement of the two coordinate axes and the two di-
agonal lines. Thus it is the disjoint union of eight open cones. We label the cone
{(z1,22) | 0 < 22 < 1} by the symbol (Z), and label the other cones counterclock-
wise, by (Z7), (ZIZ), ---, (VIZIZ). See Figure|l]

Similarly, RZ,, is the complement of the two coordinate axes, and RZ , is the

even

complement of the two diagonal lines z; = 4x5. We label the four open cones

constituting R2 . counterclockwise, starting with the cone {(z1,z2) | z1 > |z2|}, by

the symbols (&), (A), (€),(2). See Figure

T2
Tr] = —XT9 Tr1 = o

(IIT)| (Z7)

(ZV) @)

€

V) (VIITI)

VI) | (VIT)

FIGURE 1. Labeling of the eight open cones complement to the two coor-
dinate axes and the two diagonal lines in the zi-z2-plane. The union of
the cones is denoted by R2,,.

(2)Here the subscript eds stands for “endoscopic”.
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T2
Ir1 = —X2 I = T2

T1

(2)

FIGURE 2. Labeling of the four open cones complement to the two diagonal
lines in the z1-z2-plane. The union of the cones is denoted by RZ,.,.

We shall use the same symbols (Z),(ZZ),---,(#),(#), -, to denote the
characteristic functions of the corresponding open cones. For each subscript
? € {odd, eds,even}, the Weyl group of U; contains —1 € GL(R?). Hence we have
the associated function

cv, 1R xR2 — Z.
The following lemma describes this function. For each fixed z € R2, we let f7 , : R3 —
Z be the function that sends 2’ € R2 to ¢y, (x,2).

Lemma 4.2.10. — The following statements hold.
(1) If x € (V), then
1

(4.2.10.1) ifodds = (Z2) + (VIII).
If x € (IV), then
(4.2.10.2) ifodd,z = (D) + (VII).

(2) The function cy,,, : R2;, x R2,. — Z is given by

(4.2.103) C (.27 = {4, if x and x’ lie in opposite quadrants,
0, otherwise.

In particular, if x € (V), then

(4.2.10.4) %feds,xmgdd = (2) + (Z2).

If x € (ZV), then

(4.2.10.5) %fed&ﬂﬁzdd = (VIT) + (VIII).
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(3) If x € (¥), then

1
(42106) Zfeven,z = (d)

Proof. — This follows from a direct computation based on properties (1)—(5) listed
in [GKM97, §3]. O

and ¢y follow immedi-

even

Remark 4.2.11. — The complete descriptions of ¢y,

ately from Lemma[4.2.10/and the Weyl invariance of these functions (see property (5)
in [GKM97, §3]).

4.3. Kostant’s theorem

We apply Kostant’s theorem [Kos61] to compute the character of the virtual rep-
resentation in Definition 21,4l

Let S be a non-empty subset of {1,2}, and let M := Mg. Assume that S # {2}
in the even case. Let T be as in We fix V as in and continue to use the
notations introduced in Let RT'(Lie Ng,V)st, be as in Definition Let
w1 and w3 be as in Definition 211}

Lemma 4.3.1. — For v € Ts(C) regular in G (or more generally, regular in M ),
we have

Tr(y | RT(Lie Ng, V)spg) = Apr(7) 7} > W@ [ o't
aed(w)

weN
(w(A+p),w0)>0, ViesS
Proof. — The proof is the same as a computation in the proof of [Mor11l Prop. 3.3.1].
Let Qg := Q¢(M,Ts), which is naturally a subgroup of Q. For w; € Qg we define
I(wy) and e(w;) = (=1)"®) by viewing w; as in Q; as a standard fact I(w1) is also the
length of wy in Qg with respect to the simple roots in (Iﬁgj. Consider

5= {w € Q| ®(w) C {roots of Tsc on Lie(NS)C}}

={weQ|o(w)Nndf, =0}.
Then Q is the set of minimal length representatives of the cosets in Qg\(; see
[Kos61l, p. 361] or [GHM94] p. 165]. In particular, multiplication induces a bijection
(4.3.1.1) Qg x Qg — Q.

We have fixed the positive system @}, inside ®(Mc,Ts,c). As usual, we say that
an element X € X*(Tg) is M-dominant, if the pairing of A\’ with any positive coroot
in ®(Mc, TS,C)V is non-negative. For such X', we let Vi s be the irreducible algebraic
representation of M (C) of highest weight .
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As recalled on p. 1700 of [Mor11], Kostant’s theorem states that as an algebraic
representation of M (C), we have

H"(Lie(Ns)c, V) = @B Vit oip)—p-

w' €y
(w)=k
Consequently,
Hk(Lie(NS)C7V)>ts = @ VM,W'(A‘H’)*P
w'eﬂg
l(w")=k

(w (A +p)—p,=i)>ti, ViES
By a simple computation, we have t; = (—p, w;) for i = 1,2. Hence we have
(4.3.1.2) H"(Lie(Ng)c, V)s i = P Vit \p)—p-
w €y
(w')=k
(w' (A p),:)>0, VieS

By the Weyl character formula (see for instance [Morlll Fait 3.1.6 ]), for any
M-dominant X' € X*(Tg) we have

(4.3.1.3) Tr(y | Vara) = Au()™ D elw)@N)() J] o
w1€Qg a€<I>(w1)
(Here we have used the fact that for each wy € Qg, the set ®(wy) = TN (—w1PT) is
also equal to @1, N (—w1®},).)
Combining (4.3.1.2)) and (4.3.1.3)), we obtain

Tr(v | RF(Lie(NS)’V)>t5) - Z (71)““),) Tr(y | VM,w’(M—p)—p)
w'ey
(W' (A +p),@;)>0, VieS

= > e(W)An (7)™

w €Ny
(W' (A+p),@:)>0, VieS

> o) (e p)-p)e) [ o

w1 E€Ng a€P(wr)

Since w; is invariant under {2g for every ¢ € S, and since we have the bijection
(4.3.1.1)), the above is equal to

T @) Au() N0 (wp —pl(w)p) @ I o't

weN o w
(WAt p) o) 50, Vies ee(pi()
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where for each w € Q we set p;(w) to be the unique element of Qg such that w €
p1(w)s. To finish the proof, we just need to check that for all w € Q, we have

W)~ p@p) - Y a=- Y a

a€®(p1(w1)) acd®(w)
But this follows from the identity
> @
acd(0)
which holds for arbitrary 6 € Q. O

4.4. Kostant—Weyl terms and discrete series characters, case M;

4.4.1. — We keep the notations in and We take S = {1} and M = M;.
Recall from §4.1|that we have fixed an elliptic maximal torus T} = Tétfz x Ty, in M.
Consider a regular element v € T1 (R). We write

a b
=) 1)) € TR x T (B)
with a,b € R and a? + b? # 0. Note that (e1 + €2)(7) = a? + b?. Hence we have

Ry, ={£(a +e)}.
Let Ly(7) be as in Definition [2.2.3]

Proposition 4.4.2. — Suppose a®> + b> < 1. Then we have
05 (7,0) = 2(=1) "D Ly (7).

Proof. — We first compute CDM ~,0) using (4.2.2.1). Clearly T7(R) is connected.

Hence v € G(R), and so the integers n(v,wB) 1n 4 2.2.1)) are defined by (| m
The subgroup A/ (R)? C T1(R) consists of (g 0> Tétii ,2 € Ryg. The

subgroup T (R); C T4 (R) is U(1)(R) x Tw, (R), where U(1)(R) consists of

N

< = ) T(S;tﬁiz(R) 21,22 € R, zf —|—z§ =1.
—Z2 21

Hence the projection of v in Ap(R)° = R+ is va2 + b2, and
x = log Va? + b2 € R = Lie(An) = Xo(Am)r.
Since a? + b% < 1, we have

Ty € Reg = Rso(—€) —€y).
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Since Ry = {%(e1 + €2)}, by Lemma we have

Zn (5 x) = 2, if x € Ruo(er +€2),
Ry X 0, if X € R>0(—61 — 62).

Hence by the definition (4.2.6.1f), for w € €2 we have
27 if p(W()\+p)) 6]R>0(61 +62)7
n(y,wB) = .
0, if pw(A+p)) € Rso(—€1 —€2).
Now the term eg(7) in (4.2.2.1)) is —1. By the above computation and by (4.2.2.1)),

we obtain
(4.4.2.1) G (7,0) = 2(=1)"D15p 5 (1) /2 Ap (1)
> @M ] o't

weN a€P(w)
P(w(A+p))ER> o (e1+€2)

Next we compute 2(—1)4“+1L;, (). By Proposition and Lemma we
have

(44.2.2) 2(=1)MDFL () = 2(=1) 1 D6 p ) (1) 2Apr(7) 7!
> ew(@wN) ] o't

weN acd(w)
(w(A+p),1)>0

Comparing (4.4.2.1)) and (4.4.2.2)), we see that the proof reduces to checking that for
all w € Q, we have

(WA +p),@1) >0 <= p(w(X +p)) € Ruo(er + €2).

This is obvious. O

4.5. Kostant—Weyl terms and discrete series characters, odd case M,

4.5.1. — We keep the notations in and We take S = {2} and M = M.
Assume that d is odd. Recall from that we have fixed an elliptic maximal torus
T> = Gy, X Tw, in M. Consider a regular element v € T5(R). We write

Y= (a>'7W1)7

with @ € R*. If @ > 0, then R, = {£e;}. Otherwise R, = . Let Ly (v) be as in
Definition [2.2.3

Proposition 4.5.2. — When a < 0, we have ®§;(7,0) =0. When 0 < a < 1, we
have

5 (7,0) = (~)" DT Ly (7).
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Proof. — When a < 0, we have R, = (. It follows from Corollary that
®§,(v,0) =0, as desired.

Now assume that 0 < a < 1. We first compute ®§; (v, ©) using (4.2.2.1). We have
Ty 2 G x U(1)™ 1, and Apy = Gy, T(R); = {£1} x U(1)(R)™ L. Hence the
projection of v in Ay (R)? = R+ is a, and

zy =loga € R = Lie(Ay) = X (Am)r.
Since 0 < a < 1, we have
2y € Reo = Ruo(—¢y).
Since R, = {+£e1}, by Lemma we have
2, X € ]R>0(61)7

Cr.(T~,X) =
Rw( ¥+ X) {07 X € Rog(—€1).

Hence by the definition (4.2.6.1)), for w € 2 we have
2, if p(w(A+p)) € Rooler),
n(y,wB) = ,
0, if plw(X+p)) € Rso(—er).
Now the term eg(y) in (4.2.2.1)) is —1. By the above computation and by (4.2.2.1]),
we obtain

(452.1) 85(7,0) = 2(=1)1D 55 o (1) /2 A (7) !

> @ @N() T a7t

weN a€ed(w)
p(w(A+p))ER>o(€1)

Next we compute (—1)4“+1L,,(y). By Proposition and Lemma [4.3.1} we
have

(452.2) (=1)UDTLy(y) = 2<_1)q(G)+16P2(1R)('Y)UQAM('V)_l

Y. @M [T a7t

weN aEP(w)
(w(A+p),@2)>0

Comparing (4.5.2.1)) and (4.5.2.2)), we see that the proof reduces to checking that for
all w € Q, we have

(WA +p), @2) > 0 <= p(w(A+p)) € Ruo(er).

This is obvious. O

4.6. Kostant—Weyl terms and discrete series characters, case M,

4.6.1. — We keep the notations in §4.2]and We take S = {1,2} and M = M.
(We drop the assumption that d is odd made in ) Recall from that we have
fixed an elliptic maximal torus T3 = G, x Gy, x Ty, in M. Consider a regular
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element v € T12(R). We write

Y= (CL, bv 7W2)1
with a,b € R*. Let Ly/(v) be as in Definition We fix an element go € M ;(Q)¥,
as in Definition 2.2.6]

Lemma 4.6.2. — We have

(4.6.2.1) Lar() = 0pyy(v)"/? Tr(y | RT(Lie N1z, V)54,,)
+6pm (90796 1) Tr(govgy ! | RT(Lie Nig, V)sy,,)
Mz |2 1/2 :
DM O| dram ()2 Te(y | RD(Lie No, V)r,).
Proof. — The lemma follows from Proposition [2.2.8] the fact that dim Ay /An, = 1,
and the fact that n)\f> = 2. Here n};? is clearly equal to the cardinality of WA%Q’Z, and

we already showed in the proof of Proposition that this group is Z/2Z. O

Definition 4.6.3. — When d is odd, let
wo = S, €,
W1 1= Sey—ey €8,
Wy 1= 8¢, € L
When d is even, let
WO 1= SegtesSeq—es € L

Here s, denotes the reflection in € corresponding to o € ®(Gc, Tha,c)-
The following lemma is similar to an argument on p. 1702 of [Mor11].

Lemma 4.6.4. — Let s € {wo,w1,wa} if d is odd, and let s = wy if d is even.

(1) The automorphism of Tha ¢ induced by s is defined over R.
(2) Lety € T12(R) be regular, and let v := s(y) € T12(R). For any w € Q we have

5 n1/2 Oé_l / a n—1/2 1
P12(R)(7) HaE‘I)(w) (’7): H | (7)| . H Ia(fy)|_ a(’y).

(4.6.4.1) - AN
5P12(R)(7)1/2Haeq>(sw)0‘ '(7) acd?, ()] 1z acd(s)

Here |-| denotes the usual absolute value on C, and as usual ®(s) denotes TN(—s®T).

Proof. — (1) The automorphism in question is given by
(#,y,2) — (y,2,2), Y(z,y) € Gy, 2 € T, c,
when s = wy, and is given by

(z,y,2) — (271 y,2), Y(z,y) €G], 2 € Tw, e,
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when s = ws. In these cases the claim is obvious. When s = wg, the automorphism
in question is of the form

(z,y,2) — (z,y7 ", f(2),  (z,y) €GL, 2 € Tw,c,

for some automorphism f of Ty, c. Since Tw, = U(1)™~2, every automorphism of
Ty, c is defined over R. This proves the claim.

(2) Note that ®* is the disjoint union of <I>j\r4 and the set of roots of T12 ¢ acting
on Lie(Ny3)c. Hence

Sre @) = [ le@) [[ le@)™, e Tia®).

acedt ,34e<1>Jr

For any w € 2, we have

S P () (Y N2 H a '(¥)

aEdP(w)
12 —1/2 _
= [ " I feehI™” T o'
acdt acd, acedtN(—wdt)
_ H 1/2 H |71/2 H o~
- 7)-
acsdt OtE<I>+ acsdtN(—swdt)

Also we have

Spaw2 T e = I le"? II let™* I o'

a€P(sw) acdt OZE‘I’L a€PtN(—swdt)
Hence
5P12(R)( /)1/2 Haed)(w) ail(’yl)
6P12(R( ! /2 Hae@(sw)a ()

I ()" Taesar [ Hacsornswen @ ()
e Tacos laY? Hacornswery @' ()

T
acdy,

To finish the proof, we note that

Mocoos lo? Tacornsar o) Hae—ags () = II leI™
Mocor [0 Tlacosnear 10O Taca e oag
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and that
1_L%ESfI”ﬂ(—sw@?*) a”'(v) _ Hae(—w)ns@m(—sww) a=t(v)
[oco+n(—swer) @ (V) - [acotn=sot)n(—swer)y @ (7)
Hae@(s)ﬂ(sw<b+) a(v)
- Hae@(s)ﬁ(—suﬂb‘*') a t(y)
= [[ et
acd(s)
The desired follows. 0

Lemma 4.6.5. — For any go € M2,;(Q)* (see Definition , there exists g €
SO(W2)(R) € G(R) such that ggo normalizes Ti2 and the image of ggo in € is wy as

in Definition [{.6.3

Proof. — Recall that Ti5 = G2, x Tyy,, where G2, = GL(V1) x GL(V,/V1), and Ty, is
an elliptic maximal torus in SO(W2). From the definition of M2 ;(Q)*, we know that
go normalizes G2, stabilizes Wy C V, and restricts to an element go|w, € O(W2)(R)—
SO(W5)(R). Since all elliptic maximal tori in SO(W3) over R are conjugate under
SO(W3)(R), there exists g € SO(Ws)(R) such that ggo normalizes Ti2. We let h
denote (ggo)|w,, which is an element of O(W3)(R) — SO(W>)(R) normalizing Tyy,.

If d is odd, we can take g to be —idw, -(golw,) *. Then ggo permutes {es,eh}
non-trivially, fixes e; and e, and acts as — idy, on Ws. It follows that the image of
ggo in € is wo, as desired.

Assume that d is even. Then m = d/2 > 3. By our definition of the Z-basis
{€1," - ,em} of X*(T12), we know that {e3, -, €y} is a Z-basis of X*(Tw,). More-
over,

@(SO(WQ)C7TW2_’C) = {:I:EZ- T [3<i<j< m}
It is easy to check that there exists an element h' € O(W3)(C) — SO(W>)(C) nor-
malizing Tw, ¢ such that the automorphism ¢’ of X*(Tw,) induced by h' satisfies
o'(e3) = —e3 and o’(¢;) = ¢; for 4 < i < m. Denote by o the automorphism of
X*(Tw,) induced by h. It suffices to show that

o € Qr(SO(W2), Tw, o’ C Aut(X*(Tw,)).

Here Qr(SO(W>),Tw,) is the real Weyl group Norgow,)®)(Tw,)/Tw,(R), viewed
as a subgroup of Aut(X*(Tw,)). Since h and ' differ by left-multiplication by an
element of SO(W>)(C) normalizing Tyw, ¢, we have o € Qc(SO(Ws), Tw,)o’. We
finish the proof by noting that Q¢ (SO(Wa), Tw,) = Qr(SO(W2), Tw, ), since SO(W3)
is anisotropic over R. O
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Definition 4.6.6. — For w € Q, define
1, if (wWA+p),w;) >0fori=1,2,
Ny(w) = if {w( | p), ;) or i
0, otherwise.

No(w) 1, if (w(A+ p),wotz;) >0 for i =1,2,
w) =
2 0, otherwise.

Ns(w) 1, if (w(A+p),w2) >0,
w) =
’ 0, otherwise.

Here wy is as in Definition 6.3}

Lemma 4.6.7. — Let v = (a,b,vyw,) be a regular element of T12(R). The quantity
Lar(y) =L (7) - (6p,) (V) Y2Ap(v)™1) ™1 can be computed as follows.

(1) If d is odd, then

EM(wZ[M(w)sgn(b)%(w)sgn(lbl)N?,(w)]e(w)(wA)(v) I o't

weN acd(w)
(2) If d is even, then

i)=Y [le  Na(w) — NM} (@@ ] o'().

weN aed(w)

Proof. — Our starting point is (4.6.2.1). Let v/ = wg(y). By Lemma we may
replace gofygal in the second summand on the RHS of (4.6.2.1]) by 7. Now we would

like to rewrite the third summand. Define

CE | Gt

+ +
o¢€<I>M2—¢'M

Then arguing as on p. 1701 of [Mor11], we have

(D3| 852000 (12 201a (1) = 1280103 ()2 A0s ()
Hence we can rewrite as follows:
(4.6.7.1)  Lar(v) = Sp,()(7)"/? Tr(y | RT(Lie Nig, V)sy,,)
+ 0p,r) (V)2 Tr(y | RT(Lie Ni2, V)5y,,)
— 8P (N 2AM(Y) T Ars, (Y)m2(7) Tr(y | RT(Lie Na, V)5, ).
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Using Lemma to compute the Tr(---) terms in (4.6.7.1), we get

Lar(7) = ppmy (1) Anr(7) 7! > W@ [T o't
weN aEP(w)
(W(A+p),w;)>0, Vie{1,2}
+0pam (V)2 AM (YY) > @ @N@) T o«'()
weN aed(w)

(W(A+p),;)>0, Vie{1,2}

—0p@ () PAMM) T 2(y) Y e wN ) ] o).

weN acd(w)
(w(A+p),2)>0

By Lemma [£.6.4] the second summand in the above is equal to

Srra) (1) Ans (7) " A(Y) > OOICONCON | OO}
weN acP(wow)
(w(A+p),@i)>0, Vie{1,2}
where 1o
Ap(v) la(v)|” a(v)
A(v,Y') = H T .
Am () acar, a0 V2 oo 20
Therefore we have
Lu(y) = > @) I o« ()
weN aed(w)
(w(A+p),w0;) >0, Vie{l,2}
+ A(v,7) > EAICNICH I | I C))
a€d(wow)

weR
(w(A+p),wi)>0,Vie{1,2}

—m(y) D W@ I o
w€eN acd(w)
(w(A+p),@2)>0

Making the substitution w + wow in the second summation and using the following
obvious relations:
wi =1,
(wowA)(7') = (WA) (),
e(wow) = €(wp)e(w),

(wow (A + p), @i) = (WA + p),womi),
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we obtain
Lu(y) = > @) ] o« '()
we acd(w)
(W(A+p),w;) >0, Vie{l,2}
+ e(wo) A(7,7) > @@ [ « &
(w()\+p),wo‘;§>Q>O,Vi€{172} *E8(w)
“m) Y ewenm [ ot
weN a€P(w)
(wW(A+p),2)>0
(4.6.7.2) :}2{Nﬂwy+wwﬁﬂmﬁﬂwwﬁ—nﬂwNﬁwﬂ

wenN
Jerne T aen]:
aed(w)
To finish the proof it remains to compute the quantities e(wp), A(7y,7'), and n2(7),

which we carry out separately in the odd and even cases.
First assume that d is odd. Then

(4.6.7.3) e(wp) = —1.
To compute A(7y,v'), first note that Ay (v)/An(y') and
-1 1
[T leG)IZ Jatk)2
aEtbAJr/[
are both 1, since y~14' lies in the center of M. To compute
-1
I e aly),
a€P(wp)

we have ®(wg) = {e2} U {e2 L€, | j > 3}, and we know that ez + ¢; is the complex
conjugate of ez — ¢; for j > 3, with respect to the real structure of Th2. (In fact, the

complex conjugation acts on X*(Tw,) = spany {€s, - , €, } as —1.) Hence we have
(4.6.7.4) A ) =TT leMI™ a(v) = ()| e(y) = sg(b).
a€P(wp)

We are left to compute 2(y). We have @}, — &7 = {e3}U{ez = ¢; | j > 3}. Since
€2 + ¢; is the complex conjugate of €5 — ¢; for j > 3, we have

11—ty
(4.6.7.5) m(y) = % =sgn(l—b1).
1—€ (7)
The proof is finished by combining (4.6.7.2)), (4.6.7.3]), (4.6.7.4]), and (4.6.7.5]).
Now assume that d is even. Then e(wg) = 1. To finish the proof it suffices to check

that A(y,7") =m2(y) = 1.
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We compute A(7,7'). Let z; :=¢€;(7),1 < j < m. We have
A 1—at 1—a?
(4.6.7.6) m() _ 11 1-a7(y) _ 11 1-a" ()

Ay 1—a-1(y e
M(’Y ) 0c€<1>x1 a (7 ) ac{ezte;|j>4} “ (ry )
B 1-— xgle — X3 x]
- 1 — gzt 1 — 32, H &
>4 3 o
Also
(4.6.7.7)
1 1 —-1/2

T3 Tj oy
1

=[] lasl*.

j>4

()[/_1/2 a/—1/2
[ 0O ey

—1/2 ~1/2
acdl, la(7)] aE{este;|j>4} la(7)] j>4

I e lem™,

a€P(wo)

T3T; stxj_

To compute

we have
D(wo) =f{eatej |1 >3 U{este; | j>4}.

Note that €3 + €; is the complex conjugate of €2 — ¢, for j > 3. Hence we have

(4.6.7.8) I1 aly) _ 11 H ’x?’xjw = I1 ng

actton) 1 eieisiza TBLGLIL; i3 lzs]
Combining (4.6.7.6) (4.6.7.7)) (4.6.7.8]), we conclude that A(y,~') = 1, as desired.
We are left to check that 72(y) = 1. We have <I>4]\'A,2 —®f, ={eate; |j >3} As
we observed before, €3 + ¢; is the complex conjugate of e — ¢; for all 7 > 3. Hence
n2(y) = 1 as desired. O

\(7

4.6.8. — Keep the setting of §4.6.11 In the following we compare Lp/(y) with
®§,(7,0). We will also introduce and study a variant of ®$;(7,©), denoted by
q)%v/[('yv@)eds-

We have Ay = MY = G,,, x Gy, and T12(R); = {£1} x {1} x Ty, (R). The
projection of v in A7 (R)? 2 R+ x Rsg is (|a], |b]), and

= (log |a| ,log |b]) € R? = Lie(Ayr) = X.(Anr)r-

Let p be the natural restriction map X*(T12)r — X*(Aar)r. We identify X*(Apr)r
with R?, and let R2,,,R2,.,R2 _ be the subsets of R? defined in Note that
when d is odd (resp. even), we have p(w(A+p)) € RZ , (resp. € RZ ) for all w € Q.
Suppose f is a function R, — C (resp. R2,,, — C) when d is odd (resp. even). We

write [f] for the function

even

[7]1:@—C
w— f(pw(A+p))).
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Recall from §4.2.9|that (Z), (ZZ),--- ,(VIZZ), (<) denote the characteristic func-

tions of some open cones in R2.

Lemma 4.6.9. — When d is odd, we have the following identities between functions
on

Ni(-) = [(2) + (Z7) + (VI1I)],

No(-) = [(Z) + (VII) + (VIIT)],

Ns() =[(Z) + (ZZ) + (VIZ)+ (VIZIT)].
When d is even, we have the following identities between functions on €):
Ni() = [(«) + (ZD)],
Ny() = [(«) + (VIT)],
Ns3(-) = [(«) + (IT) + (VII)].

Proof. — This follows immediately from Definition O

4.6.10. — Recall from §4.2| that ®§, (v, ©) can be computed by (4.2.2.1). Using the
notation [f] introduced in §4.6.8] we recall the definition of n(y,wB) appearing in

(4.2.2.1) as follows:

[er, (24, )](w), if v € G(R)®,
0, if v ¢ G(R)°.

Let Regs := {Fe1, e} C X*(Apr)r. Under the identification X*(Ays)r = R?, the
subset Rqqs is identified with the root system Ugqs considered in In particular,
the Weyl group of Reqs contains —1, and the function cp,,, associated to Reqs is
identified with the function ¢, : R2;, x R2, — Z considered in

When d is odd, we define

n(vy,wB) := {

[[EReds (x’ya )]](w)a ifa,b >0,

4.6.10.1 Neds (Y, wB) 1=
( ) cas(Y ) {0, otherwise,

for w € Q. Here [cp,,.(2+,")] is well defined because R2,, C R2,..
Analogous to (4.2.2.1)), we define, when d is odd,

(4.6.10.2)  @5(7,0)eas := (=1)"Der(v)8p, @ (M) *An(7) ™
> ewWneas(rwB) W) ] a0

weN acd(w)

Lemma 4.6.11. — For both parity of d, let v = (s,t,u) € T12(R) = R* x R* x
Tw,(R) be an element with s,t < 0. Then v € G(R)°.
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Proof. — Since Ty, (R) is connected (being a product of copies of U(1)), we know
that v is in the same connected component of G(R) as

Vv = (—17 -1, 1) S Tlg(R)
It remains to show that v; € G(R)?. We know that v; acts as —1 on RX; +RX, and
on RY; + RYs3, where X; = ¢; + ¢, and Y; = ¢; — e,. Now RX; + RX5 is a positive
definite plane and RY; +RY5 is a negative definite plane, and v; acts on both of them
with determinant 1. Also vy acts as the identity on the orthogonal complement of

these two planes. This implies that v; € G(R)?, by the standard description of the
connected components of indefinite special orthogonal groups (see [Kna02| I.17]). O

Proposition 4.6.12. — Assume that d is odd. Let v = (a,b,yw,) € T12(R) be a
reqular element. Let (x1,22) = (log|a|,log |b]). When ab < 0, we have

‘I)JC\:/I(’% @) = CI)jc\;/[('}/a @)eds =0.
When ab > 0, assume that x1 < —|z2|. Then we have

A(=1)1D Ly (7) = BF(7,0) + BT (7, ©)eas-

Proof. — We first treat the case ab < 0. Then ®§; (v, ©)eas = 0 since all negs(y,wB)
vanish by definition. To show ®%,(v,©) = 0, note that R, = {&;} or {+ez}. Thus
the Weyl group of R, (as a root system in X*(Ay/)r = R?) does not contain —1. By

Corollary we have ®§;(v,0) = 0.

We now treat the case ab > 0. First assume that a and b are both positive.
Under our assumption that z; < —|xg|, there are two cases to consider, namely
0<a<b<lor0<ab<1<b. (Hereb=# 1 since v is regular.) We have

) 1, f0<a<b<l,
€ =
PV ZY21, fo<ab<1<b.

Comparing Lemma [4.6.7| with (4.2.2.1]and (4.6.10.2)), we see that the current propo-
sition reduces to the following two statements:

— When 0 < a < b < 1, we have

(4.6.12.1) i(n(%wB) + Neas(7,wB)) = Ny (w) — Na(w) + N3(w), Vw e Q.
— When 0 < ab < 1 < b, we have

(4.6.12.2) i(n(’y,wB) + Neas(y,wB)) = —N1(w) + No(w) + N3(w), VYw € Q.

Since obviously v € T12(R)° € G(R)?, we have
n(y,wB) = [cr, (z4,)](w), YweQ,



96 CHAPTER 4. COMPARISON WITH DISCRETE SERIES CHARACTERS

by definition. Since R, = {%e1,dea, k€1 + €2} = Upaq, we have cg_ (2+,-) = fodd,z., -
(See §4.2.9| for the notation.) In other words we have

(4.6.12.3) n(y,wB) = [fodd,e, ] (w), Yw € Q.
Similarly we have
(4.6.12.4) Neds (Y, WB) = [feds,e, ] (W), VYw € Q.

When 0 < a < b < 1, we have z, € (V). By (4.2.10.1)), (4.2.10.4)), (4.6.12.3), and
(4.6.12.4), we have

n(,0B) = [(I2) + (VIID)|(w)

Jreas(,wB) = [(T) + (D))

Thus the LHS of (4.6.12.1)) is equal to [(Z) +2(ZZ)+ (VIZZ)](w). On the other hand,
by Lemma the RHS of (4.6.12.1)) is also equal to [(Z) + 2(ZZ) + (VIZI)](w).

Hence (4.6.12.1)) holds, as desired.
When 0 < ab < 1 < b, we have x, € (ZV). By (4.2.10.2)) and (4.2.10.5), we have

11hwB) =[(T) + (VID)(w),

ineds(%wB) — [(VIZ) + (VIII))(w).

Thus the LHS of (4.6.12.2)) is equal to [(Z)

the RHS of (4.6.12.2)) is also equal to [(Z)
holds, as desired.

We now assume that a and b are both negative. In this case (IJ% (7,0)eas = 0 by

definition. We have er(vy) = 1. Comparing Lemma with (4.2.2.1)), we see that
the current proposition reduces to the following identity:

2(VIT)+ (VIZI)](w). By Lemma [4.6.9)
2(VIZT) + (VIII)](w). Hence

+ +

(4.6.12.5) in('y,wB) = N;(w) + Na(w) — N3(w), Yw e Q.

By Lemma [4.6.11] we have v € G(R)?, and so
n(y,wB) = [cr, (z4,)](w), YweQ,

by definition. Since R, = {£e; £ €2} = Ueven, we have cg_ (2,-) = foven,z, . (See
§4.2.9| for the notation). Thus
(4.6.12.6) n(y,wB) = [feven,z, ] (W), Vw € Q.

Since z1 < —|z3| < 0, we have z, € (ZV)U (V) C (¢). Hence by (4.2.10.6) and
(4.6.12.6)), we have

in(%wB) = [(@)](w) = [(T) + VIID))(w).

By Lemma [4.6.9) the RHS of (4.6.12.5)) is also equal to [(Z) + (VIZZ)](w). Hence
(4.6.12.5) holds, as desired. O
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The following proposition will also be needed in §8.12| below.

Proposition 4.6.13. — Assume that d is odd. Let v = (a,b,yw,) € T12(R) be a
reqular element, with ab > 0. Let w1, w2 be as in Definition[{.6.3, and let

7/ = wl(’}/) = (baa77W2) € TlQ(R)’
"

V"= we(v) = (@™, b,yw,) € Tha(R).

Then we have

(4.6.13.1) o5/ (7,0) = 05 (v, 0) = ®F (v, 0),
(4.6.13.2) €R(V)€Ru (V)PS5 (7, ©)eds = —€R(V) R (V)RS (Y, ©)eds,
(4.6.13.3) €R(V)€Rua. (V) P51 (7, ©)eds = €R(Y)€Ruas (V)G (7, ©)eds-

Here eg_,.(7) is defined to be

(_1)#{a€<I>+ORedS|O<(x('y)<1}7

and similarly for er_,.(v') and eg_, . (v").

Proof. — The equalities in hold because w; and ws can be represented by
elements of (Norg M)(R), and ®%,(-,0) is invariant under (Norg M)(R).

We now prove . We have Apr(y) = Apr(y') because v~ 14/ lies in the
center of M. Also eg_, (v) = €r...(7"). Hence we have reduced the proof to showing
that

(4.6.13.4)
5P12(R)(’7)1/2Z( Yeds (7, wB) (wA)( H a”
@ aEfb(w)
= 75P12(R) Z neds ")’ WB W/\ H o / .
“ ac®(w)

We claim that for all w € Q, we have neqs(y,wB) = Neds(7, wiwB). Indeed, if a
and b are both negative, then both sides are by definition zero. If ¢ and b are both
positive, then our claim follows from the following property:

CRae (1Y) = Croy (19, 019), Yy y' € R,

which is a direct consequence of (4.2.10.3]).
By the claim and Lemma the RHS of (4.6.13.4)) is equal to

- 6P12 1/2 Z neds 77 wle)(WA)( )

iy Tl a2
ISR Sware o | R mrer)

a€P(wiw) O‘E(I’;\rxr ‘a(7)| a€P(wr)

W= o
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Under the substitution w — wjw in the summation, the above becomes

Spm) ("2 e(w)neas (7, wB) (@A) (7)

la(y)| 2 a(y)
AL e 1 e Ve

aEd(w) aec}& ‘a(7)|_ a€P(wy)

To finish the proof of (4.6.13.4)) it suffices to check

ja(y)| 2 a(y)
11 = AL =t

acd}, |0‘(7)| Q€D (w1)

Since y~14' lies in the center of M, the first product in the above is equal to 1. The
second product is also equal to 1, because ®(w;) = {€1 — €2}, and (e1 —€2)(y) = a/b >

0. We have thus proved (4.6.13.4]). As we have already seen, this implies ((4.6.13.2)).
We now prove (4.6.13.3)) in a completely analogous way. We have Ay/(y) =

Ay (¥, and eg_,. (v) = —sgn(a)er,,.(7), so we need to check
(4.6.13.5)  p,m) ()" Z Wneas (1, wB) (@A) () [] o~
OtE‘P(w)

:—sgn(a)éplz(R)(v”)l/QZ (Wneds (Y, wB) (wA)( H a'(y").

w aEP(w)

Again it easily follows from the definition of n.qs and m that neas(y”,wB) =
Neds (7, wowB), for all w € . By this fact and Lemma the RHS of (4.6.13.5) is
equal to

- Sgn(a)5P12(R) (’7)1/2 Z E(W)neds(’)’, UJQ(UB) (w)\) (’y”)
. oy a(z)
o (7) —_ — T
O‘GETJJ) ! QL[L |OL(’}/)|_§ aelij([wg) |a(7)|

Under the substitution w — wow in the summation the above becomes

sgn(a)dpy ) (1)) e(W)neas(v, wB) (wA)(7)

- ja(y)] a(y)
VI | e | S

€D (w) acd?, (N2 acd(ws)

To finish the proof of (4.6.13.5)), it suffices to check

20 e

wewt, 107 acaiu,) 120
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Again the first product in the above is equal to 1, so we need to check that the second
product is equal to sgn(a). For this, we may replace the product over all & € ®(ws)
by the product over those a € ®(w2) that are real. This is because ®(ws) is stable
under complex conjugation, and we obviously have

a(y) aly) _

la()] la()]
for any o, @ € ®(ws) that are complex conjugate to each other. Now the real roots in
®(wq) are €1, €1 + €2,€1 — €5. Hence

« « a ab ab™!
H (7) H (7)

= = 2 = sen(a),

= = — — 1 =

wcaon M e ieaey (@ lal abl |ad™H] a]
as desired. We have thus proved (4.6.13.5). As we have already seen, this implies
(14.6.13.3)). O

The following proposition is the counterpart of Proposition in the even case.

Proposition 4.6.14. — Assume that d is even. Let v = (a,b,yw,) € T12(R) be a
reqular element. Let (z1,x2) = (log|a|,log |b]). When ab < 0, we have

o (7,0) = 0.
When ab > 0, assume that x1 < — |z2|. Then we have
A=) DLy (y) = 85(7,0).

Proof. — When ab < 0, we have R, = (). Thus ®§;(v,©) = 0 by Corollary 4.2.7
Assume that ab > 0. Under our assumption that x1 < — ||, we have eg(y) = 1.
In view of Lemma [£.6.7] to prove the current proposition it suffices to prove

1
(4.6.14.1) Zn(%wB) = Ni(w) + Na(w) — N3(w), VYw e Q.
By Lemma [4.6.11) we have v € G(R)?, and so
n(y,wB) = [er, (z4,")](w), YweQ,

by definition. Since R, = {£e1 £ €2} = Ucyen, we have g (z,°) = foven,z,. (See
§4.2.9| for the notation). Thus
(4.6.14.2) n(v,wB) = [feven,o, J(w), Vw € Q.

Since x1 < — |x2|, we have z, € (¢). By (4.2.10.6) and (4.6.14.2), we have
1
11 wB) = [(@)](w).

Now by Lemma the RHS of (4.6.14.1)) is also equal to [(«7)](w). Hence (4.6.14.1])
holds, as desired. ]






CHAPTER 5

ENDOSCOPIC DATA FOR SPECIAL ORTHOGONAL
GROUPS

In this chapter, let F' be a local or global field of characteristic zero. Let V' = (V, q)
be a quadratic space over F' of dimension d and discriminant 0 (see . Let G =
SO(V). Let m = |d/2], which is the absolute rank of G. As usual, we refer to “the
odd case” and “the even case” according to the parity of d.

5.1. The quasi-split inner form

We need to explicitly fix an inner twisting between G and a quasi-split inner form.
For this, let V. = (V/, ¢) be the unique (up to isomorphism) quasi-split quadratic space
over F' of dimension d and discriminant §.

Definition 5.1.1. — We fix an isomorphism of quadratic spaces over F:
ov:(V,q)@r F > (V,q)@r F.

If FF = R, we may and shall assume that ¢y satisfies the following condition: Let
(a,b) be the signature of (V,¢q). If a > b (resp. a < b), then there exists an orthogonal
basis {vy,- -+ ,vq} of V, and an orthogonal basis {v,,- - ,v,} of V, such that for each
1 < j <d, wehave q(v;),q(v;) € {£1}, and ¢y (v;) = v;®\; for some \; € {1,/—1},
with A\; = /=1 only if g(v;) = 1 (resp. only if g(v;) = —1).

5.1.2. — Let G* := SO(V, q), which is quasi-split over F' by Proposition Using
¢y as in Definition [5.1.1] we define the isomorphism

Yy Gg = G
g dvgdy.
Define the function
uy : Tp — GL(V.®fp F)

pr— Povoy.
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Clearly the image of uy is contained in O(V)(F). If we fix F-bases of V and V, then
since ¢ and ¢ have the same discriminant, the square of the determinant of the matrix
of ¢y lies in F %:2 which implies that the determinant of the matrix of ¢y lies in F.
Hence uy (p) has determinant 1 for each p € I'p. Thus the image of uy is contained
in G*(F). Note that we have

(5.1.2.1) Pyt = Int(uy (p)) € Aut(G%), VpeTp.

It follows that vy is an inner twisting.

Remark 5.1.3. — If we view SO(V) and SO(V) as abstract reductive groups over
F, then in the odd case there is a unique SO(V))(F)-conjugacy class of inner twistings
SO(V)& = SO(V), whereas in the even case there are two such conjugacy classes,
interchanged under the conjugation by any element of O(V)(F) — SO(V)(F'). If we

change the choice of ¢y to some ¢f,, then ¢{, = g o ¢y for some g € O(V)(F). The
inner twisting 1}, arising from ¢}, stays in the same SO(V)(F)-conjugacy class as
Yy if and only if g € SO(V)(F). Thus for the purpose of realizing G* = SO(V)
as an inner form of G, it suffices to remember ¢y up to replacing it by g o ¢y for

g € SO(V)(F).

Remark 5.1.4. — The pair (¢y,uy) realizes G as a pure inner form of G* in the
sense of Vogan [Vog93|; cf. the introduction of [Kall6]. The pair (v, uy) itself is
called a pure inner twist; cf. [Kallll, §2]. Fixing such a pure inner twist (or rather
its G*(F')-conjugacy class, see below) is more refined than just fixing G* as an inner
form of G, and it plays an essential role in normalizing transfer factors when F' is
a local field. Specifically, suppose (H,“H,s,n) is an elliptic endoscopic datum for
G, and suppose we have fixed a normalization of transfer factors between H and
G*. Then the datum (tpy,uy) allows one to “transport” that normalization to a
normalization of transfer factors between H and G, as observed by Kottwitz and
explained in [Kallll §2.2]. For this purpose, it actually suffices to just remember ¢y
up to replacing it by go ¢y for g € G*(F) = SO(V)(F), which will result in (¢, uy)
being replaced by (Int(g) oy, p — Pguy (p)g~!) and will not change the transported
normalization between H and G. By contrast, if one abstractly modifies (¢y,uy) by
keeping 1y unchanged and replacing uy by p — Pguy (p)g~—* for some g € G*(F), the
resulting normalization of transfer factors between H and G can change, as observed
in [Wal10| §1.11 (4)].

Definition 5.1.5. — When d is even and § is trivial, we fix an SO(V)(F)-orbit of
hyperbolic bases (Definition of V once and for all, denoted by [By]. When d
is even and ¢ is non-trivial, we fix o € F such that 2 = o? € F* is a lift of 6, and
we fix an SO(V)(F)-orbit [By | of near-hyperbolic bases of V such that all members
of this orbit have discriminant z (see Definition . If F =R, we identify F with
C and take o = /—1.
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5.2. Some matrix groups over C

5.2.1. — We define some algebraic groups over C, which we also identify with their
C-points. Let N be a positive even integer. Let {é; | 1 <k < N} be the standard
basis of CV. Define two N x N matrices

-1

I
Iy = -1 It .= "N/? Iy,
N ) ) N ( _IN/Q N

1

Thus I;\L[ and Iy define a quadratic form and a symplectic form on CV respectively.
We use these forms to define the groups O (C), SOn(C), and Sp, (C), as subgroups
of GLy(C). By convention, SO¢(C) = Spy(C) = GLo(C) = {1}.

We introduce a short-hand notation in order to conveniently denote certain diag-
onal matrices. For xi,---,z, € C*, we write symdiag(z1,--,x,) for the 2n x 2n

. . . _1 —1
diagonal matrix diag(z1, - ,Zn, 2, -, ] )-

Definition 5.2.2. — Let m = d/2. In the reductive group Sp (C) (resp. SOn(C)),
we fix once and for all a Borel pair (7, B), together with an isomorphism (C*)™ —
T, as follows. Let T be the intersection of Spy(C) (resp. SOn(C)) with the diagonal

torus in GLy(C), and define the isomorphism (C*)™ -~ T by
(t1, -+ ytm) — symdiag(ty, - ,tm)-

Using this isomorphism we identify X*(7) and X, (7) with Z™. The root datum
of Spy(C) (resp. SOn(C)) on (X*(T),X.(T)) is dual to the standard root da-
tum RD(B,,) (resp. RD(D,,)) as in We define B by the condition that the
based root datum BRD(T, B) is dual to the standard based root datum BRD(B,,)
(resp. BRD(D,,,)) as in We call (T, B) the standard Borel pair.

5.3. Fixing the L-group

5.3.1. — Let BRD(G) be the canonical based root datum of G4, namely the projec-
tive limit
BRD(G) = lim BRD(T, B),
(T,B)
where (T, B) runs through the Borel pairs in G, and the transition maps are the
canonical isomorphisms induced by inner automorphisms of G4. Since G is defined
over F, there is a canonical action of I'r on BRD(G); see [Bor79], §1.3]. Recall that

the L-group of G consists of the following data (cf. [Bor79, §2|, [KS99| §1.2]):

(1) a reductive group G over C.
(2) a Borel pair (7, B) in G.
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(3) an action of I'p on G via algebraic automorphisms such that there exists a
I'p-stable splitting extending (7, B). In particular, T'r acts on the based root datum

BRD(T, B).
(4) a I'p-equivariant isomorphism
(5.3.1.1) v : BRD(G) — BRD(T,B)",

where BRD(T,B)V denotes the dual of BRD(T, B).
Given the above data, one defines
Lg.=Gx I,

where I" is taken to be one of the following groups depending on the context: If F is a
number field, we typically take IV to be I' or a sufficiently large finite quotient of it.
When F' = R, we typically take I'” to be the Weil group Wg, which acts on G through
the map Wg — I'rg. When F' = C we take I” to be trivial. (This case will never be
considered in the paper.) When F' is a non-archimedean local field of characteristic
zero, we typically take IV to be the Weil group Wy acting on G through Wr — I'p, or
a sufficiently large (finite or infinite) quotient of Wg. Here “sufficiently large” always
means that IV should admit a quotient Gal(E/F), where E/F is a Galois extension
sufficiently large such that the I'z-action on G in (3) above factors through Gal(E/F).
As a result, I acts on G. For our specific G, this means that when d is even and ¢
is non-trivial, TV should admit Gal(F(«)/F) as a natural quotient, where « is as in
Definition .15

We have a canonical I' p-equivariant isomorphism between BRD(G) and BRD(G*)
(coming from the fixed G*(F)-conjugacy class of inner twistings Gx - G*F repre-
sented by ¢y). Thus if G and (T, B) are as in (1), (2), (3) above, then specifying b
as in (4) is equivalent to specifying a I' p-equivariant isomorphism

(5.3.1.2) v* : BRD(G*) — BRD(T,B)".

In other words, fixing an L-group of G is equivalent to fixing an L-group of G*.

5.3.2. — We now explicitly present the L-group of G. We take G to be Spy_1(C)
(resp. SO4(C)) as in §5.2]if d is odd (resp. even). Define the action of I'y on G as
follows. The action is trivial unless d is even and J is non-trivial. In the latter case,
we define the action to factor through I'y — Gal(F(a)/F) (see Definition [5.1.5]for a),
and let the non-trivial element of Gal(F(a)/F) act on G = SO04(C) by conjugation
by the permutation matrix on C? that switches é,, and ém+1 and fixes all the other
é;’s.

We take (7,B) to be the standard Borel pair fixed in Definition Then it
is easy to check that the condition in (3) in is indeed satisfied. To complete
the presentation of the L-group, we have yet to specify . As we have already

noted, this is equivalent to specifying (5.3.1.2]).
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Under the isomorphism (C*)™ -~ T specified in Definition the based
root datum BRD(7,B)" is identified with the standard based root datum BRD(B,,)
(resp. BRD(D,;,)) in the odd (resp. even) case. Moreover the I'p-action on BRD(B,,,)
or BRD(D,,) induced by the I'p-action on G fixed above is the trivial action un-
less d is even and ¢ is non-trivial, in which case it is given by the unique non-
trivial action of Gal(F(«)/F) = Z/2Z on BRD(D,,). Hence to specify (5.3.1.2),
it suffices to specify a I' p-equivariant isomorphism v*’ : BRD(G*) — BRD(B,,) or
v*' : BRD(G*) — BRD(D,,), where I'r acts on the right hand sides in the way just
described.

In the odd case, there is a unique choice of v*'. In the even case, remember
that when § is trivial (resp. non-trivial), we have fixed [By] (resp. o and [By]) in
Definition Any member By of [By] gives rise to a Borel pair (T, B) in G*,
and it together with « gives rise to an isomorphism BRD(T, B) —~+ BRD(D,,), as
in We thus obtain an isomorphism BRD(G*) — BRD(D,,,), which we easily
check is I' p-equivariant, and depends on By only via [By]. This specifies v*’.

The presentation of the L-group of G is complete.

5.3.3. — Suppose F' = Q, and let v be a place of Q. Fix a field embedding Q — Q,.
Then our above presentation of the L-group of G naturally gives rise to a presentation
of the L-group of Gg,. On the other hand, if (V, q) is the quasi-split quadratic space
over Q fixed in §5.1} then Vo = (V,q) ®g Q, is up to isomorphism the unique
quasi-split quadratic space over Q, of dimension d and discriminant 6. Thus one
could choose the data as in Definitions and with respect to the base field
Q, and with V' and V replaced by Vg, and Vg , say ¢y, , [BZ@ v], and «,, and
obtain from these data a presentation of the L-group of Gg, = SO(Vp,) by going
through the above constructions again. These two presentations of the L-group of
Gq, are identical in the odd case, and in the even case they are identical as long as
the following conditions are satisfied:

(1) We have ¢y, = gv 0 (¢v ®5 id@v) for some g, € G*(Q,).

(2) The isomorphism BRD(G*) — BRD(D,,,) arising from [By] and « is compat-
ible with the isomorphism BRD(G@)) = BRD(SO(Vy,)) — BRD(D,,,) arising from
By, ] and ay.

In the rest of the paper these compatibility conditions are always implicitly assumed
when we simultaneously deal with Q and its localizations; note that when ¢y is
given, there indeed exists ¢y, satisfying simultaneously (1) in the above and the
extra condition in Definition [5.1.1] By contrast, we will not assume that the local
data ¢y, , []B%Z%], a, are induced by the global data ¢y, [By],a on the nose. Under
condition (1) we also know that the inner class of the inner twisting 1y : Gg — GT@
(arising from ¢y ) induces the inner class of the inner twisting v, : G@U = C%v

(arising from ¢y, ) via base change.
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5.4. The elliptic endoscopic data

5.4.1. — Keep the setting of Denote by &(G) the set of isomorphism classes
of elliptic endoscopic data for G, in the sense of [KS99l §2.1]. In the following we
construct explicit representatives of &(G), following [Wall0]. Recall from [KS99]
§2.1] that in general, the category of elliptic endoscopic data for G is a full subcategory
of the category of endoscopic data for GG, and the latter is a full subcategory of the
groupoid category described as follows:

— The objects are tuples (H, H, s,7n), where H is a quasi-split reductive group over
F', H is a group containing Hasa subgroup, s is an element of G , and 7 is an injective
group homomorphism H — LG.

— An isomorphism from (H,H, s,n) to (H',H',s',n’) is an element g € G such that
gim(n)g~! = im(y’) and gsg~! = s’ mod Z(G).

We do not recall here the conditions characterizing the subcategories of endoscopic
data and elliptic endoscopic data.

In the following, all our explicit representatives of &(G) will be of the form
(H,"H,s,n). Thus in the terminology of [Kalll], we represent each isomorphism
class of elliptic endoscopic data by an extended endoscopic triple. The advantage
of doing so is that we could avoid introducing z-extensions, which is in general a
necessity for the theory of endoscopy when G4¢* is not simply connected; cf. [Tai19,
§2.3].

We first define a set of numerical parameters that will be used.

Definition 5.4.2. — Let V be a quadratic space over F of dimension d and dis-
criminant 6. Define a set &2y, as follows.

(1) When d is odd, we let £y be the set of pairs (dt,d™) of positive odd integers
such that d* +d~ = d + 1. We define an involution sw on £y (called swapping) by
sending (d*,d™) to (d—,d").

(2) When d is even, we let 2y be the set of quadruples (d*,6%,d™,57),

— dT and d~ are non-negative even integers such that d* 4+ d~ = d.
~ 0% and §~ are elements of F'*/F*-2 such that 676~ = 6.
— Neither of (d,6") and (d—,67) is equal to (0,z) for any non-trivial = €
F>*/F*2 If d > 4, then neither of (d*,6%) and (d=,57) is equal to (2,1).
We define an involution sw on 2y by sending (d*,0%,d~,07) to (d—,6~,d*,d7).

where:

When d is odd, we sometimes write elements of 2y also as (d,6,d™,d7), under-
standing that 6T = 6~ = 1.

5.4.3. — Fix an element (d*,6%,d™,67) € £y. We shall construct an elliptic
endoscopic datum for G = SO(V) associated to this parameter. The endoscopic
datum will be of the form (H,H, s,n), where
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~ Hisgivenas H = H* x H~, with H* = SO(V¥), where V* are the unique (up
to isomorphism) quasi-split quadratic spaces over F' of dimension d* and discriminant
d%: remember that 6% are understood to be trivial in the odd case.

— H = LH is the L-group of H; cf. the discussion in

— s is a semi-simple element of G.

— 7 is an L-embedding “H — *G.

To be more precise, in the even case, we fix similar choices as in Definition [5.1.5]
for V¥, which we shall denote by a® and [By+]. (Here a™ is only needed when &7 is
non-trivial, and similarly for «~.) We then use these choices to specify the analogues
of for H* in both the odd and even cases, and present the L-groups Lg+
as H* x T as in where HE are the matrix groups Spg+_1(C) (resp. SO4+(C))
in the odd (resp. even) case. In the even case, I needs to be large enough so as to
admit Gal(F(a™)/F) (resp. Gal(F(a™)/F), resp. Gal(F(a™,a™)/F)) as a quotient
when 07 is non-trivial (resp. §~ is nontrivial, resp. 7 and §~ are both non-trivial).

We present the L-group LH of H as the fiber product of “H* and “H~ over I".
Thus VH is a semi-direct product

(H* xH ) =T,
and [ = H+ x H- is equipped with the standard Borel pair
(T5:Bz) = (Tv+ x Ty-, By+ x By-).
Here (T +,By+) are as in Definition for the matrix groups H=.

We now specify the components s and 1. The element s € G will always be a
diagonal matrix, with +1’s on the diagonal. We write s = diag(s1, - ,84—1) or

diag(s1,- -+, 84), when d is odd or even respectively.
For w € I, we writdD)]
n(w) = (p(w),w) € “G = G x 1.
To specify the map 1 : “H — LG it suffices to specify the map 77|ﬁ : H — G and the
map p: " = G.
We now specify the numbers s; € C*, and the maps 77|ﬁ and p.

(D1In practice, it can happen that ©H is presented as H x I‘}{ whereas UG is presented as G x Fg,
for different quotient groups F’H and F’G of the absolute Galois (or Weil) group of F. For instance,
in the even case, when § is trivial and 6t and 6~ are both non-trivial, we can take F’H to be
Gal(F(a™,a™)/F) and take I'f; to be trivial. In all cases, we may and shall assume that I't; is
always a quotient of I';. Then the formula n(w) = (p(w),w) is understood as n(w) = (p(w), 7(w)),
where 7 is the quotient map F/H — F’G. In the text we slightly abuse notation to write IV for both
Iy and T',.
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5.4.3.1. The odd case. — Write m* := |d*/2]. Define
1, ifm +1<k<d—m —1,
k= {—1, otherwise.
Define the map
il H = H x H= =84 1(C) x Spg-—1(C) — G =5p,1(C)

to be the restriction of the map GLg+_1(C) x GLg- _1(C) — GL4_1(C) given by the
identification

CdT-1  od -1~y il
(€k,0) — Epppm-
€k, ifk<m—,

(0,8) = {éz+d+_1, fm +1<k<d —1.
Finally, define p to be trivial.
5.4.3.2. The even case. — Write m™* := d* /2. Define

1, ifm +1<k<d—-m—,

R {—1, otherwise.

Define the map
0|z H=H* x H- =504+ (C) x SOy (C) — G = S04(C)

to be the restriction of the map GLg+ (C) x GL4- (C) — GLg(C) given by the identi-
fication

(5.4.3.1) " x T =
(ék70) — ék+m*a
(Oé )}_) ek, ifk<m—,
» Ck
Cpyar, fm  +1<k<d.

We define p : TV — @ as follows. First we define a matrix S € GL4(C). If d+ # 0,
we take S to be the permutation matrix that switches é,,- and é;_,,- 11, switches
ém and é,,41, and leaves all the other é;’s fixed. If d* = 0, we take S to be I;. Thus
in all cases we have S € G. We then let p: I — G be the map

]., ifw|F(a_) :id7

(5.4.3.2) w —
S, otherwise.

Here remember that o~ is a fixed square root in F' of a fixed lift of §~ in F* when
0~ is non-trivial. If §~ is trivial, we understand F(a~) as F. The above formula
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(5.4.3.2) makes sense because when §~ is non-trivial we have assumed that I admits
Gal(F(a™)/F) as a quotient.

5.4.4. — In both the odd and even cases, the construction in §b.4.3| associates to
each parameter p € &y, an elliptic endoscopic datum

¢p = ep(v) = (HaLHaSﬂ?)
for G. Moreover, the construction p — ¢, induces a bijection
Py [sw — E(Q).

These facts are well known (see [Wall0| §1.8] or [Tarl9, §2.3]) and can be proved
similarly as [Mor11], Prop. 2.1.1].

5.4.5. — Let p € Py. The outer automorphism group Out(e,) of the endoscopic
datum e, = (H,“H,s,n) is defined in [KS99, §2.1]. Note that the group Z dis-
cussed on p. 19 of [KS99] is trivial, as Z(G) is contained in n(H). Hence Out(ep)
is isomorphic to Aut(ep)/ H (where Aut(e,) denotes the automorphism group of e,
in the category of endoscopic data), and can be naturally viewed as a subgroup of
Outp(H) := Autp(H)/H*(F); see loc. cit. for details.

In the odd case, Out(e, ) is trivial unless p = sw(p), in which case we have Out(e,) =
7./27, with the non-trivial element acting by swapping H™ and H~.

In the even case, write p = (d*,8",d™,07). Then Out(e,) is trivial when d*d~ =
0. When d© = d~ = d/2 and § = 1, we have Out(e,) = Z/2Z x Z/2Z, where
the non-trivial element of the first Z/2Z induces simultaneously non-trivial outer
automorphisms on H+ and H~, and the non-trivial element of the second Z/2Z acts
by swapping H* and H~. In the remaining cases, we have Out(e,) = Z/2Z, with the
non-trivial element acting by the simultaneously non-trivial outer automorphisms on
HT and H™.

