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Abstract

We prove a character formula for some closed fine Deligne–Lusztig varieties. We apply it to
compute fixed points for fine Deligne–Lusztig varieties arising from the basic loci of Shimura
varieties of Coxeter type. As an application, we prove an arithmetic intersection formula for
certain diagonal cycles on unitary and GSpin Rapoport–Zink spaces arising from the arithmetic
Gan–Gross–Prasad conjectures. In particular, we prove the arithmetic fundamental lemma in the
minuscule case, without assumptions on the residual characteristic.
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1. Introduction

1.1. The AFL conjecture. The arithmetic Gan–Gross–Prasad (AGGP)
conjectures generalize the celebrated Gross–Zagier formula to higher-
dimensional Shimura varieties of orthogonal or unitary type ([GGP12,
Section 27], [Zha12, Section 3.2], [RSZ17b]). The arithmetic fundamental
lemma conjecture (AFL) arises from Zhang’s relative trace formula approach
toward the AGGP conjecture for the group U(1, n − 2) × U(1, n − 1), n > 2.
It relates a derivative of orbital integrals on symmetric spaces to an arithmetic
intersection number of cycles on unitary Rapoport–Zink spaces,

ω(γ ) · ∂ Orb(γ, 1Sn(OF )) = − Int(g) · log q. (1.1.1)
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For the precise definitions of the quantities appearing in the identity, see [RSZ17a,
Section 1]. The left-hand side of (1.1.1) is known as the analytic side and the right-
hand side is known as the arithmetic–geometric side.

Let us briefly recall the definition of the arithmetic–geometric side. Let p be
an odd prime. Let F be a finite extension of Qp with residue field Fq and a
uniformizer π . Let E be an unramified quadratic extension of F . Let Ĕ be the
completion of the maximal unramified extension of E . Let k = Fq . For any
integer n > 1, the unitary Rapoport–Zink space Nn is the formal scheme over
S = SpfOĔ parameterizing deformations up to quasi-isogeny of height 0 of
unitary OF -modules of signature (1, n − 1). Fix an integer n > 2. There is a
natural closed immersion δ : Nn−1→ Nn . Denote by∆ ⊂ Nn−1×S Nn the image
of (id, δ) : Nn−1 → Nn−1 ×S Nn .

Let Cn−1 be a nonsplit Hermitian space of dimension n − 1, for the quadratic
extension E/F . Here nonsplit means that the discriminant has odd valuation.
Define a nonsplit Hermitian space of dimension n by Cn := Cn−1⊕Eu, where the
direct sum is orthogonal and u has norm 1. The unitary group J (F) := U(Cn)(F)
acts on Nn in a natural way. Let g ∈ J (F). The arithmetic–geometric side of
the AFL conjecture (1.1.1) concerns the arithmetic intersection number of the
diagonal cycle ∆ and its translate by id×g, defined as (see [Zha12, Section 2.2])

Int(g) := χ(Nn−1 ×S Nn,O∆ ⊗
L O(id×g)∆).

When ∆ and (id×g)∆ intersect properly, namely when the formal scheme

∆ ∩ (id×g)∆ ∼= δ(Nn−1) ∩N g
n (1.1.2)

is an Artinian scheme (where N g
n denotes the fixed points of g), the arithmetic

intersection number Int(g) is simply the OĔ -length of the Artinian scheme (1.1.2)
(see [RTZ13, Proposition 4.2(iii)]).

Recall that g ∈ J (F) is called regular semisimple if

L(g) := OE · u +OE · gu + · · · +OE · gn−1u

is a full-rank OE -lattice in Cn . In this case, the invariant of g is the unique
sequence of integers

inv(g) := (r1 > r2 > · · · > rn)

characterized by the condition that there exists a basis {ei} of the lattice L(g) such
that {π−ri ei} is a basis of the dual lattice L(g)∨. It turns out that the ‘bigger’ inv(g)
is, the more difficult it is to compute the intersection. With this in mind, recall that
a regular semisimple element g is called minuscule if r1 = 1 and rn > 0.
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1.2. The AFL in the minuscule case. In the minuscule case, the analytic side
is relatively straightforward to evaluate. One of our main results is an explicit
formula for the arithmetic–geometric side Int(g) when g is minuscule, which
allows us to establish new cases of the AFL conjecture.

THEOREM 1.2.1 (Corollary 5.1.4). The arithmetic fundamental lemma holds
when g is minuscule.

REMARK 1.2.2. When F = Qp and p > n+1
2 , this theorem was first proved

by Rapoport–Terstiege–Zhang [RTZ13] (see also a simplified proof in [LZ17]).
The same methods together with [Cho18] should prove the theorem for any
p-adic field F with the size of its residue field q > n+1

2 . However, potential
global applications to the AGGP conjectures require the truth of AFL at all
unramified places, thus it is desirable to remove the assumption that q > n+1

2 . Our
proof is different from [RTZ13] and treats all local fields F (with odd residue
characteristic, in order to define the Rapoport–Zink spaces) uniformly.

REMARK 1.2.3. After this work was done, Zhang [Zha19] has recently
announced a proof of the arithmetic fundamental lemma when F = Qp and
p > n (without assuming that g is minuscule).

To state the explicit formula for Int(g), assume g is minuscule and N g
n 6= ∅.

Then it can be shown that g stabilizes both L(g)∨ and L(g), and acts as an unitary
operator on V := L(g)∨/L(g), which has a natural structure of a Hermitian space
over Fq2 . Let ḡ ∈ U(V)(Fq) be the induced element.

For any monic polynomial Q ∈ Fq2[λ] with Q(0) 6= 0, we define its reciprocal
polynomial Q∗ by replacing each root x ∈ k× of Q with x−q (with multiplicities).
We say Q is self-reciprocal if Q = Q∗.

Let f ∈ Fq2[λ] be the characteristic polynomial of ḡ. Then f is self-reciprocal.
For any monic irreducible Q ∈ Fq2[λ], we denote the multiplicity of Q in f by
m Q .

THEOREM 1.2.4 (Theorem 5.1.2). Assume g is minuscule and Int(g) 6= 0. Then
there is a unique monic irreducible self-reciprocal Q0 ∈ Fq2[λ] such that m Q0 is
odd. We have

Int(g) =
m Q0 + 1

2
· deg Q0 ·

∏
{Q,Q∗}

(1+ m Q).

Here the product is over pairs {Q, Q∗} of monic irreducible non-self-reciprocal
polynomials in Fq2[λ] with nonzero constant terms.
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Theorem 1.2.1 then follows immediately from Theorem 1.2.4 and the explicit
formula for the analytic side given in [RTZ13, Proposition 8.2].

REMARK 1.2.5. Theorem 1.2.4 is also used to prove the minuscule case of
Liu’s arithmetic fundamental lemma for Fourier–Jacobi cycles, see [Liu18,
Appendix E].

REMARK 1.2.6. In Theorem 5.2.4, we also establish an analogous arithmetic
intersection formula for GSpin Rapoport–Zink spaces arising from the AGGP
conjectures for orthogonal groups. This provides a new proof of the main result
of [LZ18], and also removes the assumption that p > n+1

2 in loc. cit.

1.3. Computing the arithmetic intersection. The starting point of the proof
of Theorem 1.2.4 is the observation made in [LZ17, Proposition 4.1.2] that, in
the minuscule case, the formal scheme (1.1.2) can be identified with the fixed
point scheme V ḡ of an explicitly given smooth projective variety V over k, under
a finite-order automorphism ḡ. It also turns out that V ḡ is an Artinian scheme.
Hence Int(g) is given by the k-length of V ḡ.

In order to compute the k-length of V ḡ, there are two apparent approaches. One
approach, taken in [LZ17], is to explicitly study all the local equations. The other
approach, which we take in the current paper, is to compute it using the Lefschetz
trace formula. Thus we obtain

Int(g) = tr (ḡ | H∗(V)) , (1.3.1)

where H∗(V) denotes the étale Q`-cohomology of V , for a fixed prime ` 6= p.
To compute the right-hand side of (1.3.1), we utilize the fact that the variety V

is the closure of a generalized Deligne–Lusztig variety in a partial flag variety of
the unitary group G = U(V) over Fq . To be precise, let G := Gk , and let σ be the
Frobenius automorphism of k over Fq . Then V is the closure inside G/P of the
generalized Deligne–Lusztig variety

X P(w) := {h P ∈ G/P : h−1σ(h) ∈ PwP},

for a certain standard parabolic subgroup P ⊂ G and a certain w ∈ WP\W/WP .
Here W denotes the Weyl group of G and WP denotes the parabolic subgroup of
W corresponding to P . The automorphism ḡ of V is given by the natural action
of the group element ḡ ∈ G(Fq).

Vollaard [Vol10, Theorem 2.15] constructed a nice stratification

V =
⊔

i

X i (1.3.2)
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of V into finitely many locally closed strata X i , where each X i is the image in
G/P of a generalized Deligne–Lusztig variety in G/Pi for a different parabolic
subgroup Pi ⊂ G. This stratification is remarkable because it is different from the
naive decomposition

V = X P(w) =
⊔

w′∈WP\W/WP ,w′6w

X P(w
′).

In fact, the stratification (1.3.2) is a special example of stratification into fine
Deligne–Lusztig varieties, which will be discussed in the next subsection 1.4.
Now each X i turns out to be a fine Deligne–Lusztig variety in G/P , and can
be related via parabolic induction to a classical Deligne–Lusztig variety in the
full flag variety of a Levi subgroup of G. In this way, the computation of the
right-hand side of (1.3.1) reduces to computing the characters on the cohomology
with compact support H∗c(X i) for each X i , and eventually reduces to the classical
Deligne–Lusztig character formula in [DL76].

We thus place the problem of computing the right-hand side of (1.3.1) into
the more general framework of developing a character formula for fine Deligne–
Lusztig varieties and their closures.

1.4. A character formula for fine Deligne–Lusztig varieties. Let Fq be a
finite field. Let k = Fq , and let σ be the Frobenius automorphism of k over Fq .
Let G be a connected reductive group over Fq . Let G = Gk , and let W be the
Weyl group of G. Let J be a subset of the simple reflections in W . Let WJ be the
subgroup of W generated by J , and let PJ be the corresponding standard parabolic
subgroup of G. Let J W be the set of minimal length coset representatives of
WJ\W . For w ∈ J W , we have the associated fine Deligne–Lusztig variety

X J,w = {g PJ ∈ G/PJ ; g−1σ(g) ∈ PJ ·σ BwB},

where ·σ is the σ -conjugation action. When J = ∅, X∅,w recovers the classical
Deligne–Lusztig variety Xw inside the full flag variety of G, associated to w.

In Definition 2.4.1, we introduce the notion of a σ -unbranched datum (J,L ),
where J is a set of simple reflections in W , and L is a subdiagram of the Dynkin
diagram of G satisfying certain axioms with respect to J . Associated to such (J,
L ), we construct canonically a finite sequence of elements wi ∈

J W , such that
we have the following simple closure relation (see Corollary 2.4.6)

X J,w1 =

⊔
i

X J,wi . (1.4.1)

The above stratification subsumes (1.3.2) as a special case. Moreover, for each i
we construct a rational parabolic subgroup Pi ⊂ G, and a projection to a reductive
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group Pi → Gi over Fq , such that wi can be naturally viewed as an element of
the Weyl group Wi of G i := Gi,k . We show that each fine Deligne–Lusztig variety
X J,wi is related via parabolic induction to the classical Deligne–Lusztig variety
XGi
wi

in the full flag variety of G i associated to wi (see Proposition 2.5.1):

X J,wi
∼= G(Fq)×

Pi (Fq ) XGi
wi
.

For each i , we fix a σ -stable maximal torus Ti ⊂ G i of type wi . Now we are
ready to state our main character formula.

THEOREM 1.4.1 (Theorem 2.8.1). Assume (J,L ) is a σ -unbranched datum. Let
wi ,Pi ,Gi , Ti be as above. Let g ∈ G(Fq) be a regular element. Then

tr(g | H∗(X J,w1)) =
∑

i

tr(g | H∗c(X J,wi ))

=

∑
i

∑
γ∈Γi

#Mg,γ
i ·
|Gi,γ (Fq)|

|G0
i,γ (Fq)|

·
∣∣Ti ∩ (

Gi (Fq )γi)
∣∣.

Here we have

• Γi is a complete set of representatives of elements in Ti(Fq) modulo Gi(Fq)-
conjugacy.

• Mg
i := {r ∈ G(Fq)/Pi(Fq); r−1gr ∈ Pi(Fq)}, and Mg,γ

i ⊂ Mg
i consists of

those r ∈Mg
i such that the semisimple part of the projection of r−1gr to Gi is

Gi(Fq)-conjugate to γ .

•
Gi (Fq )γi is the Gi(Fq)-conjugacy class of γi .

1.5. Four families of fine Deligne–Lusztig varieties. In Section 4, we apply
Theorem 1.4.1 to fine Deligne–Lusztig varieties that arise from the basic loci of
Shimura varieties of Coxeter type [GH15]. There are four infinite families of
such fine Deligne–Lusztig varieties, where the Fq-groups G are respectively the
even nonsplit special orthogonal group, the odd special orthogonal group, the
symplectic group, and the odd unitary group.

In all these cases, we obtain an explicit formula for tr(g | H∗(X J,w1)), for
g ∈ G(Fq) whose image under the standard representation is regular. Our formula
is in terms of the characteristic polynomial of g, subsuming the formula in
Theorem 1.2.4 as a special case. See Theorems 4.3.3, 4.4.3, 4.5.4, and 4.6.3. The
odd unitary cases and the even nonsplit special orthogonal cases are relevant
to the AGGP conjectures for unitary and orthogonal groups respectively, and
our formulas lead to the arithmetic intersection formulas in Theorem 1.2.4 and
Remark 1.2.6.
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1.6. Further remarks on Theorem 1.2.4. Arguably the most difficult part
of Theorem 1.2.4 is to compute the intersection multiplicity at each point
of intersection in (1.1.2). The computation in [RTZ13] uses Zink’s theory of
windows and displays to compute the local equations of (1.1.2). It requires
explicitly writing down the window of the universal deformation of p-divisible
groups. The assumption p > n+1

2 made in loc. cit. ensures that the ideal of local
equations is admissible (see the last paragraph of [RTZ13, page 1661]), which is
crucial in order to construct the frames for the relevant windows needed in Zink’s
theory.

As mentioned above, the starting point of the simplified proof in [LZ17] is that
the intersection (1.1.2) can be identified with V ḡ, and thus a deformation-theoretic
problem of p-divisible groups is transformed to a purely algebro-geometric
problem over k. When p > n+1

2 , the computation of V ḡ is further reduced in
[LZ17] to a more elementary fixed point problem of a linear transformation on a
projective space. However, when p 6 n+1

2 the multiplicities remain mysterious.
Our proof of Theorem 1.2.4 shares the same starting point as [LZ17]. The

new observation is the inductive structure of fine Deligne–Lusztig varieties, which
allows us to exploit the full power of the classical character formula of Deligne–
Lusztig. Our approach circumvents the need to analyze the local structure of
(1.1.2), and gives the desired formula without the extra assumption on p.

Finally, we remark that in the computation in [RTZ13] or [LZ17], the number
m Q0+1

2 in Theorem 1.2.4 appears as the common intersection multiplicity at
each point of intersection. In our current computation, we obtain a different
geometric interpretation of this number, as the number of the strata X i whose
H∗c contribute nontrivially to the trace (1.3.1). (In the proofs of Theorem 4.3.3
and Theorem 4.6.3, this number appears as

∣∣I ∣∣.) As a simple illustration of this
phenomenon, consider the automorphism f (x) = x + 1 of order p on P1 over k.
The only fixed point is∞, which has multiplicity 2. On the other hand, we have
an f -stable stratification P1

= A1
t {∞}, which gives

tr( f | H∗(P1)) = tr( f | H∗c(A
1))+ tr( f | H∗({∞})).

Note that tr( f | H∗c(A1)) = tr( f | H∗({∞})) = 1. Thus the multiplicity 2 also
appears as the number of contributing strata.

1.7. Organization of the paper. In Section 2, we introduce the notion of a σ -
unbranched datum, and study the closure relation and inductive structure for the
fine Deligne–Lusztig varieties associated to a σ -unbranched datum, culminating
in the proof of the general character formula Theorem 1.4.1 (Theorem 2.8.1). In
Section 3, we recall the four infinite families of fine Deligne–Lusztig varieties
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arising from basic loci of Coxeter type in Shimura varieties. In each case we
identify the unique σ -unbranched datum. In Section 4, we apply the general
character formula to each of the four families in Section 3, obtaining explicit
character formulas in terms of characteristic polynomials (Theorems 4.3.3, 4.4.3,
4.5.4, 4.6.3). In Section 5, we apply the results in Section 4 to obtain the arithmetic
intersection formulas in Theorem 1.2.4 and Remark 1.2.6 (Theorems 5.1.2
and 5.2.4).

1.8. Notations and conventions. Let k be an algebraically closed field. For
a smooth scheme X over k, we denote by H∗(X) and H∗c(X) the étale Q`-
cohomology and the étaleQ`-cohomology with compact support respectively, for
a fixed prime ` which is invertible in k.

