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A description of the course

The topic of the course is representation theory of p-adic groups. This is the study of typ-
ically infinite dimensional representations of certain “p-adic Lie groups”. More specifically,
we will work towards the statement and proof of Bernstein’s decomposition theorem
for the category of smooth representations of a p-adic reductive group, after laying foun-
dations in the general theory of representations of locally profintie groups and recalling
the basic structure theory of p-adic groups. If time allows, we will discuss the Langlands
classification of representations and/or the Local Langlands Correspondence.

Prerequisites. Familiarity with the representation theory of finite groups will be helpful to
build some intuition, although not strictly necessary. No prior exposure to representation
theory beyond that is required. Knowledge about the general theory of linear algebraic
groups over a field will be helpful, as we will go through that pretty fast. Basic familiarity
with the p-adic numbers will be assumed.

References. We will loosely follow Renard’s book [Ren10]. Another source is Alan Roche’s
lecture notes (=Chapter 1 of the Ottawa Lectures [CN09]). Also useful is Ngô’s lecture notes
[Ngô16]. For a guide to the literature see [Ren10].

1. Motivations
Lect.1, Jan 25

We start by recalling the field of p-adic numbers Qp. Let p be a prime. On Q, we have
the p-adic absolute value | · |p defined as follows: If x = 0, then |x|p = 0. If x ̸= 0, then
write x = pny with n ∈ Z and y ∈ Q× such that y has a reduced fraction in which p does
not appear in the numerator or denominator. Then |x|p = p−n. We define Qp to be the
completion of Q with respect to | · |p; this is analogous to R as the completion of Q with
respect to the usual absolute value | · |∞.

Over R, we have the theory of Lie groups, which are smooth manifolds (locally isomorphic
to Rn) equipped with a group structure. Over Qp, one might also consider “p-adic Lie
groups” as “smooth p-adic manifolds” with a group structure. For our purpose, we do not
need to go into the question of how to make sense of these. Instead, we simply consider p-adic
algebraic groups, i.e., subgroups of GLn(Qp) = {invertible n× n matrices over Qp} defined
by systems of polynomial equations over Qp in the n2 coordinates.1 We shall also impose
two more conditions: reductive, and connected (which are conditions for the underlying
algebraic group over Qp).

Example 1.1. We have the following examples of connected reductive p-adic algebraic
groups:

• GLn(Qp), SLn(Qp) = {g ∈ GLn(Qp) | det(g) = 1}.
• Fix a degree d extension E/Qp. Fix a Qp-basis of E. Then we have an injective ring
homomorphism E ↪→ Md×d(Qp), sending x ∈ E to the Qp-linear endomorphism of
E ∼= Qdp given by y 7→ xy. The resulting map GLn(E) ↪→ Mnd×nd(Qp) induces
an injective group homomorphism GLn(E) ↪→ GLnd(Qp), and this is a subgroup
defined by polynomial equations over Qp.

Exercise 1.2. Find these equations, and justify the other claims made above.

1The correct definition is more general, in that we allow polynomial equations in n2+1 variables: The first

n2 variables aij stand for the coordinates, and the last variable b satisfies the equation that det(aij)b = 1.

In other words, we allow polynomial equations in the n2 coordinates and det−1.
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Similarly, SLn(E) ↪→ SLnd(Qp).
• Fix J ∈ GLn(Qp) anti-symmetric, i.e., J = −J t. (Thus n is even.) We have the
symplectic group Sp(J) = {g ∈ GLn(Qp) | gtJg = J}.

• Fix J ∈ GLn(Qp) symmetric, i.e., J = J t. We have the special orthogonal group
SO(J) = {g ∈ SLn(Qp) | gtJg = J}.2

• Fix a quadratic extension E/Qp, and fix J ∈ GLn(E) hermitian, i.e., J t = J̄ ,

where (·) denotes the non-trivial element of Gal(E/Qp). We have the unitary group
U(J) = {g ∈ GLn(E) | ḡtJg = J}. Using the method in the second example above,
one shows that U(J) is a subgroup of GL2n(Qp) defined by polynomial equations
over Qp.

Exercise 1.3. Show this.

We will also replace Qp by a more general non-archimedean local field F , and consider
connected reductive algebraic groups G ⊂ GLn(F ) defined by polynomials over F . We

endow G with the subspace topology inherited from GLn(F ) ⊂ Fn
2

. Here Fn
2

has the
product topology of the natural topology of F as a local field. For instance, if F = Qp,
the topology is defined by | · |p. Then G is Hausdorff, locally compact, and 1 ∈ G has a
neighborhood basis consisting of compact open subgroups of G. For instance, 1 ∈ GLn(Qp)
has a neighborhood basis 1 + pkMn×n(Zp), k ≥ 1, which are compact open subgroups.
Moreover, G is totally disconnected, meaning that each connected component in G is a
singleton.3 Totally disconnected spaces are very different from the “everyday topological
spaces” such as manifolds: In a manifold, every point has a neighborhood homeomorphic
to an Euclidean space, which is connected and infinite. On a general totally disconnected
space, there is no interesting way of doing analysis (differentiation, etc.), and this fact
actually simplifies the theory considerably.

Definition 1.4. A representation of G is a vector space V over C (typically infinite dimen-
sional) together with a homomorphism π : G→ Aut(V ). We often write g ·v for π(g) ·v, g ∈
G, v ∈ V . We call (V, π) smooth, if for all v ∈ V , the stabilizer StabvG = {g ∈ G | g · v = v}
is open. Equivalently, the action map G×V → V, (g, v) 7→ g ·v is continuous, for the discrete
topology on V .

Lect.2, Jan 27

Exercise 1.5. Show the equivalence. Also show that the smooth condition is equivalent to
the condition that for each v ∈ V , the map G→ V, g 7→ g · v is locally constant.

We are interested in the category M(G) of all smooth representations of G. Here a
morphism (V, π) → (W,ρ) is by definition a linear map ϕ : V → W that is G-equivariant,
i.e., ϕ(g · v) = g · ϕ(v) for all g ∈ G, v ∈ V . (We also call such a map a G-map or a G-linear
map.)

Why do we care about smooth representations of G?

(1) p-adic groups are important, so we should study their representations. Smooth
representations turn out to form a very natural class.

(2) Smooth representations of G arise as local components of automorphic representa-
tions. Consider a reductive group G over a global field, say Q. Then the theory

2This satisfies the connected condition, whereas the orthogonal group O(J) = {g ∈ GLn(Qp) | gtJg = J}
does not.

3This does not contradict with our assumption that G is a connected algebraic group, as the latter refers
to the Zariski topology of the underlying algebraic variety, which is very different from the topology coming

from F .
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of automorphic representations of G roughly amounts to the study of functions on
G(Q)\G(A), where A is the ring of adeles over Q. This theory is a vast generaliza-
tion of the theory of modular forms, and it has utter importance in number theory
and the Langlands program. It turns out that each automorphic representation is
determined by the data of a smooth representation of the p-adic group G(Qp), one
for each prime p, together with a certain representation of the real Lie group G(R).

(3) Roughly speaking, the Local Langlands Correspondence (LLC) predicts a rela-
tionship between M(G) and the category of (certain) LG-valued representations
WDF → LG. Here WDF is the Weil–Deligne group of F , a variant of Gal(F/F ),
and LG is the Langlands dual group of G. When G = GLn(F ),

LG = GLn(C).
For G = GL1(F ), the LLC is essentially local class field theory for F . ThusM(G)
secretly carries arithmetic information about F . For p-adic groups G other than
GLn, the LLC is a topic of active current research.

The structure ofM(G) is much more complicated than representations of a finite group.
Recall that every representation of a finite group Γ (over C) is a union of finite dimensional
representations, so in particular irreducible representations (i.e., those that do not have non-
trivial sub-representations) must be finite dimensional. The category of finite dimensional
representations of Γ is a semi-simple category, i.e., every finite dimensional representation is
the direct sum of irreducible representations. Moreover, the number of isomorphism classes
of irreducible representations is finite, and equal to the number of conjugacy classes in Γ. In
contrast, the irreducible representations inM(G) are in general not finite dimensional, and
the number of isomorphism classes of them is also infinite. For this reason, we would lose too
much if we only consider finite dimensional smooth representations, and that is why in our
definition ofM(G) we allow infinite dimensionality. The categoryM(G) is not semi-simple;
there exist smooth representations which are not direct sums of irreducible ones. One goal
of our course is to decompose the category M(G) into a direct sum of certain subcategories,
and moreover say something about the structures of these subcategories. Concretely, this
means for every (V, π) ∈ M(G) we decompose it into a direct sum in a canonical way
such that each summand belongs to one of these prescribed subcategories, and moreover we
require that the decomposition be respected by all morphisms inM(G). This is the content
of the Bernstein decomposition theorem.

2. Td spaces and groups

Recall profinite topological spaces. Let (I,≤) be a directed set (i.e., ≤ is a reflexive and
transitive relation on I, and for any i, j ∈ I there exists k ∈ I, i ≤ k, j ≤ k), and let (Xi)i∈I
be a projective system of finite sets. Thus each Xi is a finite set, and for each pair i ≤ j ∈ I,
we have a transition map ϕi,j : Xj → Xi satisfying ϕi,j ◦ϕj,k = ϕi,k : Xk → Xi for i ≤ j ≤ k.
(Similarly, one defines the notion of a projective system in an arbitrary category.)

The inverse limit lim←−i∈I Xi is the subset of
∏
i∈I Xi consisting of (xi)i such that ϕi,j(xj) =

xi for all i, j ∈ I with i ≤ j. We endow it with the subspace topology inherited from the
product topology on

∏
i∈I Xi (each Xi having the discrete topology). Concretely, a basis of

the topology of
∏
i∈I Xi is given as follows. Fix a finite subset I0 ⊂ I, and for each i ∈ I0

fix Yi ⊂ Xi. Let

U =
∏

i∈I−I0

Xi ×
∏
i∈I0

Yi.

For varying choices of I0 and (Yi)i∈I0 , the U ’s form a basis of the topology. Lect.3, Jan 30

Exercise 2.1. The set U as above is also closed in
∏
i∈I Xi.
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Definition 2.2. A topological space X is profinite if it is homeomorphic to lim←−i∈I Xi for a

projective system of finite sets as above.

Lemma 2.3. A topological space X is profinite if and only if it is Hausdorff, compact, and
totally disconnected, i.e., every connected component is a singleton.

Proof. “Only if”: Write X = lim←−i∈I Xi. Hausdorff is easy to check. For compactness,

note that X is a closed subspace of
∏
i∈I Xi. The latter is compact by Tychonoff’s theorem

(product of compact spaces is compact), and so X is compact. For totally disconnectedness,
use that the image of a connected subset of X in each Xi must be connected, and therefore
a singleton.

“If”: Let I be the set of maps f : X → Z such that im(f) is finite and each f−1(n)
is open. Informally, I is the set of ways of decomposing X into a finite disjoint union
of open subsets. For f, g ∈ I, define f ≤ g if there exists a (necessarily unique) map
ϕf,g : im(g) → im(f) such that f = ϕf,g ◦ g (i.e., the partition corresponding to g refines
that to f). Then (im(f))f∈I is a projective system of fintie sets, and we have a natural
continuous map Φ : X → lim←−f∈I im(f), x 7→ (f(x))f . We claim Φ is a homeomorphism.

Since the source is compact and the target is Hausdorff, it suffices to check that Φ is a
bijection.

To show Φ is surjective, let n = (nf )f ∈ lim←−f im(f). We need to find a preimage of n.

For each f ∈ I, let Cf = f−1(nf ). Then Cf is clopen4, and we have Cg ⊂ Cf whenever
f ≤ g. Note that Φ−1(n) =

⋂
f Cf . If this were empty, then by compactness of X we know

that a finite sub-intersection is empty. Finding a common upper bound of the indices, we
get some f ∈ I such that Cf is empty, a contradiction. This shows that Φ is surjective.

To show Φ is injective, by Lemma 2.4 below, we have {x} is the intersection of all clopens
containing x, for any x ∈ X. If Φ(x) = Φ(y), then for any clopen U containing x it
also contains y, since the characteristic function 1U of U is an element of I. Taking the
intersections of all such clopens we conclude x = y. □

Lemma 2.4. Let X be a Hausdorff compact topological space. Then for any x ∈ X, the
connected component of X containing x is the intersection of all clopens containing x.

Proof. Fix x ∈ X, and let (Zi)i∈I be all clopens containing x. Let S =
⋂
i Zi. Clearly

the connected component containing x is contained in S, so it remains to show that S is
connected. Suppose not. Since S is closed, we have S = A ⊔ B for two disjoint non-empty
closed subsets A,B ofX. SinceX is compact, so are A,B. SinceX is Hausdorff, the compact
subsets A and B are separated by open neighborhoods, i.e., there are disjoint opens U and
V in X such that A ⊂ U,B ⊂ V . Since X −U ∪V is compact and (X −U ∪V )∩S = ∅, we
know that X − U ∪ V is disjoint from a finite sub-intersection of the Zi’s, which is itself a
Zi. Namely, Zi ⊂ U ∪ V , and so Zi = (Zi ∩U)⊔ (Zi ∩ V ). It then follows that both Zi ∩U
and Zi ∩ V are clopens. Suppose without loss of generality x ∈ A. Then Zi ∩ U is one of
the Zj ’s, and hence S ⊂ Zi ∩ U ⊂ U , and so B = ∅, a contradiction. □

Corollary 2.5. A closed subset Z of a profinite space X is profinite. Moreover, X has a
basis of topology consisting of compact open profinite subsets.

Proof. We know Z is still Hausdorff and compact. Clearly Z is totally disconnected as X
is. Hence Z is profinite by Lemma 2.3. For the second assertion, we have already seen in

4“Clopen” stands for “closed and open”.
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Exercise 2.1 that X has a basis of topology consisting of clopens. But by the first assertion
every clopen is compact and profinite. □

Proposition 2.6. Let X be a Hausdorff topological space. TFAE:

(1) The topology has a basis consisting of open compact sets.
(2) X is locally compact and totally disconnected.
(3) Each point has an open neighborhood that is a profinite space.

Proof. (1) ⇒ (2). Locally compact is clear. To see totally disconnected, let x, y ∈ X
be distinct. Then x and y are separated by open compact neighborhoods, which are in
particular clopens. Hence x, y cannot be in the same connected component.

(2) ⇒ (3). Let x ∈ X. Since X is locally compact, there exist open U ⊂ X and compact
K ⊂ X such that x ∈ U ⊂ K. Now K is Hausdorff compact totally disconnected, so
profinite by Lemma 2.3. Therefore by Corollary 2.5 , the open set U in K must be a union
of opens Ui in K which are profinite. The point x must lie in such a Ui. But Ui is open in
K and contained in U ⊂ K, so it is open in U , which implies that it is open in X. Hence
we have found an open neighborhood of x in X which is profinite.

(3) ⇒ (1). This follows from Corollary 2.5.
□

Definition 2.7. A Hausdorff topological space satisfying the above equivalent conditions
is called a td space, or a locally profinite space.

Remark 2.8. A topological space is profinite if and only if it is td and compact.
Lect.4, Feb 1

Definition 2.9. A topological group is called a td group, or a locally profinite group, if its
underlying topological space is td.

Remark 2.10. A topological group is td if and only if it is Hausdorff and 1 has an open
neighborhood that is a profinite space. This is sufficient because we can translate the neigh-
borhood U of 1 to a neighborhood gU of g for any g in the group, and gU is homeomorphic
to g.

Fact 2.11. Let G be a td group. Then 1 ∈ G has a neighborhood basis consisting of open
compact subgroups.

In practice, the td groups we are interested in (the p-adic groups) will be easily seen to
satisfy this fact.

Exercise 2.12. Prove Fact 2.11 as follows. Let K be an arbitrary compact open neighbor-
hood of 1. It suffices to construct a compact open subgroup H of G contained in K. Do
this in the following steps:

(1) For every x ∈ K there is an open neighborhood Vx of 1 such that xV 2
x ⊂ K.

(2) There is an open neighborhood V of 1 such that KV ⊂ K. In particular, V ⊂ K
and V 2 ⊂ K.

(3) We may take V in (2) to satisfy V −1 = V .
(4) Let H be the subgroup of G generated by V . Then H is an open subgroup of G,

and H ⊂ K.
(5) Any open subgroup of a topological group is closed. HenceH is closed, and therefore

compact as it is contained in K.
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Example 2.13. Let p be a prime. Then Zp = lim←−n Z/p
nZ is a profinite group (under

addition). It is identified (as a topological group/ring) with the subgroup/subring {x ∈ Qp |
|x|p < 1} of Qp, which is open in Qp. Thus Qp is a td group. The subgroups pnZp, n ≥ 1,
are open and compact, and form a neighborhood basis of 0.

Similarly, the group Z×
p of multiplicative units in the ring Zp is profinite and has presen-

tation Z×
p = lim←−n(Z/p

nZ)×. It is an open subgroup of Q×
p . Hence Q×

p is td. The subgroups

1 + pnZp, n ≥ 1, are open and compact, and they form a neighborhood basis of 1.

Example 2.14. For any prime p, GLn(Qp) is a td group, and GLn(Zp) ⊂ GLn(Qp) is an
open, profinite subgroup. In fact, GLn(Zp) ∼= lim←−kGLn(Z/pkZ) as topological groups. It is
open in GLn(Qp) because it is defined by the (non-strict) inequalities |aij |p ≤ 1, |det(aij)|p =
1. We have compact open subgroups 1 + pkMn(Zp) of GLn(Zp) for k ≥ 1, and they form a
neighborhood basis of 1.