5.5. The endoscopic G-data for Levi subgroups

5.5.1. — Let M be a Levi subgroup of G. The notion of an endoscopic G-triple for
M is introduced by Kottwitz in his unpublished notes, and recalled in [Mor10b, §2.4].
(For G = M, this is the usual notion of an endoscopic triple for M, as in [Kot84bl
§7.4].) Given an endoscopic datum (M’', M’ sar,nar) for M, we shall say that it is
an endoscopic G-datum for M, if (M’ snr,nar]<,) is an endoscopic G-triple for M
in the sense of [MorlObl Def. 2.4.1]. By an isomorphism between two endoscopic
G-data (M7, MY, sam1,mm,1) and (M3, M5, sar,2,na,2) for M, we mean an element
g € M such that gim(nar1)g~t = im(nar2) and gspr 197! = spr2 mod Z(@) Here
Z(@) is canonically embedded in Z(M).
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We mention that the category of endoscopic G-data for M (where the morphisms
are the isomorphisms) is in fact equivalent to the category of endoscopic G-pairs for
M in Kottwitz’s unpublished notes.

It is easy to see that the association (M', M, sy, ) — (M, sa,nu|55,) defines
a bijection

{endoscopic G-data for M} /isom — {endoscopic G-triples for M} /isom.
We also have a similar bijection
{endoscopic data for G} /isom — {endoscopic triples for G} /isom.
As recalled in [Mor10bl §2.4], Kottwitz constructs a map
{endoscopic G-triples for M} /isom — {endoscopic triples for G} /isom.
We thus obtain a map
{endoscopic G-data for M} /isom — {endoscopic data for G} /isom.

We say that an endoscopic G-datum for M is bi-elliptic, if both the underlying en-
doscopic datum for M and the associated endoscopic datum for G (well-defined up
to isomorphism) are elliptic. We denote by éc(M) the set of isomorphism classes of
bi-elliptic endoscopic G-data for M. Thus we have natural maps ég(M) — &(G) and
Ea(M) = &(M).

In the following we construct explicit representatives of & (M ). For later purposes,
it suffices to consider only certain Levi subgroups M specified as follows.

5.5.2. — Consider a subspace W of V' such that the quadratic form on V is non-
degenerate on W and such that the orthogonal complement W+ of W in V is even-
dimensional and split as a quadratic space. We write dy for the dimension of W, and
let n = |dw/2]. Recall that V has dimension d and discriminant ¢, and as always m
denotes |d/2]|. Clearly the discriminant of W equals §, and dy has the same parity
as d.

Fix 7,t € Z>o such that m = n +r + 2¢t. Thus dim W+ = 2(r + 2t). We fix a
hyperbolic basis (Definition |1.2.2))

Byw: = {f1,- farto)}
of W+, which exists since W+ is split. Using this basis, we identify SO(W=) as a
subgroup of GLy(;424), and define an embedding

(5.5.2.1) G", x GLL — SO(W)
by sending (21, -+, zr, w1, -+ ,wt) to the block diagonal matrix

diag(zla"' s Ry W1yttt awt7J2(w;l—)_1J27"' ,JQ(w-lr)_1J27zr_17"' 32f1)7
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0 1
().
We denote the image of (5.5.2.1) by M %, and define M to be ML x SO(W), viewed
as a subgroup of G. Then M is a Levi subgroup of G. We also write MS© for SO(W).

where

5.5.3. — We proceed similarly as before to fix the quasi-split inner form of SO(W),
present the L-group of SO(W), and fix explicit representatives of the isomorphism
classes of the elliptic endoscopic data for SO(W). We need to fix notation and impose
some compatibility conditions. Since dy, has the same parity as d, in the following we
shall still refer to the “odd case” and the “even case” unambiguously. As in §5.1] we
fix the unique (up to isomorphism) quasi-split quadratic space W over F' of dimension
dw and discriminant ¢ (which is the common discriminant of V' and W) and fix an
isomorphism
ow : WeorF S WepF
of quadratic spaces over F, from which we get the inner twisting
g— dwydy -
Note that as quadratic spaces over F', V is isomorphic to the orthogonal direct sum
of W+ and W. We fix such an isomorphism

dy WHOW SV,
and use it to obtain an embedding
(5.5.3.1) MCL x SO(W) — G*

whose image is a Levi subgroup.

We remind the reader that when F' = R we require both ¢y and ¢y to satisfy the
extra condition in Definition In general, we assume the following compatibility
condition, which can obviously be arranged by adjusting ¢ .

(1) The diagram

Witew)eF VeF
lid@(ﬁw laﬁv

\%4
Wtew)eF o VoF

commutes up to an element of G*(F) = SO(V)(F).
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As a consequence of this condition, we know that the diagram

Mf _ (MGL % SO(W»f inclusion Gf

J{(idﬂl)w) lwv

(5.5.3.1))

(M x SOW))7 G

commutes up to an inner automorphism of G*F'

In the odd case, we present the L-group * SO(W) as in In the even case, we
make similar choices as in Definition for W, to be denoted by aw (needed only
when § is non-trivial) and [Byy], and use them to present the L-group “SO(WW) as in

§5-3] We may and shall assume the following compatibility conditions:

(2) There is a member By € [By] such that ¢}, sends the ordered basis
(By+,Bw) to a member of [By].
(3) When ¢ is non-trivial, the choices aw and « are equal.

Note that the above two conditions are consistent: if (2) is already arranged then we

have o = o, when § is non-trivial, and so we can arrange (3).

In both the odd and even cases, we canonically identify MS" with G7, x GL via

, and canonically present MCL as (C*)" x GL2(C)*. We now present the
L-group of M as

LM = MSL x LSO(W).
The above compatibility conditions (1)—(3) ensure that the canonical (A?—conjugacy
class of maps “M — TG arising from the fact that M is a Levi subgroup of G is
represented by the following map:

(55.3.2) LM = (C*)" x GLo(C)! x SO(W) X TV 3 (g1, g b1y by k) % 7
— diag(g1, -+, gr b, b kB R g g ) T
elG=Gxr,
where we define

(5.5.3.3) Bt = <1 1) (hT)~ <_1 1), Wh € GLs(C),

(i.e., h' is the adjoint of h~! with respect to the symplectic form defined by (1 1) ).

We now construct explicit representatives of &g (M).

Definition 5.5.4. — Let P be as in Definition with respect to the quadratic
space W, and for each positive integer x we write [z] for the set {1,2,--- ,z}. Also
set [0] = 0. We define the following objects.
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(1) Let &, be the set of pairs (A, B), where A is a subset of [r] and B is a subset
of [t]. For (A, B) € Z,, we write A€ for the complement of A in [r] and write B¢ for
the complement of B in [t].

(2) Let &, x" Pw be the subset of &, x Py consisting of those

(A,B,d%,67,d",07) € Py x Pw
such that the quadruple
(d¥ +2]A|+4|B|,6%,d” +2|A°| +4|B°|,§7)

belongs to Zy. (In the odd case, we understand that 67 = ¢~ = 1, and note that
Py X Py = Py X Pw.)

(3) Note that (A, B,p) — (A, B, su(p)) is an involution on the set &, x’ Py .
We denote this involution still by sw.

Definition 5.5.5. — Let A be a subset of Z>1. For each i € Z>;, we define

Vi(A) = 1, ifi e A,
1, i g A

5.5.6. — Fix an element (A, B,p) € P+ x' Py . In the following we construct an
endoscopic G-datum for M associated to this parameter, denoted by es g p. From
p € Pw we obtain the endoscopic datum e, (W) for SO(W) as in which we write
as
(M/,SO LM/,SO SSO nSO . LM/,SO N L SO(W))
We then set
eA,B,p = (M’,LM/,SM,TUV[ : LM/ — LM)
with components given as follows. Let
M= MY x M5O,
Let sps be the element of M= ]\7& X ]\//[% whose component in 1\7% is s50 and
whose component in MGl = (C*)" x GLy(C)* is
(5.5.6.1) s = (Vi(4),-+ V. (4), Vi(B) Ly, , Vi(B)I2).
We present the L-group “M’ of M’ as
Lyg/ — 3fGL x L8O,
and define n); to be the map
v = (id, 7150 : LM’ = MGL x Lpf/S0 _y Ly = JGL 5 LSO,
For each p € Py, we also set

ep(M) == (M', M, shy nur),
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I o~ — —
where M',“ M’ ny are as above, and s, is the element of M = MGL x MSO whose

S

—_— O —_—
component in M50 is s°© and whose component in MG is the trivial element. Then

ep (M) is an elliptic endoscopic datum for M.

Proposition 5.5.7. — For each (A,B,p) € Py x' Py, the tuple eap, is a
bi-elliptic endoscopic G-datum for M whose underlying endoscopic datum for M is
isomorphic to e, (M). The construction (A, B,p) — ea p,p induces a bijection

(Bzm x' @W) [sw — Eq(M).

Moreover, for (A,B,d",6",d=,07) € P, x' Pw, the image of eq pa+ s+ a6~
under the map (M) — &(G) is represented by

Cd++2|A|+4|B|,6+,d— +2|Ac|+4|Be|,6— -

(Remember that if the common parity of dw and d is odd, then we keep the convention

that 6* =1 as in Definition )

Proof. — This can be checked in a similar way as the proof of [Mor11l Lem. 2.3.3].
The key point is that MS" is a product of copies of G,,, and GLy, and these groups
do not have any non-trivial elliptic endoscopic data. O

5.5.8. — Let (4, B,p) € &, x' Pw. Write eq pp as (M, EM spr,mar). We define
the outer G-automorphism group of ¢4 pp to be

Outg(eanp) = Autg(ea p,p)/ M,

where Autg(ea,Bp) denotes the automorphism group of es g, in the category of
endoscopic G-data for M (see §5.5.1). We make two remarks on this definition.
Firstly, Outg(ea,s,p) is naturally isomorphic to the outer automorphism group of the
endoscopic G-triple (M’, sar, 1| 5;,) defined in [Mor10b, §2.4]. (This is explained in
Kottwitz’s unpublished notes.) Secondly, Outg(ea, s ) is naturally isomorphic to a
subgroup of the outer automorphism group Out(es, p,y) of the underlying endoscopic
datum for M. (See for the latter.)

We now explicitly determine Outg(eA,Bm). In the odd case, we always have
Outg(ea,pp) = {1}. In the even case, write p = (d,67,d~, 87 ). Then Out(ea 5,p)
is trivial if d*d~ = 0. In the remaining cases, we have Outg(ea, p,p) = Z/27Z, where
the non-trivial element acts via the non-trivial outer automorphism on MSL, and via
the simultaneously non-trivial outer automorphisms on the two special orthogonal
groups constituting M"S©.

5.5.9. — Let (A, B,d",67,d",67) € P, x' Py . We have the endoscopic G-datum

1 L / L / L
ea Bt ot,d- - = (M, "M sypomag 2 "M — “ M)
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for M, and the endoscopic datum
€+ 4o A 44| B, 5+ d-+2|Ac| 14| Belo- = (H,"H,s,n: "H = *G)

for G. Thus the isomorphism class of (H,“H, s, 1) in &(G) is equal to the image of the
isomorphism class of (M’,“ M’ syr,nar) in & (M), by Proposition As explained
on p. 43 of [Mor10b], the endoscopic G-datum (M’,“M’, sys,nar) for M determines
an H(F)-conjugacy class of Levi subgroups of H, all of which are isomorphic to
M’. In the following we upgrade this construction to an H(F')-conjugacy class of
F-embeddings M’ — H with images Levi subgroups. (This depends on our explicit
presentation of the groups.) As a result we obtain a H -conjugacy class of embeddings
Epr — EH. Our construction will be such that the following diagram commutes up
to G’—conjugation:

(5.5.9.1) g 1Lg

]

Lapr ™ Lar

Here the vertical arrow on the right is canonical up to @—conjugation, arising from

the fact that M is a Levi subgroup of G (cf. (5.5.3.2))).
Recall from §5.5.2| that MST is a subgroup of SO(W+), and that W+ is equipped

with a hyperbolic basis {fl, e ,f2<r+2t)} . Let
. 1—T
(W) 4,5 = span{f;, fory2t)+1-i | i € A or (TW € B},

. . 1= c
(W) ae,ge = span{fi, farsan)+1—i | i € A or [71 € B°}.

The natural action of MSY on W+ stabilizes (W)4 5 and (W) 4c pe. Let MS’IE
(resp. MECEBC) be the maximal quotient of MSL acting faithfully on (W)a p
(resp. (W) ac ge). Concretely, if we write A = {iy, - ,i,} and B = {j1,--+ ,ju}
where i; < i3 < -+ < 4y and j; < Jo < +-- < Jyp, then MS’IE is identified with
G, x GL3, and the quotient map
MS" =G x GL) — M§'5 =~ G, x GLj
is given by
(Zla"' S 2, WY, 7wt) — (Zi“... s Zigs Wiy, oo 7wj,l,)-

Similarly we have a concrete description of the quotient map Mt — ML ...

We now specify the H(F')-conjugacy class of embeddings M’ — H. First consider
the odd case. Choose an isometric isomorphism f* from the orthogonal direct sum
of (W)a g and W+ to V*. (Such f+ indeed exists since both quadratic spaces are

split and have dimension d* + 2|A| + 4|B|.) This choice, together with the natural
action of M§'; on (W) p and the natural action of SO(W™) on W+, determines
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an embedding
£ M§TE x SOWt) — so(VH).

We claim that the SO(V1)(F)-conjugacy class of f is independent of the choice of
f*. Indeed, the O(V1)(F)-conjugacy class of f; is clearly independent of the choice
of fT. The element of O(VT)(F) acting as 1 on f*((W+)4 5) and as —1 on ¥ (W)
has determinant —1 and centralizes f;". Hence the O(V ) (F)-conjugacy class of £
is in fact equal to the SO(V)(F)-conjugacy class of £. Our claim follows.

Similarly, we choose an isometric isomorphism f~ from the orthogonal direct sum
of (W) e ge and W~ to V~. We then obtain an embedding

£t M§" g x SOW ™) — SO(V™),

whose SO(V ™) (F)-conjugacy class is independent of the choice of f~. Taking the
direct product of fF and f_, we obtain the desired embedding M’ — H which is
canonical up to H(F)-conjugacy.

We now consider the even case. Since the orthogonal direct sum of (W) 4 5 and
W is a quasi-split quadratic space of the same dimension and discriminant as V',
we can choose an isometric isomorphism f+ between them just as in the odd case.
We then obtain the embedding

£F: M§% x SOWt) — So(VH).

At this point, only the O(V™)(F)-conjugacy of f;" is well defined. We explain how
to narrow this down to an SO(VT)(F)-conjugacy class. As before we canonically
identify MS}]B with G¥, x GL3 (where u = |A| and v = |B]). Consider the canonical
embedding (G5 : Git?Y — MG given by

Zu41 Zu+2v—1
(1o 2usan) ;(Zl,...,%( >( >),
Zu+2 Zu+2v

We divide our discussion into the cases where 6% is trivial and non-trivial.

Suppose 01 is trivial. As in W is equipped with an SO(W *)(F)-orbit
[Byy+] of hyperbolic bases, and V* is equipped with an SO(V™)(F)-orbit [By+] of
hyperbolic bases. They determine an SO(W ™)(F)-conjugacy class of embeddings

LW+ = B,y G,’fj/Q — SO(W)
and an SO(V™)(F)-conjugacy class of embeddings
e =, GL/AHER SOV
(cf. . We impose the condition that the embedding

£ 0 (G x tw+) : G4 x G4 /2 — SO(VH)
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should be SO(V*)(F)-conjugate to ¢+ under the obvious identification
Gu+2v ~ Gd+/2 ; Gd+/2+u+2v
((Z1,227 t ')7 (w17w27' : )) — (217252, e, W1, W, )
This extra condition narrows the O(V*)(F)-conjugacy class of £ to an SO(V ™) (F)-
conjugacy class.

Now suppose 67 is non-trivial. In this case, W™ is equipped with an SO(W ™) (F)-
orbit [By +] of near-hyperbolic bases, and we have fixed a square root a™’ € F
of the common discriminant of members of By +]. Similarly, V't is equipped with
an SO(V1)(F)-orbit [By+] of near-hyperbolic bases, and we have fixed a square root
at € F of the common discriminant of members of [By+]. (Here ot may not be equal
to a™’.) These extra data determine an SO(W)(F)-conjugacy class of embeddings

bt = tats, . G 2T X U(L)grs — SO(WT),
and an SO(VT)(F)-conjugacy class of embeddings
Wt = tatpy, s GE2FERTL L U(1) 0 — SO(VT)

(cf. §1.2.7). Note that U(1),+. is canonically identified with U(1),+, since the fields
F(a™') and F(a™) are the same. We impose the condition that

£ 0 (1§ X tw+) : GEF2Y x G4 /271 % U(1) g0 — SO(V)
should be SO(V*)(F)-conjugate to ¢+ under the obvious identification
GUr? x GL /2L X U(1) s 5 G /240201 5 U(1) 40
((217Z27"')7(w17w27"')7y) — (21722a"' , W1, W, - - - ay)
This extra condition narrows the O(V ) (F)-conjugacy class of £ to an SO(V ™) (F)-
conjugacy class.

We have specified an SO(V™)(F)-conjugacy class of embeddings MS}E X
SO(W*) — SO(V*). Similarly, we specify an SO(V ~)(F)-conjugacy class of
embeddings MS}’BC x SO(W~) — SO(V ™). Taking the direct product we obtain the
desired embedding M’ — H which is canonical up to H(F)-conjugacy.

Write A = {ila"' 7iu}7 B = {jl)"' ajv}a A = {pla"' 7p7'—u}7 and B¢ =
{q1, - ,q—v} with increasing ordering (i.e., iy < -+ < i, etc.). In both the odd
and even cases, the H-conjugacy class of embeddings “M’ — L H arising from our
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construction is represented by the map

—_—

(5.5.9.2) M’ = (C*)" x GLy(C)! x SO(W+) x SO(W—) x I
> (917"‘ 7grahla"' 7ht7k+7k7) AT —
dlag(gl17 7giuahj17"' ,hj,u,k—‘r,h}v,"' 7h;17gi_u17"' agi_ll)
X diag(gplv'“ 7gprfu7h'q17"' 7hqtfv7k_7h;§t,v7"' 7h'¢-§17.g;r1,u7"' 791711)
X T

celH=HVxH =T,
where the notation t is as in ([5.5.3.3). Using the formulas (5.5.3.2) and (5.5.9.2), one
sees that the diagram (5.5.9.1) indeed commutes up to G-conjugation.

5.6. Admissible isomorphisms and embeddings

5.6.1. — Keep the setting of For any torus T over F', we denote by T the dual
torus over C, whose group of characters is canonically identified with X, (7). If f :
T, — Ty is a homomorphism of tori over F', we denote by f the dual homomorphism
Ty — T

For any Borel pair (T, B) in G and any Borel pair (7, B) in G+, the fixed iso-

morphisms (5.3.1.1)) and (5.3.1.2) give rise to isomorphisms T Tand T =5 T of
tori over C. We denote these isomorphisms by 0p 5 and dp 5 respectively.

Now consider an elliptic endoscopic datum (H, LH, s, n) for G as in Given
a Borel pair (T, By) in Hy, there is a similar isomorphism

0By B~ - Ty — Tﬁ
H

Here (75, Bg;) is the standard Borel pair in H as in 5 Note that n: “H — LG
maps Tﬁ isomorphically onto 7. Hence we obtain isomorphisms

1 A~ A
0378 O’I]ODBH)B;I\ Ty — T,
Ty —

—

M)

)

DEB ono DBB“B2 :
or equivalently, isomorphisms
j: Ty —TC G,
J:Tu = TcC G*f.
We call j an admissible isomorphism between Ty and T', and an admissible embedding

of Ty into G; cf. [LS87, §1.3]. Similar terminology applies to j. We shall also say

that j is associated to the Borel pairs (T, Byr) and (T, B), and say that J is associated
to the Borel pairs (T, By) and (T, B).

The following facts are well known and straightforward to verify.
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Lemma 5.6.2. — Fiz mazimal tori Ty C Hi, T C G5, and T C G*F‘

(1) The set of admissible isomorphisms between Ty and T (resp. between Ty and
1) is a torsor under the Weyl group of (G, T) (resp. the Weyl group of (G%,T)).

(2) The set of admissible embeddings of Ty into G (resp. into G*f) is a single
orbit under G(F)-conjugation (resp. G*(F)-conjugation).

(3) Letj: Ty — Gx and j : Ty — G*f be arbitrary embeddings such that

j=1Int(g) oty o]

for some g € G(F). (Here vy is the fived inner twisting between G and G*; see )
Then j is admissible if and only if j is admissible.

O






CHAPTER 6

TRANSFER FACTORS FOR REAL SPECIAL
ORTHOGONAL GROUPS

6.1. Cuspidality and transfer of elliptic tori

6.1.1. — We keep the notation in §5| specialized to F' = R. Thus (V, q) is a quadratic
space over R of dimension d and discriminant §, and G = SO(V, q) is a reductive group
over R. We are interested in the case where G contains anisotropic maximal tori.
When d is odd, this is always the case. When d is even, this is the case if and only if
§ = (—=1)¥? € RX/R*2. (Note that if (d,d) = (2,1), then G = G,, contains elliptic
maximal tori but not anisotropic maximal tori.) In the following we assume that G
contains anisotropic maximal tori. We discuss a systematic way of parameterizing
anisotropic maximal tori in G. As usual, we let m := |d/2]|. Our assumption clearly
implies that V' admits an elliptic decomposition defined as follows.

Definition 6.1.2. — By an elliptic decomposition of V, we mean an ordered tuple
(Vj,05)1<j<m, where Vi, --- | V;,, are mutually orthogonal definite planes in V, and o,
is an orientation on V;. Thus the orthogonal direct sum of Vi, - -, V;, is a hyperplane
in V (resp. equal to V') when d is odd (resp. even). We denote by ED(V') the set of
all elliptic decompositions of V. By abuse of notation, we often write (V}); for an
element of ED(V'), understanding that each V; is equipped with an orientation.

Definition 6.1.3. — By a parameterized anisotropic mazimal torus in G, we mean
an anisotropic maximal torus T in G together with an isomorphism U(1)™ — Tg.

Definition 6.1.4. — By a fundamental pair in G, we mean a pair (Tg, B), where
T¢ is an anisotropic maximal torus in G, and B is a Borel subgroup of G¢ containing
TG,(C-

Remark 6.1.5. — Since any two anisotropic maximal tori in G are conjugate under
G(R), the number of G(R)-orbits of fundamental pairs in G is equal to the cardinality
of Qc(G,Te)/r(G, Tg), where T is an arbitrary anisotropic maximal torus in G.
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6.1.6. — Given D = (V}); € ED(V), we obtain a parameterized anisotropic maximal
torus from the embedding

fp: U()™ =5 Tp C G,

where the j-th copy of U(1) acts by rotation on the oriented definite plane V;. The
(absolute) root datum of G on

(X*(Tp), X.(Tp)) f—;> (X*(Um™), X.(U)™) = (2™, z™)

is the standard root datum RD(B,,) or RD(D,,,) when d is odd or even. Hence the
standard based root datum BRD(B,,) or BRD(D,,) gives rise to a Borel subgroup
Bp of G¢ containing T'p ¢. Thus we obtain a fundamental pair (Tp, Bp) from D €
ED(V).

6.1.7. — Recall from that we have fixed a quasi-split quadratic space (V,q)
and fixed an isomorphism ¢y : V @ C =5 V ®r C of quadratic spaces over C. By
definition we have G* = SO(V). We have the obvious analogues of Definitions [6.1.2
and the constructions in with ¥V and G replaced by V and G*.
Note that our assumption that G contains anisotropic maximal tori implies that G*
also contains anisotropic maximal tori, since these conditions both boil down to the
numerical condition that either d is odd or d is even and § = (—1)%2. In particular
ED(V) # 0.

Recall from Definition that when d is even and when 0 is trivial (resp. non-
trivial), we have fixed a G*(R)-orbit [By] of hyperbolic bases (resp. near-hyperbolic

bases) of V. Note that all members of [By] induce the same orientation on V. We

denote this orientation by oy . Still under the assumption that d is even, we define an
orientation oy on V as follows. Let (a,b) be the signature of V. Since § = (—1)%2

both a and b are even. Also V has signature

(a®,0%) = (2[d/4],2[d/4]).
We define oy to be (—1)(*=*")/2 times the pull-back of oy along the R-linear isomor-
phism
ANy = NV "5 ATV

Here /\d¢v is indeed defined over R because V and V have the same discriminant.

When d is even, every elliptic decomposition of V (resp. V) gives rise to an orien-
tation on V (resp. V). We define ED(V, ov) to be the set of elliptic decompositions
of V that induce the orientation oy, and similarly define ED(V,0y). In order to have
uniform notation in the odd and even cases, we set

ED(V)’ = ED(V), if d is odd,
- ED(V,ov), ifd is even,
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and
ED(V), if d is odd,
ED(V)? :=
ED(V,oy), ifd is even.
Lemma 6.1.8. — Assume that d is even. Let {vy,--- ,vq} be an orthogonal basis
of V and {vy, -+ ,u4} an orthogonal basis of V. satisfying the condition in Definition

5.1.1) Then {vy,--- ,vq} induces the orientation oy if and only if {v,,- - ,v,} induces
the orientation oy .

Proof. — Comparing the signatures we see that the cardinality of the set
{7115 <d ¢(vy) =v; @ V-1}
is congruent to b —b* (mod 2). Hence the determinant of the matrix of ¢y under the

(b=b")/2.

given bases is equal to (—1) The lemma follows. O

6.1.9. — Consider an elliptic endoscopic datum (H,LH, s,m) for G. We assume
that it is one of the explicit representatives constructed in §5.4 Recall that H =
SO(V*) x SO(V ™), where V* are quasi-split quadratic spaces over R. In the even
case, we denote by o+ the orientation on V* determined by [By+]. (See for
[By+].) We assume that H contains anisotropic maximal tori, or equivalently, that
both SO(V*) and SO(V ™) contain anisotropic maximal tori. In particular, ED(V )
are non-empty. Similarly as in we set

{ED(vi), if d* is odd,
ED(V*, op+), if dF is even.
Let m* := |d*/2]. We fix an element

Dy = (D}, Dy) € ED(VH)° x ED(V™)°.

ED(VE)° .=

Then we get a parameterized anisotropic maximal torus
o 1 U™ x UM)™ 5 Tpe x Ty =Tp, CSO(VF) xSO(V™) = H,
and a fundamental pair (Tp,,, Bp,, ) in H, by the obvious generalization of Definitions
and We also fix D € ED(V)° and D € ED(V)°. Let
fo:U1)™ = Tp C G¥,
fo:U)"™ = Tp CG

be the associated parameterized anisotropic maximal tori, and let (Tp, Bp), (I'p, Bp)
be the associated fundamental pairs in G* and in G. We define the following composite
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maps with Convention [6.1.10] below in force:
—1

f
9o Toy —25 U™ x U(L)™

1

U™ 2 1,
: f7;11~1 mT m- o~ m fo
JDu,D: TDH — U(l) X U(l) = U(l) — TQ
Convention 6.1.10. — We identify U(l)m+ x U(1)™  with U(1)™ by the isomor-
phism
((917"' 7gm+)a(h17"' ahm*)) — (hlv"' P51, ,gm+>'

Our next goal is to show that jp, p and jp, p are admissible isomorphisms, in

the sense of
Lemma 6.1.11. — In the setting of the following diagram commutes:

~
—m fo ~

lDBD,B

(C)" ——T

Here the bottom horizontal map is the isomorphism fixed in Definition and
0pp,5 5 as in .

Proof. — In the odd case, V is split, so we can fix a hyperbolic basis B of V. In
the even case, we fix a member B of the G*(R)-orbit [By| of bases of V in Definition
When V is split (i.e., when either d is odd or d is even and ¢ is trivial), B is a
hyperbolic basis, and we let 1 : G] — G* be the associated embedding as in §1.2.7]
When V is not split (i.e., when d is even and ¢ is non-trivial), B is a near-hyperbolic
basis, and we let 1 : G™~1 x U(1) — G* be the associated embedding as in
In all cases we write T for the image of tg. We view the base change of v to C as
an isomorphism g c : G, ¢ - Ty ¢ (as we canonically identify U(1)c with G, c).
Now we claim that there exists g € G*(C) such that the diagram

fo.c

(6.1.11.1) U(1)? —>Tpc

\L Tlnt(g)

me—>The
commutes. Here the left vertical arrow is the canonical isomorphism.

To prove the claim, first we observe that the truth of the claim does not depend on
the choices of B and D (as long as they both induce the correct orientation oy in the
even case). Using this observation, we easily reduce the claim for both the odd and
even cases to the even case where V has signature (2,2). In this case, take a basis
{u1,u2,us3,us} of V under which the quadratic form has matrix diag(1,1,—1,—1).
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Without loss of generality we assume that this basis induces the orientation oy . Let
V1 be the oriented plane spanned by {u1, us}, and let V5 be the oriented plane spanned
by {us,us}. Then (Vi,V2) € ED(V,o0v). Define
1 1
1 :§(U1 + ug), Y1 = U1 — ug, $2=§(U2—U4)> Y2 = Uz + Ug.

Then {x1, %2, y2, %1} is a hyperbolic basis of V, and it induces the orientation oy. We
may and shall assume that D = (V1,V3) and B = {x1,x2,y2,91}. Let g € End(V ®C)
be given by

1 ) . 1 . .
Ty —> 5(“1 —dug), Y1 Ul + iU, Tgr—> —§(U3 —iuy), Y2 > U3 + iug.

Then g € O(V)(C), and the diagram commutes. We have detg = 1 by
direct computation, which proves the claim.

Now by the definition of Bp, we know that fp pulls back the based root datum
BRD(Tp,c, Bp) on (X*(Tp), X«(Tp)) to the standard based root datum BRD(B,,)
or BRD(D,,,) on (Z™,Z™). By the commutative diagram (6.1.11.1)), we know that
the isomorphism BRD(Tp,c, Bp) — BRD(B,, or D,,) induced by fp is equal to
the isomorphism v*’ fixed in §5.3] The lemma then follows from the definition of
08,5 O

Lemma 6.1.12. — In the setting of@ Jpu,p %5 admissible, and it is associated
to the Borel pairs (T, ¢, Bpy) and (I'p,c, Bp).

Proof. — Themap 7 : “H — LG restricts to an isomorphism T =Tv+xTy- = T.
This isomorphism is given by
(C)™ X (C)™ —
((gla' v 7gm+)a<h17"' ahm*)) — (hlv"' 7hm*7917"' agm+>7

under the identifications Ty+ = (C)™", Ty~ = (C*)™ T = (C*)™ as in Definition
5.2.2l This fact, together with Lemma [6.1.11] (applied to V and V*), implies the
current lemma. O

Lemma 6.1.13. — In the setting of §6.1.9, jp,, p is admissible.

Proof. — Since ED(V)° is a single G(R)-orbit, the truth of the lemma does not de-
pend on the choice of D € ED(V)°. Let {vy,--- ,vq} be a basis of V and {v,, -+ ,v,4}
a basis of V, satisfying the condition in Definition Let m = |d/2]. Up to re-
ordering, we may assume that ¢(v;) = ¢(vj41) for all j € {1,3,---,2m —1}. When d
is even, we may further assume that {vy,--- ,v4} induces the orientation oy (because
we may switch the order of v; and vy without changing the other conditions). For each
1 < j < m, let V; be the oriented plane spanned by {ve;_1,v2;}, and let V., be the
oriented plane spanned by {vy;_1,v5;}. Then (V}); € ED(V)? and (V;); € ED(V).
By Lemma we have (V;); € ED(V)?. In §6.1.9} we can take D to be (V});, and



126 CHAPTER 6. TRANSFER FACTORS FOR REAL SO GROUPS

take D to be (V;);. By Lemma 6.1.12) we know that jp, p is admissible. In view of
Lemma W (3), we complete the proof by noting that jp, » = ¥y' 0 jp, p- O

6.2. Transfer factors, when d is not divisible by 4

6.2.1. — We keep the setting of and in particular keep the assumption that
G and G* contain anisotropic maximal tori. By an equivalence class of Whittaker
data for G*, we mean a G*(R)-conjugacy class of pairs (B, \) consisting of a Borel
subgroup B of G* defined over R and a generic character X : Ng(R) — C*, where
Np denotes the unipotent radical of B. See [KS99] §5.3] for more details. It is a
standard result that the set of equivalence classes of Whittaker data for G* is a torsor
under the finite abelian group G*24(R)/G*(R).

Assume that d is not divisible by 4. Then the map G*(R) — G**4(R) is surjective,
which can be seen by noting that ker(H'(R, Zg-) — H'(R,G*)) is trivial. Hence
G* has a unique equivalence class of Whittaker data. As in §6.1.9] we fix an elliptic
endoscopic datum (H, LH, s, n) for G, assumed to be one of the explicit representatives
constructed in Thus we have H = SO(V*+) x SO(V ™), where VT is quasi-split
and has dimension d* and discriminant 6*. As usual, both V* are split in the odd
case. We write m = |d/2],m* = |d*/2]. We assume that H contains anisotropic
tori.

In this paper, unless otherwise stated, “transfer factor” always means “absolute
geometric transfer factor”.

The Whittaker normalization of the transfer factors between H and G* was defined
by Kottwitz—Shelstad in [KS99, §5.3] (in the general setting of twisted endoscopy),
and a correction was later made in [KS12]. In this paper, we always use the classical
normalization of local class field theory as opposed to Deligne’s normalization; see
[KS12| §§4.1, 4.2]. Thus among the four A, A’,Ap, A, discussed at the end of
[KS12, §5.1], we only consider A and A’. Moreover, since we always have s? = 1, we
have A = A’. We shall call the transfer factors A/ (-,-) given in [KS12l, (5.5.2)] the
Whittaker-normalized transfer factors. By the discussion at the end of [KS12| §5.5]
and by s? = 1, we have

A\ = e (V,9) Ay = er(V, ) Ao,

where A is the Langlands—Shelstad normalization defined on p. 248 of [LS87].

In the following we denote the Whittaker-normalized transfer factors between H
and G* by Ay, (, ). Also, having fixed ¢y : G — G* and uy : ' — G*(C) as in
we can derive from Ay, (-, ) a normalization of the transfer factors between H
and G as in Remark to be denoted by Awn(-,-). (See below for more
details.)
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In [Kot90| §7], another normalization A; g(-,-) of the transfer factors between H
and G is considered, which is associated to a certain datum (j, B). The goal of this
section is to compare the two normalizations Awy and A; p.

In the following we assume that V is of signature (p,q) with p > ¢, and that
d = p+ q is not divisible by 4.

Transfer factors between H and G*

Definition 6.2.2. — We define a subset ED (V)¢ of ED(V)° (see as follows.
When d is odd, let ED(V)$y,, consist of those (V;)i<j<m € ED(V)? = ED(V) such
that V; is (=1)7*" sgn()-definite for each 1 < j < m. When d is even (but not
divisible by 4), let ED(V)%y, consist of those (V;)1<j<m € ED(V)? such that V; is
(—1)7*1-definite for each 1 < j < m.

Remark 6.2.3. — Let (V;); be an arbitrary element of ED(V)°. Recall that V has
discriminant 6 and determinant (—1)™4. In the odd case, V has signature (m + 1, m)
when ¢ > 0, and signature (m,m+1) when § < 0. Therefore there are precisely [m/2]
(resp. [m/2]) positive definite planes among the V ;’s when ¢ > 0 (resp. when ¢ < 0).
It follows that there exists o € &,, such that (V,;)); € ED(V)$,. In the even case,
there are precisely [m/2] positive definite planes among the V,’s no matter what
§ is, so again there exists 0 € &, such that (V,;)); € ED(V)Gy,. (Here (V,(;));
automatically induces the same orientation on V as (Kj) ;j does.) Moreover, in both
cases ED(V)$,, is a single G*(R)-orbit with respect to the natural G*(R)-action on
ED(V)°.

Lemma 6.2.4. — Let D € ED(V)$y,,- Let (I'p, Bp) be the associated fundamental
pair in G*, as in . Then every Bp-simple root in X*(Tp) is (imaginary) non-
compact. In other words, (Tp, Bp) is a fundamental pair of Whittaker type in the
terminology of [Shels].

Proof. — Let {€},- - , €.} be the standard basis of X, (U(1)™), and let {€1, - ,€m}
be the standard basis of X*(U(1)™). Let fp : U(1)™ — Tp be the parameterized
anisotropic maximal torus associated to D, as in We identify X*(Tp) with
X*(U(1)™) via fp. Then the Bp-simple roots are a;; = €; —€j41,1 < j <m—1, and
Oy = €y (T€SP. iy, = €11 + €,) In the odd (resp. even) case. Denote the complex
conjugation by 7. It suffices to check that for each 1 < j < m and for one (and hence
any) root vector E; of o, we have

[Ej,TEj] = C(E])Hj € Lie G*
for some C(E;) € Rso. Here H; is the coroot aJV viewed as an element of Lie G*.

Write D = (Kj)j. Since D € ED(V)%,, there exists an integer r such that Vv,
is (—1)"*J-definite for each 1 < j < m. Moreover, we have (—1)" = —sgn(§) when
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d is odd, and (—1)" = —1 when d is even. For each 1 < j < m, let {f;, fi} be an
orthogonal basis of V; inducing the given orientation on V; such that
a(fy) = q(fj) = (=)™
Let
ej=fi®l-fieicVaC,
a1
e = (—1)7+]§T(€j) eVe®C.

In the odd case we also fix a non-zero vector | € V which is orthogonal to each Kj,
and satisfies ¢(I) € {£1}. Thus ¢(I) is the sign of the determinant of the quadratic
space V, which is (—1)™ sgn(d) = (—1)"tm+1L,

Now {e1, -+ ,em, €, - e, 1} (vesp. {e1, - ,em, e}, - ,el.}) is a C-basis of V. ®
C in the odd (resp. even) case, and we have

[ejvek] = [8;-,6;] = [ej’l] = [e;ﬁl] =0, [ej’e;c] = 5j7k'

Note that for each 1 < j < m, the cocharacter fp o e}/ of G* acts on V with weight 1
on e;, weight —1 on €, and weight 0 on e, e; for all k # j. In the odd case, it also

acts with weight 0 on [.
For 1 < j <m—1, we define E; € End(V ® C) by
e; — 0, ejr1 — e, e —r =€)y,
e;+1r—>0, er, e, — 0 for k ¢ {j,7+1},
I — 0 (if d is odd).
It is easy to see that I/; € LieG{ and that it is indeed a root vector of ;. We
compute that 7E; is given by
€j —> €jy1, ejy1 — 0, 6; — 0,
g — =€, ek, e, — 0 for k ¢ {j,j+ 1},
[ — 0 (if d is odd).
Then [E;, 7E;]| is given by
ej — e, ejt1 — —€jt1, e — —e
e;+1r—>e;+1 ek, €, — 0 for k ¢ {j,7 + 1},
I — 0 (if d is odd).
Thus [E;, TE;] = H;, as desired.
In the odd case, we define F,,, € End(V. ® C) by

l— €m, ein — 7Q(l)7ll = (71)T+mlv

e — 0for 1 <k <m, e, —>0for 1 <k<m-—1.
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Then E,, € Lie G¢ and it is a root vector of a,,. We compute that 7E,, is given by
I — (=1)™F72¢! em — 2,
ep—0for1 <k<m-—1, e, — 0for 1 <k <m.
Then [E,,, TE,,] is given by
l—0, em —> 2€m,
e — —2el . ek, e, — 0for 1 <k<m-—1.
Thus [E,,, TEn] = Hp, as desired.
In the even case, we define E,, € End(V ® C) by
e — em—1, €1 — —€m,

ep— 0for 1 <k <m, e, —0for 1 <k<m-2.

Then E,, € Lie G¢ and it is a root vector of a,. We compute that 7E,, is given by

em —> —€n 1, em—1— €,
ep—0for 1 <k<m-—2, e, — 0for 1 <k <m.

Then [E,,, 7E,,] is given by

€m > €m, €m—1F— €m—1,
€m = ~€pn,s €1 > ~ €1,
ek, e — 0 for 1 <k <m-—2.
Thus [E,,, TEy] = Hp, as desired. O

6.2.5. — As before, we fix the standard Borel pair (7, B) in @, and the standard
Borel pair (Ty+ x Ty-,By+ x By-) = (T5,B5) in H = SO/(V\+) X SO/(V\*); see
Definition [5.2.2) and §5.4.3, We extend (7,B) to a I'w-stable splitting spls, and
extend (Tﬁ, Bﬁ) to a I'oc-stable splitting spl.

Note that n : L H — LG maps (T, Bg) into (T, B). Given this property, and given
the choices spla and splﬁ, we have the following constructions (see [Shel9l §§7.3,
8.1], [Shel0b), §7], [Shel0al §3]):

— Inside each equivalence class ¢ of discrete Langlands parameters for G*, there

is a canonical T-conjugacy class of parameters, whose elements we shall call almost
canonical representatives. Similarly, inside each equivalence class of discrete Lang-
lands parameters for H, there are almost canonical representatives.

— Let ¢ be as above. Consider the set of equivalence classes of discrete Langlands
parameters for H that induce ¢ via n : “H — LG. Then this set is non-empty
(because H contains anisotropic maximal tori), and it contains a canonical element
wH, called well-positioned, which is uniquely characterized by the following property:
For one (and hence any) almost canonical representative @i of g, the composition
1o g is an almost canonical representative of ¢.



130 CHAPTER 6. TRANSFER FACTORS FOR REAL SO GROUPS

We now choose an arbitrary equivalence class ¢ of discrete Langlands parameters
for G*, and obtain g from ¢ as above. Choose an almost canonical representative
wr of g, and let ¢ := nowy. Thus ¢ is an almost canonical representative of
. By construction, the Borel pair in G (resp. H) determined by ¢ (resp. @) as on
p. 182 of [Kot90] is (7, B) (resp. (T, B5))-

Let 7y be the unique generic member (with respect to the unique equivalence class
of Whittaker data) of the L-packet II,; see [Kos78] and [Vog78|. As proved by
Shelstad in [She08| (see [ShelOal Thm. 3.6]), we have

(6.2.5.1) AP (g, o) = 1.

Here A%y (-, ¢) are the (absolute) spectral transfer factors between H and G*, un-
der the Whittaker normalization. (In fact, holds for all discrete ¢ g in-
ducing ¢, not just the well-positioned one; cf. [Kall6l §5.6]. We will not need
this.) By [ShelObl Lem. 12.3], the transfer factors AR} (+,-) are compatible with
the Whittaker-normalized transfer factors Ay, (-, ), in the sense that the endoscopic
character relations defined by the former are satisfied when the test functions satisfy
orbital integral relations with respect to the latter.

We now fix D and Dy as in and assume that D € ED(V)%,,. We keep

the notation in By Lemma the map jp, p constructed in §6.1.9] is

an admissible isomorphism. We note that (Jpu,ps Bp, Bpy, ) is aligned with g in
the sense of [Kot90, p. 184], which follows from our assumption that ¢g is well-
positioned. In the following, we abbreviate jp, p as j, and abbreviate Bp as B.

In [Kot90, §7], a normalization -

Al,é(') )
of the transfer factors between H and G* is defined. Write AZP5°(+,-) for the spectral

transfer factors normalized compatibly with A; p(-,-). Then since ( J, B) is aligned
with g, we have (see [Kot90], p. 185])

(6.2.5.2) AE?EC(QaHaW(SDvwilE)) = (aw, 5),

for all w € Qc(G*, Tp). Here a,, is defined in [Kot90, §5], and we shall not need the
definition of (a,,, s) except the fact that

(ag,s) = 1.
Now by Vogan’s classification theorem for generic representations [Vog78| Thm. 6.2]

and by Lemma we know that mo = 7(¢, B). Hence by setting w = 1 in (6.2.5.2)
we obtain

(6.2.5.3) APE (@ mo) = 1.
Comparing ([6.2.5.1)) and (6.2.5.3)), we see that
(6.2.5.4) Ay = Azf’g.
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Now as we recalled above, AW}’ is compatible with Ayy,. Hence it follows from
6254) that
AjB = Awn.

We record this in the following lemma.

Lemma 6.2.6. — Let D € ED(V){,, and Dy € ED(V)? x ED(V™)°. Let j =
Jpu,p and let B = Bp. Then Ay, = AJ,E' O

Transfer factors between H and G

6.2.7. — Recall from that we have fixed an isomorphism ¢y : V@C —= V®C
between quadratic spaces over C, and used ¢y to define the inner twisting 9y : Goc —
Gt and the cocycle uy : T'os = G*(C), satisfying . As we have explained in
Remark these extra data allow us to derive from Ay, (-, ) a normalization of
the transfer factors between H and G, which we denote by Awnp(+, ).

We now recall the characterization of Awy in terms of Ay, following [Kallll
§2.2]. Let Ty, T, and T be anisotropic maximal tori in H, G, and G*, respectively.
(Recall that H, G, and G* all contain anisotropic maximal tori.) Assume that uy
takes values in T(C). (We shall see in §6.2.15 below that this can indeed be arranged.)
Let j: Tgc — Tt and j : Ty ,c — T be arbitrary admissible isomorphisms; see
Note that Ty, T, and T are all isomorphic to U(1)™, and so j and j are necessarily
defined over R. Let v € Ty (R), and let
vi=30"), v=i0M).

Assume that v and 7 are strongly regular. Then Ay, is characterized by the following
formula:

(6271) AWh(7H7 PY) = éWh(’YHa l) <inv(77l)v S'yH,l>71,

where inv(y,7) and s are defined as follows.

T

— Define inv(v,7) to be the image of the cocycle (p + uy(p)) under the Tate—
~ Al
Nakayama isomorphism H'(R,T) — H (s, X.(T)). In our case, since T =
1
U(1)™, the norm map on X, (T) is zero, and so H (', X.(T)) is simply X.(T)r

— Define s.,#  to be the image of s € Z(H ) (which is part of the endoscopic datum)
under the composite map

oo’

. P N
Z(H)—— Ty ——=T.
Here the first map is the common restriction to Z (fI ) of any isomorphism T5 = 1/“1;
of the form 01_3}{ g for any Borel subgroup By of H¢ containing Ty c; see & We
T H

know that s u , is invariant under I', since, in our case, it is of order at most 2 and

Y
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the non-trivial element of I', acts on i by inversion. Thus s, u
inv(y,7).

Definition 6.2.8. — We call Awn(-,-) as in (6.2.7.1) the Whittaker-normalized
transfer factors between H and G.

~ can be paired with

Definition 6.2.9. — Let ED(V){y, 4. be the set of tuples (V;, A;)1<j<m, where
(V;); € ED(V)3y, (see Definition , and A,--- , A\, € {1, le}, satisfying the
following conditions.

(1) For each 1 < j < m, we have (b(,l(zj) cCV® )\;1.

(2) There exists jo € Z such that for each 1 < j < m, we have A\; = /-1 if and
only if V; is negative definite and j < jo.

(3) If d is odd, then the restriction of ¢;,' : V® C — V ® C to the orthogonal
complement of @;nzl Kj in V is defined over R.

Remark 6.2.10. — The set ED(V)%, 4, is non-empty. This follows from the con-
dition in Definition [5.1.1] the fact that V and V have the same discriminant, and
Remark [6.2.3

6.2.11. — Let (V;,A;); € ED(V)3yy, 4, as in Definition We construct an
element (V;); € ED(V)° as follows. For each j, let {f;, f;} be a basis of V; inducing
the given orientation on V. Then the vectors \j¢~'(f;),\j¢~'(fj) € V ® C lie
in V®1l. We identify V ® 1 with V, and let V; be the oriented plane spanned by

{Xjo™ (f3), A0~ (f})}. Then (V;); is an element of ED(V). By Lemma we
have (V;); € ED(V)°. The construction (V;, A;); = (V}); gives a map
(6.2.11.1) ED(V)%wn,¢, — ED(V)°.

Definition 6.2.12. — We define a subset ED(V')?, . of ED(V) as follows. When

nice

d is odd, we let ED(V)¢;.. consist of those (V}); € ED(V)? = ED(V) for which there

nice

exists jo € Z such that

{j |1 <35 <m,Vj is negative definite}
= {j |1<j<m,j>jo, and (—1)7 :sgn(é)}.

When d is even (but not divisible by 4), we let ED(V)
ED(V)° for which there exists jo € Z such that

consist of those (V;); €

o
nice

{7 |1 <j <m,Vj is negative definite}
={j11<j<mj>jo, and (1)) =1}.

Ezxample 6.2.13. — Let D = (V}); be an arbitrary element of ED(V)°. Recall that
V has signature (p,q). If d is odd and ¢ = 2, then D is in ED(V)?,., if and only if

Vi is negative definite. If d is odd and ¢ < 1, then D is automatically in ED(V)?

nice*

If d is even (but not divisible by 4) and ¢ = 2, then D is in ED(V)9,, if and only if

nice
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Vin—1 is negative definite. If d is even (but not divisible by 4) and ¢ = 0, then D is
automatically in ED(V)2

Lemma 6.2.14. — The image of the map (6.2.11.1)) is contained in ED(V)%;..

Proof. — This is clear from the definitions. O

6.2.15. — Now let (V/;,);); be an element of ED(V)%yy, 4., with image (V;); €
ED(V)jice under the map (6.2.11.1). Write D for the element (V;); € ED(V)%y,, and
write D for the element (V}); € ED(V);... Write X for the tuple (Aj);- Let

fo:U)™ — Tp
be the parameterized anisotropic maximal torus in G* associated to D, and let

fp : U(l)m — TD
be the parameterized anisotropic maximal torus in G associated to D. Also, let
(T'p, Bp) be the fundamental pair in G* associated to D, and let (T'p, Bp) be the
fundamental pair in G associated to D. We abbreviate (Ip, Bp) as (T, B), and
abbreviate (Tp, Bp) as (T, B).

Note that we have

(6.2.15.1) o =1vvo fp,

which is clear from the definition of ¥y in §5.1.2] In particular, the cocycle uy takes
values in T(C). More precisely, for p = 7 the complex conjugation, uy (7) acts as —1
on V., for those j such that A\; = /=1, and acts as the identity on the orthogonal
complement of these V ;’s. It follows that uy (1) € T(R). Another consequence of the
relation (6.2.15.1)) is that ¥y sends the Borel pair (Tg, B) in G¢ to the Borel pair
(L. B) in Gz
Take any Dy € ED(V1)° x ED(V™)°, and define
jouw.p: Tpy — Tp
j'DH,'D : T’DH ;> TD
as in §6.1.9| (where D and D are fixed in the last paragraph.) We abbreviate jp, p
as j, and abbreviate jp, p as j. Let (Ip,,Bp,) be the fundamental pair in H
associated to Dy. We abbreviate (Tp,,,Bp,) as (Th,Bm). Take a test element
v# € Tp, (R), and let
7=,

Assume that v and v are strongly regular.

Lemma 6.2.16. — Keep the setting of . Let (inv(7,7), 841 ) be the pairing
defined in §6.2.7] Then we have a

<inv(771)7 S'VH,1> = (71)k(m_’/\)7
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where

K™ X) = #{j|1<j<m = v-1}.

Proof. — By [Kallll, Lem. 2.3.3], the element inv(vy,7) € X.(T)r
image of any element p € X, (T) such that u(—1) = uy(7), where 7 is the complex
conjugation. We identify X, (T) with Z™ via fp : U(1)™ — T, and let {ey,--- , ey}
be the natural basis. By the description of uy () in we can take u to be

= Y

1<j<m,\j=v/—1

is equal to the

oo

~

On the other hand, if we identify 7' with (C*)™ under E, then the element s n , € T
is given by

(-1,---,-L,1,---, 1) e (C)™

e
(Remember that Convention is in force in the definition of jp, p in )
The lemma follows by evaluating p at the above element. O

Lemma 6.2.17. — Keep the setting of §6.2.15, We have
Ajp(17,7) = (~D)HDHUEIA; ().

Here Aivﬁ (resp. Aj p) is the normalization of the transfer factors between H and
G* (between H and G), associated to (j,B) (resp. (j,B)), as defined in [Kot90, §7].
The numbers q(G) and q(G*) are as in Definition|1.1.4)}.

Proof. — By the formula for A; g on p. 184 of [Kot90], we have

A (v y) = ()1 Dy g (NAB(TT A, ()™

A (Y7, y) = ()1 HE g g (N ARGy A, (V)T
Here Ap, Ap, and Ap,, are as in Definition and we do not explain the defini-
tions of xg=,m and x¢ . Since 9 sends the Borel pair (Tg, B) to (L, B), we know

that
Ap(y™ ") =As(v).

It remains to show that
xa+u(Y) = xc,u ()

Unraveling the definitions of these terms on p. 184 of [Kot90], we are reduced to
checking that the following diagram commutes up to G-conjugation:

|

Lp . Lg
Ly "B L



TRANSFER FACTORS BETWEEN H AND G 135

where the left vertical arrow is induced by 9y |7 : T —= T (defined over R). This is
true by the characterizations (a) (b) on p. 183 of [Kot90l, in view of the fact that
Yy (B) = B. O

Corollary 6.2.18. — Keep the setting of §6.2.15, and keep the notation in Lemmas
and[6.2.17 We have

Ajp = (—1)HO+ACHFRMT D) Ay

Proof. — Comparing (6.2.7.1) with Lemmas [6.2.16/ and [6.2.17] we have

BWh _ (_1)a(@)+a(G ) +h(m™ ) | AW
AJ,E Aj,B

By Lemma we have Ay, = Aj p. The corollary follows. O

Recall that V has signature (p, q), with d = p + ¢ not divisible by 4.

Lemma 6.2.19. — We have

(—1)7(@)+a(G") {

D

(=)=, if d is odd,

1, if d is even.

Proof. — For any signature (a,b), we have ¢(SO(a, b)) = ab/2. In the odd case, V
has signature (p,q) = (p,2m + 1 —p), and V has signature (m + 1,m) or (m,m + 1).
Hence

_(m—p)(m+1-p)

2
In the even case, our assumption that G and G* contain anisotropic maximal tori
implies that the signatures of V' and V are pairs of even numbers. Hence ¢(G) and

q(G*) are both even. O

= [m;p] mod 2.

Proposition 6.2.20. — Keep the running assumption that V' has signature (p,q),
with p > q and d = p + q not divisible by 4. Let D be an arbitrary element of
ED(V)%.. (see Deﬁm’tz’on, and let Dy € ED(V1)? x ED(V™)°. Define jp, b
and (Tp,, Bp,,) as in . We abbreviate (jp, p, Bpy) as (j,B). Let Aj g be the
normalization of the transfer factors between H and G associated to (j, B), as defined
in [Kot90l, §7].

(1) Assume that d is odd. In this case, either assume that q is even and q/2 <
[m™/2], or assume that q is odd and (q —1)/2 < |m™/2|. Then

. (71)(%]+[’"2+]+["‘2"’]AW}“ if q is even,
B = m |y mt |y me
J (—DLEIHE 55 T Ay, if ¢ s odd.
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In particular, we have
mt
(—D)I*= TAwy, when ¢ =0 and m™ is arbitrary,
mt
Ajp =1 (=D Ay, when q =1 and m™ is arbitrary,
mT
(=) TAwy,  when ¢ =2 and m™ > 0.

(2) Assume that d is even. Thus q is even since G contains anisotropic mazimal
tori. We have

m+1

A DT A, g2 < [m /2],
e (=172 Awn, ifmtT=1andq=2.

In particular, we have
(=D)L Ay, when g = 0 and m™ is arbitrary,
Ajp =1 (=) A, when ¢ = 2 and m™* > 2,

(*Ulﬂ%JAWh, when ¢ =2 and m* = 1.

Proof. — First note that under the natural action of G(R) on ED(V)°, the subset
ED(V)?;ce of ED(V)° is a single orbit. Thus A; p is in fact independent of the choice

of D € ED(V)?;... Hence we may assume that D is the same as the element introduced

in §6.2.15] In view of Corollary [6.2.18 and Lemma [6.2.19] to prove the proposition it
suffices to compute the sign (—1)*(" %) in each case. We recall that

K™ %) = #{j[1<j<m” .\ =v-1}.
(1) Let N be the number of negative definite planes among the m™ planes

Km,ﬂ,zmﬂrz, L. ’Km_
By Deﬁnition V., is negative definite if and only if V has positive determinant,
which happens if and only if ¢ is even. Hence we have N = [m™ /2] when ¢ is even,
and N = |m™*/2] when ¢ is odd. Thus our assumption on ¢ can be rewritten as
l4/2) < N.

If there exists 1 < j; < m~ such that Kjl is negative definite and A;, = 1, then
the integer jo in condition (2) in Definition would be strictly less than ji, from
which it easily follows that the number of negative definite planes among Vi, ,V,,
is at least N 4+ 1. Thus g > 2(N + 1), a contradiction. Hence such j; does not exist.
Then by condition (2) in Definition we have

k(m=,X) =# {7 11<j<m™,Vj is negative definite} .
When g is even, we have

k(m™,X) = {[m_/ﬂ, ifm is odd = [m/2] + [m*/2] mod 2.

|m~/2], if m is even
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When ¢ is odd, we have

- {Lm‘/QJ, if m is odd

E(m=, ) = lm/2] + |m*/2] mod 2.

[m~/2], if m is even

We conclude the proof by combining the above computation of k(m™, X) with Corol-

lary [6.2.18 and Lemma [6.2.19
(2) Since d = 2m is not divisible by 4, we know that m is odd, and by Definition

we know that V,, is positive definite. Hence among the m™ planes
Km*—i—l’Km*+27 T vzvrm

the number of negative definite planes is [m™/2|. When ¢/2 < |m™ /2], by the same
argument as in part (1) we have

k(m*,X) =4 {j |1 <j<m7,V; is negative deﬁnite} ,

and this is equal to [m™/2]. When m™ =1 and g = 2, we easily see that
< m—1

k(m=,\) = ———1.

(m=, %) ="
In both cases we conclude the proof by combining the computation of k(m™, X) with
Corollary and Lemma [6.2.19] O

6.3. Transfer factors, when d is divisible by 4

6.3.1. — We keep the same setting as in except that now we assume that d
is divisible by 4. We keep the assumption that G and G* contain anisotropic maximal
tori, which forces the signature of V' to be a pair of even numbers. In particular, ¢
is trivial, and so V and G* are split. We would like to establish analogues of the
results in in the current case. The new feature is that there are now two different
equivalence classes of Whittaker data for G*. As in we fix (H, LH,s,n), with
H containing anisotropic maximal tori.

In the following we assume that V is of signature (p,q) with p > ¢, and that
d = p+ q is divisible by 4.

Transfer factors between H and G*

Definition 6.3.2. — We define two subsets ED(V)$y, 1 and ED(V)$,, ;; of ED(V)°
(see as follows. Let ED (V)% 1 consist of those (V;); € ED(V) such that V;
is (—1)’* -definite for each j. Let ED(V )%y, y consist of those (V;); € ED(V)? such
that V., is (—1)’-definite for each j.