For any linear algebraic group G over k, we identify G with its k-points. If a
subfield k0 of k and a k0-form G of G are given in the context, we often abuse
notation to write G(k0) for G(k0).

By convention, a quadratic space means a finite-dimensional vector space over
a field equipped with a nondegenerate quadratic form. Since we never consider
characteristic 2 fields, we shall specify the quadratic form by specifying its
associated bilinear pairing. Thus the quadratic form is recovered from the bilinear
pairing [·, ·] as x 7→ [x, x]/2. Similarly, Hermitian forms and symplectic forms
are all understood to be nondegenerate.

For any field F , we denote by F[λ]monic the set of monic polynomials in the
polynomial ring F[λ].

2. Fine Deligne–Lusztig varieties

2.1. Basic setting and notations. Fix an odd prime p, and let q be a power of
p. Let k = Fq and σ be the Frobenius automorphism of k over Fq .

Let G be a connected reductive group over Fq , and let G = Gk . We fix a σ -
stable Borel subgroup B of G, with a Levi decomposition B = T U which is also
σ -stable. Let W be the canonical Weyl group of G equipped with the canonical
action of the Frobenius σ , as in [DL76, Section 1.1]. Then using the pair (T, B)
we identify W with NG(T )/T , and the identification is σ -equivariant.

Let S be the set of simple reflections in W . For any J ⊂ S, let PJ ⊃ B be
the standard parabolic subgroup of G associated to J , and let L J be the standard
Levi subgroup of PJ . Denote by WJ the subgroup of W generated by J (called a
parabolic subgroup of W ). Thus WJ is the Weyl group of L J .

For w ∈ W , we denote by supp(w) the support of w, that is, the set of simple
reflections that occur in some (or equivalently, any) reduced expression of w. We
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define
suppσ (w) :=

⋃
i∈Z

σ i(supp(w)).

We recall the notion of Coxeter elements following [Spr74, 7.3]. For each
σ -orbit in S, we pick a simple reflection. Let c be the product of these simple
reflections in any given order. We call such c a σ -twisted Coxeter element of
W . More generally, for a σ -stable subset Σ ⊂ S, we may consider σ -twisted
Coxeter elements of the parabolic subgroup WΣ . If c is such an element, then
suppσ (c) = Σ , and supp(c) is a complete set of representatives of the σ -orbits in
Σ .

2.2. Classical Deligne–Lusztig varieties. Forw ∈W , the (classical) Deligne–
Lusztig variety Xw in the full flag variety G/B is defined by

Xw = {gB ∈ G/B; g−1σ(g) ∈ BwB}.

These Deligne–Lusztig varieties give a partition of the full flag variety

G/B =
⊔
w∈W

Xw.

The closure relation is given by the Bruhat order 6 of the Weyl group, that is, for
any w ∈ W ,

Xw =

⊔
w′6w

Xw′ .

2.3. Fine Deligne–Lusztig varieties. Let J ⊂ S. Let G/PJ be the partial
flag variety of type J . In 1977, Lusztig introduced a partition of G/PJ into fine
Deligne–Lusztig varieties.

We follow the approach in [He09, Section 3]. Let J W be the set of minimal
length coset representatives of WJ\W . For any w ∈ J W , we set

X J,w = {g PJ ∈ G/PJ ; g−1σ(g) ∈ PJ ·σ BwB},

where ·σ is the σ -conjugation action, that is, x ·σ y := xyσ(x)−1. When J = ∅,
we have X∅,w = Xw.

Then we have a partition

G/PJ =
⊔
w∈J W

X J,w

into locally closed subvarieties.
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The partial order 6J,σ on J W is introduced in [He07a, Proposition 3.8] (see
also [He07b, 4.7]). For w,w′ ∈ J W , we write

w 6J,σ w
′

if uwσ(u)−1 6 w′ for some u ∈ WJ . By [He07a, Proposition 3.13] and [He07b,
Corollary 4.6], 6J,σ is a partial order on J W . Now we have

THEOREM 2.3.1. [He09, Theorem 3.1] For w ∈ J W ,

X J,w =
⊔

w′∈J W ;w′6J,σw

X J,w′ .

2.4. The σ -unbranched datum. We would like to single out certain cases
where the right-hand side of Theorem 2.3.1 has a relatively simple description.

DEFINITION 2.4.1. We say that a subset J ⊂ S is σ -unbranched if the following
conditions hold.

(1) The set S− J is contained in one σ -orbit in S.

(2) There exists a subdiagram L of the Dynkin diagram of (G,W,S) satisfying
the following conditions.

• The diagram L is connected and without branching;

• The nodes of L form a complete set of representatives of the σ -orbits in
S.

• One (and hence exactly one) end node of L is in S− J .

We call a pair (J,L ) as above a σ -unbranched datum for G. When we would
like to emphasize the group G, we write (G, J,L ).

2.4.2. From now on we assume the existence of a σ -unbranched subset J ⊂ S,
and fix a σ -unbranched datum (J,L ) once and for all. Let a be the number of
nodes in L . By assumption L is connected and without branching, with exactly
one end node in S − J . Hence we may canonically list the consecutive nodes in
L as

r1, r2, . . . , ra ∈ S, (2.4.1)

with ra ∈ S− J . Write imax = a + 1.
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For each 1 6 i 6 imax, define

wi := rara−1 · · · ri .

Here by convention wimax := 1. We also define

Σ
[

i := suppσ wi =

a⋃
j=i

the σ -orbit of r j ,

Σi :=

{
the σ -orbit of ri−1, if 2 6 i 6 imax,

∅, if i = 1,

Σ
]

i := S− (Σ
[

i ∪Σi).

LEMMA 2.4.3. For all 3 6 i 6 a and m ∈ Z, the sets {σm(ri−2), σ
m(ri−3), . . . ,

σm(r1)} and {ra, ra−1, . . . , ri} are disconnected from each other.

Proof. Firstly, we observe that these two sets do not share any common element,
because of the second condition in Definition 2.4.1 (2). Now suppose that the two
sets are connected. Then there exist integers j and l, satisfying

1 6 l 6 i − 2 < i 6 j 6 a,

such that r j is connected with σm(rl). Choose n ∈ N such that σ nm(r j) = r j . Then
in the list

r j , σ
mrl, σ

mrl+1, . . . , σ
mr j , σ

2mrl, . . . , σ
2mr j , . . . , σ

nmrl, . . . , σ
nmr j ,

each member is connected with (and unequal to) its predecessor, and the last
member is equal to the first member. Since the Dynkin diagram does not contain
loops, there must be a member in the list which equals the second member
following it. Hence one of the following three situations must happen:

(1) There exist integers α, β, with l 6 β 6 j − 2, such that σ αmrβ = σ
αmrβ+2.

(2) There exists an integer α, such that σ αmr j−1 = σ
(α+1)mrl .

(3) There exists an integer α, such that σ αmr j = σ
(α+1)mrl+1.

Since j − l > 2, each of these three situations contradicts with the second
condition in Definition 2.4.1(2).

LEMMA 2.4.4. For each 1 6 i 6 imax, we have

S = Σ [

i tΣi tΣ
]

i .

The sets Σ [

i ,Σi ,Σ
]

i are all σ -stable. Moreover, Σ [

i is disconnected from Σ
]

i .
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Proof. The first assertion holds because r1, . . . , ra lie in distinct σ -orbits in S. The
second assertion follows easily from the definition. The third assertion follows
from Lemma 2.4.3.

Note that eachwi is σ -twisted Coxeter in W
Σ
[
i
, and W

Σ
[
1
= WS = W . We further

have the following result.

LEMMA 2.4.5. For each 1 6 i 6 imax, we have wi ∈
J W . Moreover,

{w ∈ J W ;w 6J,σ w1} = {w1, w2, . . . , wimax}.

Proof. Since L is connected and since ra ∈ S − J , we have wi ∈
J W . By

definition, wi 6 w1 for any i .
On the other hand, let w ∈ J W with w 6J,σ w1. Then by [He07a, Proposition

3.8], there exists u ∈ WJ with `(wσ(u)−1) = `(w) − `(u) and uwσ(u)−1 6 w1.
Then we have wσ(u)−1

∈
J W and wσ(u)−1

= wi for some 1 6 i 6 imax. Then
uwi 6 w1. Since u ∈ WJ and wi ∈

J W , we have `(uwi) = `(u) + `(wi). Note
that ri−1wi � w1, so we have u 6 ri−2ri−3 · · · r1. By Lemma 2.4.3, the sets
{σ(ri−2), σ (ri−3), . . . , σ (r1)} and {ra, ra−1, . . . , ri} are disconnected from each
other. Hence w = wiσ(u) = σ(u)wi . Since w ∈ J W , we have σ(u) = 1 and
hence w = wi .

By the above lemma, the fine Deligne–Lusztig variety X J,wi is defined for each
1 6 i 6 imax.

COROLLARY 2.4.6. We have

X J,w1 =

⊔
16i6imax

X J,wi .

Proof. This follows from Theorem 2.3.1 and Lemma 2.4.5.

Given g ∈ G reg
∩ G(Fq), our goal in this section is to compute

tr(g, J,L ) := tr(g | H∗(X J,w1)).

COROLLARY 2.4.7. For g ∈ G reg
∩ G(Fq), we have

tr(g, J,L ) =

imax∑
i=1

tr(g | H∗c(X J,wi )).

Proof. This follows from Corollary 2.4.6.
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2.5. Parabolic induction. We keep the setting of Section 2.4. Fix 1 6 i 6 imax.
Denote

Pi := P
Σ
[
i tΣ

]
i
, L i := L

Σ
[
i tΣ

]
i
, Gad

i := (LΣ[
i
)ad, H ad

i := (LΣ]
i
)ad.

Since Σ [

i is disconnected from Σ
]

i (see Lemma 2.4.4), we have a canonical
isomorphism

Lad
i
∼= Gad

i × H ad
i .

Let L i → L\i be the central isogeny with the smallest kernel such that L\i is the
direct product of the inverse images in L\i of Gad

i and H ad
i . We denote by G i

(respectively Hi ) the inverse image of Gad
i (respectively H ad

i ) in L\i . Then Gad
i

(respectively H ad
i ) is indeed the adjoint group of G i (respectively Hi ), so the

notation is compatible.
Thus we have L\i = G i × Hi . Moreover, since Σ [

i ,Σ
]

i are σ -stable, the groups
Pi , L i , L\i ,G i , Hi , as well as the central isogeny L i → L\i and the decomposition
L\i = G i × Hi , are all defined over Fq . When we would like to emphasize the
reductive groups over Fq underlying Pi , L i , and so forth, we shall write Pi ,Li ,
and so forth. We let πi denote the projection Pi → L i → L\i → G i , and let π ′i
denote the projection Pi → L i → L\i → Hi .

Let Wi := W
Σ
[
i
. Then Wi is identified with the Weyl group of G i , inside which

wi is a σ -twisted Coxeter element. Let XGi
wi

be the classical Deligne–Lusztig
variety associated to the element wi ∈ Wi in the full flag variety of G i . Then
we have a natural action of G i(Fq) on XGi

wi
. Define the action of the group Pi(Fq)

on G(Fq)× XGi
wi

by
p · (g, x) = (gp−1, πi(p) · x).

Let G(Fq) ×
Pi (Fq ) XGi

wi
be the quotient space. As a k-variety this is just a finite

disjoint union of isomorphic copies of XGi
wi

.

PROPOSITION 2.5.1. For each 1 6 i 6 imax, we have a G(Fq)-equivariant
isomorphism

G(Fq)×
Pi (Fq ) XGi

wi

∼

−→ X J,wi

(g, g′(G i ∩ B)) 7→ gg′PJ .

Proof. We fix 1 6 i 6 imax. We claim that Σ ]

i is the maximal subset of J that
is stable under Ad(wi) ◦ σ . In fact, by definition Σ ]

i is a σ -stable subset of J
(see Lemma 2.4.4). Since Σ ]

i is disconnected from Σ
[

i by Lemma 2.4.4, Σ ]

i is
also stable under Ad(wi). Now let K be an arbitrary Ad(wi) ◦ σ -stable subset
of J . We need to show that K ⊂ Σ ]

i . We first show that K ∩ Σi = ∅. If i = 1,
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then Σi = ∅ by definition. If i = imax, then Σi is the σ -orbit of ra , and K is
σ -stable (as wimax = 1 by convention). In this case, since ra /∈ J , we must have
K ∩Σi = ∅. Now let 2 6 i 6 a. Then Ad(wi)ri−1 /∈ S, and for any r ∈ Σi−{ri−1},
we have either Ad(wi)r /∈ S, or Ad(wi)r = r /∈ J . Hence for all r ∈ Σi we have
Ad(wi)r /∈ J , and so K ∩ Σi = ∅. Thus we have shown that K ∩ Σi = ∅ in all
cases.

Similarly, for any integer j with i 6 j 6 a, the following holds. On the one
hand either Ad(wi)r j = r j−1 or Ad(wi)r j /∈ S, and on the other hand, for any
r 6= r j that is in the σ -orbit of r j , either Ad(wi)r /∈ S or Ad(wi)r = r /∈ J .
Moreover, we have Ad(wi)ri /∈ S if i < a, and we have Ad(wa)ra = ra /∈ J .
Using this and by induction on j , we see that K does not contain any element
in the σ -orbit of r j , for any j > i . Therefore, K ∩ Σ [

i = ∅. We already saw
K ∩Σi = ∅, so K ⊂ Σ ]

i . This proves our claim that Σ ]

i is the maximal subset of
J that is stable under Ad(wi) ◦ σ .

By the above claim and by [Lus07, 4.2(d)] (see also [He09, Section 3]), the
projection map G/P

Σ
]
i
→ G/PJ induces an isomorphism

X
Σ
]
i ,wi

∼

−→ X J,wi .

Note that P
Σ
]
i
·σ Bwi B ⊂ Pi . Thus g P

Σ
]
i
∈ X

Σ
]
i ,wi

implies that g−1σ(g) ∈ Pi .
By Lang’s theorem, g−1σ(g) ∈ Pi is equivalent to g ∈ G(Fq)Pi . The projection
map G/P

Σ
]
i
→ G/Pi induces an isomorphism

X
Σ
]
i ,wi

∼

−→ G(Fq)×
Pi (Fq ) X ′,

where X ′ is the subvariety of Pi/P
Σ
]
i

given by

X ′ = {pP
Σ
]
i
∈ Pi/P

Σ
]
i
; p−1σ(p) ∈ P

Σ
]
i
·σ Bwi B}.

Recall that πi denotes the projection Pi → L i → L\i → G i . Note that

Pi/P
Σ
]
i

∼= L i/(L i ∩ P
Σ
]
i
) ∼= L\i/(πi(B)× Hi) ∼= G i/πi(B),

where G i/πi(B) is the full flag variety of G i . Under this isomorphism, the
subvariety X ′ of Pi/P

Σ
]
i

is identified to XGi
wi

. The proposition is proved.

COROLLARY 2.5.2. For each 1 6 i 6 imax, we have an isomorphism of virtual
G(Fq)-representations

H∗c(X J,wi )
∼= IndG(Fq )

Pi (Fq )
H∗c(X

Gi
wi
),

where Pi(Fq) acts on XGi
wi

via the projection πi : Pi(Fq)→ G i(Fq).

Proof. This follows immediately from Proposition 2.5.1.
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2.6. Review of regular elements. We recall the definition of regular elements
and some standard facts. Let G be a reductive group over k.

DEFINITION 2.6.1. An element g ∈ G is called regular, if the centralizer Gg of g
in G has dimension equal to the rank of G. The set of regular elements is denoted
by G reg.

If G is semisimple, the above definition is the same as [Ste65]. In general, one
easily checks that g ∈ G is regular in the above sense if and only if the image of
g in Gad is regular. Thus we can easily transport the results from [Ste65], which
only discusses semisimple groups, to reductive groups.

THEOREM 2.6.2. An element g ∈ G is regular if and only if there are only finitely
many Borel subgroups of G that contain g.

Proof. This follows from [Ste65, Theorem 1.1] applied to Gad.

PROPOSITION 2.6.3. Assume G ′ is a reductive group over k that contains G as a
closed subgroup. Then G ′reg

∩ G ⊂ G reg.

Proof. Fix a Borel subgroup B ′ ⊂ G ′ that contains B. By Theorem 2.6.2, it
suffices to show that the natural map between flag varieties G/B → G ′/B ′ is
finite to one (at the level of k-points). For this, it suffices to show that B is of
finite index in B ′ ∩ G. Note that the identity component (B ′ ∩ G)0 of B ′ ∩ G is a
connected solvable closed subgroup of G which contains B. Hence (B ′∩G)0 = B.
But we know that (B ′∩G)0 has finite index in B ′∩G because the latter is a linear
algebraic group over k.

PROPOSITION 2.6.4. Let P = PJ be a standard parabolic subgroup of G, with
standard Levi subgroup L = L J . The projection P → L maps P ∩ G reg into L reg.

Proof. The projection P→ L induces a bijection from the set of Borel subgroups
of G contained in P to the set of Borel subgroups of L . Thus the proposition
follows from Theorem 2.6.2.

The following proposition is well known and elementary to verify.