Example 2.15. More generally, let F be a non-archimedean local field. Recall that this
means F is a complete topological field with respect to a discrete non-archimedean absolute
value |·|F (i.e., an absolute value satisfying the strong triangle inequality |a+b| ≤ max(|a|, |b|)
and such that |F×| is a discrete subgroup of R×) such that the topology is locally compact.
The locally compact condition is equivalent to the condition that the ring of integers OF =
{x ∈ F | |x| ≤ 1}, which is an open subring and a DVR, should have finite residue field.
Any generator π of the unique maximal ideal of OF is called a uniformizer. We have
OF ∼= lim←−kOF /π

k is a profinite group, with each OF /πk being a finite ring. Also O×
F
∼=

lim←−k(OF /π
k)× is profinite. The groups F, F× are td, containing OF ,O×

F as open subgroups

respectively. As before, GLn(OF ) ∼= lim←−kGLn(OF /πk) is profinite, and open in the td group

GLn(F ). We have compact open subgroups 1 + πkMn(OF ), forming a neighborhood basis
of 1.

Clearly if G is a closed subgroup of GLn(F ), then G is also td, and G ∩ GLn(OF ) is
an open profinite subgroup of G. The compact open subgroups G ∩ (1 + πkMn(OF )) of G
form a neighborhood basis of 1. This applies in particular to the case where G ⊂ GLn(F )
is defined by polynomial equations.

3. Functions and distributions

Let X be a td space. Define5

• C∞(X) = the C-vector space of locally constant functions X → C.
• C∞

c (X) = the subspace of C∞(X) consisting of compactly supported functions. We
define the support of f ∈ C∞

c (X) to be the smallest (i.e., intersection of all) compact
set K ⊂ X such that f = 0 outside K.

• C−∞(X) = the linear dual of C∞
c (X).

• C−∞
c (X) = the C-vector space of linear maps α : C∞(X) → C satisfying the

following compactly supported condition: there exists a compact subset K ⊂ X
such that ⟨α, f⟩ = 0 for all f ∈ C∞(X) such that f |K ≡ 0. We define the support
of α to be the smallest such K, i.e., the intersection of all such K.

The dual of the inclusion C∞
c (X) ↪→ C∞(X) is a (surjective) map C∞(X)∗ → C−∞(X).

Composing with the inclusion C−∞
c (X) ↪→ C∞(X)∗, we obtain a map

C−∞
c (X) −→ C−∞(X).

5Our notations C∞
c , C−∞, C−∞

c correspond to the symbols D,D′, E ′ in [Ren10].
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Lemma 3.1. This map is injective.

Proof. Let α be in the kernel. Since the topology of X has a basis consisting of compact
open sets, the compact support of α is contained in a compact open set K ⊂ X.For any
f ∈ C∞(X), define fK : X → C to be the same as f on X − K and 0 on K. Then
fK ∈ C∞(X) since both X − K and K are open. Moreover f − fK ∈ C∞

c (X). Since
α|C∞

c (X) = 0, we have ⟨α, f⟩ = ⟨α, fK⟩, which is zero since fK vanishes on K. Hence
α = 0. □

We shall think of the injection C−∞
c (X) → C−∞(X) as inclusion, think of C−∞(X) as

the space of all distributions on X, and C−∞
c (X) as the space of all compactly supported

distributions on X.6 Note that C−∞
c (X) is also identified with the set of α ∈ C−∞(X)

for which there exists a compact set K such that ⟨α, f⟩ = 0 for all f ∈ C∞
c (X) such that

f |K ≡ 0. Lect.5, Feb 3

Example 3.2. For any compact open subset K ⊂ X, its characteristic function 1K is in
C∞
c (X). It is locally constant because both K and X −K are open.

Exercise 3.3. Every function in C∞
c (X) is a finite linear combination of characteristic

functions of disjoint compact open subsets of X.

Example 3.4. Fix x ∈ X. We have the Dirac distribution δx : C∞(X) → C, f 7→ f(x).
We have δx ∈ C−∞

c (X), and its support is {x}.
Example 3.5. Let X be an infinite set equipped with discrete topology. Then X is td. We
have an identification

C∞(X)
∼−→

∏
x∈X

C, f 7→ (f(x))x

under which
C∞
c (X)

∼−→
⊕
x∈X

C,

and an identification
C−∞(X)

∼−→
∏
x∈X

C, α 7→ (⟨α, 1{x}⟩)x,

under which
C−∞
c (X)

∼−→
⊕
x∈X

C.

For instance, consider the functional α : C∞
c (X)→ C, f 7→

∑
x∈X f(x). The sum is always

finite, hence well defined. Then this α corresponds to (1, 1, · · · ) in the third identification
above, and α ∈ C−∞(X)− C−∞

c (X).

We think of the natural pairing C−∞
c (X)×C∞(X)→ C, (α, f) 7→ ⟨α, f⟩ as “integrating

f against α”, and sometimes even write7∫
x∈X

f(x)α(x), or simply

∫
X

fα

6We have pairings C−∞(X)⊗C∞
c (X) → C and C−∞

c (X)⊗C∞(X) → C. The way to remember is that

∞ and −∞ both appear, and c appears once.
7Here the notation α(x) is formal, as the “value” of α at x ∈ X does not make sense. However, the

physicists would think that α(x) is an actual function. For instance, the Dirac distribution δ0 over R
supported at 0 would be thought of as an actual function on R such that δ0(x) = 0 for x ̸= 0, δ0(0) =
+∞, and

∫
R δ0(x)dx = 1. Then by formal manipulation one shows that for any f ∈ C∞(R), indeed∫

R f(x)δ0(x)dx = f(0). Thus integration against the “function” δ0(x) (or rather δ0(x)dx), plays the role of

the Dirac distribution f 7→ f(0).
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for ⟨α, f⟩. As a generalization, we would like to integrate vector-valued functions f against
α ∈ C−∞

c (G). Thus let V be a C-vector space (maybe infinite dimensional), and let
C∞(X,V ) denote the space of locally constant functions X → V . Let α ∈ C−∞

c (X) and
f ∈ C∞(X,V ). As in the above proof, α is supported in a compact open K ⊂ X. Since
f is locally constant, there is a partition of K into finitely many open subsets U1, · · · , Un
such that f takes constant value vi ∈ V on each Ui. Define∫

X

fα = ⟨α, f⟩ :=
∑
i

⟨α, 1Ui
⟩vi ∈ V.

This definition is motivated by the following formal computation:∫
x∈X

f(x)α(x) =

∫
x∈K

f(x)α(x) =
∑
i

∫
x∈Ui

f(x)α(x)

=
∑
i

(∫
x∈Ui

α(x)

)
· vi =

∑
i

(∫
x∈X

1Ui
(x)α(x)

)
· vi.

The definition of
∫
G
fα is independent of choices and gives a bilinear pairing C−∞

c (X)⊗
C∞(X,V ) → V . When V is finite dimensional and identified with Cn, we can identify
f ∈ C∞(G,V ) with a tuple (f1, · · · , fn) ∈ C∞(G)n. Then

∫
fα = (

∫
f1α, · · · ,

∫
fnα) ∈ V.

Exercise 3.6. Verify these claims.

Example 3.7. Let x0 ∈ X and let δx0
be the Dirac distribution. For any f ∈ C∞(X,V ),

we have ⟨δx0 , f⟩ =
∫
f(x)δx0(x) = f(x0).

4. Distributions on a td group

Let G be a td group. We have two representations l, r of G on C∞(G), called left
translation and right translation:

(l(g)f)(x) = f(g−1x), (r(g)f)(x) = f(xg).

(The g−1 in the first formula is to make sure l is a left action.) Since G is a topologi-
cal group, left or translation of a function indeed preserves the property of being locally
constant. Moreover, it preserves the property of compactly supported. Thus we have
sub-representations (C∞

c (G), l) ⊂ (C∞(G), l), (C∞
c (G), r) ⊂ (C∞(G), r). Define left/right

translation on C−∞(G) by

⟨l(g)α, f⟩ = ⟨α, l(g−1)f⟩, ⟨r(g)α, f⟩ = ⟨α, r(g−1)f⟩, ∀α ∈ C−∞(G), f ∈ C∞
c (G).

(Again the negative powers are introduced to make left actions.) Similarly, define left/right
translation on C−∞

c (G). Then again C−∞
c (G) is a sub-representation of C−∞(G) when we

consider the left/right translation.

Lemma 4.1. Let G be a td group. Every element of C∞
c (G) is right invariant by a compact

open subgroup K ⊂ G, i.e., fixed by r(K). In particular (C∞
c (G), r) is a smooth representa-

tion. Same for “right” replaced by “left”.

Proof. Let f ∈ C∞
c (G). By Exercise 3.3, we may assume that f = 1Y for a compact open

subset Y ⊂ G. For each y ∈ Y , y−1Y is a neighborhood of 1, and hence contains a compact
open subgroup Ky ⊂ G. That is, yKy ⊂ Y . Since Y is compact and each yKy is open,
there exist finitely many y1, · · · , yn ∈ Y such that Y =

⋃n
i=1 yiKyi . Let K =

⋂n
i=1Kyi .

Then K is a compact open subgroup, and Y is right invariant by K. Hence f = 1Y is right
invariant by K. □
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Exercise 4.2. Let K be a compact open subgroup of G. Then C∞
c (G)r(K) has basis

{1gK | gK ∈ G/K}. In particular this is identified with the space of finitely supported
functions on G/K.

Theorem 4.3. Let G be a td group. Then C−∞(G)l(G) is one-dimensional. Moreover, one
can choose a basis µ to be positive in the sense that ⟨µ, f⟩ > 0 for every non-zero f ∈ C∞

c (G)
such that f ≥ 0.

Remark 4.4. Such a positive µ will be called a Haar distribution, or more precisely a
left Haar distribution; it is unique up to scaling by R>0. It is an incarnation of a (left)
Haar measure, which is a left G-invariant Borel measure vol(·) on G, unique up to R>0, for
any locally compact Hausdorff topological group G. Namely, our µ is given by integration
against a Haar measure. Conversely, given µ, we can recover the measures of compact open
sets K by vol(K) = ⟨µ, 1K⟩. If we replace “left” by “right”, we obtain the notion of a right
Haar distribution, which is again unique up to scaling by R>0. When the adjective “left”
or “right” is omitted, “left” is always understood.

Lect.6, Feb 6

Proof of Theorem 4.3. Fix a compact open subgroup K0, and let S be the set of all compact
open subgroups of K0. Then S is a neighborhood basis of 1. By Lemma 4.1, we have

C∞
c (G) =

⋃
K∈S

C∞
c (G)r(K).

Hence
C−∞(G) = lim←−

K∈S
(C∞

c (G)r(K))∗,

and
C−∞(G)l(G) = lim←−

K∈S
{left G-inv elts of (C∞

c (G)r(K))∗}.

Denote by VK the space of leftG-invariant elements of (C∞
c (G)r(K))∗, i.e., µ ∈ (C∞

c (G)r(K))∗

such that
⟨µ, l(g)f⟩ = ⟨µ, f⟩, ∀f ∈ C∞

c (G)r(K), g ∈ G.
(Note that C∞

c (G)r(K) is stable under l(g), so the above makes sense.) Let us analyze VK .
By Exercise 4.2, C∞

c (G)r(K) can be identified with the space of finitely supported functions
on G/K. From this one sees that its dual space is naturally identified with

∏
G/K C. Since

left multiplication by G is transitive on G/K, we see that VK is one-dimensional, with a
canonical basis αK = (1, 1, · · · ) defined by

⟨αK , f⟩ =
∑

y∈G/K

f(y).

Exercise 4.5. Verify this.

Moreover, if K,L ∈ S with K ⊂ L, then the transition map VK → VL sends αK to
[L : K]αL. Thus to give a left G-invariant element of C−∞(G), is the same as giving a
number cK for each K ∈ S, satisfying cL = [L : K]cK whenever K ⊂ L. Clearly this is
possible by taking cK := c/[K0 : K] for a constant c, and unique up to scaling (i.e., the
choice of the constant c). If we choose c > 0, then the resulting µ will be positive. □

By the proof of Theorem 4.3, we know that∫
G

f(g)µ(g)
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can be computed as follows: Find a sufficiently small compact open subgroup K such that
f is right K-invariant. Then∫

G

f(g)µ(g) =
∑

y∈G/K

f(y) volµ(K),

where volµ(K) := ⟨µ, 1K⟩. Moreover, we know that volµ(·) satisfies that for any compact
open subgroups K,L with K ⊂ L, we have

volµ(L) = [L : K] volµ(K).

Finally, the leftG-invariance of µ clearly follows from the fact that the expression
∑
y∈G/K f(y)

is invariant under left translation on f .
Now C−∞(G)l(G) ⊂ C−∞(G) is stable under right translation, so it is a one-dimensional

sub-representation of (C−∞(G), r). Therefore r(G) must act on it by a homomorphism
∆G : G→ C×. That is, we have

r(g)µ = ∆G(g)µ

for all g ∈ G and µ ∈ C−∞(G)l(G).

Definition 4.6. We call ∆G the modulus character of G. If it is trivial, we call G unimod-
ular.

Remark 4.7. G is unimodular if and only if a left Haar distribution is the same as a right
Haar distribution.

Remark 4.8. Let µ be a Haar distribution. For h ∈ G, the number ∆G(h) is characterized
by the equation ∫

G

f(gh−1)µ(g) = ∆G(h)

∫
G

f(g)µ(g), ∀f ∈ C∞
c (G).

If K is a compact open subgroup, we get ∆G(K) = {1} by taking f = 1K and h ∈ K
in the above. Thus, as a function on G, ∆G is left and right invariant by any compact
open subgroup K. We also conclude that any compact td group (i.e. profinite group) is
unimodular.

Lect.7, Feb 8

Remark 4.9. We have seen that C−∞(G) contains the one-dimensional subspace C−∞(G)l(G).
Also recall that C−∞(G) contains C−∞

c (G), the space of compactly supported distributions.
These two subspaces are in general disjoint (unless G is compact), since the conditions “left
G-invariant” and “compactly supported” are not compatible.

5. The Hecke algebra

Let G be a td group.

Definition 5.1. Let H(G) =
⋃
K C

−∞
c (G)l(K) ⊂ C−∞

c (G), where K runs over compact
open subgroups. We call H(G) the Hecke algebra of G. (Right now H(G) is just a C-vector
space, but later we will define a product on it.)

Clearly H(G) is stable under right translation by G. It is also stable under left translation
by G, since the conjugate of a compact open subgroup is still a compact open subgroup.

For any f0 ∈ C∞
c (G) and α ∈ C−∞(G), we write f0α for the functional C∞(G)→ C, f 7→

⟨α, ff0⟩. This makes sense since ff0 ∈ C∞
c (G). Moreover, f0α is compactly supported since

α is, i.e., f0α ∈ C−∞
c (G). Actually, it is easy to see that all elements of C−∞

c (G) are of this
form.
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Proposition 5.2. Let µ be a Haar distribution. Then H(G) = {f0µ | f0 ∈ C∞
c (G)}.

Proof. The containment “⊃” is clear since each f0 ∈ C∞
c (G) is left invariant under some K,

and µ is left invariant under G. We now prove “⊂”. Let α ∈ H(G), and suppose it is left
invariant by a compact open subgroup K. There exist finitely many cosets Kg1, · · · ,Kgn
whose union contains the support of α. Then

α =
∑
i

1Kgiα.

Note that each 1Kgiα is still left K-invariant, and is supported inside Kgi. Thus up to
replacing α by 1Kgiα, we may assume that α is left K-invariant and supported in Kg1 for
some g1 ∈ G. The space {f0µ | f0 ∈ C∞

c (G)} is stable under right translation by G (since
any right translate of µ is a scalar multiple of µ), so we may replace α by a right translate
of it. Thus we may assume that α is left K-invariant and supported in K. Since K has
unique Haar distribution up to scalar, we know that there exists c ∈ C such that

⟨α, f⟩ = c⟨µ, f⟩
for all f ∈ C∞

c (G) supported in K. But this means α = c1Kµ. □

Corollary 5.3. We have H(G) =
⋃
K C

−∞
c (G)r(K) =

⋃
K C

−∞
c (G)l(K),r(K) where K runs

over compact open subgroups.

Proof. The second equality follows from the first, and for the first we only need to prove the
direction “⊂” by symmetry. By Proposition 5.2, it suffices to show that for any f0 ∈ C∞

c (G),
the element α = f0µ is right invariant by some compact open subgroup. Now f0 is right
invariant by some compact open subgroup K, and µ is also right invariant by K, since
∆G|K = 1. □

Corollary 5.4. Fix a Haar distribution µ. We have an isomorphism C∞
c (G)

∼−→ H(G), f0 7→
f0µ. This is an isomorphism between the left translation representations.

Proof. We only need to prove injectivity. Suppose f0 ∈ C∞
c (G) is such that f0µ = 0. Let

f̄0 be the complex conjugate of f0. Then

0 = ⟨f0µ, f̄0⟩ = ⟨µ, f0f̄0⟩,
which implies f0f̄0 = 0 by the positivity of µ and the fact that f0f̄0 ≥ 0. Hence f0 = 0. □

Remark 5.5. By symmetry, if we pick a right Haar measure µ′, we also have an isomorphism
C∞
c (G)

∼−→ H(G), f0 7→ f0µ
′, between the right translation representations.

6. Smooth representations and convolution

Let G be a td group. A representation (V, π) of G is called smooth, if for every v ∈ V ,
Stabv G is an open subgroup of G. Equivalently, V =

⋃
K V

K where K runs through
compact open subgroups of G.

Exercise 6.1. Show the equivalence. (Use that a subgroup of G is open if and only if it
contains an open subgroup of G.)

Example 6.2. We have already seen four examples of smooth representations: (C∞
c (G), l),

(C∞
c (G), r), (H(G), l), (H(G), r). The first is isomorphic to the third by multiplying with

a Haar distribution. Similarly, the second is isomorphic to the fourth, by multiplying with
a right Haar distribution. Actually the first two are also isomorphic to each other under
f 7→ f̌ , where f̌(g) = f(g−1). Note that (C∞(G), l or r) is in general not smooth.
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Exercise 6.3. Let G = SL2(Qp). Show that every finite dimensional smooth representation
(V, π) of G is trivial, i.e., π(g) = idV ,∀g ∈ G, in the following steps. (This exercise also
works with slight modification for Qp replaced by any non-archimedean local field.)