6.3.3. — Let (T3, B;) (resp. (1%, B2)) be the fundamental pair associated to an el-
ement of ED(V)¢y,,_; (resp. an element of ED(V)$y,, ;). Then (T4, By) and (T, B2)
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both satisfy the condition that every simple root is non-compact, which can be proved
in the same way as Lemma As in [Tail7l §4.2.1], the two pairs (71, B1) and
(T, Bz) correspond to two different equivalence classes of Whittaker data wy and iy
of G* respectively, characterized by the condition that in any L-packet of discrete se-
ries representations of G*(R), the element corresponding to (T3, Bz) (resp. (T2, B2))
is generic with respect to toy (resp. tory). Then wy and toy; exhaust the equivalence
classes of Whittaker data. We call to; the equivalence class of type-I Whittaker data,
and call oy the equivalence class of type-II Whittaker data. See loc. cit. for more
details.

Definition 6.3.4. — We denote by Ay (-, -) the Whittaker-normalized transfer fac-
tors between H and G* with respect to ty, called the type-I Whittaker normalization.
Denote by Ay (¢, +) the analogous objects with respect to toys.

Lemma 6.3.5. — Let D € ED(V)y,, 1, and let Dy € ED(V1)° x ED(V ™). Let j,
(Tw,Bg), and (T, B) be the objects associated to D and Dy as in . We have

(6.3.5.1) Awy = Ay,
(6.3.5.2) Ay, = (1™ Ajp.

In particular,
Awn = (1" Awp-

Proof. — The proof of (6.3.5.1) is the same as the argument in §6.2.5| leading to
Lemma For (6.3.5.2), by the same argument we are reduced to checking that
(6.3.5.3) (ay,s) = (=)™ |
where w € Qc(G*,T) is an element such that (T,wB) is the fundamental pair asso-
ciated to an element of ED(V )%y, 11- (Such w is unique up to right multiplication by
Qr(G*,T).) We can take

w=(12)(34)--(m—1,m) € &, C Qc(G*,T),

and then the class a, € H'(R,T) (defined in [Kot90, §5]) is represented by the
cocycle sending the complex conjugation to —1 € T'(R). This implies (6.3.5.3]). O

Transfer factors between H and G.

Definition 6.3.6. — As in §6.2.7] having fixed ¢y and uy, and having fixed the
Whittaker datum toj, we obtain a normalization of the transfer factors between H
and G, called the type-I Whittaker normalization. We denote this normalization by
Awn.-

Remark 6.3.7. — Analogously we also have the type-II Whittaker normalization
between H and G. By (6.3.5.2)), it is equal to (—1)™ Awy.
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Definition 6.3.8. — We let ED(V)?,.. be the subset of ED(V)° consisting of those

nice

(V;); for which there exists jo € Z such that
{j |1 <j <m,V; is negative definite} = {j | 1 < j < m,j > jo, and (—1)7 = 1}.

Recall our running assumption that V' has signature (p, q), with p > gand d = p+q
divisible by 4. Recall that p and ¢ are even since GG contains anisotropic maximal tori.

Proposition 6.3.9. — Let D € ED(V)°,., and Dy € ED(V+)° x ED(V~)°. Define

nice
Jjou.o and (Tp,,Bp,,) as in . We abbreviate (jp,, . p,Bp,) as (j,B). Let A
be the normalization of the transfer factors between H and G associated to (j, B), as

defined in [Kot90, §7]. When q/2 < [m™ /2], we have
Ajp = () Ay,

In particular, we have

(-5 AWy,  when ¢ =2 and m* > 1.

A {(—1)“”2J Awn, when ¢ =0 and m* is arbitrary,
J,B =

Proof. — The proof is the same as Proposition [6.2.20[ Note that the bound ¢/2 <
|m™ /2] in Proposition [6.2.20] (2) is replaced by ¢/2 < [m™ /2] here. This is because
in the current case, for any (V;); € ED(V)$y, 1, V., is always negative definite. [

Comparison with Waldspurger’s explicit formula

6.3.10. — We fix the additive character ¢ : R — C*,z ~ €™ in all the discussion
below. Given any Borel subgroup By of G* defined over R, by the general construction
in [KS99| §5.3] we have a canonical map (depending only on 1)
(6.3.10.1)

{R- splittings of G* relative to By} — {generic characters Np,(R) — C*},

where the left hand side is the set of R-splittings of G* of the form (Ty, By, { X4 }). In
our particular situation, since G* is split, R-splittings of G* are the same as splittings.

We denote by Split(G*) the set of G*(R)-conjugacy classes of (R-) splittings of
G*, and denote by Whitt(G*) the set of equivalence classes (i.e. G*(R)-conjugacy
classes) of Whittaker data for G*. The map (6.3.10.1)) induces a canonical bijection
(depending only on ):

WG Split(G*) = Whitt(G*).

Here both sides are torsors under the abelian group G*24(R)/G*(R) = Z/27Z.

The two elements of Whitt(G*) are of course toy and wir; see §6.3.3l On the other

hand, there is an independent way to label the two elements of Split(G*). Recall
that in [Wall0l §1.6], Waldspurger associates an element n € R*/R*2 = {£1} to
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the quintuple (G*,spl,V, g, psta), where spl is an arbitrary element of Split(G*) and
pstd is the standard representation G* — GL(V). This gives rise to a map

(6.3.10.2) v 1 Split(G*) — {&1}
spl — n(G*,spL,V, q, psta)-

This map is easily seen to be surjective, and hence bijective. Thus we can use it to
label the two elements of Split(G*).

The following result will be used in the proof of Proposition below, and it
may be of independent interest in representation theory.

Theorem 6.3.11. — Let spl; = nil(—l) € Split(G*). Then # ¢ (sply) = ro;.

Proof. — Write w’ for #/¢ (spl;). Consider an elliptic endoscopic datum
Cqt+ 5+,d—,6— = (Ha LHa S, 7))

such that H contains anisotropic maximal tori. As in §6.1.1|we have 6% = (—1)4"/2,
Let m®* := d* /2. Let Ay, and Ay, be the transfer factors between H and G* as in
Definition [6.3.4] By Lemma [6.3.5 we have

Ay = (‘Umié\z\/h-
Hence it suffices to show that Ay, is equal to the Whittaker normalization A,

defined by the Whittaker datum w’, for one single choice of (d*,d™) with m~ odd.
In the following we show that

(6.3.11.1) Awn = Ay

without assuming that m™ is odd.

Let D = (Kj)j and Dy be as in Lemma and keep the other notations in
that lemma. As usual, we use the isomorphism fp : U(1)™ = T associated to D to
identify X*(T) with Z™. By Lemma we have

(6.3.11.2) Awp =4 B

We now recall the explicit formula for A; p given in [Kot90, §7], cf. also [Mor11]
§3.2] Let A be the set of B-positive roots for (G¢, T ) which do not come from H
via j. Namely,

A:{ei—i-ek,ei—ek |1<i<m™, m_—i-lgk‘gm}.
Fix a strongly regular element y € T(R), and let v := j~*(y) € Ty (R). Then
(6.3.11.3)

A (", 7) = (1)1 g (1) T = aly) = xs() [ - (),
aEN aEN

(1 Note the following typo in [Mor11l, §3.2]: The term (1 — a(y~1)) there should be (1 — a()).
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where xp is a quasi-character on T'(R) whose definition is recalled in [Morl1)
Def. 3.2.1]. In [Morlll Ex. 3.2.4] Morel proves, in a special case, the following
formula:

(6.3.11.4) x8 = (pBy 0 ")

where pp and pp,, are defined to be the half sums of the B-positive roots and the
Bpy-positive roots respectively, and they are actual (as opposed to square roots of)
quasi-characters in the special case considered in loc. cit. In our case, pg and pp,
are again actual quasi-characters. We explain why still holds in our case.
In fact, in the proof of in loc. cit., the only special property being used is
that the cocycle a € Z'(Wg,T) used to define xp could be arranged so that it sends
the element 7 € Wy (see the beginning of [Morl1] §3.1]) to 1 € T. In our case, this
condition is not even needed. This is because T = U(1)™, and so the image of a in
Hl(WR7 f ), which determines yr via the local Langlands correspondence for T, only
depends on a|w,. : W — i Hence Morel’s proof of remains valid in our

case.
By (6.3.11.4), we have
(6.3.11.5) XB = —mTer —mTes — - —mTe,-.

Having identified both T’ and T with U(1)™ (via fp and fp,, respectively), we write

"YH =0= (ylvaa"' 7ym)
with each y; € U(1)(R) € C*. In conclusion, by (6.3.11.2)), (6.3.11.3)), and (6.3.11.5),

we have

(6.3.11.6)
Avi 0" v = I w'0—wH0 - = [ 2R — Rwe).
1<i<m~ 1<i<m~
m~ +1<k<m m~ +1<k<m

We now compute Ay. Let Ay be the Langlands—Shelstad normalization associ-
ated to the splitting spl;. In [Wall0] Waldspurger gives an explicit formula for Ag
excluding the factor Ajy. Let us denote the value of Waldspurger’s formula by Awar,
so that Ag = AwaAry. Thus we have (see [KS99] §5.3], [KS12], §5.5])

(63117) Am/ = €L(U, ¢)A0 = eL(an)AWalAIV7

where U is the virtual I'o-representation X*(Tp) ® C — X* (T o) ® C, with Tj a
maximal split torus in G* and T, a maximal split torus in H, and ez (-,1) is the
local epsilon factor (according to the “Langlands normalization”; see [KS99, §5.3])
defined using the additive character ¢ : R — C*, 2 — 2™ and the usual Lebesgue
measure on R (which is self-dual with respect to ). Since G* is split, Ty is necessarily
split, so X*(T) is a direct sum of trivial representations of I'sy. As for X*(T ), it
is a direct sum of trivial representations when m™ is even, and a direct sum of trivial
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representations and two copies of X*(U(1)) when m™ is odd. Therefore, by [Tat79l
(3.2.4), (3.4.1)] we have

(6.3.11.8) er(U, ) = (=1)™ .
By definition we have
—1/2
6.3119) A () =[] la@)| P -a@)= [  2IRw— Rl
aEN 1<i<m™
m~ +1<k<m

Waldspurger’s explicit formula reads (see [Wal10}, §1.10])

(631110)  Awa(.) = [[sen (avloptia1+ ) TT (%)),
i=1 1<k<m
ki

where ¢; € {1} is such that V; is ¢;-definite. Recall that (V;); € ED(V)$,,_, which
implies ¢; = (—1)**1. Note that 1 + Ry; > 0, and we have

[T sen(®Ryi — Ry) = (~1)™ 0 072 = (~1)bm /2]

1<i,k<m™
i#k

[Tsenci = [T(-0™" = (~nlm 72,

i=1 i=1
Therefore (6.3.11.10|) can be rewritten as follows (remember that ny (spl;) = —1)
(6.3.11.11) Awa(? 7)) = (=)™ [T sen(Ry: — Rye).

1<i<m™
m~+1<k<m

Combining (6.3.11.6) (6.3.11.7), (6.3.11.8), (6.3.11.9), and (6.3.11.11), we obtain
(16.3.11.1)), as desired. [




CHAPTER 7

TRANSFER MAPS DEFINED BY THE SATAKE
ISOMORPHISM

In this chapter, we fix an odd prime p.

7.1. Recall of the Satake isomorphism

We recall the Satake isomorphism, following [Car79), Bor79, [HR10, [ST16]. Let
F be a finite extension of Q,. Let ¢ be the residue cardinality of F' and let wp be a
uniformizer of F. In this section we let G be an arbitrary unramified reductive group
over F.

7.1.1. — Let K be the hyperspecial subgroup of G(F') determined by a hyperspecial
point vy in the building of G. Let S be a maximal split torus in G whose apartment
contains vg, and let T be the centralizer of S in G. Let § (resp. 2(F')) be the absolute
(resp. relative) Weyl group of G defined using T' (resp. S). In other words,

Q := Norg(T)/T,
Q(F) := Norg(S)/T.

There is a natural ['p-action on €, and Q'F = Q(F). See [Bor79, §6.1] for more
details.

We equip G(F') with the Haar measure giving volume 1 to K. Let H(G(F) J/ K) be
the Hecke algebra of C-valued compactly supported locally constant K-bi-invariant
distributions on G(F). Using the fixed Haar measure, we identify H(G(F) J K) with
the set of C-valued compactly supported locally constant K-bi-invariant functions on
G(F). In the same way we define H(T'(F) J/ T(F) N K), and we simply write it as
H(T(F)/T(F) N K) since T(F) is abelian. For any choice of a Borel subgroup B of
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G containing T, the Satake isomorphism is the following C-algebra isomorphism:
(7.1.1.1)

SG s H(G(F) ) K) =5 H(T(F)/T(F) N K)*E)

f— fr, fT(t) = 6B(F) (t)71/2 /N " f(nt)dn, Vit € T(F),

where Np is the unipotent radical of B, and we normalize the Haar measure dn on
Np(F) such that Ng(F) N K has volume 1. It is known that SIG(,S depends only on
K and S, not on B (see for instance [ST16, §6.1]).

7.1.2. — We explain how to make both sides of the Satake isomorphism more canon-
ical, that is, independent of the choices of K and S. First note that we have canonical
isomorphisms

H(T(F)/T(F)NK)2H(S(F)/S(F)NK) 2 C[X.(S)];

see [Bor79, §9.5] and cf. [Car79) §7.2]. Moreover, if S’ is another maximal split
torus in G, then there is a canonical isomorphism

C[X,(8)]2F) =5 CLX.(8)) ¥

induced by conjugation by any g € G(F) such that gSg=! = S’. (Here Q'(F) denotes
the analogue of Q(F') with S replaced by S’.) Let

7 = lim C[X.(8)]*7,
S

where the projective limit is over all maximal split tori S in G, and the transition
maps are the above-mentioned canonical isomorphisms. For our fixed vg and K, the
Satake isomorphisms for various choices of S whose apartments contain vg
induce the same isomorphism

(7.1.2.1) S%H(G(F) | K) = .

This is because any such S extends to a maximal split torus in the reductive model
of G over Op corresponding to vy, and hence any two such choices of S must be
conjugate by an element of K; cf. [SGAT0, XXVI, Prop. 6.16].

If K and K, are two different hyperspecial subgroups of G(F'), we have a canonical
isomorphism

(8,1 oSE H(G(F) | K) = H(G(F) | K1),

where S% and S?ﬁ are as in . In fact, this isomorphism can be described
more concretely as follows. Recall that all hyperspecial subgroups of G(F') are con-
jugate under G*(F). For any g € G*!(F) such that Int(¢g)(K;) = K, we have an
isomorphism H(G(F) | K) — H(G(F) J/ K1) sending each f to foInt(g). We claim
that this isomorphism is equal to (Sgl)*1 0S¢, and is in particular independent of
the choice of g. To verify this, choose S with respect to K as in §7.1.1) and let
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Sy :=TInt(g71)(S). Then S; is a maximal split torus in G whose apartment contains
a hyperspecial point defining K;. Let T (resp. T1) be the centralizer of S (resp. Sp).
By the functoriality of the definition ([7.1.1.1]), we only need to check that the map

H(T(F)/T(F) N K)*F) — (T (F)/Ty(F) N K
f+— folnt(g)

is compatible with the canonical isomorphisms
H(T(F)/T(F) N K)*) = oy = H(Ty(F)/Ti(F) N K4,

For this, it suffices to check that the isomorphism C[X,(S)]%) = C[X,(S;)]F)
induced by Int(g) : S ——+ S is the same as that induced by Int(gg) : S — S; for any
go € G(F) with Int(go)(S) = S1. We can further reduce to the case where S = Sy,
and then it suffices to check that v = Int(g)|s € Aut(S) comes from Q(F'). This is
true because 7 lies in ) and it stabilizes S. The claim is proved. We let
H(G) = lm H(G(F) | K),
K

where the projective limit is over all hyperspecial subgroups K and the transition
maps are the canonical isomorphisms.

In conclusion, the Satake isomorphism can be viewed as a canonical C-algebra
isomorphism

(7.1.2.2) S H™(G) = oA,

where both sides are canonically associated to G, not depending on any extra choices.

7.1.3. — As in [Bor79, §6], the C-algebra <7; has an alternative interpretation in
terms of the L-group of G. To explain this, fix a finite unramified extension F’/F
splitting G, and let o be the arithmetic Frobenius generator of Gal(F’'/F). Since F’
splits G, we may form the L-group of G using Gal(F’/F). We use the symbol *G"*
to denote this version of the L-group, i.e.,

LGuw .= G x Gal(F'/F) = G x (op).

Inside the C-algebra of C-valued functions on the set of semi-simple @—conjugacy
classes in G x op, we let

Cleh(*G™)]
be the sub-algebra generated by the restrictions of characters of finite-dimensional
representations of “G™. Then there is a canonical isomorphism

(7.1.3.1) i = Cleh("G™))

characterized as follows. Let f € @;. Fix a maximal split torus S in G, and let T’
be the centralizer of S. Then @ = C[X.(S)]*) C C[X.(T)], so we can view f as
a function on the C-torus 7. As usual (cf. , G is equipped with a Borel pair
(T, B) and an isomorphism BRD(G) — BRD(T,B)". In particular, if we choose a
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Borel subgroup B of G containing T, then we get an isomorphism of C-tori 75T,
In this way we obtain from f a function f7 : 7 — C. The construction f — fr is
independent of the choices of S and B. The image of f under is characterized
by the condition that its value at the @-conjugacy class of t X o is equal to fr(t),
forall t € T.

In the sequel, we shall often make the identification without explicitly
mentioning it. Thus we can evaluate an element of @75 at a semi-simple (A?—conjugacy
class in G x o to get a complex number.

In view of , we can also view the Satake isomorphism as a canonical iso-
morphism

(7.1.3.2) SY 1™ (G) = Clch(*G™)].

7.1.4. — Next we recall a result of Kottwitz. Let A be a cocharacter of G defined
over F'. Assume that A is minuscule, in the sense that the representation Ad o A of
G on Lie G has no weights other than {—1,0,1}. Let K and S be as in and
assume that A factors through S. Denote by Q(F) - A the Q(F)-orbit of A in X,(S).
Let fx.x € H(G(F) J K) be the characteristic function of KA(wp)K inside G(F).
By the Cartan decomposition, the dependence of fx » on A is only through the set
Q(F) -\

Theorem 7.1.5 (|[Kot84al Lem. 1.1.3, §2]). — We have
Sks(fra) =gt %7 V] e CIXL(8)]P,
NEQ(F)-A

where p is the half sum of a fized set of positive (absolute) roots in X*(Za(S)),
and Agom 1s any element of Q(F) - X\ which is dominant with respect to the same
choice of positive roots. Moreover, the element of /g corresponding to S?(’S(fK,A) €
C[X.(9)]F) depends only on the G(F)-conjugacy class of A, not on K or S. O

Definition 7.1.6. — Let A be a minuscule cocharacter of G defined over F. We
write

fr e HM(G)
for the element corresponding to fx x € H(G(F) ) K), for some choice of K and S as
in such that A factors through S. By Theorem fx depends only on the
G(F)-orbit of A\, not on any extra choices.

7.1.7. — We now discuss the compatibility between the Satake isomorphisms and
the constant term maps. Let K, S, and T be as in Let M be a Levi component
of a parabolic subgroup P of G. Assume that M D T'. Let Np be the unipotent radical
of P. Then M(F)N K is a hyperspecial subgroup of M (F). We define the constant
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term map
(7.1.7.1)

(v H(GE) ) K) — H(M(F) | M(F)N K)
fr— fus fu(m) = 5P(F)(m)71/2/ f(nm)dn, m € M(F),
Np(F)

where the Haar measure dn on Np(F') is normalized by the condition that Np(F)NK
has volume 1.

Remark 7.1.8. — The constant term map can be defined more generally for Cg°

functions; see for instance [GKMO97, §7.13] or [ST16] §6.1]. In [ST16] the map
(7.1.7.1)) is called the partial Satake transform. When M = T, the map (7.1.7.1)) is

the same as SIG;’S in (7.1.1.1).

Lemma 7.1.9. — In the setting of let Qpr(F) be the relative Weyl group of
M defined using S. Then Qpr(F) is a subgroup of Q(F) when both groups are viewed
as subgroups of GL(X.(S)). Moreover, we have a commutative diagram.:

G
SK,S

H(G(F) [ K) CX.(8)]%)

- |

M
Sy(F)nK,s

H(M(F) ) M(F) N K) ———— C[X.,(S)]?x ()
where the right vertical arrow is the inclusion.

Proof. — This is well known. See for instance [HR10| §12.3] or [ST16| §2, §6]. O
Proposition 7.1.10. — In the setting of the constant term map (7.1.7.1

induces a canonical map
(7.1.10.1) (m s HY(G) — HY (M)
which depends only on M, not on K, S, P.

Proof. — This follows from Lemma and the fact that for all maximal split tori
S in M, the inclusion maps C[X,(S9)]*F) — C[X.(S)]*»(F) induce the same map

Qfg — ﬂM O]
Remark 7.1.11. — There is a canonical é—conjugacy class of embeddings MV —
L@ and these embeddings induce via pull-back a common canonical map
(7.1.11.1) Clch(*G"™)] — Clch (¥ Mum)).

Under the canonical Satake isomorphism (|7.1.3.2)) and its analogue for M, the canon-

ical constant term map ((7.1.10.1)) corresponds to (7.1.11.1); cf. [ST16l Rmk. 2.8].
From this description, one sees that (7.1.10.1) depends on the embedding M — G

only up to G(F)-conjugacy.
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7.2. The twisted transfer map

We recall the formalism of the twisted transfer map. We keep the notation and
setting of We still let G be an arbitrary unramified reductive group over F. Fix
a positive integer a and let F,, be the degree a unramified extension of F'.

7.2.1. — We first recall some facts concerning Weil restriction of scalars.

Let R := Resp,/)rG. Then R together with the Gal(F"*/F)-action on it can
be identified with [];_; @, on which the arithmetic Frobenius generator op of
Gal(F"/F) acts by

op(T1, - 2q) = (0F(22), 0 (Ta—1), 0k (21)).

We have a canonical isomorphism @/ = @/, , where @/, is formed with respect
to G, over the base field F instead of F'. This isomorphism is characterized as
follows. Let S" be a maximal Fi,-split torus in Gr,. Then Resg, S’ is an F-rational
torus in R, and its maximal F-split subtorus U is a maximal F-split torus in R. We
have

(Resp, rS)orFo= [ 9.
1€Gal(F,/F)
Let m : (Resg,/pS') ®p Fy — S’ be the projection to the factor corresponding to
id € Gal(F,/F). Composing the inclusion map U < Resp, /r S" (or more precisely,
its base change to F,) with m, we obtain a map Up, — S’, which is in fact an
F,-isomorphism. The resulting isomorphism X,(U) — X,.(S’) then induces the
canonical isomorphism &g = g, .

Under the isomorphism @/ = o/, , suppose an element f’ € o/p corresponds to
f € Y, . We would like to have a formula, in terms of f, for the evaluation of f at
an element

(91, 19a) @ op € "R = ([[ G) % (oF),
=1

where g1, , g, are arbitrary semi-simple elements of G. (Here (oF) is understood
as either the unramified Weil group Wp' or a sufficiently large finite quotient of it. In
all cases o is a generator.) Working through the definitions, we obtain the desired
formula as follows:

(7.2.1.1) (g1, 1 9a) X o) = f(g10(g2) - 0" (ga) ¥ oR).

Here, g10(g2) - -- 0% (ga) X 0% is an element of (G p, )™ = G (0%, the unramified
Langlands dual group of G, formed with respect to the base field F;, (so the Galois
part is generated by %), and hence we can evaluate f at this element.

7.2.2. — Consider an endoscopic datum (H,H, s,n) for G. For simplicity, assume
that # = “H and s € n(Z(H)''r); these assumptions will be met in our applications.



7.2. THE TWISTED TRANSFER MAP 149

We assume that (H, LH, s, 1) is unramified, meaning that the following two conditions
are satisfied:

(1) The group H is unramified over F'. In particular, the action of I'r on H factors
through Gal(F"/F).

(2) The map 7 : g — L@ is induced by an L-embedding “H™ — £G™. Here
L™ and “GY denote the L-groups formed with I, where I is either the unramified
Weil group Wg' or a sufficiently large finite quotient of it. In all cases we denote by
or the arithmetic Frobenius generator of I".

Let R = Resp, r G. Define a homomorphism

i PH™ = H % (op) — PRY = (HG’) X (oF),
i=1

by
H>zv— (77(37)7 an(x)) X 17
and
(7.2.2.1) Lxop v (s'n(op)opt,nor)ont, - ,nlop)opt) X op.
Let

i* : Clch(* R™)] — Clch(* H™)]
be the map induced by the pull-back along 7. As we have explained in §7.1.3] the
source and target of 77* are canonically identified with o/ and @7 respectively. Also,
as in §7.2.1| we have @/r = /g, . We can thus view 7 as a map
77* : 'Q{GFQ — oy.

We call this map the twisted transfer map. If we identify the two sides with H"" (G F,)
and H" (H) respectively using the canonical Satake isomorphisms, we obtain a map
H™(Gp,) — H"™(H) which is also called the twisted transfer map.

Lemma 7.2.3. — Let f € @g,, , and let x be a semi-simple element of H. Write
nxxop)® = zx0%, with z € G. Then the evaluation of i7*(f) € @y at xxop € PH™
s equal to

f(s7lz xo%).
Here we have s~z € G, and s™'z x 0% is an element of “(Gp, )™ = G x (0%), so we
can evaluate f at s71z X o%.

Proof. — Write y for n(z x op)op' € G. Let f' € o/r be the element corresponding
to f under &g = g, . We compute

T (f)xxop)=f(ixxop) = f((s"yy,-- ,y) xop)
= f(s"'yo(y) 0" (y) ¥ of)

= f(s7 'z x0o%).
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Here the third equality follows from ([7.2.1.1]). O
Remark 7.2.4. — In the above definition of 77 we have taken advantage of the sim-

plifying assumptions H = “H and s € n(Z(ﬁI)FF). For the definition in more general
situations, see [Kot90l §7] or [KSZ| §7.4]. Under our simplifying assumptions, the

formula (|7.2.2.1]) can also be replaced by
1xopr— (t177(0F)01:17t277(UF)01;1, e ,taU(UF)Ugl) RoF

for any choices of t1,- - ,t, € n(Z(H)TF) such that tit5---t, = s—1. In fact, such a
replacement does not change the conclusion of Lemma, We have chosen t; = s~ 1
and tp = --- = t, = 1 for definiteness.

7.2.5. — As a special case of the twisted transfer map, consider the trivial endoscopic
datum (G, La,, id) for G, which makes sense since G is quasi-split. Then we obtain
the so-called base change map

Q/GFG — 427@,
also viewed as a map

W (Gr,) — H™(G).

7.3. Explicit description of the twisted transfer map

We now make the construction in §7.2] explicit for unramified special orthogonal
groups.

7.3.1. — We first make explicit the group s and the evaluation of its elements at
semi-simple @-conjugacy classes in G x oF.

We now keep the setting and notation of specialized to the case where F' is a
finite extension of Q,. In particular, G denotes SO(V') where V is a quadratic space
over F' of dimension d and discriminant ¢. As always we write m for |d/2]. Assume
that G is unramified over F'. By Proposition if d is odd, or if d is even and ¢
is trivial, our assumption implies that G is split. If d is even and ¢ is non-trivial, our
assumption implies that § has a representative in O}/ (’);’27 and that G is split over
F(a); here recall that o € F is a fixed square root of a fixed lift of § in F*.

To simplify notation, for each positive integer n we define

X1, Xy = C[Xit17~-~ 7X7ﬂlt1}{i1}"x6n’
X1, Xn] = @[X1i17... ,X;L—“l}({il}"’)'xﬁn_

Here the group {£1}" x &,, acts on C[X:' ... XF!] as follows. The non-trivial
element of the i-th copy of {+1} acts by swapping X; and X; !, and &,, acts by per-
muting the n variables X1,---, X, (and simultaneously permuting Xl_l, LX),

As usual, ({£1}")" is the kernel of the multiplication map {£1}" — {+1}. When
n =1, by definition we have .o [X;] = C[X].
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First assume that d is odd. Then G is split. Fix a Borel pair (T, B) in G. We then
get an isomorphism BRD(T, B) — BRD(T,B)" from the L-group datum fixed in
§5.3] The right hand side is canonically identified with BRD(B,;,). Thus we get an
isomorphism X, (7)) —+ Z™, and an isomorphism

uQ{G = C[X*(T)]Q ; C[Zm}{ﬂ:l}mﬂﬁm = JZ{B[)(la e 7X7TL]7

which is independent of the choice of (T,B). If an element of 7; corresponds
to F(Xq,---,Xm) € B[X1, -+ ,X;], then the evaluation of this element at
symdiag(t1, -+ ,tm) X o € T X op (see for the notation) is given by
F(tl,'“ ,tm) e C.

If d is even and ¢ is trivial, then G is still split, and similarly as in the odd case we
have a canonical identification

o = [ X, -, Xl

(This is true for m = 1 as well.) As in the odd case, the evaluation of an element of @75
corresponding to F(Xy, -+, X)) € op[X1, -, Xm] at symdiag(ty,- -+ ,t,,) X op €
T % o is given by F(t1, -+ ,tm).

Now consider the case where d is even and 0 is non-trivial. Let .S be a maximal split
torus in G, let T be the centralizer of S, and let B be a Borel subgroup of G containing
T. We then get an isomorphism BRD(7,B) — BRD(T,B)" from the L-group
datum fixed in The right hand side is canonically identified with BRD(D,,,). We
thus get an isomorphism X, (7)) — Z™. Under this isomorphism, X, (S) = X, (T)'*F
corresponds to the subgroup Z™~! x {0} = {(z1, " ,#m_1,0) | 2; € Z} of Z™, and
the Q(F)-action on X, (T) corresponds to the natural action of ({£1}")" x &,,_1 on
Z™, that is, the non-trivial element of the i-th copy of {41} acts by multiplication by
—1 on the i-th coordinate, and &,,,—1 acts by permuting the first m — 1 coordinates.
We have natural identifications

Tz x {0} (0™ 1 mos 22 gz O X X ],
Hence we obtain an identification
’Q{G = ﬂB[X17 e 7Xm71]'

As in the previous cases, this identification is independent of the choices of S and
B. If an element of 7 corresponds to F\(X1, -+, X;m-1) € oB[X1, -, Xim_1], then
the evaluation of this element at symdiag(ty, - ,t,) X op € T X op is given by
F(tl, s 7tm,1).

7.3.2. — Let G be as in In we constructed representatives eg+ s+ g— 5-
of the isomorphism classes of elliptic endoscopic data for G, where (d,d%,d~,67) be-
longs to a set &y as in Definition In order to ensure ellipticity, in the definition
of Py we have the condition that if d is even and at least 4 then neither of (d*,dT)
and (d~,67) is equal to (2,1). We now take a quadruple (d*,56",d~,d~) satisfying
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all the conditions in the definition of &y except the condition just mentioned. The
construction in still applies to (d™,8",d™, ) and yields an endoscopic datum

ed+,5+,d’,5* = (H’ LH7 5777)

for G, which may no longer be elliptic. In fact, the non-elliptic endoscopic data for G
arising in this way account for all the non-elliptic endoscopic data (up to isomorphism)
that can possibly appear as the localization of global elliptic endoscopic data, in the
case where G is the localization of a special orthogonal group over a number field.

Throughout we assume that d* # 0. We now assume that F' = Q,, and write o
for op. We keep assuming that G is unramified. As in §7.2.2] we assume that the
endoscopic datum eg+ s+ 4- s- is unramified. In the odd case the last assumption
is automatic, and in the even case it implies that 6 and 6~ both have (unique)
representatives in Z / Z;’z, in view of Proposition It is easy to check that the
converse is also true. Note that Z) /ZX"? = Z /27 as p is odd. Hence each of 6,6%,6~
can take only two values: the trivial or the non-trivial element of ZX /Z.2.

Fix a positive integer a. We still write F;, for the degree a unramified extension of
F = Q,. We now make explicit the twisted transfer map 7" : g, — @y defined in
As always we write m for |d/2], and write m* for |d*/2].

7.3.2.1. The odd case. — In this case, o/, is identified with .og[X1,---, X},], and
Ay = A+ Qc Ay— is identified with

JZ{B[Zl, cee ,Zm+] ®c vQ{B[Yh s ,me],
which we identify with a C-subalgebra of C[ZE!,... , ZzE! v ... 7ijf,l]. Consider

o
an element
tm = (symdiag(ti, -, tp+), symdiag(ui, -+, up-))
of the maximal torus 75 = Ty+ x Ty- in H. We have
Nty x o) =symdiag(ui, -+, Um—t1," ,tp+) X0 €T Xo.

Since o acts trivially on 7T, we have
Nty x o) =symdiag(uf, -, tp,—, 1, t4) X o7,

s_ln(tﬁ x o) = symdiag(—u{, -+, —up,_,t7, -t ) xo®
Suppose f € g, corresponds to F(Xy,---,Xp) € @B[X1,---,X,,]. By Lemma
7.2.3 the evaluation of 7j*(f) at ¢ x o is equal to

F(_u‘f’... 7_u7n*7 (11’...7 ‘:nJr).

Thus the map 77* is explicitly given by
vQ{B[le" 7Xm] —><Q{B[Zla"' 7Zm+] Qc %B[Yia 7Ym*]
F(Xq1, -, Xm) — F(=Y{, -, =Y _ Z8,-- [ Z2 1),

y “mt
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7.3.2.2. The even case, with trivial 5T and trivial 5~. — In this case, d is also trivial
since 6 = 6t9~. We have

fQ{GFa = MD[Xh e 7Xm]7
and
e52‘(H - '/Q{HJF ®(C '/Q{H* = eQ{D[Zla o 7Zm+] ®(C 'Q‘(D[Ylv e 7Ym*]'
By similar computation as in §7.3.2.1] we find that 7* is explicitly given by
MD[XD T 7Xm] — MD[ZD e 7Zm+] Ac 'Q{D[Yh e 7Ym_}
F(Xq1,-- X)) — F(=Y{, -, =Yoo Z0,-- 204,
7.3.2.3. The even case, with non-trivial 5 and trivial 6~. — In this case,  is non-
trivial in Z /Z5*?. Tt is a square in F,* if and only if a is even. Thus we have

a

e[ X, X, if a is even,
Ay, = e

B X1,y Xm—1], if ais odd,
and

Ay = G+ c G- = |21, Zmr—1] @c @b[Y1, V-]
Consider an element

tm = (symdiag(ts, -+, tp+ ), symdiag(ur, -+, up-)) € T = Ty+ X Ty-.

Since 6~ is trivial, o belongs to the first case in (5.4.3.2)). Hence

n(tﬁ X o) = symdiag(uy, -+, Upm—, b1, ,tm+) X0 €T Xo.
Now the action of o on T sends symdiag(xy,- -+ ,2,,) to symdiag(z1, -+ , Zm_1,T,);
cf. §5.3.2l We introduce the notation

-1 a+1 +1
(7.3.2.1) pp = ST HL
2

Hence

U(tﬁ A 0_)!1 = Symdiag(u%’ e 7u?n*a ;_l? e at?n+—1atyma+) X 0.(17

s_ln(tﬁ X 0)* = symdiag(—uf, -, —up, ], th e, b)) X0,

Suppose a is even. — Suppose f € g, corresponds to F(Xy,---,X,,) €

p[ X1, , Xm]. By Lemma [7.2.3] the evaluation of #*(f) at t; ¥ o is equal
to
F(=uf, - —ug, o 5, e g, 1)
Thus the map 7" is explicitly given by
[ X1, Xm] — B[Z1,-+ , Z+ 1] @c B [Y1, -+, Y]
F(Xq1, -, Xp)— F(=Y{, -, =Y Z0, - Z0 4, 1).
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Suppose a is odd. — Suppose f € &g, corresponds to F(Xi, .-, X, 1) €
gl X1, , Xp—1]. By Lemma|7.2.3 the evaluation of 77*(f) at ¢ x o is equal to

a a a a
F(_ulv"'>_u 17"'7tm+—1)'

Thus the map 77* is explicitly given by
[ X1, X—1] —> B[ 21, Zi+ 1] @c 9B [Y1, -, V-]
F(Xh e 7mel) — F(_Y1a7 e 7_Y7?L* ) Zilﬂ T 7Zga+_1)’

7.3.2.4. The even case, with trivial 6t and non-trivial 6~. — In this case, J is non-
trivial. We have

>~

Dy =

a

X1, Xml, if a is even,
Bl X1,y Xm—1], if ais odd,

and
oy = G+ Qc G- 2|21, D+ Qc HB[Y1, -+, Y- _1].
Consider an element
tm = (symdiag(ts, -, ty+ ), symdiag(ur, -+, up-)) € T = Ty+ X Ty-.
Since 6~ is non-trivial, we are in the second case in . Hence
Nty x o) = symdiag(u, -+ Uy t1, ytm+) - S X0 € Lgur,
where S is the permutation matrix switching é,,- and é;_,,- 11, and switching é,,
and é,,+1. The conjugation action of S x o on 7T is given by
symdiag(zy, - -, Tm) —> symdiag(zy, -+, Tpm—_1, xfnl, =415 s L)
Moreover, (S x 0)* = 8% x 0%, and S is of order 2. Therefore, with the notation

(17.3.2.1)), we have

s_ln(tﬁ X 0)" = symdiag(—uf, -, —up, -1, —u " t7,- -ty ) - SY X o
If a is even, the above element lies in 7 x ¢®. If a is odd, the above element is
conjugate by some g € G to the element

., : a a a a a a a
symdiag(—u$, -+, —ug | ety b, Uy ) X0 €T x o

For instance, one can take g to be the permutation matrix in G switching é,,- and é,,

and switching é4_,,- 41 and (—=1)™ *7¢,, ;. Indeed, we have g~ = g, (S x 0%)g =
g x o® and
g- Symdiag(_utllu R} _u;ln*_la _um_7t(113 R ;ln+) g
= Symdiag(fu(lla R 7’11171”__1, ?nJra ?7 T ,tg@+71, 7um_)'

Suppose a is even. — Suppose f € &g, corresponds to F(Xi,---,X;,) €
[ X1, -+, Xm]. By Lemma [7.2.3] the evaluation of 7*(f) at ts ¥ o is equal
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to
F(—U%, T _ugn*_la _17#11’ Tty ?n+)~
Thus the map 7" is explicitly given by
MD[Xla e aXm] — MD[Zh e aZm+] Ac MB[YM e ;mefl]
F(le T 7Xm) — F(_Ylaa T _Y#rfh -1,Z7, - ,ngr).
Suppose a is odd. — Suppose f € g, corresponds to F(Xi,---,X,1) €
g X1, , Xp—1]. By Lemma|7.2.3 the evaluation of 77*(f) at ¢ x o is equal to

a a a a a
F(—uf, - —ul 0t ).

Thus the map 77" is explicitly given by

'Q{B[le e 7Xm71] — ejZ{D[Zb o uZm+] &c 'Q{B[Yh e 7Ym*—1]

F(Xl» T amel) — F(_Y1a7 Ty _Yr?r—l’ zl"'a Zila T gﬁ'fl)'
7.3.2.5. The even case, with non-trivial T and non-trivial 6~. — In this case, § is
trivial. We have

dGFa g JZ{D[)(lv e 7Xm]

and

Ay = D+ c Dy- = |21, Zmt—1] @c BV, -+, Y1)
Consider an element

tm = (symdiag(ti, -« ,t;,+), symdiag(u, -+ ,up-)) € Ty = Tv+ x Ty-.
Since 6~ is non-trivial, we are in the second case in ([5.4.3.2)). Hence
n(tg; xo)= symdiag(uy, - -« U, t1, - tmt) - S X o € LG™,

where S is the permutation matrix switching é,,- and é;_,,- 11, and switching é,,
and é,,41. Since § is trivial, the action of o on G is trivial. We know that S? = 1,
and the conjugation action of S on 7T is given by

. . -1 -1
symdiag(zy, -+, Tp) = symdiag(z1, -+, Ty 1,2~ Ty 15 5 Tine1, Ty )-
Hence with the notation (7.3.2.1)) we have
—1 . : Vg Vg a
sTn(ty x o) =symdiag(—uf, -, —up, - g, —ure e tne gt ) - SV 3o

If a is even, the above element lies in 7 x ¢%. If a is odd, we claim that the above
element is G-conjugate to

symdiag(—u$, -, —up -1, —1,t1, -+ ;tos_1, 1) xo® €T x o
To show the claim, it suffices to show that symdiag(z1, -« , Zpm—, Y1, s Ym+) - S
is G-conjugate to symdiag(x1, -, Zym-_1,— 1,41, , Ym+_1, 1) for arbitrary z;,y; €

C*. Let J be the special orthogonal group of the 4-dimensional quadratic space
span {€,,-, ém, ém+1,8q_m-11} over C. We write elements of J as 4 x 4 matrices
using the given basis. We identify J as a subgroup of G, by letting elements of J
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act trivially on é; for all i ¢ {m~,m,m+1,d —m~ + 1}. Then S € 7, and the 4 x 4
matrix of S is

1

1

Let U and K be elements of J whose 4 x 4 matrices are symdiag(z,,-,ym+) and
symdiag(—1,1) respectively. Now since US is semi-simple (as can be easily seen in
GL4), it must be conjugate in J to some element of the diagonal maximal torus
{symdiag(a,b) | a,b € C*} in J, which must be either K or —K by considering the
characteristic polynomial. But K and —K are actually conjugate in 7. Hence US is
conjugate to K in J. Now inside G we have

Symdiag(xl, T YL, 7ym+)S
= Symdiag(xh T —1 1a Y1, s Ym+—-1, 1)US7

and symdiag(z1, -+, Tpm-_1, 1, Y1, , Ym+—1, 1) commutes with 7. Hence the above
element is G-conjugate to

Symdiag(xla"' 7mm_—1717y17' o 7ym+71a1)K
= Symdiag(xla"' axm*717717y17"’ 7ym+7171)a

as desired. Our claim follows.
Now suppose f € g, corresponds to F(Xy,---,X,,) € @p[Xy, -+, Xp]. By

Lemma and the above claim, the evaluation of 7*(f) at t; x o is equal to
F(_u(f’ t 7_ua -—1 _1at?7 T >t;1n+—17 1>

m

for both parities of a. Thus the map 77* is explicitly given by
X1, Xom] — B2y, Zpr 1] @c (Y1, Vi 1]
F(Xy, - X)) — F(=Y, =Y =128, Z) 4, 1).

7.3.3. — In the following, we collect the explicit description of #7* in all the cases

obtained in §7.3.2]
7.3.3.1. The odd case. —
X1, X — B[ 21, Lt ) Qc B[Y1, -, V-]
F(Xla"' ,an) '—>F(7Y1a7"' aiYn[rlL—aZila"' ) gﬁ)-
7.3.3.2. The even case, with trivial 5T and trivial 6—. —
MD[XD"' 7Xm] —>MD[ZI7"' 7Zm+] ®(C 'Q{D[Ylf" 7Ym_}
F(Xla"' 7Xm) '—>F(7Y1a7"‘ 77Y7?L—aZila"' B fn+)~

7.3.3.3. The even case, with non-trivial 61 and trivial §=. —
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Suppose a is even. —
MD[Xla' .. ’Xm] — %B[Zlv' .. 7Zer71] Qc MD[Yla R 7Y'm_]
F(Xq, - Xm)— F(=Y", =Yoo 28, Zy o4, 1).
Suppose a is odd. —
X1, Xm1] — B[Z1, - Zmr—1] @c Db[Y1, -+, V-]
F(X1,-  Xo1) — F(=Y2,- =Y Z8 . 2%, ).
7.3.3.4. The even case, with trivial 6T and non-trivial §~. —

Suppose a is even. —
X1, X — B[ Z1, -+, Zn+] @c @B[Y1, -+, Vi 1]
F(X1, X)) —> F(=Y&, - =Y —1,70,-.-,2%,).

m——1° » “mt
Suppose a is odd. —
[ X1, Xmo1] — D21, L+ ] Qc B[Y1, -+, Y- _1]
F(Xla"' 7mel) — F(_Ylaa"' a_Yaffla - Zila"' ) zfr_l)'

m mto

7.3.3.5. The even case, with non-trivial 6+ and non-trivial 5—. —
X1, Xm] — WB[Z1, - Zpr 1] @c HB[Y1, 0 Y- 1]
F(Xq, -, Xm) — F(=Y¢, -, =Yoo =1, Z%,--- ,Zo 1, 1).

m

7.4. Computation of twisted transfers

7.4.1. — We keep the setting of assume that /' = Q,,, and import the con-
structions and notations in §§5.5.2H5.5.3] In particular, we fix W, r, ¢, and a hyperbolic
basis By. of W+, and from these data we obtain a Levi subgroup M C G (defined
over Q). Since G is by assumption unramified over Qy, so is M.

Let p = (d*,6%,d™,87) be a quadruple satisfying all the conditions in the defi-
nition of the set %y, except that even when dim W is even and at least 4 we still
allow (dT,6%) = (2,1) or (d=,87) = (2,1) (or both); cf. the discussion at the be-
ginning of Let A be a subset of [r] and B be a subset of [¢]. Although
(A,B,d*,6%,d",07) is more general than an element of &, ; x’ Py as in Definition
the construction in still applies to it and yields an endoscopic G-datum
for M :

eanp =M, "M sy,nu),

which may no longer be bi-elliptic. Also, we obtain an endoscopic datum for M :
QP(M) = ed*,é*,d*,é* (M) = (M’, LM/, S?\/ﬁ 77M)
and an endoscopic datum for G:

L
€d+ 2| A|+4|B|,6+,d= 42| Ac|+4|Be|,6— = (H,"H,s,n),
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both of which are possibly non-elliptic (due to the possible appearance of (2, 1) in the
subscripts). Note that the last two endoscopic data are unramified if and only if both
5% and 6~ have even p-adic valuations. (In the odd case this is automatic.) In the
following we assume that this is the case.

Fix a positive integer a. As in we have the twisted transfer map induced by
the unramified endoscopic datum (H,*H,n, s) for G:

b: H"(Gg,.) — H™(H).

Let p be the cocharacter of G such that the G,,-action on V via p has weight
1 on f1 € By, weight —1 on fo(,12;) € By, and weight zero on the orthogonal
complement of these two vectors. Thus p is given by

G — G, x GL, EEZD soqprty @
Zl—>(2’,1,'~' 717]23"' 712)

if r > 0, and is given by

Gy —s GL SOty — G
Z— (dlag(z7 1)7 127 T 712)

if r=0. Let
fon € H"(Ga,a)
be as in Definition with F' = Qpe and A = —p. Define

= b(f,) € WU (H).

The construction in §5.5.9|still applies to the current slightly more general situation
(with the possibly non-elliptic data). Hence M’ is identified with a Levi subgroup
of H (up to H(F)-conjugation). We have the canonical constant term map (see
Proposition :

(e s HY(H) — H™ (M.
In the following we describe ().

Recall from §5.5.2that M = MS x M5C, where MG is identified with G, x GL
via , and MS© = SO(W). The maximal split torus in MG given by the
product of G}, with the diagonal tori in the copies of GLs is naturally identified with
G F2t. Correspondingly, the algebra &7y cL is naturally identified with

Clet ®c - ®c CleF] @c CI¢E, 1192 ®c - - ®c CCEL ,, (£ .

(Here &4 acts on each (C[C]i, ji+1] by swapping (; and (;4+i.) In the sequel we
shall view elements of the above algebra, such as (; + (2, as an element of .@);cr
or H'(MGY). We have M’ = MG x M"SO (see , and correspondingly we
have

rHur(M/) — /Hur(MGL) Rc HUT(MI’SO).

We retain the notation V;(-) as in Definition [5.5.5]
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Proposition 7.4.2. — The element p*=D/2(f1) € H™ (M) is of the form
K(A,B)®1+1®h,

with k(A, B) € H"(MSY) and h € H"(M'SO). The element h depends only on the
parameter p = (d+,0%,d~,07), not on (A, B). The element k(A, B) is given by

k(A,B) =Y Vi(A) & + &) + Y Vi(B)((5_1 + oy + G55 + G-
i=1 j=1

Proof. — Write Fy, for Qpa. Fix a maximal Fy-split torus S in G, . In this proof we
omit notations for the Satake isomorphisms. We use Theorem to compute (the
Satake transform of) f_,. We have (p, (—t)dom) = (d — 2)/2, and so

pa(2—d)/2f_ﬂ _ Z N\ € (C[X*(S)]Q(F) ~ g,
AEQUF)-(—p)
by that theorem. Let m = |d/2] be the absolute rank of G. As in §7.3.1) o/, is
identified with one of the three algebras
bQ{B[le" aXm]a JZ{D[)(lf" aXm]a JZ{B[)(lf" 7Xm—1]-
Correspondingly, we have
Xi+ X7+ X+ X € o[ Xy, X,
pa(2—d)/2fiu ={ X —|—X1_1 +e X, _|_X;11 c v(Z{D[Xla"' 7Xm}

)

Xy + X7 4+ X + X1 € [ Xy, X
For any positive integer [, we introduce short-hand notations
BV = Bp[Y1, -, Y], ap[V] = apY1,---, Y],
| Z1] = g2y, -, 2], | 2] = |z, , 2],
and
! 1
VDGR =) i+
i=1 i=1

We then compute, according to §7.3.3) that (the Satake transform of) p®(2=4/2 fH in
Ay is given by:

(7.4.2.1)
Vi _+Zn. € D[ Z0+] @ [ Vim-], d odd
Vo _+Z0 . € I Zm+] @ [ V-1 deven, 6t =0 =1,

V4 EE 14 (1) € h(Zm] ® V], deven 3t £1,67 =1,
7:)];:7‘771 + Z%Jr -1- (71)0‘ € MD[Zer] ® MB[ymffl]a d even,(ﬁ = 1757 7£ 17
Vo 28 € B[Znr 1] © B[V 1] deven,dt #£1,6~ # 1.
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Recall that M"S© = SO(W™*) x SO(W™). Write n* for the absolute rank of
SO(W#). Similar to @+, we identify o m+) with one of
ﬂB[Zn‘*']a %D[Zn‘*']a %B[Zn‘*'—l]v

in the odd case, in the even case with 4t = 1, and in the even case with §+ # 1
respectively. Similarly, we identify @50 -) with one of

JZ%BD)TL*L JZfDD)n*L ”Q{B[ynffl]a
in the odd case, in the even case with 6~ = 1, and in the even case with 6= # 1
respectively. The constant term map /g — @) is of the form
D[ Z+] @ p[Vim-] = Grer @ B[ Z,+] @ V-],
D[ Zm+] @ D[ Vm-] = Gyrer @ D[ Zn+] @ [ V-],
D[ Zm+ 1) @ [ Vim-] = Hpror @ SB[ Z,+ 1] @ I V-],
I Zm+] @ D[ Vim-—1] = Gyor @ [ Z,+] @ V- _1],
[ Zm+—1] @ B[V —1] = Dpor @ B[ Zn+ 1] @ B[Vn- 1],

where the division into the five cases is the same as in (|7.4.2.1). In each case, using
Lemma we see that the map is determined by the following rule: Write

A= i1, iu}, A= iy, Jir—u},

B={j1,"* v}, B = {ji, -+ js-v}-
We send Z1,---,2Z, to &y, ,&,, send Yi,--- Y.y to & ,---,& , send
Zutls s Lut2o tO

C2j1—17 C2j1 ) C2j2—17 C2j27 Ty C2ju_l7 CQjm

send Yy _yi1, -, Yr_ug2t—20 tO
Cojy—15 623y r Cago—15C2jar 5 Coj 10 C2jy >
send the remaining Z;’s to Z1, Zs, - - -, and send the remaining Y;’s to Y1, Y5, - - -. From

this description of the constant term map and the previous computation (7.4.2.1)) of
p?(=d/2 fH e see that p®=D/2(fH)y € H™(M') is of the form

kE(A,B)®1+4+1® h,
where k(A, B) is given as in the statement of the proposition, and

h e EQ{SO(Wﬂ ® EQ{SO(W*)
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is given by

=YVo + 2% € [ Zu+] © V-],

=Y+ 28, € Wp[Zu+] ® V-],

Vi + 25+ 1+ (1) € 9B[Z,+ 1] ® B[Vn-],

VR 21— (1) € ah[Z,] ® V-]

Vi H+ 28 € B[Z2n 1] @ B[V 1],

in the five cases as before. Clearly h depends only on p, not on (4, B). O







CHAPTER 8

STABILIZATION

8.1. Standard definitions and facts on Langlands—Shelstad transfer

8.1.1. — For any field F' of characteristic zero and homomorphism I — J of alge-
braic groups over F', we write

D(I,J; F) :=ker(H (F, 1) — H'(F, J)).

Now let F' be a non-archimedean local field of characteristic zero, and G a reductive
group over F'. We recall the definition of k-orbital integrals in the fashion of [Lab99l
§2.7). Let v € G(F) be a semi-simple element, and write I, for (G,)°. Recall
from [Lab99, §2.3] that there is a natural surjection from ©(I,,G; F') to the set of
conjugacy classes in the stable conjugacy class of v, which is a bijection if I, = Gj.
We have a short exact sequence of pointed sets
(8.1.1.1) 1 — L(F)\G(F) — H°(F,I\G) — ®(L,,G; F) — 1,
and a natural map (see [Lab99] §1.8])

HO(Fv I’Y\G) — Hgb(Fv I’Y\G)a
where H?, (F, I\G) is a locally compact topological abelian group. Denote by
R(I,,G; F) the Pontryagin dual group of Hoy (F, I,\G).

Choose Haar measures on I,(F') and on G(F), and equip D(I,,G; F) with the
counting measure. Then the short exact sequence (8.1.1.1)) defines a measure dx on
H(F, I,\G); see [Lab99, §2.7]. For f € C*(G(F)) and k € &(I,,G; F), define the
k-orbital integral

Os(f) = e(Im—l'yw)H(x)f(xilvw)dxa

/zEHO(F,L,\G)

(1 Under the assumption that F' is non-archimedean, R(Iy, G; F) is isomorphic to the group K(I,/F)
defined in [Kot86) §4.6].
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where e([,-1,,) is the Kottwitz sign of I,-1,, (see [Lab99] Def. 1.7.1]). Also define

the stable orbital integral

yx

50, (f) = OL(f).

Remark 8.1.2. — We give a more concrete description of O%(f). For each [z] €
D(I,,G; F), fix an element € G(F) mapping to [x] under the composite map

G(F) — H(F,I,\G) — ©(I,,G; F).

Then v, := 27 'yz is in G(F) and Int(z) induces an inner twisting I, — I,,. In
particular, the Haar measure on I, (F) transfers to a Haar measure on I, (F). Using
this and the fixed Haar measure on G(F), we define the orbital integral

0., (f) = fla™ ).

/ﬂfefu (F)\G(F)
Then we have

O5(f) = Z e(1y,)r(@)O0, ().

[z]eD(Iy,G;F)

8.1.3. — Fix an inner twisting ¢ : G — G* with G* quasi-split, and fix an L-group
datum for G, as in [LS87]. Let (H,H,s,n) be an endoscopic datum for G. For
simplicity, we assume that H = “H (cf. the discussion in . The notion of
when a semi-simple element vy € H(F) (not necessarily G-regular) is an image of a
semi-simple element v € G(F) is defined in [LS90] §1.2].

Under the additional assumption that G9¢" is simply connected, Langlands—
Shelstad [LS90| §2.4] have defined transfer factors for (G, H)-regular elements. Thus
after fixing a normalization we have a number

A(VHafY) S (C7

for each semi-simple (G, H)-regular vy € H(F) and each semi-simple v € G(F).
Moreover, A(vg,7) depends on vy (resp. ) only via its stable conjugacy class
(resp. conjugacy class) over F, and we have A(ygy,v) = 0 unless vy is an image
of ~.

Since we have assumed that H = “H, we can in fact define A(yg,~) for (G, H)-
regular yy without assuming that G9°* is simply connected. In the more restrictive
G-regular case, this is done in [LS8T]; below we explain the (G, H)-regular case. For
this, consider a z-extension 1 - Z — G; — G — 1. This determines a central
extension 1 - Z — H; — H — 1 as in [LS87, §4.4]. As explained in loc. cit., we
have a homomorphism 7 : LH1 — LGl such that (H17LH1,8,771) is an endoscopic
datum for G;. The restriction of 77 to .F/fl is canonical, but 7 itself is canonical
only up to twisting by a cocycle in the center of fl\l In our current situation (with
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H = LH), we can take 1, such that the diagram

(8.1.3.1) )7 EEENE Y.

L

m
LH1 —_— LGl

commutes, where the vertical arrows are the natural ones associated to H; — H
and G7 — G. This pins down 7; canonically. We then define A(yg,~) to be zero
if vy is not an image of v, and otherwise to be A(ym,,71) where vy, € Hi(F)
(resp. 71 € G1(F)) is a lift of vy (resp. ) such that g, is an image of 71, and
A(vm,,71) is defined with respect to the endoscopic datum (Hl,LHl,s,m) for G4
as in [LS90, §2.4]. In the latter case, the pair (yg,,y1) always exists, and is unique
up to simultaneous translation by Z(F'). To show that this definition of A(vyg,7y) is
independent of the lifts, it suffices to check that A(zym,,271) = A(ym,, 1) for all
z € Z(F). For this it suffices to treat the case where vy, is strongly G;-regular. Then
the desired statement is proved on p. 254 of [LS87] (with A = 1). One can also check
that the above definition is independent of the choice of the z-extension G;. For this,
using the standard fact (see [Kot82, Lem. 1.1]) that any two z-extensions of G can
be dominated by a third z-extension, one is reduced to checking that when G9°r is
simply connected, for strongly G-regular vy € H(F), the definition of A(yg,~) as
above (i.e., A(yy,7) := A(ym,,7) with a given z-extension G and with 7, pinned
down as above) agrees with the original definition of A(yg,~) in [LS87]. This is a
routine exercise which involves checking suitable functorial properties of all the terms
Ar,--- ,Ary in loc. cit..

The Langlands—Shelstad Transfer Conjecture and the Fundamental Lemma are now
unconditional theorems thanks to the work of Ngo [Ng610], Waldspurger [Wal97),
‘Wal06]|, Cluckers—Loeser [CL10], and Hales [Hal95|]. We recall these statements in
the following theore taking into account the extension to (G, H)-regular elements
in [L.S90, §2.4].

Theorem 8.1.4. — Let G be a reductive group over a non-archimedean local field
F of characteristic zero. Let (H, LH, s, 1) be an endoscopic datum for G.