PROPOSITION 2.6.5. Let V be a finite-dimensional k-vector space. An element
g ∈ GL(V ) is regular if and only if each eigenspace of g is one-dimensional.
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2.7. The character formula on a classical Deligne–Lusztig variety. Let g ∈
G(Fq) and let g = su be the Jordan decomposition of g. Assume g is regular in
G. Let w ∈ W . Let (Tw, Bw) be the pair associated to w as in [DL76, Lemma
1.13]. Namely, Tw is a σ -stable maximal torus of G, and Bw is a Borel subgroup
of G containing Tw such that Bw and σ(Bw) have relative position w. The pair
(Tw, Bw) is well defined up to G(Fq)-conjugation, but we fix a representative. We
denote by Gs the conjugacy class in G(k) of s, and denote by G(Fq )s the conjugacy
class in G(Fq) of s.

PROPOSITION 2.7.1. In the above setting, we have

tr(g | H∗c(Xw)) =
|Gs(Fq)|

|G0
s (Fq)|

·
∣∣Tw ∩ G(Fq )s

∣∣. (2.7.1)

Proof. By [DL76, Theorem 4.2], we have

tr(g | H∗c(Xw)) =
1

|G0
s (Fq)|

∑
g′∈G(Fq );g′Tw(g′)−1⊂G0

s

Qg′Tw(g′)−1,G0
s
(u),

where Qg′Tw(g′)−1,G0
s

is the Green function. Since g is regular in G, we know that u
is regular in G0

s . Hence by [DL76, Theorem 9.16], we have Qg′Tw(g′)−1,G0
s
(u) = 1

for every g′ that appears in the above summation. Therefore, we have

tr(g | H∗c(Xw)) =
1

|G0
s (Fq)|

#{g′ ∈ G(Fq); g′Tw(g′)−1
⊂ G0

s }.

Now for g′ ∈ G(Fq), the condition g′Tw(g′)−1
⊂ G0

s is equivalent to the condition
s ∈ g′Tw(g′)−1, which is equivalent to the condition (g′)−1sg′ ∈ Tw ∩ G(Fq )s.
Therefore, we have

#{g′ ∈ G(Fq); g′Tw(g′)−1
⊂ G0

s } = |Gs(Fq)| ·
∣∣Tw ∩ G(Fq )s

∣∣
by the orbit–stabilizer relation. The proposition follows.

DEFINITION 2.7.2. For each γ ∈ Tw(Fq), define

T (w, γ ) := |Gγ (Fq)|

|G0
γ (Fq)|

·
∣∣Tw ∩ G(Fq )γ

∣∣.
Since Tw is well defined up to G(Fq)-conjugation, the above definition indeed
only depends on w and γ .
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COROLLARY 2.7.3. Let g ∈ G(Fq)∩G reg and w ∈ W . Let g = su be the Jordan
decomposition. We have

tr(g | H∗c(Xw)) =

{
0, if Tw ∩ G(Fq )s = ∅,
T (w, γ ), if Tw ∩ G(Fq )s 6= ∅.

In the second case, γ is any element of Tw ∩ G(Fq )s.

Proof. This follows from Proposition 2.7.1, by noting that the right-hand side of
(2.7.1) only depends on the G(Fq)-conjugacy class of s.

2.7.4. Let w ∈ W and γ ∈ Tw(Fq). We give a more explicit formula for T (w,
γ ), under the assumption that Gγ is connected. For example, if Gder is simply
connected, then our assumption is always satisfied, by a result of Steinberg [Ste68,
Corollary 8.5] (see [Kot82, page 788] or [Car93, Theorem 3.5.6]).

Assume Gγ is connected. We canonically identify W with NG(Tw)/Tw via the
pair (Tw, Bw) fixed before. Then the Weyl group of Gγ is a canonical subgroup
W (γ ) of W , generated by the reflections associated to roots α in Φ(Tw,G) such
that α(γ ) = 1 (see [Car93, Theorem 3.5.4]). Denote by Fw the automorphism
Ad(w) ◦ σ of W . Then W (γ ) is stable under Fw, as γ is an Fq-point of Tw.

LEMMA 2.7.5. In the setting of Section 2.7.4, we have

T (w, γ ) = #{xγ ; x ∈ W, xγ ∈ G(Fq)} = #(W/W (γ ))Fw .

Proof. Since Gγ is connected, it follows from the Lang–Steinberg theorem that
H 1(Fq,Gγ ) = 0, and so G(Fq )γ = Gγ ∩ G(Fq). Therefore,

T (w, γ ) =
∣∣Tw(Fq) ∩

Gγ
∣∣ .

Now assume h ∈ G satisfies hγ h−1
∈ Tw. Then h−1Twh ⊂ Gγ . Sine h−1Twh and

Tw are two maximal tori of Gγ , there exists c ∈ Gγ such that h−1Twh = cTwc−1.
Then we have

hγ h−1
= (hc)γ (hc)−1, hc ∈ NG(Tw).

The above analysis shows that,∣∣Tw(Fq) ∩
Gγ
∣∣ = #{xγ ; x ∈ W, xγ ∈ G(Fq)}.

This proves the first equality in the lemma. To prove the second equality, note that

#{xγ ; x ∈ W, xγ ∈ G(Fq)} = #(W/Wγ )
Fw ,

where Wγ is the stabilizer of γ in W . Since Gγ is connected, we have Wγ = W (γ ),
see [Car93, Theorem 3.5.3].
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2.8. Combining the results. Keep the setting of Section 2.4. For each 1 6
i 6 imax, fix a σ -stable maximal torus Ti in G i of type wi . Fix Γi ⊂ Ti(Fq) to be a
complete set of representatives of elements in Ti(Fq) modulo G i(Fq)-conjugacy.
Fix g ∈ G(Fq). For each 1 6 i 6 imax and each γ ∈ Γi , define

M̃g
i :=

{
r ∈ G(Fq); r−1gr ∈ Pi(Fq)

}
,

M̃g,γ
i := {r ∈ M̃

g
i ; (πi(r−1gr))s ∈ Gi (Fq )γ }.

Here (πi(r−1gr))s denotes the semisimple part of πi(r−1gr) ∈ G i(Fq) in the
Jordan decomposition. Note that M̃g

i and M̃g,γ
i , if nonempty, are stable under

right multiplication by Pi(Fq). We denote

Mg
i := M̃g

i /Pi(Fq), Mg,γ
i := M̃g,γ

i /Pi(Fq).

For γ ∈ Γi ⊂ Ti(Fq), we also define T (wi , γ ) as in Definition 2.7.2, with respect
to Gi and wi ∈ Wi .

THEOREM 2.8.1. Fix g ∈ G(Fq) ∩ G reg. Then

tr(g, J,L ) =

imax∑
i=1

∑
γ∈Γi

#Mg,γ
i · T (wi , γ ).

Proof. By Corollaries 2.4.7 and 2.5.2, we have

tr(g, J,L ) =

imax∑
i=1

∣∣Pi(Fq)
∣∣−1 ∑

r∈M̃g
i

tr(πi(r−1gr) | H∗c(X
Gi
wi
)). (2.8.2)

Fix 1 6 i 6 imax. For any r ∈ M̃g
i , it follows from Proposition 2.6.4 that the

image of r−1gr under Pi → L i is regular in L i . It easily follows that πi(r−1gr) is
regular in G i . We may hence apply Corollary 2.7.3 to get∑

r∈M̃g
i

tr(πi(r−1gr) | H∗c(X
Gi
wi
)) =

∑
γ∈Γi

∑
r∈M̃g,γ

i

T (wi , γ ) =
∑
γ∈Γi

#M̃g,γ
i · T (wi , γ ).

(2.8.3)

Combining (2.8.2) and (2.8.3), we obtain

tr(g, J,L ) =

imax∑
i=1

∑
γ∈Γi

∣∣Pi(Fq)
∣∣−1 #M̃g,γ

i ·T (wi , γ ) =

imax∑
i=1

∑
γ∈Γi

#Mg,γ
i ·T (wi , γ ).
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Table 1. σ -unbranched data

Enhanced Tits datum σ -unbranched datum (G, J,L = (r1, r2, . . . , ra))

(An, ω
∨

1 , S) (trivial group,∅,∅)
(Bn, ω

∨

1 ,S) (2 Dn,S− {sn−1}, (s1, . . . , sn−1))

(Bn, ω
∨

1 , S̃− {n}) (Bn−1,S− {sn−1}, (s1, . . . , sn−1))

(B-Cn, ω
∨

1 ,S) (2 Dn,S− {sn−1}, (s1, . . . , sn−1))

(B-Cn, ω
∨

1 , S̃− {n}) (Bn−1,S− {sn−1}, (s1, . . . , sn−1))

(C-Bn, ω
∨

1 ,S) (Bn, S− {sn}, (s1, . . . , sn))

(C-BCn, ω
∨

1 ,S) (Bn, S− {sn}, (s1, . . . , sn))

(C-BCn, ω
∨

1 , S̃− {n}) (Cn,S− {sn}, (s1, . . . , sn))

(Dn, ω
∨

1 ,S) (2 Dn−1,S− {sn−2}, (s1, . . . , sn−2))

(2 A′n, ω
∨

1 , S) (2 A2m, S− {sm}, (s1, . . . , sm)), m := b n−1
2 c

(2 Bn, ω
∨

1 , S̃− {n}) (Bn, S− {sn}, (s1, . . . , sn))

(2 B-Cn, ω
∨

1 , S̃− {n}) (Cn,S− {sn}, (s1, . . . , sn))

(2 Dn, ω
∨

1 ,S) (2 Dn,S− {sn−1}, (s1, . . . , sn−1))

(A3, ω
∨

2 ,S) (2(A1 × A1), {s1}, (s2)) *
(2 A′3, ω

∨

2 ,S) (2 A3, {s2, s3}, (s2, s1)) *
(C2, ω

∨

2 ,S) (2(A1 × A1), {s1}, (s2)) *
(C2, ω

∨

2 , S̃− {1}) (A1,∅, (s1))

(2C2, ω
∨

2 , S̃− {1}) (B2, {s1}, (s1, s2))

(2C-B2, ω
∨

1 , S̃− {1}) (B2, {s2}, (s2, s1)) *

3. Basic loci of Shimura varieties of Coxeter type

The notion of basic loci of Coxeter type in Shimura varieties is introduced in
[GH15]. The basic loci in these cases can be decomposed into a finite union of
Ekedahl–Oort strata indexed by the set EOK

σ,cox defined in [GH15, Section 5.1],
and each Ekedahl–Oort stratum is a union of classical Deligne–Lusztig varieties
of Coxeter type. We have the following classification theorem.

THEOREM 3.0.1 [GH15, Theorem A]. The irreducible enhanced Tits data of
Coxeter type for σ -stable maximal K are classified in the first column of Table 1.

We list in the second column of Table 1 the associated σ -unbranched data.
In each case, let w be the maximal element in EOK

σ,cox computed in [GH15,
Section 6]. Then the reductive group G over Fq is the reductive quotient of the
parahoric subgroup associated to suppσ (w), and we have J = K ∩ suppσ (w).
In each case it turns out that J is σ -unbranched, and that there is a unique σ -
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unbranched datum of the form (J,L ). In Table 1, we record the type of G, the
set J , and the nodes (r1, . . . , ra) of the unique L in the order as in (2.4.1). We let
si ∈ S denote the i-th node, according to Bourbaki’s numbering [Bou68]. In all
except the four cases marked with ∗, we have ri = si for all 1 6 i 6 a.

Consequently, the associated fine Deligne–Lusztig varieties come in four
infinite families:

(1) G is the nonsplit even special orthogonal group SO2n , J = S− {sn−1}, L =
(s1, . . . , sn−1).

(2) G is the odd special orthogonal group SO2n+1, J = S − {sn}, L = (s1, . . . ,

sn).

(3) G is the symplectic group Sp2n , J = S− {sn}, L = (s1, . . . , sn).

(4) G is the odd unitary group U2n+1, J = S− {sn}, L = (s1, . . . , sn).

4. Explicit character formulas

In this section, we use Theorem 2.8.1 to compute tr(g, J,L ) for the four
infinite families specified at the end of Section 3. We shall only consider g ∈
G(Fq) whose image in GLN under the standard representation is regular. This is a
stronger hypothesis than requiring g to be regular in G, except for the unitary case.
However, for the known arithmetic applications this is enough (see Section 5). We
first need some preparations in Sections 4.1 and 4.2.

4.1. Reciprocal of polynomials. We shall work with the base field Fq , but
we shall consider polynomials f (λ) in Fq[λ] or Fq2[λ]. These will appear as
characteristic polynomials of elements in orthogonal or symplectic groups over
Fq , or unitary groups of Fq2/Fq-Hermitian spaces. Recall that σ is the Frobenius
automorphism of k = Fq over Fq . For x ∈ k, we write xσ for the image of x under
σ , that is, xσ := xq .

DEFINITION 4.1.1. For a polynomial f ∈ Fq2[λ] with f (0) 6= 0, we define its
reciprocal polynomial as

f ∗(λ) := ( f (0)σ )−1
· λdeg f

· f (1/λ)σ ∈ Fq2[λ].

We call f ∈ Fq2[λ] self-reciprocal, if f (0) 6= 0 and f = f ∗. (In particular, self-
reciprocal polynomials are monic.) These definitions restrict to polynomials in
Fq[λ].
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REMARK 4.1.2. If f (λ) ∈ Fq2[λ] is monic and has factorization f (λ) =
∏

j(λ−

λ j) with each λ j ∈ k×, we have f ∗(λ) =
∏

j(λ − (λ
σ
j )
−1
). If in addition f (λ) ∈

Fq[λ], then we also have f ∗(λ) =
∏

j(λ− λ
−1
j ).

DEFINITION 4.1.3. We denote by Irr× the set of monic irreducible polynomials
in Fq[λ] with nonzero constant terms. We let SR ⊂ Irr× be the subset of self-
reciprocal irreducible polynomials, and let NSR := (Irr× − SR)/∗ be the set
of unordered pairs {Q, Q∗} of monic irreducible polynomials reciprocal to each
other with nonzero constant terms. Similarly, we denote by Irr×2 the set of monic
irreducible polynomials in Fq2[λ]with nonzero constant terms. We let SR2 ⊂ Irr×2
be the subset of self-reciprocal irreducible polynomials, and let NSR2 := (Irr

×

2 −

SR2)/∗.

LEMMA 4.1.4. If f ∈ Fq[λ] is self-reciprocal, then its irreducible factorization
is of the form

f =
∏

Q∈SR

Qm Q ( f )
∏

{Q,Q∗}∈NSR

(Q Q∗)m{Q,Q∗}( f ), (4.1.1)

for unique nonnegative integers m Q( f ),m{Q,Q∗}( f ). Similarly, if f ∈ Fq2[λ] is
self-reciprocal, then we have

f =
∏

Q∈SR2

Qm Q ( f )
∏

{Q,Q∗}∈NSR2

(Q Q∗)m{Q,Q∗}( f ), (4.1.2)

for unique nonnegative integers m Q( f ),m{Q,Q∗}( f ).

Proof. This easily follows from unique factorization in Fq[λ] and Fq2[λ].

DEFINITION 4.1.5. Let f ∈ Fq[λ] be self-reciprocal. Define m Q( f ),m{Q,Q∗}( f )
as in (4.1.1). Define

M ( f ) :=
∏

{Q,Q∗}∈NSR

(1+ m{Q,Q∗}( f )).

Similarly, let f ∈ Fq2[λ] be self-reciprocal. Define m Q( f ),m{Q,Q∗}( f ) as in
(4.1.2). Define

M2( f ) :=
∏

{Q,Q∗}∈NSR2

(1+ m{Q,Q∗}( f )).
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LEMMA 4.1.6. Let f ∈ Fq[λ] be self-reciprocal. Assume there is a unique
element Q0 ∈ SR such that m Q0( f ) is odd. Let m be an odd integer such that
1 6 m 6 m Q0( f ). Then

#
{
U ∈ Fq[λ]

monic
;UU ∗ = f/Qm

0

}
=M ( f ).

Similarly, let f ∈ Fq2[λ] be self-reciprocal. Assume there is a unique element
Q0 ∈ SR2 such that m Q0( f ) is odd. Let m be an odd integer such that 1 6 m 6
m Q0( f ). Then

#
{
U ∈ Fq2[λ]monic

;UU ∗ = f/Qm
0

}
=M2( f ).

Proof. We only prove the statement about M ( f ), the other statement being
similar. Write h := f/Qm

0 . For any Q ∈ SR, m Q(h) is even. For any {Q, Q∗} ∈
NSR, m{Q,Q∗}(h) = m{Q,Q∗}( f ). Now any U ∈ Fq[λ]

monic with UU ∗ = h is given
by

U =
∏

Q∈SR

Q
m Q (h)

2

∏
{Q,Q∗}∈NSR

U{Q,Q∗},

where each U{Q,Q∗} = Qi(Q∗) j , for any of the 1+m{Q,Q∗}(h) possible choices of
pairs of nonnegative integers (i, j) satisfying i + j = m{Q,Q∗}(h).