(1) The subgroup K := ker(π : G→ GL(V )) is open.

(2) Suppose H is a normal subgroup of G containing

(
1 x

1

)
and for all x ∈ Qp. Then

H also contains

(
1
x 1

)
for all x, and G is generated by H.

(3) Show that K = G by using (2) and noting that(
pk

p−k

)(
1 x

1

)(
p−k

pk

)
=

(
1 p2kx

1

)
.

We now introduce a construction of vital importance. Let (V, π) be a smooth represen-
tation. For each v ∈ V , the function Fv : G → V, g 7→ g · v is locally constant (since it
is right invariant by some compact open subgroup K fixing v). Sending v to Fv defines a
linear map V → C∞(G,V ).

Definition 6.4. Define a linear map C−∞
c (G)→ End(V ), α 7→ π(α) by

π(α) · v := ⟨α, Fv⟩ ∈ V, ∀v ∈ V,
where ⟨, ⟩ is the pairing C−∞

c (G)⊗ C∞(G,V )→ V . In the integral notation, we have

π(α) · v =

∫
G

Fv(g)α(g) =

∫
G

(π(g)v)α(g).

Lect.8, Feb 10
To do the above “integral”, we can find a sufficiently small compact open subgroup K

such that Fv is right K-invariant, and find finitely many cosets g1K, · · · , gnK covering
supp(α). Then the integral is by definition equal to

n∑
i=1

⟨α, 1giK⟩Fv(gi) =
n∑
i=1

⟨α, 1giK⟩π(gi)v.

Note that Fv is right K-invariant precisely when v ∈ V K . Hence we have the following
formula:

π(α) · v =
∑

gK∈G/K

⟨α, 1gK⟩π(g)v, ∀v ∈ V K ,(6.1)

where it is understood that only finitely many summands are non-zero.

Example 6.5. Consider the Dirac distribution δg0 ∈ C−∞
c (G) at a fixed g0 ∈ G. Then in

the summation (6.1), only the term indexed by gK = g0K survives, and that term is equal
to π(g0)v. Hence we have π(δg0) = π(g0). In this sense the action of C∞

c (G) on V extends
the original action of G on V .

Example 6.6. Let K be a compact open subgroup, and µ a Haar distribution. Let

α = volµ(K)−11K · µ ∈ H(G) ⊂ C−∞
c (G).

Note that the definition of α depends only on K, not on the choice of µ. Let v ∈ V , and let
U be a compact open subgroup contained in K such that v ∈ V U . Then by (6.1) (applied
to U) we have

π(α)v =
∑

gU∈G/U

⟨α, 1gU ⟩π(g)v =
∑

gU∈K/U

volµ(K)−1 volµ(U)π(g)v = [K : U ]−1
∑

gU∈K/U

π(g)v.
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This is the average of the finite K-orbit of v.

Example 6.7. Let K be a compact open subgroup, µ a Haar distribution, and g0 ∈ G. Let
α = volµ(K)−11g0K · µ ∈ H(G). Let v ∈ V K . Then

π(α)v = volµ(K)−1
∑

gK∈G/K

⟨µ, 1g0K1gK⟩π(g)v = π(g0)v.

Definition 6.8. Take (V, π) = (C∞
c (G), l) or (H(G), l). For α ∈ C−∞

c (G) and v ∈ V , we
denote l(α) · v by α ∗ v, and call it the convolution product, which is C-bilinear. Note that
if we fix a Haar distribution µ and write elements of H(G) as f0µ with f0 ∈ C∞

c (G), then
α ∗ (f0µ) = (α ∗ f0)µ.

Concretely, for α ∈ C−∞
c (G) and f ∈ C∞

c (G), the value of the function α ∗ f ∈ C∞
c (G)

at h ∈ G is (∫
g∈G

(l(g)f)α(g)

)
(h) =

∫
g∈G

f(g−1h)α(g).

(The first integral is valued in C∞
c (G), and we evaluate it at h.) In the special case where

α = f0µ ∈ H(G), we have

(α ∗ f)(h) =
∫
G

f0(g)f(g
−1h)dµ(g).

This integral is also called the convolution of the functions f0 and f (with respect of µ).

Proposition 6.9. Let (V, π) be a smooth representation of G. Let α ∈ C−∞
c (G) and

β ∈ H(G). Then for every v ∈ V , π(α ∗ β)v = π(α)π(β)v.

Corollary 6.10. The convolution product on H(G) is associative.

Proof. Apply the proposition to (V, π) = (C∞
c (G), l). □

Thus we have an associative ring (H(G), ∗). (We know ∗ is C-bilinear, so in particular
we have the distributive laws.) It is in general non-commutative, and non-unital (i.e., not
having a multiplicative identity), as we will soon see later.

Corollary 6.11. Let (V, π) be a smooth representation. Then the C-linear map (H(G), ∗)→
(End(V ), ◦), α 7→ π(α) is a ring homomorphism, in the sense of non-unital rings.

Proof. Immediate from the proposition. □

Proof of Proposition 6.9. Fix a Haar distribution µ, and write β = f0µ with f0 ∈ C∞
c (G).

Let K be a compact open subgroup fixing v. Up to shrinking K, we may assume that f0
is right K-invariant, and thus reduce, by linearity, to the case f0 = 1g0K for some g0 ∈ G.
Let U = g0Kg

−1
0 , which is also a compact open subgroup of G. Then f0 is left U -invariant.

Hence by (6.1) we have

α ∗ f0 =
∑

gU∈G/U

⟨α, 1gU ⟩l(g)f0 =
∑

gU∈G/U

⟨α, 1gU ⟩1gg0K ,

and
α ∗ β =

∑
gU∈G/U

⟨α, 1gU ⟩1gg0K · µ.

Since v ∈ V K , by Example 6.7 we have

π(α ∗ β)v =
∑

gU∈G/U

⟨α, 1gU ⟩ volµ(K)π(gg0)v.
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On the other hand, since v ∈ V K , by Example 6.7 we have

π(β)v = volµ(K)π(g0)v,

and this is fixed by U = g0Kg
−1
0 . Hence by (6.1) we have

π(α)π(β)v = volµ(K)
∑

gU∈G/U

⟨α, 1gU ⟩π(g)π(g0)v.

The proof is complete since π(gg0) = π(g)π(g0). □
Lect.9, Feb 13

For any compact open subgroup K ⊂ G, define eK ∈ H(G) by

eK = 1K volµ(K)−1µ,

where µ is a Haar distribution. This definition is independent of µ.

Proposition 6.12. The following statements hold:

(1) Let (V, π) be a smooth representation. Then π(eK)V = V K . Moreover v ∈ V is in
V K if and only if π(eK)v = v.

(2) eK ∗ eK = eK .

Proof. For (1), we have already noted in Example 6.6 that for any v ∈ V , π(eK)v is the
average over the finite K-orbit of v. It is then elementary to check the statements in (1).
(2) follows from (1) since eK is fixed by l(K). □

Remark 6.13. By (1), we know that if v ∈ π(eK)V then v = π(eK)v = v. This also
formally follows from (2) and the fact that π : H(G)→ End(V ) is a ring homomorphism.

Recall that H(G) =
⋃
K C

−∞
c (G)l(K),r(K), so its definition is “unbiased” towards “left”

or “right”. The following exercise makes precise the symmetry between “left” and “right”.

Exercise 6.14. Consider the involution α 7→ α′ on C−∞(G) given by pull-back along the
homeomorphism G → G, g 7→ g−1. Concretely, ⟨α′, f⟩ = ⟨α, f̌⟩, where f̌(g) = f(g−1), for
all f ∈ C∞

c (G).

(1) For any g ∈ G and α ∈ C−∞(G), (l(g)α)′ = r(g)α′.
(2) The subspaces H(G) ⊂ C−∞

c (G) ⊂ C∞
c (G) are both stable under the involution

α 7→ α′.
(3) For each compact open subgroup K ⊂ G, the element eK ∈ H(G) satisfies e′K = eK .

(Hint: beware that in general if µ is a Haar distribution on G then µ ̸= µ′; however
use that K is unimodular.)

Lemma 6.15. For α, β ∈ H(G), we have α ∗ β = r(β′)α.

Proof. Fix a Haar distribution µ, and write α = f1µ, β = f2µ, for f1, f2 ∈ C∞
c (G). Find a

compact open subgroup K such that f1 is right K-invariant, and f2 is left K-invariant. By
bilinearity, we may assume that f1 = 1g1K , f2 = 1Kg2 for g1, g2 ∈ G. Write v for volµ(K).
Since β is fixed by l(K), we have

α ∗ β = l(α)β =
∑

gK∈G/K

l(g)β · ⟨α, 1gK⟩ = vl(g1)β = v1g1Kg2µ.

Since α is fixed by r(K), we have

r(β′)α =
∑

gK∈G/K

r(g)α · ⟨β′, 1gK⟩ =
∑

gK∈G/K

r(g)α · ⟨β, 1Kg−1⟩ = r(g−1
2 )α⟨µ, 1Kg2⟩.
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Now

r(g−1
2 )α = 1g1Kg2 · r(g−1

2 )µ = ∆G(g
−1
2 )1g1Kg2µ,

and

⟨µ, 1Kg2⟩ = ⟨µ, r(g−1
2 )1K⟩ = ⟨r(g2)µ, 1K⟩ = ∆G(g2)v.

Hence r(β′)α = v1g1Kg2µ = α ∗ β. □

Lect.10, Feb 15

Corollary 6.16. Let α ∈ H(G) and K be a compact open subgroup. Then α is left
(resp. right) K-invariant if and only if eK ∗ α = α (resp. α ∗ eK = α), if and only if
α ∈ eK ∗ H(G) (resp. α ∈ H(G) ∗ eK).

Proof. The version with “left” follows from Proposition 6.12 applied to (V, π) = (H(G), l).
The version with “right” follows from Proposition 6.12 applied to (V, π) = (H(G), r), Exer-
cise 6.14 (3), and Lemma 6.15. □

Corollary 6.17. For every compact open subgroup K ⊂ G, we have

eK ∗ H(G) ∗ eK = {α ∈ H(G) | α = eK ∗ α ∗ eK} = H(G)l(K),r(K).

Proof. The first equality follows from the fact that eK ∗ eK = eK . The second equality
follows from Corollary 6.16. □

Corollary 6.18. We have

H(G) =
⋃
K

eK ∗ H(G) =
⋃
K

H(G) ∗ eK =
⋃
K

eK ∗ H(G) ∗ eK ,

where the unions are over compact open subgroups K.

Exercise 6.19. For a compact open subgroup K, the subset eK ∗ H(G) ∗ eK ⊂ H(G) is a
subring of H(G), and it has the multiplicative unity eK .

Example 6.20. Let G be a finite, discrete group. There is a canonical choice of Haar
distribution µ, namely that normalized by volµ({1}) = 1. We have C∞(G) = C∞

c (G) ∼=
H(G) = C−∞

c (G) = C−∞(G), and for f ∈ C∞(G), ⟨µ, f⟩ =
∑
g∈G f(g). We can identify

H(G) with the group ring C[G], where [g] ∈ C[G] corresponds to the Dirac distribution
δg = 1{g}µ. Then ∗ on H(G) corresponds to the usual product on C[G].

Example 6.21. If G is discrete, the multiplicative unity of (H(G), ∗) is eK , for K = {1}.
This is nothing but the Dirac distribution δ1 at 1 ∈ G.

Proposition 6.22. Let G be a non-discrete td group. Then H(G) does not have a multi-
plicative unity.

Proof. Suppose e is the multiplicative unity. Let K be a compact open subgroup such that
e is left invariant by K. Then e ∈ eK ∗ H(G), and so eK ∗ e = e = eK . But if K ′ is any
compact open subgroup of K, then the same argument shows e = eK′ . Hence K = K ′,
which implies that G has a smallest compact open subgroup. This is only possible when G
is discrete. □
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7. Smooth representations as Hecke modules

Let G be a td group.

Corollary 7.1. Let (V, π) be a smooth representation of G. We have V =
⋃
K π(eK)V ,

where K runs over compact open subgroups of G.

Proof. We have π(eK)V = V K . □

Definition 7.2. A (left) H(G)-module is an abelian group V together with a ring homo-
morphism π : H(G)→ End(V ) (i.e., π(α± β) = π(α)± π(β), π(α ∗ β) = π(α) ◦ π(β) for all
α, β ∈ H(G)). It is called non-degenerate, if V =

⋃
K π(eK)V where K runs over compact

open subgroups of G. LetM(H(G)) be the category of non-degenerate H(G)-modules, with
the obvious definition of morphisms. Given an H(G)-module (V, π), we often write α · v for
π(α) · v for α ∈ H(G), v ∈ V .

Remark 7.3. Since H(G) =
⋃
K eK ∗ H(G), an H(G)-module V is non-degenerate if and

only if V = π(H(G)) ·V . Thus the notion of non-degenerate modules is intrinsic to the ring
H(G) itself, and does not depend on the relationship between H(G) and the group G.

Exercise 7.4. Recall that H(G) has multiplicative unity if and only if G is discrete, and in
this case the multiplicative unity is e = δ1. Suppose this is the case. Then a H(G)-module
V is non-degenerate if and only if e acts by 1.

Exercise 7.5. Let V be a non-degenerate H(G)-module. Then there is a unique structure
of C-vector space on V such that

λ(α · v) = (λα) · v, ∀α ∈ H(G), v ∈ V, λ ∈ C.

Moreover, the map π : H(G)→ End(V ) factors through a C-linear map H(G)→ EndC(V ).
Every morphism inM(H(G)) is automatically C-linear.

Example 7.6. Let H(G) act on Z by zero. Then Z is a degenerate H(G)-module, and there
is no C-vector space structure.

Starting with a smooth G-representation (V, π), we have constructed a non-degenerate
H(G)-module structure on V , namely

π(α)v =

∫
g∈G

π(g)vα(g), ∀α ∈ H(G), v ∈ V.

(It is non-degenerate by Corollary 7.1.) Now if (V, π) is non-degenerate H(G)-module, we
can also construct a smooth G-representation on V , as an inverse to the previous construc-
tion. To wit, let v ∈ V and g ∈ G. We define π(g) · v as follows. Let K be a compact open
subgroup such that v ∈ π(eK)V . Define

π(g)v := π(l(g)eK)v = π(1gK volµ(K)−1µ) · v.

Exercise 7.7. Check that this way we indeed obtain a smooth representation of G on V .
Also check that for a fixed C-vector space V , the two constructions described above give
inverse bijections between the set of smooth G-representation structures on V and the set
of non-degenerate H(G)-module structures on V .

Lect.11, Feb 17

Lemma 7.8. Let (V1, π1), (V2, π2) be smooth G-representations. A linear map ϕ : V1 → V2
is a morphism of G-representations if and only if it is a morphism of H(G)-modules.
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Proof. The “only if” direction is easy to verify. We check the “if” part. Thus we assume ϕ
satisfies ϕ ◦ π1(α) = π2(α) ◦ ϕ for all α ∈ H(G). Let v ∈ V1 and g ∈ G be arbitrary. We
need to check

ϕ(π1(g)v) = π2(g)ϕ(v).

Let K be a compact open subgroup fixing both v and ϕ(v). Let α = l(g)eK . Then

ϕ(π1(g)v) = ϕ(π1(α)v) = π2(α)ϕ(v) = π2(g)ϕ(v).

□

In summary, a smooth G-representation is “the same thing” as a non-degenerate H(G)-
module, and a morphism between smooth G-representations is “the same thing” as a mor-
phism between non-degenerate H(G)-modules. Abstractly, this implies we have an equiva-
lence of categories

F :M(G)→M(H(G)),
inducing the identity functor on the underlying vector spaces. Note that this is a very
special kind of equivalence, as F has a literal inverse: a functor F−1 :M(H(G)) →M(G)
such that F ◦ F−1 and F−1 ◦ F are the identity functors on the nose (not just isomorphic
to the identity functors).

ClearlyM(G) andM(H(G)) are both abelian categories (that is, the kernel and cokernel
of a morphism are naturally smooth G-representations or non-degenerate H(G)-modules),
and F is an equivalence of abelian categories.

Example 7.9. InM(G) we have (H(G), l). The corresponding object inM(H(G)) is H(G)
as a left H(G)-module by left multiplication.

8. The categorical center

Let C be an abelian category. We define its center to be Z(C) = End(idC), the endomor-
phism ring of the identity functor C → C. Concretely, an element F ∈ Z(C) is a family of
endomorphisms FM ∈ End(M) for allM ∈ C, such that for any morphism ϕ :M1 →M2 in C
we have ϕ◦FM1

= FM2
◦ϕ. To add or multiply two elements F,G ∈ Z(C), we add or multiply

there components FM , GM ∈ End(M). Here multiplication in End(M) is composition.

Example 8.1. Let A be a (non-commutative) unital ring, and C the category of left A-
modules such that 1 ∈ A acts as identity. There is natural ring isomorphism between
Z(C) and Z(A), the center of A. Given z ∈ Z(A), we define FM (m) = zm for all M ∈
C and m ∈ M . Then FM ∈ End(M) because left multiplication by z commutes with
left multiplication by A. Moreover, the FM ’s are compatible with morphisms. Hence we
obtain an element F = (FM )M ∈ Z(C). We define Φ : Z(A) → Z(C) sending z to F .
Conversely, suppose F = (FM )M ∈ Z(C). Consider the left A-module A. Let z = FA(1).
Note that FA : A → A commutes with left multiplication by A (since it is an A-module
endomorphism), and commutes with right multiplication by A (since right multiplication by
any fixed a ∈ A is an endomorphism of the left A-module A). Hence for all a ∈ A we have
FA(a) = FA(a · 1) = az = FA(1 · a) = za, and so z ∈ Z(A). We define Ψ : Z(C) → Z(A)
sending F to z. Clearly Ψ ◦ Φ = id. We show Φ ◦ Ψ = id. Let F ∈ Z(C) and z = Ψ(F ).
Now for arbitrary M ∈ C and m ∈ M , we have a morphism ϕ : A → M,a 7→ am. Then
FM (m) = FM (ϕ(1)) = ϕ(FA(1)) = ϕ(z) = zm. Hence F = Φ(z).