(1) (Langlands—Shelstad Transfer.) Fix a normalization of the transfer factors,
and fix Haar measures on G(F) and H(F). For any f € C(G(F)), there exists
fH € C®(H(F)), called the Langlands—Shelstad transfer of f, with the following

(2)We state only the Fundamental Lemma for the unit element of the unramified Hecke algebra. The
references [Ng610|, [Wal06]|, and [CL10] give this result for characteristic zero local fields with
sufficiently large residue characteristic. In [Hal95] it is shown that the Fundamental Lemma for
the unit for all sufficiently large residue characteristic is enough to imply the Fundamental Lemma
(for the full unramified Hecke algebra) for characteristic zero local fields with arbitrary residue
characteristic. See also [LMW18].
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properties: For any semi-simple (G, H)-regqular vy € H(F'), we have

0, vy 1s not an image from G,

8.1.4.1 SO, () =
( ) ) {A(’YH,V)Ofy(f)a v is an image of v € G(F)ss.

In the second situation of (8.1.4.1) we have the following explanations.
— The component s in (H,“H, s n) defines an element of R(L,,G; F) still
denoted by s, and we use that to define O3.

~ We define SO, (f™) and O3(f) using the fized Haar measures on G(F)
and H(F) and compatible Haar measures on GS(F) and HY, (F).

(2) (Fundamental Lemma.) Suppose G and (H,“H, s n) are unramified (see
§7.2.3). Normalize the Haar measures on G(F) and H(F) such that all hyperspecial
subgroups have volume 1. Let K (resp. Kp) be an arbitrary hyperspecial subgroup
of G(F) (resp. H(F)). Then 1k, is a Langlands—Shelstad transfer of 1x as in part
(1), for the unramified normalization canonically associated to K of transfer factors
defined in [Hal93].

(3) (Adelic Transfer.) Let Go be a reductive group over a number field Fy and let
(HO,LHO,so,nO) be an endoscopic datum for Gog over Fy. Suppose there is a finite
set ¥ of finite places of Fy and a reductive model G of Go over Op,[1/3] such that
for all finite places v of Fy outside 3 the endoscopic datum (Hy, LHy, so, no) localizes
to an unramified endoscopic datum over Fy,,, and the transfer factors between Hp,
and G, , are normalized under the canonical unramified normalization associated to
G(Or,,). Let S be the union of ¥ and the set of all archimedean places of Fy, and let
Ago denote the adeles over Fyy away from S. For any f € CSO(GO(A%))), there exists
JH € C(Ho(AR,)) such that the A, -analogue of holds. Here the notion
of an adelic (Gy, Hy)-reqular element is defined in [Kot90, §7, pp. 178-179], and all
the orbital integrals are defined with respect to adelic Haar measures.

Remark 8.1.5. — Part (1) of Theorem appears to be stronger than the orig-
inal form of the Langlands—Shelstad Conjecture in two ways. Firstly, the original
conjecture is about transferring functions on G to functions on a central extension Hy
of H. More precisely, fix a z-extension 1 - Z — G; — G — 1 and obtain H; as in
For a choice of 7y : L, - g, (recall that 7]1\7{\1 is canonical), the conjecture
concerns transferring functions in C2°(G(F)) to functions in C°(Hy(F'), A). Here A is
a character on Z(F') determined by 1y, and C°(Hy(F'), A) denotes the set of functions
in C*°(H;(F)) that transform under Z(F') by A and whose supports are compact mod-
ulo Z(F). Now under our assumption that H = LH, we may and shall pin down 7,
as in §8.1.3] and then A = 1. In view of the definition of the transfer factors discussed
in e know that under the natural bijection C°(Hy(F),1) — C®(H(F)),
a Langlands—Shelstad transfer of f € C°(G(F)) to CX(H1(F),1) in the original
sense corresponds to a Langlands—Shelstad transfer of f to C°(H(F')) in the sense
of Theorem RB.1.4l
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Secondly, in the original conjecture the identity is only required to hold
for all G-regular vy. In [LS90, §2.4], Langlands—Shelstad prove that this indeed
implies (8.1.4.1) for all (G, H)-regular vz, under the assumption that G is simply
connected. In view of the last paragraph, we know that this implication is still valid
without assuming that G9¢* is simply connected (but always under the assumption
that H = “H).

Similar remarks also apply to part (2) of Theorem

8.2. Calculation of some invariants

In this section let G be the special orthogonal group of an arbitrary quadratic space
of dimension d > 2 over Q. Let m := |d/2].

Proposition 8.2.1. — Assume that G is not the split SOy. Then the Tamagawa
number T(G) = 2.

Proof. — By [Kot84bl, (5.1.1)] and Weil’s conjecture on Tamagawa numbers proved
in [Kot88]|, we have

(8.2.1.1) 7(G) = ‘ﬂo(Z(@)F@)

/ [ler' (@, 2(G))|

First assume that d > 3. Then G is a symplectic group of rank at least 1 or an even
orthogonal group of rank at least 2, so Z(G) 2 . In particular, ker' (Q, Z(G)) = 0 by
Chebotarev’s density theorem. On the other hand my(Z(G)?) = Z(G) has cardinality
2. Hence 7(G) = 2.

Now assume that d = 2. Since G is not split, it is isomorphic to the norm-
1 subtorus of Resg/g Gy, for some quadratic extension K/Q. We have Z(G) =
G = C*. The action of I'p on Z(G) factors through Gal(K/Q), and the non-trivial
element of Gal(K/Q) acts by z — z~!. Hence Z(G)'e = {#1}. On the other hand,
ker'(Q, Z(@)) is the dual group of the finite abelian group ker'(Q,T) by [Kot84b)
(3.4.5.1)], and the latter is trivial by the Hasse norm theorem (cf. [PR94, pp. 307
308]). Hence 7(G) = 2. O

Definition 8.2.2. — Let H be reductive group over R assumed to contain elliptic
maximal tori. Define

k(H) == [im(H"(R,75°) — H' (R, T.))

)

where T, denotes an elliptic maximal torus in H and 7€ denotes the inverse image
of T, in H5®. Since all elliptic maximal tori in H are conjugate under H(R), k(H) is
well defined.

Proposition 8.2.3. — Assume that Gg contains elliptic mazimal tori. Then k(G) =
gm— 1 .
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Proof. — If d = 2, then Gy is a torus, so obviously k(G) = 1. In this case m = 1, so
the proposition is true. Now assume that d > 3. Let T, be an elliptic maximal torus
in Gg, which is in fact anisotropic. As argued in the proofs of [Mor10bl Lem. 5.4.2]
and [Mor11l Lem. 5.2.2], we hav

T .

K(G) = |mo(T )| /|mo(2(6)")]

We have mo(Z(G)'~) = Z(G) = Z/2Z, and since T, = U(1)™ we have wo(irm)
(Z/27Z)™. Hence k(G) = 2m~1.

0 m

Recall that GL;r contains elliptic maximal tori precisely when j = 1,2.
Proposition 8.2.4. — For any j > 1, 7(GL;) = 1. For j =1,2, k(GL;r) = 1.
Proof. — For j > 1, Z((/}ij) = C*, on which I'p acts trivially. Hence

m0(Z(GLy)™) = mo(C*) = 1,
and
ker' (Q, Z(GL;)) = 1
by Chebotarev’s density theorem. Thus 7(GL;) = 1 by (8.2.1.1). Since GLir is a

torus, we have k(GL; r) = 1. Any elliptic maximal torus T, in GLg g is isomorphic
to Resc/g Gy, and H' (R, T.) is trivial by Shapiro’s lemma. Hence k(GLag) = 1. O

Corollary 8.2.5. — Let M be a Levi subgroup of G defined over Q. Let M’ be the
group in a bi-elliptic endoscopic G-datum for M. Let H' be the induced endoscopic
group for G. Assume that M is not a direct product of copies of GLy and GLo over
Q, and assume that all four R-groups Gr, Mg, My, Hr contain elliptic mazimal tori.
Then we have

T(G) T(M') _ k(H) k(M)

T(H) 7(M) — K(G) k(M)

Proof. — We have M = MG x M5O, where MG is a product of copies of GL; and
GLy, and M5O is a special orthogonal group which is not the split SO, over Q. Then
M’ is either a direct product of MG with one special orthogonal group Sy of the
same parity and absolute rank as M5©, or a direct product of M with two special
orthogonal groups 51, Ss of the same parity as MS° whose absolute ranks add up to
that of MS©. In both cases, none of S; is the split SOy over Q since M’ is an elliptic
endoscopic group for M.

In the first case, H is a special orthogonal group of the same parity and absolute
rank as G. By Proposition we have 7(G) = 7(H) and 7(M) = 7(M'). By

. ~Too
®)In loc. cit. it is stated that |im(H1(lR,Te N Gdery — HY(R, Te))| = |mo(Te )

/ |m0(2(G)F=)],

and in that context G9¢’ is simply connected. For the correct generalization, one replaces the left
hand side by k(G).
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Proposition we have k(G) = k(H) and k(M) = k(M'). The desired identity
holds.

In the second case, H is a direct product of two special orthogonal groups Hi, H
whose absolute ranks mj, ms add up to that of GG, and neither of the two is the
split SO5 over Q since H is an elliptic endoscopic group for G. By Proposition [8.21]
and the multiplicativity of 7(-) with respect to direct products, we have 7(G) = 2,
T7(H) = 7(Hy)7(H2) = 4, and

T(M') = 7(S1)7(So)T(MCY) = 47 (MCY) = 27 (M5O)r (ML) = 27(M).

Hence the LHS of the desired identity is 1. By Proposition and the multiplica-
tivity of k(-) with respect to direct products, we have
k(G) =2m"t =2.2m~toma—l — ok ([ k(H,) = 2k(H),
and similarly
k(M) = k(M) k(M5O) = 2k(MS™)k(S1)k(Ss) = 2k(M’).
Hence the RHS of the desired identity is also 1. O

8.3. The simplified geometric side of the stable trace formula

We recall the definition of the simplified geometric side of the stable trace formula,
applicable to test functions which are stable cuspidal at infinity. This stems from
Kottwitz’s work in his unpublished notes. Our exposition follows [Morl0b, §5.4].
More discussion on the relationship between the simplified geometric side given here
and the “usual” stable trace formula appearing in Arthur’s work is given in §9.1] below.

Definition 8.3.1. — Let M be a reductive group over R containing elliptic maximal
tori. Fix a Haar measure on M(R). Let M be the inner form of M over R that is
anisotropic modulo center (which exists by our assumption on M). Define

0(M) = e(M) vol(M(R)/Ax (R)°),
where e(M) is the Kottwitz sign of M, M(R) is equipped with the Haar measure
transferred from that on M(R), and A/ (R) is equipped with the canonical Haar
measure obtained by choosing an R-algebraic group isomorphism ¢ : Ay, — G,
and pulling back the Lebesgue measure along the composite isomorphism

log ¢ : Apr(R)? &5 (Ro ) 2L 0ORZ o,

(This measure on Ay (R)°

replace log ¢ by g olog ¢ for some g € GL,,(Z).)

is indeed canonical since a different choice of ¢ would

Definition 8.3.2. — Let G be a reductive group over R. Fix a quasi-character
v: Ag(R)? — C*. Let M be a Levi subgroup of G such that M contains elliptic
maximal tori (of M), and let f € C>(G(R),v~ 1) be a stable cuspidal function (see
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[Art89] §4]|, [Morl0bl §5.4]). For v € M(R) semi—simple elliptic, we define
S®5; (v, f) i= (=) M R(M)K(G) Z<I>M 1 6n) Tr(f | ),

where II runs through the discrete series L-packets belongmg to v, O denotes the
stable character associated to II, and ® (-, Orr) is the normalized stable discrete series
character as in This definition depends on the choices of a Haar measure on
MY (R) (used to define o(MY)) and a Haar measure on G(R) (used to define Tr(f | IT)).

Definition 8.3.3. — Let G be a reductive group over Q. Assume that G is cus-
pidal in the sense of Definition [I.1.6] For f = [f*fsx € CZ(G(A)) with fo €
C°(G(R), v~ 1) stable cuspidal (where v is a fixed quasi-character Ag(R)? — C*),
and for M C G a Levi Subgroup that is cuspidal, define

STy (f ZL )T SOL(f37) S5 (1, foo)s

where « runs through a set of representatlves of the stable conjugacy classes of the
R-elliptic semi-simple elements of M (Q) and

= |(M,/M)(Q)] -
For M C G a Levi subgroup that is not cuspidal, define

STS(f) :=0.
We define
STE(f) = 3§ 1 STE (),
M

where M runs through the Levi subgroups of G up to G(Q)-conjugacy, and n§; is as
in Definition [LT.1l

Remark 8.3.4. — We explain how the Haar measures are normalized in the def-
initions of ST (f) and STY(f) so that the results are independent of the Haar
measures. For each SO, (f37), we need Haar measures on MY(Ay) and M(Ay) to de-
fine the stable orbital integral SO, (-), and need Haar measures on M(Ay) and G(Ay)
to define the constant term f5?. We assume that the two measures on M (A[) are the
same. Then SO,(f37) depends only on the Haar measures on MY(Af) and G(Ay).
Now in the definition of S®%; (7, fo), we need Haar measures on MY(R) and G(R)
(cf. Deﬁnition. We assume that the measures on M9(Af) and M9(R) multiply
to the Tamagawa measure on M9(A), and assume that the measures on G(Ay) and
G(R) multiply to the Tamagawa measure on G(A). Then ST (f) and ST (f) are
independent of the choices of Haar measures.
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8.4. Test functions on endoscopic groups

8.4.1. — We now keep the notation and setting in and Theorem In
particular, G = SO(V, q), where (V, q) is a quadratic space over Q of dimension d > 5,
signature (d—2,2), and discriminant § € Q* /Q*2. Assume that the G-representation
V fixed in is absolutely irreducible. Fix a prime p ¢ (O(V),V,\, K, f*°), and
fix an integer a > ag(O(V), V,\, K, f*°,p). Let f>° be as in

Let et s+,4-6- = (H7LH,3,77) be an elliptic endoscopic datum for G = SO(V),
presented in the explicit form as in In the following we will always assume that
d™ > 2, or equivalently, that in the decomposition H = H*x H~ = SO(V+)xSO(V ™)
the factor HT is non-trivial. By every isomorphism class in &(G) can be
represented by such a datum.

We follow [Kot90] §7] to define a test function f# € C>°(H(A)). By definition,
fH =0 unless the following condition is satisfied:

(f) The R-group Hg contains anisotropic maximal tor and the Q,-group Hg,
is unramified.

Note that for our explicit representative (H, LH, s, 1), the group Hg, is unramified if
and only if the localization of the endoscopic datum (H, L, s, n) over Q, is unrami-
fied. Also, if Hg contains anisotropic maximal tori, then H is cuspidal as a Q-group,
and neither of HH:{ is isomorphic to the split SO5 over R. It easily follows from the last
condition that the localization of the (globally elliptic) endoscopic datum (H, ™ H, s,7)
over R remains elliptic, as an endoscopic datum over R. Conversely, if H is cuspidal,
then since Ay is trivial by the (global) ellipticity of (H,”H, s,n), we know that Hg
contains anisotropic maximal tori. In conclusion, (}) is equivalent to the following
condition:

(f) The Q-group H is cuspidal, and the Q,-group Hg, is unramified.

Moreover, as we have seen, these conditions imply that the endoscopic datum
(H, LH, s, n) is elliptic over R and unramified over Q,. In the following we assume
that (f) and () hold.

By definition f¥ is of the form

= pH g pH
with fZ € C°(H(R)) stable cuspidal, and ff € C*(H(Qy)), f7HP> C(H(AY)).
(As Z9 is anisotropic over R we do not need to specify central characters for the
notion of stable cuspidal functions.)

We fix a Haar measure on H(A%) arbitrarily, and fix the Haar measure on H(Q,)
such that hyperspecial subgroups have volume 1. Then there is a unique Haar measure

In [Kot90! §7], the more general condition at the archimedean place is that elliptic maximal tori
in Gg should “come from” Hpy. In our situation, since Gr contains anisotropic maximal tori, the
condition simplifies to the one in the text.
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on H(R) such that the product measure on H(A) is the Tamagawa measure. We fix
this measure on H(R) as well.

8.4.2. — The definition of ff will depend on the choice of an auxiliary datum
(4, Bg.u ), which we now specify. Here j : Ty — Tg is an admissible isomorphism
between anisotropic maximal tori Ty C Hr and Tg C Gg; see for the notion of
admissible isomorphisms over C, and note that any C-isomorphism T ¢ = Tac is
automatically defined over R since both Ty and T are anisotropic over R. The other
part B g is a Borel subgroup of G¢ containing T¢ ¢; in other words, (T, Bg,m)
is a fundamental pair in Gg. Later we shall also use the choice of (j, Bg m) to
normalize the archimedean transfer factors between H and G. The dependence of fZ
on (j, Be,m) is analogous to the dependence of a transfer of a function from G to H
on the normalization of transfer factors. However this is only an analogy, as fZ is
not defined to be the transfer of a function on G.

We now fix (j, Bg, i) once and for all in the following way. We let the fundamental
pair (T, Ba,m) arise, in the way described in from an elliptic decomposition
(Deﬁnition DH € ED(VR). Moreover, in the even case we assume that D gives
rise to the orientation oy on Vg fixed in In other words, D € ED(V&)° in the
notation of §6.1.7] As the notation suggests, we shall make possibly different choices
of DX for different (H, g, s, 7); a uniform choice is sometimes not possible because
of some further conditions to be imposed in the following paragraph. Once D has
been chosen, we choose j as follows. Recall that H is of the form H = HT x H~ =
SO(V*) x SO(V™). To define j : Ty — Tg, we choose an elliptic decomposition
Dy = (Dy+,Dy-) of (Vi, Vi) which should induce the fixed orientations on V* in
the even case; in other words Dy € ED(Vi)° x ED(Vg )° in the notation of §6.1.9)
Then we define j to be jp,, pr in the notation of By Lemma this 7 is
indeed an admissible isomorphism.

Now let us specify further conditions on D¥. Since the signature of Vg is (d —2,2),
we know that D involves exactly one negative definite plane as its member. In the
odd case, we assume that D lies in ED(Vk)S;., as in Definition This means
that the unique negative definite member of D is the last member; cf. Example
In the even case, unless m = d/2 is odd and d = 2, we assume that D lies
in ED(WR)%c as in Definitions [6.2.12 and [6.3.8] meaning that the unique negative

nice

definite member is the last (resp. second last) member if m is even (resp. odd). If
in the even case m is odd and d™ = 2, we assume that the unique negative definite
member of D is the last member. In this case, D is not in ED(V&)%.., but it differs
from an element thereof by the transposition (m —1,m) € &,,.

As long as d is not = 2 mod 4, we can clearly choose D satisfying all the above
conditions independently of (H, LH, s, 7). When d = 2 mod 4, we need to adjust the
choice of D according to whether d* = 2 or not. For instance, for all (H, LH, s, 7)

with d* # 2 we may choose D to be some common D, and then we may choose
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DH for dt =2 to be (m — 1,m) - D, i.e., D with the last two members swapped. In
particular, we see that in all cases, we may and shall arrange that T is independent
of (H, Ly, s,m), which justifies our notation.

Since SO(V*) is non-trivial, our assumptions on D imply that the factor U(1)

of T corresponding to the unique negative definite member of D¥ is sent under j*

into SO(V*+) C H.

8.4.3. — The fixed choice of (j, Bg ) determines a Borel subgroup By of H¢ con-
taining Ty ¢, a subset Q. of = Q¢ (G, Ti), and a bijection induced by multiplication

Qg x Q. — Q
as follows. Here Qg := Q¢(H,Tx) is viewed as a subgroup of 2 via

Qg — Aut(Tuc) = Aut(Tgc) D Q.
J

The Borel subgroup By is characterized by the condition that the By-positive roots
on Ty ¢ are transported via j to Bg, g-positive roots on Tg c. (Note that (Tw, Brr)
is nothing but the fundamental pair in Hr determined by D as in §6.1.6, where D
is as in §8.4.2]) The subset Q, C € consists of those w € Q such that the B-positive
roots on Ty ¢ are transported via j to wBg, g-positive roots on T c.

Let V* be the contragredient representation of V. Let ¢y~ be the discrete Langlands
parameter of Gg corresponding to V*, i.e., the L-packet of ¢y« consists of discrete
series representations of G(R) having the same infinitesimal character as the G(C)-
representation V* @ C (which is irreducible). Let ® g (py+) be the set of equivalence
classes of discrete Langlands parameters of Hg that induce the equivalence class of
oy« vian: "H — “G. As on [Kot90, p. 185], we have a bijection

we() 1 Purpy-) — L, o — wilpn),
characterized by the condition that ¢ is aligned with (w.(¢om)~' 0 j, Bg,m, By) in

the sense of [Kot90] p. 184].
For any o € ®p(pv~), define

(8.4.3.1) fow =dH)™" Y fr e CX(H(R)),
m€l(¢n)

where the terms are explained in the following.

— The summation is over the discrete series representations 7w of H(R) inside the
L-packet II(ppy) of oq.

— For each m, the function fr € C°(H(R)) is a pseudo-coefficient for m; see
[CD85|]. Note that this notion depends on the choice of a Haar measure on H(R).
We use the one fixed in §8.4.1]

— We define d(H) to be the cardinality of II(¢g). Note that this number is an
invariant of Hg, equal to the cardinality of the complex Weyl group divided by the
cardinality of the real Weyl group of an elliptic (i.e., anisotropic) maximal torus.
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The function f,,, is stable cuspidal. Using this, we build the function fZ in the
following definition; cf. [Kot90} p. 186], [Mor10bl §6.2].

Definition 8.4.4. — We define
FL= (0" g, s); > det(we(pn)) fon € CF(H(R)).

P EPH(pyr)
Here pr, € X.(T¢) is the Hodge cocharacter of any h in the Shimura datum X that
factors through Tg. The number (ur,, s); is defined to be the image of (71 o ur, 5)
under the canonical pairing

~ ~ ~ ~

X.(Tyg)x Z(H) - m(H) x Z(H) = X*(Z(H)) x Z(H) — C*.
For each w € Q, we write det(w) for the sign of w
Remark 8.4.5. — By construction fZ is stable cuspidal.
Lemma 8.4.6. — We have (ur,,s); = 1.

Proof. — Using the observation made at the end of we compute that the image
of j7Y o ur, € Xu(Ty) in m(H) = m(H) x m(H~) has non-trivial projection in
7 (H") & Z /27 and trivial projection in 71 (H ). We conclude the proof by recalling
that s has trivial component in Z (f[i) O

8.4.7. — We normalize the transfer factors between (H,”H, s, n) and G at various
places as follows.

We use the canonical unramified normalization associated to K, of the transfer
factors at p (see [Hal93]), denoted by (A%),. Associated to the datum (4, Bo.m)
fixed in we have Kottwitz’s normalization [Kot90], §7] for the transfer factors
at 0o, which we denote by Aj g, ,, (cf. § and also by (A%)e. We normalize
the transfer factors away from p and oo such that at almost all unramified places we
have the canonical unramified normalization (associated to the hyperspecial subgroup
determined by some reductive model of G over Z[1/X] for some finite set ¥ of primes)
and such that the global product formula with (A%), and (A%)s is satisfied (see
[LS87, §6]). For each place v ¢ {p, oo}, we denote our normalization by (A%),.

We are now ready to give the definitions of the other two parts f7?>° and ff in

.
Definition 8.4.8. — Define fH»> ¢ Ce°(H(A%)) to be a Langlands-Shelstad

transfer of fP>° as in Theorem [8.1.4] with respect to the Haar measure dg”*> on

G(A%) fixed in §1.8.3| and the Haar measure on H(AY) fixed in §8.4.1, Here the
transfer factors are normalized as in

(®)This is indeed equal to the determinant of w acting on the finite free Z-module X, (Te), which
explains the notation. In §4.2.2| the sign function is denoted by €(-), but in the current chapter we
prefer the notation det(-).
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Definition 8.4.9. — Let p: G, — Gg, be a Hodge cocharacter of the Shimura
datum O(V) defined over Q, (see §1.5.1). Let f_, be the element of H"(Gq,.)
associated to —p as in Definition t ff = b(f-,) be the image of f_,, under
the twisted transfer map b : H"(Gg,.) — H"(Hg,) as in We identify fH
with a realization of it in C2°(H(Q))); see Remark below.

Remark 8.4.10. — Once an element 1 € H"(H) is specified, it still corresponds
ambiguously to different functions on H(Q)). Namely, for each choice of a hyperspe-
cial subgroup Kg, of H(Q,) there is a corresponding Kz ,-bi-invariant function in
H(H(Qp) / Ku,p). These functions have the same stable orbital integrals, as noted
in [Kot90, §7]. Indeed, as we saw in these functions are related to each other
under pull-back by inner automorphisms of Hg,, and these automorphisms do not
permute the stable conjugacy classes. The same remark applies to the various canon-
ical constant terms (see Proposition (S € H™(M') for Levi subgroups
M’ of H defined over Q. It follows that the evaluation of ST (Definition at
the test function f7 = folifffH’p’Oo is unaffected by the ambiguity in ff.

Remark 8.4.11. — The function f depends on a via the component f}fl.

8.4.12. — Now suppose M is a standard proper Levi subgroup of G (i.e., one of
My, Ma, M1 as in §1.4) and consider a bi-elliptic endoscopic G-datum for M

eaBp = A Batstao- = (M M sy )
presented in the explicit form as in §5.5.6l More precisely, the construction in
depends on the choice of a hyperbolic basis as in §5.5.2] Thus we need to fix a hy-
perbolic basis of Wit = Vi @ V/Vit (vesp. Wst = Vo @ V/V5') when M € { My, M1o}
(resp. M = M;). We always take the hyperbolic basis {e;, e} } of Wi and the hyper-
bolic basis {ey, €2, €}, €} } of Wi, where e;, e} are as in
As in and Proposition ¢, B,p induces the endoscopic datum
ep(M) = (M/’LM/73/1\4777M)
for M, and the endoscopic datum

L
Cqt 12| A|+4|B|,6+,d—+2|Ac|+4|Be|, 5~ = (H, " H,s,m)

for G. Moreover, recall that we have fixed in §5.5.9 an H(Q)-conjugacy class of
embeddings M" < H with images Levi subgroups, and in particular we have the

diagram ([5.5.9.1) commuting up to G-conjugation. We now fix such an embedding
M’ — H on the nose.

We assume that H satisfies condition (}) in It follows that M’ is unramified
at p, and the endoscopic datum (M’, “ M, shy, ) for M is unramified at p. Also we
assume that the parameter p is such that the component of sp; in .7\7% is not —1,
from which it follows that H* is non-trivial. Thus the preceding discussion in this
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section can be applied to (H, LH, s,m). We normalize the transfer factors between
(M’ XM’ s, nar) and M as follows.

Away from p and oo, we normalize the transfer factors by inheriting the normaliza-
tion between (H,”H, s,n) and G fixed in with respect to our fixed embedding
M' — H; see Remark below. At p, we use the canonical unramified normal-
ization associated to the hyperspecial subgroup of M(Q)) determined by K, (i.e., the
image of P(Q,) N K, under P — M, where P C G is the standard parabolic sub-
group such that M = Mp; cf. Remark , which is also the same as the normal-
ization inherited from the canonical unramified normalization between (H, Lh, s, 7)
and G associated to K. For later reference, for each finite place v, we denote the
above-mentioned normalization by (AM)4B or simply (AM,)4B. We denote the
above-mentioned hyperspecial subgroup of M(Q,) by M(Z,). At oo, we do not yet
fix a normalization. In fact, precise knowledge about signs between different normal-
izations in this case is key to our later computation; this will be investigated in §8.9]
below.

Remark 8.4.13. — At each place v of Q, there is a notion of the normalization of the
transfer factors between (M’,“M’, s, mr) and M inherited from the normalization
of the transfer factors between (H,” H, s,7) and G with respect to our fixed M’ — H.
It is described via a simple formula as in [Mor10bl §5.2] or [Mor11, §5.1]. Roughly
speaking, this means that apart from the difference in Ay, the transfer factor between
M’ and M is equal to the transfer factor between H and G for any G-regular element
of M'(Q,) C H(Q,) and any preimage of it in M(Q,) C G(Q,). Here it is crucial
that the diagram 1) commutes up to @—conjugacy.

An important property is that if the normalizations between H and G at all places
satisfy the global product formula, then so do the inherited normalizations between
M’ and M at all places; this is due to the fact that our choice of M’ < H is global.
To see this, one simply notes that the term Ay can be ignored from the definition of
transfer factor when deciding whether local normalizations satisfy the global product
formula.

We now say a few words on the proof of the existence of the inherited normalization.
The original source is Kottwitz’s unpublished notes, where this result is marked as
an easy consequence of the definition of transfer factors in [LS87]. Indeed it can
be proved similarly as [Hal93| Lem. 9.2]. Alternatively, in our particular situation,
one can prove this without much difficulty using the explicit formulas for the transfer
factors in [Wall0].

Proposition 8.4.14. — Keep the setting of . The function (fHP>°) €
C°(M'(AY)) is a Langlands—Shelstad transfer of (f7°°)nr € C2°(M(AY)) in the sense
of Theorem with respect to the normalization of transfer factors (AM,)a 5 as
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Proof. — In view of the Fundamental Lemma we can pass to a local setting over some
Q. (with v # p,00) instead of the adelic setting. The statement can then be proved
similarly as [Mor10bl, Lem. 6.3.4], with the following two modifications.

Firstly, we replace G, and M, by GY and MY in the proof of part (i) of loc. cit..

Secondly, in the proof of part (i) of loc. cit., Morel cites [LS90, Lem. 2.4.A]
in order to reduce the proof to checking the matching of orbital integrals for those
v € M'(Q,)ss that are M-regular, or even G-regular (meaning that all matching
elements of M (Q,)ss are G—regular)@ Since Mye, is not simply connected in our
case, we cannot directly apply [LS90, Lem. 2.4.A], but this can be circumvented
by the following argument. To simplify notation, we understand that all reductive
groups and endoscopic data are over QQ,. Suppose we have already established that
¢ € CX(M(Qy)) and ¢’ € C*(M'(Q,)) have matching orbital integrals for all G-
regular v/ € M'(Qy,)ss, and want to deduce the same for all (M, M')-regular v €
M'(Q,)ss- As in we pick a z-extension 1 — Z — M; — M — 1, and obtain
from it a central extension 1 — Z — M| — M’ — 1 as well as an endoscopic datum
(M, Ly, s, » M, ) for My such that the diagram analogous to commutes.
As in Remark [8.1.5] we identify ¢ with a function ¢; € C°(M1(Qy), 1), and identify
@' with a function ¢} € C°(M{(Q,),1z), where in both cases 1z denotes the trivial
character on Z. We say that an element of M7 (Q,)ss is G-regular if all the matching

elements of M;(Q,)ss are preimages of G-regular elements of M(Q,)ss. Then ¢; and
¢ have matching orbital integrals for all G-regular elements of M{(Q,)ss. Now note
that for any maximal torus T' C Mj, there is a dense subset of T'(Q,) consisting of
G-regular elements. By this and the proof of [LS90, Lem. 2.4.A], ¢; and ¢} have
matching orbital integrals for all (M;, Mj)-regular elements of M{(Q,)ss. It follows
that ¢ and ¢’ have matching orbital integrals for all (M, M’)-regular elements of
M’ (Qy)ss, as desired. O

8.5. Statement of the main computation

8.5.1. — Let M be a standard proper Levi subgroup of G. Define
(8.5.1.1)
Tty = (nfp) ™! > |Oute (ea,p,p)| " 7(G)r(H) ' ST{L (7).

eaBp=(M" "M sp )
€éa (M)
Here the summation is over a subset (o@(;(M ) of the set of explicitly presented bi-
elliptic endoscopic G-data for M as in §5.5.6{ (in other words, (M) is a subset of
the parameter set &, x' Pw = {(4, B,p)} in the notation of §5.5.6|) such that the

component of sy in M3 is not —1 and such that each isomorphism class in &g (M)

(6)Note the following typo: In the second line of the second paragraph of the proof of [Mor10b]
Lem. 6.3.4], “regular in H” should be “regular in M”.
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is represented exactly once. (Clearly the two conditions can be simultaneously met.)
For each (M’, LM sy, ) € (M), we let (H, Ly, s, 1) be the induced endoscopic
datum for G. More precisely, for (M’ LM’ sy, mar) = €A, B, dt,o+.d- 65— We let

(H,"H,$,1) := €q+ 2| A| 14| B+ d- 12| Ac| +4] Be 6~

as in Proposition Note that HT is non-trivial by our assumption on sy;. The
function f¥ is defined in We fix M/ < H as in so as to view M’ as a
Levi subgroup of H, and define ST, (f) as in Definition m

Note that our definition of Tr, is independent of the choice of &;(M). Indeed, one
directly checks that the summand associated to (A, B,p) is equal to that associated
to (A¢, B¢ su(p)) (in the case where both parameters satisfy the condition on sps
imposed before). Hence such a summand depends only on the isomorphism class of
€A,B,p in Ea(M).

Recall that the definition of f depends on the fixed integer

a Z aO(O(V)7Va )‘aKa f007p)

Clearly the definitions of both f and Tr}, make sense for all integers a > 1. We
shall henceforth view Tr/M as a function in @ € Z>;. On the other hand, we have
Tras (fP*°dgP >, K, a) as in Deﬁnition We abbreviate it as Try;, and also view
it as a function in a € Z>1.

Theorem 8.5.2. — For all large enough a we have Try; = Try,.

8.5.3. — Note that in the even case and for M = Ms,, we have Try; = 0 since
(M;)r does not contain elliptic maximal tori (see Remark [2.4.6). In this case, we
also know that each M’ appearing in is non-cuspidal, and hence ST, = 0.
Indeed, recall that M’ = MG x M’SO, where M"SO is the group in the elliptic
endoscopic datum eg+ 5+ 4- 5- (W7) for M5O = SO(W;). This ellipticity, together
with the fact that M3© is not the split SOy over Q, implies that neither of (d*, %)
is (2,1) in Zso x (Q*/Q**?). Hence if M’ is cuspidal, then (M"5°)g must contain
anisotropic maximal tori, and so as in we have 6% = (—=1)%°/2 in R* /R*2, from
which § = (—1)(@"+d7)/2 — (_1)4/2=1 jn RX/R*:2, contradicting with the fact that
§ = (—=1)%? in R*/R*-2, Thus in the even case with M = Mj we have already proved
the theorem. The proof of the theorem in the remaining cases occupies §§8.6H8.14

8.6. First simplifications

8.6.1. — We keep the setting of and assume that we are not in the even case
with M = M, since in that case Theorem [85.2] is already proved. As in §1.4.3] we
have M = GI, x GL, x SO(W) for some r € {0,1,2},¢ € {0,1} ,W € {W;, Ws}. De-
note by &(M )" the subset of &(M) consisting of isomorphism classes of endoscopic
data whose groups M’ are cuspidal and unramified over Q,. For each isomorphism
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class in &(M)>"", we fix a representative of the form e, (M) for some p € Py, where
the notation is as in Definitions[5.4.2} [5.5.4] and §5.5.6] Thus there are a priori up to
two choices of p for each isomorphism class, and we fix one choice. We may and shall
also assume that each choice p = (d,8%,d~,67) satisfies d* > 2. In the following,
we denote this set of representatives by & (M),

Note that M5© is never isomorphic to the split SO, over Q. Hence the same argu-
ment as in §8.4.1] shows that every element e, (M) of &(M)>"" satisfies the following
conditions:

(1) As in §5.5.6] write the group in e,(M) as M’ = MG x M"S©. Then the
R-group (M’S9)g contains anisotropic maximal tori.

(2) The localization of e, (M) over R is still elliptic as an endoscopic datum over
R.

Lemma 8.6.2. — We have

ngy Tryy = > [Outay(ep(M))| ™ Y 7(G)7(H) ' STip (7).
eF(M)eg?(M)c,ur A,B

Here the second summation is over the following ranges:

— In the odd case for M = Mja, we have A € {,{1},{2},{1,2}}, B € {0}.
— In the even case for M = Mis, we have A € {0,{1,2}},B € {0}.

~ For M = My, we have A € {0},B € {0,{1}}.

— In the odd case for M = My, we have A € {(,{1}}, B € {0}.

For each triple (ep(M) = e+ s+ q4- 5- (M), A, B) appearing in the summation, we set

(H,"H,5,1) 1= Cq+ 12| A|+4|B|6+ d—+2| Ac| 14| B<|,5—
write M" for the group in e,(M), and as in §8.5.1| identify M’ with a Levi subgroup
of H so as to define ST, (fH) .

Proof. — We first note that the formula eg+ 19 a|44B|,5+,d- +2/Ac|+4|Be|,5- indeed
gives an elliptic endoscopic datum for G, i.e., neither of (d* + 2|A| +4|B|,d*) and
(d= +2|A°|+4|B¢|,57) is equal to (2,1) € Zxg x (Q*/Q**2). Indeed, since M5 is
not the split SOy over Q, we know that neither of (d*,d%) is equal to (2, 1), which
immediately implies our assertion. Also, we have d* + 2|A| + 4|B| > 2 since we
have already assumed that d* > 2 in Thus STH,(f#) in the lemma is indeed
defined.

It is clear from the definitions that if a term ST{, (f) on the RHS of (8.5.1.1)
is non-zero, then H is cuspidal and unramified over Q, (since otherwise A =0),
and M’ is cuspidal (since otherwise ST, = 0). Clearly the condition that H is
unramified over Q, is equivalent to the condition that M’ is unramified over Q,. In
the odd case, the cuspidality conditions are automatic. In the even case, suppose
we have (M',*M’ sy, na) = €A B+ o+ d-5- € &a(M) such that M’ is cuspidal.
Then as we have mentioned in §8.6.1, (M’S°)g contains anisotropic maximal tori,
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so by the same argument as in we have 0% = (—1)di/2 in R*/R*2. On the
other hand the condition that H is cuspidal is equivalent to Hr having anisotropic
maximal tori by the discussion in and hence is equivalent to the conditions
that 0+ = (—1)4"/2HAN2IBl and that 6~ = (—1)7 /2FA°+21B°] iy RX /R*2. Thus
given that M’ is cuspidal and given that d is even, H is cuspidal if and only if |A]
and |A¢| are both even.

The above discussion shows that in , we can replace the summation set
&c(M) by the subset &g(M)*™ consisting of elements ea g, = (M',“ M’ snr,1m01)
such that M’ is cuspidal and unramified over Q,, and such that | A| and | A°| are even in
case d is even. Thus up to re-choosing & (M) (which does not affect the definition of
Tr);), we may assume that whenever ¢4 g, € &g(M)*™ we have e, (M) € &(M)*™.
We thus have a well-defined map F : &g(M)®" — &(M)*"™ sending each ¢4 g p to
¢p(M). For each ¢, (M) € &(M)*™, we let I'(p) denote the set of (A, B) as in the
summation range in the current lemma. We divide our analysis into two different
cases.

Case 1. Suppose p = (d*,0%,d",07) with (d*,8%) # (d7,67). Then one
checks that F~*(ey(M)) = {eapyp | (A, B) €'(p)}. Moreover, for each eqp, €
F~'(ep(M)), we have [Outg(ea,p,p)| = [Outar(ep(M))]. (See § and @ for
the computation of these two groups.) Thus the summand indexed by e, (M) in the
current lemma is equal to the sum over all e4 g, € F~!(ey(M)) in .

Case 2. Suppose p = (d*,0%,d~,67) with (d*,67) = (d~,6). Then

{eanp | (A, B) €T(p)} = F(ep(M)) U {eacpep | eamp € F 7 (ep(M))}
(The union is disjoint.) Moreover, for each (A, B) € I'(p), we have |Outas (e, (M))| =
2|Outg(ea p)|, and we know that the summand 7(G)7(H) *STH, () indexed by
(A, B) in the current lemma is equal to the term 7(G)7(H)~1STH,(f#) in
arising from either e4 p, or eac pep, whichever lies in gg(M) Thus we again see

that the summand indexed by ¢, (M) in the current lemma is equal to the sum over
all es pp € F~1(ep(M)) in (8.5.1.1). The proof of the lemma is complete. O

8.7. Expanding the simplified geometric side of the stable trace formula

Let (ep(M), A, B) be a summation index as in Lemma We study the term
STH, (fH) arising from this index.

Definition 8.7.1. — Let X(M’) be a set of representatives in M’(Q) of the stable
conjugacy classes in M’(Q) that are R-elliptic.

Lemma 8.7.2. — We have an expansion

(8.721)  STHUM) =r() Y () S0, (FE) S (1 11,
7 ER(M)
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Here fH> .= fH7p7°°fsz. Moreover, in (8.7.2.1]), only those ' that are (M, M’)-
regular contribute non-trivially.

Proof. — The first statement follows from the definitions. To show the second state-
ment, suppose 7' € %(M’) is not (M, M')-regular. We show that S®, (v, fH)
already vanishes. For this, it suffices to show the vanishing of

S0 (v o) Te(f2 | ),
I

where the summation is over the discrete series L-packets II for Hg. For this it suffices
to show the vanishing of

-1
> det(wilpm))®in (Y, Onigpn))-
pHEDPH (py=)
By [Morll] Prop. 3.2.5, Rem. 3.2.6], the above quantity is zero provided that 7/ is
not (M, M')-regular. O

8.7.3. — We continue the study of (8.7.2.1). By Lemma we only need to sum
over those 7/ € X(M’) that are (M, M')-regular. By Proposition [8.4.14] we may

further restrict to those 4’ that is an image of a semi-simple element vy, € M (A’;),
and in this case we have

(8.7.3.1) SO (f3r7%°) = (AN P (V1) O3 (F57),

where s}, is given by the endoscopic datum e, (M) = (M’,* M, s/, mrr) for M, and
(AM)AB(y' ~v5r) denotes the product of the local transfer factors over finite places
v # p, normalized as in We remind the reader that s}, is different from sy,
asin ey, a5 = (M, "M’ spr,mn), and ), is independent of (A, B). By contrast, the
normalization (AY,)4B of transfer factors between M’ and M at v depend on (4, B).
Nevertheless, for almost all v, (A},)45 is the canonical unramified normalization
(associated to the hyperspecial subgroup determined by some reductive model of M
over some Zariski open in SpecZ). Hence for almost all v, (A%,)AvB

477 is independent
of (A, B).

Definition 8.7.4. — For each v # p, 00, let €,(A, B) € C* be the constant such
that (AM AP = ¢, (A, B)(AY )20, Let

e"(A,B) = H €y (4, B),
V#£p,00

where almost all terms in the product are 1.

Definition 8.7.5. — Let X(M’); be the set of v/ € £(M’) such that v is (M, M')-
regular and is an image of a semi-simple element of M (A?). For each v € (M),
let ypr € M (A’}) be a semi-simple element such that + is an image of vy, and define
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I(ep(M),7') == ™ (7)) (AN (v, ar ) O3 (f5)
ST (A, B)r(G)r(H) T (M) SO () S5, (o, 1),

A,B

where the terms (AY,)g 4(v/,var) and Ofyé‘é( P:°%) are the same as in (8.7.3.1]) (except
that (A, B) is replaced by (0,0)), and the summation »°, 5 as well as the terms

involving H have the same meaning as in Lemma By (8.7.3.1) we know that

this definition is independent of the choice of ;. For each (A, B) as above, we also
define

K(ep(M),~', A, B) := (—1)1=) Z det(w. ()@ (71, Opp ),
PHEDH (Py*)
where O, = Oy, is the sum of the characters of the members of the L-packet

H(¢p), P (-, ©,,) is the normalized stable discrete series character as in §4.2.1] and
the other notations are as in §8.4.3|

Lemma 8.7.6. — We have
ngr Trhy = > Outar(ep(M)[™H Y I(ep(M),"),
ep (M)=(M" .2 M’ s, ) €6 (M) v eX(M)
and
I(ep(M),y') = 2 () HAM) ™ (V1) O (f37° ) (M) k(M) K(G) ™!
: (_1)dim AM/’D((M/)S’)_l Z GP’OO(A7 B)SO’Y’( gM’)K(eP (M)7 '71’ A7 B)
A,B
Here the summation range for ZA’B is the same as in Lemma .

Proof. — The first identity follows from Lemma Lemma §8.7.3 and the
definitions. The second identity follows from Corollary Lemma and the
definitions. O]

8.8. Computation of K

8.8.1. — We keep the notation of Definition and study K(e,(M),~', A, B).
As usual we write e,(M) = (M',“ M’ s, ). We would like to apply [Morlil
Prop. 3.2.5] to compute K. First we need some preparations.

By construction M’ = MG x M"S© and M’"S© is a product of two special orthog-
onal groups M’SO+ M"SO.~ guch that the component of sy, in the dual group of

M'SO:% is the scalar matrix +1. Fix an elliptic maximal torus Ty in M} such that
~" € Thr(R). Then Ty is of the form

Ty = TMGL X TM/,so,+ X TM/,so,f
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where Ty (vesp. Typrso.+) is an elliptic maximal torus in ME" (resp. Mﬂgso’i).
Moreover, as we have already seen in the tori T).s0,+ are in fact anisotropic
over R. Note that when M = M5 or Ms, we have necessarily Th;c. = MST. When
M = My, we have MS* = GLy, and Tyycr is GLy(R)-conjugate to Tgp ; cf.

We then fix an elliptic maximal torus Ths in Mg, and an admissible isomorphism
gar : Tarr — Tasr. Recall from § that M = MG x M5O = MG x SO(W), where
W =Wy if M = My or M5, and W = W if M = M,. We may and shall assume that
Ty is of the form Ty e X Thyso, where Tyyso is an elliptic (and in fact anisotropic)
maximal torus in MEO, and Tyscr is as above. We may and shall also assume that
jn is the product of the identity on Th,;cr and an admissible isomorphism

Jmso : Thprso+ X Thyrso,- = Thsso,

where the notion of admissibility is with respect to the endoscopic datum e, (W) for
MSO

For any choice of a Borel subgroup BO of G¢ containing T c, we get a canonical
1s0morphlsm 0B,.8: TM — T as in 5 6, where (7, B) is the standard Borel pair in
G fixed in Definition 2| Identifying 7 with (C*)™ as in Definition we have
m standard characterb on T forming a basis of X*(7), and they give rise, Via 05,.8,
to m cocharacters of Thsc. We denote them (in order) by

T015T095T1, T2y " " s Tm—2, lfM:Mlg or Ml,

and by

TOsT1, T2y »Tm—1, if M = My (in the odd case).
We now fix a choice of By such that the resulting cocharacters (just mentioned) satisfy
the following conditions, the second of which depends on the choice of jj;.

(1) When M = M, we require that 79, and 79, are respectively the identity
cocharacters of the first G, (i.e. GL(V1)) and the second G,, (i.e. GL(V2/V1)) in
Ty = Gy xGy, C Thy. When M = M, we require that 79, and 7y, are cocharacters
of Tyser ¢ C Th,c, and that they are of the form

z|—>g<z 1)91 and z%g(l Z>gl

for some fixed g € MY (C) conjugating the diagonal torus in MSL = GLac to
Tyreu ¢ (Clearly this pins down 79, and 79, up to swapping the two.) When M = Mo,
we require that 79 is the identity cocharacter of Tyser = GL(V1) = G, C Thy-

(2) We require that jI\_/I1 o 7; is a cocharacter of Ty so.- ¢, for each 1 < i < n™.
Here n~ is the dimension of Ty .so0.- ¢.

Indeed, the above conditions can be arranged because of the following observations:

— For an arbitrary choice of By, the resulting 7’s have the following property: The
prescribed cocharacter(s) in (1) which we ask 79, and 79,, or 79, to equal, are among
the 7’s and their inverses. This is because these prescribed cocharacter(s) can be
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extended to a Z-basis of X, (Tys) under which the root datum of (G¢, Tar,c) becomes
the standard type B or type D root datum on (Z™,Z™).

— By making different choices of By, we can arbitrarily permute the order of the
7’s and replace an arbitrary number (resp. an even number) of them by their inverses
in the odd (resp. even) case. In the even case with M = M5 or M;, we can replace
either one or two of 7y,, 79, by their inverses as we wish, since m > 3. Thus we can
always arrange (1).

— Once (1) is satisfied, the cocharacters 71, 7o, - - - form a basis of X, (Tysso) under
which the root datum of (MO, T'ysso ¢) becomes the standard type B or type D root
datum. Since jysso is admissible, exactly n~ of the 7;’s are such that j;; o7; (equal
to j&lso o 7;) is a cocharacter of Ty .so.— ¢. We can rechoose By in such a way that
7o, and To,, or 79, are unchanged, but the order of 71,73, - - is permuted so that (2)
is satisfied.

8.8.2. — Up to now our discussion has not involved (A, B). We now take them into
account, so we have an endoscopic datum (H, LH, s, n) for G that is determined by
(ep(M), A, B) as in Lemma and Definition [8.7.5] Recall from §8.4.2) that we
have fixed (Tw,Tq, j, Be,i). Similarly as in the pair (T, Bg,m) determines
an ordered m-tuple of cocharacters of Tg ¢ (via 9p4 ;1.8 : Te =5 T = (C*)™). We
denote them by
P1,P25 " s Pm-

By the construction of j in (which uses and especially Convention,
we know that {j ' o p; | 1 <i < m™} is a basis of X, (T~ ) (where Ty := Ty NH")
under which the root datum of (H, Ty~ ¢) becomes the standard type B or D root
datum. Similarly, {j 7' o p; | m~ +1<i<m} is a basis of X,(Ty+) under which
the root datum of (Hé‘, T+ ¢) becomes the standard type B or D root datum.

Definition 8.8.3. — Define an isomorphism ig(A, B) : Tarc — T c as follows.
When M = M (so B=10), let ig(A, B) map 7o,,To,, 71, - » Tm—2 respectively to

P1,P2y " 5 Pm; A:@,
Pm==4+15P1,0P25° 5 Pm—sPm—+2>""" s Pm> A= {1}7
P15 Pm=415P02""" 5 Pm=sPm—+4+25""" s Pm> A= {Q}a

Pm—+1sPm—+2P1s" " s Pm—sPm—+3>""" s Pm> A= {132} .

(In the even case the parameter A can only assume {1,2} and 0, cf. Lemma [8.6.2]
and we use only these two cases in the above formula). When M = M; (so A = ),
let ig(A, B) map 7o,,70,,T1," " ; Tm—2 respectively to

P1, P2, s Pmsy B @7
Pm=+1sPm—42,P1s """ s Pm—sPm—435"" " Pm> B = {1}
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When M = M; (so B =0), let ig(A, B) map 9,71, - , Tm—1 respectively to

P15 5 Pms A:®7
Pm—+15P1s """ s Pm—Pm—425""" s Pm; A= {1}

In the following lemma, recall from §8.5.1| that we have identified M’ with a Levi
subgroup of H.

Lemma 8.8.4. — Let iy (A, B) be the unique isomorphism Thyc — Tuc fitting
in the following commutative diagram:

(8.8.4.1) Ty ——Toc
z‘H(A,B)T Tic(A,B)
TM/,C % TM,(C

Then iq(A,B) (resp. ig(A,B)) is induced by an inner automorphism of Gc
(resp. Hc).

Proof. — Firstly, the isomorphism ig(0,0) : Thrc — Tgc is compatible with the
two canonical isomorphisms BRD(Ty ¢, Bg) = BRD(G) and BRD(Tg ¢, Bg,u) =
BRD(G), where BRD(G) is the canonical based root datum of G¢ (see §5.3.1)). Hence
i¢(0,0) is induced by an inner automorphism of G¢. For general (A, B), ig(A, B)
differs from i (0, @) by an automorphism of T ¢ which permutes the order of the p;’s.
Such an automorphism is in the Weyl group (because under the basis {p1,- -+ , pm } of
X, (Tg) the root datum of (G¢, T c) becomes the standard type B or D root datum),
and is hence still induced by an inner automorphism of G¢.

We now prove that iy (A, B) is induced by an inner automorphism of H¢. For
brevity, we only illustrate the proof in the special case where M = M5 and (A, B) =
({1} ,0), the other cases all being similar. Also, we only treat the even case, as the odd
case is easier. We freely use the notation of in particular M"S0% = SO(W),
H* = SO(V*), and d* = dimW#*. As in we have a canonical SO(W)(C)-
conjugacy class of embeddings

i+ 1 GLT2 5 SO(WH)e
and a canonical SO(V1)(C)-conjugacy class of embeddings

e GE /2 5 80V e
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(Here, if 67 = —1, we identify U(1)c with G,,.) By the two conditions satisfied by
By in §8.8.1| and the admissibility of jysso, we know that the embeddin
(Gar © Ta= a1+ »Jaf © Tm—2) : Gﬁj/Q — SO(WH)¢

is SO(WT)(C)-conjugate to iy +, and that j;; o 7o, is the identity cocharacter of
GL(V1), namely LS{BB in the notation of i‘. Thus by the construction in *
the embedding

(8.8.4.2)
(Gar © 7oy dnf © Ta=jas1s s dnf © Tm—2) Gm+/2+1 — GL(V1)¢ x SOW )¢

is SO(VT)(C)-conjugate to ty+ when we view GL(V;) x SO(W™) as a subgroup of
SO(V) according to the rule in §5.5.91 On the other hand, the embedding

(8.8.4.3) (57 0 P—t1s 5 Gt 0 pm) G%/Q"'l — SO(V1)¢

is also SO(VT)(C)-conjugate to ty+. Hence (8.8.4.2) and (8.8.4.3) are SO(V)(C)-
conjugate. Similarly, we know that the embeddings

(]]\_41 © TOijjT/]l OTyp," aj]\_41 © Td*/Q) : ng_/erl — GL(‘/Q/‘/l)C X SO(Wi)(C

and
G opr, i o pn) G P — SO(VT)e
are SO(V~)(C)-conjugate. We conclude that the embeddings
(Jar © 701, daf © Tossdiag © 715+ dar © Tm—2) : Gy — He

and

! Opm_vj_l O Pm—+2,""" 7j_1 Opm) : Gz — H(C

(j_l Opm_-i-lvj_l O Py, aj_
are H(C)-conjugate. But these two embeddings have images T ¢ and T ¢ respec-
tively, and if we invert the first and compose with the second we precisely get the

isomorphism iy (A, B). This finishes the proof. O

Definition 8.8.5. — Define the three Borel subgroups:

— By, a Borel of Mg containing Ty ¢, defined to be By N M.

— Bg, a Borel of G¢ containing T ¢, defined to be ig(A, B).By. This can be
different from B¢ g fixed in

— BY;, a Borel of Hc containing T ¢, defined to be the one induced by (j, Bg). In
other words, j carries the B}-positive roots on T ¢ to Bg-positive roots on T .

Lemma 8.8.6. — We have B}y = By, where By is defined in .

(T'Here we use the following notation: If Wi, -, g are cocharacters of a torus 7' contained in a
reductive group R (everything being over C), we write (u1,--- ,ug) for the homomorphism GF, —
TC R7 (Zlv e 7216) = H,L M'L(Zl)
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Proof. — We use j to identify Ty c and Tg,c. Thus we have an inclusion of root
systems
‘I)H = (I)(Hc,TH,(c) C ‘I’G = @(G((;,Tgﬁ).
To prove the lemma, we need to prove that for all &« € O, it is Bg-positive if and only
if it is Bg m-positive. We denote the permutation of p;’s that appears in Definition
by
Po(1)sPo(2)s" " s Pa(m), O € G

(For instance, if A = {1}, then o sends 1,2,---,m respectively to m~ +
1,1,---,m~,m~ + 2,---,m.) Let {pY,---,p2} be the basis of X*(Tgc) dual
to the basis {p1, -, pm} of Xs(T¢,c). The Bg g-positive roots in & are

{pY £p) [i>j}U{p i}, odd case,

{py £p) i>j}, even case.

The Bg-positive roots in ¢ are

{pg(i) + P;/(j) |i> j} U{py | i}, odd case,

{p;'/(i) + p(\f/(j) |i> j} ) even case.
On the other hand, by the last observation in §8.8:2] we have

{2y £pY i, g <m™,i#jyu{EpY £pY |i,5>m i #5}U{p) |},
oy =

{£p) £p) 11,5 <m™i# 5y U{Ep! £p) 4,5 >m™ i #j},
in the odd and even cases respectively. It remains to check that 071\{1’2,.._ ,m—1} and
U’1|{m—+17... ,m} are increasing, which is true. O]

8.8.7. — We now transport [Morl11], Prop. 3.2.5] to our setting. For any t € T (R),
let eg(t) € {£1} be —1 to the number of By-positive roots a of (G¢, Tar,c) such that
o is real and 0 < a(t) < 1. (Compare with the definition in §4.2.2]) Similarly, for
t' € Ty (R), we let g, (t') € {1} be —1 to the number of iy (A, B);*(B))-positive
(or equivalently, iz (A, B);1(Bg)-positive, by Lemma roots « of (He, T c)
such that « is real and 0 < a(t') < 1. We set

AB G H; M, Mj
= (_1)q( =) +q(Hr)+q(Mz)+q( R)Aj%BM’
where Aj,, g, is Kottwitz’s normalization of the archimedean transfer factors be-

tween e, (M) = (M',*M’", s);,nar) and M associated to (jar, Bar) (see [Kot90, §7],

(®)1In [Mor11l Prop. 3.2.5], our Af]\’fBM is denoted simply by Aj,, B,,- However, this object is not

intrinsic to (jar, Bar), since its definition involves the number ¢(Hg) which depends on (A, B).
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cf. §§6.2H6.3). Let Oy~ denote the analogue of Oy in §4.2.1) with V replaced by V*.
The following result is [Mor11l Prop. 3.2.5].

Proposition 8.8.8. — We have
er(im(Y™)ery (VAN s (Vi (V) @G G (), OFL)
Y det(wl )@l (71, 0,,),

e €PH (pyx)
Here the elements wl (pm) € Q are the analogues of the elements w.(py) € N in
§8.4.9 with (j, Ba.mr) replaced by (j, Bg). The term ®$,(-, %) is given as follows.
Only when M = Mo and A = {1} or {2} (which in particular implies that we are in

the odd case; see Lemma , it is equal to ®F; (-, Oy« )eas (defined as in (4.6.10.9),
but with V replaced by V* ). In all the other cases, it is equal to @%(o, Oy~). O

8.8.9. — For a fixed ¢y as in Proposition [8:8.8] we investigate the relation between
wi(pm) and wi (pg). Write wy := wi(pg) and W), := w,(pg). By definition, ¢ is
aligned with (w; !0, Bg. i, By) and also aligned with ((w))™1 0, Bg, By). Suppose
wo € Q(Gc,Te ) measures the difference between Bg and Bg g, so that the map
T G — G determined by Bg and ¢y (namely the first row of the commutative diagram
on the bottom of [Kot92al p. 184]) is equal to the composition of @y : Te — Te with
the analogous map T/E — @ determined by Be, g and . By the definition of “being
aligned” and by Lemma [8:8.6] we know that the composition

A D~ Wb e o

T T2 Ty
is equal to the map

—_ A~ A~

Hence
WL(SOH) = wi(pm)wo-

In particular,

(8.8.9.1) det(w! (pr)) = det(w«(pm)) det(wp).