DEFINITION 4.1.7. Let f ∈ SR of even degree d . By an admissible enumeration
of the roots of f , we mean an enumeration of the d distinct roots of f in k× of
the form λ1, . . . , λ d

2
, λ−1

1 , . . . , λ
−1
d
2

such that

λσ1 = λ2, λ
σ
2 = λ3, . . . , λ

σ
d
2−1 = λ d

2
, λσd

2
= λ−1

1 .

LEMMA 4.1.8. Let f ∈ SR of degree d. Then either d is even or f (λ) = λ ± 1.
When d is even, there are precisely d distinct admissible enumerations of the roots
of f , all obtained from a given one by powers of a cyclic permutation of order d.

Proof. The map x 7→ x−1 induces an involution on the set of all d distinct roots
of f . If d is odd, this involution has a fixed point, which means 1 or −1 is a root
of f . Hence f = λ± 1.

We assume d is even. We first prove the existence of one admissible
enumeration. The d distinct roots of f are of the form λ1, . . . , λd/2, λ

−1
1 , . . . , λ

−1
d/2.

Since they form precisely one σ -orbit, we may reorder the λi ’s or switch the
roles of λi and λ−1

i , to arrange that λ2 = λ
σ
1 , . . . , λd/2 = λ

σ
d/2−1. We claim that we

must then have λσd/2 = λ
−1
1 . In fact, since the d distinct roots form precisely one
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σ -orbit, we have λσd/2 = λ
−1
j for a unique 1 6 j 6 d/2. If j > 2, then

λ d
2
, λ−1

j , λ
−1
j+1, . . . , λ

−1
d
2
, λ j , λ j+1, . . . , λ d

2−1

already form one σ -orbit, which does not contain λ1, a contradiction. Thus we
have shown the existence of an admissible enumeration. The rest of the lemma is
clear.

DEFINITION 4.1.9. Let d > 2 be an even integer. Given a tuple Λ = (λ1, . . . ,

λ d
2
) ∈ (k×)⊕

d
2 , we define

Λ−1
:= (λ−1

1 , . . . , λ
−1
d
2
), Λ̄ := (λ1, . . . , λ d

2−1, λ
−1
d
2
),

Λ[1] := (λ d
2
, λ1, . . . , λ d

2−1).

By induction we also define Λ[ j] for all j ∈ Z. Let Λ be as above and let f
be an element of SR of degree d . We say that Λ is admissible with respect to
f , if (Λ,Λ−1) is an admissible enumeration of the roots of f in the sense of
Definition 4.1.7.

DEFINITION 4.1.10. Let f ∈ SR2 of odd degree d . By an admissible
enumeration of the roots of f , we mean an enumeration λ1, . . . , λd of the d
distinct roots of f such that

λσ
2

1 = λ2, . . . , λ
σ 2

d−1 = λd, λ
σ 2

d = λ1.

LEMMA 4.1.11. Let f ∈ SR2 be of odd degree d.

(1) There are precisely d distinct admissible enumerations of the roots, all
obtained from a given one by powers of a cyclic permutation of order d.

(2) Assume d > 3. Let λ1, . . . , λd be an admissible enumeration of the roots of
f . For any integer j we define λ j to be λ j ′ , for 1 6 j ′ 6 d such that j ≡ j ′

mod d. Then for all j ∈ Z we have

(λ−1
j )

σ
= λ j+ d+1

2
. (4.1.3)

Proof. Part (1) follows immediately from the fact that the d distinct roots form
precisely one σ 2-orbit. We prove part (2). Since for all j we have λ j = σ

2( j−1)(λ1),
it suffices to prove (4.1.3) for j = 1. Since the set of the roots is closed under the
map x 7→ (x−1)σ , we have (λ−1

1 )
σ
= λl for some 1 6 l 6 d . We get

λσ
2

1 = (((λ
−1
1 )

σ )−1)σ = (λ−1
l )

σ
= σ 2(l−1)

[(λ−1
1 )

σ
] = σ 2(l−1)(λl) = λl+(l−1).

On the other hand λσ 2

1 = λ2, so 2l − 1 ≡ 2 mod d. Since 1 6 l 6 d and d > 3
is odd, the only solution of this congruence is l = (d + 3)/2, as desired.
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4.2. Eigenvalues ±1. Fix a nondegenerate quadratic space (V, [·, ·]) over k.
We would like to control the multiplicities of the eigenvalues ±1, for elements
g ∈ O(V ) ∩ GL(V )reg. For g ∈ GL(V ) and λ ∈ k, we write V (g, λ) for the
generalized eigenspace of g belonging to λ, that is, V (g, λ) = ker(g − λ)dim V .

PROPOSITION 4.2.1. Let g ∈ O(V )∩GL(V )reg. Let j = 1 or−1. Then dim V (g,
j) is either zero or odd.

Proof. Firstly, it is easy to see that V (g, j) is orthogonal to V (g, λ) for any λ ∈
k − { j}. In particular, the quadratic form restricted to V (g, j) is nondegenerate,
and we obtain a quadratic space (V (g, j), [·, ·]). By Proposition 2.6.5, g|V (g, j) is
in GL(V (g, j))reg. Thus we may and shall assume that V = V (g, j).

Assume that dim V = dim V (g, j) = 2n, with n > 1, and we are to deduce a
contradiction. Under this assumption we have g ∈ SO(V ) (since det g = j 2n

= 1).
In particular g lies in a Borel subgroup of SO(V ), and so g stabilizes a maximal
totally isotropic subspace M ⊂ V . Let N be a maximal totally isotropic subspace
of V such that V = M ⊕ N . Since g ∈ GL(V )reg, the Jordan canonical form of
g|M ∈ GL(M) must be one Jordan block of eigenvalue j (see Proposition 2.6.5).
We thus find a k-basis e1, . . . , en of M , such that (g − j) sends each eα to eα−1

(with e0 := 0). Let f1, . . . , fn be the basis of N satisfying [eα, fβ] = δα,β . Using
g ∈ SO(V ) it is easy to see that

g fn = j fn +

n∑
α=1

ηαeα

for some ηα ∈ k. Then we have

0 = [ fn, fn] = [g fn, g fn] = 2 jηn.

Hence ηn = 0. It follows that (g − j) maps the k-span of e1, . . . , en, fn into the
k-span of e1, . . . , en−1. Hence the nullity of (g − j) is at least 2, a contradiction
(see Proposition 2.6.5).

4.3. The nonsplit even special orthogonal group. In this subsection we
consider case (3) in Section 3.

We fix a nondegenerate nonsplit 2n-dimensional quadratic space (V, [·, ·]) over
Fq , with n > 1 (the case n = 0 being trivial). Let G = SO(V, [·, ·]). Let V :=
V ⊗Fq k. By the classification of quadratic forms over Fq ([Kit93, Section 1.3],
also see [DM91, Section 15.3]) there exists a k-basis {e1, . . . , en, f1, . . . , fn} of
V , satisfying

[eα, eβ] = [ fα, fβ] = 0, [eα, fβ] = δα,β, ∀ 1 6 α, β 6 n;
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eσα = eα, f σα = fα, ∀ 1 6 α 6 n − 1;
eσn = fn, f σn = en.

For each 1 6 i 6 n, we define

Vi := spank(ei , ei+1, . . . , en, fi , fi+1, . . . , fn) ⊂ V,
Wi := spank(e1, . . . , ei) ⊂ V .

For each 1 6 i 6 n − 1, we have Wi = W σ
i , and we write Wi for the Fq-form of

Wi . For 1 6 i 6 n, we have Vi = V σ
i , and we write Vi for the Fq-form of Vi .

Let G = Gk . Let B ⊂ G be the common stabilizer of either of the following
two flags in V :

W1 ⊂ W2 ⊂ · · · ⊂ Wn−1 ⊂ Wn,

W1 ⊂ W2 ⊂ · · · ⊂ Wn−1 ⊂ W σ
n .

Then B is a σ -stable Borel subgroup of G. Let T be the intersection of G with
the diagonal torus in GL(V ) under the basis {e1, . . . , en, f1, . . . , fn}. Then T is
the maximal torus of G contained in B.

We number the simple roots of (G, B, T ) according to Bourbaki [Bou68].
We consider the σ -unbranched datum (J = S − {sn−1},L = (s1, . . . , sn−1)).
Following the notation of Sections 2.4 and 2.5, we have imax = n, and for
1 6 i 6 n we have

Pi = StabG(Wi−1), Li = L\i = GL(Wi−1)× SO(Vi),

Gi = SO(Vi) = SO2(n+1−i) (nonsplit), Hi = GL(Wi−1) = GLi−1 .

Here by convention W0 = 0 and GL0 = {1}. As in Section 2.5, we have natural
projections πi : Pi → Gi and π ′i : Pi → Hi .

For any h ∈ G i(k), we denote by fh ∈ k[λ] the characteristic polynomial of
h acting on Vi , which has degree 2(n + 1 − i). Thus if h ∈ G i(Fq), then fh is
self-reciprocal in Fq[λ]. Similarly, for any h ∈ Hi(k), we denote by fh(λ) ∈ k[λ]
the characteristic polynomial of h acting on Wi , which has degree i − 1.

We fix 1 6 i 6 n. Write n′ for n + 1 − i . Thus G i = SO2n′ , with
n′ > 1. Let B ′i (respectively T ′i ) be the intersection of G i with the upper
triangular subgroup (respectively diagonal subgroup) of GL(Vi), under the k-
basis {ei , . . . , en, fn, . . . , fi} of Vi . Then B ′i is a σ -stable Borel subgroup of G i ,
and T ′i is a σ -stable maximal torus of G i contained in B ′i . Thus T ′i is a σ -stable
maximal torus of type 1 ∈ Wi . For any (λ1, . . . , λn′) ∈ (k×)⊕n′ , let γ ′(λ1, . . . , λn′)

be the diagonal matrix diag(λ1, . . . , λn′, λ
−1
n′ , . . . , λ

−1
1 ) in GL(Vi) under the same

basis. Then γ ′ is an isomorphism Gn′
m,k

∼

−→ T ′i (defined over k). The Weyl group
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Wi can be identified with ({±1}×n′)′o Sn′ , where ({±1}×n′)′ denotes the kernel of

{±1}×n′
−→ {±1}

(uα)α 7−→
∏
α

uα.

For 1 6 α 6 n′, the nontrivial element in the α-th copy of {±1} sends γ ′(λ1, . . . ,

λn′) to
γ ′(λ1, . . . , λα−1, λ

−1
α , λα+1, . . . , λn′).

For ρ ∈ Sn′ , we have ρ(γ ′(λ1, . . . , λn′)) = γ ′(λρ−1(1), . . . , λρ−1(n′)). We easily
compute that wi acts on T ′i in the following way:

wi : γ
′(λ1, . . . , λn′) 7−→ γ ′(λn′, λ1, . . . , λn′−1).

Also, σ acts on T ′i in the following way:

σ : γ ′(λ1, . . . , λn′) 7−→ γ ′(λσ1 , . . . , λ
σ
n′−1, (λ

σ
n′)
−1).

Remember that Ti is by definition a σ -stable maximal torus of G i of typewi . From
the above discussion, we see that on Ti we have coordinates

(k×)⊕n′ ∼

−→ Ti , (λ1, . . . , λn′) 7→ γ (λ1, . . . , λn′),

such that the eigenvalues (with multiplicities) of γ (λ1, . . . , λn′) acting on Vi
∼=

k2n′ are
λ1, . . . , λn′, λ

−1
1 , . . . , λ

−1
n′ ,

and such that

γ (λ1, . . . , λn′)
σ
= γ ((λ−1

n′ )
σ , λσ1 , λ

σ
2 , . . . , λ

σ
n′−1). (4.3.1)

Moreover, the action of Wi
∼= ({±1}×n′)′ o Sn′ on Ti (which is no longer defined

over Fq) is described in terms of these coordinates similarly as before: The
nontrivial element in the α-th copy of {±1} sends γ (λ1, . . . , λn′) to γ (λ1, . . . ,

λ−1
α , . . . , λn′). For ρ ∈ Sn′ , we have ρ(γ (λ1, . . . , λn′)) = γ (λρ−1(1), . . . , λρ−1(n′)).

THEOREM 4.3.1. We have the following statements about Ti(Fq).

(1) If γ ∈ Ti(Fq), then fγ = Qm for some Q ∈ SR, and some positive integer m.
Moreover, either Q(λ) = λ± 1, or m is odd.

(2) Let Q ∈ SR. Assume m is an odd integer such that m deg Q = 2n′. (In
particular Q(λ) 6= λ± 1). Then there exists γ ∈ Ti(Fq) with fγ = Qm .
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(3) Let Q and m be as in part (2). Let γ ∈ G i(k) be a semisimple element such
that fγ = Qm . Then γ is G i(k)-conjugate to an element of Ti(Fq).

(4) For any γ ∈ Ti(Fq), the centralizer G i,γ is connected.

(5) Let γ ∈ Ti(Fq). Write fγ = Qm as in part (1). Assume Q(λ) 6= λ± 1. Then
T (wi , γ ) = (deg Q)/2. Here T (wi , γ ) is defined in Definition 2.7.2.

Proof. (1) Write γ = γ (λ1, . . . , λn′). Since γ σ = γ , it follows from (4.3.1) that
we have the following equality between two 2n′-tuples in k×:

(λ1, λ
σ
1 , . . . , λ

σ 2n′−1

1 ) = (λ1, . . . , λn′, λ
−1
1 , . . . , λ

−1
n′ ). (4.3.2)

We remark that (4.3.2) is valid even for i = imax = n. In fact, in that case Ti = G i

is the kernel of the norm map ResFq2 /Fq Gm → Gm , and (4.3.2) reads λσ1 = λ
−1
1 .

Therefore, all eigenvalues of γ are in one σ -orbit. It follows that fγ has a unique
monic irreducible factor Q. Since fγ is self-reciprocal, so is Q.

Now assume m is even. Then d := deg Q divides n′. Since (4.3.2) holds and
since there are precisely d distinct eigenvalues of γ , we know that λ1 is fixed by
σ d . Since d divides n′, it follows that λ1 is fixed by σ n′ . By (4.3.2) λσ n′

1 = λ
−1
1 .

Hence λ1 = λ
−1
1 , and so λ1 = ±1. It follows that Q(λ) = λ± 1.

(2) Let d = deg Q. Then d is even since dm is even. We fix a tupleΛ ∈ (k×)⊕
d
2

admissible with respect to Q, see Definition 4.1.9. Then

γ := γ (Λ,Λ−1, . . . , Λ,Λ−1,Λ︸ ︷︷ ︸
m

)

is an element of Ti(Fq) satisfying fγ = Qm .
(3) Let d = deg Q. We know d is even. We assume without loss of generality

that γ ∈ Ti(k). Since fγ = Qm , the n′ coordinates of γ must contain elements
λ1, . . . , λ d

2
such that all roots of Q are given by λ1, . . . , λ d

2
, λ−1

1 , . . . , λ
−1
d
2
. We

temporarily assume m > 1. By Lemma 4.1.8, there exists an admissible tuple
Λ with respect to Q(λ), obtained by permuting λ1, . . . , λd/2 and replacing some
of them with their inverses. Up to replacing γ by xγ for some x ∈ Wi , we may
arbitrarily permute the coordinates of γ , and we may replace an arbitrary even
number of coordinates of γ by their inverses. As m > 1, we may therefore arrange
that either

γ = γ (Λ,Λ−1, . . . , Λ,Λ−1,Λ︸ ︷︷ ︸
m

)

or
γ = γ (Λ,Λ−1, . . . , Λ,Λ−1︸ ︷︷ ︸

m−1

, Λ̄).
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In the first case we already have γ ∈ Ti(Fq). Assume we are in the second case.
Since m is odd, we may simultaneously replace each of the first m−1 appearances
of Λ or Λ−1 by its bar, that is, γ is Wi -conjugate to

γ (Λ̄,Λ−1, . . . , Λ̄,Λ−1, Λ̄) = γ (Λ̄, Λ̄−1, . . . , Λ̄, Λ̄−1, Λ̄).

But the above element is Wi -conjugate to

γ (Λ̄[1], Λ̄−1
[1], . . . , Λ̄[1], Λ̄−1

[1], Λ̄[1]) = γ (Ω,Ω−1, . . . ,Ω,Ω−1,Ω),

where Ω := Λ̄[1]. Note that Ω is admissible with respect to Q, and using this
fact it is easy to check that the above element is in Ti(Fq).

Now we treat the case m = 1. In this case γ is Wi -conjugate to either γ (Λ) or
γ (Λ̄), for a tupleΛ admissible with respect to Q. The element γ (Λ) is already in
Ti(Fq). The element γ (Λ̄) is Wi -conjugate to γ (Λ̄[1]), which is in Ti(Fq) since
Λ̄[1] is admissible with respect to Q.

(4) We claim that any element x ∈ Wi fixing γ is a certain product of reflections
associated to roots that send γ to 1. Once the claim is proved, it will follow that
G i,γ is connected, see [Car93, Theorem 3.5.3]. We now prove the claim.

For each 1 6 α 6 n′, we let εα ∈ X ∗(Ti) be the character on Ti sending γ (λ1,

. . . , λn′) to λα. Then {ε1, . . . , εn′} is a Z-basis X ∗(Ti), and the roots in X ∗(Ti) are{
±εα ± εβ;α 6= β

}
. For each x ∈ Wi , define

A(x) :=
{
α; 1 6 α 6 n′, x(εα) /∈ {±εα}

}
.