Now let G be a td group. Write H for H(G), and we simply write α · β or αβ for the
convolution product α ∗ β. For each compact open subgroup K, we write HK for eKHeK .
Recall that this is a subring of H(G), and it is unital with unity eK . The centers Z(HK)
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form a projective system as follows: If K ′ ⊂ K, then HK ⊂ HK′ , and we define the
transition map Z(HK′) → Z(HK), z 7→ eKzeK = ze2K = zeK . This is well defined, and
is a unital ring homomorphism (since zw 7→ zweK = zeKw = zeKeKw = zeKweK , and
eK′ 7→ eK′eK = eK). When K ′′ ⊂ K ′ ⊂ K, the transition map Z(HK′′) → Z(HK) is
indeed the composition of the transition maps Z(HK′′) → Z(HK′) and Z(HK′) → Z(HK)
since eK′eK = eK .

Definition 8.2. The Bernstein center of G is the ring ZG = lim←−K Z(HK). This is a

commutative unital ring.

Theorem 8.3. We have Z(M(G)) = Z(M(H)) ∼= ZG.

Proof. Let z ∈ ZG. Write zK for the component of z in Z(HK). We define F ∈ Z(M(H))
associated with z as follows. Let V ∈ M(H) and v ∈ V . Then v ∈ eKV for some compact
open subgroup K. Define FV (v) = zKv.

We check this is independent of the choice of K. For this, it suffices to show zKv = zK′v
for K ′ ⊂ K and v ∈ eKV . We have zK = zK′eK , so

zKv = zK′eKv = zK′v,

since v = eKv.
We now check that FV is an H-module endomorphism of V . Let α ∈ H(G) and v ∈ V .

Find K such that α ∈ HK and v ∈ eKV . Then αv ∈ eKV , and so FV (αv) = zKαv =
αzKv = αFV (v).

It is easy to see that the family F = (FV )V is compatible with morphisms inM(H), and
we omit the proof. Thus starting with z ∈ ZG, we have constructed F ∈ Z(M(H)). We
denote this map by Φ : ZG → Z(M(H)).Lect.12, Feb 20

Conversely, let F = (FV )V ∈ Z(M(H)). Take V = H as a left H-module by left
multiplication (which is non-degenerate), and write F0 for the corresponding FV . For every
compact open subgroup K, let zK = F0(eK). Note that for any α, β, γ ∈ H(G), we have
F0(αβγ) = αF0(β)γ, where α comes out since F0 is an endomorphism of the left H-module
H, and β comes out since right multiplication by β is an endomorphism of the left H-module
H. Hence

zK = F0(eKeKeK) = eKzKeK ,

which implies zK ∈ HK , and moreover for all α ∈ HK we have

αzK = αzKeK = F (αeKeK) = F (α) = F (eKeKα) = eKzKα = zKα,

which implies zK ∈ Z(HK).
If K ′ ⊂ K, then

zK = F0(eK) = F0(eK′eKeK′) = eK′zKeK′ .

Hence (zK)K ∈ ZG.
We define Ψ : Z(M(H)) → ZG sending F to (zK) as above. It is easy to see that

Ψ ◦ Φ = id. We now show Φ ◦Ψ = id. Suppose Ψ(F ) = z.
For general V ∈ M(H), and for v ∈ V , consider the morphism ϕ : H → V, α 7→ αv.

Assume v ∈ eKV . Then

FV (v) = FV (ϕ(eK)) = ϕ(F0(eK)) = ϕ(zK) = zKv.

Hence F = Φ(z). □

Remark 8.4. If G is discrete, then H is unital, and ZG = Z(H). In this case Theorem 8.3
is a special case of Example 8.1. In fact, one can generalize Theorem 8.3 to the following
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purely algebraic setting: Let H be an associative (non-unital) ring satisfying H =
⋃
e∈I eHe,

where I is the set of idempotents of H (i.e., elements e satisfying e2 = e). Assume that
for any e, f ∈ I, there exists g ∈ I such that e, f ∈ gHg. Then one can define a projective
system of commutative unital rings Z(eHe) indexed by e ∈ I as before, and the inverse limit
is identified with the center of the category of non-degenerate left H-modules.

9. Contragredient and admissible

Let G be a td group. Given an arbitrary representation (V, π), define the smooth part :

V∞ :=
⋃

K c.o.s.

V K = {v ∈ K | Stabv G is open}.

This is a sub-representation of (V, π), and is itself a smooth representation.

Example 9.1. (H(G), l) is the smooth part of (C−∞
c (G), l).

Let (V, π) be a smooth representation. Then the linear dual V ∗ is naturally a G-
representation via

⟨g · f, v⟩ = ⟨f, g−1 · v⟩, ∀g ∈ G, f ∈ V ∗, v ∈ V.

Definition 9.2. The contragredient of V is (V ∗)∞. We denote it by (V ∨, π∨). This is a
smooth G-representation.

Let (V, π) be a smooth representation. The natural map ϕ : V → (V ∨)∗, v 7→ (f 7→ f(v))
is G-linear, and hence ϕ(V ) lies in the smooth part of (V ∨)∗, i.e. (V ∨)∨. Therefore we have
a natural G-linear map ϕ : V → (V ∨)∨. If V is finite dimensional, then V ∨ = V ∗, and ϕ is
an isomorphism. In the infinite dimensional case, ϕ need not be an isomorphism.

Definition 9.3. A smooth representation V is called admissible, if V K is finite dimensional
for every (compact) open subgroup K.

Remark 9.4. It suffices to check the condition for all sufficiently small K.

Example 9.5. For (V, π) = (C∞
c (G), l), for every compact open subgroup K, V K has a

basis {1Kg | Kg ∈ K\G}. Hence this representation is admissible if and only if K\G is
finite for every K, if and only if G is compact.

Lemma 9.6. Let (V, π) be a smooth representation, and K a compact open subgroup. The

restriction map r : (V ∗)K → (V K)∗ is an isomorphism, and its inverse is given by f 7→ f̃ =
f ◦ π(eK). In particular, if (V, π) is admissible, then so is its contragredient.

Proof. We define the inverse map. Recall that we have a linear map

π(eK) : V → π(eK)V = V K ,

and π(eK)|V K = id. Hence for every f ∈ (V K)∗, we can extend f to f̃ : V → C, v 7→
f(π(eK)v). For any k ∈ K and v ∈ V ,

f̃(π(k)v) = f(π(eK)π(k)v) = f(π(eK)v) = f̃(v)

(because π(eK) is taking average over K-orbits, and the K-orbit of π(k)v is the same as

that of v). Hence f̃ ∈ (V ∗)K . We claim that f 7→ f̃ is inverse to r. We already know
r ◦ ·̃ = id. To check ·̃ ◦ r = id, let F ∈ (V ∗)K and let f = r(F ). Then for every v ∈ V ,

F (v) = F (π(eK)v) = f(π(eK)v) = f̃(v), where the first equality is because π(eK) is taking
K-averages and F is K-invariant. □
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Theorem 9.7. Let V be a smooth representation. Then V is admissible if and only if the
natural map ϕ : V → (V ∨)∨ is an isomorphism.

Lect.13, Feb 22

Proof. For each compact open subgroup K, ϕ induces a map ϕK : V K → ((V ∨)∨)K . By
Lemma 9.6 (and the fact that ((·)∗)K = ((·)∨)K), we know that ((V ∨)∨)K is naturally
identified with ((V K)∗)∗. Under this identification, ϕK is the natural double dual map
V K → ((V K)∗)∗ for the vector space V K . This is an isomorphism if and only if V K is finite
dimensional.8 Now since V and (V ∨)∨ are both smooth, ϕ is an isomorphism if and only if
ϕK is an isomorphism for all K. □

10. Schur’s Lemma and the separation lemma

Let G be a td group. A smooth representation (V, π) is called irreducible, if it does not
have non-trivial sub-representations. It is called finite-length, if there is an integer n ≥ 0
such that every chain of proper sub-representations 0 = V0 ⊊ V1 ⊊ · · · ⊊ Vk = V satisfies
k ≤ n. The minimal such n is called the length of (V, π). Thus the length of a non-zero
irreducible representation is 1.

Proposition 10.1. Let (V, π), (V ′, π′) be two irreducible representations. Every non-zero
element ϕ ∈ HomG(V, V ) is an isomorphism.

Proof. Since im(ϕ) is a non-zero sub-representation of V ′, im(ϕ) = V ′. Also ker(ϕ) is a
proper sub-representation of V , so ker(ϕ) = 0. Hence ϕ is an isomorphism. □

When (V, π) and (V ′, π′) are not isomorphic, the proposition implies that HomG(V, V
′) =

0. When they are isomorphic, we can pick an isomorphism ϕ0 : V → V ′. Then we have a
bijection EndG(V ) = HomG(V, V )

∼−→ HomG(V, V
′), ϕ 7→ ϕ0 ◦ϕ. The study of HomG(V, V

′)
reduces to EndG(V ). Note that EndG(V ) is a unital C-algebra, with multiplication given
by composition.

Definition 10.2. We call a td group G countable at infinity, if for any compact open
subgroup K, G/K is countable.

It suffices to check the condition for one K, since for compact open subgroups K and K ′,
K ∩K ′ is also a compact open subgroup, and both [K : K ∩K ′] and [K ′ : K ∩K ′] are finite.

Recall that a topological space is called second countable, if it admits a countable basis
of opens.

Lemma 10.3. Let G be a second countable td group. Then G is countable at infinity.

Proof. Let K be a compact open subgroup. Let {Ui}i∈Z be a basis of opens. Then each
gK ∈ G/K contains a Ui, so by the axiom of choice we get a map ϕ : G/K → Z such that
gK contains Uϕ(gK) for every gK ∈ G/K. This map is obviously injective. □

Example 10.4. Let F be a non-archimedean local field. Then every subspace of Fn is
second countable, so in particular, every closed subgroup of GLN (F ) is a second countable
td group.

To check this, it suffices to check that F is second countable. But F ∼= F
[F :F0]
0 where

F0 = Qp or Fq((t)), so we reduce to the case F = F0. Since F is a metric space, it suffices to
find a dense countable subset X ⊂ F . One then obtains a basis consisting of balls B(x, r)
for x ∈ X, r ∈ Q>0. We can take X = Q if F = Qp, and X = Fq(t) if F = Fq((t)).

8For an infinite dimensional vector space W , the cardinality of W is strictly smaller than that of W ∗.
(This uses the axiom of choice.)
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Theorem 10.5 (Schur’s Lemma). Assume that G is countable at infinity. For any non-zero
irreducible smooth representation (V, π), we know that dimV is at most countable, and we
have EndG(V ) = C.

Proof. Let v ∈ V − {0}. Then v is fixed by a compact open subgroup K. The sub-
representation generated by v is non-zero, hence equal to V , and as a vector space it is
generated by the G-orbit of v. But the G-orbit of v has cardinality at most that of G/K.
Hence V is countably generated as a vector space.

Now suppose E = EndG(V ) is strictly larger than C, and let ϕ ∈ E −C. By Proposition
10.1, every non-zero element of the (unital) ring E is inveritble, i.e., E is a division algebra.
We have the C-algebra map γ : C[t] → E, t 7→ ϕ. Let ker γ = (f(t)). If f ̸= 0, then since
C[t]/(f(t)) is a division algebra, deg f = 1. (If deg f ≥ 2, then C[t]/(f(t)) has zero divisors.)
This means ϕ ∈ C, a contradiction. Hence ker γ = 0, i.e., γ is injective. Since E is a division
algebra, γ induces an injective map C(t)→ E.

Note that for each fixed v ∈ V −{0}, the map evv : E → V, ρ 7→ ρ(v) is injective. Indeed,
if ρ(v) = 0, then ker ρ ̸= 0, and then since V is irreducible we have ker ρ = V , from which
ρ = 0. Since V has at most countable basis, the same holds for the C-vector space E. But
C(t) does not have countable basis, as {(t−a)−1}a∈C is an uncountable linearly independent
set. A contradiction. □

Lect.14, Feb 24
Let G be a td group. There is a natural multiplicative map Z(G) → ZG sending z to

(FV )V where FV = π(z) for (V, π) ∈M(G).

Proposition 10.6. Let (V, π) be a smooth representation of a td group G such that EndG(V ) =
C. Then the following statements hold.

(1) There is a unique character (i.e., group homomorphism) χ : Z(G)→ C× such that
π(z)v = χ(z)v for all z ∈ Z(G), v ∈ V . Moreover, χ is trivial on Z(G) ∩ K for
some compact open subgroup K ⊂ G.

(2) There is a unique character (i.e., unital ring homomorphism) χ̃ : ZG → C such
that FV (v) = χ̃(F )v for all F = (FV )V ∈ ZG, v ∈ V . Moreover, χ̃ factors through
ZG → Z(HK) for some compact open subgroup K.

(3) χ and χ̃ are compatible with respect to Z(G)→ ZG.

Proof. Obvious. (For the “moreover” parts in (2) and (3), take v ∈ V − {0} and let K be
such that v ∈ V K . Then test Z(G) or ZG on v.) □

We call both χ and χ̃ the central character of (V, π), by abuse of language. These exist
when G is countable at infinity and (V, π) is irreducible.

Corollary 10.7. Let G be an abelian, second countable td group. Then every irreducible
smooth representation of G is one-dimensional.

Proof. By Theorem 10.5 and Proposition 10.6, G must act on any irreducible smooth rep-
resentation by a character G→ C×. □

We now proceed to discuss the separation lemma. We first state a lemma in abstract
ring theory.

Lemma 10.8. Let R be an associative ring, not necessarily unital or commutative. Assume
that R is a C-algebra (i.e., R is a C-vector space such that the multiplication map R×R→ R
is C-bilinear), and assume that dimCR is at most countable. Let ϕ ∈ R be a non-nilpotent
element. Then there exists a simple left R-module M on which ϕ is non-zero.
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Theorem 10.9 (The separation lemma). Let G be a second countable td group. Then
dimCH(G) is at most countable, and for every non-zero α ∈ H(G) there exists an irreducible
(V, π) ∈ M(G) such that π(α) ̸= 0. (Thus every pair of distinct elements of H(G) can be
separated by an irreducible smooth representation.)

Proof. We prove the theorem using Lemma 10.8.
Since G is second countable, 1 ∈ G has a countable neighborhood basis. Since every

neighborhood of 1 contains a compact open subgroup, there exists a countable decreasing
sequence of compact open subgroups K1 ⊃ K2 ⊃ · · · forming a neighborhood basis of 1.
Then H(G) is the increasing union

⋃
nH(G)Kn

. Each H(G)Kn
is countable-dimensional

since it has a basis indexed by Kn\G/Kn and G/Kn is already countable by Lemma 10.3.
In general, a countable increasing union

⋃
nWn of countable-dimensional vector spaces

W1 ⊂W2 ⊂W3 ⊂ · · · is countable-dimensional.9 This implies the first statement.
To show the second statement, it suffices to find α′ ∈ H(G) such that α∗α′ is non-nilpotent

and then apply Lemma 10.8. Indeed, note that a simple H(G)-module V is necessarily non-
degenerate, since H(G)V ⊂ V is a non-zero sub-module and must equal V . Thus the simple
H(G)-module provided by Lemma 10.8 will be an irreducible smooth G-representation V
on which αα′ is non-zero. In particular α is non-zero on V .

We now show the existence of α′. Fix a Haar distribution µ and use this to identify H(G)
with C∞

c (G). Let α correspond to f ̸= 0 in C∞
c (G). Define f∗ ∈ C∞

c (G) by f∗(g) = f(g−1).
Let f2 = f ∗ f∗. Then

f2(1) = (f ∗ f∗)(1) =
∫
g∈G

f(g)f∗(g−1)µ(g) =

∫
g∈G
|f(g)|2µ(g) > 0,

and so f2 ̸= 0. Note that for general F,H ∈ C∞
c (G) we have (F ∗H)∗ = H∗ ∗ F ∗. Hence

f∗2 = f∗∗ ∗ f∗ = f ∗ f∗ = f2.

Define f4 = f2 ∗ f∗2 = f2 ∗ f2. As before f4 ̸= 0, and f∗4 = f4. Then define f8 = f4 ∗ f4, etc.
Take α′ = f∗ = f∗µ. Then (αα′)2

n−1

= f2nµ ̸= 0. Hence αα′ is non-nilpotent. □

Proof of Lemma 10.8. We first reduce to the case where R is unital. Define R̃ = R ⊕ C,
and define multiplication on R̃ by (r, a)(r′, a′) = (rr′ + a′r+ ar′, aa′). (Here a′r and ar′ are

defined by the scalar multiplication on R.) Then R̃ is a unital C-algebra, with unity (0, 1).

The inclusion R ↪→ R̃ is a ring homomorphism, so ϕ remains non-nilpotent in R̃. Note that
ifM is a simple unital R̃-module, then it is also a simple R-module. Indeed, ifM is a unital
R̃-module, then a subgroup of M is R̃-stable if and only if it is R-stable.

We can thus assume that R is unital, and we need to find a simple unital R-module M
such that ϕ is non-zero on M .Lect.15, Feb 27

Since R is unital, we have C ⊂ R. We claim there exists a ∈ C× such that ϕ − a is not
invertible. Suppose not. Then (ϕ−a)−1 is an uncountable collection of elements, for a ∈ C×.
Hence they are linearly dependent, and so there exist c1, · · · , cn ∈ C× and a1, · · · , an ∈ C×

such that the ai’s are distinct and ∑
i

ci(ϕ− ai)−1 = 0.