Lemma 8.8.10. — We have

1, A=,
=y, A={1),
(8.8.10.1) det(wo) = (_1)m—+17 A={2},
1, A=1{1,2}.

(Here the formula works in all cases considered in Lemma , For instance, A =
{1} could only happen in the odd case either when M = My or when M = M,.)
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Proof. — From the description of the B¢, m-positive and Bg-positive roots in ®¢ in
the proof of Lemma we see that det(wy) is equal to the sign of the permutation
o in that proof. Thus (8.8.10.1) follows from direct calculation of this sign. O

Proposition 8.8.11. — We have
K(ep(M), 7', A, B) = (—=1)%%) det(wo)er(jn (v ~1))ery (+'7)
AP, (0 dar (V)85 Gar () O,
where det(wyg) is given in (8.8.10.1)).

Proof. — This is a consequence of Proposition [8.8.8| and (8.8.9.1]). O

8.9. Computation of some signs
We keep the notation of

Definition 8.9.1. — Let f3(A, B) € C* be the constant such that the normalization
(A, B) - AJAMBBM of transfer factors between e, (M) and M at oo together with

the normalizations (AM,)4B at all finite places (fixed in §8.4.12)) satisfy the global
product formula. Here Af}fBM is defined in 3

Lemma 8.9.2. — The normalization (A, B)AﬁIBBM of transfer factors between

¢p(M) and M at oo is inherited from Aj g, , in the sense of Remark (8.4.15 Let
e (A, B) be as in Definition We have

AME o4 B) = ADY

Jn By e, B

J(A, B)~ (0, 0).

Proof. — The first assertion follows from the fact that (A%), for all v satisfy the
global product formula (see , and the fact that inheritance of normalizations
respects the global product formula (see Remark . To prove the second asser-
tion, by the definition of f3(A, B) we must have

A, B)ALT, [T @) = 20,0857 5, TT (a8,
VF# 0O v#oco
But (A}f)F = (A%/)w 0 because they are both the canonical unramified normal-

ization associated to M(Z,). (See §8.4.12|for M(Z,).) Hence
A(A,B)ANE, H (AMNAB = 2, @)A”BM [T ay)se.

M

v#p,00 v#p,00
Our assertion follows from comparing the above equality with Definition O

8.9.3. — As usual we denote by W, W= the underlying quadratic spaces for
MBSO M'SOE e, MSO = SO(W), M"S0*+ = SO(W®). Denote by M5O the fixed
quasi-split inner form of MS© as in §5.5.3l Namely we have M59* = SO(W),
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and as in we have fixed isomorphisms ¢w, : Wc = W (with re-
spect to FF = R and satisfying the extra condition in Definition and
Vg MSO — MSO7*vg = ¢W1Rg¢a/]1R'

By the two conditions noted in §8.6.1 we know that the localization over R of
the endoscopic datum e, (W) for ME© = SO(Wg) satisfies the hypotheses in §§| (with
V,V,V* there replaced by Wg, Wg, Wﬁt) In other words, this is an elliptic endo-
scopic datum over R, and the group in it contains R-anisotropic maximal tori. Define
ED(Wz)?, ED(Wg)°, ED(W:)? as in and §6.1.9] Inside ED(Wg) we have the
subset ED(Wg)%;.. as in Definitions and Let Bjsso be the Borel sub-
group of MSO given by By N MSO, and let jasso : Thyrso+ X Thyrso,— — Thyso be
as in §8.8.1} Thus (T)sso, Byso) is a fundamental pair in MF© = SO(Wg).

Lemma 8.9.4. — There exist D1 € ED(Wg)2%;., and D = (D3, Dy ) € ED(W)° x

ED(Wg )° such that the fundamental pair (Tyso, Byso) arises from Dy as in
and jyso = jp,.p, where jp,p, is as in §6.1.9

Proof. — Firstly, since the signature of Wg is (d — 4,0) or (d — 3,1), we have
ED(Wg)° = ED(Wg)%c.- Since all anisotropic maximal tori in MS© are conjugate
under M3©(R), we can find D; € ED(Wg)® such that T);so = Tp, (notation as in
§6.1.6). By reordering the members of D, and in the odd (resp. even) case changing
the orientations of an arbitrary (resp. even) number of the members of D, we may
and shall assume that the fundamental pair (Tysso, Byso) arises from D;. Let m/
be the absolute rank of MS°. Using Lemma and the same argument as in the
proof of Lemma we see that there exist g € MSC(R) and Dy € ED(W)° such
that Int(g) o fp, = 1/1;‘,1 o fp,. (Here fp, and fp, are as in ) Then by Lemma
[6.1.11] the isomorphism

(T, Ty ) Gﬁ:(c AR Tarso ¢
(see §8.8.1| for the 7;’s) is equal to the base change to C of fp, : U(1)™ =5 Tysso,
where we identify U(1)c with Gy, c.

To simplify notation below we write T* for T);.s0.+. Since jso is admissible, by
condition (2) in §8.8.1) we know that the isomorphisms

(8.9.4.1) (Jazso © Ta=1s7 s Japso © Tmr) 1 G 2" 5 T
and
(8'9'4-2) (.7;4130 OTypy - 7j;4lso o Tn*) : G:Lnt(c - T(C_

are induced by the isomorphisms
Opt gt T 5 TH 2 (C)™ " or (C)"
associated to some Borel subgroups B* of M(/C’SO’i containing T(Ci. Here (T+,B%)

are the standard Borel pairs in the dual groups of M’S9* and the notation 0.
is as in §5.60 By the same argument as before, we can find Dy = (DJ,D;) €
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ED(W3)° x ED(Wy )° such that D5 gives rise to the fundamental pair (7%, B¥). By

Lemma|6.1.11} the isomorphisms ([8.9.4.1)) and (8.9.4.2)) are equal to fD;’C and fD;C

respectively. Combining this with the previously established fact that (71, , 7)) =

fp, ¢, we conclude that jyso = jp, ;- O

Proposition 8.9.5. — For (A, B) taking values as in Lemma we have
2(0,0) = -1,

1, if (A, B) = (0,0),
2(A, B~ a(0,0) =< -1, if A={1,2} or B= {1},

(—=1)™ *1 in all other cases.

Proof. — In this proof we pass to the local notation over R. For instance, we write M
for Mg. We use the phrase “Whittaker normalization” when we mean the Whittaker-
normalized transfer factors between H and G* or between H and G, associated to the
unique (resp. the type-I) equivalence of Whittaker data for G* when d is not divisible
by 4 (resp. d is divisible by 4); see Definition Definition and
Definition We shall also apply this notion to the transfer factors between M’SO
and MS9* and between M’-SC and M5©. By extending trivially across M5, we also
obtain the “Whittaker normalization” of transfer factors between M’ = M x M'SO
and M* = MCL x MS9* and between M’ and M = MSL x M3C. Asin §5.5.3 we
view M* as a Levi subgroup of G* via .

We claim that the Whittaker normalization between M’ and M is inherited from
the Whittaker normalization between H and G as in Remark

To prove the claim, first assume d is odd. Then G* has a unique Whittaker datum
(up to equivalence) and a unique R-splitting (up to G*(R)-conjugacy). The same
also holds for M*. Thus the unique Langlands—Shelstad normalization of transfer
factors between M’ and M* is inherited from the unique Langlands—Shelstad normal-
ization between H and G*. (Indeed, one can see this by going through the definitions
in [LS87]; alternatively, one can see this by using Waldspurger’s explicit formula
[Wall0, §1.10] while noting that the constant n in [Wall0, §1.6] attached to the
unique splitting of G* = SO(V) is equal to the discriminant §, and hence equal
to the analogous constant for MS9* = SO(W).) Moreover, the local epsilon fac-
tor relating the Whittaker normalization and the Langlands—Shelstad normalization
(cf. (6-3.11.7)) is 1 in both the (H,G*)-scenario and the (M’, M*)-scenario. This
implies that the Whittaker normalization between M’ and M* is inherited from the
Whittaker normalization between H and G*. Our claim then follows from the three
compatibility conditions in §5.5.3

Second, assume d is even and not divisible by 4. Then by assumption M = M; or
M, and so MS© = SO(W) with dim W = d — 4 again not divisible by 4. Hence we
still have uniqueness of Whittaker datum and uniqueness of R-splitting for G* and
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M*. As in the odd case, the unique Langlands—Shelstad normalization between M’
and M* is inherited from the analogous normalization between H and G*. (Again,
one can see this by using Waldspurger’s explicit formula, noting that this time the
constant 7 is equal to 1 for both G* = SO(V) and MS9* = SO(W).) As in the
odd case, the epsilon factor is still 1 in both the (H, G*)-scenario and the (M’', M*)-
scenario (since a maximal R-split torus in each of G*, H, M*, M’ is of the form a
direct sum of a split torus and one copy of U(1)). Our claim follows, as in the odd
case.

Finally, assume d is divisible by 4. As in the previous case we have dimW = d —4,
and this is divisible by 4. Using Waldspurger’s explicit formula [Wal10j, §1.10], we
observe that the normalization between M’ = MSY x M"SO and M* = MCL x
MS©* induced by the Langlands-Shelstad normalization between M’SC© and MS©*
associated to some spl,, € Split(M5°*) is inherited from the Langlands-Shelstad
normalization between H and G* associated to some spl € Split(G*) provided that
nw (sply,) = v (spl). Here ny(+) : Split(G*) — {&1} and nw(-) : Split(MS©*) —
{#£1} are as in §6.3.10, We now take spl, and spl such that nyw (sply,) = nv (spl) =
—1. By the above observation and by Theorem we see that the Whittaker
normalization between M’ and M* is inherited from the Whittaker normalization
between H and G* times the following constant. The constant is the ratio between
the two local epsilon factors appearing in and the analogue of
for (M', M). By and a similar computation for (M’, M), we see that the
two epsilon factors are equal to (—1)™ and (—1)" respectively, where m™~ is the
absolute rank of H~ and n™~ is the absolute rank of M’"S9~. Since we are in the even
case, we have m~ =n~ mod 2. Thus the Whittaker normalization between M’ and
M* is inherited from the Whittaker normalization between H and G*, and our claim
follows as in the previous two cases.

It follows from the above claim and Lemma that 93(A, B) is the product of
the following three signs:

B

(1) the sign between A% B,, and A

v int.Bag» NaDElY (_1)q(G)+q(H)+q(M)+q(M’);
(2) the sign between A;,, p,, and the Whittaker normalization between M’ and M,
which is also equal to the sign between A; and the Whittaker normalization
between M"SC and M5O,

(3) the sign between A; g, ,, and the Whittaker normalization between H and G.

0,B,s0

Denote by m* (resp. n*) the absolute ranks of H* (resp. M"59%). Denote by m
the absolute rank of G. We divide our computation into cases.
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The odd case with M = M;,: In this case B is always (), and A is any subset of
{1,2}. We have

q(G):(QmQ—UQZQm_L q(H):m+(m++1)—;—m_(m_+1),
B o ntt+1)+n"(n” +1)
q(M)—O, Q(M)— 2 .

When A =0, we have mT™ =nt and m™ =n~ + 2. Then

4(G) + q(H) + q(M) + ¢(M’)
2mt(m*T +1)+m~(m™ + 1)+ (m™ —2)(m™ —1)
2
2(m™)% —2m~ +2
2
=1l4+mTmT+1)+m (m™ —1)+1
=0 mod 2.

=2m -1+

=1+mt(mT+1)+

When A = {1,2}, we have m* = n™ + 2 and m™ = n~. Observing symmetry we
again get
9(G) + q(H) + ¢(M) + q(M') =0 mod 2.
Now assume A = {1} or {2}. Then m™ =nt +1,m~ =n~ + 1. We have
a(G) +q(H) +q(M) + q(M')
mtmT+ D) +mT(mT=1)+m~(m™+1)+m (m~ —1)

=2m—-1+ 5
=14+ 2(m*)* 4+ 2(m”)*
- 2
=14+mT+m”
=m+1 mod 2.
We conclude that
(— 1)@+t +a) ) _ |1 A={1,2} o,
(-1)m+ A ={1} or {2}.

The sign between A; o, B, s, and the Whittaker normalization is (—1)“#/ 21 by
Lemma and the ¢ = 0 case of Proposition (1). (We have already noted in
§8.9.3|that the results in gﬂindeed applies to M5O together with its endoscopic group
M"S9) The sign between A; g, ,, and the Whittaker normalization is (—1) [m*/2]+1
by the g = 2 case of Proposition (1); here the hypothesis m™ > 0 (i.e., HT is
non-trivial) is guaranteed in and the hypothesis that (j, Bg,g) arises from an
element of ED(V)9,.., and an element of ED(V)° x ED(V ~)° is guaranteed in

nice
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Thus we have
1yt /214 [m* 2141 (_1)[m*/21+fm*/21+1 =1,

2(0,0) = (~p
(=) /21 ImT /2041 — () [(mT=2)/20+[m T /2141
(=1)

“({1,2}.,0)
A({1},0) = 2({2}.0)

1 m414+[nt/2]+[m™T /2]4+1

_ (71)m+1+[(m+71)/2‘\+(m+/2'|+1 _ (71)m+m+ _ (71)777,_'

This finishes the proof in this case.

The even case with M = M;j,y: In this case B is always (), and A is either
§ or {1,2}. Note that ¢(G),q(H),q(M),q(M’) are all even. This is because each
of G,H,M,M’ is a product of a split torus and one or two cuspidal even spe-
cial orthogonal group(s), namely some SO(a,b) with a,b even, for which we have

q(SO(a, b)) = ab/2 =0 mod 2. It follows that the sign in part (1) is 1.

The sign between A; o, B, s, and the Whittaker normalization is (1) /2 by
Lemma and the ¢ = 0 case of Proposition (2) and Proposition

Assume it is not the case that m is odd and m*™ = 1. Then D¥ which was used
to deﬁne (4, Bg,m) in §8.4.2lies in ED(V)2,... We have m™ > 2 since m* > 0 (see
§8.5.1). Applying the (q = 2,mT > 2) case of Proposition (2) and Proposi-
tion we see that the sign between Aj g, ,, and the Whittaker normalization is
(,1)Lm‘/2J.

Now assume m is odd and m™ = 1. In this case D used to define (j, Bg x) differs
from an element of ED(V)};.. by the transposition (m—1,m) € &,,. Let By y be the
image of Bg gy under (m — 1,m), viewed as an element of the complex Weyl group.
An argument similar to the proof of the second statement of Lemma [6.3.5] shows that

nice

AijG,H = <a'(m—17m)7$>Aj,B’G’H = _Aj’Bé;,H.
Hence the sign between Aj p. ,, and the Whittaker normalization is —1 times the
sign (—1)™7 /211 in the (¢ = 2,m* = 1) case of Proposition (2). Namely, it
is again (—1)lm" /2],
We conclude that J1(A, B) = (—1)l»"/2+1m7/2] " Qpecifically,
3(0,0) = (_1)L(m’—2)/2J+Lm7/2J =—1, 3({1,2},0) = (_1)Lm7/2J+Lm’/2J 1

This finishes the proof in this case.
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The odd case with M = M;: In this case A is always (), and B is any subset of
{1}. We have

gy = B2 gy,
mt(m™* m~(m~
o(H) = ( +1)42r ( +1)7

nT(nt+1)+n"(n~ +1)

a(M') = g(M"S°) + g(MO) = :

q(M) = q(GLg) = 1.
When B = (), we have m™ =n™,m™ =n~ +2, and so
2(C) + a(H) + (M) + g(M)
2mT(mt +1)+m~(m™ + 1)+ (m™ —2)(m™ —1)

+1,

=2m+1+ 5
2(m™)2 —=2m~ 42
=mt(mt +1)+ (m”) 5 motE oy
=mt(mt+1)+m (m™ —1)
=0 mod 2.
When B = {1}, we have m™ = n* + 2, m™ = n~, and observing symmetry we again

get
q(G) +q(H) +g(M) +q(M') =0 mod 2.
Hence the sign in part (1) is 1.
The sign between A; o, B, o and the Whittaker normalization is (=1)[n7/21 by

Lemma and the ¢ = 0 case of Proposition [6.2.20[ (1). The sign between A; g, ,
and the Whittaker normalization is (_1)[m+/21+1 by the ¢ = 2 case of Proposition

6.2.20| (1). Thus (A, B) = (—1)[""/21+[m™/21+1 anq specifically
2(0,0) = (L)AL Z g (g, (1) = (<1) 22 2

This finishes the proof in this case.

The even case with M = M;j: As in the previous case, A is always (), and B
is any subset of {1}. Now ¢(G),q(H) are even, and g(M),q(M’) are odd. Hence
the sign in part (1) is 1. Similarly as in the even case with M = My treated
jys0.Bys0 and the Whittaker normalization is (—1) Ln=/2]
and the sign between Aj g, ,, and the Whittaker normalization is (—=1)lm~ /21 Thus
N(A, B) = (=1)lr /2417 /2] " and specifically

2(0,0) = (_1)L(m*f2)/2J+Lm*/2J =—1, 20,{1}) = (_1)Lm*/2J+Lm*/2J - 1.

This finishes the proof in this case.

before, the sign between A
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The odd case with M = Ms: In this case B is always ), and A is any subset of
{1}. We have

Q(G)szwn—l,
i D
ay =12 =,
oy = T E DT )
When A =0, we have m* =nt, m~ =n~ +1, and so

q(G) +q(H) + ¢(M) + q(M')
2mtT(mT + 1) +m~(m™ + 1)+ (m™ —1)m~

=3m -2+ 5
=m+mt(mt+1)+ 2(727)2
=m+mT(mT+1)+ (m)?
=m-+m
=m" mod 2.
When A = {1}, we have m™ =n* +1,m~ = n~, and a similar computation yields

q(G) + q(H) + q(M) + q(M')=m~ mod 2.

We conclude that
T)’L+ —
(_1)q(G)+q(H)+q(M)+q(]V[’) — {<_1) 7a A= @7
(=™, A={1}.

The sign between A; o, B, 5o 18 (—1) [n"/2] by Lemma and the ¢ = 1 case of
Proposition [6.2.20 (1). The sign between A; g, ,, and the Whittaker normalization
is (—1)[m"/21+1 by the ¢ = 2 case of Proposition [6.2.20| (1). Thus we have

2(0,0) = (—1)m HlnT /20 mT /214

— (_1)m++[m+/2j+|'m+/2'\+l — (_1)m++m++l =1,

D({l},@) _ (71)m_+|_n+/2j+(m+/2]+1 _ (71)m_+L(m+71)/2j+(m+/2]+1 _ (71)771_'

This finishes the proof in this case. O

Definition 8.9.6. — For (A, B) as in Lemma [8.6.2] define the sign
-1, ifleAorleB,

1, otherwise.

(A, B) == {
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Suppose ¢ is a function that assigns to each choice of (A4, B) an element g(A, B) €
H" (Mg, ). Define

J(QP(M)v’Ylvg) = J(QP(M)7’Y/’ (A7 B) = g(A, B))
=Y %(A, B)SO (9(A, B))er(ine (Y™ ))ery (V)05 (i (7)) ©F),
A,B

where the sum is over all choices of (4, B).

Definition 8.9.7. — With notation as in Definition and we define

Qep(M), ) = T (') (AN (v, yar) O (F22 ) (M)R(M)K(G) ™"
. (_1)dimAM,T)(M/(')Y/)fl(_l)q(GR)AQ,@ Bas (’YlajM('Yl))~

JIM

Here, we choose vy € M (A?) as in Definition [8.7.5, which does not affect the defini-
tion.

Corollary 8.9.8. — With J as in Definition[8.9.6 and Q as in Definition[8.9.7, we
have

I(ep(M),7") = Qep(M),7') I (¢ (M), ~', (A, B) = fylu).
Here the mapping (A, B) — ffM, is defined via the dependence of H on (A, B) as in
Lemma [8.6.2.

Proof. — By (8.8.10.1)) and Proposition [8.9.5] we have
$(A, B) = (A, B) ™' 53(0, 0) det (wo).

The corollary then follows from the second equality in Lemma [7.6] Proposition
8.8.11} and Lemma [8.9.2 O

8.10. Symmetry of order n§;

Definition 8.10.1. — We define a subgroup 20 C Aut(MSL) as follows. When
M = M, so that MS™ = G2,, we define 20 to be {+1}* x &,, where each factor
{£1} acts on each factor G,, non-trivially and &y acts by swapping the two copies
of G,,. When M = M, so that MGl = GL,, we define 20 to be Z/27 with the
non-trivial element acting on GLs by transpose inverse. When M = M, in the odd
case, so that ML = G,,,, we define 27 to be equal to Aut(M L) = Aut(G,,) = Z/2Z.
When the context is clear we also view 20 as a subgroup of Aut(M) or Aut(M’), by

extending its action on MSY trivially across MS© or M’SO.

Lemma 8.10.2. — The natural homomorphism 20 — Aut(An) is an injection,
and its image is equal to the image of Norg(M)(Q) in Aut(Anr). In particular, 20 is
naturally isomorphic to WS, and |25 = n§, (see Definition and Remark .

Proof. — This is straightforward to check. O
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8.10.3. — The action of 20 on the set of stable conjugacy classes in M'(Q)ss pre-
serves the following conditions:

— being R-elliptic,

— being (M, M’)-regular,

~ being an image of a semi-simple element of M (A%).
(Indeed, the only non-trivial assertion here is that 20 preserves being R-elliptic in
the case M = My, and this follows from the fact that M1GL = GL» contains the R-
elliptic maximal torus Tétﬁi2 which is 20-stable.) Moreover, if M = M5 or Mo, then
two different elements of M'(Q)ss in the same 20-orbit are never stably conjugate to
each other. Therefore in these cases we may and shall assume that the sets X(M’)
and X(M’); chosen in Definitions and are stable under 20. If M = M,
then two different R-elliptic elements of M’(Q) in the same 20-orbit are either not
stably conjugate to each other, or such that their components in M % (Q) = GL,(Q)
both have determinant 1. (To see this, note that if g € GLy(Q)ss is stably conjugate
to its transpose inverse, then detg = +1, and we have detg > 0 if g is R-elliptic.)
Therefore in this case we may and shall assume that X(M’); contains a subset X(M')y
such that (M), is stable under 20 and the component in ML (Q) of every element
of X(M’"); — X(M')2 has determinant 1. To unify notation, when M = M5 or My,
we set X(M')3 to be X(M');.

Lemma 8.10.4. — For v € X(M')y and w € 20, we have Q(ep(M),') =
Qep(M),w(v")). (See Deﬁnitionfor Q).

Proof. — By (8.7.3.1)), we have
0,0),p,00 , .
Qlep (M), 7) = C x SO (F1p" ") AR 5, (7 e (1)),
where C' is an expression that is invariant under 20, and H((, ) is the particular
choice of H arising from (4, B) = (0,0). Note that the subgroup 20 C Aut(M’) is

contained @ in the image of the natural map Nory g g)(M')(Q) — Aut(M’).
Since w comes from Norg g g)(M')(Q), we have

0,0),p,00 0,0),p,00
SO (frlP02o0y = 5O, 00 (F1r 00100y

by exactly the same argument (using Kazhdan density and descent) as in the proof
of Lemma 254l We are left to check

A () = A% L (w(), ar(w(3)),

or equivalently,

AjMyBM (’ylva ('7/)) = AjM,BM (w(’}/), ]M(w(lyl)))

(9)Note that this would no longer be not true, for instance, if H(0, ) is replaced by the choice of H
arising from (A, B) = ({1},0) when M = M;.
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The last equality holds because both sides depend only on the common component
of v/ and w(vy') in M"SO. More precisely, if we denote this common component by
489 then both sides are equal to

AjMSo »Byrso (’7/’80va50 (7/780))

where jyso and Bysso are as in §8.8.1] and §8.9.3] This finishes the proof. O

)

Proposition 8.10.5. — For each ¢ = (M’,s,;,nn) € E(M), choose a set (M),
as in Definition [8.7.5 and §8.10.3. In view of Lemma|8.10.4}, for each ~' € (M),
we write Q(e, W) for Q(e,v"). We have

ny Try = > |Outar (e, (M)

ep (M)=(M"," M8, mrr) EE (M)erur

: Qep(M),~) 207" Z J(ep(M),w(y"), (A, B) — fi)
(=

VES(M)s wer

QD00 (A B) 1 i)

Y EX(M)1 =% (M")2

Proof. — This is a consequence of Lemma Corollary Lemma O

8.11. Computation of J

We compute the term J(e,(M),7, (4, B) — fzf /) in Corollaryusing results
from We simply write ¢ for e,(M). Recall the functions eg(-) : Tar(R) — {£1}
and eg, (1) : Ty (R) = {£1} from The former depends only on e, (M), while
the latter depends on e, (M) and (4, B).

Lemma 8.11.1. — For M = M5 in the odd case, we have
er(in (V™) = €ry (V" Dlazqi2y = €ry (V"] a0,
Ry (V" Dazpiy = €y (V") a=g2}-
In all the other cases of M, we have
er(inr (v ™)) = eru (V7).

Proof. — This follows directly from the definitions. O

8.11.2. — We introduce some notations. Write p* := p*(4=2)/2_ Write
folver = D7 R(A, B) + p*h € H™ (Mp,),
as in Proposition When M = M5, we further write
k(A, B) = ki(A) + k2(A),
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where k;(A) € H" (M, ) has Satake transform V;(A)(£ + &%), as in Proposition
[[42l Thus we have

(8.11.2.1) J(e,v (A, B) = fl) =p*J(e,v k) +p* (e, ),
and when M = M5 we further have
(8.11.2.2)  J(e,7, (A, B) = fi) =p*J(e, k1) + p* I (e, k2) + p* T (e,7/, ).

Here we use the abbreviated notation J(e,~', k) := J(e,7, (4, B) — k(A, B)), etc. In
the following computation We write

G =05 (ju

G G [
(I)M7eds = q)M(jM

/

Y )717 (—)V*)v
7/)_1a Oy- )edSa
/—1

€rery = er(im (Y"1 ))ery (V).

(
(

8.11.3. Odd case M. — With the above notations, it follows from Lemma [8I1.1]
and the fact that eg is independent of (A, B) that we have

(8.11.3.1)
Tern! ) = SOy () 3" %(A, B ®5 (1), OIL)
A,B

— 50,,(h) [@%‘4 0, (enemn) ami ¥ eas + (RCRn) A2 Do
=0.

Similarly

(8.11.3.2)

J(er k)

= 50, (kn(0) [@% 10, + (erern) Aty B eas + <eReRH>|A{2}<I>%zeds]

= 250, (ku () [@% n (eReRH>|A_{1}<I>%,edS} ,

and
(8.11.3.3) J(e7 ,7/7 k2) = QSO,Y/(kQ(Q))) [@% — (eReRH”A—{l}(bf/[,eds] .
8.11.4. Even case Mjs. — With similar computations as above, we get

J(e,v' h) =0,
J(e”y/’ kl) = 2507'(k1(®))q)AG4’
J(e,7, ka) = 250, (ka(0)) D5,
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8.11.5. Case M; and odd case M. — Similar computations give
(8.11.5.1) J(e,y',h) =0
(8.11.5.2) J(e,y, k) =250, (k(0,0))0$,.

8.12. Breaking symmetry, case M,
We keep the notation in Proposition [8.10.5] and §8.11]

Definition 8.12.1. — Suppose M = Mj5. We say that an element of M'(R) is good
at oo if its component in MG (R) = RX x R* lies in (Rsg X Rsg) U(Reg x Rg). We
say that an element of M’(Q,) is good at p if its component in MEH(Q,) = Q) xQy
has p-adic valuations (—a,0). Here the first G,,-factor is GL(V}) and the second is
GL(Va/Vh).

Proposition 8.12.2. — Let M = Mi5. We have

ngy Ty = > |Outa (ep (M)~
o (M)=(M" £ M 1, mas €6 (M)

Y Qep(M),y)4p" I (ey (M), k),
,-Y/
where v runs through the elements of X(M')y that are good at 0o and good at p.

Proof. — We start with the formula for n§; Tr}, in Proposition and recall
that in that formula X(M’); = X(M’')y for our M = Mps. Fix e = ¢,(M) =
(M’ XM s omar) € (M),

We first treat the odd case. Let wy = (—1,1) € {+1}* C 0 = {£1}* x &,
and let wyo be the non-trivial element of Gy C . For v/ € X(M');, combining the
computation of J(e,~', k1) and J(e,v', k2) in and the vanishing statement in
Proposition [£.6.12] we know that

J(e7’ylvk1) = J(87’y,7k2) =0

unless 7/ is good at co. We also note that being good at co is a property invariant
under 20. Now by (8.11.2.2]) and (8.11.3.1)) we have

(8.12.2.1) J(e,v (A, B) = ) =p*J(e,y k1) +p* I (e, k2).
Therefore, if v/ € £(M’); is such that
(8.12.2.2) > J(e,w(y), (A B) = filhy) #0,

we

then ~/ is good at oo,
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Suppose 7' € X(M’); is good at co. Then by Proposition 4.6.13] (8.11.3.2), and
(18.11.3.3)), we have

(8.12.2.3) J(e, ' k1) = J(e,w12(7"), k2)

(8.12.2.4) J(e,y' k1) = J(e,wi (), k1)

because the functions k(@) and ko (@) are pull-backs of each other under wi2, and the
function k1 () is invariant under w;. Combining (8.12.2.1)) and (8.12.2.3)), we obtain
(8.12.2.5)

> Je,w(), (A, B) = flh) =" prI(ew(), ki) +p*J (e, wizw(y'), ki)
weW weW
—QZpJew ), k1).
weWW

Assume holds. Then by (8.12:2.5)), there exists v/ € 24’ such that
J(e,7" k1) # 0. By (8.11.3.2), the last condition implies that SO~ (k1(0)) # 0, from
which it easily follows that either v or w1 (y”) (but not both) is good at p. Note that
in 20, there are either zero or two elements w such that w(y’) is good at p. In the latter
case, the two elements differ by left multiplication by wsy = (1,—1) € {£1}* c 20.
Combining this analysis with (8.12.2.4) and (8.12.2.5)), we have

(8.12.2.6) > J(e,w(v), (A, B) — fil)
weW

= 2]7* Z J(e7w(’yl)ak1) +J(e,w1w(7/),k1)
weW,w(v’) good at p

—ap' 3 (e, w('), k1)

weW,w(v’) good at p

_Jo, if 37" € W+’ good at p,
4p* (J(e,y" k1) + J(e,w2(7"), k1)), if 7" € Wy’ is good at p.

Moreover, if 4" € 257’ is good at p, then we have

m , 'f 1" //’

(8.12.2.7)
1201 /2, if wa(y") ="
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Combining the discussion about being good at co at the beginning of the proof,
the formulas (8.12.2.6) and (8.12.2.7)), and Lemma [8.10.4] we obtain:

S Q)WY e w(y), (A, B) = )

Y eX(M’) we

= > Q)W WY [ 4pT I (6,7 Fr)
’YHEE(M/)l
~v"" good at p,o0
'Y”?éwz'}’”

T Q) 1] 120y 8p T (e, 7" k)
’Y”EZ(M/)l
~v"" good at p,o0

= > Qe,y")4p" I (e,7", k1).
’Y”EE(Ml)l
~"" good at p,c0

This together with Proposition [8.10.5|implies the current proposition in the odd case.

The even case is proved in a similar way. The only differences are that we now use
the vanishing statement in Proposition [£.6.14] rather than Proposition[4.6.12] and that
we simply use the invariance of ®%;(-, ©y+) under Norg(M)(R) to deduce
and . O

8.13. Breaking symmetry, case M; and odd case M,
We keep the notation in Proposition [8.10.5] and §8.11]

Definition 8.13.1. — Suppose M = M;. We say that an element of M’ (Q,) is good
at p if its component in ML(Q,) = GL2(Q,) has determinant of p-adic valuation
—a. We say that all elements of M’(R) are good at cc.

Suppose M = My in the odd case. We say that an element of M’(Q,) is good at
p if its component in MS%(Q,) = Q, has valuation —a. We say that an element of
M'(R) is good at oo if its component in MSE(R) = RX is positive.

Proposition 8.13.2. — Suppose M = My, or M = My in the odd case. We have

—1
ngr Trhy = > [Out as (ep (M))]
€p (M):(M/’LM“S;\/[7"7M)€é.a(M)c’ur

! Z Q(ep (M)7 ’Y/)QP*J(%(M)a 7/7 k)a
,yl
where v’ runs through the elements of ¥.(M'); that are good at oo and good at p.

Proof. — We start with the formula for n§, Tr}, in Proposition [8.10.5] Fix ¢ =
ep(M) = (M', M sy mar) € E(M)™. Let o/ € B(M');. Let w; € 20 be the
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non-trivial element. In view of (8.11.5.2)), it follows from the obvious invariance of
k((,0) under w; and the invariance of ®¢; (-, Oy+) under Norg(M)(R) that we have

(8.13.2.1) J(e,v' k) = J(e,wr (7)), k).
By (8.11.2.1)) and (8.11.5.1) we have
(8.13.2.2) J(e,y (A, B) = flh) =p*J(e, 7, k).

If this is non-zero, then SO.,(k(0,0)) # 0 by (8.11.5.2), and it easily follows that
either 7/ or w17’ is good at p. This implies that 4" € 3(M')y (as a > 1). Thus

(8.13.2.3) > Qle,7)J(e,7', (A, B) = fH,,)) = 0.
Y ER(M)—X (M),
Now suppose 7' € £(M’),. By (8.13.2.1) and (8.13.2.2)) we have

Z J(e,w(y'), (A, B) = filv) =2p"J(e,7/ k) = 2p* J (e, w1 (V). k).
weW

Suppose this is non-zero. Then one of 4" and wi(y’) is good at p, by the same
argument as before. Also, by , we have ®%,(ja (7)1, Oy+) # 0. By the
vanishing statement in Proposition the last condition implies that 4’ (and hence
also wy (")) is good at co when M = M,. Note that at most one of 4" and wq (")
can be good at p. Hence

(8.13.2.4) S Qe) WY (e wy). (A, B) > fh)
v eES(M')2 weW
= > Q)27 2" J(e,y k)
Y ex(M')2

~’ good at p,00

+ > Q(e,7)27"2p" I (e, w1 (), k)
Y ET(M')2
w1 (") good at p,o0
= ) Q)22 (e, k)
v E€X(M')2
~' good at p,oc0
+ > Q)2 2p (e k)
Y ER(M')2
~' good at p,o0
= > QeI (e k).
v EX(M')2
~’ good at p,00
Here for the second equality, we made the substitution ' — w; (') in the second
summation and used Lemma [8.10.4] The proposition follows from Proposition[8.10.5
(813.2.3), and (8.13.2.4). O
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8.14. Main computation

We keep letting M denote one of M7, My, Mio, and excluding Ms in the even case.

Proposition 8.14.1. — Let €y = 1 for M = Mo or My, and let €y = 2 for
M = Ms (in the odd case). When a € Z~y is large enough (for a fized fP°>°), we have
(8.14.1.1)

G Triy = 4p” > (=1t s a6 | Outy (e (M)~

ep (M)=(M'FM',s) mar) €6 (M)onr

-5 QUep (M) 7SO (k1 (8) Las (iar (1)),

where v runs through the elements of X(M')1 that are good at oo and good at p. Here
we understand that ki(0) = k(0,0) when M = My or Ms; see §8.11.9 for ki and
k. Moreover, (—1)3™ Ay’ depends only on M, and is 1 if M = My and —1 other
wise

Proof. — The claim about (—1)3™4x is straightforward. To prove (8.14.1.1), we
first treat the odd case with M = M;ys. By Lemma 8.10.2, we have n% = 8. Then by
Proposition [8.12.2| and (8.11.3.2)), we have

(8.14.1.2)
8Tr)y, = Z [Out s (e) ZQ "ap*J(e, ', k1)

e= (MM s mar) €6 (M)

Z|OutM 12@ ))8p" SO, (k1 (0))-

. {q)%(jM(WI)_IaGV*) +er(in(Y™))ern (V) A=y 5 (G (7 ), O eas |

where 4/ runs through the elements in X(M’); that are good at co and good at p.
Suppose that 4’ contributes non-trivially to the above sum. Then Q(e,~’) # 0. From
Definition [8.9.7 we have
O (f17) # 0,

where v, is as in that definition. Therefore the component of vy, in M GL(A’}) lies in
a compact subset that depends only on fP**° and not on a. Because ' is an image of
Y, the component of 4/ in MS%(Q) is equal to the component of vy, in M (A%).
When a is large enough, this observation together with the assumption that v’ is good
at p implies that the real absolute value of the component of 7/ in the first G,, is
strictly smaller than the +1-st power of that of the second. In other words, jps(v') is

(19)This dichotomy is to be compared with the dichotomy of behaviors of signs in Propositions|4.6.12)
and for M2 on the one hand, and in Propositions [{.4.2] and [£.5.2] for M; and M3 on the other
hand.
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in the range x; < — |z2| considered in Propositions 4.6.12| and |4.6.14] Observe
OF; (V) Ov-) = @5 (jum ('), Ov),
CI)?/[ (jM (7/)71, Oy~ )CdS = (I)% (]M (’yl)v @V)cdsa

and
er(in (Y ))ery (V" azpy =1

for ja7(7'~1) in the range mentioned above. Therefore by Proposition the sum
in the bracket in is 4(—1)9G=) Ly (ar(y')). Substituting this,
dividing both sides by 8, and inserting the sign (—1)3™ 4" = 1 on the right hand
side, we obtain the desired .

The even case M3, odd and even case M7, and odd case Ms, are proved in a similar
way, by applying the corresponding computation in and Propositions [8.13.2
14.6.14 14.4.2, and|4.5.2) (The number n} can again be computed using Lemma(8.10.2
and is seen to be 8,2,2 for Mya, My, Ms.) We only add the following details: When
M = M, we only know that the component of 7/ in ML (Q) = GL2(Q) is (stably)
conjugate to the component of yas in M (A%) = GL2(A%) (as opposed to knowing
that they are equal), but this already implies that they have equal determinant. Again
from the assumption that a is large and ' is good at p, we deduce that jp(7') is in
the range det < 1 considered in Proposition When M = M> in the odd case,
we deduce that jpr(7') is in the range 0 < a < 1 considered in Proposition in
the same way as when M = Mj,. Finally, we note that the constant n% appearing in
Proposition is the same for M; and My (equal to 2), but in Propositions [4.4.2
there is an extra factor 2 on the right hand side compared to Proposition This
is why in the current proposition we have €y, = 1 and €, = 2. O

8.14.2. — We now plug the definition of Q(e,+’) (Definition [8.9.7) into the formula
(8.14.1.1), and obtain:

(8.14.2.1)  Gn Tty = 4p*r(M)k(M)k(G) ™ > |Outar(e)| "
e:(M/7LM/,S§\4777M)€€(M)C‘UT

> 80y (k1 (0) Las (s (V)M () AN 1)

s" 00N — 0 \— .
O () o (M)A L (i (Y)).

JM s

(The sign (—1)4™m4x’ appears both in the definition of Q(e, ') and in (8.14.1.1)), and
hence it gets canceled in the above.) Observe that when ~' € X(M'); is good at p,
we have

(8.14.2.2) SOy (k1 (0)) = SO (ke @ 1yp50 ),
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where, in the notation of Proposition ko € H“r(Mé;’pL) is given by

—£7°, M = M5 or My (so that MY = G2, or G,, resp.),

(8.14.2.3)
—(;*— (% M = M (so that ML = GL,),

and 1,50 , denotes the unit element of ”Hur(M@fO). (Thus k, differs from k((),?) in
that we throw away the positive powers of the variables &;, (;, as well as powers of &
when M = Mjs.) Conversely, if the right hand side of is non-zero, then 7/ is
necessarily good at p. Thus after making the substitution inside ,

we no longer need to impose the condition of being good at p in the summation over
/

v
Let 7, o1, (resp. v, s0) be the component of 7' in MCE(Q,) (resp. M"S°(Qy)).

Then we can rewrite (8.14.2.2)) as
(8.14.2.4) SO, (k1(0)) = SOW;,GL(ka)SOv;,so(lM'vSO,p)

Since 4" is (M, M')-regular (being in 3(M")1), 7, 50 is (M5O, M"59)-regular. By the
Fundamental Lemma (Theorem [8.1.4] (2)), we know that

SO, (Iarso ) # 0

only if 7/ ¢ is an image of a semi-simple element v, so € M5°(Q,), and in this case

we have
SO SO

(8.14.2.5) SO, . (Lrso) = A¥r20 (7 50: 150) 0% (Larso ),
where A%?ZO is the canonical unramified normalization of transfer factors at p as-
sociated to the hyperspecial subgroup M5°(Q,) N M(Z,) C M3°(Q,), and 150,
denotes the unit element of H(MS5°(Q,) / (M5°(Q,) N M(Z,))).

When 7, 5o is an image of 7y, s0 € M59(Q,) as above, note that 7/ = Yp.GLYp.SO
is an image of 7, g1, 7,50 € M(Q)), and for the canonical unramified normalizations

of transfer factors we have
SO

(8.14.2.6) A%uso (’Y;,soﬁp,SO) = A%/ (7/”71/),GL’Yp,SO)-
From (8.14.2.1)) (8.14.2.4) (8.14.2.5)) (8.14.2.6)), we obtain

(8.14.2.7) €y Ty, = 4p*r(M)k(M)kE(G) ™ > |Out s (e)|
e=(M’,2 M, ,nar ) €EE (M)erur

M’ - 0 \— . s ,00 50
: ZLM ('V/) IU(MIA/’) ISOW;,GL (ka)LM(]M(VI))OWM( 11\74 )pr,so(lMSO,p)
,Y/

0,0 .
(AN )AL (Vi (V) AN (YA aLpso),
where +' runs through the elements of 3(M’); that are good at oo, and for each ~'
we choose vy € M(A%) and v, 50 € MS°(Q,) such that 4/ is an image of vy (over
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A’}) and an image of '7]/>,GL’7p,SO (over Qp). Here we no longer need the condition that
~' is good at p, as we have already seen.

Lemma 8.14.3. — If v € M'(Q)ss is R-elliptic and is an image from M (Af)ss,
then it is an image from M(Q)ss. Moreover, if voo € M(R)ss is a prescribed elliptic
element of which ' is an image, then v is an image of some v € M(Q)ss such that
v is conjugate to Yoo in M(R).

Proof. — We recall a construction from [Lab99] in our setting. Let v* € M*(Q)ss
be such that 4" is an image of it. By hypothesis 4’ is an image from M (Af)s, and
note that 4/ is also an image from M (R) since it is R-elliptic. Thus let v4 € M (A)gs
be such that 7’ is an image of it. When ., is prescribed as in the statement of the
lemma, we take y4 such that its archimedean component is 7,.. From ~* and ~,,
Labesse constructs a non-empty subset

obsy« (ya) C (I, M*; A/Q) := Hop (A/Q, I"\M*)/ HQy (A, M*),

generalizing the construction of Kottwitz in [Kot86]; see [Lab99, §2.6], with L =
M,H = M*. By [Lab99, Thm. 2.6.3], the condition that 1 € obsy«(ya) would imply
the existence of an element of M (Q)ss that is conjugate to y4 € M (A), and the current
lemma would follow. Thus it suffices to prove that 1 € obs,-(ya) for a suitable choice
of YA -

Note that to prove the lemma we may always modify v, by replacing its v-adic
component with another element stably conjugate to it over Q,, for some finite place
v. We claim that after such a modification we can achieve 1 € obs,«(v4). In fact, we
know that &(I*, M*;A/Q) is isomorphic to the Pontryagin dual group £(I*/Q)P of
the finite abelian group K(I*/Q) (for I* C M™*) considered in [Kot86, §4.6]; cf. [KSZ]
Cor. 1.7.4]. The same argument as the second paragraph of [Kot90l, p. 188] implies
that the natural map &(1*/Q,)P — K(I*/Q)P is a surjection for some finite place v.
On the other hand,

R(I"/Q,)P = eI, M*;Q,) 2 D(I*, M*;Q,) = ker(H'(Q,, I*) — H*(Q,, M*)).

From the construction of Labesse we know that if we twist 4 within its stable con-
jugacy class by a class ¢ € D(I*, M*;Q,), then obs,«(va) gets shifted by the image
of ¢ in the abelian group €(I*, M*, A/Q). The claim follows. O

8.14.4. — By Lemma [8.14.3] we may assume that each ~ in (8.14.2.7) is an image

of some v € M(Q)ss, and that v is conjugate to jar(7') in M(R). Note that we have
Ly (G (") = Lar(y). (In fact Lps(-) depends only on C-conjugacy classes.) We
may and shall take yas and 7}, g1, 7,50 to be localizations of 7 in M(A?) and M(Q,)
respectively.

We have seen that 43((), ) = —1 in Proposition[8.9.5] Therefore with the above as-
sumptions on yy; and ’y;’GLfyp,so, the product of the three transfer factors in the third
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line of (8.14.2.7)) becomes —1. We summarize the above discussion in the following
proposition.

Proposition 8.14.5. — When a € Z~q is large enough (for a fized fP°°), we have

(8.14.5.1)

G Tty = —4p*r(M)k(M)k(G)™? > |Outr(e)|

e=(M', LM’ 8", na) €EE(M)ur-e

_ 11— _ s 00 o)
M) T O(MS) T SO (Ra) Lar (1) O3 (f377°) O3, (Lasso )
,Y/
0,0 , 0,0 _
' AjM,BM (WI’JM(,Y/))AJ'ALBM (7/7 7) 1a

where v runs through the elements of 3X(M'), that are good at oo, and such that '
is an image of some v € M(Q)ss. For each ~', we fix a corresponding v, and use ya1,

and vso to denote the (localizations over Q, of) the components of v in MECL and
MBSO respectively. O

Definition 8.14.6. — For any reductive group I over R that contains elliptic maxi-
mal tori, let 2(I) be the cardinality of ©(T, I; R) = ker(H' (R, T) — H*(R, I)), where
T is any elliptic maximal torus in 1.

Lemma 8.14.7. — Let I and T be as in Definition [8.17.0.

(1) We have 2(I) = | (L, T)/Qr(I,T)|. In particular Z(I) is independent of the
choice of T.

(2) If 92(I) = 1, then any two elliptic elements of I(R) that are stably conjugate

to each other are conjugate under I(R).
(3) If 2(I) = 1, then for any elliptic element x € I(R), we have 2(I2) = 1.

Proof. — Statement (1) follows from [Labl11l Prop. 6.4.2], and the fact that all el-
liptic maximal tori are conjugate under I(R). For (2), it suffices to prove that for any
(connected) reductive subgroup J of I containing an elliptic maximal torus T in I,
we have ©(J, I;R) = 1. But this follows from [Kot86), Lem. 10.2], which says that
H'(R,T) surjects onto H'(R, .J). Finally, (3) follows from the fact that I9 contains
a maximal torus which is elliptic in both I? and I. O

Lemma 8.14.8. — We have 2(Mg) = 1.

Proof. — If M = M, or Mz, then My is a product of copies of GLy or G,, and an
anisotropic group, so (M) = 1. Now suppose M = M; in the odd case. Write n
for d — 2, and recall that n > 3. We have Mg = G,, x SO(n — 1,1), so Z(Mg) =
2(S0(n — 1,1)). To compute Z(SO(n — 1,1)), consider an elliptic (anisotropic)
maximal torus T = U(1)(®~1/2 in SO(n — 1, 1), which is inside the maximal compact
subgroup S(O(n—1) x O(1)) of SO(n—1,1). It is well known (see for instance [AT18]
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Prop. 6.16]) that we have

[Q2(SO(n — 1,1),T)| = |Norgom-1)xo()) ) (T(C))/T(C)|.
On the other hand one can directly check that as subgroups of Aut(7¢) we have
Nors(o(n-1)x0) @) (L(C)/T(C) = Qe(SO(n — 1,1),T) = {£1}7 /2 1 &, 1y 0.
It then follows from Lemma [8.14.7| (1) that Z(SO(n — 1,1)) = 1. O

Proposition 8.14.9. — Keep the setting and notation of Proposition [8.17.5 We
have

(8.14.9.1)
Grr Trhy = —4p" T (MEM)K(G) ™YY M (0) ' 0(I0) ™SO 1. (ka) Lr (0)

K

K ,00 I‘LSO
'O’yo( 1174 )070)50(1Mso,p)3

where

— Yo Tuns through a fixed set of representatives of the stable conjugacy classes in
M(Q) that are elliptic over R and good at co. We let v a1, and vyoso denote the
(localizations over Qp of) the components of yo in MECL and MS© respectively.

- IO = M’(Y)o

— Kk runs through &(1y/Q) = &(Iy, M; A/Q)P.

Proof. — By Lemma [8.14.7] (2) and Lemma [8.14.8] every v in is conjugate

to jar(y") over R. Hence the quotient of the two transfer factors at the end of (8.14.5.1))
is equal to 1. Thus we have

G Trhy = —Ap*r(M)k(M)k(G) ™! > |Out s (e)] ™"
e:(M’,LM’,s’M,nM)Eg(M)““C
(]

S M () B(M) SO0 (Ra) Lar (V)O3 (F5) 050 (Lygso ).
,y/

This implies (8.14.9.1)) by the usual conversion from summation over (e¢,7’) to sum-
mation over (o, k) in the theory of stabilization (see [Lab04, Cor. IV.3.6] and [KSZ|,
§8.3]). O

8.14.10. — Now by Fourier analysis on the finite abelian groups £(Io/Q)P =

E(Io, M;A/Q), (cf. [Kot86, p. 395], [Kot90| p. 174], [KSZ] §8.1]), from Proposition
[B.14.9 we deduce

(8.14.10.1)
Grr Trhy = —4p" T (M)R(M)K(G) ™ Y M (70) 7' 0(10) " e(lo,2)SO5 g (ka)

Y0,71

L (70) O, (f357) O so (Larso p) [T(M)lT(Io) [ker (ker' (Q, Ip) — ker' (Q, M))| |,
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where

— 7o runs through a fixed set of representatives of the stable conjugacy classes in
M(Q) that are elliptic over R and good at co.

- IO = M’(YJO

— 4 runs through the subset of ®(Iy, M;A) := ker(H'(A, I) — H*(A, M)) con-
sisting of elements whose images in €(ly, M; A/Q) are trivial. Each such v; determines
a conjugacy class in M (A) which we also denote by v1. We let 71 so be the component
of 1 in MSO(QP)-

— The number |:T(M)_1T(Io) ’ker(ker1 (Q, Iy) — ker'(Q, M))@ is none other than

the cardinality of &(1/Q). (This can be shown by combining [Kot86 §9] and Weil’s
conjecture on the Tamagawa number proved by Kottwitz [Kot88], cf. [Kot90, §4].)

8.14.11. — The last major operation to be applied to (8.14.10.1)) is the Base Change
Fundamental Lemma, which relates SO, ., (kq) to the twisted orbital integrals in
Kottwitz’s point counting formula. We only need this result for G,,, in which case it
is trivial, and for GLs, in which case it was initially proved by Langlands [Lan80].
For an account of the theory for GL,, see [AC89] and for the proof in the general
case see [Clo90a, [Lab90].

Observe that the function k, € Hur(M(gL) defined in is equal to the
image under the base change map (see

HY (ML) — H™(MG")
of the element p‘“/2¢g/[’17 resp. —pMr resp. —pMr @ 1, where ¢ is as in Definition
m when M = M, resp. My, resp. Mys. Here when M = Mjs we have MGV =
M, x G,,, and we write —¢* @ 1 corresponding to this decomposition, where 1 is
the unit of H" (G g,.). By the Base Change Fundamental Lemma, we have, for

any semi-simple conjugacy class (which is the same as stable conjugacy class) vo,GL
in MS%(Q), the following identity:

=35 e(0)TOs(pMn), if M = Mo,
(8.14.11.1) 50460 (ka) = —p~ 235 e(0)TOs(¢pMn),  if M = My,
o 6(5)T05(¢£4h)1z; (y), if M = M,

where ¢ runs through the o-conjugacy classes in M}, (Qpe) such that it has norm the
My,-component of var,, €(d) denotes the Kottwitz sign of the twisted centralizer of o
(a reductive group over Q,), and in the last case we write vo,qL, = (z,y) € My, X Gy,
(In fact, by [AC89] or direct verification, the above summation over ¢ is either empty
or over a singleton.)

The next lemma is sometimes called “pre-stabilization” in the literature.
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Lemma 8.14.12. — Let F(x,y) be a C-valued function on the set of compatible
pairs (x,y) of a stable conjugacy class x in M(Q) and a conjugacy class y in M(A).
Then we have

ZL )T (y) = Y M () [ker(ker'(Q, Io) — ker'(Q, M))| F(v0, 1),
0,71
where on the LHS ~ runs through the conjugacy classes in M(Q) which are R-elliptic,
and on the RHS ~y runs through an arbitrary set of representatives of the stable
conjugacy classes in M(Q) that are R-elliptic, and v runs through the subset of
D(Ip, M; A) consisting of elements whose images in €(Ip, M;A/Q) are trivial. Here
we have denoted Iy := MSD. Moreover, if we restrict the summation on the LHS to
only those v good at 0o, and restrict the summation on the RHS to only those vy good
at 0o, we still get an equality.

Proof. — The multiplicity of a M(Q)-conjugacy class + appearing in the set
D(Ip, M;Q) is equal to (o) - M (y)~t. The fibers of the map D(Iy, M;Q) —
D(Ip, M, A) all have size

’ker(kerl((@, Iy) — ker(Q, M))| .

The lemma then easily follows. O

We are now ready to prove Theorem

Proof of Theorem[8.5.3 — By (8.14.10.1) and Lemma [8.14.12] we have
(8.14.12.1)  Gn Tr)y, = —4p* k(M ZL -1 [ (M)~ (M g)T(MD)

SO’YGL( )LM( )O’Y( J[\ZOO)O’YSO(IMSOW)’

where v runs through conjugacy classes in M (Q) that are elliptic over R and good at
oo. By Harder’s formula (see [GKM97, §7.10]), we have

X(M3) = o(M3) ™" e(M3 g) 2 (M3 5)7(MJ).

By Lemma (3) and Lemma [8.14.8, D(M? ) = 1. Hence the product in the
in (8.14.12. (MO,

bracket in (8. 1) is equal to x and therefore

(8.14.12.2) %y Trhy = —4p"k(M)K(G) ™" > M () "' x(MD)
’ SO’YGL (ka)LM<'7)O’Y< ﬁw)ovso(lMSO,p)'

Denote

. {p*, if M = My or Mo,
prr =

p~9/2p*if M = M;.
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By (8.14.11.1) and (8.14.12.2) we have
(8.14.12.3) €y Ty, = dp™ k(M)k(G) ™!
M) T (M) e()TOs (65 ) Las (1) 04 (£57°) O, (Lani 2,))s
v,0

where v, denotes the component of v in M; under the decomposition M = M} x M,
(which only differs from the decomposition M = MSL x MS© when M = M;,), and
L, (z,) is as in Definition @ To finish the proof we divide into different cases.

Case M = M;s.

In Definition 6 runs through those elements of Q;a with norm -y and such
that the Kottwitz invariant of § in 71 (My)r, = X.(G,,) = Z is equal to the image of
—p. The last condition is equivalent to requiring that v,(0) = —1, which is a necessary
(and also sufficient) condition for TOs(¢") # 0. Hence we may drop this condition
in the summation in Definition m Every term c¢(v9,7,d) is easily computed to
be 271 (with ¢; = vol(G,,,(R)/G,,(R)?)™1 = 271 ¢3 = 1). On the other hand, in
(8.14.12.3) every term e(d) is 1. Comparing Definition [2.4.3[ and (8.14.12.3)), we see
that it suffices to prove that

(8.14.12.4) 27162 5, () = 40 E(M)K(G) My, )

for v = vy contributing to (8.14.12.3)). (Here 7, and 7y, denote the components of
v in Mp(Q) and M;(Q).) We have x(Mj, ~,) = x(G,,) = 27! by Harder’s formula,
and we have k(M) = 2m73 k(G) = 2™~ by Propositions and Moreover,

if ¥ = ypyr contributes then v,(y;,) = —a (because ¢ should exist) , and therefore in
the odd case
2m—1 —2)a *
Sppn(m) = [ letw)l, =" =p=27 = (p)?,
aEdT—oF,

where the contributing roots are €1, €1 £ €5, 7 > 2. Similarly, in the even case,
2m—2 _ a *
Sppn(m) = [ letw)l, =" =p=2 = (p)?,
aEdT—oF,

where the contributing roots are €; £ ¢;,j > 2. The equality (8.14.12.4) follows, and
the proof is finished in this case.

Case M = M;.

First we claim that if 79 € GL2(Q) is semi-simple and R-elliptic, then

c2(70) = 7(GLzy,) = 1.

In particular, we have

c(0) = e1(70)e2(70) = vol(AarL, (R)*\GLy 5, (R)) .

(11 This equality also follows from the formula for ¢ on p. 174 of [Kot90], the fact that 7(GL2) = 1,

and Lemma @
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We prove the claim. Write Iy for GLg ~,. If Iy = GLg, then 7(ly) = 1 by Proposi-
tion [8.2.4] and c(v9) = 1 by definition. Otherwise Iy = T is a maximal torus in GLs
that is elliptic over R. Observe that T' = Resp,q G, for some imaginary quadratic
field F', so H'(Q,T) = 0 by Shapiro’s lemma and Hilbert 90. Hence c3(79) = 1. Now
by [Kot84bl, (5.1.1)] and Weil’s conjecture on Tamagawa numbers proved in [Kot88],
we have

7(T)es(v0) = 7(T) [ker (Q, T)| = 7(T) ‘kerl(I‘,f)‘ - ‘WO(TF)\ :

Thus to show 7(T') = 1 it suffices to show that T" is connected. We have seen in the
proof of LemmaMthat TT= C Z(éig). On the other hand Z(éig) C TT. Hence
Tr =7 ((/}ig) = C*, which is connected as desired. The claim is proved.

We continue to consider such vy € GL2(Q) as in the claim, and write Iy for GLg -, .
By Harder’s formula we have

x(Io) = e(lor)v™ " (Io)7(Io) |2 (1o 8)] -

Since Iy g is either GLa g or an elliptic maximal torus in GLg g, we have e(lopr) =
|2(Ipr)| = 1. Hence

x(Io) = e(Ip) vol(Acr, (R)*\Io) ™7 (o)
where I is the inner form over R of Iy r that is anisotropic modulo center.