Now assume that x fixes γ , and assume that A(x) 6= ∅. Take α ∈ A(x). Then
x(εα) = ±εβ for some β 6= α. If x(εα) = εβ , then we left multiply x by the
reflection εα 7→ εβ, εβ 7→ εα. If x(εα) = −εβ , then we left multiply x by the
reflection εα 7→ −εβ, εβ 7→ −εα. In either case, we have left multiplied x by a
reflection associated to a root (that is, εα − εβ in the first case and εα + εβ in the
second case) which sends γ to 1, and the product is an element y ∈ Wi which also
fixes γ and which satisfies #A(y) < #A(x). In this way, we reduce to the case
where A(x) = ∅. Now assume A(x) = ∅, and let

B(x) =
{
α; 1 6 α 6 n′, x(εα) 6= εα

}
.

Then x ∈ ({±1}×n′)′ ⊂ Wi , and if we write x = (x1, . . . , xn′) ∈ {±1}×n′ ,
then B(x) = {α; xα = −1}. In particular, #B(x) is even. Since x fixes γ , we
know εα(γ ) = ±1 for each α ∈ B(x). By part (1) we know that ±1 cannot
simultaneously be eigenvalues of γ , so these εα(γ ) must all be 1 or all be
−1. Write #B(x) as 2l, and enumerate the elements of B(x) arbitrarily as
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{α1, . . . , αl, β1, . . . , βl}. Then for each 1 6 j 6 l, the roots εα j + εβ j and εα j − εβ j

both send γ to 1. We easily see that

x =
l∏

j=1

sεα j+εβ j
· sεα j−εβ j

,

where sεα j±εβ j
denotes the reflection associated to the root εα j ± εβ j . The claim is

proved.
(5) Let d = deg Q. By part (1) we know that m is odd and d is even. Write

γ = γ (λ1, . . . , λn′). Since (4.3.2) holds, we know that λ1, . . . , λd are the d distinct
roots of Q(λ), and that λσ d

1 = λ1. As m is odd, we write m = 2t + 1. Using
n′ = md/2 = td + d

2 and using (4.3.2), we see that

λ−1
1 = λ

σ
n′ = λ

σ n′

1 = λ
σ

td+ d
2

1 = λσ
d
2

1 = λ
σ
d/2.

It then follows from (4.3.2) that Λ := (λ1, . . . , λd/2) is an admissible tuple with
respect to Q, and that we have

γ = γ (Λ,Λ−1, . . . , Λ︸ ︷︷ ︸
m

). (4.3.3)

(Here if d = 2n′ and m = 1, the last equality is understood as γ = γ (Λ).)
By part (4) and Lemma 2.7.5, we have

T (wi , γ ) = #{γ ′ ∈ Ti(Fq); γ
′
=

xγ for some x ∈ Wi}.

By the above argument, any such γ ′ must be of the form γ ′ = γ (Λ′, (Λ′)−1, . . . ,

Λ′), for a tuple Λ′ which is admissible with respect to Q. Let N be the number
of admissible tuplesΛ′ with respect to Q, such that γ (Λ′, (Λ′)−1, . . . , Λ′) equals
xγ for some x ∈ Wi . To finish the proof, it remains to show that N = d/2.

We now compute N . By Lemma 4.1.8, there are precisely d distinct admissible
tuples with respect to Q, and they are of the form Λ1,Λ2, . . . , Λd , with Λ1 = Λ,
and Λ j = (Λ̄ j−1)[1] for 2 6 j 6 d . See Definition 4.1.9 for the notation. For
1 6 j 6 d , we let

γ j := γ (Λ j ,Λ
−1
j , . . . , Λ j︸ ︷︷ ︸

m

).

(If m = 1, then γ j := γ (Λ j).) Thus N is equal to the cardinality of{
j; 1 6 j 6 d, γ j =

xγ for some x ∈ Wi
}
.

If j > 3, then we have Λ j = (Λ̄ j−1)[1] = Λ j−2[2]. It easily follows that the
Weyl orbit of γ j depends only on the parity of j , for any 1 6 j 6 d . We claim that
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γ2 is not in the same Weyl orbit as γ = γ1. Once the claim is proved, it follows
that N is equal to the number of odd integers j with 1 6 j 6 d , that is, N = d/2.

To prove the claim, remember that m is odd. Hence γ2 is Wi -conjugate to

γ (Λ,Λ−1, . . . , Λ,Λ−1︸ ︷︷ ︸
m−1

, Λ̄). (4.3.4)

Comparing with (4.3.3), and using the fact λ1, . . . , λd/2, λ
−1
1 , . . . , λ

−1
d/2 are all

distinct, we easily see that the element (4.3.4) is not conjugate to γ by the group
Wi
∼= ({±1}×n′)′ o Sn′ .

LEMMA 4.3.2. Let g ∈ G(Fq) ∩ GL(V )reg. For each 1 6 i 6 n, let Mg
i be as in

Section 2.8. We have a bijection

Mg
i
∼

−→
{
U ∈ Fq[λ]

monic
; deg U = i − 1,UU ∗ divides fg in Fq[λ]

}
r Pi(Fq) 7→ fπ ′i (r−1gr).

Proof. Let (Mg
i )
′ be the set of g-stable (i − 1)-dimensional totally isotropic

Fq-subspaces of V. We know that all (i − 1)-dimensional totally isotropic Fq-
subspaces of V are in the same G(Fq)-orbit, because i − 1 < n. (In contrast, even
over the algebraically closed field k, there are two G(k)-orbits of n-dimensional
totally isotropic k-subspaces of V .) Thus we have a bijection

Mg
i
∼

−→ (Mg
i )
′

r Pi(Fq) 7→ r Wi .

Now given W ∈ (Mg
i )
′ corresponding to r Pi(Fq) ∈ Mg

i , the characteristic
polynomial fg|W of g|W is equal to fπ ′i (r−1gr). Hence it suffices to show that the
map

(Mg
i )
′
→
{
U ∈ Fq[λ]

monic
; deg U = i − 1,UU ∗ divides fg in Fq[λ]

}
(4.3.5)

sending W to fg|W (which is obviously well defined) is a bijection.
Given any element U (λ) of the right-hand side of (4.3.5), we obtain the Fq-

subspace ker U (g) ⊂ V, which is g-stable. Let S := fg/(UU ∗) ∈ Fq[λ]. We now
claim that ker U (g) has dimension i − 1 and is totally isotropic. To check this
it suffices to replace ker U (g) by its base change to k. Since g ∈ GL(V )reg, we
know that the Jordan canonical form of g over k has only one Jordan block for
each eigenvalue, by Proposition 2.6.5. Analyzing each Jordan block one by one,
we see that (ker U (g))k is equal to (SU ∗)(g)(V ), and has dimension i − 1. To
check that (ker U (g))k is totally isotropic, let v ∈ (ker U (g))k . Let w ∈ V such
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that v = (SU ∗)(g)w. Then

[v, v] = [v, (SU ∗)(g)w] = [v,U ∗(g)S(g)w] = [U ∗(g−1)v, S(g)w]

= [U (0)−1g1−iU (g)v, S(g)w] = 0,

where the last equality holds because U (g)v = 0. The claim is proved.
By the claim, ker U (g) is an element of (Mg

i )
′. It then follows from the Cayley–

Hamilton Theorem that U 7→ ker U (g) is the inverse map of (4.3.5). Hence (4.3.5)
is a bijection as desired.

THEOREM 4.3.3. Let g ∈ G(Fq) ∩ GL(V )reg. We use the notations in
Definition 4.1.5. For each Q ∈ SR, we simply write m Q for m Q( fg). The
following statements hold.

(1) We have m(λ+1) = 0, and m(λ−1) is zero or odd.

(2) If tr(g, J,L ) 6= 0, then there is a unique element Q0 ∈ SR such that m Q0 is
odd. In this case we also know that Q0 6= λ ± 1. (In particular, by part (1)
we have m(λ+1) = m(λ−1) = 0 in this case.)

(3) Assume there is a unique element Q0 ∈ SR such that m Q0 is odd. Assume
Q0 6= λ± 1. Then

tr(g, J,L ) =
deg Q0

2
m Q0 + 1

2
M ( fg).

Proof. Part (1) follows from Proposition 4.2.1 and the fact that m(λ+1) must be
even in order for det g = 1.

By Proposition 2.6.3, we have g ∈ G(Fq) ∩ G reg, and so we may apply
Theorem 2.8.1 to compute tr(g, J,L ) in the following.

Firstly, assume 1 6 i 6 n and Mg,γ
i 6= ∅ for some γ ∈ ZGi (Fq). Here ZGi

denotes the center of G i . Take r Pi(Fq) ∈Mg,γ
i . Then fπi (r−1gr) = (λ− j)2(n+1−i)

for j = 1 or −1, and it follows from Lemma 4.3.2 that

fg(λ) = (λ− j)2(n+1−i)U (λ)U ∗(λ)

for some U (λ) ∈ Fq[λ]. Then m(λ− j) must be positive even, a contradiction with
part (1). Hence Mg,γ

i = ∅ for all 1 6 i 6 n and all γ ∈ ZGi (Fq).

We now prove part (2) of the theorem. Assume tr(g, J,L ) 6= 0. Then there
exist 1 6 i 6 n and γ ∈ Γi such that Mg,γ

i 6= ∅. By the previous paragraph,
we know that γ /∈ ZGi (Fq). Take r Pi(Fq) ∈Mg,γ

i . Then by Theorem 4.3.1(1),
we have fπi (r−1gr) = Qm , for some Q ∈ SR − {λ± 1} and some odd m. Here
Q 6= λ ± 1 because γ /∈ ZGi . By Lemma 4.3.2 we have fg = QmUU ∗ for some
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U ∈ Fq[λ]
monic. It then follows that Q, which is not λ ± 1, is the unique element

of SR with m Q odd. Part (2) is proved.
We now prove part (3). By Lemma 4.1.8 we know deg Q0 is even. Define

I := {i; 1 6 i 6 n, 2(n + 1− i)/deg Q0 is an odd integer 6 m Q0}.

For i ∈ I , define m i := 2(n + 1− i)/deg Q0. Note that i 7→ m i is a bijection
I → {1, 3, 5, . . . ,m Q0}. In particular |I | = (m Q0 + 1)/2. In the proof of part
(2), we saw that if r Pi(Fq) ∈Mg,γ

i for some 1 6 i 6 n and some γ ∈ Γi , then

i ∈ I , and fπi (r−1gr) = Qmi
0 . (4.3.6)

Conversely, assume i ∈ I and assume r Pi(Fq) ∈Mg
i is such that (4.3.6) holds.

Then πi(r−1gr)s is G i(k)-conjugate to an element of Ti(Fq), by Theorem 4.3.1(3).
By Theorem 4.3.1(4) and the Lang–Steinberg theorem, πi(r−1gr)s is in fact
G i(Fq)-conjugate to an element of Ti(Fq). Thus r Pi(Fq) ∈ Mg,γ

i for a unique
γ ∈ Γi . In conclusion, we have a bijection{

(i, γ, r Pi(Fq)); 1 6 i 6 n, γ ∈ Γi , r Pi(Fq) ∈Mg,γ
i

} ∼

−→ (4.3.7){
(i, r Pi(Fq)); i ∈ I , r Pi(Fq) ∈Mg

i , fπi (r−1gr) = Qmi
0

}
(i, γ, r Pi(Fq)) 7→ (i, r Pi(Fq)).

We also note that if (i, γ, r Pi(Fq)) is in the left-hand side of (4.3.7), then fγ =
Qmi

0 , and so by Theorem 4.3.1(5) we have

T (wi , γ ) =
deg Q0

2
. (4.3.8)

Now we compute

tr(g, J,L ) =

n∑
i=1

∑
γ∈Γi

#Mg,γ
i · T (wi , γ ) (by Theorem 2.8.1)

=

∑
i∈I

#
{
r Pi(Fq) ∈Mg

i ; fπi (r−1gr) = Qmi
0

}
·

deg Q0

2
(by (4.3.7), (4.3.8))

=
deg Q0

2

∑
i∈I

#
{
U ∈ Fq[λ]

monic
;UU ∗ = fg/Qmi

0

}
(by Lemma 4.3.2)

=
deg Q0

2

∣∣I ∣∣M ( fg) (by Lemma 4.1.6)

=
deg Q0

2
m Q0 + 1

2
M ( fg).
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4.4. The odd special orthogonal group. In this subsection we consider case
(3) in Section 3.

We fix a nondegenerate 2n + 1-dimensional quadratic space (V, [·, ·]) over Fq ,
with n > 0. Let G = SO(V, [·, ·]). Let V := V ⊗Fq k. By the classification
of quadratic forms over Fq (see [Kit93, Section 1.3]), there exists an Fq-basis
{e1, . . . , e2n+1} of V, satisfying

[eα, eβ] = δ2n+2,α+β, ∀α, β 6= n + 1,
[en+1, en+1] ∈ F×q .

For each 1 6 i 6 n + 1, we define

Vi := spanFq
(ei , ei+1, . . . , e2n+2−i) ⊂ V, Wi := spanFq

(e1, . . . , ei) ⊂ V.

We define V := V⊗ k, Vi := Vi ⊗ k, Wi :=Wi ⊗ k.
Let G = Gk . Let B ⊂ G be the stabilizer of the flag W1 ⊂ W2 ⊂ · · · ⊂ Wn

inside V . Then B is a σ -stable Borel subgroup of G. Let T be the intersection of
G with the diagonal torus in GL(V ) under the basis e1, . . . , e2n+1. Then T is the
maximal torus of G contained in B.

We number the simple roots of (G, B, T ) according to Bourbaki [Bou68]. We
consider the σ -unbranched datum (J = S − {sn},L = (s1, . . . , sn)). Following
the notation of Sections 2.4 and 2.5, we have imax = n + 1, and for 1 6 i 6 n + 1
we have

Pi = StabG(Wi−1), Li = L\i = GL(Wi−1)× SO(Vi),

Gi = SO(Vi) = SO2(n+1−i)+1, Hi = GL(Wi−1) = GLi−1 .

Here by convention W0 = 0 and GL0 = {1}. As in Section 2.5, we have natural
projections πi : Pi → Gi and π ′i : Pi → Hi .

For any h ∈ G i(k), we denote by fh ∈ k[λ] the characteristic polynomial of h
acting on Vi , which has degree 2(n + 1 − i) + 1. Thus if h ∈ G i(Fq), then fh is
self-reciprocal in Fq[λ]. Similarly, for any h ∈ Hi(k), we denote by fh(λ) ∈ k[λ]
the characteristic polynomial of h acting on Wi , which has degree i − 1.

We fix 1 6 i 6 n. Write n′ for n + 1− i . Thus Gi = SO2n′+1, with n′ > 1. Let
B ′i (respectively T ′i ) be the intersection of G i with the upper triangular subgroup
(respectively diagonal subgroup) of GL(Vi), under the k-basis {ei , . . . , e2n+2−i}

of Vi . Then B ′i is a σ -stable Borel subgroup of G i , and T ′i is a σ -stable maximal
torus of G i contained in B ′i . For any (λ1, . . . , λn′) ∈ (k×)⊕n′ , let γ ′(λ1, . . . , λn′) be
the diagonal matrix diag(λ1, . . . , λn′, 1, λ−1

n′ , . . . , λ
−1
1 ) in GL(Vi) under the same

basis. Then γ ′ is an isomorphism Gn′
m,k

∼

−→ T ′i (which is in fact defined over Fq).
The Weyl group Wi can be identified with {±1}×n′ o Sn′ . We easily compute that
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wi acts on T ′i in the following way:

wi : γ
′(λ1, . . . , λn′) 7−→ γ ′(λ−1

n′ , λ1, . . . , λn′−1).

Also, σ acts on T ′i in the following way:

σ : γ ′(λ1, . . . , λn′) 7−→ γ ′(λσ1 , . . . , λ
σ
n′−1, λ

σ
n′).

Remember that Ti is by definition a σ -stable maximal torus of G i of typewi . From
the above discussion, we see that on Ti we have coordinates

(k×)⊕n′ ∼

−→ Ti , (λ1, . . . , λn′) 7→ γ (λ1, . . . , λn′),

such that the eigenvalues (with multiplicities) of γ (λ1, . . . , λn′) acting on Vi
∼=

k2n′+1 are
λ1, . . . , λn′, λ

−1
1 , . . . , λ

−1
n′ , 1,

and such that

γ (λ1, . . . , λn′)
σ
= γ ((λ−1

n′ )
σ , λσ1 , λ

σ
2 , . . . , λ

σ
n′−1). (4.4.1)

THEOREM 4.4.1. We have the following statements about Ti(Fq).

(1) If γ ∈ Ti(Fq), then fγ (λ) = Q(λ)m(λ − 1) for some Q ∈ SR, and some
positive integer m. Moreover, either Q(λ) = λ± 1, or m is odd.