9Such a space can be written as a countable direct sum of conutable-dimensional subspaces, by splitting

each Wn ↪→ Wn+1 as Wn+1 = Wn ⊕ Yn. Then use N× N ∼= N.
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Clearing the denominators we get P (ϕ) = 0 with P (X) =
∑
i ci

∏
j,j ̸=i(X − aj) ∈ C[X].

Note
P (ai) = ci

∏
j,j ̸=i

(ai − aj) ̸= 0,

so P ̸= 0. Hence the ideal I ⊂ C[X] consisting of f(X) such that f(ϕ) = 0 is non-zero. Let
I = (f). Then f has a non-zero root a ∈ C× since otherwise f(X) = Xn and ϕ is nilpotent.
But ϕ− a is invertible, so f(X)/(X − a) is also in I, a contradiction.

We have proved the claim. Now let a ∈ C× be such that ϕ − a is not invertible. Let
J ⊂ R be a maximal left ideal containing ϕ − a (which exists by Zorn’s lemma, just as in
the commutative case). Then M = R/J is a simple, unital, left R-module. If ϕ acts as zero
on M , then ϕ(1 + J) = 0 + J , so ϕ ∈ J . Since ϕ − a ∈ J , we have a ∈ J , a contradiction
since a is invertible. Hence ϕ is non-zero on M . □

The following result is the converse of Corollary 10.7.

Corollary 10.10. Let G be a second countable td group. Suppose every irreducible smooth
representation of G is one-dimensional. Then G is abelian.

Proof. Let α, β ∈ H(G). Then for every irreducible (V, π) ∈ M(G), we have π(α)π(β) =
π(β)π(α) since dimV = 1. Then by Theorem 10.9, αβ = βα in H(G). Hence H(G) is
commutative. Now let g, h ∈ G, and let K be a compact open subgroup. Then

(l(g)eK) ∗ (l(h)eK) = l(g)(eK ∗ l(h)eK) = l(g)(l(h)eK ∗ eK) = l(gh)eK .

Similarly this is equal to l(hg)eK . Thus ghK = hgK. Since K is arbitrary and G is
Hausdorff, we have gh = hg. □

Exercise 10.11. In the above proof we have shown that any td group whose Hecke algebra
is commutative is necessarily abelian. The converse is also true. (Check that a Haar
distribution on an abelian td group is invariant under g 7→ g−1.)

11. Fixed vectors under a compact open subgroup

Let G be a td group. Write H for H(G), and write HK for eKHeK , for every compact
open subgroup K ⊂ G. In the following, by HK-modules we mean left unital HK-modules.
Let M(HK) be the category of them. We have a functor (V, π) 7→ V K from M(G) to
M(HK). Indeed, the H-action on V restricts to an HK-action on V K since V K = π(eK)V .

Theorem 11.1. A smooth representation (V, π) ∈ M(G) is irreducible if and only if for
all compact open subgroups K, V K is a simple HK-module. (We count 0 as a simple HK-
module.)

Proof. “Only if”. If V K = 0, there is nothing to prove. Suppose 0 ̸= v ∈ V K . Since V is
irreducible, it is a simple H-module. Now Hv is an H-submodule of V , and it is moreover
non-degenerate since H = HH. Therefore Hv is a non-zero (as it contains eKv = v) sub-
representation of V , and hence it is equal to V . Then V K = eKV = eKHv = eKHeKv =
HKv. Hence the HK-module V K is generated by v. Since v ∈ V K is arbitrary, V K is
simple.

“If”. Suppose W ⊂ V is a non-zero sub-representation. Then for each K, WK ⊂ V K

is an HK-submodule, and for sufficiently small K we have WK ̸= 0. For such K, we must
then have WK = V K by the simplicity of V K . Taking the union over K we get W = V . □

Our next goal is the proof of the following theorem. From now on, we fix a compact open
subgroup K ⊂ G.
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Theorem 11.2. The construction V 7→ V K induces a bijection from the set of isomorphism
classes of irreducible V ∈ M(G) with V K ̸= 0 (such representations are said to be K-
spherical), to the set of isomorphism classes of non-zero simple HK-modules.

We need several lemmas in preparation.

Lemma 11.3. The functor M(G) → M(HK), V 7→ V K is exact, i.e., it takes exact se-
quences to exact sequences.

Proof. Taking invariants under a group is always left exact. Hence we only need to prove that
if V → W is a surjection of smooth G-representations, then the induced map V K → WK

is surjective. Let w ∈ WK , and let v ∈ V be an arbitrary lift. Then eKv ∈ V K is a lift of
w = eKw. □

Lect.16, Mar 1

Lemma 11.4. For any V ∈M(G), the set of sub-representationsW ⊂ V such thatWK = 0
has a unique maximal element.

Proof. If V1, V2 are sub-representations of V such that V K1 = V K2 = 0, then applying the
exact functor (·)K to the exact sequences 0 → V1 → V1 + V2 → V2/(V1 ∩ V2) → 0 and
0 → V1 ∩ V2 → V2 → V2/(V1 ∩ V2) → 0 we get (V1 + V2)

K = 0. Take the sum of all
sub-representations W such that WK = 0. □

Definition 11.5. For V ∈ M(G), let V 0 be the maximal sub-representation such that
(V 0)K = 0. Let V0 = V/V 0.

Remark 11.6. Applying the exact functor (·)K to the exact sequence 0 → V 0 → V →
V0 → 0, we see that the natural map V → V0 induces V K

∼−→ V K0 .

Lemma 11.7. For any V ∈M(G), we have (V0)
0 = 0.

Proof. Let W = (V0)
0, and let W̃ be the preimage of W in V . Then WK = 0. By

the exactness of (·)K and the short exact sequence 0 → V 0 → W̃ → W → 0, we have

W̃K = (V 0)K = 0. Hence W̃ ⊂ V 0, and so W = 0. □

Proof of Theorem 11.2. We have already seen that this map is well defined. We now give the
inverse construction. For any W ∈M(HK), consider H⊗HK

W , which is a non-degenerate
H-module and hence an object ofM(G) ∼=M(H). Define F(W ) = (H⊗HK

W )0 ∈M(G).
We will check that F induces the inverse of the map in the theorem.

Step 1. For any W ∈ M(HK), we have F(W )K ∼= W as HK-modules. We have
F(W )K ∼= (H⊗HK

W )K = eKH⊗HK
W and we have a HK-module map

W → eKH⊗HK
W,w 7→ eK ⊗ w.

This map is surjective since every pure tensor eKα⊗ w ∈ eKH⊗HK
W is equal to

eKα⊗ eKw = eKαeK ⊗ w = eKeKαeK ⊗ w = eK ⊗ (eKαeK)w.

It is injective since its composition with eKH⊗HK
W →W, eKα⊗ w 7→ (eKαeK)w (which

is well defined!) is the identity on W . Thus F(W )K ∼=W as HK-modules.
Step 2. For any non-zero simple HK-module W , F(W ) is irreducible. We first show a

weaker statement. We call a G-representation good if it is generated as a representation by
its K-fixed vectors. We shall show that F(W ) is good. We observe that H⊗HK

W is good.
Indeed, for any α ⊗ w ∈ H ⊗HK

W , it is equal to α ⊗ eKw = αeK ⊗ w, and hence lies in
the H-submodule generated by eK ⊗w ∈ eKH⊗HK

W = (H⊗HK
W )K . Now (·)K is exact,
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from which it is easy to see that the quotient of a good representation is good. Hence F(W )
is good.

We now show that F(W ) is irreducible. Suppose it has a sub-representation U . If
UK ̸= 0, then UK ⊂ F(W )K ∼= W and so UK = F(W )K since W is a simple HK-module.
Then U = F(W ) since F(W ) is good. Thus assume UK = 0. By Lemma 11.7 we have
F(W )0 = 0. Since U is contained in F(W )0, it is zero.

Step 3. If V ∈ M(G) is irreducible with V K ̸= 0, then V ∼= F(V K). We already know
that V K is a simple HK-module, and in the above we have already shown that F(V K)
is irreducible. Hence it suffices to construct one non-zero G-map between V and F(V K).
Define ϕ : H ⊗HK

V K → V by α ⊗ v 7→ αv. Clearly ϕ is well defined and is a H-module
map. If we take v ̸= 0 in V K , then ϕ(eK ⊗ v) = v, so ϕ ̸= 0. It remains to show that ϕ
factors through F(V K), i.e., it kills U = (H⊗HK

V K)0. Clearly ϕ(U) ⊂ V 0 ⊂ V . Since V
is irreducible and V K ̸= 0, we have V 0 = 0. Hence ϕ(U) = 0 as desired. □

Lect.17, Mar 3

Exercise 11.8. Check the details of the proof of injectivity in Step 1.

Theorem 11.9 (Schur’s lemma at finite level). Assume that HK is countable-dimensional
(which is true if G is countable at infinity). Then for every non-zero simple HK-module W ,
we have dimCW is at most countable, and EndHK

W = C.

Proof. The first statement follows from the fact that W is a quotient vector space of HK .
The second statement is proved in exactly the same way as Theorem 10.5. □

Corollary 11.10. Assume that HK is countable-dimensional, and that it is commutative.
Then the irreducible V ∈ M(G) with V K ̸= 0 are classified by characters (i.e. unital ring
homomorphisms) χ : HK → C, i.e., the C-points of SpecHK .

Proof. In this case, all non-zero simple HK-modules are one-dimensional by Theorem 11.9,
and their isomorphism classes are in bijection with characters HK → C. □

Example 11.11. We have seen that G is abelian if and only if H = H(G) is commutative.
However, HK can be commutative without G being abelian. For example, let G = GLn(F )
and K = GLn(OF ), where F is a non-archimedean local field. Then HK is commutative.
In fact, it is isomorphic to C[t±1 , · · · , t±n ]Sn by the Satake isomorphism. Characters on
HK are thus classified by unordered n-tuples of elements of C×. For a given irreducible
(V, π) ∈M(G) with V K ̸= 0, the corresponding n-tuple in C× is called the Satake parameter
of (V, π).

Note that there exist plenty of irreducible (V, π) ∈M(G) with V K = 0 forK = GLn(OF ).
For instance, one can always twist an irreducible (V, π) with V K ̸= 0 by the one-dimensional

representation G
det−−→ F× µ−→ C×, where µ is a ramified character (i.e., µ|O×

F
is not constantly

1), and obtain an irreducible representation whose K-fixed part is 0.

12. Compact representations

Let G be a td group. We assume that it is unimodular.

Definition 12.1. A smooth representation (V, π) is called compact, if for every compact
open subgroup K ⊂ G and v ∈ V , the map fK,v : G → V, g 7→ π(eK)π(g−1)v is compactly
supported.



28 YIHANG ZHU

Let (V, π) be a smooth representation. Let v ∈ V and λ ∈ V ∨, i.e., λ is a linear functional
on V invariant under some compact open subgroup. Associated to (v, λ) we have the matrix
coefficient ϕv,λ : G→ C, g 7→ ⟨λ, π(g−1)v⟩. Clearly ϕv,λ is bi-invariant under some compact
open subgroup K, namely any K fixing both λ and v. In particular, ϕv,λ ∈ C∞(G).

Theorem 12.2. Let (V, π) ∈ M(G). Among the following conditions, (1) is equivalent to
(2), and they both imply (3).

(1) (V, π) is compact.
(2) For all v ∈ V, λ ∈ V ∨, the function ϕv,λ is compactly supported.
(3) For all compact open subgroup K ⊂ G and v ∈ V , im(fK,v) spans a finite-dimensional

subspace of V .

Proof. (1) ⇒ (2). Let K be a compact open subgroup fixing λ. Then

ϕv,λ(g) = ⟨λ, π(g−1)v⟩ = ⟨λ, π(eK)π(g−1)v⟩ = ⟨λ, fK,v(g)⟩.

Hence the support of ϕv,λ is contained in that of fK,v, which is compact.
(2) ⇒ (3). If not, then there are infinitely many g1, g2, · · · ∈ G such that fK,v(gi) =

π(eK)π(g−1
i )v are linearly independent. Note that these vectors are all in V K . Hence

we can extend them to a basis of V K (by Zorn’s lemma), and then define a functional

λ′ : V K → C taking all fK,v(gi) to 1. Define λ as the composition V
π(eK)−−−−→ V K

λ′

−→ C.
Then λ is in V ∨ since it is K-invariant. Moreover, λ takes every fK,v(gi) to 1. Since λ is
K-invariant, we have

ϕv,λ(gi) = ⟨λ, fK,v(gi)⟩ = 1.

By assumption ϕv,λ is compactly supported, and by construction it is right K-invariant.
Hence g1K, g2K, · · · , are only finitely many right K-cosets. But then fK,v(gi) are only
finitely many distinct vectors, a contradiction.

(2) + (3)⇒ (1). For arbitrary K, v, we need to show fK,v is compactly supported. Let E
be the span of im(fK,v), which is finite-dimensional by assumption. Since E ⊂ V K , we can
find finitely many linear functionals λ′i : V

K → C whose restrictions to E form a basis of
E∗. Extend each λ′i to λi : V → C as before via π(eK) : V → V K . Then λi are K-invariant
and in particular in V ∨, and we have supp(fK,v) ⊂

⋃
i supp(ϕv,λi). Indeed, if fK,v(g) ̸= 0,

then there exists 1 ≤ i ≤ n such that

0 ̸= ⟨λ′i, fK,v(g)⟩ = ⟨λi, fK,v(g)⟩ = ϕv,λi(g).

□
Lect.18, Mar 6

We say a representation (V, π) is finitely generated, if there is a finite subset S of V
such that no proper sub-representation of V contains S. Equivalently, V is spanned by⋃
v∈S π(G)v. If (V, π) is irreducible, then it is finitely generated and in fact generated by a

single non-zero vector.

Corollary 12.3. Let (V, π) be a compact, finitely generated representation. Then it is
admissible.

Proof. Let K be a compact open subgroup. We need to check that V K is finite-dimensional.
Let v1, · · · , vn ∈ V generate V as a G-representation, i.e., V is spanned by

⋃
i π(G)vi. Let

Ei be the span of im(fK,vi). Then
∑
iEi contains π(eK) ·

∑
i π(G) · vi = π(eK)V = V K .

By Theorem 12.2 Ei is finite-dimensional. Hence V K is finite-dimensional. □



REPRESENTATIONS OF P-ADIC GROUPS 29

We can understand the matrix coefficient construction more conceptually as follows. Let
(V, π) ∈ M(G). Then the matrix coefficient construction (v, λ) 7→ ϕv,λ ∈ C∞(G) is bi-
linear. Thus it gives rise to a linear map MC = MCV,π : V ⊗ V ∨ → C∞(G). Now for two
td groups G1, G2, and V1 ∈ M(G1), V2 ∈ M(G2), V1 ⊗ V2 is naturally a smooth G × G-
representation, by (g1, g2) · v1⊗ v2 = (g1v1)⊗ (g2v2). Thus V ⊗ V ∨ ∈M(G×G). It can be
easily checked that MC : V ⊗ V ∨ → C∞(G) is G×G-equivariant, where the action on the
target is

(g1, g2) · f = l(g1)r(g2)f : g 7→ f(g−1
1 gg2).

Note that we have a natural G × G-equivariant map Φ : V ⊗ V ∨ → EndC(V ), v ⊗ λ 7→
(x 7→ λ(x)v), where the action on the target is (g1, g2)ϕ = π(g1) ◦ ϕ ◦ π(g−1

2 ). Since V ⊗ V ∨

is a smooth G×G-representation, Φ lands in the smooth part EndC(V )∞ of EndC(V ) (with
respect to the G×G-representation on EndC(V )).

Lemma 12.4. Let (V, π) ∈ M(G) be admissible. Then Φ : V ⊗ V ∨ → EndC(V )∞ is an
isomorphism.

Proof. Since the source and target are both smoothG×G-representations, it suffices to check
that for any compact open subgroup K ⊂ G, Φ induces an isomorphism (V ⊗ V ∨)K×K ∼−→
EndC(V )K×K . Injectivity is easy to see. We prove surjectivity by counting the dimensions.
Using the projection π(eK) : V → V K , it is easy to check that the restriction induces an
injective map EndC(V )K×K → EndC(V

K). Thus dim(EndC(V )K×K) ≤ dim(V K)2 (which
is finite). But V K⊗(V K)∗ maps injectively into (V ⊗V ∨)K×K (recall that (V K)∗ ∼= (V ∨)K).
Hence dim(V K)2 ≤ dim(V ⊗ V ∨)K×K . □

The upshot is, for a smooth admissible (V, π), we can think of the matrix coefficient
construction as a G×G-equivariant map

MCV,π : EndC(V )∞ ∼= V ⊗ V ∨ −→ C∞(G).

Now let (V, π) ∈ M(G) be compact and finitely generated. Then it is admissible, and
MCV,π lands in C∞

c (G) ⊂ C∞(G). From now on we assume that G is unimodular and fix
a Haar distribution µ. Using µ we identify C∞

c (G) with H(G). Since µ is bi-G-invariant,
the G × G-action on C∞

c (G) considered before corresponds to the natural G × G-action
on H(G) by left and right translation. In this case, we have obtained a map of smooth
G×G-representations

MCV,π : EndC(V )∞ −→ H(G).
Note that for any (W, τ) ∈ M(G), the map τ : H(G) → EndC(W ), α 7→ τ(α) is G × G-

equivariant, and in particular lands in EndC(W )∞. (For this we do not need the assumption
that G is unimodular, as long as we consider the natural G×G-action on H(G).)