If § € G(Qpa) has norm stably conjugate to some vy € GL2(Q) and 7o is good
at p (i.e., its determinant has valuation —a), then we have e(5) = e(Iy), where I is
defined in terms of g as above. In fact, this follows from the existence of the (global)
inner form I of Iy as in the product formula for the Kottwitz signs for I, and
the observation that for any place finite v # p, e(lo.g,) = 1 since Iy g, is either a
torus or GLs g, -

From the discussion so far we deduce that for § and 7 as in the last paragraph we
have

c(v0) = e(0)x(Lo).
Moreover, if § € My, (Qpe) is such that TOs(¢Mn) # 0, then necessarily v, (det §) = —1,
and it follows easily that the Kottwitz invariant of ¢ in 71 (Mj,)r, = Z is equal to the
image of —pu. It remains to show that

Sp, (0, () = 4p™k(M)k(G) ™,

for any v = v5,yz, contributing to (8.14.12.3). We have k(M) = 2™ 3 k(G) = 2m~!
by Propositions and For v = 7,y contributing, we have v,(dety,) = —a
(because ¢ should exist), and therefore in the odd case

Spvn(m) = ] letwm)l, = Idet(ya)[5" 7% = pl*= = (p™*)2,

+
agdt—d
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where the contributing roots are €y, €2, €1 + €2, €1 £ €5, €2 £ €5,7 > 3. In the even case,

m—2

the contributing roots are €1 + €2, €1 £ €, €2 £¢€;,j > 3, and |det(’yh)|§ is replaced

by |det(*yh)|12)m_3, which is still equal to (p**)? . The proof is finished in this case.

Case M = M, (odd case).

Similarly to the case M = M3, we reduce the proof to proving the following
equality:

27162 0,y (1) = 27 4P R(M)K(G) " X (M ).

The extra factor 27! on the RHS in comparison to appears due to the fact
that €y = 2 for M = M. We have x(Mp, ,) = x(Gy,) = 27! by Harder’s formula,
and k(M) = 2m~2 k(G) = 2™~ ! by Propositions and Also as in the Mo

case, if v = 7y contributes then
2m—1 - X
Spyop(m) =[] latw)l, =" =p1=2 = (p)?,
acdt—o},

where the contributing roots are €1, €1 £¢;, j > 2. The proof is finished in this case. [

At this point we have completed the proof of Theorem [85.2] In the next two
sections we prove vanishing results that are complementary to Theorem [8.5.2

8.15. A vanishing result, odd case

8.15.1. — Assume we are in the odd case. Consider a Levi subgroup M* of G* =
SO(V) of the form considered in Thus we fix r,t € Z>(, a non-degenerate sub-
space W of V. of codimension 2(r +2t), a hyperbolic basis By, + of W, an embedding

G, x GLL = M*Ct c sow )

as in , and obtain M* as M* = M*SF x SO(W) C G*. We write M*SO for
SO(W). Asin and Proposition isomorphism classes in &g+ (M™*) have ex-
plicit representatives e, g, for parameters (A4, B,p) € &, x’ Pw. In complete anal-
ogy with we fix &g+ (M*) to be a subset of these eaBp = (M, EM spe mare)
such that the component of sy« in ]\ﬁﬁ\O is not —1 and such that each isomorphism
class in &g« (M*) is represented exactly once. For each eq pp = ea g a+ s+.d-0- =
(M, XM sape,mare) € g (M*), we let
(H,"H,$,1) = €q+ 12| A| 14| B+ d- 12| A | +4] B<| 6~

which is the induced elliptic endoscopic datum for G* as in Proposition We also
view (H, LH, s, n) as an elliptic endoscopic datum for G. Since H™T is non-trivial by
our assumption on s+, the function f¥ is defined as in §8.4 Moreover, as in
we have the fixed pair (j : Ty — T, Be,mr), and a normalization for transfer factors

between H and G at all finite places. We fix M’ — H as in §5.5.9| so as to view M’
as a Levi subgroup of H, and define ST, () as in Definition In analogy with
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(18.5.1.1)), we define

(8.15.1.1)
. = (0$.)7" > |Outg-(e)| " 7(G)r(H) " ST, (£7).
e:(M/7L.M,:S]\/I* M)
€égx (M*)

Theorem 8.15.2. — Assume that M* does not transfer to G. Then Tr),.. = 0.

Proof. — By hypothesis at least one of the following conditions holds:
rt >0 or r>3 or t> 2.

Let &(M™*)®" be the subset of &(M™*) consisting of isomorphism classes of endo-
scopic data whose groups are cuspidal over Q (which is automatic in the odd case)
and unramified over Q,. Define a set &(M*)>" of representatives of &(M*)*™ in
exactly the same way as in Thus & (M*)*" consists of ¢,(M*) for certain
p=(d",6",d",67) € Pw, which all satisfy that d* > 2. Then the same arguments
as in § yield a decomposition of Tr,,. into a sum as follows. The indexing set
for the sum is the set of pairs (e,7’), where ¢ = (M/,LM’,S’M*,UM*) runs through
&(M*)>"  and for each fixed e, 7' runs through a set of representatives in M’(Q) of
the semi-simple R-elliptic (M*, M')-regular stable conjugacy classes. For each (e,~’),
the summand is a complex number times

(8.15.2.1)
D SO (P2 m)SOy (fia) Y. det(walpn) @i (V™ Opy)
A,B e EPH (py*)

where:

— The first summation is over all subsets A of [r] (recall that this is our short-hand
notation for {1,2,--- ,r}) and all subsets B of [t].

— For each (A, B), we define (H,"H, s,n) with respect to ¢ and (A, B), and view
M’ as a Levi subgroup of H, as explained in

We now fix (A, B) and analyze the terms SO,/ ((f77°°)y) and SO,Y/(ffM/).
If there is one finite place v # p such that Mg does not transfer to Gg,, then
SO, ((f7:P>°) ) = 0 by the proof of [MorlOb, Lem. 6.3.5 (ii)]. In this case
(8.15.2.1) is zero for all (e,~'), and the theorem is already proved. Thus we as-
sume that Mg = transfers to a Levi subgroup M, of Gg, at each finite place v # p.
In this case, the localization at v of ¢ can be viewed as an endoscopic datum for
M,, and there is a normalization (A}%)2F of transfer factors between M’ and M,
inherited from the normalization (A%), of transfer factors between H and G at v
fixed in 5 For almost all v, (A%?)g"B is the canonical unramified normalization
(associated to the hyperspecial subgroup of M, (Q,) determined by the hyperspecial
subgroup of G(Q,) determined by some reductive model of G over some Zariski open
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in SpecZ), and is hence independent of (A4, B). Define

) (A
>(A4,B) = [ A5
vipeo (Aar)v
which is a finite product. Then as an analogue of Proposition SO, ((fHEP) )
is equal to €”°°(A, B) times a number independent of (A, B).
By Proposition we know that SOvr(f;IM,) is a linear combination of V;(A),

V;(B), and 1 (where i € [r] and j € [t]) with coefficients independent of (A, B). We
conclude that is a linear combination of the following r + ¢ + 1 expressions:

Ri:=)Y Vi(A)">(A,B) > det(w.(om)@in (v, 0,,), 1<i<m,
A,B eH€PH(pyx)
Tyi=) ViB)e™(A,B) Y det(wilpn)®ip (v 04,),  1<j<t,
A,B PHEDH (py*)
S=Ye=AB) Y det(w. ()@ (v 1,0,,).
A,B PHEDH (py*)
We shall show that these r + ¢ + 1 expressions are all zero, which will prove the
theorem.

We first seek to compute the term }° g, (,..) det(ws (om))®L, (v~1,0,,) for
each fixed (4, B), in a way similar to Fix an elliptic maximal torus Ty of My
such that 7/ € Ty (R). As usual we have M’ = M* G x M"S9 | so necessarily Ty is
a direct product of (1) the direct factor G7, of M*G¥ (2) an elliptic maximal torus
in the direct factor GLY of M*SG% and (3) an elliptic (anisotropic) maximal torus
Typrso = Thprsos X Typrso.— in MHSO = MSO+ 5 MHSO:— We denote the product
of (1) and (2) by Tj~cr. Note that all of R;,T};,S can be viewed as continuous
functions in 7/ varying in Thy (R) (cf. §4.2.1)). Hence we may and shall assume the
following condition:

(f) The r components of 7/ in G7, C M*S% are distinct from each other and
distinct from the inverse of each other.

Let 7’ be the number such that exactly 7' among the r components of 4/ in G/, are
positive.

Fix an elliptic maximal torus Tps« in Mg of the form Ths«.cr X Thy+s0, where
Ty-cu is as above and T)«so is an elliptic (anisotropic) maximal torus in M*:S©.
Fix an admissible isomorphism jp- : Thyr — Tar- of the form idTN .aL XJMm=s0,
where jjs+so is an admissible isomorphism Th;..s0 — Thseso. As in for any
choice of Borel subgroup By of G{ containing T+ ¢, we obtain m cocharacters of
Ty~ ¢ forming a basis of X.(Th+). We denote them by

7—01 y T TO,,.+2t yT1y "y Tm—r—2t-
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Since we are in the odd case, by making different choices of By we can arbitrarily
permute the 7’s and replace an arbitrary number of them by their inverses. By
similar arguments as in §8.8.1] we can choose By such that the following conditions
are satisfied. (Here condition C depends on the assumption (f) above.)

A : Foreach 1 <i <r, 1, is a cocharacter of the direct factor Gj,, of M*GL Moreover,
there is a permutation € &, such that for each 1 <+¢ <, 79, is either the identity
cocharacter or the inverse of the identity cocharacter of the §(i)-th copy of Gy,.

B: Foreach 1 <j <t T0, 4251 and TO,4; AT€ cocharacters of the j-th copy of GLo
in M*GL. Moreover, these two are simultaneously GLs-conjugate to the following

cocharacters of GLs:
() ()
Z— and z — .
1 z

C : Let {e1, -, €.} be the basis of X*(G,) dual to the basis {79,," -, 70, } of X.(GF,).
We also view each ¢; as a character on T+, via the projection from T+ to the direct
factor G, of Ty« . For each 1 < ¢ < r, we require that

(8.15.2.2) e;(y") > 0 if and only if i < 7',

Forall1<i<j<r/,orr +1<i<j<r, werequire that

ei(v1)
(8.15.2.3) &0 €10, 1],
and
(8.15.2.4) lei(v M| < 1.

D : Let n~ be the dimension of T)/.so,- ¢. Foreach1 <¢ <n~, j];[l* oT; is a cocharacter
Of T]V[/,SO,—’(C.

The pair (j : Ty — Tg, Bg.u) fixed in 5 can be transferred to a pair (j :
Ty = Te-, Beg+ i) as follows. We fix an anisotropic maximal torus T+ in G and
an isomorphism v : Tz — T+ coming from any inner twisting Gec — G§ in the
canonical G*(C)-conjugacy class of such inner twistings. Then we define j := v o j,
and define Bg- g to be the Borel subgroup of G¢ containing Tz~ such that v relates
all B, g-positive roots on T ¢ with Bg- g-positive roots on Tg- c. From (j, Bg- u),
we obtain an ordered m-tuple of cocharacters of T+ ¢

Bl’l-.’Bm

similarly as in % Define an isomorphism ig= (A, B) : Tar«c — T+ c by the
following rule. Write m* for the absolute ranks of H*, and n* for the absolute ranks
of M"59% Thus we have

m* =n"+A|+2|B],
m~- =n" +|A°|+2|B°.
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Let o € &,, be the unique permutation such that o =1 is increasing on {1,2,--- ,m~}
and on {m~ +1,m~ +2,--- ,m}, and

071({13 e 7m7})
=AU{r+2j—1Lr+2j|jeBYU{r+2t+1,-- ,r+2t+n"}.
We then require that ig- (A, B) sends 7o, ,70,,0,5T1, "+ » Tm—r—2¢ T€spectively to
Puty ™ Po(my Our ig~ (A, B) is a direct analogue of ig(A, B) in Definition
an it enjoys similar properties as in Lemmas and with j and jps replaced
by j and jas«. Let By« := Bo N M™, and let
(8.15.2.5) AYB — (_1)‘1(GR)+Q(HR)+Q(M§)+¢1(Mu%)A,

G, B+ Jarx s Bagx

By [Mor11l, Prop. 3.2.5] (cf. Proposition [8.8.8) and similar arguments as in §8.8.9)

and the proof of Lemma [8.8.10, we have

(8.15.2.6) > det(wa(pn) @5 (v, O4y)
YHEDH (Py*)
= sgn(0)er(in- (v " )ern (VALY 5 (Vi (V) @G G (7 ), OF).

Here,

— o is the permutation as above, used to define ig« (A, B).

— R is the set of real roots of (G, T~ ), and eg(t) is —1 to the number of
By-positive roots « in R such that 0 < a(t) < 1.

— Ry is the set of real roots of (Hg, Ty c), and €g, (') is —1 to the number of
a € Ry such that 0 < a(t') < 1 and such that o (jp+) " toig, (A4, B) toj € X*(Ty)
is a Bpy-positive root. N

— ®G,.(-,08) is defined analogously as ®F; (-, 0)eqs in and ,
with the role of V played by V*, and the role of Reqs in played by the root
system

Ry = {a € Ry | Oé(’}/) > O} .

We analyze how the terms on the right hand side of depend on (A, B).
We observe that e (ja+(7/~1)) is independent of (A, B), while Ry and Ry -/ as above
depend only on A, not on B. To simplify notation we denote

(8.15.2.7) (', A) := 0§ (ar- (Y1), ©4).
and
(8.15.2.8) RA = RH, RA,’Y’ = RH,’Y/'

We claim that eg, (7'~!) is independent of (A, B). Indeed, the roots a € Ry
such that a o (jp-)"! oig, (A, B)~! o j are By-positive are exactly € + ¢; and
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€ — €; where ¢ < j and ¢,j simultancously belong to one of A and A€, to-
gether with ¢; for all ¢ € [r], together with certain characters of the direct factor
Ty+.ou N GLY of Ty- constituting a set independent of (A, B). Among them,
those satisfying 0 < a(y~!) < 1 are, by (8.15.2.2) (8.15.2.3) (8.15.2.4), exactly
€; +¢; and €; — €; where i < j and ¢,7 simultaneously belong to one of the four
sets {fue Aju<r},{ucAlu<r'} {ucA|lu>r},{ue A°|u>r'}, together
with certain other roots constituting a set independent of (A, B). The total number
of €; + ¢; and €; — €; where 7 < j and i, j simultaneously belong to one of the four

sets as above is obviously even. Our claim follows.
In the rest of the proof, we write “Const.” for any quantity that is independent of
(A, B). By (8.15.2.5), (8.15.2.6), and the above analysis, we have

(8.15.2.9)

> det(wi(on)) @i (Y71, Oy, ) = Const. sgn(0)(—1) 1= (4, A).
PHEDPH (Pyx)

We now simplify sgn(o) and (—1)?U7%), Define wo(A) to be the sign of the element

o4 € &, which sends {1,2,--- ,|A¢|} increasingly to A¢ and sends {|A¢| +1,--- ,r} in-
creasingly to A. If we view 0 4 as an element of &,,, then ozloo_1 sends {1,---,m~}
increasingly to

{1, AN U{r+2j—L,r+2j|jeBYU{r+2t+1,- ,r+2t+n"},
and sends {m~ +1,--- ,m} increasingly to

{14°| +1,--- ,T}U{T+2j—1,r+2j|j€BC}U{T+2t—|—n7—|—1,-~- ,m}.
From this, one sees that the sign of o' 0 0~ is (=1)I4I"" (since all n~ elements of
{r+2t4+1,--- ,r+2t+n"} are greater than all |A| elements of {|A°| +1,---,7}).

Hence we have
(8.15.2.10) sgn(o) = wo(A)(=1)A"",
As for (—1)7U1%) | we compute
2q(Hg) =mT(m* +1)+m~(m~ +1)
= (n"+|A|+2|B|)(nt +|A|+2|B]4+ 1)+ (n~ +]A°|+2|B°|)(n~ +|A°|+2|B°|+1),
and so
(8.15.2.11) ¢(Hg) = Const. +(m + 1)(|A| +2|B|) = Const. +(m + 1) |A] mod 2.
Plugging (8.15.2.10) and (8.15.2.11)) into (8.15.2.9)), we get
> det(wi(om)) @i (v, Oy, ) = Const. wy(A)(—1)! A MG (4 4).

PHEDH (Py*)
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Hence
(8.15.2.12) , = Const. Z Vi(A)eP>® (A, B)wo(A)(=1)IAI +m+D g4/ A),
(8.15.2.13) = Const. Zv (A, B)wo(A)(—1)IAl+m+D g (/)

(8.15.2.14) S = Const. Z P (A, B)wy(A) (=) FmiD gy 4),
A,B

We now compute (A, B). Let (H,”H, s,n) be determined by (A, B). For each
place v, as explained in Remark the choice of ¢y, : Vg, ®Q, = Vo, ®Q, and
the resulting pure inner twist (¢, ,uy,, ) allows us to pass between normalizations
of transfer factors between H and G and between H and G* at v. Hence we obtain
from (A%), a normalization (A% ), of transfer factors between H and G* at v, and
then inherit from the latter a normalization (AL )25 of transfer factors between M’
and M* at v. For each finite v # p, we have

(AR )P (AR

USRS

and so AMYAB
exam = I Sk
vipoe (AR )v

Recall that the normalizations (A%), for all places v satisfy the global product
formula. We claim that (A},)4F for all v also satisfy the global product for-
mula, for which we provide an argument that also works in the even case. Recall
from Remarks [5.1.3] and [5.1.4] that for each v we have the freedom of changing
dvy, Vo, ®g, Q, — Vg, ®q, Q, by composing it with an element of G*(Q,).
Also recall the compatibility condition (1) imposed in m Thus for the sake of
proving the claim, we may replace each ¢y, by the isomorphism V®eQ, — V&oQ,
induced by the global ¢y : V ®oQ — Vo ®e Q. Then one sees that (A ), for all v
satisfy the global product formula, since the local cocycles uy, : p oy, ¢’v@u come
from the global cocycle uy : p — ")qﬁvqi);l. Therefore the inherited normalizations
(AMYAB also satisfy the global product formula.

By our claim, the product [T, (A}, )48 over all places v is independent of (A, B).
Hence AN Y00

exm = J[ i
ve{p,00} (AM' )”

Now Vp, is quasi-split by our assumption that Gg, is unramified (in particular split)
and by Proposition Hence there exists g € G* (@p) such that go dvy, 18 defined
over Q. (Clearly we can find ¢ € O(V)(Q,) such that ¢’ o dvg, is defined over
Qp. We can then construct g by left multiplying ¢’ by any element of O(V)(Q,)
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of determinant —1, which exists.) It then follows that (A%/ );LB is the canonical
unramified normalization associated to a hyperspecial subgroup of M*(Q,) that is
independent of (A,B) Hence (A%, );LB is independent of (A, B). We conclude
that MO0

(4, B) = (Bar o
(A7)

By the same argument as in the proof of Propositionm (see the “claim” in that
proof), the Whittaker normalization between M’ and M* at oo is inherited from the
Whittaker normalization between H and G* at co. The former is independent of
(A, B). Hence €(A, B) is up to a non-zero multiplicative constant equal to the ratio of
the Whittaker normalization between H and G* at oo to the normalization (A% ).
This ratio is the same as the ratio of the Whittaker normalization between H and G
to (AG) o = A} Bg.» Which is equal to

(1)t /2141 ([
as shown in the proof of Proposition When n™ is even, the above is equal to
Const.(—1)[1A1/21+IBl When nt is odd, the above is equal to Const.(—1)LAl/21+IB],
In both cases, taking into account the equality m = nt 4+ n~ 4 r 4 2t, we obtain:

ep,OO(A’B)(_l)IAI(n*—km-&-l) _ Const.(—1)T‘A‘+L|A|/2J+|B‘.
Plugging this into (8.15.2.12)), (8.15.2.13)), and (8.15.2.14)), we obtain

(8.15.2.15) R; = Const. > V;(A)wo(A)(—1)AFUAZIHIBI (4 4),
A,B

(8.15.2.16) T; = Const. » _ V;(B)wo(A)(—1)"AFLAIRIHEIg (v, 4),
A,B

(8.15.2.17) S = Const. Y _ wo(A)(—1)"AFLUAZIHElp (v, A),
A,B

where A runs through subsets of [r] and B runs through subsets of [t]. We need to show
that the right hand sides are all zero. This we accomplish in the next proposition. [J

Proposition 8.15.3. — Assume rt > 0, orr > 3, ort > 2. The right hand sides
of (8.15.2.15) (8.15.2.16) (8.15.2.17) are all zero.

(12)1n the current odd case, all hyperspecial subgroups of M* (Qp) are conjugate under M*(Qp), so
the canonical unramified normalizations associated to all hyperspecial subgroups are actually equal
to each other. This is no longer true in the even case. Nevertheless, the statement in the text remains
true in the even case, as long as there exists g € G*(Q,) such that go ¢V@p is defined over Q.
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Proof. — We first treat the case t > 2, which is the easiest. In this case we have the
elementary combinatorial identities

(8.15.3.1) Z (_1)\B| =0
BC[t]

and

(8.15.3.2)

M~

(—1>k[#{B 1Bl =k.jeB)—#{B||Bl=kj¢B)

t
t—1 t—1
o {2) - ()

P k—1 k

t—1

t—1
=9 —1)k =0.

St ) =0

k=0
(Note that for t = 1, still holds, but 3" 5 V1(B)(=1)I8l = —2.) Hence we

have R; =T; = S = 0 in this case, and the proof is finished.
Before treating the other cases, we observe that

wo(A)wo(A°) = (—1)AI4,

> VB =
BC|[t]

~
Il
<

from which
(8.15.3.3) wO(A)(fl)TIAIH\A\/?Jwo(AC)(,l)r\A“IH\A“WJ — (,I)Wﬂ.

Now suppose rt > 0 and r € {1,2}. Again holds, so R; = S = 0. To
show T; = 0, observe that ®(v', A) = ®(v', A°), so it suffices to show that
is —1, which is indeed true for r = 1, 2.

Finally we treat the case r > 3, which is the most complicated. We need a compu-
tation that is similar to [Mor11l pp. 1698-1699], applying the result of Herb [Her79].
In the following we will view 7 and B as being fixed, and let A vary.

We have

Ay = Apr- =Gh, x Gt
where the factor G7, is the canonical copy of G, in M*S* = G x GLL, and the factor
G!, is the product of the centers of the ¢ copies of GLy in M*CL. Let ¢, -+ ,¢, €
X*(G},) be as in condition C satisfied by By in the proof of Theorem Let
{1, , a4} be the standard basis of X*(G!,). Define

It ={iel]|ea®) >0}, Im:=[]-1TI",
AT = ANTT, AT =ANI",
AST .= AN T, AT = ANI".

By (8.15.2.2)), we know that It = [r'].
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Let Ra = Rp be the real root system involved in the definition of ®(v/, A);

see and . Then R4, is of type
(8.15.3.4) Bja+| X Blac+| X Dja-| X Djge— x A{Y,
where B|4+| consists of the roots
€, €t €, 0,5 € AT i#
and Dj4-| consists of the roots
€ tej, 1,5 €A F ],
and similarly for B| 4.+ and Djge.~|. The part A" consists of the root
+2aq, -, F204.

By , we see that the Weyl group of R4 contains —1 if and only if |[A™|

and |A%~| (and a fortiori |I~|) are even, if and only if 4/ € H(R)". These conditions

are necessary for ®(v, A) to be non-zero. Assume that these conditions are satisfied.
Then

Dy, A) = Z C(,w)na(y',wBy),
weN
where Q is the complex Weyl group of G*, the coefficients C'(y/,w) are independent
of A, and
na(y,wBo) :=cr,_,(z, p(wAp, +wpn,)),
with notations explained below:
— x € X, (Ap~)r is characterized by the condition
(8.15.3.5) gar- (7Y € exp(x)Tar-(R)y C Tar-(R),
where Ty« (R); is the maximal compact subgroup of Ty« (R).
— o X*(Tp)r = X*(Apr+ )R is the natural restriction map.
— pB, is the half sum of the By-positive (absolute) roots in X*(T+), and Ag, €
X*(Ta~+) is the Bp-highest weight of V*.
~¢r,_, () is the function associated to the root system Ra . C X*(Ap-)r as
i @211
We note that
X = p(wAp, +wpp,) € X*(An+)r
is independent of A. In the following we will use only this property of x.
Thus to show that R; = T; = S = 0, it suffices to show that the following quantities
are zero, where the summations are over A C [r]| such that |A~| and |A“~| are both

(13)This follows from the following argument: Let €1, ez denote the two standard characters on the
diagonal torus in GL2, and identify them with two characters on an elliptic maximal torus in GL2 g.
Then with respect to the real structure of the latter, £(e1 + €2) are the only real characters among
€1,€2,€1 £ €2, —€1  ea.
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even:

(8.15.3.6) M; = Vi(Awo(A) (-1, - (2,x),  1<i<r
A

(8.15.3.7) N = wo(A)(—1)"AFIAIRI g, (2, x).
A

More precisely, the vanishing of M; implies the vanishing of R;, and the vanishing of
N implies the vanishing of T; and S. We show the vanishing of M; and N (for r > 3)
in the next proposition. O

Proposition 8.15.4. — Let © € X.(Ay+)r be characterized by the condition
8.15.3.5), where ' € Ty(R) satisfies the conditions (8.15.2.9), (8.15.2.4), and
8.15.2.4). Let x € X*(Ap~)r be an element independent of A. When r > 3, the

quantities M; and N in (8.15.5.6) and (8.15.3.7) are zero.

8.15.5. — In the proof of Proposition [8:I5.4] we need to apply Herb’s formula for
CRA which we now recall. We will follow the notation and definitions of [Mor11l
pp. 1698-1699]. Note that in loc. cit. root systems of types C and D are considered,
whereas we need to consider root systems of types B and D. Nevertheless the formulas
for type B and type C root systems are identical; see [Her79].

For a,b € R, we define

(a) 1, ifa >0,
ci(a) =
' 0, otherwise.

, if0<a<bor0< —-b<a,

c2.8(a,b) == {

0, otherwise.

1, ifa>|b,

0, otherwise.

ca,p(a,b) := {

Our ¢y is equal co ¢ in [Morll].

Let I be a finite set. We will denote an unordered partition p of I by p =
{I. |z € Z}, where Z is the indexing set, and I = [],., I.. Let P2,(I) be the
set of unordered partitions {I, | z € Z} of I such that all I, have cardinality 2 or 1
and at most one I, has cardinality 1. If I is equipped with a total order <, we can
define a sign function

(8.15.5.1) €: PLy(I) — {£1}
as follows. Given p € 73%2(] ), we enumerate the elements of p as Iy, .-+, I, and let
o be the unique bijection I — I satisfying the following conditions:

— For all 4, € [k] with ¢ < j, and for all s € o(I;) and s’ € o(I;), we have s < §'.
— If ¢ € [k] is such that |I;| = 2, then ¢ is increasing on I;.
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With respect to the total order on I, the permutation o of I has a well-defined sign.
We define €(p) to be that sign. This definition does not depend on the enumeration
of the elements of p.

For n € R" and J a subset of [r] of cardinality 1 or 2, we make the following
definitions. If J = {s}, define

crs(p) = c1lps).
If J ={s1,s2} with 1 < sq, define

C,],B(ﬂ) = CZ,B(N“Slnu’Sz)’
crp(p) = Cap (s fhsy)-
Now for I C [r] and p = {I. | z € Z} € P2,(I), define

cg(p, p) == H cr.,8(K)-

z€Z

If in addition |I| is even, define

co(p, ) = [ er.o(w.

z€Z
Let x € X*(An+)r and let 1 be its projection to X*(G/,)g. We identify X*(G!,)r
with R" using the basis {e1,- -+ , €.} fixed in the proof of Theorem (as opposed
to the standard basis), and view p as an element of R". Let x be as in the statement
of the Proposition [8:15.4 Then Herb’s formula states that

(8.15.5.2) ¢p, _,(x,x) = Const. Z Z Z Z

P EPLL(A*) py €PY,(A~) i €PL, (Act) py €PL, (Aer-)

e(p)e(py )e(ps )e(py )es(pi , m)es(p3 , weo (p1 s w)en (P s 1),

where Const. is independent of A.

Remark 8.15.6. — To compare with the formula on p. 1699 of [Mor11],
note that the root system considered in loc. cit. is of type C|A;‘ X C|A1+| X D‘A;‘ X
D|A2+| x AL, whereas our root system is Bj 4+ X Bjac+| X Dja-| X Djge.~| x A{". Our
~'~1 plays the same role as s in loc. cit..

Proof of Proposition — We divide the proof into two cases according to the
parity of r .

The case where r > 3 is odd.

Since |A~| and |A%~| must be even, we know that |A*| and |A“™"| must have
different parity. In particular I has odd cardinality. Write || = 2k — 1 with k > 1,
and write |I~| = 20 with [ > 0.

For pf € PY,(A*) and pf € PL,(A®T), we have p* = pf Ups € PL,(IT). Also
for p; € P2,(A7) and p; € P2, (A%7), we have p~ :=p] Up; € PL,(I7). We also
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have

wo(A)e(p] e(py )e(pd e(py ) = e(p™)e(p™).
In this way we have “encoded” the quadruple (pf, p;, p1,Dy ) and the left hand side
of the above equality into (p™,p™).

Conversely, we explain how to recover (pf, pj) from pt with extra data, and recover
(py,p5 ) from p~ with extra data. Given p™ € PL,(IT), write p™ = pT(2) Up™ (1),
where pt(2) consists of the cardinality-2 members of p™ and pt(1) consists of the
singleton member of pT. (Note that [p™(2)] = k — 1 and |[p*(1)| = 1.) To recover
(pf,p3) is the same as to recover the subset A+ of I, For that it suffices to specify a
subset U of p™(2) and a subset V of p* (1) such that A™ = J;. I. Thus we have
established a bijection from the set of (AT, p],pg) to the set of (pT,U, V). Under
this bijection, we have |A*| = 2|U| + |V|. For a fixed i € I, we can also encode
the function AT — V;(A™) into a function in the variables p*, U, and V as follows.
Define

Vi(er,U,V):{l’ ifi eI forsome I e UUYV,

Then we have V;(AT) = V,;(p*,U, V) if (At pf,pT) corresponds to (p*,U,V) as
above.

—1, otherwise.

Similarly, given p~ € ’P%2(I ~), to recover (py ,py ) or equivalently A~ it suffices to
specify a subset W of p~ such that A~ = (J;cy, I. This again establishes a bijection
from the set of (A~,p;,p5 ) to the set of (p~, W). We have |[A~| = 2|W|. For a fixed
1 € I~ define

B 1, ifie I for some I € W,
Then we have V;(A™) = V;(p~,W).

In conclusion, we may change the summation index (pi,p;,p3,py ) in (8.15.5.2)

into the new summation index (p*,p~, U, V, W), and obtain
N = Const. Y > eHelp)espt, weop, 1)
pHePL,(I+) p=ePL, (1)

Z (_1)T(2|U\+|V\+2\W|)+L(2|U\+|V\+2\W|)/2J

—1, otherwise.

UCp*(2),VCpt(1),WCp~

= Const. Z (—D)ITHIVIHIW]
UC[k—-1],VC[1],WC]]
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and for i € [r]

M; = Comst. > Yo ewNel st m)eopp)
p+€77%2(1+)p*€770§2(1*)
> (—D)IVHVIHWIG, (ot pm, UV, W),
UCpt(2),VCpt(1),WCp—
where
Vilpt, U, V), ifielt,
Vilpt,p”, U, VW) = ol » i3
Vi(p*,W), ifeel.
Note that
(8.15.6.1) > (-pVi=o.

VCll]
Hence N = 0 as desired. To show M; = 0, it suffices to prove that for each fixed
pt € 77%2([+) and p~ € 77%2([_), the quantity
L= Z (_1)|U\+|V\+|W‘Vi(p+7p—7U’Kw)
UCp*(2),VCpt(1),WCp~
is zero. By definition, depending on the relative position of (p*,p~,1), the term

Vi(pT,p~,U,V,W) is either independent of V, or independent of (U, W). In the first
case, we know L = 0 because of (8.15.6.1f). In the second case, unless k =1 and [ = 0,

we have either
DOIRCEIEED SRRV

UcCpt(2) UC[k—1]
or
> (M=% (-nMi=a,
WcCp— W Cll]

and therefore L =0.Butifk =1and [ =0, thenr = ||+ |7 |=2k—-1+2l=1, a
contradiction. Thus L = 0 as desired. The proof of the proposition for odd r > 3 is
complete.

The case where r > 3 is even.

Now |I| and |I~| are both even. Write || = 2k and |I~| = 2I, with k,] > 0 and
kE+l=r/2>2.

We need some combinatorial preparations. For a finite set I of even cardinality,
we define P’(I) to be the set of unordered partitions p = {I, | z € Z} of I equipped
with a marked element of p such that exactly two members of p are singletons, all the
other members of p have cardinality 2, and the marked element of p is one of the two
singleton members. When [ is equipped with a total order <, we define a map

e:P(I) — {£1}
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as follows. Given p € P/(I), we can merge the two singletons in p into a cardinality-2
set and obtain an element py € P2,(I). Then we define €(p) to be €(pg) if the marked
singleton in p is greater than the other singleton in p, and define e(p) to be —e(po)
otherwise. Here €(po) is as in (8.15.5.1)). If I is a subset of [r] and p € P'(I), we define

ca(p, ) =[] er.(w),

2€Z

where {I, | z € Z} is the partition of I underlying p.

We now seek to change the summation index in in a similar manner as
in the previous case with odd 7. If |A™"]| is odd then so is |A%T|. In this case k > 1,
and from each pj € P%,(A") and p € PL,(A%T), we obtain an element p* :=
pfUps € P(I), where the marked singleton in pT is defined to be the singleton in p; .
Conversely, suppose k > 1 and suppose p™ € P'(I). Write p* = p™(2) U {Ig+,I$ },
where p*(2) consists of the cardinality-2 members of p™, and we denote by I e and
Iz’)’i the unmarked and marked singleton members of p* respectively. (Note that
[pT(2)| = k—1.) Then we can recover A" from p™ together with a subset U of p™(2)
such that A* = J;c, TU L. We have |[A*| =2|U[ + 1. For i € I'", define

Vi(p"’,U):: 1, ifieIforsomeIEUoriEI;’i,
—1, otherwise.
Then we have V,;(AT) = V;(p*,U).

If |AT] is even, then so is [A%T|. From each pi € P,(A") and pj € PL,(4°T),
we obtain pt := p UpJ € 77%2([+). Conversely, given p™ € P%Q(I+), to recover AT
it suffices to specify a subset U of p™ such that A" = ;o 1. We have |[AT| =2]U].
For i € I't, define

1, if i € I for some I € U,
vi (p+, U) =
—1, otherwise.
Then V;(AT) = V;(p*,U).

Similarly, since |A~| and |A®~| are always even, from p; € P2,(A7) and p, €
77%2(140”) we obtain an element p~ := p; Up; € P%Q(I ~), and conversely, given
p- € P%Q(I’), to recover A~ it suffices to specify a subset W of p~ such that
A™ =Ujew I. We have |[A~| = 2|W|. For i € I~, define

Vi(p77 W) =

1, if i € I for some I € W,
—1, otherwise.

Then we have V(A7) = V,;(p~, W).
For both parities of |A*]|, we have

wo(A)e(py )e(py Je(py )e(py ) = e(p™)e(p™).
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We now split
N = Z WO(A)(_]')T‘AH_HA‘/%ERAW/ ($7X)
AC([r],|]A~| even
as N = Nqy + N(g), where Ny (resp. N()) is the sum of the terms indexed by A
such that |AT] is odd (resp. even). Similarly, for i € [r], we split
M; = > Vi(A)wo(A)(-1)1AFIAIRIE, (2, x)
AC[r],|A~| even

as M; = M; (1) + M; (o). We shall prove that Ny = Ng) = M; (1) = M; 2y = 0. Note
that when dealing with Ny and M; 1) we may assume that k > 1, since otherwise
they are obviously zero.

The above discussion shows that

Ny = Const. ) > eNe()eslpT, weo(p,p)
peP!(I+) p= P, (I-)
Z (_1)r(2lU|+1+2|W\)+L(Z\U|+1+2|W\)/2J

UCp™(2),WCp~
= Const. Z (—D)ITHWI
UC[k—-1],WC[l]
This is zero because by k + [ > 2 we have either { > 1 or £k — 1 > 1. Also,
Nz = Const. > > M )espT, meo(p, 1)
prePY, (1) p=ePL, (1)
Z (_1)T(2IU|+2|W\)+L(2\U|+2|W\)/2J
UcCpt,WCp—
“Const. Y (—1)UHW
UcC[k],Wwc[l]
which is zero because kl > 0.
Similarly, we have

(8.15.6.2) M; 1) = Const. Z Z e(p)e(p )es(p™, w)ep(p™, 1)
preP/(IT)p=ePL,(I7)

> ()Yt pT U W),
Ucpt(2),WCp-
and

(8.15.6.3) M; (s = Const. ) > ewNelp)eslpT, weo(p )
p+ePL, (1+) p-€PL, (I-)

> )WYt pT, U W),

UcCpt,WCp—



8.15. A VANISHING RESULT, ODD CASE 231

where

Vi(er,U), ifi€I+,

Vi(p_,W), ifiel.

(Here the formula for M; (1) presupposes that k& > 1; otherwise we already know that
M; 1y = 0.) In the rest of the proof we show that M; 1) = M; 2y = 0. We introduce
two auxiliary definitions. For ¢t € P'(I'),p* € PL,(I'*),p~ € PL,(I7), let

Liyghp )= >, ()Yt pm, UwW),
UCq*(2),WCp~

> (=)IVFWITpt T, U W),
Ucpt,WCp—
We first show that M; 1) = 0. We may assume that k > 1. If 7 € I, then the
function P'(It) x PLy(I7) 3 (pT,p~) = Li)(p*,p~) is constant with respect to
the variable p™ . Hence by we have

M;, 1y = Const. Z e(pH)es(p™, ).
pTeP/(IT)

Vipt,p", U W) ¢{

Li(pt,p7):

This is zero because on P’(I) we have a non-trivial involution p* +— p* where p+
has the same underlying partition as p™ but has different marked singleton, and this
involution satisfies e(p™) = —e(pT), ca(p™, 1) = ca(p™, ).

It remains to treat the case where i € I't. Let p™ € P’(IT). If one of the singletons
in pT contains i, then for arbitrary p~ € PL,(17), L; (y(p*,p7) is equal to a certain

Z (_1)|U\+|W\7

UC[k—1],WC[l]

number times

which is zero since either k —1 > 1 or | > 1. Thus the contribution of such p* to
(8.15.6.2) is zero. If one of the cardinality-2 members of p™ contains i, then so does

one of the cardinality-2 members of p*. For such a pair {p+,pi+}, the contribution
of pT to (8.15.6.2) is equal to the negative of the contribution of pt, since for any
fixed p~ € ’P%Z(I_) we have L; 1)(p™,p~) = L;1)(p*,p~), and as before we have

e(p*) = —e(p*), ca(p*, p) = cg(p*, 1). We have completed the proof that M; ;) = 0.

We now show that M; 3y = 0. By , it suffices to show that Li_’(g)(p"',p_) =
0 for all p* € PL,(I1),p~ € PLy(I7). To show this, by symmetry we may assume
without loss of g%nerality that s € I-. Enumerate the elements of p~as I,--- I
such that ¢ € I. Using this enumeration we identify the sets p~ and [I]. (Here! > 1.)
Then V;(pt,p~, U, W) = V(W) for all W C p~ = [I]. Hence

Lioy(p™,p7) = Z (—)IVHWI7 (W) = Z (—)IVHWI, (7).
Ucpt,WcC|l] UC[k],WC[l]
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If k > 0, then L; (2)(pT,p~) = 0 because >y (—1)IYl = 0. If k = 0, then | > 2, and

we have ZWC[Z](—l)WWVl(W) = 0 as in (8.15.3.2), from which L; 5y(p™,p~) = 0.
The proof of the proposition for even r > 3 is complete. O

8.16. A vanishing result, even case

8.16.1. — Assume we are in the even case. We are to state and prove the analogue
of Theorem [8:15.2] We only point out some new features in the even case, without
repeating most of the identical steps.

As in we consider a Levi subgroup M* of G* of the form G!, x
GL% x SO(W). Without loss of generality, we may and shall assume that SO(W) is
not the split SO2 over Q, since in that case we can “absorb” it into the factor G, (or
more precisely, we can replace W+ by the whole V, and extend the hyperbolic basis
By to a hyperbolic basis of V, after which we obtain the same Levi subgroup M*
but presented in the form M* = M*Gl = GI'F! x GLL). In the current even case we
impose the assumption that M* is cuspidal. This is equivalent to SO(W)g having
anisotropic maximal tori (since SO(WW) is not the split SOy over Q), and equivalent
to r being even.

Define é"g(M*) in the same way as in * As in *, for each eq g, =
€A B, dt 6+,d- 65— = (M, L]W’7 SMe, M) € é'dg* (M™), we let

L .f
(H, " H,s,m) = €4+ 19| A|+4|B|,5+ d~ +2|A|+4| Be|.6

viewed as an elliptic endoscopic datum for G), fix an embedding M’ — H as in
( p P : g

§5.5.9, and define ST, (fH) as in Deﬁnitionm Then as in (8.15.1.1]), we define

(8.16.1.1)

. = (0$.)7" > |Outg-(e)| " 7(G)r(H) "t ST, (£7).
e=(M",F M’ s ppe g+ )
€égn(M™)

In the odd case, since Gq, is unramified, it is split, and this already implies that
the quadratic space (V, q) is (quasi)-split over Q, (see Proposition|1.2.8). In the even
case, it no longer follows from the unramifiedness of Gg, that (V,q) is quasi-split over
Qp. However, we shall impose this as a hypothesi in the following theorem. By
Proposition given the unramifiedness of G, , in order for (V, q) to be quasi-split
over Q,, it is sufficient and necessary that the Hasse invariant of (V,q) at p is trivial.

Theorem 8.16.2. — Keep the assumptions on M* in §8.16.1], and assume that M*
does not transfer to G. Assume that the quadratic space (V,q) is quasi-split over Q,.
Then Tr';. = 0.

(1) This is equivalent to asking that GQP as a pure inner form of G(a is trivial.
P
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Proof. — The proof is similar to the proof of Theorem [8.15.2] We follow most of the

notations introduced in the proofs of Theorem [8.15.2| and Propositions[8.15.3
Recall that 7 is even. By hypothesis at least one of the following conditions holds:

rt >0 or r>4 or t>2.

As in the proof of Theorem [8:15.2| we reduce the current proof to showing the vanishing
of

Ri= Y ViM)P=(A,B) Y detlw.lpn)®n (1, 0,,),  1<i<n

A,B e EPH (Py*)

L= VBE=AB) Y detlwlom)® (1 0,,),  1<j<t,
A,B PHEPH (Py+)

S:=Y_®(A,B) > det(w.(pn)) i (Y O4,),
A,B PHEPH (Py+)

for an arbitrary element ¢ = (M',“M’, s),.,na) € E(M*)S. Here &(M*)>" is
defined in the beginning of the proof of Theorem [8.15.2] and in its definition we do
impose that its elements (M/,LM,,S/]V[*,UM*) should be such that M’ is cuspidal
(which was automatic in the odd case). In all the above summations, B runs through
all subsets of [t], while A only runs through even-cardinality subsets of [r], because
otherwise the resulting group H will not be cuspidal. On the other hand, indeed all
choices of (A, B) with A having even cardinality will contribute, in the sense that if we
write ¢ = egt 5+ a- - (M*), then the usual formula eg+ o a|44|B|,5+,d-+2]A¢|+4|Be|,5-
as in defines an elliptic endoscopic datum (H, Ly, s, n) for G. In other words,
neither of (dt + 2|A| +4|B|,6") and (d~ + 2|A°| + 4|B¢|,07) is equal to (2,1) €
Zso x (Q*/Q*2). To see this, we recall that MS© is assumed not to be the split SOz
over Q, so neither of (d*,d%) is (2,1). Then since |A| and |A¢| are even it is clear
that neither of (d™ + 2|A| +4|B|,0%) and (d~ + 2|A¢| +4|B¢|,d7) is (2,1).

Since we are in the even case, when choosing By as in the proof of Theorem
by making a different choice we can only replace an even number of the 7’s by their
inverses. This means that in condition C, we may not be able to arrange (8.15.2.4)).
Nevertheless, it is easy to see that we can always arrange either of the following two
conditions:

— The original condition C.
— The modification of condition C where (8.15.2.2]) and (8.15.2.3)) are still in force,

and (8.15.2.4)) is replaced by the following condition:

le;(v )| < 1lforalli<r, and 1< |e,(y'71)| < min ’ei('y’_l)}fl.
r’<a<r

In either case, it is still true that eg,, (y'~1) is independent of (A4, B). Moreover,
(8.15.2.10) still holds, and it reads sgn(o) = wo(A) since |A| is even. Instead of
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(18.15.2.11f) we have q(HR) =0 mod 2 by the cuspidality of H. Hence
= Const. Zv )P (A, B)wo(A)® (v, A),

. = Const. Z V,;(B)eP>® (A, B)wy(A)®(y, A),

S = Const. Z (A, B)uwo(A)® (4, A).
A,B

To compute €”°°(A, B), in the proof of Theorem we used the fact that the
quadratic space Vg, is quasi-split. This is now an assumption in the current theorem.
When we showed that the Whittaker normalization between M’ and M* at oo is
inherited from the Whittaker normalization between H and G* at co in the even case
in the proof of Proposition we used that m™ = n~ mod 2. This is indeed
true here since m~ = n~ + |A°| + 2|B¢| and we know that |A¢| = r — |A| is even.
Thus by the same argument as in the proof of Theorem P> (A, B) is up to a
multiplicative constant equal to the ratio of the Whittaker normalization between H
and G at oo to the normalization A; . ,,. This ratio is equal to

n” +|A°|+2|B€|
2

(_1)Lm’/2j - (_1)L J

as shown in the proof of Proposition [8.9.5, Hence
e">(A, B) = Const.(—1)/ 11412,
and we have

= Const. ZV DIBHIAIZG0A)@ (v, A),
= Const. Zv DIBHIAIZG0(A)B(+, A),
= Const. Z DIBHAI2G0A)(+, A).

Since |A| is even, we have wy (A) = wp(A°). In particular,
(8.16.2.1) wo(A)(—=1)1A 2050 (A%) (=1)1A°1/2 = (—1)7/2,

We now start to show the vanishing of R;,Tj;,S. As in the proof of Proposition
R.15.3] the case where ¢ > 2 is the easiest. In this case we have

Z 1)IBl = ZV 1)IBl =0,

B
so R; =T; =S =0. Now consider the case wheret =1 and r =2. Then R; =5 =0
because Y 5(—1)1Bl = 0. To show Tj = 0, we use the fact that is equal to
—1 and (¢, A) = (v, A°).



8.16. A VANISHING RESULT, EVEN CASE 235

Finally we treat the case where r > 4. The corresponding discussion in §8.15| for
r > 3 needs almost no change to be carried over here. The only differences are:

— All the sets IT, 1=, AT AT A~ A%~ have to have even cardinality in the
present case.

— The root system R4, in the present case is of type D4+ X Djge.+| X Dja-| X
D‘Ac,f |-
— Herb’s formula reads

(8.16.2.2) cg, ,(z,x) = Const. Z Z Z Z
Py EPL,(AY) py €PL, (A7) py €PL,(A%) p; €PL,(A%)
e(p!)e(py )e(p3 )e(py )eo (pY s w)en (03 s w)ep (P w)eo(py s 1)
As in the proof of Proposition define

M= 3 Vi(Awo(A) (~1)W e, (2, ),
A

N = wo(A) (-1 %, (2,x),
A

where A runs through subsets of [r] such that |[A*| and |A%*| are all even. Then the
desired vanishing of R;,T},S reduces to the vanishing of M; and N, which we now
show.

Write k = |I+] /2,1 = |I~| /2. (They are both integers.) Fori € I, pt € P2, (1),
and U C pT, define N
Vi(p*, U) = {1, ifiGIforsomeIGU,.

—1, otherwise.
Similarly, for i € I=, p~ € P2,(I7), and W C p~, we define V;(p~, W).
Herb’s formula thether with a similar argument as in the proof of Propo-
sition [8:15.4] implies that

N= ) > eNe@ et weplpT ) > (=DIPHWI

prePL,(IT) p=ePL, (1) UCp+,WCp—
= Const. Z (—D)lvHWI
UC[k],WC[l]

and for i € [r]
M= Y > e )en(p", weo(p™, 1)

prePL(IT) p~ P, (I7)

> ()WYt pT, U W),

UcCpt ,WCp—
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where

Vilpt,U), ifielt,

Vilp~, W), ifiel".

Since Ik # 0, we have N = 0. We now show M; = 0. Fix pT € 7)%2(]+)’p7 c
77%2([’). It suffices to show that

L= Z Vi(p+7p_»U7 W)(_l)‘UH_‘Wl
UCpt ,WCp~

Vipt,p", U W) ¢{

is zero. By symmetry we may assume that ¢ € I~. After fixing an enumeration of
the elements of p~ such that the first element contains i, we get

L= Z Vi(W)(=1)IVHIWI,
UC[kl,WcCll]
If £k > 1, then L = 0 because ZUC[k](—l)W‘ =0.If k =0, thenl = r/2 > 2
and L = 0 because } y Vi(W)(=1)WI' =0 as in 1| This concludes the

proof. O

8.17. The main identity

8.17.1. — Keep the notation and setting in and Theorem |1.8.41 Fix a prime
p ¢ S(0O(V),V,\ K, ). In the even case, assume that the quadratic space (V, q) is
quasi-split over Q,, or equivalently, that its Hasse invariant at p is trivial (cf. .
Let f7° and dgP* be as in §1.8.3l Fix a set &(G) of representatives of the isomor-
phism classes in &(G) such that each element of &(G) is of the form ¢, for some
p = (dt,07,d",07) € Py with d¥ > 2 (cf. §8.4.1). As in §8.4.1] assume that V
is absolutely irreducible. Then for each ¢, = (H, LH, s,m) € cff:”(G’)7 we have a test
function f7 € C°(H(A)) fixed in

Corollary 8.17.2. — For a € Z>; large enough, we have

Trap, (fP°dgP>°, K, a) + Trag, (fP°dgP>°, K, a) + Trpp, (fP°dg?™>, K, a) =

> UG, H)[STH(f7) = ST (f7)).
(H,“H,s,n)€&(G)
Here (G, H) = 7(G)r(H)™! ‘Out(HfH,s,n)’A, and STH(fH) .= STH(f*) as
defined in §8.3
Proof. — The right hand side of the desired identity is by definition
> [out(H, "Hos)| Y ()T (@) (H) ST (£,
(H,“H,s,n)€E(G) L

where L runs through a set of representatives of the H(Q)-conjugacy classes of proper
Levi subgroups of H (cf. §3.3). By an observation of Kottwitz which can be verified
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directly in our case (see also [Mor10bl Lem. 2.4.2]), the above is equal to
Z Tr)y, + Z Tty fe s
Me{Mi,Mz,M12} M~
where
— For each M € {M;, My, M5}, the term T, is as in §8.5.1}
— The second sum is over cuspidal Levi subgroups M* of G* of the form consid-
ered in §8.15.1 and §8.16.1] in such a way that each conjugacy class of cuspidal Levi

subgroups of G* that does not transfer to G is represented exactly once, and that no
other conjugacy classes show up

— For each M*, the term Tr,. is as in (8.15.1.1)) and (8.16.1.1)).

The corollary then follows from Theorems [8.5.2] [:15.2] [8.16.2] O

Remark 8.17.3. — In Corollarywe defined STH () to be STH (fH), where
STH is defined only when the test function at the archimedean place is stable cuspidal
(see . On the other hand, ST has a more general definition, namely it is the
elliptic part of the stable trace formula for H as in [Kot86]. Of course it is expected
(and proved in Kottwitz’s unpublished notes) that these two definitions agree when
the test function at the archimedean place is stable cuspidal. For our particular
fH | this compatibility is essentially proved in §7]. In fact, if we substitute
the archimedean stable orbital integrals in the general definition of STH (f#) by the
formula [Kot90, (7.4)], then we obtain precisely STH ().

The following is a special case of the main result of [KSZ].

Theorem 8.17.4. — Keep the setting of §8.17.1. For a € Z>1 large enough, we
have
Tr(Frob? x f>dg™ | H}(Shg,V)) = > oG, H)STH (7).
(H,EH,s,n)e&(G)

Corollary 8.17.5. — For a € Z>1 large enough, we have

(8.17.5.1) Tr(Frob} x f>*dg™ | IH*(Shg,V)) = > oG, H)STH (1),
(H,“H,s,n)€8(G)

Proof. — This follows from Theorem Corollary[8.17.2] and Theorem O

(15)Note that in general G* has Levi subgroups which have direct factors GL; with j > 3. These
Levi subgroups are not conjugate to the ones considered in Mand m but none of them are
cuspidal. On the other hand, every cuspidal Levi subgroup of G* is conjugate to the ones considered

in @and @
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Remark 8.17.6. — The right hand side of (8.17.5.1)) is a priori a number in C.
However, as we have seen in Theorem the left hand side is in fact a number in
E, the number field over which V is defined.



CHAPTER 9

APPLICATION: SPECTRAL EXPANSION AND
HASSE-WEIL ZETA FUNCTIONS

9.1. Introductory remarks

9.1.1. — In [Kot90, Part II], Kottwitz explained how the formula in Corollary
would imply a description of °,(—1)* TH'(Shg, V) in the Grothendieck group
of H(G(Ay) /) K)g x I'g-modules over Q,. More precisely, the Grothendieck group
is taken with respect to the category of H(G(Af) J K)o ®g Qp-modules which are
finite-dimensional over Q, and are equipped with a continuous (with respect to the
¢-adic topology) I'g-action that commutes with H(G(A}) / K)o ®g Q. This descrip-
tion is in terms of the conjectural parametrization of automorphic representations by
Arthur parameters. The main hypotheses assumed by Kottwitz are the following (see
[Kot90!, §3]):

(1) Arthur’s conjectural parametrization and multiplicity formula for automorphic
representations.

(2) The closely related conjectural spectral expansion of the stable trace formula
in terms of Arthur parameters.

Recent developments have seen the proof of variations of these hypotheses in spe-
cific instances. For the groups that are relevant to this paper, Arthur [Art13] has
established (1) and (2) for quasi-split special orthogonal groups over number fields,
and Taibi [Ta119] has generalized (1) to some inner forms of these groups (and under
a regular algebraic assumption). Among the inputs to Taibi’s work are the theory of
rigid inner forms established by Kaletha [Kal16l, [Kall18] and results of Arancibia—
Moeglin—Renard [AMRI18] on archimedean Arthur packets. (For the special orthog-
onal groups of interest to us, only the special case of Kaletha’s theory, namely that
of pure inner forms, is needed.) We mention that Arthur’s work [Art13| depends
on the stabilization of the twisted trace formula as a hypothesis, and the latter has
been established by Moeglin—-Waldspurger [MW17} It is thus possible to combine

(1>However, see footnote [3|on p.
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Corollary [8.17.5| with the results from [Art13] and [Tai19] to obtain an unconditional
description of IH*(Shx, V) in certain special cases. In the following we carry this out,
for the special cases described in Lemma [9.4.2

In the sequel, we shall assume the following hypothesis.

Hypothesis 9.1.2. — Let H be a quasi-split reductive group over Q. For test func-
tions f on H(A) which are stable cuspidal at infinity, we have STH(f) = SH(f).
Here STH (f) denotes Kottwitz’s simplified geometric side of the stable trace formula
(see , and ST (f) denotes Arthur’s stable trace formula [Art02, [Art01l, [Art03].

This hypothesis essentially follows from Kottwitz’s stabilization of the trace formula
with stable cuspidal test functions at infinity in his unpublished notes. Recently an
alternative proof has been given by Z. Peng [Penl9]. Let us make some comments
on the former. Firstly we state and prove two lemmas that are well known and
independent of Hypothesis [9.1.2]

Lemma 9.1.8. — Let H be a semi-simple (for simplicity) reductive group over R.
Assume that H is cuspidal (Definition[I.1.6). Let f : H(R) — C be a stable cuspidal
function (see [Art89l §4], [MorlODb, 5.4]). The following statements hold.

(1) The function f is equal to a finite linear combination 3 cy fp, ¢, € C, where
¢ runs through the discrete Langlands parameters for H and each f, is a stable
pseudo-coefficient for the L-packet of ¢ as in .

(2) Let (H',H',s,n : H — “H) be an elliptic endoscopic datum for H. For
simplicity assume H' = YH'. Then a Langlands—Shelstad transfer of fo asin (1) to
H' can be taken to be a stable cuspidal function on H'(R) that is supported on those
discrete Langlands parameters ¢' for H' such that no ¢’ is equivalent to .

Proof. — (1) is a formal consequence of the definitions. In fact, by the definition
of being stable cuspidal, we know there exists a function f’ of the desired form
Ele Cifpisci € C* such that § := f — f’ has zero trace on all tempered repre-
sentations of H(R). By definition we have f,, = > _ fr, where 7 runs through the
L-packet of 1 and each f is a pseudo-coefficient of . Then for one such 7 we may
replace fr by fr + d/c1, which is still a pseudo-coefficient of w. After making this
replacement f is precisely equal to Zle ¢ife;, with the new definition of f, .

(2) follows from the fact, due to Shelstad (see for instance [She10b), [She08]), that
the spectral transfer factor between a tempered Langlands parameter ¢’ for H” and a
tempered representation 7 for H vanishes unless 7 lies in the L-packet of 1o ¢'. For
a summary of Shelstad’s theory of spectral transfer factors see [Kall6l p. 621]. O

Lemma 9.1.4. — Let H be a semi-simple (for simplicity) reductive group over Q.
Assume that H is cuspidal (Definition[1.1.6). Let fo, € C°(H(R)) be a stable cusp-
idal function, and let f>* € C(H(Ay)). Let Iy denote the invariant trace formula
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for H and let Iy gise = tho Liisc,t denote its discrete part; see [Art88] and [Art89]
§3]. Then
IH(foofoo) = IH,disc(foofoo)v

and they are also equal to

Proof. — By Lemma [9.1.3] we may assume that fo, = f, for a discrete Langlands
parameter ¢. Then the lemma follows from [Art89l §3] (where our f, is equal to the
function denoted by f,, up to a multiplicative constant). O

9.1.5. — We now explain how Kottwitz’s stabilization in the aforementioned unpub-
lished notes is related to Hypothesis For fo = f, as in the above proof, Arthur
[Art89] shows that the value Iy (f,f°) has the interpretation as the L? Lefschetz
number of a Hecke operator on a locally symmetric space, with coefficients in a sheaf
determined by . This Lefschetz number is evaluated by Arthur [Art89] and indepen-
dently by Goresky—Kottwitz—MacPherson [GKM97]. Hence the general Iy (foo f>°)
with stable cuspidal f., as in the above lemma is just a linear combination of these
Lefschetz number formulas. Based on this, Kottwitz proves in his unpublished notes
a stabilization

(9.1.5.1) In(fsf™)= > W(HH)STH (1),

H'e&(H)

where the terms are explained below:

— The left hand side is as in Lemma

— In the sum H’ runs through the elliptic endoscopic data for H up to isomorphism.