(2) Let Q ∈ SR. Assume m is an odd integer such that m deg Q = 2n′. (In
particular Q(λ) 6= λ ± 1 for degree reasons). Then there exists γ ∈ Ti(Fq)

with fγ (λ) = Q(λ)m(λ− 1).

(3) Let Q and m be as in part (2). Let γ ∈ G i(k) be a semisimple element such
that fγ (λ) = Q(λ)m(λ − 1). Then γ is G i(k)-conjugate to an element of
Ti(Fq).

(4) For any γ ∈ Ti(Fq) such that (λ + 1) does not divide fγ (λ), the centralizer
G i,γ is connected.

(5) Let γ ∈ Ti(Fq). Write fγ (λ) = Q(λ)m(λ− 1) as in part (1). Assume Q(λ) 6=
λ± 1. Then T (wi , γ ) = deg Q.

Proof. Observing that (4.4.1) has the same form as (4.3.1), one proves parts (1)
(2) (3) in exactly the same way as parts (1) (2) (3) of Theorem 4.3.1. (In fact the
proof of part (3) here is even easier, due to the fact that the Weyl group Wi in the
current case is larger.)
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The proof of part (4) is also similar to the proof of Theorem 4.3.1(4). In fact,
using the same notation as the proof of Theorem 4.3.1(4), we can again reduce to
the case A(x) = ∅. Then the new feature is that #B(x) need not be even. However,
since −1 is not an eigenvalue by assumption, we know that εα(γ ) = 1 for all
α ∈ B(x). Then x is the product of the reflections associated to the roots εα, for
α ∈ B(x).

The proof of part (5) is again similar to the proof of Theorem 4.3.1(5), the only
difference being that here all deg Q admissible tuplesΛ′ show up in the counting,
as opposed to only (deg Q)/2 of them. This is due to the fact that the Weyl group
Wi is larger in the current case.

LEMMA 4.4.2. Let g ∈ G(Fq) ∩ GL(V )reg. For each 1 6 i 6 n + 1, let Mg
i be

as in Section 2.8. We have a bijection

Mg
i
∼

−→
{
U ∈ Fq[λ]

monic
; deg U = i − 1,UU ∗ divides fg in Fq[λ]

}
r Pi(Fq) 7→ fπ ′i (r−1gr).

Proof. The proof is identical to the proof of Lemma 4.3.2, based on the fact that
all (i−1)-dimensional totally isotropic Fq-subspaces of V are in the same G(Fq)-
orbit.

THEOREM 4.4.3. Let g ∈ G(Fq) ∩ GL(V )reg. We use the notations in
Definition 4.1.5. For each Q ∈ SR, we simply write m Q for m Q( fg). The
following statements hold.

(1) We have m(λ+1) = 0, and m(λ−1) is odd.

(2) If tr(g, J,L ) 6= 0, then inside SR−{λ− 1} there is at most one element Q0

with m Q0 odd.

(3) Assume there exists a unique Q0 ∈ SR− {λ− 1} such that m Q0 is odd. Then

tr(g, J,L ) = deg Q0
m Q0 + 1

2
M ( fg).

(4) Assume there is no element Q0 ∈ SR− {λ− 1} such that m Q0 is odd. Then

tr(g, J,L ) =
m(λ−1) + 1

2
M ( fg).

Proof. Part (1) follows from Proposition 4.2.1, the fact that λ− 1 always divides
fg, and the fact that m(λ+1) must be even in order for det g = 1.
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By Proposition 2.6.3, we have g ∈ G(Fq) ∩ G reg, and so we may apply
Theorem 2.8.1 to compute tr(g, J,L ) in the following.

We prove part (2). Assume tr(g, J,L ) 6= 0. Then there exist 1 6 i 6 n+1 and
γ ∈ Γi such that Mg,γ

i 6= ∅. Take r Pi(Fq) ∈Mg,γ
i . If i = n+ 1, then fπi (r−1gr) =

λ−1. If 1 6 i 6 n, then by Theorem 4.4.1(1), we have fπi (r−1gr) = Q(λ)m(λ−1),
for some Q ∈ SR and some integer m > 0. To simplify notation we set Q := 1
and m := 0 when i = n + 1. Then in all cases fπi (r−1gr) = Q(λ)m(λ − 1). By
Lemma 4.4.2 we have

fg(λ) = Q(λ)m(λ− 1)U (λ)U ∗(λ) (4.4.2)

for some U ∈ Fq[λ]
monic. Now if Q(λ) = λ − 1 or m = 0, then it follows from

(4.4.2) that λ − 1 is the only element of SR whose multiplicity in f is odd. On
the other hand, if Q(λ) 6= λ − 1 and m > 0, then Q(λ) 6= λ ± 1 by part (1),
and we know that m is odd by Theorem 4.4.1(1). In this case, we conclude from
(4.4.2) that m Q is odd, and that Q is the unique element of SR − {λ− 1} whose
multiplicity in f is odd. Part (2) is proved.

We remark that the above analysis shows that under the sole assumption that
SR− {λ− 1} has an element Q with m Q odd, we have

Mg,γ
n+1 = ∅, ∀γ ∈ Γn+1 (4.4.3)

(where Γn+1 in fact has only one element, the identity).
We now prove part (3). Under the hypothesis of part (3), the assertion (4.4.3)

holds. Since Q0 6= λ± 1, by Lemma 4.1.8 we know that deg Q0 is even. Define

I := {i; 1 6 i 6 n, 2(n + 1− i)/deg Q0 is an odd integer 6 m Q0}.

For i ∈ I , define m i := 2(n + 1− i)/deg Q0. Note that i 7→ m i is a bijection
I → {1, 3, 5, . . . ,m Q0}. In particular |I | = (m Q0+1)/2. Similar to the bijection
(4.3.7), we obtain a bijection{

(i, γ, r Pi(Fq)); 1 6 i 6 n, γ ∈ Γi , r Pi(Fq) ∈Mg,γ
i

} ∼

−→ (4.4.4){
(i, r Pi(Fq)); i ∈ I , r Pi(Fq) ∈Mg

i , fπi (r−1gr) = Qmi
0 · (λ− 1)

}
(i, γ, r Pi(Fq)) 7→ (i, r Pi(Fq)),

based on parts (3) (4) of Theorem 4.4.1 (part (4) being applicable because
m(λ+1) = 0). We also note that if (i, γ, r Pi(Fq)) is in the left-hand side of (4.4.4),
then fγ (λ) = Q0(λ)

mi (λ− 1), and so by Theorem 4.4.1(5) we have

T (wi , γ ) = deg Q0. (4.4.5)
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Now we compute

tr(g, J,L ) =

n∑
i=1

∑
γ∈Γi

#Mg,γ
i · T (wi , γ ) (by Theorem 2.8.1, and (4.4.3))

=

∑
i∈I

#
{
r Pi(Fq) ∈Mg

i ; fπi (r−1gr) = Qmi
0 · (λ− 1)

}
· deg Q0

(by (4.4.4), (4.4.5))

= deg Q0

∑
i∈I

#
{

U ∈ Fq[λ]
monic
;UU ∗ =

fg

Qmi
0 (λ− 1)

}
(by Lemma 4.4.2)

= deg Q0

∣∣I ∣∣M (
fg

λ− 1
) (by Lemma 4.1.6 )

= deg Q0
m Q0 + 1

2
M ( fg).

In the second last step Lemma 4.1.6 is applicable because Q0 is the unique
element of SR such that m Q0( fg/(λ−1)) is odd, which follows from the definition
of Q0 and part (1). Part (3) is proved.

Finally we prove part (4). By the proof of part (2), we know that for any 1 6
i 6 n+1, we have Mg,γ

i 6= ∅ only if fγ (λ) = (λ−1)2(n+1−i)+1. The last condition
is equivalent to γ = id ∈ Ti .

Define

I =

{
i ∈ Z; n + 1−

m(λ−1) − 1
2

6 i 6 n + 1
}
.

Now assume r Pi(Fq) ∈Mg,id
i for some 1 6 i 6 n + 1. Then we have

fπi (r−1gr)(λ) = (λ− 1)2(n+1−i)+1. (4.4.6)

In particular, 2(n + 1 − i) + 1 6 mλ−1, and so i ∈ I . Conversely, assume i ∈
I , and r Pi(Fq) ∈Mg

i such that (4.4.6) holds. Then r Pi(Fq) ∈Mg,id
i because

the only semisimple element of G i whose characteristic polynomial equals (λ −
1)2(n+1−i)+1 is the identity. Therefore, similar to the proof of part (3), we have

tr(g, J,L ) =
∑
i∈I

T (wi , id) · #
{
U ∈ Fq[λ]

monic
;UU ∗ = fg/(λ− 1)2(n+1−i)+1}

=

∑
i∈I

T (wi , id)M ( fg).

By Definition 2.7.2, we have T (wi , id) = 1 for each i ∈ I . Hence

tr(g, J,L ) =
∣∣I ∣∣M ( fg) =

m(λ−1) + 1
2

M ( fg).

https://doi.org/10.1017/fms.2019.45 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2019.45


X. He, C. Li and Y. Zhu 38

4.5. The symplectic group. In this subsection we consider case (3) in
Section 3.

We fix a 2n-dimensional symplectic space (V, [·, ·]) over Fq , with n > 0. Let
G = Sp(V, [·, ·]). We fix an Fq-basis {e1, . . . , e2n} of V, satisfying

[eα, eβ] = δ2n+1,α+β, ∀1 6 α 6 β 6 2n.

For each 1 6 i 6 n + 1, we define

Vi := spanFq
(ei , ei+1, . . . , e2n+1−i) ⊂ V, Wi := spanFq

(e1, . . . , ei) ⊂ V.

We define V := V⊗ k, Vi := Vi ⊗ k, Wi :=Wi ⊗ k.
Let G = Gk . Let B ⊂ G be the stabilizer of the flag W1 ⊂ W2 ⊂ · · · ⊂ Wn

inside V . Then B is a σ -stable Borel subgroup of G. Let T be the intersection
of G with the diagonal torus in GL(V ) under the basis e1, . . . , e2n . Then T is the
maximal torus of G contained in B.

We number the simple roots of (G, B, T ) according to Bourbaki [Bou68]. We
consider the σ -unbranched datum (J = S − {sn},L = (s1, . . . , sn)). Following
the notation of Sections 2.4 and 2.5, we have imax = n + 1, and for 1 6 i 6 n + 1
we have

Pi = StabG(Wi−1), Li = L\i = GL(Wi−1)× Sp(Vi),

Gi = Sp(Vi) = Sp2(n+1−i), Hi = GL(Wi−1) = GLi−1 .

Here by convention W0 = 0 and GL0 = {1}. As in Section 2.5, we have natural
projections πi : Pi → Gi and π ′i : Pi → Hi .

For any h ∈ G i(k), we denote by fh ∈ k[λ] the characteristic polynomial of
h acting on Vi , which has degree 2(n + 1 − i). Thus if h ∈ G i(Fq), then fh is
self-reciprocal in Fq[λ]. Similarly, for any h ∈ Hi(k), we denote by fh(λ) ∈ k[λ]
the characteristic polynomial of h acting on Wi , which has degree i − 1.

THEOREM 4.5.1. We fix 1 6 i 6 n. Write n′ for n + 1− i . Thus Gi = Sp2n′ , with
n′ > 1. We have the following statements about Ti(Fq).

(1) If γ ∈ Ti(Fq), then fγ = Qm for some irreducible, self-reciprocal Q ∈ Fq[λ],
and some positive integer m. Moreover, either Q(λ) = λ± 1, or m is odd.

(2) Let Q ∈ Fq[λ] be an irreducible, self-reciprocal polynomial. Assume m is an
odd integer such that m deg Q = 2n′. (In particular Q(λ) 6= λ ± 1). Then
there exists γ ∈ Ti(Fq) with fγ = Qm .

(3) Let Q and m be as in part (2). Let γ ∈ G i(k) be a semisimple element such
that fγ = Qm . Then γ is G i(k)-conjugate to an element of Ti(Fq).
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(4) Let γ ∈ Ti(Fq). Write fγ = Qm as in part (1). Assume Q(λ) 6= λ± 1. Then
T (wi , γ ) = deg Q.

Proof. Since the root datum of G i is dual to that of an odd special orthogonal
group, the torus Ti has a similar description as the torus Ti in Theorem 4.4.1.
Thus the proof of the theorem is identical to the proof of Theorem 4.4.1.

REMARK 4.5.2. In Theorem 4.5.1 we do not state the analogue of
Theorem 4.3.1(4) and Theorem 4.4.1(4). This is because G being simply
connected, the centralizer in G of any semisimple element is automatically
connected, see Section 2.7.4.

LEMMA 4.5.3. Let g ∈ G(Fq) ∩ GL(V )reg. For each 1 6 i 6 n + 1, let Mg
i be

as in Section 2.8. We have a bijection

Mg
i
∼

−→
{
U ∈ Fq[λ]

monic
; deg U = i − 1,UU ∗ divides fg in Fq[λ]

}
r Pi(Fq) 7→ fπ ′i (r−1gr).

Proof. The proof is identical to the proof of Lemma 4.3.2, based on the fact that
all (i−1)-dimensional totally isotropic Fq-subspaces of V are in the same G(Fq)-
orbit.

THEOREM 4.5.4. Let g ∈ G(Fq) ∩ GL(V )reg. We use the notations in
Definition 4.1.5. For each Q ∈ SR, we simply write m Q for m Q( fg). The
following statements hold.

(1) Assume tr(g, J,L ) 6= 0. Then inside SR there is at most one element Q0

with m Q0 odd. Moreover, if such Q0 exists, then Q0 6= λ± 1.

(2) Assume there exists a unique Q0 ∈ SR such that m Q0 is odd. Assume Q0 6=

λ± 1. Then

tr(g, J,L ) = deg Q0
m Q0 + 1

2
M ( fg).

(3) Assume there is no element Q0 ∈ SR such that m Q0 is odd. Then

tr(g, J,L ) =
(m(λ−1)

2
+ 1+

m(λ+1)

2

)
M ( fg).

Proof. By Proposition 2.6.3, we have g ∈ G(Fq) ∩ G reg, and so we may apply
Theorem 2.8.1 to compute tr(g, J,L ) in the following.

We prove part (1). Assume tr(g, J,L ) 6= 0. Then there exist 1 6 i 6 n + 1
and γ ∈ Γi such that Mg,γ

i 6= ∅. Take r Pi(Fq) ∈ Mg,γ
i . If i = n + 1, then
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fπi (r−1gr) = 1. If 1 6 i 6 n, then by Theorem 4.5.1(1), we have fπi (r−1gr) = Qm ,
for some Q ∈ SR and some integer m > 0. To simplify notation we set Q := 1
and m := 0 when i = n+1. Then in all cases fπi (r−1gr) = Qm . By Lemma 4.5.3 we
have fg = QmUU ∗ for some U ∈ Fq[λ]

monic. It immediately follows that inside
SR there is at most one element whose multiplicity in fg is odd. Moreover, if
such an element exists, denoted by Q0, then Q in the current discussion must
equal to Q0, and m must be odd. (In particular, i 6 n.) In this case, we show that
Q0 6= λ ± 1. In fact, if Q0 = λ ± 1, then m is even because Qm

= Qm
0 has even

degree. This contradicts with our previous assertion that m must be odd. Part (1)
is proved.

We remark that the above analysis also shows that under the sole assumption
that SR has an element Q with m Q odd, we have

Mg,γ
n+1 = ∅, ∀γ ∈ Γn+1 (4.5.1)

(where Γn+1 in fact has only one element, the identity).
We now prove part (2). Under the hypothesis of part (2), the assertion (4.5.1)

holds. Since Q0 6= λ± 1, by Lemma 4.1.8 we know that deg Q0 is even. Define

I := {i; 1 6 i 6 n, 2(n + 1− i)/deg Q0 is an odd integer 6 m Q0}.

For i ∈ I , define m i := 2(n + 1− i)/deg Q0. Note that i 7→ m i is a bijection
I → {1, 3, 5, . . . ,m Q0}. In particular |I | = (m Q0+1)/2. Similar to the bijection
(4.3.7), we obtain a bijection{

(i, γ, r Pi(Fq)); 1 6 i 6 n, γ ∈ Γi , r Pi(Fq) ∈Mg,γ
i

} ∼

−→ (4.5.2){
(i, r Pi(Fq)); i ∈ I , r Pi(Fq) ∈Mg

i , fπi (r−1gr) = Qmi
0

}
(i, γ, r Pi(Fq)) 7→ (i, r Pi(Fq))

based on Theorem 4.5.1(3) and Remark 4.5.2. We also note that if (i, γ, r Pi(Fq))

is in the left-hand side of (4.5.2), then fγ = Qmi
0 , and so by Theorem 4.5.1(4) we

have

T (wi , γ ) = deg Q0. (4.5.3)

Now we compute

tr(g, J,L ) =

n∑
i=1

∑
γ∈Γi

#Mg,γ
i · T (wi , γ ) (by Theorem 2.8.1, and (4.5.1))

=

∑
i∈I

#
{
r Pi(Fq) ∈Mg

i ; fπi (r−1gr) = Qmi
0

}
· deg Q0 (by (4.5.2), (4.5.3))
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= deg Q0

∑
i∈I

#
{
U ∈ Fq[λ]

monic
;UU ∗ = fg/Qmi

0

}
. (by Lemma 4.5.3)

= deg Q0

∣∣I ∣∣M ( fg) (by Lemma 4.1.6)

= deg Q0
m Q0 + 1

2
M ( fg).

Part (2) is proved.
Finally we prove part (3). We claim that for each 1 6 i 6 n + 1, we have

Mg,γ
i 6= ∅ for some γ ∈ Γi only if fγ (λ) = (λ ± 1)2(n+1−i). In fact, assume

this is not the case. Take r Pi(Fq) ∈Mg,γ
i . Then by Theorem 4.5.1(1), we have

fπi (r−1gr) = Qm , for some Q ∈ SR and some odd integer m. By Lemma 4.5.3 we
have fg = QmUU ∗ for some U ∈ Fq[λ]

monic, contradicting with the assumption
that there is no element in SR with odd multiplicity in fg. The claim is proved.