Theorem 12.5. Assume G is unimodular and second countable, and let (V, π) ∈M(G) be
compact and irreducible (in particular finitely generated and admissible). Let (W, τ) ∈M(G)
be irreducible. Then the composition

EndC(V )∞
MCV,π−−−−→ H(G) τ−→ EndC(W )∞

is zero if (V, π) is not isomorphic to (W, τ), and is a non-zero scalar c(V, π) depending
proportionally on µ if (W, τ) = (V, π).

Proof. First assume V is not isomorphic toW . It suffices to prove that for each fixed λ ∈ V ∨

and w ∈W , the composition

V
v 7→ϕv,λ−−−−−→ H(G) α 7→τ(α)w−−−−−−→W
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is zero. One checks that this map is G-equivariant, and so it must be zero since V and W
are non-isomorphic irreducible G-representations.

Now assume (W, τ) = (V, π). By the exercise below, End(V )∞ ∼= V ⊗V ∨ is irreducible as
G×G-representation. By Schur’s Lemma, the map in question must be a scalar. To show
it is non-zero, first let α be a non-zero element of the image of MCV,π. (For instance we can
pick v ∈ V, λ ∈ V ∨ such that ⟨λ, v⟩ ≠ 0. Then ϕv,λ(1) ̸= 0.) If π(α) = 0, then there must be
an irreducible representation τ , not isomorphic to π, such that τ(α) ̸= 0 by the Separation
Lemma. This is a contradiction to what we have already shown. □

Exercise 12.6. Let G1, G2 be td groups, and Vi an irreducible smooth representation of
Gi. Then V1⊗V2 is an irreducible smooth representation of G1×G2. If V1 is irreducible and
admissible, then V ∨

1 is irreducible (and admissible) as a smooth G1-representation. (Use
V1 ∼= V ∨∨

1 .)
Lect.19, Mar 8

Definition 12.7. The inverse of c(V, π) is called the formal degree of (V, π), denoted by
d(V, π).10

Example 12.8. Let G be a second countable, compact td group. Then G is unimodular,
and every smooth representation is compact. It is easy to see that every irreducible smooth
representation is finite-dimensional. Its formal degree is its dimension, if we normalize the
Haar distribution such that G has volume 1. Indeed, to verify the last statement we easily
reduce to the case where G is finite, by modding out the kernel of G→ GL(V ). Now assume
that G is finite. Take T = id ∈ End(V ). Then MC(T ) sends g to the trace of π(g−1), i.e.,
it is the complex conjugate of the character χ of (V, π). We have

π(MC(T )) = |G|−1
∑
g∈G

χ̄(g)π(g).

If we take its trace, we get |G|−1
∑
g χ̄(g)χ(g), which is 1 by the Schur orthogonality rela-

tions satisfied by irreducible characters. Hence the original π(MC(T )) = c(V ) idV must be
(dimV )−1 idV .

Proposition 12.9. Let G be a td group for which Schur’s lemma holds (e.g., if G is count-
able at infinity). If a compact irreducible representation of G exists, then the center Z(G)
of G is compact.

Proof. Let (V, π) be such a representation. By Schur’s lemma, Z(G) acts on V by a character
χ : Z(G)→ C×. For any v ∈ V and λ ∈ V ∨, we have

ϕv,λ(g) = ⟨λ, π(g−1)v⟩ = χ(g)−1⟨λ, v⟩
for all g ∈ Z(G). We can choose v, λ such that ⟨λ, v⟩ ̸= 0. Then ϕv,λ is non-vanishing on
Z(G). But ϕv,λ is compactly supported, so Z(G) is contained in a compact subset of G.
One easily checks that in general Z(G) is a closed subgroup of G. Hence in our case it is
compact. □

Remark 12.10. When we study representation theory of p-adic reductive groups, compact
representations usually do not exist, since Z(G) is usually non-compact. (For instance, for F
a non-archimedean local field, the center of GLn(F ) is F

×, which is non-compact.) However,
there is a closely related class of representations, called supercuspidal representations. They
will be the building blocks of all representations in a suitable sense.

10The inversion is overlooked in [Ren10, §IV.1].
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13. Decomposition with respect to a fixed compact representation

From now on, let G be a second countable, unimodular td group. Fix a compact rep-
resentation (W, τ) of G. (Assume it exists.) Our next goal is the following: For any
(V, π) ∈M(G), we would like to have a decomposition V = V1⊕V2 into sub-representations,
such that V1 is a direct sum of copies of (W, τ), and V2 is such that every irreducible sub-
quotient of it is non-isomorphic to (W, τ). Here a subquotient of a representation U means
a representation of the form U1/U2, where 0 ⊂ U2 ⊂ U1 ⊂ U are sub-representations.

Theorem 13.1. For any compact open subgroup K ⊂ G, there is a unique element eK,τ ∈
H(G) with the following property: For any irreducible (V, π) ∈ M(G), π(eK,τ ) = π(eK) if
π ∼= τ , and π(eK,τ ) = 0 otherwise.

Proof. The uniqueness follows from the Separation Lemma. For the existence, we can take
eK,τ = c(W, τ)−1MCW,τ (τ(eK)). It satisfies the desired property since for any irreducible
π, we have π ◦MCW,τ = c(W, τ) when π ∼= τ and = 0 otherwise, by Theorem 12.5. □

Proposition 13.2. For two compact open subgroups K,K ′ of G with K ′ ⊂ K, we have

eK′,τ ∗ eK,τ = eK,τ ∗ eK′,τ = eK′,τ ∗ eK = eK ∗ eK′,τ = eK,τ .

In particular, eK,τ is idempotent, and it lies in H(G)K = eKH(G)eK .

Proof. Use the unique characterization of eK,τ . For instance, eK ∗ eK′,τ acts on π = τ via
π(eK)π(eK′) = π(eK), and acts on irreducible π not isomorphic to τ via π(eK) ◦ 0 = 0. □

Proposition 13.3. For any compact open subgroup K ⊂ G and any g ∈ G, we have
l(g)r(g)eK,τ = egKg−1,τ .

Proof. In general, for any (V, π) ∈ M(G), the map π : H(G) → EndC(V ), α 7→ π(α) is
G × G-equivariant. It follows that π(l(g)r(g)α) = π(g)π(α)π(g)−1. Using this one checks
that l(g)r(g)eK,τ satisfies the characterizing properties of egKg−1,τ . □

Lect.20, Mar 10
Let (V, π) ∈ M(G). Define pτ : V → V as follows. For v ∈ V , find a compact open

subgroup K ⊂ G fixing v. Then define pτ (v) := π(eK,τ )v. (Here V is not necessarily
irreducible, so it is not the case that π(eK,τ ) is either 0 or π(eK).) This definition is
independent of the choice of K. Indeed, for K ′ ⊂ K, we have

π(eK′,τ )v = π(eK′,τ )π(eK)v = π(eK,τ )v,

where the first equality is because v is fixed by K, and the second equality follows from
Proposition 13.2.

Lemma 13.4. The map pτ : V → V is idempotent.

Proof. Let v ∈ V . Assume that v is fixed by a compact open subgroup K. Then pτ (v) =
π(eK,τv) = π(eK ∗ eK,τ )v ∈ π(eK)V = V K . Hence p2τv = π(eK,τ )π(eK,τ )v = π(eK,τ ∗
eK,τ )v = π(eK,τ )v = pτ (v). □

Since pτ is idempotent, we have a canonical decomposition

V ∼= pτV ⊕ (1− pτ )V.

Lemma 13.5. The map pτ : V → V is G-equivariant. In particular the above decomposition
is a decomposition into sub-representations.
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Proof. Let g ∈ G. We need to check only check π(g)pτ = pτπ(g). Let x ∈ V K . Then

π(g)x ∈ V gKg−1

. We have

pτπ(g)x = π(egKg−1,τ )π(g)x = π(l(g)r(g)eK,τ )π(g)x = π(g)π(eK,τ )π(g
−1)π(g)x = π(g)pτ (x).

□

It follows directly from the definition of pτ , that if we have a morphism ϕ : V → V ′ in
M(G), then ϕ is compatible with pτ ∈ EndG(V ) and pτ ∈ EndG(V

′). In other words, pτ
is in the Bernstein center ZG = Z(M(G)). Recall that ZG is canonically isomorphic to
the inverse limit of the centers of H(G)K . The projection of pτ in the center of H(G)K is
nothing but eK,τ .

Now let p be an arbitrary idempotent element of ZG (such as pτ ). Then for any V ∈
M(G), we have a decomposition V ∼= pV ⊕ (1 − p)V into sub-representations. Moreover
this decomposition is functorial in V ∈ M(G), i.e., it is preserved by arbitrary morphisms
inM(G). Since p is idempotent, we have p = id on pV , and p = 0 on (1− p)V . Conversely,
if p = id (resp. 0) on V , then V = pV (resp. V = (1 − p)V ). Thus if we define M(G)p=1

(resp. M(G)p=0) to be the full subcategory of M(G) consisting of (V, π) on which p = id
(resp. p = 0), then we have a decomposition of category

M(G) ∼=M(G)p=1 ⊕M(G)p=0.

Here note that there are no non-zero morphisms between objects from the two subcate-
gories (because they must intertwine p), so a morphism in M(G) is indeed determined by
morphisms in the two subcategories independently. That is to say, we have

HomM(G)(V, V
′) = HomM(G)p=1(pV, pV ′)⊕HomM(G)p=0((1− p)V, (1− p)V ′).

Proposition 13.6. The following statements hold.

(1) The subcategory M(G)pτ=0 consists of (V, π) all of whose subquotients are not iso-
morphic to (W, τ).

(2) The subcategory M(G)pτ=1 consists of those (V, π) which are direct sums of copies
of (W, τ).

Proof. We prove (1) assuming (2). If (V, π) ∈ M(G)pτ=0, then any irreducible subquo-
tient of it is also in M(G)pτ=0, and hence non-isomorphic to (W, τ). Conversely, suppose
(V, π) ∈ M(G) is such that all its irreducible subquotients are non-isomorphic to (W, τ).
We decompose V = V1 ⊕ V2, with V1 ∈ M(G)pτ=1 and V2 ∈ M(G)pτ=0. If V1 ̸= 0, then
by (2), V1 contains an irreducible sub-representation isomorphic to (W, τ). This contradicts
with our assumption on V . Hence V1 = 0 and V = V2 ∈M(G)pτ=0.

Now we prove (2). If (V, π) is a direct sum of copies of (W, τ), then clearly it belongs
to M(G)pτ=1. Conversely, let (V, π) ∈ M(G)pτ=1. It suffices to show that V is the sum
of sub-representations isomorphic to (W, τ) (since the sum is automatically direct by the
irreducibility of (W, τ)). Let v ∈ V , and suppose v ∈ V K . The map

f :W ⊗W∨ MCW,τ−−−−−→ H(G) π−→ EndC(V )
(·)v−−→ V

is G-equivariant, where G acts onW⊗W∨ via the factorW . But recall that by construction
eK,τ ∈ im(MCW,τ ). Hence v = pτv = π(eK,τ )v ∈ im(f). NowW⊗W∨ as aG-representation
on the first factor, is isomorphic to a direct sum of copies (W, τ). Hence im(f) is generated
by sub-representations isomorphic to (W, τ). □
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14. A general decomposition result
Lect.21, Mar 13

Let G be an arbitrary td group. The terminology in the following definition is non-
standard.

Definition 14.1. A non-zero irreducible smooth representation (W, τ) of G is called quasi-
compact, ifM(G) decomposes into a direct sum of subcategoriesM(G)τ ⊕M(G)τ , where
M(G)τ is the full subcategory consisting of representations that are a direct sum of copies
of (W, τ), and M(G)τ is the full subcategory consisting of representations none of whose
subquotients are isomorphic to (W, τ).

In the previous section we showed that if G is second countable and unimodular, then
irreducible compact representations are quasi-compact. This is the motivation for the above
definition.

Recall that an object X of an abelian category A is called injective, if the (contravariant)
functor A → {abelian groups}, Y 7→ Hom(Y,X) is exact. It is called projective, if the
covariant functor Y 7→ Hom(X,Y ) is exact.

Lemma 14.2. Any irreducible quasi-compact representation (W, τ) is simultaneously an
injective and a projective object inM(G).

Proof. We prove projectivity and leave injectivity as an exercise. By general nonsense, it
suffices to check that any surjection p : V →W inM(G) admits a section, i.e., a morphism
q : W → V in M(G) such that p ◦ q = idW . We decompose V = Vτ ⊕ V τ , where Vτ is
a direct sum of copies of (W, τ), and V τ has no subquotient isomorphic to (W, τ). Clearly
p(V τ ) = 0, and so p(Vτ ) = W . Write Vτ =

⊕
i∈IWi, with each Wi isomorphic to (W, τ).

Then there must exist i ∈ I such that p(Wi) ̸= 0, i.e., p(Wi) = W . Then p|Wi is an

isomorphism Wi
∼−→W , and we define q to be the inverse of it. □

Lemma 14.3. Every non-zero smooth representation has a non-zero irreducible subquo-
tient. Every non-zero finitely generated smooth representation has a non-zero irreducible
sub-representation.

Proof. Since every smooth representation contains a finitely generated sub-representation,
the first statement follows from the second. To show the second, we apply Zorn’s lemma to
the set of proper sub-representations of a finitely generated (V, π). The finitely generated
condition guarantees that any totally ordered union of proper sub-representations is still
proper. Hence there exists a maximal proper sub-representation V1 ⊂ V . The quotient
V/V1 is then irreducible. □

From now on, we fix a set F of isomorphism classes of non-zero irreducible quasi-compact
representations of G. Here F can be finite or infinite, and it can be the set of all isomorphism
classes of such representations.

Definition 14.4. LetM(G)F (resp.M(G)F ) be the full subcategory ofM(G) consisting
of representations all of whose irreducible subquotients are isomorphic to a member of F
(resp. non-isomorphic to any member of F ).

Proposition 14.5. The category M(G)F is semi-simple, with simple objects being the
irreducible representations whose isomorphism classes belong to F . In other words, every
representation inM(G)F is a direct sum of irreducible representations whose isomorphism
classes belong to F .
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Proof. Let (V, π) ∈ M(G)F . Let V1 ⊂ V be the vector space generated by the irreducible
sub-representations of V . It suffices to show that V = V1, since V1 is necessarily a direct sum
of irreducible representations (because irreducible sub-representations of V have no non-zero
overlap), and the isomorphism classes of these irreducible representations are clearly in F .
Suppose V ̸= V1. Then V/V1 ̸= 0. Take an irreducible subquotient W of V/V1. This is also
a sub-quotient of V , so its isomorphism class is in F , and in particular W is quasi-compact.
But then W is projective, so V/V1 has a sub-representation isomorphic to W . Again by
projectivity, the inclusion W → V/V1 lifts to a map W → V whose image is not contained
in V1, a contradiction with the definition of V1. □

Lect.22, Mar 15
Consider the following finiteness condition:

(FC): For every compact open subgroup K, there are only finitely many isomorphism
classes [(W,π)] in F such that WK ̸= 0.

Theorem 14.6. Assume (FC). ThenM(G) =M(G)F ⊕M(G)F .

Proof. It is easy to see that there are no non-zero homomorphisms between objects of the
two subcategories. The question is to show that every (V, π) ∈ M(G) admits a functorial
decomposition V = VF ⊕ V F .

Let (V, π) ∈ M(G). For each isomorphism class [(W, τ)] in F , we have a decomposition
V = Vτ ⊕ V τ by the assumption that (W, τ) is quasi-compact. Let pτ : V → Vτ be the
projection. Now define p : V → V as follows. Let v ∈ V , and assume v ∈ V K . Define

p(v) =
∑

[(W,τ)]∈F

pτ (v).

Note that pτ (v) is non-zero only when (W, τ) has non-zero K-fixed vectors. Hence by (FC),
we know that the above sum is finite. It is easy to check that p is idempotent, G-equivariant,
and functorial in V ∈ M(G). In other words, p is an idempotent element of the Bernstein
center ZG.

We check that p : V → V is idempotent. Let v ∈ V , then

p2v =
∑

[τ ],[τ ′]∈F

pτpτ ′(v),

where the double sum is still finite. If [τ ] ̸= [τ ′], then pτpτ ′ = 0 since pτ ′(V ) is a direct sum

of copies of τ and therefore lies inM(G)τ
′
. Hence

p2v =
∑
[τ ]∈F

p2τv =
∑

pτv = p(v).

This proves that p is idempotent.
As before we have a decomposition

M(G) =M(G)p=1 ⊕M(G)p=0.

It remains to showM(G)p=1 =M(G)F andM(G)p=0 =M(G)F .
Using Proposition 14.5, it is easy to check M(G)F ⊂ M(G)p=1. Conversely, if (V, π) ∈

M(G)p=1, then any irreducible subquotient of (V, π) is still inM(G)p=1, and therefore its
isomorphism class is in F . Hence (V, π) ∈M(G)F .

Similarly, it is easy to show M(G)p=0 ⊂ M(G)F . For the reverse containment, let
V ∈ M(G)F . Write V = V1 ⊕ V2 with V1 ∈ M(G)p=1 and V2 ∈ M(G)p=0. It suffices to
show V1 = 0. Suppose not. Then by what we have already shown, we have V1 ∈ M(G)F ,
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and therefore V1 has an irreducible subquotient in F . But this is also a subquotient of V ,
a contradiction. □

Lect.23, Mar 17

15. Unitary and square integrable representations

Let G be a second countable td group. We call a smooth representation (V, π) unitary, if
there is a positive definite Hermitian form ⟨·, ·⟩ on V such that G-acts on V via isometries,
i.e., ⟨π(g)v, π(g)w⟩ = ⟨v, w⟩ for all g ∈ G, v,w ∈ V . We also say that G preserves ⟨·, ·⟩.
The motivation for the terminology “unitary” is that each π(g) is a unitary operator (with
respect to the given Hermitian form).

It turns out that the notion of a unitary representation behaves well when coupled with
the admissible condition.