~ For each H' € &(H), the function f#" is of the form fH'fH"> where fH’
(resp. f7>) is a Langlands-Shelstad transfer of fo (resp. of f>). Here by Lemma
we may and do take fg/ to be stable cuspidal.

— For each H' € &(H), the term ST (f7") is the simplified geometric side of the
stable trace formula, as recalled in

— For each H' € &(H), the term «(H, H') € Q is the usual constant in the stabi-
lization of trace formulas; cf. Corollary

On the other hand, according to Arthur’s stabilization [Art02] [Art01] [Art03],
we have

(9.15.2) In(fsof™) =Y o(HH)ST (1),
H'e&(H)
(9153) IH,disc(foofoo) = Z [’(H’ H/)Sdis/c(le)

H'e&(H)
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where SH (resp. Sﬂ;c) is Arthur’s stable trace formula for H' (resp. the discrete part

thereo see [Art13l §§3.1, 3.2]), and the rest of the notations are the same as in

(9.1.5.1). Comparing (9.1.5.1)) and (9.1.5.2)) for H quasi-split (so that H € &(H)) and

by induction on the dimension of the group in Hypothesis [0.1.2] we conclude that
ST (foo ) = SH (foc ).

Thus Hypothesis is proved. Moreover, comparing Lemma [9.1.4] and (9.1.5.2)),

(19.1.5.3) for H quasi-split and by induction, we also draw the following conclusion
independently of Hypothesis [9.1.2

Proposition 9.1.6. — Keep the setting of Lemma [9.1.4] and assume in addition
that H is quasi-split. Then

O
Corollary 9.1.7. — We may replace each ST in Corollary by S .
Proof. — This follows from Hypothesis [9.1.2] and Proposition [0.1.6] O

9.2. Review of Arthur’s results

We loosely follow [Tarl9l §2] to recall some of the main constructions and results
in [Art13]. We fix a quasi-split quadratic space (V,q) over Q, of dimension d and
discriminant § € Q*/Q**2. (See for what we mean by a quasi-split quadratic
space.) Let G* := SO(V,q). As usual we explicitly fix the L-group LG*, and fix
explicit representatives (H, H = LH, s, E gL G*) for the isomorphism classes of
elliptic endoscopic data for G*, as discussed in

Self-dual cuspidal automorphic representations of GL y

9.2.1. — Let N € Z>;. Let m be a self-dual cuspidal automorphic representation of
GLy over Q. Arthur [Art13 Thm. 1.4.1] associates to 7 a quasi-split orthogonal or
symplectic group G, over Q, such that G is isomorphic to Sp ~(C) or SOn(C). We
view Spy(C) and SOn(C) as standard subgroups of GLy(C) as in §5.2] There is a
standard representation

Std, : “Gr — ¥ GLy = GLy(C)

(2)More precisely, each of I H,disc and SH' s formally a sum over a parameter ¢t € R>( of respective
contributions I gjsc,t and Sﬂ;c > and (9.1.5.3) could be stated parameter-wise for each ¢.
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extending the inclusion G, < GL ~(C) determined as follows. The central character
wr of m determines a character 1, : I'g — {£1}. Let E/Q be the degree one or two
extension given by 7,. When E = Q, the group G, is split. In this case we may
take LG, = C/J; and there is nothing to do. When E # Q, the group G, is either
symplectic, or the non-split quasi-split even special orthogonal group over Q which
is split over E. Thus when E # Q we have é; = SOx(C), and we may take “G
to be Gr x Gal(E/Q) (which is a direct product when G is symplectic). When
G, is symplectic, we define Std, to send the non-trivial element of Gal(E/Q) to
—1 € GLy(C). When G is the non-split quasi-split even special orthogonal group,
we define Std, to send the non-trivial element of Gal(E/Q) to the permutation matrix
switching éy/2 and €1 /2 in the notation of @ Thus in the last case Std, maps
L@ isomorphically onto the subgroup Oy (C) of GLy(C) as in §5.2

Let v be a place of Q. Under the local Langlands correspondence for GLy, estab-
lished by Langlands [Lan89] in the archimedean case and by Harris—Taylor [HTO01],
Henniart [Hen00], and Scholze [Sch13] in the non-archimedean case, the local com-
ponent 7, of m corresponds to a Langlands parameter ¢, : WD, — GLx(C). Here
WD, denotes the Weil-Deligne group of Q, (denoted by Lg, in [Art13]), which is by
definition the Weil group when Q, = R, and the direct product of the Weil group with
SUs(R) when Q, is non-archimedean. Arthur shows [Art13| Thm. 1.4.1, Thm. 1.4.2]
that ¢, is conjugate to Std, op, for some Langlands parameter

(9.2.1.1) oy : WD, — L@
The Aut(“G,)-orbit of ¢, is uniquely determined by ¢, . (See [Tail9, §2.1] for
Aut(*G,), also cf. Remark below.) Define

1, if C:’; is orthogonal,

sgn(m) = _
™) {—1, if G is symplectic.

Substitutes for global Arthur parameters

9.2.2. — Similar to the definition of Std, above, we have a standard representation

(9.2.2.1) Stdg- : “G* — GLy(C)
where N =d — 1 (resp. N = d) when d is odd (resp. even).

Let U(NN) denote the set of formal unordered sums

1)[} - keafa(wﬂk [dkL

where K, is a finite indexing set, each 7, is a unitary cuspidal automorphic represen-
tation of GLy, over Q for some Nj, € Z>1, and each d, is a positive integer, satisfying
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> x Nidi, = N. Let U(N) denote the set of
v= 8 md]eN)

satisfying the condition that there is an involution k — kY on the indexing set Ky
such that (7)Y = mpv and diy = dpv for all k € Ky. Let \I’eu(N) be the subset of
U(N) defined by the conditions that each 7 should be self-dual and that the pairs
(7K, di) should be distinct (i.e., for k # k', either 7w is not isomorphic to mg or
dp, 7é dk/) _

For any ¢ € U(N), we write

v = Bmildi] jE‘gJ (m;ld;) B} [d;]),

where ; is self-dual for each i € I and 7; is not self-dual for each j € J. Let Ly be
the fiber product over Ty of “G, and GLn,(C) foralli € I,j € J. For j € J, we
define
Stdy; @Std}/vj : GLy, (C) — GLay, (C)
g—g@ ()"
Define
b = (P Stdr, ®va,) & @(Stdn, @ Std);,) @ va, : Ly x SLa(C) = GLy(C),
icl jed
where vy, denotes the irreducible representation of SL2(C) of dimension k for any
positive integer k. Let W(G*) be the set of 1 € ¥(N) for which there exists
¥ 1 Ly x SLy(C) — G~
such that Stdg- o¢) is conjugate under GLx(C) to 9. Let W(G*) be the set of pairs

(¥, ) where 1) € \TI(G*) and 1) is a choice as above. For ¢ € W(G*), we define
(9.2.2.2)
my = the number of ¥ modulo G*-conjugation such that (1, 1) € U(G*).

We defind®)]
Uy (G*) := Uen(N) N U(G*),

and define U5(G*) to be the preimage of Uo(G*) in ¥(G*) along the forgetful map
U(G*) — @(G*) Recall that d and ¢ denote the dimension and discriminant of the
quadratic space V. For ¢ = Bymy[dy] € \TICH(N ), the following condition is equivalent
to the condition that ¢ € Uy(G*):

— The character I'g — {+1} given by [, nd is trivial if G* is split, and corre-
sponds to the quadratic extension Q(v/6)/Q if G* is non-split, i.e., if d is even and

(®)In [Taii9), our @2(6'*) and W2 (G*) are denoted by @diSC(G*) and VUg4is. (G*) respectively. How-
ever, in [Art13], the usage of the subscript “disc” is different; see p. 172. We follow [Art13] to use
the subscript “2” here.
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§ ¢ Q2. Moreover
(9.2.2.3) sgn(mp)(=1)% 1 = (=1)4
for all k.
For ¢ € @Q(G*), we know that my < 2, and my = 2/i£ and only if d and all Ngdy
are even; see [Art13l p. 47]. In the latter case the two G*-conjugacy classes of 1) are

interchanged by the non-trivial outer automorphism of G+ = SO4(C).
For (1,1) € U(G*), we define

Sy = Cent(z/}7é\*‘),

Sy = 5,/882(G7)"e.
In fact S, is isomorphic to a finite power of Z /27.. Moreover, S, 1s finite if and only if
(¥, 9) € Wy(G*), in which case S, 1s a finite power of Z/27. These statements follow
easily from the description [Art13l (1.4.8)] of S;. By abuse of notation we shall
write Sy and Sy for S, and S, respectively In the case where (¢,1)) € Wy(G*)
(which is the only case relevant to us in practice), our abuse of notation is essentially
harmless for the following reason. Since S, is abelian, it depends on ¢ only via
its é\*—conjugacy class, up to canonical isomorphism. Moreover, in the even case
with my = 2, it follows from the description [Art13] (1.4.9)] of S, that there is an
element of Oy (C) — SO (C) = On(C) — G* centralizing S,;- Hence in both the odd
and even cases, for (1,1) € Uy(G*), the group Sd-) depends only on ¢ up to canonical
isomorphism. The similar remark applies to S;. Moreover, it also follows from the
above discussion that the é’;—conjugacy class of the subgroup Szb cG* depends only

on . N
For ¢ € ¥(G*), we define sy € Sy by

(9.2.2.4) sy :=(—1), where — 1 € SLy(C).
(Here we implicitly fix a lift (10, 1)) € ¥(G*).) We will also need the canonical character
(9225) SV Sw — {:l:l}

defined on p. 48 of [Artl3] using symplectic root numbers. We do not recall its
definition here.

Let (H7LH,s,n LH LG*) be an elliptic endoscopic datum for G*, presented
in the explicit form as in Recall that H is a direct product H* x H~ of two
quasi-split special orthogonal groups over Q. The above discussion for G* applies

(4)Here we follow the notation of [Art13], which differs slightly from that in [Kot84b] and [Taii9).
In the latter two papers the notation S, refers to a larger group, which in the present case is equal to

S¢Z(é\*) in our notation. More specifically, in our notation we have Sy, D Z(é;) = Z(é:)r@ unless
G* is a non-split SO2, in which case Sy, = Z(G*)I'¢ and Z(G*) = G*. In particular, we see that the
formula Sw/S?bZ(G*)FQ defines the same group Sy, with both interpretations of the notation Sy,.
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equally to H' and H~. We define
U(H):=W(H") x U(H),
U(H):=U(H")x U(H").
Similarly we define Wy (H) and Wy (H). For ¢/ = (F,4~) € U(H), we define

Syr = Syt X Sy-,

Syr = Syt X Sy,

Sy = (Syt, Sy—) € Sy,
M 2= Mt My~ ,

€y = €yt @ €y 2 Sy — {1}
We have a natural map
U(H) — B(G)
Wy =yt By,
which we shall denote by
Y=oy,

Local Arthur packets

9.2.3. — Let v be a place of Q. We abbreviate G}, := G¢), . Let ¥F(G7) be the set
of all Arthur—Langlands parameters over Q,

¥ : WD, x SLy(C) — LG

satisfying the usual axioms (without the requirement that ¢(WD,) is bounded); see
[Tar19, §2.5]. Let W(GE) be the set of ¢ € UT(GE) such that (WD,) is bounded.

Following [Art13, §1.5] we define a subset ¥ . (G%) of ¢ € UT(G%) as follows.
For any ¢ € UT(G%), the parameter

Stdg* Ow : WD, x SLQ(C) — GLN((C)

gives rise to an irreducible representation m; X --- X 7. of a standard Levi subgroup
IT;—; GLn,(Q,) of GLN(Qy); see [Art13, p. 45] and [KMSW14| §1.2.2] for this
construction (using the local Langlands correspondence for general linear groups).
By definition, v is an element of \I!jmit (G?) if and only if the normalized parabolic
induction m X -7 of mp W --- K7, to GLy(Q,) is irreducible and unitary. As on
p. 45 of [Art13|, we have a chain of subsets

U(GH) € UF . (GF) € UF(GH).

unit
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For ¢ € U} . (G?), we define
Sy = Cent(w,@),
Sy = 84/892(G*)".

As in the global case, the group Sy is a finite abelian 2-group. We write 85 for its
Pontryagin dual group. Denote by s, € Sy the image of —1 € SLy(C) under .

We fix a Q,-splitting spl, for G%. When d is even, let 6, be the unique non-
trivial automorphism of G}, fixing spl, (which is of order 2). When d is odd we take
6, = idg:. For both parities of d, we fix a Whittaker datum w, for G that is fixed
by 6,. (For instance, in the even case we can construct w, from spl, and the choice
of a non-trivial character Q, — C* in the usual manner.)

In the even case, if we let spl,, vary over all Q,-splittings of G, then the resulting
f,’s are all of the form Int(g)|g: for certain g € O(V)(Q,) — G*(Q,). In fact, by
explicit construction it is easy to see that there is one choice of 6, that is of the
asserted form. To see that all choices of 8, are of the asserted form, use that all Q,-
splittings of G} are conjugate under G**4(Q,), and that G**4(Q,) naturally acts on
O(V)(Q,) by conjugation since the center of G* is central in O(V). As a consequence
of this observation, if we have two choices 6, and 6., then 6, = 6/ o Int(gg) for some
go € G%(Q,). In particular, the way in which 6, permutes isomorphism classes of
representations of G (Q,) (resp. conjugacy classes in G (Q,)) is the same as the way
in which 6, permutes these objects.

Let ¢ € U . (G7¥). Then Arthur [Art13, §1.5] associates to ¢ a finite multi—se
ﬁw(G:). Here each element of ﬁw(GT)) is a {1,0,}-orbit of isomorphism classes of
finite-length smooth representation@ of G*(Q,), and such an element is allowed to
repeat itself for finitely many times in ﬁw(G:) (thus “multi-set”). If ¢ € U(GY)
then these representations are all irreducible and unitary. Moreover, for general ¢ €

Ut (G?), there is a canonical map (depending on the choice of )
(9.2.3.1) I,(GY) — SP

m > (-, 7).

Definition 9.2.4. — We define the Hecke algebra H(G?) as follows. When v is
finite, we define H(G%) to be C°(G*(Q,)). When v = oo, we fix a maximal compact
subgroup K., C G*(R), and define H(G?) to consist of smooth compactly supported
functions on G*(R) that are bi-finite under K. Moreover for each place v we define

H(G) = H(G)™

(®)In [Tail9], this set is simply denoted by IIy.
(6>By construction these representations are obtained as parabolic inductions of irreducible repre-
sentations, and are hence finite-length smooth representations.
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and define

H(G) € HGT)
to be the subspace consisting of f € H(G}) such that f — 6% f has all stable orbital
integrals equal to 0.

9.2.5. — Lety € Ul . (G¥). In [Art13, Thm. 2.2.1], Arthur gives a characterization

~° unit
of IT,(G%) and the map 7 + (-, 7), and proves that the linear form

(9.2.5.1) Ay H(GE) — C
fr= > (sym) Tr(x(fdg))

melly, (GY)

is stable, in the sense that Ay (f) = 0 if all stable orbital integrals of f vanish. (In
loc. cit. these results are explicitly stated only for ¢ € ¥(G3}), but see Remark
below.) We explain the notations. Here dg is a fixed Haar measure on G*(Q,).
The summation takes into account the multiplicities of the elements 7 in the multi-
set ﬁq/)(G;‘j) For each such element 7, which is a {1, 6, }-orbit of representations of
G*(Qy), we let 7 be any element of this orbit, and define Tr(w(fdg)) := Tr(7(fdg)).
Since f € ﬁ(G:) is by definition fixed by 6, and since dg is obviously fixed by 6, (as
6, has order at most 2), this definition is independent of the choice of 7.

It is clear from the characterization in [Art13, Thm. 2.2.1] that A, is independent
of the choice of w,, although the definition of the map 7 +— (-, 7) depends on tv,,.
Moreover, since Ay is stable, we can naturally extend its domain of definition to
Hst(G2), and still obtain a stable distribution

Ay HHGE) — C
f+05f )

5 .

In we observed that different choices of 8, permute conjugacy classes in G%(Q,,)
in the same way. In particular, H¢ (G?) is independent of the choice of 8,. If we view

Ay as being defined over Hst (G%), then it is also independent of the choice of 6, as
follows from the characterization in [Art13, Thm. 2.2.1].

f}—)Aw(

Remark 9.2.6. — We note that I1,(G*) depends on ¢ € U (Gr

it (GE) only via its

orbit under Aut(L G?). In the odd case such an orbit is the same as a é\*—conjugacy
class, since Aut(“G*) = (G*)2d. In the even case, by contrast, such an orbit could

contain up to two G*-conjugacy classes. This is because Aut(L G?) is identified with
On(C)?d, whose action on “G* is determined by the following two conditions:

(1) The projection map from “G* to the Galois factor is preserved.
(2) The map “G — =G* Sude, On(C) € GLy(C) is On(C)*-equivariant, where
On(C)2d acts on On(C) by conjugation.
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In particular, (@)ad is of index 2 in Aut(*GZ). When the Aut(“*G?)-orbit of ¥
contains two G*-conjugacy classes, one should regard IL;(G}) as the concoction of
two conjectural Arthur packets.

Remark 9.2.7. — Asremarked in [Art13| §1.5], it follows from the work of Moeglin
[Moegll] that the multi-set II,(GY) for ¢ € ¥(G}) (and therefore also for ¢ €
Ut (GE) by construction) is in fact multiplicity free in the non-archimedean case.

9.2.8. — Let (H,“H,s,n) be an endoscopic datum for G*, and assume that it is
the localization of an elliptic endoscopic datum for G* over Q. Thus H = Ht x H~
is the direct product of two quasi-split special orthogonal groups over Q,. (Under
our assumption, the endoscopic datum (H, Ly, s,m) over Q, itself may still be non-
elliptic. More precisely, in the odd case it is always elliptic, while in the even case it
is elliptic if and only if either G7 is the split SO, over Q, or neither of H* is the split
SO, over Q,; cf. the discussion at the beginning of §7.3.2})

As in let O (H), Ut (HT),¥T(H") be the sets of all Arthur-Langlands
parameters for H, H*, H~ over Q, respectively. We have a natural identification

UH(H) = U (H')x Ut (H™), to be viewed as the identity. We define ¥ . (H) to be
the preimage of U . (G?), defined in §9.2.3) under the map W+ (H) — U+ (G:), ¢ —

n o). Also, we define U . (H*) in a similar way as in §9.2.3] with G* replaced by

unit

the quasi-split special orthogonal group H*. We have
vt (HY) x ¥t (H™)c vl

unit unit unit (H) .

Indeed, this containment boils down to the fact that every representation of GLy (Q,)
that is the normalized parabolic induction of an irreducible unitary representation
of a Levi subgroup is irreducible unitary. In the non-archimedean case this fact is
Bernstein’s theorem [Ber84]. In the archimedean case this fact is implicit in the
work of Vogan [Vog86] and also follows from Kirillov’s conjecture proved by Baruch

[Bar03] plus the work of Sahi [Sah89]. We note, however, that in general
Ul (HT) x Ol (HT) S Wl (H).

unit unit unit

Now let ¢ € U . (H), and write 1)* for the components of ¢ in U+ (H*). Similarly

unit
as in §9.2.5] we have stable distributions

Ayt : HY(HY) — C,
Ay HY(H™) — C,
(after fixing Haar measures). We define
HUYH) == HY(H) @c H(H™).
Taking the product of Ay+ and A, -, we obtain a stable distribution
Ay : H*(H) — C.
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We have an expansion of Ay similar to (9.2.5.1). To make this precise, similarly as
in we fix a Q,-splitting sply+ of H*, and let §5+ be the unique non-trivial
automorphism of H* fixing sply+ in the even case, and the identity on H* in the
odd case. Fix a Whittaker datum ty+ for H* that is fixed by 0y=. Then similarly
as in we have the local packet ﬁ,ﬁ (H™), which is a multi-set whose elements
are (fp+)-orbits of isomorphism classes of representations of H*(Q,). Similarly we
have ﬁwf (H™). Define the packet ﬁ¢ (H) as the product of ﬁwj: (H?*), and we regard
its elements as (0g+) X (fy-)-orbits of isomorphism classes of representations of

H(Qy) = H"(Qy) x H™(Q,). We have maps I+ (H*) — SP; as in (9.2.3.1), and

taking the product we obtain a map ﬁ¢(H) — Sf, which we still denote by 7 — (-, 7).
Define
H(HF) = H(H*=) =1,
and
H(H):=HH") @ HH").
We then have the expansion

(9.2.8.1) Ap(h) = D" (sy,m) Tr(n(h)),  YheH(H).

relly, (H)
Here, as in , the summation takes into account the multiplicities, and for each
7 we define Tr(w(h)) to be Tr(#(h)) for any 7 € m, the Haar measure on H(Q,) being
implicit.

We comment that the constructions of the packets ﬁ¢i (H?T), the maps from them
toS fi, and the stable distributions A=+, are of a slightly more general nature than the
previous constructions for G} in § and since 1* may not lie in W . (H*).
Nevertheless, the assumption that 1) = (1,1 7) lies in ¥ . (H) implies that 1)* can
be constructed from a Levi subgroup M C H¥, a parameter in ¥(M), and a point
A € a}; as on p. 45 of [Art13], in exactly the same way as any element of ¥\ . (H¥)
can be constructed from such data. The proof of this fact, which is implicitly used in
[Art13], is an elementary exercise using [Tad86, Thm. D] in the non-archimedean
case and [Tad09] in the archimedean case. Thus the construction using parabolic
induction on the representation side and analytic continuation on the character side
as indicated on pp. 45-46 of [Art13] works for the current ¥/* in the same way as it
().

+
works for elements of ¥ ..

9.2.9. — Fix ¢ € ¥, (G}) and fix a semi-simple element s € Sy. Then there is
an induced endoscopic datum (H,H,s,n: H — LG;) over Q,. Arthur has proved an
endoscopic character relation for such ¢ and s. For our applications, we only need the
case where the endoscopic datum (H,H, s,7) is the localization over Q, of an elliptic
endoscopic datum for G* over Q, so we assume this for simplicity. Thus as in
H = H* x H™ is the direct product of two quasi-split special orthogonal groups over

Q,, and as usual we choose an identification H 2 L H. We have 1) = not)’ for a unique
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¢ € UF  (H). As in §9.2.8 we have the stable distribution A, : H5(H) — C after

fixing a Haar measure dh on H(Q,).

The Whittaker datum tv,, for G determines a normalization of the transfer factors
between H and G; cf. For any f € ’;‘—NL(ij), let f’ be a Langlands—Shelstad
transfer in H(H ), with respect to the normalization of transfer factors just mentioned
and the Haar measures dg on G%(Q,), dh on H(Q,). Then f' € H**(H); sce [Art13]
§2.1] or [Tarl9, Prop. 3.3.1]. We have the following endoscopic character relation

(JArt13l Thm. 2.2.1 (b)]):
(9.2.9.1) D> (sys,m) Te(r(fdg)) = Ay (f').

m€Il, (G)

Remark 9.2.10. — In [Art13] Thm. 2.2.1], the stability of Ay and the relation
(19.2.9.1) are explicitly stated only in the case where ¢ € U(G?) and ¢’ € ¥(H).
The generalization to the case where ¢ € U . (G*) and ¢’ € U] . (H) can be easily

obtained by analytic continuation, as explained on p. 46 of [Art13].

Unramified parameters and representations

9.2.11. — We complement our exposition with a discussion on how unramified repre-
sentations appear in local Arthur packets. Keep the setting and notation of and
assume that the place v is finite. We say that a parameter ¢ : WD,, x SLy(C) — “G*
in UH(G?) is unramified, if the reductive group G over Q, is unramified, and the
restriction of ¢ to WD,, = Wy, x SU3(R) is trivial on SU3(R) and sends every element
7 of the inertia subgroup of Wo, to 1 x 7 € LG?.

The existence of an unramified vy € ¥ (G?) by definition presupposes that G
is unramified. We assume that this is the case. Then inside G*(Q,), there is a
unique G*(Q,)-conjugacy class of hyperspecial subgroups which are compatible with
the fixed Whittaker datum tv,, in the sense of [CS80]. Let K be such a hyperspecial
subgroup. Since 0, fixes 1,, we know that 6, stabilizes the G*(Q, )-conjugacy class of
K. In particular, 6, permutes isomorphism classes of K -unramified representations

of G*(Qy).

Lemma 9.2.12. — Assume that G} is unramified, and let K} be a hyperspecial
subgroup of G*(Q,) as in §9.2.11, Let ) € U} . (G*). The following statements hold.

(1) The packet ﬁw(Gi) contains at most one element that is a {1,0,}-orbit of K-
unramified representations of G*(Q,). It contains one if and only if 1 is unramified.
(2) Assume that v is unramified, and let © € ﬁw(Gq’i) be the unique element that
is a {1,0,}-orbit of K} -unramified representations, as in (1). Then for any 7 € =,
we have dim(irK:) =1, or equivalently, 7 has a unique K -unramified Jordan—Hélder
constituent. Moreover, the unramified Langlands parameter WD, — LG: of that
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Jordan—Holder constituent (with respect to the unramified local Langlands correspon-
dence) is in the same Aut(LGf,)-orbit (see Remark @ as the Langlands parameter
wy assoctated to . Here oy (w) := (w, diag(||w|| ’ Hw||71/2)) forw e WD, .

(3) Let ¢ and w be as in (2). We have (-,m) =1¢€ 85.

Proof. — If ¢ € U(G%), then parts (1) and (3) are proved in [Tarl7, Lem. 4.1.1],
and part (2) follows from the characterization in [Art13) Thm. 2.2.1]. (In this case,
all elements of ﬁw(Gﬁ) are {1,0,}-orbits of smooth érreducible representations of
G*(Q,).) For general 1 € U . (G?), we know that ¢ arises from a standard Levi
subgroup M C G*, an element s € U(M) (i.e., a local Arthur-Langlands parameter
for M which is bounded on WD,)), and an element A\ € a},, as on p. 45 of [Art13].
The packet ﬁw (G?) is constructed from the packet ﬁd, (M) of M (Q,)-representations
associated to s via a certain parabolic induction process which involves A; see
loc. cit. for more details. It is easy to see that v is unramified if and only if ¥, is
unramified. Moreover, the obvious analogue of the current lemma holds for (M, )
in place of (G%,v). (More precisely, M is a direct product of several general linear
groups and one unramified special orthogonal group. The special case of the lemma
for parameters bounded on WD, which we have already proved, takes care of the
special orthogonal factor of M. The general linear factors are taken care of by the local
Langlands correspondence.) The lemma for (G, ) then follows from the lemma for
(M, 1), by basic properties of the parabolic induction process used in the definition
of ﬁ¢(Gf,) (More specifically, we may assume that the standard parabolic subgroup
P C G} containing M as the Levi component is compatible with K, in the sense
that G*(Q,) = P(Q,)K . Let Kjs be the hyperspecial subgroup of M(Q,) given
by the image of P(Q,) N K under the projection P(Q,) — M(Q,). Then for any
irreducible smooth representation 7 of M(Q, ), the parabolic induction Zp(7) of 7 to
G*(Q,) satisfies dimZp ()% = dim 75 € {0,1}. Moreover, when this number is
1, we have compatibility between the unramified Langlands parameter of the unique
K¥-unramified constituent of Zp(7) and that of 7.) O

9.2.13. — We have an obvious analogue of Lemma [9.2.12| with G}, replaced by the
group H = H* x H~ over Q, as in §9.2.8] To set up the notation, we assume that H
is unramified, and let K+ be a hyperspecial subgroup of H*(Q,) that is compatible
with the Whittaker datum ro g+ for H* (so K+ is unique up to H*(Q,)-conjugacy).
Let Ky := Ky+ X Ky- C H(Q,). Since g+ is fixed by 0y+, we know that
elements of the group (fgy+) x (fg-) C Aut(H) stabilize the H(Q, )-conjugacy class
of Kp. In particular, (fg+) X (§g-) permutes isomorphism classes of K p-unramified
representations of H(Q,).

Lemma 9.2.14. — Keep the setting of . Let ¢ € U . (H). The following

unit
statements hold.
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(1) The packet ﬁw(H) contains at most one element that is a (Og+) X (Op-)-
orbit of K g-unramified representations of H(Q,). It contains one if and only if 1 is
unramified.

(2) Assume that ¢ is unramified. Let @ € ﬁw(H) be the unique element that is a
(Og+) x{0g-)-orbit of Ky -unramified representations, as in (1). Then for any 7 € ,
7 has a unique Kg-unramified Jordan—Hélder constituent. Moreover, the unramified
Langlands parameter WD,, — Ly of that Jordan—Holder constituent is in the same
Aut(LH)-orbit as the Langlands parameter ., associated to 1.

(3) Let v and 7 be as in (2). We have (-,m) =1 € 55.

Proof. — This follows from Lemma [9.2.12] applied to H' and H™ separately. More
precisely, write 1 = (+,¢~) with »* € UT(HT). Although ¥ may not lie in
Ut (HT), the proof of Lemma [9.2.12still applies to (H*,¢¥) in place of (G, ),
in view of the comment at the end of §9.2.8 O

The spectral expansion of the discrete part of the stable trace formula

9.2.15. — Consider an elliptic endoscopic datum (H = H* x H~,“H, s, 1) for G*
over Q, presented in the explicit form as in Let ¢ € \I/(H ). For each place v of
Q, there is a natural localization
Yo = (U7, 0,) € ‘I’:nit(H&J) X \I’init(H@v) Wi (Ho,)

of 9 that is well defined up to the action of Aut(*Hg,) = Aut(LHav) X Aut(LH@v)7
and there are natural homomorphisms Sy — Sy, and Sy — Sy, ; see [Artl3l §1.4
and pp. 46-47]. Note that the image of s, € Sy, under Sy, — Sy, is precisely sy, .

Let H*(H) be the restricted tensor product of ﬁSt(HQU) over all places v. More
precisely, consider a large enough finite set of prime numbers ¥ such that H extends
to a reductive group scheme H' over Z[1/X], and such that the image of a fixed
admissible splitting Out(H) — Aut(H) is contained in Aut(H’) C Aut(H). Then for
all primes p ¢ %, the function 15z, is in ﬁSt(HQp). We form the restricted tensor
product with respect to these distinguished elements for almost all p. As usual, the
result is independent of the choices of ¥ and H'.

The discrete part of Arthur’s stable trace formula for H is a formal sum

S(ﬁsc = ngsc,t
>0

of stable distributions over all real numbers ¢t > 0; see [Art13l §§3.1, 3.2], and cf.
For each t > 0 and any f € H*(H), we have the following spectral expansion by
[Art13l Lem. 3.3.1, Prop. 3.4.1, Thm. 4.1.2]:

(9.2.15.1) Sitser(f) = Z my [Sy| ™ o (S9) ey (sp)Au(f),
YEW(H),t(y)=t
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where Ay is the produc of the local stable distributions Ay, : ﬁ“(H@v) — C as
in §9.2.8 and U(S_’g) is an invariant associated to the following connected complex

reductive group (see [Art13l Prop. 4.1.1]):
Sy, o= (Sy/Z(H)"?)°.

Thus formally we have

(9.2.15.2) SHe(P) = D mylSyl™ o (S))ey(sy)Aw(f).
YEU(H)

9.3. Taibi’s parametrization of local packets for certain pure inner forms

9.3.1. — We keep the setting of In particular, we fix G* = SO(V,, ¢). For each
place v of Q, we shall consider a pure inner form (G, ZEy, z,) of G = G, by which
we mean the following data:

— a reductive group G, over Q,;

— an isomorphism =, : GT@ = (G”)@u defined over Q,;

— a (continuous) cocycle 2 € ZY (T, GE) such that 2,12, = Int(z,(p)) ! for all
peTly,.
We recall Taibi’s parametrization in [Tai19] of the Arthur packets for G,, under special
hypotheses. For each place v, note the equivalence of the following conditions:

(1) The image of z, in H'(Q,, G*?) is trivial.

(2) The reductive group G, over Q, is quasi-split.
Indeed, that (1) implies (2) is clear, and the converse amounts to the asser-
tion that only the trivial element of H'(Q,,G**1) goes to the trivial element of
Hl(Fv,Aut(G% )). This is clear in the odd case since all automorphisms of G%
are inner. In the even case, this is true because the inner automorphisms form an
index 2 subgroup of Aut(G% ), and in the complement there is an element invariant
under T, for instance the cgnjugation action on G} by any element of O(V)(Q,) of
determinant —1.

Finite places

9.3.2. — Let v be a finite place of Q. We assume that the image of z, in
H'(Q,, G*?%) is trivial, or equivalently (see , that G, is quasi-split as an
abstract reductive group over QQ,. We caution the reader that under our assumption
it could still happen that z, has non-trivial image in H'(Q,, G*) (when d is even).

(T Here it is implicit that if we fix a finite set & of primes and fix a reductive model H’ of H over
Z[1/%], then for almost all primes p ¢ ¥ we have Ay, (15 (z,,)) = 1. It follows that A, is well defined

on ﬁSt(H), i.e., there is no issue with infinite products.
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In the odd case, let 65, be the identity automorphism of G,. In the even case, fix
a Q,-splitting of G, and let 6, be the unique non-trivial automorphism of G, fixing
that splitting (which is of order 2). As we have observed in the way in which
0, permutes isomorphism classes of representations of G,(Q,) or conjugacy classes
in G,,(Q,) is canonical.

Fix a Whittaker datum ro,, for G;. As explained in [Kalll) §2.2] (cf. Remark[5.1.4),
the datum (,, Z,, z,) determines a normalization of transfer factors between any en-
doscopic datum H for G, and G,,. We denote this normalization by Agv (04, Zy, 20)-
We summarize in the next proposition the construction in [Tail9l §3.3].

Proposition 9.3.3. — For each ) € VI . (G?), there is a finite multz’—se ﬁw(Gv)
of {1,0¢,}-orbits of isomorphism classes of finite-length smooth representations of

G4(Qy), and a canonical map (depending on (v, E,, 2y))
My (Gy) — mo(Sy)"”
> (-, 7).

Moreover, if all the representations in ﬁw(GZ) are irreducible, then so are those in
ﬁw(GU). For each semi-simple s € Sy inducing an endoscopic datum (H,H,s,n)
over Q,,, we have an endoscopic character relation. For simplicity, we describe it only
under the same assumption on (H,H,s,n) as in . As usual fiz an identification
EH>=H. Let ) € U} (H) be such that » = no'. Fiz Haar measures on G,(Q,)
and H(Q,). Let f € H(G,), and assume that the orbital integrals of f are invariant
under Og,. Let f' € H(H) be a Langlands—Shelstad transfer of f with respect to the

normalization Af[” (04, 2y, 2y) of transfer factors. Then we have f' € ﬁSt(H), and

> (sys,m) Te(r(f)) = Aw (f).
r€lly (Gy)
Here we understand that s,sy € Sy are naturally mapped into mo(Sy) in writing
(S8, ).
Proof. — In [Tail9l §3.3], it is assumed that ¢ € ¥(G%), and (-, 7) is constructed
as a character on S{)}' rather than a character on m(Sy). Here S{)}' is a certain finite
extension of Sy sitting in a chain of surjective group homomorphisms

S,I — 7T0(S¢) — Slp.

We indicate why the reformulation as in the present proposition is valid.
We first note that the construction in [Tarl9, §3.3] generalizes verbatim from 1) €
U(G*) to i € Ul . (G¥), based on the “U . -version” of Arthur’s results recalled in

unit unit

§§9-2:3}{9-2.9]and Remark[0.2.10] Moreover the finite-length and irreducible properties

stated in the proposition follow from the corresponding properties of II,(G%), since

(8)This is denoted by I1,(Gy) in [Tail9l §3.3]. By its construction and by Remark [9.2.7} this
multi-set is actually multiplicity free.
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by construction ﬁw (G,) contains the same representations as ﬁd,(Gj), with respect
to a certain Q,-isomorphism G — G, which we do not explain.

It remains to explain why it is valid to replace SJ by m(Sy) (which is denoted
by mo(Cy) in [Tail9]). The reason that one needs to consider 812 in general is due
to the fact that when G, is fixed as a rigid inner form of G7,
ize transfer factors between an endoscopic datum and G, one needs to upgrade the
former to a “refined endoscopic datum”, which roughly means picking a lift in SJ
of the image of s € Sy in m(Sy). In our present case, this is not necessary thanks
to the fact that (G,,E,,2,) is a pure inner form of G*: Each semi-simple element
s € Sy determines an endoscopic datum (H,H,s,n), and the datum (ro,,=,, z,) al-
ready determines canonically a normalization of transfer factors between H and G,,.
Moreover, as noted in [Tafl9, Rmk. 3.3.2], the pairing (-, 7) for 7 € II(G,) descends
to a character on 7my(Sy) in our case. In conclusion it is valid to replace the group
S;[ in [Tarl9, §3.3] by m(Sy) in our case. O

*

in order to normal-

The archimedean place

9.3.4. — Let v = oco. Assume that G} contains anisotropic maximal tori. Let
(G, By, 24) be an arbitrary pure inner form of G as in Thus G, also con-
tains anisotropic maximal tori. As in the non-archimedean case, we fix a Whittaker
datum tv, for G, and then the datum (w,,Z=,,2,) determines a normalization of
transfer factors between any endoscopic datum H for GG, and G,, which we denote
by Ag” (r0y, Z0, 20)-

Recall that any Arthur-Langlands parameter v € ¥*(GZ) (through its associ-
ated Langlands parameter ¢,) has a well-defined infinitesimal character, which is an
Qc(G, T)-orbit in X*(T) ®z C. Here T is any maximal torus in G§, and Q¢(G,T)
is the complex Weyl group. For an account see for instance [Tarl7, §4.1.2], where
the infinitesimal character is denoted by p;. Following the terminology of Buzzard-
Gee [BG14], we say that the infinitesimal character is C-algebraic (resp. regular
C-algebraic) if it is the Q¢ (G, T)-orbit of an element of p + X*(T') (resp. a regular
element of p + X*(T)), where p € L X*(T) is the half sum of a system of positive
roots.

For ¢ € U (G?), we say that it is Adams—Johnson if it is bounded on Wg (i.e.,
¢ € U(G?)) and has regular C-algebraic infinitesimal character. For more details
see [Tarl7, §4.2.2] and [AMRIS8] §8.1]. We denote by UAJ(G*) the set of Adams-
Johnson parameters for G. We know that all ¢ € WAY(G?) are discrete, in the sense
that Sy = mo(Sy).

For each v € WAY(G?), Adams-Johnson [AJ87] have explicitly constructed a
packet Hﬁ‘] (Gy) of representations of G, (R). Using the rigidifying datum (ro,, E,, 2, ),
Taibi [Tarl9) §§3.2.2-3.2.3] associates to each m € HﬁJ(Gv) a character (-, m) of Sj)'.
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Here as in the proof of Propositionthe finite group S:br sits in a chain of surjective
group homomorphisms
SJ — Wo(Sw) — S¢,

and its introduction is in fact unnecessary in our situation thanks to the fact that we
have fixed G, as a pure inner form of G (as opposed to a more general rigid inner
form). Namely, for each ¢ € UAY(G?) and 7 € Hf (Gy), the pairing (-, 7) descends
to a character on my(Sy) = Sy. This assertion could either be directly checked by
going through Taibi’s construction, or be proved as follows: By the well-definedness
of the normalization Ag” (to,, Ey, 2, ) of transfer factors between an endoscopic datum
H and the pure inner form G,, we know that the right hand side of the endoscopic
character relation in [Tarl9, Prop. 3.2.5] depends on § € S{[ only via its image in
m(Sy) = Sy. It follows that so does the left hand side, which means that (-, )
descends to Sy as desired.

With the above modification, we summarize the results in [Tail9) §§3.2.2-3.2.3]
together with a comparison result in [AMR18] as follows.

Proposition 9.3.5. — For any ¢y € UA(G?), let HﬁJ(Gv) be the associated (finite)
Adams—Johnson packet. There is a canonical map (depending on (v0,,=,, zv)@
HﬁJ(Gv) — mo(Sy)P = Si)
T — (-, T)AJT-
Fizs € Sy, and let (H,H,s,n) be the induced endoscopic datum over R, which is nec-
essarily an elliptic endoscopic datum because Sy, is discrete. We have an endoscopic
character relation described as follows. As usual fix an identification “H = H, and

let ' € WH(H) be such that ) = nov)'. Then ' € YA (H). Fiz Haar measures on
G,(R) and H(R). The following statements hold.

(1) Fiz a Haar measure dh on H(R). The distribution
A CE(HR)) —C
= Y sy m)asr Te('(f'dh))
Tr’GHﬁ,J(H)

is stable. _
(2) For f' € H"(H), we have

AP (1) = Ay (F).

Here Ay is as in .
(3) Fiz a Haar measure dg on G,(R). Let f € C(Gy(R)), and let f' be a
Langlands—Shelstad transfer of f in C°(H(R)), with respect to the normalization

(9 Here the subscript “AJT” stands for Adams—Johnson—Taibi.
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Ag“(mv, By, 2v) of transfer factors and the Haar measures dg,dh. We have

(93.5.1) oG D {sus,marr Tr(n(f) = AP (f).
WeHﬁJ(Gu)
Here e(G,) is the Kottwitz sign of G,. O

Remark 9.3.6. — By the formula (sy,m; qr) = e(L) in the proof of [Tarl9}
Prop. 3.2.5], the distribution Aﬁ,J in part (1) of Proposition is none other than
the distribution that appears in [AJ87, Thm. 2.13]. With this understanding, part
(1) is the same as [AJ87, Thm. 2.13], and part (2) is proved in [AMR1S].

9.4. The global group G

9.4.1. — Fixd = 2m+1 or 2m where m € Z>1, and fix § € Q% /Q**2. Assume that
(=1)™6 > 0. Let (V, q) be the quasi-split quadratic space (in the sense of Definition
over Q of dimension d and discriminant §, which is unique up to isomorphism.
Let G* = SO(V, ¢). We note that by our assumption on ¢, there exist inner twistings
between the R-groups SO(d — 2,2) and Gg. We fix a G*(C)-conjugacy clas of
such inner twistings, and thereby view SO(d — 2,2) as an inner form of G%.

Lemma 9.4.2. — The following statements hold.

(1) There exists at most one isomorphism class G of inner forms of G* such that
G is isomorphic to SO(d —2,2) as inner forms of G* over R and G is quasi-split over
Q. as a reductive group (or equivalently, Gg, is isomorphic to Gg, as inner forms of
G, : see for all finite places v.
(2) Assume either of the following two conditions:
-d=2,3,4,5,6 mod 8.
—~d=0 mod 8 and § #1 € Q*/Q*2.
Then there is a quadratic space (V,q) over Q, of dimension d, discriminant 0, and
signature (d — 2,2) at oo, such that G := SO(V, q) is quasi-slit at all finite places.

Proof. — Let F be Q or Q,. The set Hl(F , G*) classifies isomorphism classes of pure
inner forms of G* over F', and it also classifies isomorphism classes of quadratic spaces
(V,q) over F whose dimension is d and discriminant is 6. Thus the lemma is just a
reformulation of parts 1,2 of [Ta1l9, Prop. 3.1.2], in the special case where the base
number field is Q. In fact, the condition in part 1 of that proposition reads d = 3,5
mod 8. The condition in part 2 (a) reads d = 2,6 mod 8. The condition in part 3
reads d =4 mod 8, or (d =0 mod 4 and § # 1). O

(19)1n the even case there are two such conjugacy classes to choose from. Nevertheless, the resulting
two ways of viewing SO(d — 2,2) as an inner form of G} give rise to isomorphic inner forms of
G- This is because the two G*(C)-conjugacy classes of inner twistings are interchanged under any
non-inner automorphism of SO(d — 2, 2)¢, and there exists one such automorphism defined over R.
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Remark 9.4.3. — In part (2) of the above lemma, the isomorphism class of (V, q)
may not be unique in the even case. The quadratic space (V,q) ®g Q, may not be
quasi-split (in the sense of Definition [1.2.3)) for all finite places v.

9.4.4. — In the rest of the paper we fix d > 5,6, (V,¢),G* as in §9.4.1} and fix
(V,q),G as in part (2) of Lemma We shall apply the preceding parts of this
paper, in particular Corollary [8.17.5] to (V,¢) and G. As in we fix an isometry
v (V,q) ®Q — (V,q) ® Q, and use it to define the inner twisting vy : Gy =
Geg = ovgdy' as well as the function uy : Tg — G*(Q),p = Povey'. To

conform with the convention of [Tail9], we let = be vy,' and let z be the function
Lo — G*(Q), p— uy(p)~t. Then according to that convention it is z rather than uy
that is a cocycle, and (G, Z, z) is a global pure inner form of G* over Q.

At each place v of Q, by localization we obtain a pure inner form (G,,Z,, z,) of
G, where G, := Gg,. By construction this pure inner form satisfies the hypothesis
in when v is finite.

We fix once and for all a global Whittaker datum w for G*.

We also fix an automorphism fs of G once and for all, as follows. In the odd
case let 0 = idg. In the even case, we fix an element r of O(V)(Q) — G(Q) of
order 2 (for instance, the reflection on V associated to an anisotropic vector), and let
0 = Int(r)|g. Thus in this case ¢ is of order 2.

We know that there exists a large enough finite set ¥ of prime numbers such
that G* (resp. G) admits a reductive model G (resp. G*) over Z[1/%]. In particular,
for any prime p ¢ X, the group G* (resp. G) is unramified over Q,, and G*(Z,)
(resp. G(Z,)) is a hyperspecial subgroup of G*(Q,) (resp. G(Q,)). Moreover, we may
and shall assume that 0 stabilizes G(Z,) for all p ¢ X, up to enlarging ¥. In fact,
the Q-automorphism 6 of G extends to a Z[1/X]-automorphism of the model G after
suitably enlarging X.

As argued in [Tail9l §3.4], we may further enlarge ¥ to a finite set of prime
numbers, denoted by ¥(G*,G,Z, 2,10, 0¢), such that the following conditions hold for
all primes p outside the set:

(1) As we have already assumed, ¢ stabilizes G(Z,).

(2) The localization tvo,, of w, which is a Whittaker datum for G}, is compatible
with the hyperspecial subgroup G*(Z,) C G*(Q,) in the sense of [CS80].

(3) The pure inner form (G, Z,, 2,) of Gy over Q, is trivial. Equivalently, the
quadratic spaces (V,q) ® Q, and (V, ¢q) ® Q, are abstractly isomorphic over Q, (but
¢y itself may not be defined over Q). In particular, we have a canonical G(Q,)-
conjugacy class of Q-isomorphisms G, — G, consisting of isomorphisms induced

by isometries V ® Q, — V ® Q, that differ from ¢y by elements of G*(Q,) (as

opposed to O(V)(Q,)).
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(4) Inside the canonical G(Q,)-conjugacy class of Q,-isomorphisms G — G, as
in (3), there is one that extends to a Zy-isomorphism G; — Gz,

Definition 9.4.5. — Let S be a finite set of places of Q. Let ¥° be the infinite
direct product group vag o /27, where the product is over all places of Q outside S.
Let 9% act on G(A®) by

(€0)v * (Gv)v = (98 (90)) v V(ey)y € 1987 (90)v € G(AS)-

Since O fixes G(Z,) for almost all primes p, this action is well defined, and each
element of ¥° acts via a topological group automorphism of G(A®). Similarly, we
define 95 := [],cgZ/27Z and let 95 act on [], .4 G(Q,) by the same formula.

9.4.6. — Let v be a finite place of Q and let ¢, € U . (GZ). As in Proposition
the local packet ﬁ%(Gv) is a set of {1,60¢, }-orbits of isomorphism classes of
representations of G(Q,), where 6, € Aut(G,) is chosen as in Since f¢, is of
the form Int(g,)|q, for some g, € O(V)(Q,) — G(Q,), we have 0 = ¢, oInt(h,) for
some h, € G(Q,). Therefore we can view each element of I, (G,) as a {1, 0 }-orbit,
or equivalently, a 9,-orbit, of isomorphism classes of representations of G(Q,). We
normalize the map Il (G,) = mo(Sy, )2, 7y — (-, 7,) as in Proposition with
respect to the localization (w,,=Z,,2,) of (w,Z,2) at v, where (10,Z, 2) is fixed in
Similarly, for any ¢, € WAY(G?,), we have the local packet HQ‘J(GOO) as in
Proposition and we normalize the map 7 +— (-, ) 7 in that proposition with
respect to the localization (W0, Zec, 200) Of (10, Z, 2) at co. In the sequel we always
keep these normalizations, without explicitly mentioning them.

Now let 1) € U(G*). For each place v of Q, we fix a localization 1, € vt (G
of ¢; see §0.2.15] Let S be a finite set of places of Q containing co. We define the
global (away from S) Arthur packet ﬁi(G) to be the set of (my)p¢s € [[,¢5 ﬁwu (Gy)
such that 7, is a ¢,-orbit of isomorphism classes of G(Z,)-unramified representations
for almost all v. (Here note that for almost all v, ¥, permutes isomorphism classes of
G(Z,)-unramified representations.) Now for all primes v not in 3(G*,G, =2, z,t0,04),
the packet II,, (G,) together with the map from it to mo(Sy, )2 is constructed from
Il,, (G%) via an isomorphism G, —» G as in (4); see [Tarl9), §3.3]. More-
over, 1, is unramified for almost all v. Thus for almost all v, by Lemma [9.2.12
applied to (G3, 1y, G*(Z,)), there is a unique m, € ﬁ¢U(GU) which is a ,-orbit of
G(Z,)-representations, and moreover for this m, we have (-, 7,) = 1 € m(Sy,)” and
dim(7,)9%) = 1 for any 7, € m,. We conclude that for 75 = (To)vgs € ﬁi(G), we
have (-, m,) = 1 € mo(Sy, )P for almost all v.

For 7% = (m,)y¢s € ﬁi(G)7 we choose a member 7, € 7, for each v, and form
the restricted tensor product 7% := ®;¢ g Ty, which makes sense as a smooth ad-
missible representation of G(A®) since almost all 7, satisfy dim(7,)9%*) = 1. The

S

isomorphism class of the G(A®)-representation 7 is well defined up to the ¥°-action.
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9.5. Spectral evaluation

9.5.1. — In the following we keep the setting and notation of Theorem [1.8:4]
and Corollary for the quadratic space (V,q) fixed in In particular we
fix a neat compact open subgroup K C G(Ay), and fix f*dg> € H(G(Ay) J K)q.

We need a modified version of Corollary as follows. In we assumed
that V is absolutely irreducible. In the odd case we keep that assumption, but in the
even case we assume either one of the following two conditions:

(1) The algebraic Gg-representation V is absolutely irreducible, and the isomor-
phism class of the G@—representation V ®r Q is preserved by outer automorphisms of
G@.

(2) We have V = Vy®V,, where Vg and V; are absolutely irreducible algebraic Gg-

representations such that the isomorphism classes of the G@—representations Vo ®e Q
and V; ®g Q are unequal and interchanged with each other under an outer automor-
phism of G@.
We shall call case (1) the even symmetric case, and case (2) the even composite
case. In the odd case and the even symmetric case, Corollary [B.I7.5 directly ap-
plies. In the even composite case, as in Theorem for each fixed f*dg> we
obtain two finite sets of prime numbers X(O(V),V;, A\, K, f°) for i = 0,1. We define
Y(O(V),V,\, K, f<) to be the union of these two sets. Clearly still holds
in this case, for any prime p outside X(O(V), V, A, K, f*°) and satisfying the assump-
tion in if on the right hand side we define fZ to be the sum of the two test
functions corresponding to Vg and V;. Indeed one obtains this by simply summing
the two cases of corresponding to Vg and V;.

In all of the odd case, the even symmetric case, and the even composite case, we
define the finite sets of primes

{)ad(K7 foo) = Z(O(V),V, )‘7 Ka foo) U E(g*a ga Ea Z, ma QG)a
and
(9.5.1.1) Spad (K, £°) 1= S, () U{p & p0a (K, f) | Ky # G(Zy)} .

We now fix a prime p ¢ Ypaq(K, f°°), and apply (the modified) to p. Note
that the extra assumption on p in the even case in §8.17.1]is satisfied here by condition
(2) in We thus obtain

(9.5.1.2)  Tr(Frob? x f*dg> | IH*(Shx, V)) = > WG, H)STH (fH),

(H,"H,s,n)€&(G)

for every sufficiently large a. On the right hand side, as we have already indicated, the
archimedean test function f is defined to be the sum of the test functions constructed
in §8.4| corresponding to Vy and V; in the even composite case. Here we view the two

sides of (9.5.1.2) as numbers in C, but recall from Theorem and Remark [8.17.6

that the left hand side is actually in E.
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Remark 9.5.2. — In the even composite case, IH"(Shg, V) is the direct sum of
IH"(Shg, Vo) and IH*(Shk, Vy) as H(G(A¢) J K)g x I'g-modules. We explain how
the latter two are related to each other. Let K/ = K NfOg(K). Then K’ is a compact
open subgroup of K, and the H(G(Ay) / K)g x T'g-module IH* (Shg, V;) is obtained
from the H(G(Ay) J K')g x I'g-module IH"(Shg+,V;) by taking K-invariants. It
is easier to describe the relation between IH*(Shg,V;) and IH*(Shk/,V;), so we
replace K by K’'. Write H for H(G(Ayf) / K)g. Then 6 induces a ring automor-
phism of H. Now observ that the automorphism 6¢ = Int(r)|c of G induces an
automorphism of the Shimura datum O(V) = (G, X, h), since r € O(V)(Q) induces
an automorphism of the space A of oriented negative definite planes in Vg, and h
intertwines this automorphism with the automorphism f +— 6g o f of Hom(S, Gr).
Moreover 8¢ interchanges the isomorphism classes of the G@—representations Vo,@ and

V.o Therefore by transport of structure we have an H x I'g-module isomorphism

IH*(ShK,Vl) = IH*(ShK,Vo) QH,0c H

Lemma 9.5.3. — Suppose that f*°, as a function on G(Ay), is fized by the group
9 (see Deﬁm’tion. Then for each (H,"H,s,n) € &(G) we have f7 € H*(H),

where H(H) is defined in §9.2.15,

Proof. — If (H,“H,s,n) does not satisfy the conditions (1) and (f) in §8.4.1} then
by definition f7 = 0. In the following we assume that these conditions are satisfied.
We can factorize foP as fgfPS, where S is a finite set of primes not containing
p. fs € C(I1,es G(Qy)), and foors = 1g(7Z\va) € C°(G(A>P5)). Moreover, up

to enlarging S, we may assume that lg(ip,s) is fixed by 979, Since p is not in
Yhad(f°), we also know that 1 K, = lg(z,) is fixed by ¥,,. Hence our assumption that
f°° is invariant under ¥°° implies that fs is invariant under ¥g. By induction on |S],
it is an elementary exercise to show that fg can be written as a sum of functions in
C(I1,e5 G(Qy)) each of which is completely factorizable (i.e., a product over v € S
of functions in C°(G(Q,))) and invariant under ¥g. Hence f°°? is a sum of functions
in C2°(G(A%)) each of which is completely factorizable and invariant under Js. We
have thus reduced to the case where f>? =T[ . fo, with each f, € CZ°(G(Qv))
invariant under ¢, and f, = 1g(z,) for almost all v.

For each finite place v # p, we can choose an automorphism 6, of G, as in §9.3.2]
As we have observed in 0c = 0g, oInt(h,) for some h, € G(Q,). Therefore the
fact that f, is invariant under 6 implies that f, has 0, -invariant orbital integrals.
By Proposition we know that f which is a Langlands-Shelstad transfer of f,,
lies in H'(Hg,). It remains to check that f2 € H3*(Hg,) for v = oo, p.

The fact that fH € H(Hg) follows from the following ingredients:

(1We thank the anonymous referee for bringing this observation to our attention.
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— The implicit fact that we may (and do) take fZ inside H(Hg) C C°(H(R)).
(By the construction in this reduces to the fact [Art89] Lem. 3.1] that for any
discrete series representation of H(R), a pseudo-coefficient of it may be taken to be
bi-finite under a prescribed maximal compact subgroup of H(R).)

— The formula [Kot90, (7.4)] for the stable orbital integrals of fII.

— The invariance properties of the transfer factors shown in the proof of [Tail9]
Prop. 3.2.6].

— The fact that for any semi-simple elliptic element vy € G(R) the term
e(I)vol ' Tréc (o) (where & = Vi) in [Kot90, (7.4)] is invariant under re-
placing v by its image under any automorphism of Gg. (Note that in the even case
this is false if we take ¢ to be a general irreducible representation of Gg¢.)

We now prove that f}f{ € Mt (Hg,). By the discussion in we have canonical
actions of Aut(Hg, ) on H""(Hg, ) and on #/p,, , under which the subgroup H*(Q,) C
Aut(Hg,) (consisting of inner automorphisms) acts trivially. Thus the outer automor-
phism group Out(Hg,) = Aut(Hg,)/H**(Q,) acts on H™(Hg,) and g, - Moreover
the canonical Satake isomorphism H" (Hg,) — g, is Out(Hg, )-equivariant. We
need only show that the Satake transform of ff in %HQP =Dy ® Q{HQT , which is
computed in 1] is invariant under Out(Hg,) = Out(H&p) X Out(ﬁ&p). In all

the five cases in (7.4.2.1)), the image of Out(Hg,) in Aut(@/u,, ) is generated by the
automorphism Z; — —Z; of ,;szg (non-trivial in the second and fourth cases) and

the automorphism Y7 — —Y; of ”Q{H@: (non-trivial in the second and third cases). By
"
(7.4.2.1), the Satake transform of f is indeed invariant under Out(Hg, ). O

9.5.4. — We keep the assumption in Lemma that f°° is fixed by ¥>°. We
assume Hypothesis [9.1.2l By Corollary the expansion (9.2.15.2), and Lemma
we can rewrite ((9.5.1.2)) as

(9.5.4.1)  Tr(Frob? x f*dg™ | TH* (Shz, V))
= > UG H) > my Syl ™ (89 e (syr ) Ay (fF).

(H,"H,sm€E(G) W' €U (H)

Lemma 9.5.5. — Assume that 1/ € W(H) contributes non-trivially to the RHS
of (9.5.4.1). Then H is cuspidal, and no ., € WA(GE). (In particular, ., €
UAY(HR).) Moreover, no . has the same infinitesimal character as that of V5
(resp. that of Vo.c or Vic) in the odd case and the even symmetric case (resp. the
even composite case).