Define

I =

{
i ∈ Z; n + 1−

m(λ−1)

2
6 i 6 n + 1

}
,

J =

{
i ∈ Z; n + 1−

m(λ+1)

2
6 i 6 n

}
.

Now assume r Pi(Fq) ∈Mg,γ
i for some 1 6 i 6 n+ 1 and some γ ∈ Γi . Then by

the previous claim one of the following two statements holds:

• i ∈ I , and fπi (r−1gr)(λ) = (λ− 1)2(n+1−i).

• i ∈J , and fπi (r−1gr)(λ) = (λ+ 1)2(n+1−i).

Moreover, in the above two cases, the image of γ in GL(Vi) is id and − id
respectively. Conversely, if i ∈I and if r Pi(Fq) ∈Mg

i is such that fπi (r−1gr)(λ)=

(λ− 1)2(n+1−i), then r Pi(Fq) ∈Mg,id
i . Similarly, if i ∈J and if r Pi(Fq) ∈Mg

i

is such that fπi (r−1gr)(λ) = (λ + 1)2(n+1−i), then r Pi(Fq) ∈Mg,− id
i . Therefore, as

in the proof of part (2), we have

tr(g, J,L ) =
∑
i∈I

T (wi , id) · #
{
U ∈ Fq[λ]

monic
;UU ∗ = fg/(λ− 1)2(n+1−i)

}
+

∑
i∈J

T (wi ,− id) · #
{
U ∈ Fq[λ]

monic
;UU ∗ = fg/(λ+ 1)2(n+1−i)

}
.

Let i ∈ I . By the obvious analogue of Lemma 4.1.6 applied to fg/(λ−1)2(n+1−i)

and Q0 = 1, we have

#
{
U ∈ Fq[λ]

monic
;UU ∗ = fg/(λ− 1)2(n+1−i)

}
=M ( fg/(λ− 1)2(n+1−i)),
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which is equal to M ( fg). Similarly, for i ∈J , we have

#
{
U ∈ Fq[λ]

monic
;UU ∗ = fg/(λ+ 1)2(n+1−i)

}
=M ( fg).

On the other hand by Definition 2.7.2 we have T (wi , id) = 1 for all i ∈ I and
T (wi ,− id) = 1 for all i ∈J . Therefore,

tr(g, J,L ) = (
∣∣I ∣∣+ ∣∣J ∣∣)M ( fg) =

(m(λ−1)

2
+ 1+

m(λ+1)

2

)
M ( fg).

4.6. The odd unitary group. In this subsection we consider case (3) in
Section 3.

We fix a (2n + 1)-dimensional Hermitian space (V, [·, ·]) over Fq2 (for the
quadratic extension Fq2/Fq), with n > 0. Let G = U(V, [·, ·]). By [PR94,
Proposition 2.15], the Witt index of (V, [·, ·]) is equal to the Fq-rank of G, which
we know is n. Also the norm map F×q2 → F×q is surjective. Hence there exists an
Fq2 -basis {e1, . . . , e2n+1} of V, satisfying

[eα, eβ] = δ2n+2,α+β .

For each 1 6 i 6 n + 1, we define

Vi := spanFq2
(ei , ei+1, . . . , e2n+2−i) ⊂ V, Wi := spanFq2

(e1, . . . , ei) ⊂ V.

We fix an embedding Fq2 → k, viewed as the identity, and we let V := V⊗Fq2 k.
For each 1 6 i 6 n+1 we also let Vi := Vi⊗Fq2 k ⊂ V , and Wi :=Wi⊗Fq2 k ⊂ V .

Let G = Gk . The action of G on V ⊗Fq k ∼= V ⊕ (V ⊗Fq2 ,σ k) preserves
the subspace V , and this induces a k-isomorphism G ∼= GL(V ). Let B ⊂ G
(respectively T ⊂ G) be the upper triangular subgroup (respectively diagonal
subgroup) under the basis {e1, . . . , e2n+1}. Then B is a σ -stable Borel subgroup of
G, and T is the maximal torus of G contained in B.

We number the simple roots of (G, B, T ) according to Bourbaki [Bou68]. We
consider the σ -unbranched datum (J = S − {sn},L = (s1, . . . , sn)). Following
the notation of Sections 2.4 and 2.5, we have imax = n + 1, and for 1 6 i 6 n + 1
we have

Pi = StabG(Wi−1), Li = L\i = GLFq2 (Wi−1)× U(Vi),

Gi = U(Vi) = U2(n+1−i)+1, Hi = GLFq2 (Wi−1) = ResFq2 /Fq GLi−1 .

Here by convention W0 = 0 and GL0 = {1}. As in Section 2.5, we have natural
projections πi : Li → Gi and π ′i : Li → Hi .
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The action of G i onVi⊗Fq k ∼= Vi⊕(Vi⊗Fq2 ,σ k) preserves the subspace Vi , and
this induces a k-isomorphism G i

∼= GL(Vi) ∼= GL2(n+1−i)+1. For any h ∈ G i(k),
we denote by fh ∈ k[λ] the characteristic polynomial of h acting on Vi , of degree
2(n + 1− i)+ 1. When h ∈ G i(Fq), we know that fh is self-reciprocal in Fq2[λ].
Similarly, for any h ∈ Hi(Fq) = GLFq2 (Wi−1), we denote by fh(λ) ∈ Fq2[λ] the
characteristic polynomial of h acting onWi−1, which has degree i − 1.

We fix 1 6 i 6 n + 1. Write n′ for n + 1 − i . Thus Gi = U2n′+1. It is easy to
show that in G i there is a σ -stable maximal torus T ′i of type 1, with coordinates

(k×)⊕2n′+1 ∼

−→ T ′i , (λ1, . . . , λ2n′+1) 7→ γ ′(λ1, . . . , λ2n′+1),

satisfying the following conditions:

• The eigenvalues (with multiplicities) of γ ′(λ1, . . . , λ2n′+1) acting on Vi are λ1,

. . . , λ2n′+1.

• The action of σ on T ′i sends γ ′(λ1, . . . , λ2n′+1) to γ ′(λ−q
2n′+1, . . . , λ

−q
1 ).

• The action of wi on T ′i sends γ ′(λ1, . . . , λ2n′+1) to γ ′(λn′+1, λ1, . . . , λn′, λn′+2,

. . . , λ2n′+1).

Then it easily follows that on Ti we have coordinates

(k×)⊕2n′+1 ∼

−→ Ti , (λ1, . . . , λ2n′+1) 7→ γ0(λ1, . . . , λ2n′+1),

such that the eigenvalues (with multiplicities) of γ0(λ1, . . . , λ2n′+1) acting on Vi

are λ1, . . . , λ2n′+1, and such that

γ0(λ1, . . . , λ2n′+1)
σ
= γ0(λ

−q
n′+1, λ

−q
2n′+1, . . . , λ

−q
n′+2, λ

−q
n′ , . . . , λ

−q
1 ).

We define new coordinates on Ti

(k×)⊕2n′+1 ∼

−→ Ti , (λ1, . . . , λ2n′+1) 7→ γ (λ1, . . . , λ2n′+1),

by setting

γ (λ1, . . . , λ2n′+1) := γ0(λ1, . . . , λn′+1, λ2n′+1, . . . , λn′+2).

Then we have

γ (λ1, . . . , λ2n′+1)
σ
= γ (λ

−q
n′+1, . . . , λ

−q
2n′+1, λ

−q
1 , . . . , λ

−q
n′ ). (4.6.1)

In particular, we have

γ (λ1, . . . , λ2n′+1)
σ 2
= γ (λσ

2

2n′+1, λ
σ 2

1 , . . . , λ
σ 2

2n′). (4.6.2)
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THEOREM 4.6.1. We have the following statements about Ti(Fq).

(1) If γ ∈ Ti(Fq), then fγ = Qm for some Q ∈ SR2, and some positive integer
m.

(2) Let Q ∈ SR2. Assume m is an integer such that m deg Q = 2n′ + 1. Then
there exists γ ∈ Ti(Fq) with fγ = Qm .

(3) Let Q and m be as in part (2). Let γ ∈ G i(Fq) be a semisimple element such
that fγ = Qm . Then γ is G i(Fq)-conjugate to an element of Ti(Fq).

(4) Let γ ∈ Ti(Fq). Write fγ = Qm as in part (1). Then T (wi , γ ) = deg Q.

Proof. (1) Write γ = γ (λ1, . . . , λ2n′+1). Since γ σ = γ , it follows from (4.6.2) that
all eigenvalues of γ are in one σ 2-orbit. Hence fγ has a unique monic irreducible
factor Q ∈ Fq2[λ]. Since fγ is self-reciprocal, so is Q.

(2) Let d = deg Q. Then d is odd by hypothesis. Let Λ = (λ1, . . . , λd) be an
admissible enumeration of the roots of Q, in the sense of Definition 4.1.10. Then
γ := γ (Λ, . . . ,Λ) (with m appearances of Λ) is an element of Ti(k). We now
show that γ ∈ Ti(Fq).

If d = 1, then λ−q
1 = λ1, and it is clear that γ ∈ Ti(Fq) by (4.6.1). Now assume

d > 3. By (4.6.1), we need only show that λ−q
α = λα+n′+1, where the subscripts

are in Z/dZ, for all α ∈ Z/dZ. By Lemma 4.1.11(2), it suffices to show that
n′ + 1 ≡ (d + 1)/2 mod d . Since d is odd, the last congruence is equivalent to
2n′ + 2 ≡ d + 1 mod d . But the last congruence is true because 2n′ + 1 = md .
We have proved that γ ∈ Ti(Fq). By construction, fγ = Qm . Part (2) is proved.

(3) Firstly, as G i is isomorphic to GL(Vi) = GL2n′+1 over k, we know that
two semisimple elements in G i(k) are conjugate if and only if they have the
same characteristic polynomial. Secondly, since G i has simply connected derived
subgroup, by the Lang–Steinberg theorem we know that any two semisimple
elements in G i(Fq) are G i(Fq)-conjugate if and only if they are G i(k)-conjugate
(see Section 2.7.4 and the proof of Lemma 2.7.5). The assertion now follows from
part (2).

(4) Let d = deg Q. Since G i has simply connected derived subgroup, we may
use Lemma 2.7.5 to compute T (wi , γ ). We have

T (wi , γ ) = #{γ ′ ∈ Ti(Fq); γ
′
=

xγ for some x ∈ Wi}.

By (4.6.2), it is clear that any γ ′ ∈ Ti(Fq)with characteristic polynomial Qm must
be of the form γ ′ = γ (Λ′, . . . , Λ′), for some admissible enumeration Λ′ of the
d roots of Q. There are d such admissible enumerations (Lemma 4.1.11), and all
of them correspond to elements in Ti(Fq) by the proof of part (2). Moreover, it
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is clear that these d resulting elements of Ti(Fq) are in the same Wi -orbit. Hence
T (wi , γ ) = d .

LEMMA 4.6.2. Let g ∈ G(Fq) ∩ G reg. For each 1 6 i 6 n + 1, let Mg
i be as in

Section 2.8. We have a bijection

Mg
i
∼

−→
{
U ∈ Fq2[λ]monic

; deg U = i − 1,UU ∗ divides fg in Fq2[λ]
}

r Pi(Fq) 7→ fπ ′i (r−1gr).

Proof. The proof is completely analogous to Lemma 4.3.2, based on the fact that
all (i−1)-dimensional totally isotropic Fq2 -subspaces ofV are in the same G(Fq)-
orbit.

THEOREM 4.6.3. Let g ∈ G(Fq) ∩ G reg. We use the notations in Definition 4.1.5.
For each Q ∈ SR2, we simply write m Q for m Q( fg). The following statements
hold.

(1) If tr(g, J,L ) 6= 0, then there is a unique element Q0 ∈ SR2 such that m Q0

is odd.

(2) Assume there is a unique element Q0 ∈ SR2 such that m Q0 is odd. Then

tr(g, J,L ) = deg Q0
m Q0 + 1

2
M2( fg).

Proof. We apply Theorem 2.8.1 to compute tr(g, J,L ) in the following.
We prove part (1). Assume tr(g, J,L ) 6= 0. Then there exist 1 6 i 6 n+1 and

γ ∈ Γi such that Mg,γ
i 6= ∅. Take r Pi(Fq) ∈Mg,γ

i . Then by Theorem 4.6.1(1), we
have fπi (r−1gr) = Qm , for some Q ∈ SR2 and some positive integer m. In particular
m is odd because Qm has odd degree. By Lemma 4.6.2, we have fg = QmUU ∗

for some U ∈ Fq2[λ]monic. It then follows that Q is the unique element of SR2

such that m Q is odd. Part (1) is proved.
We now prove part (2). Since fg has odd degree, it immediately follows from

the hypothesis that deg Q0 is odd. Define

I := {i; 1 6 i 6 n+1,
2(n + 1− i)+ 1

deg Q0
is a (necessarily odd) integer 6 m Q0}.

For i ∈ I , define m i := [2(n + 1 − i) + 1]/ deg Q0. Note that i 7→ m i is a
bijection I → {1, 3, 5, . . . ,m Q0}. In particular |I | = (m Q0 + 1)/2. Similar to
the bijection (4.3.7), we obtain a bijection{

(i, γ, r Pi(Fq)); 1 6 i 6 n + 1, γ ∈ Γi , r Pi(Fq) ∈Mg,γ
i

} ∼

−→ (4.6.3)
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(i, r Pi(Fq)); i ∈ I , r Pi(Fq) ∈Mg

i , fπi (r−1gr) = Qmi
0

}
(i, γ, r Pi(Fq)) 7→ (i, r Pi(Fq))

based on Theorem 4.6.1(3). We also note that if (i, γ, r Pi(Fq)) is in the left-hand
side of (4.6.3), then fγ = Qmi

0 , and so by Theorem 4.6.1 (4) we have

T (wi , γ ) = deg Q0. (4.6.4)

The rest of the proof is identical to the proof of Theorem 4.3.3(3), based on (4.6.3),
(4.6.4), and Lemma 4.6.2.

5. Application to arithmetic intersection

In this section we apply Theorem 4.6.3 to prove the arithmetic fundamental
lemma in the minuscule case, generalizing the main result of [RTZ13] and
[LZ17]. We also apply Theorem 4.3.3 to compute certain arithmetic intersection
in GSpin Rapoport–Zink spaces, generalizing the main result of [LZ18].

5.1. The arithmetic fundamental lemma in the minuscule case. We follow
the notation of [RTZ13] and [LZ17]. Let p be an odd prime. Let F be a finite
extension of Qp with residue field Fq and a uniformizer π . As usual we denote
k := Fq . Let E/F be a quadratic unramified extension. Let Ĕ be the completion
of the maximal unramified extension of E . Let S = SpfOĔ . Fix an integer n > 2.
Let Nn be the unitary Rapoport–Zink space of signature (1, n − 1), which is a
formal scheme over S parameterizing deformations up to quasi-isogeny of height
0 of unitary OF -modules of signature (1, n − 1). For details on Nn see [KR11],
[Mih16], and [Cho18].

Let Cn be a nonsplit Hermitian space of dimension n, for the quadratic
extension E/F . Here nonsplit means that the discriminant has odd valuation. We
identify Cn with the space of special quasihomomorphisms for the framing object
in the moduli problem of Nn , see [KR11] for F = Qp (see [LZ17, Sections 2.2,
2.3]), and [Cho18] for general F . Similarly, we form Nn−1 and Cn−1. We identify
Cn−1 with the orthogonal complement in Cn of a fixed vector u ∈ Cn of norm 1,
thus Cn = Cn−1 ⊕ Eu. We have a natural closed immersion

δ : Nn−1 ↪→ Nn.

In fact δ identifies Nn−1 with the special divisor in Nn associated to u, see [KR11]
for F = Qp, and see [Cho18] for general F .

The unitary group J (F) := U(Cn)(F) acts on Nn . Let g ∈ J (F). Define

L(g) := OE · u +OE · gu + · · · +OE · gn−1u ⊂ Cn.
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Throughout we make two assumptions on g. Firstly, we assume that g is regular
semisimple minuscule, in the sense that L(g) is a full-rank OE -lattice in Cn

satisfying
πL(g)∨ ⊂ L(g) ⊂ L(g)∨.

Secondly, we assume that g has nonempty fixed points in Nn(k). By [RTZ13,
Section 5], our second assumption implies that both L(g) and L(g)∨ are stable
under g.