Lemma 15.1. Let (V, π) ∈ M(G) be irreducible admissible. Then on V there is at most
one, up to scaling, positive definite Hermitian form preserved by G.

Proof. Any such Hermitian form defines a non-zero G-linear map V → V ∨, and is deter-
mined by the latter. Recall from Exercise 12.6 that V ∨ is irreducible. (This uses that V is
admissible.) Hence any non-zero G-linear map V → V ∨ must be an isomorphism, and is
unique up to scaling. □

Lemma 15.2. Let (V, π) ∈M(G) be unitary and admissible. Then V ∼= V ∨.

Proof. Let ⟨·, ·⟩ be a positive definite G-invariant Hermitian form on V . Then we have a
G-linear map ϕ : V → V ∨, v 7→ ⟨·, v⟩. It suffices to check that ϕ is an isomorphism. For

this, we only need to show that for each compact open subgroup K, ϕ : V K
∼−→ (V ∨)K .

Recall that (V ∨)K ∼= (V K)∗, and the induced map ϕ : V K → (V K)∗ is the usual map
arising from the positive-definite form on V K . Since V K is finite dimensional, this map is
an isomorphism. □

Lemma 15.3. Let (V, π) ∈ M(G) be unitary and admissible. For any sub-representation
W ⊂ V , the orthogonal complement W⊥ = {v ∈ V | ⟨v, w⟩ = 0,∀w ∈ W} is also a
sub-representation, and V =W ⊕W⊥.

Proof. Only the fact that V = W +W⊥ is unclear. Consider a compact open subgroup
K. Then V K is finite dimensional by admissibility. Now V K inherits the hermitian form
from V , and the orthogonal complement of WK in V K is (W⊥)K . Indeed, if v ∈ V K is
perpendicular to WK , then for any w ∈W we have ⟨v, w⟩ = ⟨eKv, w⟩ = ⟨v, eKw⟩ = 0 since
eKw ∈ WK . Hence V K = WK ⊕ (W⊥)K , and in particular V K ⊂ W +W⊥. Taking the
union over K we get the desired result. □

Lemma 15.4. Let (V, π) ∈M(G) be unitary, admissible, and non-zero. Then (V, π) has a
non-zero irreducible sub-representation.

Proof. We know that V has an irreducible subquotient. Up to shrinking V , we may assume
that it has an irreducible quotient f : V → W . Then ker f ̸= V , and by Lemma 15.3,
W ′ := (ker f)⊥ ̸= 0. Then W ′ is a non-zero sub-representation of V , and it is irreducible
since it maps injectively into W (hence isomorphic to W ). □

Proposition 15.5. Let (V, π) ∈ M(G) be unitary and admissible. Then (V, π) is semi-
simple, i.e., isomorphic to a direct sum of irreducible representations.
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Proof. Let V1 ⊂ V be the vector subspace generated by all irreducible sub-representations
of V . As we have seen several times, it suffices to show V = V1. Suppose not. Then
V = V1 ⊕ V ⊥

1 with V ⊥
1 ̸= 0 by Lemma 15.3. Clearly V ⊥

1 is also unitary and admissible.
By Lemma 15.4, V ⊥

1 contains an irreducible sub-representation, a contradiction with the
definition of V1. □

Now we assume that G is unimodular.

Fact 15.6. If G is unimodular, then G/Z(G) is a unimodular td group. We fix a Haar
measure µ(ḡ) on it.

Definition 15.7. By a character on Z(G), we mean a continuous homomorphism χ :
Z(G)→ C×, where continuous just means it kills an open subgroup. We say χ is unitary if
|χ(z)| = 1 for all z ∈ Z(G). Similarly, we define the notion of a (unitary) character for G.

Definition 15.8. Fix a unitary character χ of Z(G). Let L2(G,χ) be the C-vector subspace
of C∞(G) consisting of f such that

(1) f(gz) = f(g)χ(z) for all g ∈ G, z ∈ Z(G). (We say that f translates under Z(G)
via χ.) In particular, |f | descends to a smooth function on G/Z(G).

(2) |f | is square integrable on G/Z(G), i.e.,
∫
G/Z(G)

|f(ḡ)|2µ(ḡ) <∞. Here the integral

is a priori an infinite series of positive terms.

Exercise 15.9. Work out the explicit definition of
∫
G/Z(G)

|f | as an infinite series for general

f ∈ C∞(G/Z(G)) (using that f takes only countably many different values since G/Z(G)
is second countable), and show that this is well-defined (as an element of R∪{+∞}). Show
that L2(G,χ) is a sub-representation of the G × G-representation C∞(G). Show that on
L2(G,χ) we have a G×G-invariant positive definite Hermitian form given by

⟨f1, f2⟩ =
∫
G/Z(G)

f̄1(ḡ)f2(ḡ)µ(ḡ).

In particular, L2(G,χ) is a unitary G×G-representation.

Definition 15.10. We call (V, π) ∈M(G) square integrable, if the following conditions are
satisfied:

(1) Z(G) acts on V by a unitary character χ. (We say that (V, π) has unitary central
character.)

(2) Every matrix coefficient ϕv,λ (for v ∈ V, λ ∈ V ∨) lies in L2(G,χ).

Remark 15.11. Condition (1) above already implies every matrix coefficient ϕv,λ ∈ C∞(G)
satisfies condition (1) in Definition 15.8.

Remark 15.12. Any compact representation admitting a central character is square inte-
grable. Indeed, the existence of such a representation implies that Z(G) is compact, and
hence the central character in question must be unitary since its image in C× is a finite
subgroup.

Definition 15.13. We call (V, π) ∈ M(G) essentially square integrable, if there is a char-
acter ω of G (trivial on a compact open subgroup) such that (V, ωπ) is square integrable.
Here (ωπ)(g) := ω(g) · π(g) ∈ End(V ).

Lemma 15.14. Let (V, π) ∈M(G) be irreducible. The following statements hold.

(1) If (V, π) is essentially square integrable, then it is admissible.



REPRESENTATIONS OF P-ADIC GROUPS 37

(2) If (V, π) is admissible, has unitary character χ, and there is one pair (v, λ) ∈ V ×V ∨

such that 0 ̸= ϕv,λ ∈ L2(G,χ), then (V, π) is square integrable.

Proof. (1) We may assume that (V, π) is square integrable, with unitary central character χ.
For simplicity assume Z(G) = 1; the general case is treated similarly. Let K be a compact
open subgroup, and suppose V K is infinite dimensional for the sake of contradiction. Fix
a non-zero v ∈ V . Then V is spanned by {π(g)v | g ∈ G}, and hence V K = π(eK)V is
spanned by {π(eK)π(g)v | g ∈ G}. Hence there exist infinitely many g1, g2, · · · ∈ G such
that π(eK)π(gn)v ∈ V K are linearly independent. Recall that (V ∨)K ∼= (V K)∗. Hence we
can find λ ∈ (V ∨)K such that λ(π(eK)π(gn)v) = 1 for all n. One easily shows that∫

G

|ϕv,λ|2 =
∑

g∈G/K

|λ(π(eK)π(g−1)v)|2 vol(K).

Clearly the images of gn in K\G are distinct. Hence the above is greater or equal to

vol(K)
∑
n

|λ(π(eK)π(gn)v)|2 =∞,

a contradiction.
(2) Since (V, π) is irreducible and admissible, we know V ∨ is irreducible in M(G), and

V ⊗ V ∨ is irreducible in M(G × G). The matrix coefficient construction is a G × G-
linear map V ⊗ V ∨ → C∞(G). We conclude by noting that L2(G,χ) ⊂ C∞(G) is a
sub-representation. □

Proposition 15.15. Let (V, π) ∈ M(G) be admissible and square integrable. Then it is
unitary (and hence semi-simple by Proposition 15.5).

Proof. Consider a finitely generated sub-representation W ⊂ V . Let Ann(W ) be the anni-
hilator of W in V ∨. Then W∨ ∼= V ∨/Ann(W ). Indeed, it suffices to show that the natural
map V ∨ →W∨ is onto. For this use that (V ∨)K ∼= (V K)∗ and (W∨)K ∼= (WK)∗.

Let w1, · · · , wn be generators of W as a G-representation. For λ1, λ2 ∈W∨, define

⟨λ1, λ2⟩ =
n∑
i=1

∫
G/Z(G)

ϕ̄wi,λ̃1
ϕwi,λ̃2

,

where λ̃i ∈ V ∨ is a lift of λi ∈ W∨ ∼= V ∨/Ann(W ). Then this is a well-defined, positive-
definite Hermitian form on W invariant under G. We only check positive-definite: Suppose
⟨λ, λ⟩ = 0. Then ϕwi,λ̃

= 0 for each i. Hence λ̃ kills everything in the G-orbit of wi, and

therefore λ̃ ∈ Ann(W ). This means λ = 0.
Thus we have shown that W∨ is unitary. Since V is admissible, so are W and W∨.

We conclude that W is unitary by Lemma 15.2. Now V is the union of all finitely gener-
ated subrepresentations, and the latter are unitary admissible and therefore semi-simple by
Proposition 15.5. It easily follows that V is semi-simple. Writing V =

⊕
i∈I Vi with Vi irre-

ducible, we have each Vi is unitary since it is finitely generated. Let ⟨·, ·⟩i be a G-invariant
positive-definite Hermitian form on Vi. Then we can define ⟨

∑
i vi,

∑
i v

′
i⟩ :=

∑
i⟨vi, v′i⟩i (all

sums being finite), which is a G-invariant positive-definite Hermitian form on V . □

Next we discuss Schur orthogonality for square integrable representations. As usual, for
any function f on G, we write f̌ for g 7→ f(g−1).

Theorem 15.16. Let (V, π) ∈ M(G) be irreducible, admissible, square integrable. The
following statements hold.
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(1) There exists d(π) ∈ R>0 (depending on the choice of Haar measure on G/Z(G)),
called the formal degree of (V, π), with the property that for all v1, v2 ∈ V, λ1, λ2 ∈
V ∨, we have ∫

G/Z(G)

ϕv1,λ1
ϕ̌v2,λ2

= d(π)−1λ1(v2)λ2(v1).

(2) Let (V2, π2) satisfy the same assumptions as (V, π), but non-isomorphic to (V, π).
Assume that V2 has the same central character as V . Write (V1, π1) for (V, π). For
any vi ∈ Vi, λi ∈ V ∨

i (i = 1, 2), we have∫
G/Z(G)

ϕv1,λ1
ϕ̌v2,λ2

= 0.

Sketch of proof. The integrals all make sense by the square integrable assumptions and the
assumption on the central characters.

By Proposition 15.15, (V, π) is unitary. We may then identify V ∼= V ∨ as in Lemma
15.2. Sending (v1 ⊗ λ1, λ2 ⊗ v2) ∈ (V ⊗ V ) × (V ⊗ V ) to the two sides of the equation in
(1) respectively, defines two positive-definite Hermitian forms on V ⊗ V . They are both
G×G-invariant. Since V ⊗V is an irreducible G×G-representation, these Hermitian forms
must differ by a positive scalar, by Lemma 15.1. This proves (1).

For (2), fix v2 and λ1. Define V1 → V ∨∨
2 by sending v1 ∈ V1 to the map

V2 ∋ v2 7−→
∫
G/Z(G)

ϕv1,λ1
ϕ̌v2,λ2

.

This map is G-linear and hence must be 0 since V ∨
2
∼= V2 is non-isomorphic to V1. □

Exercise 15.17. Let (V1, π1), · · · , (Vn, πn) ∈M(G) be pairwise non-isomorphic, irreducible
admissible square integrable. Let ϕi be a matrix coefficient for (Vi, πi). Then ϕ1, · · · , ϕn
are linearly independent in C∞(G).

16. Reductive groups
Lect.24, Mar 27

We recall some aspects of the general theory of reductive groups over a field. Standard
references in this subject are [Spr09], [Spr79], [Bor91]. We also recommend [Mil17].

Let F be a field of characteristic zero, and fix an algebraic closure F . By an algebraic vari-
ety over F , we mean a reduced scheme of finite type over F such that each connected compo-
nent is irreducible. In particular, an affine F -variety is of the form SpecA =

∐n
i=1 SpecAi,

where A =
∏n
i=1Ai and each Ai is a finitely generated F -algebra and is an integral domain.

We often identify a variety V with its set of F -points V (F ) (which is also in bijection with
the set of closed points of the scheme V ), when no confusion arises. Note that we have a
natural action of ΓF := Gal(F/F ) on V = V (F ). The fixed points are exactly the F -points
of V , denoted by V (F ). We denote the base change of V to F by VF .

Recall that a linear algebraic group over F is an affine F -variety G together with F -
variety maps m : G ×F G → G, i : G → G, e : SpecF → G satisfying the usual axioms of
multiplication, inversion, identity, for a group. For any F -algebra R, the R-points of G is
then an actual group G(R). As usual, by Yoneda, G as a linear algebraic group is determined
by the functor R 7→ G(R) from F -algebras to groups. Similarly, a homomorphism G→ G′

is determined by a functorial family of homomorphisms G(R) → G′(R) for all F -algebras
R.
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Example 16.1. We have a linear algebraic group G = GLn over F . The functor of points
is given by R 7→ GLn(R) = {n × n invertible matrices over R} = {A ∈ Mn×n(R) | detA ∈
R×}. We can also describe the variety G and the structure maps m, e, i explicitly. Namely,
G = SpecF [a11, a12, · · · , ann,det(aij)−1]. The map m : G×G→ G is given by, at the level
of the rings,

F [aij ,det(aij)
−1]→ F [bij ,det(bij)

−1]⊗F F [cij ,det(cij)−1], aij 7→
∑
k

bik ⊗ ckj .

That is, it sends the ij-th coordinate function to its pull-back under the matrix multiplica-
tion (B,C) 7→ B · C. We omit the description of i and e.

Fact 16.2. Every linear algebraic group over F is a closed subgroup of GLn (over F ) for
some n. The converse is also true. So we can think of a linear algebraic group concretely
as a subvariety of GLn closed under the group operations.

Let G be a linear algebraic group over F . An element g ∈ G (meaning g ∈ G(F )) is called
unipotent, if for every algebraic homomorphism GF → GLn,F (for all n), the image of g is

a unipotent matrix in GLn(F ), that is, a matrix A such that A− In is nilpotent. Similarly,
an element g ∈ G is called semi-simple, if for every algebraic homomorphism GF → GLn,F
(for all n), the image of g is a diagonalizable matrix (one that is conjugate to a diagonal
matrix). We call G unipotent, if every g ∈ G is unipotent. Note that all these definitions
depend only on GF , not on G.

Fact 16.3 (Jordan decomposition). Let G be a linear algebraic group over F , and g ∈ G.
Then there is a unique decomposition g = gsgu with gs, gu ∈ G such that gsgu = gugs, gs is
semi-simple, and gu is unipotent.

Fact 16.4. A linear algebraic group over F is unipotent if and only if it isomorphic to a
closed subgroup of Un for some n, where Un is the closed subgroup of GLn (over F ) consisting
of the upper-triangular matrices with 1’s on the diagonal.

Fact 16.5. Let G be a linear algebraic group over F . Then GF has a maximal closed
subgroup which is connected, normal, and unipotent. Moreover, this subgroup is defined
over F .11 It is called the unipotent radical of G, and denoted by Ru(G).

Definition 16.6. A linear algebraic group G is called reductive, if Ru(G) = 1.

Remark 16.7. We allow a reductive group to be disconnected.

Remark 16.8. By definition G is reductive if and only if GF is reductive.
Lect.25, Mar 29

Remark 16.9. For a linear algebraic group G over F , the connectedness of the F -scheme
G is equivalent to the connectedness of the F -scheme GF , since G has a section over F
(namely the identity e : SpecF → G).

Example 16.10. The group GLn is reductive. Note that GLn has the closed subgroup Un
which is connected and reductive, but this is not a contradiction, because Un is not normal
in GLn.

11We say that a closed subgroup H of GF is defined over F , if the following two equivalent conditions

are satisfied: (1) Viewed as a subgroup of G(F ), H is Gal(F/F )-stable. (2) Viewed as a closed F -subvariety

of GF , H arises as the base change of a (unique) closed F -subvariety of G.
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Example 16.11. Consider the closed subgroup Bn of GLn consisting of the upper triangular
invertible matrices. Then Bn contains Un as a closed normal subgroup. In fact Ru(Bn) =
Un. Hence Bn is not reductive for n ≥ 2.

Example 16.12. Let G1 and G2 be reductive (resp. connected), then G1×G2 is reductive
(resp. connected).

In the beginning of the course we already gave some examples of reductive groups. (More
precisely, we gave examples of the Qp-points of reductive groups over Qp.) We somewhat
repeat them here.

Example 16.13. Let V be a finite dimensional F -vector space, and let ⟨·, ·⟩ be a symmetric
or anti-symmetric non-degenerate bilinear form on V . We have a closed subgroup G of
GL(V ) (isomorphic to GLn) such that for each F -algebra R, G(R) is the subgroup of
GL(V )(R) = AutR-lin(V ⊗F R) consisting of g ∈ GL(V )(R) preserving the R-bilinear form
on V ⊗FR induced by ⟨·, ·⟩ and such that det(g) = 1. (The condition det(g) = 1 is automatic
in the anti-symmetric case.) We usually write G = SO(V, ⟨·, ·⟩) in the symmetric case, and
write G = Sp(V, ⟨·, ·⟩) in the anti-symmetric case. They are called the special orthogonal
group and the symplectic group respectively. In both cases G is connected and reductive.

Example 16.14. Let E/F be a finite extension, and G be a linear algebraic group over E.
Then there is a linear algebraic group ResE/F G over F , called the Weil restriction of scalars
of G from E to F , characterized by that ResE/F (G)(R) = G(R⊗F E) for all F -algebras R.
Here G(R⊗F E) makes sense as R⊗F E is an E-algebra and G is a linear algebraic group
over E.