Proof. — We only treat the even composite case, the other two cases being similar.
Recall that fZ = f2 ,+ f& | where fZ ; is the analogue of fZ constructed in
with V replaced by V;. Thus fZ = 0 unless H is cuspidal; see §8.4.1, Assume that
H is cuspidal. By [Tail7, Lem. 4.1.3] we know that for any ¢/ € ¥(Hg), all the
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representations in ﬁdjgo (Hg) have the same infinitesimal character as that of ¢/ . By
analytic continuation (see [Art13] p. 46] and cf. Remark [0.2.10)), the same conclusion
holds for all ¢, € ¥, (Hg). Hence in order that Ay, _(fZ) # 0, the infinitesimal
character of 7 o ¢}, must be the same as that of V§ o or Vi ¢, which are regular
C-algebraic. It remains to check that 7 o ¢/  is bounded on Wgr. But this follows
from the fact that o ¢/ is the localization of the global parameter 7 o ¢’, the fact
that it has C-algebraic infinitesimal character, and Clozel’s purity lemma [Clo90b]

Lem. 4.9]. (For a similar argument cf. [Tarl7, p. 309].) O

9.5.6. — Let (H,“H,s,1) € &(G). For each place v of Q, let (1,,Z,,z2,) be the
localization at v of (w,ZE,2) fixed in In and we introduced
a normalization Ag;v (v, Ey, 2,) of transfer factors between Hg, and G, for each
place v. In we also introduced a normalization (A%),. Thus we have

ag,vAgg (W04, Ey, 20) = (Ag)vv

for a constant a%v € C*. By construction, the normalizations (A%), are the canon-
ical unramified normalizations at almost all places v (associated to hyperspecial sub-
groups determined by a reductive model of G over some Zariski open of SpecZ),
and satisfy the global product formula. The same holds for the normalizations
Ag&v (104,24, 24), since to, for various v are localizations of the global Whittaker
datum to, and (Z,, z,) for various v are localizations of a global pure inner twist
(8, 2); see [Art13l p. 137] or [Kall8| Prop. 4.4.1]. It follows that

(9.5.6.1) a5, =1,

where almost all terms in the product are 1.
Let ¢’ € U(H). In the following we compute the contribution of ¥’ to the RHS of
(19.5.4.1)), based on Kottwitz’s results in [Kot90, §9]. For each place v, let

Y, € Ui (Hg,)

unit
be a localization of ¥’ as in Let
by =m0y, € Uiy (GY),
and let N
Yi=noy € V(GT)

as in For each place v, v, is indeed a localization of %, so our notation is
consistent. In Lemma we have already seen that a necessary condition for ¢’
to contribute non-trivially to the RHS of is that 1 is Adams—Johnson with
infinitesimal character determined by V. In the following we assume this condition

(but we do not assume that ¢/’ has a non-zero contribution a priori). In particular, ¥/
is discrete, and so 5’2,, = {1}. Thus by the definition of 0(5’3/) in [Art13] Prop. 4.1.1],
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we have
(9.5.6.2) o(Sy) =1.

We make several observations and definitions which will be understood in the
statement of the next lemma. Recall from that for each finite place v we
view elements of ﬁwv (Gy) as Y,-orbits of isomorphism classes of representations of
G(Q,). Since p ¢ Ypaa(K, f°), we know that K, = G(Z,) and that 9, stabilizes
G(Zy). Hence ¥, permutes the isomorphism classes of Kp-unramified representations
of G(Q,). Thus we can speak of whether an element of ﬁd,p (Gp) is a ¥,-orbit of
Kp,-unramified representations. We write Afp’/oo for the product of the local stable
distributions Ay, over all places v ¢ {00, p}, so we have

Ay (F11) = Ay, (fo}i)/\w;(ff)Ag,""(fH’P’OO)_

As in §9.4.6 we define the global packet ﬁZ’W(G), and for each 77> ¢ ﬁi’oo(G) we
define the G/(A’;)-representation 77> (which depends on arbitrary choices).

Lemma 9.5.7. — Let (H,“H,s,n),¢',4,9.,1, be as in and keep assuming
that oo is Adams—Johnson with infinitesimal character determined by V as in Lemma

19.5.5. The following statements hold.
(1) We have

MG (FE) = (= 1)909) (55, A, ) (5508, Too ) AIT OF oo
Here

— Teo 1S any element of Hﬁi (Gr).

— (-, Ar.) s a character on Sy_ = mo(Sy..) defined on p. 195 of [Kot90].
— The pairing (SysS, Too) AJT 15 aS N Propositz'on defined with respect to

(Moo, Do, 200 ) -
— The product (sys, Ar. ) {(SyS, Too)AJT 15 independent of the choice of mu.
(2) We have

Ayr, (FH) = (=1)79) (558, Ar ) (548, Too) AIT 05 0o

(3) For each finite place v, 1, is unramified if and only if G is unramified and 1.,
s unramified.
(4) If Ay, (flfl) # 0, then v, is unramified. Conversely, assume that v, is un-

ramified. Then inside ﬁwp (Gp), there is a unique element m, that is a V,-orbit of
K,-unramified representations of G(Q,). Each 7, € m, satisfies dim(7,)5r = 1. We
have

(9.5.7.1) Ay (Ff1) = (sys,mp)p™/? Tr(sipy, (Frobg) | Stdg) af .
Here
~ n=d—2 is the dimension of the Shimura variety; see §1.5
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— Stdg = Stdg- is the standard representation (9.2.2.1) of *G = LG*.

— Frob,, denotes any choice of a lift of the geometric Frobenius in Wy, .
(5) We have

AT (fHpo0) — > Tr (772 (f7°dg">)) [T (susim)afi..

o= (m, ), €115, (G) V7P

where fP>°dgP> is determined by f>°dg™ in the same manner as in §1.8.3

Proof. — (1) This follows from [Kot90l Lem. 9.2]. More precisely, we know (Remark
that Aﬁi is the stable distribution considered by Adams-Johnson [AJ87] and
Kottwitz [Kot90] §9], and the latter is Kottwitz’s definition of [Kot90} (9.4)]. We
know from Proposition m (3) that (sys,Teo)asT serves as the spectral transfer
factor that is denoted by Ao (¥, ) (for ¥y = ¢/, 1 = 7o) in [Kot90, Lem. 9.2],
up to the correction factor a%oo. Here a%oo arises because the spectral transfer fac-
tors used in loc. cit. are assumed to be compatible with the normalization (A%),, =
a%ooAg;"(moo,Eoo,zoo) of the geometric transfer factors, whereas the endoscopic
character relation is with respect to the normalization Afﬁ? (Woos Ecoy Zoo)-
Note that in the even symmetric case, the fact that fZ is a sum fZ , + 2 | where

H ;. corresponds to V;, does not affect the validity of [Kot90, Lem. 9.2]. This is
because the infinitesimal characters of Vg ¢ and V; ¢ are unequal, and in the evalua-
tion Aﬁi (fH) only one of fgl will contribute, according to whether the infinitesimal
character of 7o 7, is equal to that of V§ - or V7 ¢.

(2) This follows from part (1) together with Proposition (2) and the fact that
FH € H*(Hg) shown in the proof of Lemma

(3) Write I, for the inertia subgroup of Wy, . For each 7 € I, write ¢}, (7) = a, X,
with a, € H.

Assume that 1, is unramified. Then by definition G is unramified. It also imme-
diately follows that ¢/, is trivial on SU2(R), and n(7) = n(a; ') x7 for all 7 € I,. Since
7 acts trivially on G*, for all € H we have n("z) = n(r)n(z)n(r)~* = n(a:'za,).
Therefore I, acts on H via inner automorphisms, which implies that Hg, is un-
ramified. Then by our explicit presentation we know that the endoscopic datum
(H,“H,s,n) is unramified over Q, (cf. §3.4.1), that is, n(r) = 1 x 7 for all 7 € I,,.
This implies that a, =1 for all 7 € I,,. Since Hg, is unramified and we have already
seen that 1! is trivial on SU3(R), we know that ! is unramified.

Conversely, assume that 1), is unramified and G is unramified. Then Hg, is
unramified, and as before the endoscopic datum (H, LH, s, 7)) is unramified over Q,.
Since ¥, = n o ¢!, we know that 1), is trivial on SU3(R) and sends every 7 € I, to
1 x 7. Thus ¥, is unramified since G, is unramified.

(4) Suppose A%(ff) # 0. Then ff # 0, so by the definition of ff we know
that H is unramified over Q,. Fix a Whittaker datum wg , = (to 1 o H@p) for Hg,,

and fix a hyperspecial subgroup Ky, of H(Q,) that is compatible with oy ,, as in
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§ and Recall from Definition and Remark that fzf{ is well

defined as an element of the canonical unramified Hecke algebra H""(Hg,), and its
stable orbital integrals are independent of how we realize f in C°(H(Qp)). Thus
we may assume that [ € H(H(Qp) / Kn,p) without loss of generality. Then by
and Lemma (1), we know that ¢/, is unramified. By part (3) above,
this implies that v, is unramified.

Conversely, assume that 1, is unramified. By part (3) above, w; is unramified
(since we know that Gy, is unramified), so in particular Hg, is unramified. Fix tog,
and Kp, as in the preceding paragraph. Inside G*(Q,), we have the hyperspecial
subgroup G*(Z,), and it is compatible with the Whittaker datum w, for G, since
p ¢ B(G*,G,E 2,1,0q); see We normalize the Haar measures on G*(Q,)
and H(Q,) once and for all such that hyperspecial subgroups have volume 1. By
Lemmas 9.2.12| and 9.2.14|7 we know that inside ﬁwp (Gy) (resp. ﬁw; (Hg,)) there is a
unique element 7, - (resp. m, g) whose members are G*(Z, )-unramified (resp. Ky p-

unramified), and moreover the members of 7, ¢~ (resp. mp i) have 1-dimensional fixed
spaces under G*(Z,) (resp. K p). As in the preceding paragraph we may assume that

e H(H(Qp) /) Kpp). Then by (9.2.8.1), we have

Ay (F31) = (0 mp, 1) Ty (1))
Here the pairing <5%, 7p #r) is defined with respect to Wy . In view of the compatibil-
ity between local unramified Arthur parameters and unramified Langlands parameters

in Lemma [9.2.14] (2), the same argument as Kottwitz’s proof that [Kot90] (9.3)] is
equal to [Kot90l (9.7)] gives

Tr(my i (f11)) = p™/2 Tr(spy, (Frob?) | Stdg).

Indeed, one easily checks that the irreducible representation of L@ determined by the
Shimura datum appearing in [Kot90, (9.7)] is Stdg, and that the ambiguity in ¢y,
up to the Aut(L G )-action disappears when we consider the GLy (C)-conjugacy class
of the composition of ¢, with Stdg : LG =1G* - GLy(C). In conclusion we have

Ay (FF) = (s 7.1 )D"™? Te(s6pys, (Froby) | Stdg).

As we have already mentioned in since p ¢ X(G*,G, =, 2,1, 0¢), the packet
ﬁwp (Gp) together with the map to Sgp is constructed from ﬁ% (Gy) by identifying
Gp with G via an isomorphism G — G, as in condition (4) in Hence the
existence and uniqueness of 7, and the fact that members of 7, have 1-dimensional
fixed spaces under K, = G(Z,,) follow from the existence and uniqueness of m, ¢+ and
the fact that members of 1, ¢+ have 1-dimensional fixed spaces under G*(Z,). Also
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we have (-, mp) = (-, Tpg+) € Sfp. To finish the proof it suffices to show tha

(9.5.7.2) (0 Tp, 1) = (845, Tp,G)aff -
Comparing the Fundamental Lemma (Theorem (2)) with the endoscopic char-
acter relation ((9.2.9.1)) and the expansion (9.2.8.1)), we get

(9.5.7.3)
Yo (s OTE(g) = (aF,) 7" Y (5050 &) Tr(€ (Lk,)-
gell, (G) g€l (Ho,)
Here, the pairing (sy,,&’) is defined with respect to wp,,, and the factor (af )"

appears because it is (a%p)*llKH’p, rather than 1y, , that is a Langlands—Shelstad

transfer of 1g«(z,) with respect to the Whittaker normalization of transfer factors
between Hg, and G associated to 1. By Lemmas[9.2.12| and [9.2.14] the two sides

of (9.5.7.3) are equal to (sys, T, ¢+) and (a%’p)*(s%, Tp, 1 ) Tespectively. This proves
©.5.7.2).

(5) First observe that for each nP> € ﬁﬂ;oo(G), the ambiguity in the
G(AL)-representation 77> up to the 9¥”*°-action does not affect the value of
f

Tr (7'rp’°°(fp’°°dgp’°°)). Indeed, since 6 is an automorphism of G of order at most 2,
it is clear that dg? *° is fixed by ¥”>°°. In the proof of Lemma we observed that
P20 is fixed by 9¥7:°° (under the overall assumption that f°° is fixed by 9¥°°). Hence
the trace of fP>*°dgP*>° on a G(Afc)—representation depends only on the 9P*°-orbit of
the isomorphism class of that representation.

Now as in the proof of Lemma we may assume that fP>° = Hwépm fo
with each f, € H(G,) being fixed by ¢¥,. The desired statement then follows from
the endoscopic character relation in Proposition [9.3.3| applied to each f,. Here the

term ag,v appears because it is (a%’}}v)_l H rather than ff that is a Langlands—

v

Shelstad transfer of f, with respect to the normalization Agg (t0y, Ey, 2,) of transfer
factors. O

We summarize the results we have obtained so far in the following proposition.

Proposition 9.5.8. — Let (H,“H,s,n) € &(G) and ' € U(H). For each place v
of Q, let ! € U . (Ho,) be a localization of 7', and let 1, == nopl, € Ui . (G*).

unit

Let v =noyy’ € U(G*). The following statements hold:

(1) For ' to contribute non-trivially to the RHS of (9.5.4.1), it is necessary that H
1s cuspidal, and that Vs is Adams—Johnson with infinitesimal character determined
by V as in Lemma|9.5.5,

(12)By Lemmas|9.2.12/and [9.2.14| we know that (-, 7p, ) and (-, mp @) are trivial, but in the current

proof we do not need this.
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(2) Assume that the necessary conditions in (1) are satisfied. Then the contribution
of ¥’ to the RHS of (9.5.4.1), without the factor «(G, H), is equal to
(9581) ez |S¢/ |_1 (274 (Swl)(SwS, /\.,rx><$¢5, 7TOO>AJT A(?/}, S, p, CL)
Z Tr (7% (f*dg™)) H (598, To).
Troo:(ﬂ'v)veﬁio (G) vF#00

with notations explained below:

— The product (sys, Ax_ (545, Too) AT is as in Lemma[9.5.7 (1).
— We define

A(, s,p,a) = (—1)1CF=)pa/2 Ty (s, (Frob?) | Stdg).

The notations n, Frob,, and Stdg are as in Lemma (3), and we have
4(Gxo) = n.

Proof. — This follows from Lemma Lemma [9.5.7} (9.5.6.1), (9.5.6.2)), and the
following simple observations:

(1) For any finite-length smooth representation 7, of G(Q,), we have

Tr(7,(1k,dgp)) = dim T;{P.

Here, as in dgp is the Haar measure on G(Q,) giving volume 1 to hyperspecial
subgroups.

(2) If 9, is ramified, then no element of ﬁ,/,p(Gp) is a ¥p-orbit of Kp-unramified
representations. Indeed, as we have mentioned in the proof of Lemma (4),
the packet ﬁwp (Gp) is constructed from the packet l:[%(G;) via an isomorphism
Gy — Gy as in condition (4) in §9.4.4L Hence the current assertion follows from
Lemma applied to G and .

O

9.6. Spectral expansion of the intersection cohomology

We keep the same setting and notation as in In particular, V is as in §9.5.1]
and we speak of the odd case, the even symmetric case, and the even composite case.

Definition 9.6.1. — We denote by U(G*)y the set of ) € U(G*) such that the
localization 1o, of ¥ at oo lies in ¥A7(G*% ) and has the same infinitesimal character
as that of V in the odd case and the even symmetric case, and the same infinitesimal
character as that of V{. or Vi in the even composite case. (This condition is
insensitive to the ambiguity in ¢ up to the Aut(“G* )-action.) In particular, for
any 1 € U(G*)y, we have 1 € Uo(G*), and Sy, = 7(Sy) is a finite abelian group.
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Definition 9.6.2. — We say that a compact open subgroup K C G(Ay) is com-
pletely symmetric, if K = [], K, where v runs through all primes, with each K, a
compact open subgroup of G(Q,) that is stable under 6.

Remark 9.6.3. — Completely symmetric compact open subgroups of G(Ay) form
a cofinal system of compact open subgroups. Indeed, given any compact open sub-
group W of G(Ay), we know that W contains a compact open subgroup of the
form [],csUv X [[,¢59(Zy), where S is a sufficiently large finite set of primes, G
is as in and U, is a compact open subgroup of G(Q,) for each v € S. If
S is sufficiently large, we know that G(Z,) is 8g-stable for all v ¢ S; see §9.4.4]
Note that U, := U, N 0g(U,) is a fg-stable compact open subgroup of G(Q,,) for
each v € S. Hence W contains the completely symmetric compact open subgroup

[loes Us X [ogs 9(Zo)-

Theorem 9.6.4. — Assume Hypothesis[9.1.9. Fiz a neat compact open subgroup K
of G(Ay), and fix f>*dg> € H(G(Ay) ) K)g. Assume that K is completely symmetric,
and that f is fixzed by 9°°. Let p be a prime not in the set Lpaq(K, f°) as in

19.5.1.1). Let a € Z be arbitrary. We have
(9.6.4.1)  Tr(Froby x f>*dg> | IH*(Shg, V))
= > my Y T(EP(®dg™) ISy T Y B(hs, 7™ pa),

YEV(Gr)y  meellF(G) s€Sy

with notations explained below:

— For each v, my € {1,2} is as in .

— For each ¢ € U(G*)y, ©° = (), € I3 (G), and s € Sy, we define

B(¢a Sa ﬂ-oovpa Cl) = 61/)(8) <3? )‘Troo><8? 7TOO>AJT A(¢7 S’L/Jsvpa Cl) H <57 7TU>7
VF# 0O
where the terms (s, A ) (s, Tos)asr and Ay, sys,p,a) are as in Proposition [9.5.8,
but with a change of variable from s to sys. (Recall that sy € Sy and si =1.)

Moreover, the summands on the right hand side of (9.6.4.1) vanish outside a finite
set of summation indices (1, w°) which depends only on K,V ,w,=Z 2z and not on

f°dg™, p,a.

Proof. — Throughout the proof, it will always be understood that the data
K, V.w,Z z are fixed. Also, since varying f*dg® is equivalent to varying f*°
while keeping dg™ fixed, we will omit dg® in the notations throughout. We first
prove that when f°° and p are fixed, holds for all sufficiently large a (in

a way depending on f°° and p). By (9.5.4.1) and Proposition we know that



9.6. SPECTRAL EXPANSION OF THE INTERSECTION COHOMOLOGY 271

when a is sufficiently large, the LHS of ((9.6.4.1)) is equal to
YooY Cls) Y Te((F) B, sys, 7, p,a),

YEW(G*)y SE5w mo el (G)

if we define

C(¢,s) = > Do UG Hymy |Syr| ™ ey (syr)ep(sys)
e=(H,"H,51,m)€6(G) 'V (H)
H is cuspidal (e,00" )= (1,3)

where the second summation is over ¢/ € W(H) such that (H,LH, sy, n,1') gives
rise to (¢, s) as on p. 36 of [Artl3]. Now in the definition of C'(¢,s) we can drop
the condition that H is cuspidal in the first summation, for the following reason. If
there exists ¢/ € \TI(H) such that (H,“H, sy, n,1') gives rise to (1, s), then by the
argument in the last paragraph of [Kot90l p. 196, elliptic maximal tori in G (which
are anisotropic) must come from Hp since ¥, is Adams—Johnson. It follows that Hg
contains anisotropic maximal tori, and hence H is cuspidal.

Thus the proof of (9.6.4.1]) reduces to the proof of the identity

1 —1 _

my [Sy| = > > UG H)my |Sy| ™ ey (syr)ep(sys) ™
e=(H,FH,s1,m)€8(G) /€T (H)
(e, )= (¢, s)

for all ¢ € \T/(G*)V and s € Sy. This step is identical to the corresponding step in the
proof of [Tai19, Thm. 4.0.1]. Without the extra complication in the even case (i.e.,
the integers my-, my being possibly larger than 1), this step is also given in [Kot90),
§10]. Both references rely on Arthur’s identity ey (Sy/) = €y(8y5), which is known in
our case by [Art13| Lem. 4.4.1].

Before showing that holds for all @ € Z, we show that the summands
on the right hand side of it vanish outside a finite set of summation indices (¢, 7°°)
independently of f°°, p,a. Here f°° is allowed to range over all #*°-fixed elements of
H(G(Ay) ) K)q, p is allowed to range over all primes that are hyperspecial for K and
unramified for f°°, and «a is allowed to range over all positive integers, not necessarily
“sufficiently large” with respect to f*° and p in the previous sense. (Afterwards we
will show the stronger finiteness result when a is allowed to range over all integers.)

Since K is completely symmetric, we have K =[], K, with each K, a fg-stable
compact open subgroup of G(Q,). Let ¥y be a finite set of primes containing the
set X(G*,G,Z, z,m,0g) from such that K, = G(Z,) for all v ¢ X3. Now
since f°° is bi-invariant under K, any 7> = (m,), appearing in such that
Tr (7°°(f*>°dg>)) # 0 must satisfy the condition that m, is a 9,-orbit of G(Z,)-
unramified representations for all primes v ¢ ¥,. By the discussion in §9.4.6) we
know that for each 1) € ¥(G*)y, there are only finitely many elements 7> € ﬁff (GQ)
satisfying the aforementioned condition, and these elements exist only when the local-
izations v, of ¢ are unramified for all primes v ¢ Xy. By our above proof of ,
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the desired finiteness of the summation range independently of f*°,p, a follows from
the following statements:

(1) If (H,"H,s,n) € &(G) and ¢/ € W(H) are such that 7o ¢/, is unramified for a
prime v, then ¢/ is unramified, and in particular Hg, is unramified.

(2) There are only finitely many elements (H,“H,s,n) € &(G) such that Hg, is
unramified for all primes v ¢ Xo.

(3) Fix (H,"H,s,n) € &(G). For each choice of (f*°,p,a) (with a € Z>,), define
= fflooypya) € CX(H(A)) as in * (cf. Lemma . Then in the expansion
with respect to the test function £, the summands vanish outside a finite
subset of W(H) which is independent of (f°°, p,a).

Now statement (1) follows from Lemma [9.5.7 (3). By the explicit presentation of
(H,“H,s,n) and by Proposition statement (2) reduces to the fact that there
are only finitely many elements in Q% /Q*? that have even valuations at all primes not
in 9. For (3), we may assume that H is cuspidal, as otherwise f# = 0. Now note that
for our given test function fZ on H(R), there are only finitely many values of ¢ > 0
(depending only on V) that contribute non-trivially to the expansion S (f#) =
2150 Sgsc’t(fH) (see 5' by Lemma Thus it suffices to show that for a
fixed ¢ the summands in (9.2.15.1) with respect to f# vanish outside a finite subset
of \TI(H) independently of (f*°,p,a). By [Artl3, Thm. 1.3.2, Lem. 3.3.1], we need
only check that f¥ has a Hecke type (see [Art13, p. 129]) that is independent of
(f°,p,a). Since fZ is independent of (f>,p,a), this amounts to the existence of a
compact open subgroup Ky C H(Ay) such that f7:°0 = fHr.o0 fH can be chosen to
be bi-invariant under Ky independently of (f*°, p,a).

We now construct K. Let S be the set of primes v such that either Gg, is
ramified or Hg, is ramified. For each prime v ¢ S, we pick a hyperspecial subgroup
U, C H(Q,), in such a way that vas U, is a compact open subgroup of H(AJ*?)
By the two main theorems of [Art96) §6] (cf. the proof of [Art13] Lem. 3.3.1]), we
know that for every prime v there is a compact open subgroup V,, C H(Q,) with the
property that every K,-bi-invariant function in C°(G(Q,)) has a Langlands—Shelstad
transfer in C2°(H (Q,)) that is bi-invariant under V,,. By the Fundamental Lemma for
the full unramified Hecke algebra proved by Hales [Hal95|] (which is conditional on
the Fundamental Lemma for the unit as recalled in Theorem , for every prime
v ¢ S we may and shall take V,, to be U,. We take Ky to be the product of V,
over all primes, which is a compact open subgroup of H(Ay). Now for every choice of
(f*°,p,a), the corresponding function f#-> is non-zero only when p ¢ S, and in the
latter case we can choose f7'P:>° to be bi-invariant under IL, 2p Vo, and choose flfi
to be bi-invariant under Uy, = V},, as is clear from the construction in §8.4} It follows
that fH:°° is bi-invariant under Ky as desired.

We have proved that the summands on the RHS of vanish outside a finite
set of summation indices (¢, 7°°) independently of f*°, p, a € Z>1. Note that the same
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holds even if a is allowed to range over all integers. This is because each summand,
as a function in a € Z, is of the form Zle iz, where ¢;, z; € C are independent of
a. Thus if a summand is zero for all a € Z>1, then it is zero for all a € Z.

To finish the proof it remains to show that holds for all a € Z. By what
we have already shown, for each fixed f°° and p, the right hand side of is of
the form Zle iz, where ¢;, z; € C are independent of a. It is easy to see that the
left hand side is also of a similar form as a function in a. Hence the identity
holding for all sufficiently large a implies that it holds for all a € Z. O

Remark 9.6.5. — A form of Theorem is conjectured in [Kot90, (10.2)].

9.7. The Hasse—Weil zeta function

We deduce an immediate consequence of Theorem [9.6.4] concerning the Hasse—Weil
zeta function associated to IH*(Shg, V)).

Definition 9.7.1. — Let p be a prime number. Let M be a finite-dimensional
representation over C of WD,,.

(1) We view M as a Weil-Deligne representation of Wy, , and define its local L-
factor at p in the usual way as in [Tat79], denoted by L, (M, s). In particular, when
the representation is unramified (i.e. trivial on SU3(R) and on the inertia subgroup),
we have

L,(M,s) = (exp(z Tr(Froby | ./\/l)p_as/a))_1 = det(1 — Frob,p~* | M)~}
a>1
where Frob,, is any lift of geometric Frobenius in W, .

(2) For any real number «, we define ||| M to be the twist of M by the quasi-
character [|-[|* on Wg,. Here the normalization is such that |[Frob,| = p~'.

(3) For any positive integer n, we define M™ to be

P2 Ma || P Me - |||V M.
Remark 9.7.2. — We have
LP(HHaM’S) = LP(Maa + S))
and
3 1—n

-1 —
Ly(M", ) = Ly(M, s+ =)Ly (M, s+ 7)o Ly( My s + —

).

9.7.3. — Let ¢ € Uy(G*). Recall from §9.2.2|that Sy, is a finite power of Z/27Z. Let
v : Sy — C* be a character. Let V = C¥ be the vector space used to define GLy (C).
The group Sy, acts on V via

S, c Lo 2et, Ly ().
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Let V, C V be the v-eigenspace for this action. For each prime number p, consider
the action of WD,, on V defined by

WD, 242, L 296, Ly (C).

(Note that in the even case, although 1, is not always well defined up to 67Y\*-(:0nj'utcs,‘acy7
the above composite map is always well defined up to GL (C)-conjugacy.) This action
commutes with the action of Sy, so we have an action of WD,, on V,,. We denote this
WD,,-representation on V,, by V,(¢,v). Define

My(t,v) = 172Vl v),
where n = d—2 is the dimension of the Shimura variety Shx. The motivation for this
twist is to account for the factor p®*/? in the definition of A(v, s, p,a) in Proposition
9.0.8

We can classify the WD,-representations V,(¢,v) and My(¢,v) more explicitly
in terms of the local Langlands correspondence for general linear groups, as follows.
Since 1 € IIy(G*), it is of the form

Y = Biermi[di],
where each 7; is a self-dual cuspidal automorphic representation of GLpy,, d; are
positive integers such that Y N;d; = N, and the pairs (m;,d;) are distinct. For any
irreducible admissible representation 7, of a general linear group over Q,,, we write
V(mp) for the representation of WD,, corresponding to m, under the local Langlands
correspondence. By the explicit description of Sy, in [Art13] (1.4.9)] (the notation N;
in loc. cit. corresponding to our N;d;), we have the following classification of V,, (¢, v).

(1) The odd case. We have Sy = {£1}. Set I, = {i} if v is given by the i-th
projection {+1} — {#1} for some i € I. Otherwise, set I, = ().

(2) The even case. Let I,qq be the set of ¢ € I such that C/J; is odd orthogonal
(or equivalently, N;d; is odd), and let Ieyen = I — Ioqqa. We have S = {:tl}Ieve" X
{1} where as usual we write {£1}"’ for the kernel of the map {+1}’ —
{£1},(z)); — [, #; for any finite set J. Suppose v is the restriction to {1} v x
{£1}74 of the i-th projection {£1}’ — {1} for some i € I. Then we set I, = {i}
unless ¢ € Ioqq and |Ioqq| = 2, in which case we set I, = I,qq. In all the other cases,
set I, = 0.

Then in both the odd and even cases we have
Vo, v) = €D V(mip) ™
iel,
for all p.
For any finite set S of prime numbers, we define

LS(M(wa V)v 5) = H LP(MI)(wa V)v 8),

p¢S
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where M (1, v) is just a formal symbol, and the product is over all prime numbers
p ¢ S. By the previous classification, L (M (%, v), s) is nothing but a finite product
of the S-partial standard L-functions associated to automorphic representations of
general linear groups with some shifting in the variable s. Therefore the infinite
product defining L (M (v, v), s) converges absolutely in some right half plane and
continues to a meromorphic function in s over the whole C. Specifically, letting
I, C I be as above, we have

d; — 1
2

di—1
LS(M,v).s) = [T T L5(rirs — g + — ).

iel, j=0

9.7.4. — Let V be as in §9.5.1} and fix a neat compact open subgroup K of G(Ay)
assumed to be completely symmetric (see Definition [9.6.2). In the following we fix

an isomorphism Q, = C. For each prime p unequal to ¢ and unramified for the
I'g-module IH*(Shg, V) over Q, (that is, unramified for each degree ), we define

(p(TH*(Shg, V), s) := [ [ det(1 — Frob, p~* | THY (Sh, V)
J

where on the right hand side TH? (Shg, V) is viewed as a vector space over C. (The
product is finite, since TH? (Shg, V) is non-zero only for 0 < j < 2dim Shg.) This
is the Euler factor at p of the Hasse-Weil zeta function of IH*(Shx, V), and it is a
rational function in p°. If S is a finite set of primes containing ¢ such that every prime
p outside S is unramified for IH*(Shg, V), then we define the formal Dirichlet series
(% (TH" (Shg, V), ) := ] ¢ (TH(Shk, V), 5),
pEs
This is the S-partial Hasse-Weil zeta function of TH* (Shg, V).

Theorem 9.7.5. — Assume Hypothesis . Let S be the set Ypaq(K, 1) as in
19.5.1.1)), applied to f>° = 1k. For all primes p ¢ S we have

log G (TH*(Shy, V), 8) = > > dim(x™)~
VEW(G*)y TN (G)
Y () (1) v(sy) log Ly(My (4, v), 5)
veSy
with notations explained below.
— The set W(G*)y is as in Definition .
— The number my, € {1,2} is defined in . In the odd case it is always 1.
— For each ¢ € V(G*)y, m° = (m), € IIF(G), and v € SP . the number
m(w>,¢,v) € {0,1} is defined as follows. Fiz an arbitrary me € Hgi(Goo). On
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Sy we have the character:

s — v(8) " Ley(8) (8, Ar (S, Too) AJT H (s, ),
VF#00
where (s, \x_) is defined on p. 195 of [Kot90], and ey is as in . We define
m(7w>, 1, v) to be 1 if this character is trivial and 0 otherwise.

— The number v(sy) is 1 or —1 since si = 1; see (9.2.2.4]) for the definition of
Sy € Sw.

In particular, we have

log ¢¥(IH*(Shy, V)),s) = Y > dim(7>)

YET(G*)y m el (G)

: Z m(7r°°,1/),V)(—l)"u(sw)logLS(M(1/),1/),s),

DGSE

for s in some right half plane. This expresses (°(IH*(Shx,V)), s) as a finite product
of integral powers of L%(M(,v),s) for various 1 and v, and gives a meromorphic
continuation of ¢5(IH*(Shg,V)),s) to the whole C.

Proof. — This immediately follows from Theorem [0.6.4] applied to f®dg™ =
vol(K) ™11 gdg™. O

Remark 9.7.6. — Theorem can be slightly generalized as follows. We can
replace the completely symmetric K by a more general neat compact open subgroup
K’ of G(Ay) stable under 9>°, and replace S by a sufficiently large, finite set of primes
depending on K’. For the proof of this generalization, we can take a completely
symmetric K contained in K’ (see Remaurk7 and apply Theorem to K and
the element vol(K')~'1x/dg™ of H(G(Ay) J K)g.

9.8. More refined decompositions

9.8.1. — Throughout we assume the setting of Theorem In particular we fix
V as in and assume that K is completely symmetric. By Remark [9.6.3] this
assumption on K is harmless for the understanding of IH*(Shg, V) for general K.
We also keep assuming Hypothesis without further mentioning.

In the sequel, we write TH’ for TH’ (Shx, V). This is non-zero only for 0 < j <
2dim Shyx = 2n. We fix an isomorphism C = Q,, and do not distinguish between
representations over C and over Q,, nor between C-valued functions and Q,-valued
functions. Nevertheless, we remember that I'p-representations on vector spaces over
C = Q, are always continuous with respect to the f-adic topology. Let Hy :=

H(G(Af) /) K)g ®q Q.
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We shall apply Theorem to obtain information about more refined decom-
positions of TH’ as a Hy x I'g-module. Ideally, one would like to decompose IH’
into m>-isotypic components TH’ [7°°], for 7 running through all irreducible admis-
sible representations of G(Ay), and to describe the Galois module structure of each
IH’ [7°°]. However there are the following two technical obstructions (which can be
overcome in the odd case, as we shall eventually see):

(1) In the even case, each element of a global packet ﬁ? (@) as in 5 does not
give rise to a well-defined isomorphism class of G(Ay)-representations, but rather it
gives rise to an ¥°°-orbit of such isomorphism classes. This obstruction is intrinsic in
the endoscopic classification in [Art13] and [Tail9]. As a result, we are only able
to describe the Galois module structure for the direct sum of TH? [°°] over all 7>
in the same 9¥°°-orbit, as opposed to each individual IH’ [x>°]. We mention that in
the even case the need to assume that V is of the special form as in §9.5.1] also stems
from the same obstruction in the endoscopic classification.

(2) In both the odd and even cases, for a general ¥ € Wy(G*) it is not known
(although expected, as would follow from the Ramanujan—Petersson conjecture for
general linear groups) that the localization ¢, is bounded on WD,, for all finite places
v. As aresult of this drawback, the G(Q, )-representations in the local packet ﬁ% (Gv)
are not known to be irreducible.

We make several comments on (2). Recall that for any ¢ € U5 (G*), the localization
¥, of ¥ lies in W} . (G%). For arbitrary ¢, € W . (G?) (which may not arise as
the localization of a global parameter), Arthur has conjectured that the G*(Q,)-
representations in the local packet 1:[% (G%) are irreducible. See [Art13] §§1.3-1.5,
Conjecture 8.3.1] for more details. This conjecture would imply that the G(Q,)-
representations in ﬁwv (G,) are irreducible. In the even case, if ¢ is “trivial on SLy”
in the sense that ¢ = H;m;[d;] with all d; equal to 1, then this conjecture has been
prove by B. Xu [Xul8|, Appendix].

We can sometimes circumvent Arthur’s conjecture by using known cases of the
Ramanujan-Petersson conjecture. To wit, assume that ¢ = B;m;[d;] € Uy(G*) satis-
fies the following condition:

(f) The constituents 7;, which we recall are self-dual unitary cuspidal automorphic
representations of GLy, over Q, are all regular C-algebraic or regular L—algebraic

Then we know that 1, is bounded on WD,, for all finite places v, since the Ramanujan—
Petersson conjecture for m; is known at all v. Indeed, let 7, be the twist of m;

(13)We thank the referee for pointing this out to us.

(19)The meaning of “regular C-algebraic” here is that the infinitesimal character of Ti,00 Should be
regular C-algebraic as in §9.3.4] In the more classical literature this condition is usually referred to
as “regular algebraic”. The meaning of “regular L-algebraic” is that the infinitesimal character of
T; 00 should be the Weyl orbit of a regular integral character of a maximal torus. The two notions
are the same for GLy, precisely when N; is odd.



278 CHAPTER 9. SPECTRAL EXPANSION AND HASSE-WEIL ZETA FUNCTIONS

by GLy,(A) — R*,g — |det(g)\1/2 if m; is L-algebraic and N, is even, and let
7, = m; in all the other cases. Then 7 regular C-algebraic, cuspidal, and essentially
self-dual, and by the work of a long list of authors culminating in Caraiani’s work
[Car12 Thm. 1.2], (7}), is essentially tempered for all finite places v (cf. [ BLGGT14!
Thm. 2.1.1] for the essentially self-dual case, as well as a list of references). It then
follows that m;, is tempered for all finite places v, for instance by the unitarity of
the central character. In conclusion, if 1 satisfies (1), we know that all the G(Q,)-
representations in ﬁwv (G,) are irreducible for all finite places v.

9.8.2. — Fix ¢ = B,;m;[d;] € ¥(G*)y. We investigate when 1 satisfies (1) in
Let N; be the integer such that 7; is a self-dual cuspidal automorphic representation
of GLNi .

For any positive integer r, let T;. denote the diagonal matrix in GL,, and identify
X*(T,) with Z" as usual. The half sum of the standard system of positive roots is

(T§17 723, s 1?). Hence an infinitesimal character p € (X*(T;.)®C) /&, = C" /6,
for GL, is C-algebraic if and only if it lies in Z"/&, when r is odd, and lies in
((3,-+-,3)+Z")/S, when r is even.

When G is an odd special orthogonal group, we choose a Borel pair in G¢, and

identify the based root datum with BRD(B,,,) (see §1.2.5)). Let p be the half sum of
the positive roots, and let A be the highest weight of V*. Thus

A=z160 4+ + Tmém

with x; € Z satisfying 1 > 9 > -+ > x,, > 0, and

1
p:(m—1)61+(m—2)62+~-+em_1+§(e1+-~-+em).

Under Stdg : G — @, the infinitesimal character A + p of ¥, gives rise to the

infinitesimal character
(m—l—i—l—i—xl m—2+1+x2 l—i—x —(l—i—x )y —(m—l—&—}—i—xl))
2 ’ 2 02 R mee 2

for GLo,,. We see that it is always regular. It immediately follows that the in-
finitesimal character of each m; oo must be regular. Moreover, if d; is odd, then the
infinitesimal character of 7; o, must lie in ((3,---, 3)+Z"*)/Sy,, so m; is C-algebraic
if and only if N; is even. In fact this is automatic, since for d; odd 6’: must be sym-
plectic; see . If d; is even, then the infinitesimal character of m; o must lie in
ZNi /&y, , so ; is L-algebraic. We conclude that (1) holds automatically.

When G is an even special orthogonal group, we choose a Borel pair in G¢, and
identify the based root datum with BRD(D,,,). Let p be the half sum of the positive
roots, and let Ao be the highest weight of V§ (resp. Vac) in the even symmetric case

(resp. the even composite case). (See §9.5.1| for this dichotomy.) Thus

Ao = T1€1 o T
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with z; € Z satisfying 1 > x9 > -+ > Zy—1 > |24, and
p:(m—l)el+(m—2)62+-~-—|—em,1.

We have z,, = 0 in the even symmetric case, and z,, # 0 in the even composite
case. Under Stdg : G — GLg,y,, the infinitesimal character \g 4+ p gives rise to the
infinitesimal character

(m—1+x1,m—2—|—x2,-~- y Tmy —Tmy ©° ,—(m—l—l—an))

of GLg,,. We see that in the even symmetric case, we cannot guarantee that the
infinitesimal characters of 7; o, are regular, whereas in the even composite case this
is guaranteed. Moreover, by a similar analysis as in the odd case, 7; is C-algebraic if
d; and N; are even, and 7; is L-algebraic if d; is odd. Now when d; is even, é: must
be symplectic, so N; is automatically even. We conclude that (1) automatically holds
in the even composite case.

We summarize the above discussion in §9.8.1] and §9.8.2]in the following lemma.

Lemma 9.8.8. — Let ¢ = Bym;[d;] € U(G*)y. In the odd case and the even com-
posite case, the G(Q,)-representations in Il (G) are irreducible for all finite places
v. If we are in the even symmetric case and all d; are equal to 1, then the same

conclusion also holds. ]

9.8.4. — As in [Art13] §3.4] we define a set Cy(G*) of Hecke systems for G* mod-
ulo a certain equivalence relation. Here a Hecke system for G* is a family (c¢,),
where v runs through all primes outside an unspecified finite set of primes containing
all the ramified primes for G*, and each ¢, is a semi-simple conjugacy class in © Gy
(where we take “G* to be G* Gal(QUr/Q,) here for convenience) whose projection
to Gal(Q¥/Q,) is the Frobenius. Two such families (¢, ), and (d,), are said to be
equivalent and thus define the same element of CNA(G’“)7 if for almost all v, the conju-
gacy classes ¢, and d, are in the same Aut(” G?)-orbit, or equivalently, the images of
¢y and d, under “G* — LG* Stde-, GLy(C) are conjugate. (The equivalence of the
two conditions follows easily from the description of Aut(*G*) in Remark and
the fact that two elements of Oy (C) are conjugate if and only if they are conjugate

in GLy(C).)
Recall that as a fundamental construction in [Art13], we have a canonical injection
(9.8.4.1) U(G*) —» Cu(G¥)

h— ()

whose well-definedness is guaranteed by [Art13l Thm. 1.3.2, Thm. 1.4.1]. This map
has the following characterization: Let ¢ € @(G*), and for almost all primes v for
which 1, is unramified, denote by m, the unique element of ﬁqp,,(Gu) that is a o,-
orbit of G(Z,)-unramified representations (see §9.4.6). Then for almost all v, for
every 7, € m, the Satake parameter of the H(G(Q,) / G(Z,))-module g (Bv) (which
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is 1-dimensional over C, cf. Lemma belongs to the Aut(*G?)-orbit of the
component of ¢(i) at v.

As in Definition we have K = [[, K,. We have a canonical (finite) direct
sum decomposition of H g x I'g-modules:

H = p 1,
c€Ca(G*)
where IHg is characterized by the property that for almost all primes v for which K,
is hyperspecial, the action of the unramified Hecke algebra #(G(Q,) / K,) on IH?
is via characters which correspond under the Satake isomorphism to elements of the
Aut(*G*)-orbit of the component of ¢ at v.

We denote by Irr(G(Ay)) the set of isomorphism classes of irreducible admissible
representations of G(Ay) (over C 2 Q). For each ¢ € C4(G*) and 7 € Irr(G(Ay)), let
W/ (r) := Homy, (7, THY).

We then have direct sum decompositions of Hx x I'g-modules
H = P Heg W),
Telrr(G(Ay))
(9.8.4.2) H = P P Hag Wi,
CE(Z\(G*) Te€lrr(G(Ay))

where on the right hand sides Hx acts on 7% and T'g acts on WJ(r). Here we
have used the fact that ITH’ is a semi-simple Hgx-module, which follows from the
“Matsushima formula” for L2-cohomology [BC83, Thm. 4.5] and Zucker’s conjec-
ture comparing L?-cohomology with intersection cohomology, proved by Looijenga
|[Loo88], Saper—Stern [SS90], and Looijenga—Rapoport [LR9I1].

Theorem 9.8.5. — Assume Hypothesis . Let c € C~A(G*). The following state-
ments hold.

(1) If ¢ is not in the image of \I/(G*)V under the map (9.8.4.1]), then
TH! =0
for all j.

(2) Assume that ¢ = c(1) for ¢ € U(G*)y. The for almost all primes p and all
integers a we have

(9.85.1) > (~1) Tr(Froby | THI)
=my Y dim(E®) Y m(r, 9, v)(—1)"v(sy) Tr(Froby | My (4, v)),

T €ll? (G) veSy)
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where the terms on the right hand side are defined in the same way as in Theorem
with My (¢, v) defined in §9.7.3,

(3) Keep the assumption in (2), and assume that TH? # 0 for some j. Write
Y = Biermi[di]. Then for each i € I and for almost all primes p, m; p is tempered@

(4) Keep the assumption in (2), and assume that the conclusion of Lemma [9.8.3
holds for . Thus each ©° € ﬁff(G) determines a 9°°-orbit [1™°] in Irr(G(Ay)), as
in . Let 7o € Irr(G(Ay)) be such that 78 # 0 and 79 ¢ [7°°], V7™ € ﬁq‘f(G)
Then

W(r9) =0
for all j. Moreover, for each T € ﬁizo(G), we have

(9.85.2) > (=1) Tx(Froby | @ dim(r™) - W/(r))
7 TE[T]
= my dim (7)Y " m(r, 9, v)(—1)"v(sy) Tr(Froby | M, (1, v)),

VESf
for almost all primes p and all integers a.

Proof. — Throughout the proof we use the following notations: We fix the Haar
measure dg> on G(Af) giving volume 1 to K. Let H = (Hg)?". Then H is a
C-subalgebra of Hx with unit 1xdg®. By the same argument as in the proof of
Lemma we know that as a C-vector space H is generated by elements of the
form ([], f,)dg™, where the product is over all primes v, f, € CZ(G(Q,) /J K,)%¢
for all v, and f, = 1k, for almost all v. For any finite set of primes S such that K,
is hyperspecial for all v ¢ S, we let HS be the C-vector subspace of H spanned by
elements of the form (], f,)dg®, where f, € C(G(Q,) J K,)%¢ for all v, and the set
of v such that f, # 1k, is finite and disjoint from S. Then HS is a commutative unital
subring of ﬁ, identified with the restricted tensor product of the ¥,-fixed subrings of
the unramified Hecke algebras C°(G(Q,) / K,) over all v ¢ S.

For each ¢ € U(G*)y and each 7° € ﬁwoo(G), recall from that the G(Ay)-
representation 7°° is the restricted tensor product of 7, over all primes v, where for
each v we choose a member 7, € 7,. The H-module (7>°)K depends only on 7, not
on the extra choices. We henceforth denote it (7°°)%.

(1) By the finiteness statement in Theorem on the RHS of only a
finite subset ¥q C ¥(G*)y would potentially contribute non-trivially, and for each
¥ € ¥q only a finite subset Uy C ﬁfpo(G) would potentially contribute non-trivially.
Moreover ¥ and (Uy)ypecw, are independent of f>°dg™, p,a. We may and shall take
each Uy, such that its members 7°° satisfy (7°°)% £ 0.

Suppose ¢ is as in (1) and TH? # 0 for some j. Let S be a finite set of primes such
that K, is hyperspecial for all v ¢ S. Then the set of characters through which HS acts

(15)We thank the anonymous referee for suggesting this result to us.
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on IHY (i.e., the isomorphism classes of the simple H5-submodules of IHY) is disjoint
from the set of characters through which HS acts on IHi: for all 5 and all ¢ # ¢, and
on (1)K for all 7 € [yecw, Uy Indeed, this follows from the observation that for
any two characters x1, x2 : C°(G(Qy) / K,) — C having the same restriction to the
J,-fixed subring, x; and 2 must be related by 9,, and hence the Satake parameters
of x1 and y2 must be related by Aut(” G?). The observation itself follows from the
identity x1 + 0 (x1) = x2 + 0c(x2) (which holds since for all F € C*(G(Q,) / Ky),
F+0}F lies in the 9,-fixed subring) and the linear independence of characters. Since
all these H5-modules are finite-dimensional over Q, = C and there are only finitely
many of them which are non-zero, there exists f*dg> € HS C H that acts as the
identity on TH for all j, as zero on IHZ: for all j” and all ¢’ # ¢, and as zero on (7°°)%
for all 7 € Hwe% Uy. We then apply Theorem (generalizgd in the obvious
manner from ¥*>°-fixed elements of H(G(Ay) / K)g to elements of H) to f*dg> and
obtain
> (=1)7 Tr(Frobj | TH/) = 0
J
for all sufficiently large primes p and all integers a. By Chebotarev’s density theorem
and the Brauer-Nesbitt theorem, this implies that in the Grothendieck group of I'g-
representations over @z we have
S (1) [TH] = o.
J
By a purity result of Pink [Pin92al Prop. 5.6.2] applied to our Shimura datum O(V)
of abelian type, and by the purity of intersection cohomology, we know that for
almost all primes p the action of Frob, on IH’ has weight j. (Note that the weight
cocharacter of the Shimura datum which appears in [Pin92al §5.4] is trivial in our
case.) It then follows that there is no cancellation between [THY] for different j in the
Grothendieck group. Hence THZ = 0 for all j, which proves (1).

(2) Similarly as in the proof of (1), the set of characters through which #S acts
on THY for all j and on (7°°)% for all 7> € U,, is disjoint from the set of characters
through which HS acts on IHZ: for all j/ and all ¢’ # ¢ and on (7°°)X for all 7°° €
Hw’e%—{w} Uyr. Thus we can find f*dg™ € HS C H which acts as the identity on

THY for all j, as the identity on (7>°)¥ for all 7°° € U,, as zero on IHZ: for all j and
all ¢ # ¢, and as zero on (7°)% for all 7> € [y ew,—qyy Upr- Applying Theorem
064 to f>°dg> then gives the desired result.

(3) For almost all p, part (2) gives a multiplicative relation

det(T — Frob,, | My (1, v))* = [] det(T — Frob, | THZ)~’
J
for each v € S, where k, is an integer (independent of p). By the purity results used
in the proof of (1) and by our assumption that TH? # 0 for some j, we conclude that
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k, # 0 (since the right hand side of the above relation cannot be 1). It then follows
from the above relation that Frob, acts on M, (¢, v) with integer weights for each v.
On the other hand we have an isomorphism of WD,-representations

@ Vp(U), V) = @V(ﬂ-i,p)(di)?

uesf i€l

where V,(¢,v) is as in §9.7.3) and V(m; ;) is the WD,,-representation corresponding
to m; , under the local Langlands correspondence. Clearly m; , is unitary since m; is.
By [Sha74], 7;, is generic. Hence by [JS81] Cor. 2.5], all eigenvalues A of Frob,
on V(m;,) satisfy p~/2 < |\| < p/2. Therefore if 7; , is not tempered for one i,
then there is at least one eigenvalue of Frob, on @, V, (¢, ) whose absolute value
is not an integer power of p'/2. This contradicts with the fact that Frob,, acts on
My (¢, v) = Hin V, (9, v) with integer weights for each v. We have proved (3).

(4) Pick S large enough such that HS acts on (7°°)K for all 7> € Uy through
a common character x5 : HS — C. Since 7y is an irreducible admissible G(Ay)-
representation, we know that HS must act on & via a character X(”)g (as opposed to
several different characters). Assume for the sake of contradiction that W7 () # 0.
Then up to enlarging S we must have x° = x§, by the definition of IHg. In the
following we assume that this is the case. We have 19 = ®; To,», Where each 7, is
an irreducible admissible representation of G(Q,). Write Gs for [],.4 G(Q,), and
write Kg for [[ cg Kv. By a similar argument as in the proof of (1), our assumption
that x® = x5 implies that for each v ¢ S, the ¥,-orbit of the isomorphism class of
the irreducible admissible G(Q,)-representation 7, agrees with the 9,-orbit arising
from every m* € U,. Therefore our assumption on 7y implies that the Jg-orbit
of the isomorphism class of the irreducible admissible G g-representation ®v€ 5 T0w
is disjoint from the ¥g-orbit arising from any 7> € Uy;. We can therefore find
fs € C&(Gs | Ks) = Q,e5 C&(G(Qy) / Ky) such that (for a certain normalization
of Haar measure) it acts as the identity on every ¥g-translate of (®), g 70,,)"* and
as zero on (Q,cg 7rp) s for all 7°° = (7,), € Uy and all choices (7, € m,)ves. Note
that the defining property of fs is invariant under the action of ¥g on C°(Gs J/ Kg).
Hence we can replace fg by its average under the finite group ¥g, and assume that
fs is fixed by 195.

After suitable scaling, the element (fg - va slk,)dg> € H acts as the identity
on every ¥J>-translate of 7 and as zero on (7°°)¥ for all (7°°) € Uy. By a similar
argument, we can also construct an element of H which acts as the identity on every
¥>°-translate of 7 and as zero on 7% for every 7 € Irr(G(Ay)) such that 7 is not
isomorphic to a 9>°-translate of 7o and 7% % 0, W7 (7) # 0. We have a third element of
H, as constructed in the proof of (2), which acts as the identity on TH for all 4, as zero
on IHi; for all 5" and all ¢/ # ¢, and as zero on (7°°)% for all 7*° € oy ewy—qpy Upr

Multiplying these three elements together, we obtain an element of  which acts on



284 CHAPTER 9. SPECTRAL EXPANSION AND HASSE-WEIL ZETA FUNCTIONS

IH’ for each j as the projection to EBTG[TO] 7K @ WJ(r) with respect to (9.8.4.2)), and
acts as zero on (1) for all 7> € [1,cw, Uy Here [ro] denotes the 9°°-orbit of 7o

in Irr(G(Ay)). Applying Theorem to this element we obtain
> (=1) Te(Froby | @ ™ @ Wi(r)) =0

J TE[T0]

for almost all primes p and all integers a. By a similar argument as in (1), this implies
that 75 @ WJ(7) = 0 for all 7 € [ry], and in particular W7 (7y) = 0, as desired.

Finally we prove (9.8.5.2). Since different elements 7> € Uy, give rise to disjoint
¥>°-orbits [7°°], essentially the same argument as before gives us an element of H
which acts on TH? for each j as the projection to D cpre) 7K ® WJ(r) with respect
to , acts as zero on (7°)X for all 7 € (I, g, gy Up) U Uy — {7}),
and acts as the identity on (7°°)%. Applying Theorem m to this element we obtain

(19.8.5.2). O

Remark 9.8.6. — Part (3) of TheoremMproveS the Ramanujan—Petersson con-
jecture for m; for almost all primes. As we have discussed in §9.8.1] and §9.8.2] this is
known in the odd case and in the even composite case (where the conjecture is known
for all primes). In the even symmetric case, however, the infinitesimal character of
Ti oo can be non-regular, and thus m; ® |det|” is not cohomological for any o € C.

For such 7; our result proves new instances of the conjecture. We postpone a more
systematic treatment to future work.

9.8.7. — By utilizing Theorem m (3), we can separate the contributions of dif-
ferent degrees j to the right hand sides of (9.8.5.1) and (9.8.5.2) as follows.

Let ¢ = B,erm;[d;] € \TJ(G*)V, and keep the notation in M for ¢. Let v € Sf.
Recall from that there is a subset I, of I of cardinality at most 2 such that
Vo(t,v) = @;cp, V(mip)®) for all primes p. Recall that n = dim Shg. For each
integer j, define

My@,vj)i= @ T V().
icl,
d;—1>|n—j|
di—1=n—j mod 2
Thus
(9.8.7.1) My(h,v) = P My, v, 5).

jez



9.8. MORE REFINED DECOMPOSITIONS 285

Corollary 9.8.8. — Let ¢ = c()). For each integer j, we have
(9.8.8.1) (—1)7 Tr(Froby | IH)
= my Z dim(7°°) K Z m (7>, 1, v)(=1)"v(sy) Tr(Froby | M, (¥, v, )

m el (G) vesy
for almost all primes p and all integers a. If all d; are 1, then
TH, =0
for all j #n. If we assume thaNt the conclusion of Lemma[9.8.3 holds for ), then for
each integer j and each w5° € II7°(G), we have

(—1) Tr(Frobs | @) dim(r) - W/(r))

TE[mG®

= my dim (") Y m(nge, 9, v)(=1)"v(sy) Tr(Froby | M, (4, v, ),

ueSf

for almost all primes p and all integers a.

Proof. — By Theorem m (3), we know that for almost all primes p, Frob, acts
on M, (1, v, j) with weight j. By the purity results used in the proof of Theorem
(1), Frob, acts on TH’ with weight j, for almost all p. The first and third
statements in the corollary follow from these two facts, the decomposition ,
and the two formulas and . For the second statement, for j # n we
have M, (¢,v,j) =0 for all v € 55. Applying to a = 0 gives the result. [

9.8.9. — Keep the notation of and assume that we are in the odd case or the
even composite case. From the discussion in §9.8.2] one easily sees that for each ¢ € T
and j € Z such that d; — 1 =n — j mod 2, the cuspidal automorphic representation
7 @ |det| ™ /% of GL N, is essentially self-dual and regular L-algebraic. Thus the semi-
simple (-adic T'g-representation associated to m; ® |det| ™ /2 is known to exist and
satisfies local-global compatibility; see for instance [BLGGT14, Thm. 2.1.1] It
follows that for each j € Z and v € Sf , there is a semi-simple /-adic I'g-representation
M, v, j), obtained by taking a direct sum of the ones just mentioned over i € I,
such that d; —1 > |[n—j| and d; — 1 = n — j mod 2, such that for every prime
p # £ the localization of M(¢, v, j) gives the WD,,-representation M (¢, v,j) up to
semi-simplification.

Corollary 9.8.10. — Letc = c(y), and let n§° € ﬁf/f (G). Assume that we are in the
odd case or the even composite case. Up to semi-simplification, the I'g-representations

(16)In that reference, 7 is assumed to be a regular C-algebraic cuspidal essentially self-dual repre-
sentation of GL,,, but the Galois representation is associated to m ® |det|(1_")/2, which is regular
L-algebraic.



286 CHAPTER 9. SPECTRAL EXPANSION AND HASSE-WEIL ZETA FUNCTIONS

TH’ and @Te[ﬂgc] dim(75) - W (1) are isomorphic to the virtual representations
my P dm(E) P (1 wlsy)m(r, )M, )
no €Tl (G) veSy

and

my dim(t3°) < P (1) w(sy)mlng®, b, v) M, v, j)

vesh
v
respectively. In the odd case, the semi-simplification of W3 (&) is isomorphic to

D 17 wsyp)m(nge, b )M, v, ).

uGSﬁ

Proof. — This follows from Lemma [9.8:3] Corollary [9.8.8] Chebotarev’s density the-

orem, and the Brauer—Nesbitt theorem.

Remark 9.8.11. — In the even symmetric case, for ¢ = H;crm;[d;] € {IVI(G*)% the
infinitesimal character of m; oo can be non-regular. Thus the conjectural ¢-adic I'g-

representation associated to (an L-algebraic twist of) m; has not been constructed.
To this end our Corollary [9.8.8] can be utilized for the construction of such a Galois

representation. We will investigate this on another occasion.
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