Define V := L(g)∨/L(g). This is an odd-dimensional vector space over
Fq2 , with a natural structure of a Hermitian space, see [LZ17, Section 2.4].
Let V := V(L(g)∨) be the smooth projective generalized Deligne–Lusztig
variety associated to the vertex lattice L(g)∨ as in [Vol10] and [VW11]. (These
references assume F = Qp, but see [Cho18] for general F .) The finite group
U(V)(Fq) naturally acts on V . Let G = U(V), G = Gk , and let (J,L ) be the
σ -unbranched datum for G specified in Section 4.6.

LEMMA 5.1.1. The variety V is G(Fq)-equivariantly isomorphic to X J,w1 .

Proof. Since G1 = P1 = G, by Proposition 2.5.1 we have an isomorphism

Xw1

∼

−→ X J,w1 ⊂ G/PJ

gB 7→ g PJ ,

where Xw1 is the classical Deligne–Lusztig variety associated tow1 in the full flag
variety G/B. The lemma then follows from [Vol10, Theorem 2.15], which asserts
that V is also the closure in G/PJ of the image of Xw1 . (Again, the reference
[Vol10] assumes F = Qp and Fq = Fp, but the result [Vol10, Theorem 2.15]
easily generalizes.)

The action of g on V defines an element ḡ ∈ G(Fq). We also know that ḡ
is regular, because V is a cyclic Fq2[ḡ]-module. Let f = f ḡ ∈ Fq2[λ] be the
characteristic polynomial of ḡ. Thus f is self-reciprocal. We use the notations in
Definition 4.1.5.

THEOREM 5.1.2. As before, assume g ∈ J (F) is regular semisimple minuscule,
such that N g

n 6= ∅. The following statements hold.

(1) The formal scheme δ(Nn−1) ∩N g
n over S is a k-scheme.

(2) The k-scheme δ(Nn−1) ∩ N g
n is nonempty if and only if there is a unique

element Q0 ∈ SR2 with m Q0( f ) odd. In this case, δ(Nn−1)∩N g
n has finitely

many k-points, and is in particular Artinian, and moreover, Int(g) is equal to
the total k-length of δ(Nn−1) ∩N g

n .
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(3) Assume there is a unique element Q0 ∈ SR2 with m Q0( f ) odd. Then the total
k-length of δ(Nn−1) ∩N g

n is equal to

deg(Q0)
m Q0( f )+ 1

2
M2( f ).

Proof. We temporarily assume that F = Qp. Then part (1) follows from [LZ17,
Proposition 4.1.2] (see [RTZ13, (9.6), Theorem 9.4]). Part (2) is proved in
[RTZ13, Proposition 8.1 (i)] and [RTZ13, Proposition 4.2(iii)].

For part (3), we first apply [LZ17, Proposition 4.1.2] to identify δ(Nn−1)∩N g
n

with V ḡ, the scheme theoretic fixed points of V under ḡ ∈ G(Fq). By part (2), V ḡ

is an Artinian scheme. Since V is smooth over k and since V ḡ is Artinian, it is well
known (see for instance [Ser00, page 111]) that the intersection multiplicities of
the graph of identity and the graph of ḡ in V ×k V are simply given by the lengths
of the local rings of V ḡ, as the higher Tor terms vanish. It then follows from the
Lefschetz fixed point formula [GD77, Corollaire 3.7] that the k-length of V ḡ is
equal to tr(ḡ,H∗(V)). By Lemma 5.1.1, the last number is equal to tr(ḡ, J,L ).
Hence part (3) follows from Theorem 4.6.3 and the fact that ḡ is regular. We have
proved the theorem assuming F = Qp.

We now explain the proof when F is an arbitrary finite extension of Qp. In
fact, the reason that the references [RTZ13] and [LZ17] assumed F = Qp was
because two ingredients needed in the arguments depended on this assumption.
The first is the theory of special cycles considered in [KR11], and the second is
the Bruhat–Tits stratification of the reduced subscheme of Nn into generalized
Deligne–Lusztig varieties, worked out in [Vol10] and [VW11]. Both of these
ingredients have now been generalized to arbitrary F in [Cho18]. Based on this,
all the previous arguments carry over. (It should be pointed out that in [LZ17,
Section 2.6], for a vertex latticeΛ the notation NΛ denotes the special cycle in Nn

associated to Λ∨. Thus a priori NΛ is a formal scheme over S, but it is a theorem
([RTZ13, Theorems 9.4, 10.1], see also [LZ17, Corollary 3.2.3]) thatNΛ is in fact
a reduced scheme over k. This result plays a key role in [RTZ13] and [LZ17], and
its proof depends on Grothendieck–Messing theory. In contrast, in [VW11] and
[Cho18] the notation NΛ is by definition a scheme over characteristic p. Thus the
two notations agree only a posteriori.)

REMARK 5.1.3. Theorem 5.1.2(3) was previously proved in [RTZ13] and
[LZ17], under the assumption that F = Qp with p > (m Q0 + 1)/2. This
assumption is removed in Theorem 5.1.2. On the other hand, under the same
assumption on p the papers [RTZ13] and [LZ17] determine each local ring of
δ(Nn−1) ∩N g

n . This is a result not revealed by the methods of the current paper.
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COROLLARY 5.1.4. The minuscule case of the arithmetic fundamental lemma
conjecture [RTZ13, Conjecture 7.4] (see [RSZ17a, Section 1]) holds.

Proof. This follows from the formula for the arithmetic intersection number
Int(g) in Theorem 5.1.2(2–3) and the explicit computation of the analytic side
in [RTZ13, Proposition 8.2].

5.2. Arithmetic intersection on GSpin Rapoport–Zink spaces. We follow
the notation of [LZ18]. Let p be an odd prime, and fix an integer n > 4. Let RZ
(respectively RZ[) be the GSpin Rapoport–Zink space associated to a self-dual
quadratic Zp-lattice of rank n (respectively n − 1). We have a natural closed
immersion

δ : RZ[→ RZ

of formal schemes over Spf W (k). These are specific Hodge-type Rapoport–Zink
spaces introduced by Howard–Pappas [HP17]. Associated to the precise data used
to define RZ[ and RZ, we have a pair of quadratic spaces V [,Φ

K and V Φ
K over Qp,

and V [,Φ

K can be identified with the orthogonal complement in V Φ
K of a fixed vector

xn ∈ V Φ
K whose norm is 1. (The triple (V [,Φ

K , V Φ
K , xn) is analogous to the triple

(Cn−1,Cn, u) in Section 5.1.)
The group J (Qp) = GSpin(V Φ

K )(Qp) acts on RZ. As in [HP17, Section 4.3],
RZ is the disjoint union of open and closed formal subschemes RZ(l), indexed by
l ∈ Z. The action of any g ∈ J (Qp) on RZ maps each RZ(l) isomorphically to
RZ(l+lg), where lg is the p-adic valuation of the spinor norm of g in Q×p . We view
p as an element of J (Qp) by viewing it as an scalar in the GSpin group. Thus p
maps each RZ(l) isomorphically to RZ(l+2).

Let g ∈ J (Qp). Define

L(g) := Zp · xn + Zp · gxn + · · ·Zp · gn−1xn ⊂ V Φ
K .

Here g acts on V Φ
K via the natural map GSpin(V Φ

K ) → SO(V Φ
K ). Throughout

we make two assumptions on g. Firstly, we assume that g is regular semisimple
minuscule, in the sense that L(g) is a full-rank Zp-lattice in V Φ

K satisfying

pL(g)∨ ⊂ L(g) ⊂ L(g)∨.

Secondly, we assume that g has nonempty fixed points in RZ(k). By [LZ18,
Section 3.6], our second assumption implies that both L(g) and L(g)∨ are stable
under g. It also directly follows from our second assumption that lg = 0. In
particular g stabilizes each RZ(l).

Define V := L(g)∨/L(g). This is an even-dimensional, nonzero vector space
over Fp, with a natural structure of a nonsplit quadratic space, see [LZ18,
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Section 2.7]. Let S = SL(g)∨ be the smooth projective k-variety associated to
the vertex lattice L(g)∨ as in [HP17, Section 5.3]. The finite group O(V)(Fp)

naturally acts on S. By [HP17, Proposition 5.3.2] and its proof, we know that
S has two connected components S+, S−, that the action of SO(V)(Fp) on S
stabilizes each of S+, S−, and that any element of O(V)(Fp) − SO(V)(Fp)

interchanges S+, S−. Let G = SO(V), G = Gk , and let (J,L ) be the σ -
unbranched datum for G specified in Section 4.3. For definiteness, we fix the
convention so that our w1 corresponds to the Weyl group element w− in [HP14,
Section 3.2]. (This is harmless because up to outer automorphism of G, our w1

corresponds to either w− or w+ in [HP14, Section 3.2]. All the arguments below
are the same in the two cases.)

LEMMA 5.2.1. The variety S− is G(Fq)-equivariantly isomorphic to X J,w1 .

Proof. Since G1 = P1 = G, by Proposition 2.5.1 we have an isomorphism

Xw1

∼

−→ X J,w1 ⊂ G/PJ

gB 7→ g PJ ,

where Xw1 is the classical Deligne–Lusztig variety associated tow1 in the full flag
variety G/B. The claim then follows from [HP14, Proposition 3.8], which asserts
that S− (denoted by X − in loc. cit.) is also the closure of the image of Xw1 in
G/PJ .

The action of g on V defines an element ḡ ∈ O(V)(Fp). The following result
is implicitly assumed in [LZ18], but is not explicitly stated and proved there. We
give two proofs here, for the sake of completeness.

LEMMA 5.2.2. The element ḡ ∈ O(V)(Fp) lies in SO(V)(Fp).

Proof. First proof. Let S = SL(g)∨ be as before. By [HP17, Theorem 6.3.1], we
have an isomorphism pZ

\RZred
L(g)∨

∼

−→ S, where RZred
L(g)∨ is a certain g-stable

subscheme of RZ. It is easy to see that this isomorphism intertwines the action
of g on the left and the action of ḡ on the right, for example by checking the
statement on k-points. Since g stabilizes each RZ(l), by [HP17, Corollary 6.3.2]
we know that g stabilizes each of the two connected components of pZ

\RZred
Λ .

Therefore, ḡ stabilizes each of the two connected components of S. By the proof
of [HP17, Proposition 5.3.2], any element of O(V)(Fp)−SO(V)(Fp) interchanges
the two connected components of S. It then follows that ḡ ∈ SO(V).

Second proof. The result follows from Lemma 5.2.3 in the following, applied
to W := V Φ

K , L := L(g), and h := the image of g under GSpin(V Φ
K )(Qp) →
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SO(V Φ
K )(Qp). The hypothesis on the spinor norm of h is satisfied because

lg = 0.

LEMMA 5.2.3. Let (W, [·, ·]) be a quadratic space over Qp. Let h ∈ O(W )(Qp)

be an element whose spinor norm (see [Kit93, Section 1.6]) in Q×p /Q×,2p has even
valuation. Let L be a full-rank lattice in W satisfying pL∨ ⊂ L ⊂ L∨. Assume L
is stable under h. Then the induced action h̄ of h on the Fp-vector space L∨/L
has determinant 1.

Proof. Since h stabilizes L , by [Kit93, Theorem 5.3.3] we have h = τ1 · · · τm ,
where each τ j ∈ O(W )(Qp) is the reflection associated to an anisotropic vector
v j ∈ L (namely τ j(x) = x − 2[x, v j ][v j , v j ]

−1v j ,∀x ∈ W ), such that τ j also
stabilizes L . By rescaling, we may and shall assume that each v j ∈ L − pL . We
now fix 1 6 j 6 m.

Since τ j stabilizes L , we have [x, v j ] ∈ [v j , v j ]Zp for all x ∈ L , or equivalently
that

v j ∈ [v j , v j ]L∨. (5.2.1)

Since pL∨ ⊂ L ⊂ L∨ and v j ∈ L − pL , it follows from (5.2.1) that [v j , v j ]

has valuation 0 or 1. If [v j , v j ] has valuation 0, then τ j maps each x ∈ L∨ into
x+Zpv j ⊂ x+ L , and so the image of τ j in GL(L∨/L) is trivial. Assume [v j , v j ]

has valuation 1. Then v j ∈ pL∨ by (5.2.1), and so v j = pw j for somew j ∈ L∨−L .
In this case we have

τ j(x) = x − 2
p[x, w j ]

p[w j , w j ]
w j , ∀x ∈ L . (5.2.2)

Now the map

L∨ × L∨→ Fp

(x, y) 7→ p[x, y] mod p

is well defined and descends to a nondegenerate bilinear pairing on the Fp-vector
space L∨/L (see [HP17, Section 5.3.1]). Noting that p[w j , w j ] = p−1

[v j , v j ] is
by assumption in Z×p , we see from (5.2.2) that the image of τ j in GL(L∨/L) is
given by the reflection associated to an anisotropic vector in L∨/L , namely the
image of w j .

In conclusion, the image of h in GL(L∨/L) is the product of m ′ reflections,
where m ′ is the number of the v j ’s such that [v j , v j ] ∈ pZ×p , whereas the m − m ′

other v j ’s satisfy [v j , v j ] ∈ Z×p . Since the spinor norm of h has even valuation, we
know that m ′ is even. The lemma follows.
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By Lemma 5.2.2 we have ḡ ∈ SO(V)(Fp). We also know that the image of ḡ in
GL(V) is regular, because V is a cyclic Fp[ḡ]-module. Let f = f ḡ ∈ Fp[λ] be the
characteristic polynomial of ḡ. Thus f is self-reciprocal. We use the notations in
Definition 4.1.5.

THEOREM 5.2.4. As before, assume g ∈ J (Qp) is regular semisimple minuscule,
such that RZg

6= ∅. The following statements hold.

(1) The formal scheme δ(RZ[) ∩ RZg over Spf W (k) is a k-scheme.

(2) The k-scheme δ(RZ[) ∩ RZg is nonempty if and only if there is a unique
element Q0 ∈ SR with m Q0( f ) odd. Moreover, when this is the case
pZ
\(δ(RZ[) ∩ RZg) has finitely many k-points, and is in particular Artinian.

(3) Assume there is a unique element Q0 ∈ SR with m Q0( f ) odd. Then the total
k-length of pZ

\(δ(RZ[) ∩ RZg) is equal to

deg(Q0)
m Q0( f )+ 1

2
M ( f ).

Proof. Part (1) follows from [LZ18, Corollary 5.1.2], and part (2) is proved in
[LZ18, Theorem 3.6.4].

For part (3), we first apply [LZ18] to identify pZ
\(δ(RZ[) ∩ RZg) with

S ḡ, the scheme theoretic fixed points of S under ḡ. Since ḡ is in SO(V)(Fp)

(Lemma 5.2.2), it stabilizes S+ and S−. Hence S ḡ
= (S+)ḡ

t (S−)ḡ. By the same
arguments as in the proof of Theorem 5.1.2(3), the k-length of S ḡ is equal to
tr(ḡ,H∗(S)) = tr(ḡ,H∗(S+))+ tr(ḡ,H∗(S−)).

By Lemma 5.2.1 and by the fact that ḡ is regular in GL(V), we know that
tr(ḡ,H∗(S−)) is given by the formula in Theorem 4.3.3(3). Fix g0 ∈ O(V)(Fp)−

SO(V)(Fp). Then under the natural action of O(V)(Fq) on S, the element g0

interchanges S+ and S−, by the proof of [HP17, Proposition 5.3.2]. Hence we
have tr(ḡ,H∗(S+)) = tr(g0ḡg−1

0 ,H∗(S−)). Since the formula in Theorem 4.3.3(3)
only depends on the characteristic polynomial, and since ḡ and g0ḡg−1

0 are
elements of SO(V)(Fp) which are both regular in GL(V) and have the same
characteristic polynomial, we have tr(ḡ,H∗(S+)) = tr(ḡ,H∗(S−)). It follows that
tr(ḡ,H∗(S)) is equal to twice the formula in Theorem 4.3.3(3). The proof of part
(3) is finished.

REMARK 5.2.5. Theorem 5.2.4(3) was previously proved in [LZ18], under the
assumption that p > (m Q0 + 1)/2. This assumption is removed in Theorem 5.2.4.
On the other hand, under the same assumption on p the paper [LZ18] determines
each local ring of δ(RZ[) ∩ RZg. This is a result not revealed by the methods of
the current paper.
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REMARK 5.2.6. We correct two mistakes in [LZ17] and [LZ18]. Firstly, in both
the papers the definition of the reciprocal of a polynomial should be normalized
so that the reciprocal is monic, as in Section 4.1. This mistake does not affect the
correctness of any of the proofs. Secondly, in [LZ18, Theorem A (2), Theorem
3.6.4], the product should be over pairs of non-self-reciprocal irreducible monic
factors, as in Theorem 5.2.4 and Definition 4.1.5, as opposed to over single non-
self-reciprocal irreducible monic factors. To correct the proof of [LZ18, Theorem
3.6.4], one interprets the symbol

∏
R(T )6=R∗(T ) in the proof as the product over such

pairs {R(T ), R∗(T )} rather than over such R(T )’s.
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