Exercise 16.15. Prove that this functor is indeed given by a linear algebraic group ResE/F (G)
over F . (For G = GLn, this was hinted at in Example 1.1.)

Exercise 16.16. Show that (ResE/F G)F
∼=

∏
σ∈HomF (E,F )Gσ,F , where Gσ,F denotes the

base change of G from E to F along σ : E ↪→ F . In particular, G is a reductive (resp. con-
nected reductive) group over E if and only if ResE/F G is a reductive (resp. connected
reductive) group over F .

Example 16.17. Let E/F be a finite extension, and let V be a finite dimensional E-
vector space. For every F -algebra R, we have (ResE/F GL(V ))(R) = GL(V )(E ⊗F R) =
AutE-lin(V ⊗EE⊗F R) = AutE-lin(V ⊗F R). Thus if we write V0 for the underlying F -vector
space of V (whose F -dimension is [E : F ] dimE V ), then ResE/F GL(V ) is the F -subgroup
of GL(V0) defined by the E-linear condition.

In the case where V is equipped with a non-degenerate E/F -hermitian form ⟨·, ·⟩, we
have the unitary group G = U(V, ⟨·, ·⟩). This is the closed subgroup of ResE/F GL(V ) such
that G(R) consists of E-linear automorphisms of V ⊗F R preserving ⟨·, ·⟩. We know that G
is connected reductive.

Example 16.18. Let C be a central simple algebra over F . We have a linear algebraic
group G over F such that G(R) = (C ⊗F R)×. Since C ⊗F F ∼=Mn×n(F ) as F -algebras, it
is easy to see that GF

∼= GLn . We say that G is a form of GLn, meaning that they become

isomorphic over F but may not be isomorphic over F . In fact, in the previous example, the
unitary group is also a form of GLn (for n = dimE V ). In general the unitary group, the
current G associated to C, and GLn, are pairwise non-isomorphic over F .
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17. Diagonalizable groups and tori

Definition 17.1. A linear algebraic group G over F is called diagonalizable (resp. a torus)
if and only if GF is isomorphic to a closed subgroup of Gnm (resp. isomorphic to Gnm) for
some n. Here Gm = GL1. A torus is called split, if it is isomorphic to Gnm over F .

Remark 17.2. We can identify Gnm with the closed subgroup of GLn consisting of diagonal
matrices. This explains the terminology “diagonalizable”.

Fact 17.3. Let G be a linear algebraic group over F . Then G is a torus if and only if it is
connected reductive commutative, if and only if G is connected and diagonalizable. If G′ is
diagonalizable, then the identity connected component of G′ is a torus.

Write ΓF for Gal(F/F ).

Definition 17.4. For any linear algebraic groupG over F , defineX∗(G) = HomF -gps(GF ,Gm),

namely the set of morphisms GF → Gm in the category of linear algebraic groups over F .
This has a natural abelian group structure, given by the abelian group variety structure on
Gm.

There is a continuous ΓF -action on X∗(G). Here continuity just means that the action
factors through Gal(E/F ) for some finite Galois extensions E/F . We explain this action.
There is a natural injection from X∗(G) to the abelian group of actual group homomor-

phisms χ : G(F ) → Gm(F ) = F
×
. (The image consists of those homomorphisms that

are “algebraic”.) We only describe the ΓF -action on the latter set. Given σ ∈ ΓF and

χ : G(F )→ F
×
, we define σ(χ) to be G(F )→ F

×
, g 7→ σ(χ(σ−1(g))). Here g 7→ σ−1(g) is

the action of σ−1 on G(F ).

Remark 17.5. We often denote the abelian group structure on X∗(G) additively, although
it is defined by the multiplication on Gm.

Fact 17.6. The functor G 7→ X∗(G) defines an anti-equivalence from the abelian category
of diagonalizable groups over F to the abelian category of finitely generated abelian groups
together with continuous ΓF -actions. We have G is a torus of dimension n if and only if
X∗(G) is free of rank n (i.e., isomorphic to Zn), and G is a split torus if and only if the
above condition holds and ΓF acts trivially on X∗(G).

Remark 17.7. The category of diagonalizable groups is abelian, where kernels and cok-
ernels are special cases of kernels and quotients of linear algebraic groups, which will be
discussed slightly later. We point out here that the subcategory of tori is not abelian, as
it is not closed under taking kernels. (e.g. the kernel of Gm → Gm, z 7→ zn is µn, whose
R-points is the group of n-th roots of unity in R×. This group is not connected.) Simi-
larly, the category of finite rank free Z-modules together with a continuous ΓF -action is not
abelian, as it is not closed under taking cokernels.

Lect.26, Mar 31

Example 17.8. Let E/F be a finite extension. Consider T = ResE/F Gm. For every F -

algebra R, T (R) = (R ⊗F E)×. We know that T is a torus, and X∗(T ) is the finite free
Z-module with basis given by the F -embeddings E → F , and the ΓF -action is given by the
natural ΓF -action on the set of F -embeddings E → F .

For instance, for E/F = C/R, we can identify X∗(ResC/R Gm) with Z2, with complex

conjugation in Gal(C/R) acting on Z2 by (a, b) 7→ (b, a).
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In general, we have a homomorphism of F -tori

N : ResE/F Gm −→ Gm,
which on R-points is the map

(R⊗F E)× → R×,
∑
i

ri ⊗ ei 7→
∑
i

ri ⊗NE/F ei.

Here NE/F is the norm map E → F .
Now under the functor X∗, the map N induces the map

X∗(N) : X∗(Gm) −→ X∗(ResE/F Gm)

given by Z →
∏
σ∈HomF (E,F ) Z, a 7→ (a, · · · , a). Since X∗ is an equivalence of abelian

categories, if we let T 1 be the kernel of N : T → Gm, then X∗(T 1) is the cokernel of X∗(N),
which one can check is free as a Z-module. It follows that T 1 is actually a torus (as opposed
to merely a diagonalizable group).

18. Center, derived subgroup, and abelianization

Fact 18.1. Let G be a connected reductive group over F . Then there is a closed subgroup
ZG of G, called the center of G, such that for every F -algebra R, ZG(R) = center of G(R).
Moreover, ZG is a diagonalizable group over F . We call G semi-simple, if G is connected
reductive and ZG has dimension 0.

Fact 18.2. Let G be a linear algebraic group, and H ⊂ G a closed normal subgroup (both
defined over F ). Here normal means that H(R) is normal in G(R) for every F -algebra R.
Then we can form the quotient G/H, which is still a linear algebraic group over F . The
map G → G/H is characterized as universal among all homomorphisms G → G′ between
linear algebraic groups over F killing H.

Remark 18.3. We have (G/H)(F ) ∼= G(F )/H(F ), but for a general F -algebra R, for
instance R = F , we only have an injection G(F )/H(F )→ (G/H)(F ).

Fact 18.4. Given any homomorphism ϕ : G → G′ between linear algebraic groups over
F , the kernel of it is a closed normal subgroup K ⊂ G defined over F . It is characterized
by K(R) = ker(G(R) → G′(R)) for all F -algebras R. Then ϕ induces a homomorphism
ϕ̄ : G/K → G′ which is injective at the level of R-points for all F -algebras R. We say that
ϕ is injective, if the kernel is trivial, or equivalently ϕ is injective at the level of R-points
for all R.

We say that ϕ is surjective, if it is surjective at the level of F -points. This is if and only
if ϕ̄ is an isomorphism. Thus our previous remark on the quotient applies here, namely for
a surjective ϕ : G→ G′, the induced map G(R)→ G′(R) may not be surjective.

Fact 18.5. Let G be a connected reductive group over F . Then G/ZG is also a connected
reductive group over F , and its center is trivial. We denote G/ZG by Gad, and call it the
adjoint group of G. There is a minimal closed normal subgroup Gder of G, called the derived
subgroup, such that G/Gder is abelian. We know that Gder is connected reductive and semi-
simple, and G/Gder is a torus. We denote the latter by Gab, called the abelianization of G.
We know that G is generated by Gder and ZG, in the sense that there is no proper closed
subgroup of G containing both Gder and ZG. We have ZGder

⊂ ZG.

Remark 18.6. The F -group homomorphism G→ Gab is surjective, but the induced map
G(F )→ Gab(F ) may not be surjective.



REPRESENTATIONS OF P-ADIC GROUPS 43

Example 18.7. For G = GLn, we have ZG = Gm = the invertible scalar matrices, and
Gder = SLn. Note that ZSLn = µn, the kernel of the n-th power map Gm → Gm. This
is disconnected, even though ZGLn

is connected. We have Gab ∼= Gm, and the natural
map G → Gab is identified with the determinant map GLn → Gm. Note that in this case,
GLn(F )→ Gm(F ) is in fact surjective (which is elementary to see).

Lect.27, Apr 3

Definition 18.8. LetG be a connected reductive group over F . LetX∗(G) = HomF -gps(G,Gm).
This is a finite rank free abelian group together with a continuous ΓF -action. In fact it is
identified with X∗(Gab).

Definition 18.9. We write X∗(G(F )) for X∗(G)ΓF = {χ ∈ X∗(G) | σ(χ) = χ,∀σ ∈ ΓF }.

Note that X∗(G(F )) consists exactly of F -group homomorphisms G → Gm. Hence for
χ ∈ X∗(G(F )), we indeed obtain a character G(F )→ F×, which partially justifies the no-
tation. Alternatively, we can identify an element χ ∈ X∗(G) with an actual homomorphism

G(F )→ F
×

(which should be “defined by polynomials over F”). Then χ is fixed by ΓF if

and only if the homomorphism G(F ) → F
×

is ΓF -equivariant, and in this case we obtain
a homomorphism between the ΓF -fixed points on the two sides, namely a homomorphism
G(F )→ F×.

Moreover, it is a fact that G(F ) is Zariski dense in G (which holds for arbitrary connected
linear algebraic groups over F ), and hence an element χ ∈ X∗(G(F )) is uniquely determined
by the homomorphism G(F ) → F× induced by itself. We sometimes call elements of
X∗(G(F )) “algebraic characters on G(F )”.

19. Local fields

We now recall the notion of a non-archimedean local field. Let F be a field. By a non-
archimedean absolute value on F , we mean a function | · | : F → R≥0 satisfying the following
axioms:

(1) |xy| = |x||y|.
(2) |x| = 0 if and only if x = 0.
(3) |x+ y| ≤ max(|x|, |y|).

Given | · |, we can define a subring OF of F by

OF = {x ∈ F | |x| ≤ 1.}

This is a local ring, and its unique maximal ideal is

mF = {x ∈ F | |x| < 1}.

It follows that

O×
F = {x ∈ F | |x| = 1}.

We write kF for the residue field OF /mF .
We say that F together with a non-archimedean absolute value | · | is a non-archimedean

local field (or simply a local field), if the following conditions are satisfied:

(1) (Completeness.) The space F is complete with respect to the topology defined by
| · |, i.e., every Cauchy sequence with respect to | · | converges in F .12

12Note that the notion of a Cauchy sequence depends only on a neighborhood basis of 0. Hence it indeed

depends only on the topology, not on the metric.
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(2) (Discreteness.) The image of the group homomorphism | · | : F× → (R>0,×) is a
discrete subgroup. Note that every discrete subgroup of R>0 is cyclic. We take the
unique 0 < α < 1 such that |F×| = αZ.

(3) (Local compactness.) The topology on F defined by | · | is locally compact. Equiv-
alently, the residue field kF is finite.

Let (F, | · |) be a non-archimedean local field. Note that if we replace | · | by | · |u for some
u ∈ R − {0}, then all the axioms are still satisfied, the topology on F remains the same,
and the subring OF ⊂ F stays the same. The generator α for |F×| will be replaced by αu.
Hence we can always arrange that α is our favorite number between 0 and 1. The canonical
normalization refers to the choice that α = q−1, where q is the cardinality of the finite field
kF . In the sequel we shall always take the canonical normalization, and denote the absolute
value thus normalized by | · |F .

Definition 19.1. A uniformizer in F means any element π ∈ F such that |π|F = q−1.

Example 19.2. F = Qp,OF = Zp, kF = Fp, and p is a uniformizer.
Lect.28, Apr 5

Then mF = πOF for any uniformizer π. For any x ∈ F×, we have

|x|F = q−vF (x),

where vF (x) is the unique integer such that xπ−vF (x) ∈ O×
F = {x ∈ F | |x|F = 1}. For

instance vF (π) = 1.
For every F -variety V , V (F ) has a canonical topology, which we call the non-archimedean

topology: It is the coarsest topology such that for every Zariski open F -subvariety U ⊂ V ,
the subset U(F ) is open in V (F ), and for every F -variety morphism f : U → AnF , the
induced map U(F ) → AnF (F ) = Fn is continuous. Here Fn is equipped with the product
topology coming from the natural topology on F (defined by | · |F ).

On V (F ) we can also consider the Zariski topology, where open sets are precisely of the
form U(F ) for Zariski open F -subvarieties U of V . Equivalently, this is the topology on
V (F ) inherited from the Zariski topology on the F -scheme V , and also the same as the
topology inherited from the Zariski topology on the F -scheme V (F ).

Exercise 19.3. Show that the last two topologies on V (F ) are indeed the same.

Remark 19.4. By definition, the non-archimedean topology on V (F ) is finer than the
Zariski topology.

Exercise 19.5. Let V be an affine F -variety. Then V is a closed F -subscheme of AnF =
SpecF [X1, · · · , Xn], and in particular V (F ) ⊂ AnF (F ) = Fn . Show that the non-archimedean
topology on V (F ) is the subspace topology inherited from Fn.

For a linear algebraic group G over F , if we realize G as a Zariski closed subgroup of GLn,
then G(F ) is closed in GLn(F ) when the two are equipped with the non-archimedean topol-

ogy, and GLn(F ) is open inMn×n(F ) ∼= Fn
2

. Under the non-archimedean topology, G(F ) is
a td group and second countable. More specifically, a neighborhood basis of 1 in G consisting
of compact open subgroups is given by the intersections G(F ) ∩ 1 + πkMn×n(OF ), n ≥ 1.
Note that G(F ) is totally disconnected, despite that G may be connected in the Zariski
topology.

Fact 19.6. If G is a connected reductive group over F , then G(F ) is unimodular.
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20. Unramified characters

Let G be a connected reductive group over F . For each g ∈ G and χ ∈ X∗(G(F )),
by considering χ as a homomorphism G(F ) → F× we obtain vF (χ(g)) ∈ Z. Sending χ
to vF (χ(g)) is a homomorphism X∗(G(F )) → Z, i.e., an element HG(g) ∈ X∗(G(F )) =
Hom(X∗(G(F )),Z). Moreover, the map g 7→ HG(g) is a homomorphism

HG : G(F ) −→ X∗(G(F )).

We denote by 0G(F ) the kernel of HG. In other words,

0G(F ) = {g ∈ G(F ) | ∀χ ∈ X∗(G(F )), χ(g) ∈ O×
F }.

We denote by Λ(G) the image of HG.

Example 20.1. Let G = GLn. Then X∗(G(F )) = X∗(Gab)ΓF = X∗(Gab) = Z, where
a generator corresponds to the homomorphism det : G(F ) → F×. Hence 0G(F ) = {g ∈
G(F ) | det g ∈ O×

F }.

Example 20.2. If G is semi-simple, then G(F ) = 0G(F ).

Lemma 20.3. Let χ ∈ X∗(G(F )). Consider the homomorphism |χ|F : G(F ) → R>0 that
is the composition of χ : G(F ) → F× and | · |F : F× → R>0. Then |χ|F is smooth (i.e.,
locally constant), and its kernel contains all compact subgroups of G(F ).

Proof. Obviously the second statement implies the first, since there exist compact open
subgroups. By the definition of the non-archimedean topology, the map χ : G(F ) → F×

continuous. Hence the image of any compact subgroup under |χ|F is a compact subgroup
of the discrete group qZ ∼= Z, which must be finite and hence trivial. □

Proposition 20.4. Let G be a connected reductive group over F . Then 0G(F ) is open,
contains all compact subgroups of G(F ), and contains Gder(F ).

Proof. Immediate from the previous lemma. □

Definition 20.5. We call a homomorphism G(F ) → C× unramified if it kills 0G(F ). Let
χ(G) be the abelian group of all unramified homomorphisms G(F )→ C×.

Example 20.6. For G = Gm, a homomorphism Gm(F ) = F× → C× is unramified if and
only if it kills O×

F . This agrees with the usual terminology in local class field theory.

By definition, χ(G) is identified with the group of homomorphisms from Λ(G) to C×,
where Λ(G) is the image of HG : G(F ) → X∗(G(F )). Recall that X∗(G) = X∗(Gab) is a
finite rank free Z-module since Gab is a torus. It follows that X∗(G(F )), X∗(G(F )),Λ(G)
are all finite rank free Z-modules. There is a unique (up to canonical isomorphism) torus U
over C such that X∗(U) = Λ(G). Concretely, U = SpecC[Λ(G)] where C[Λ(G)] is the group
algebra of Λ(G) (isomorphic to C[X±1

1 , · · · , X±1
n ] if we fix isomorphism Λ(G)

∼−→ Zn), and
the group structure on U is given by the identifications U ∼−→ SpecC[X±1

1 , · · · , X±1
n ]

∼−→
(SpecC[X±1])n ∼= Gnm. (See the next exercise for more details.) Now note that a group
homomorphism Λ(G)→ C× is the same thing as a C-algebra homomorphism C[Λ(G)]→ C,
and the same thing as a C-point of the torus U. We conclude that

χ(G) ∼= U(C).

Thus we say that χ(G) has the structure of a complex torus. Lect.29, Apr 10
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Exercise 20.7. Let F be a field of characteristic zero. Recall that we have an anti-
equivalence X∗(·) from the category of split tori over F to the category of finite free Z-
modules (thought of as having the trivial ΓF -action). Show that a quasi-inverse of this
functor is given by Λ 7→ SpecF [Λ], where F [Λ] is the group algebra of Λ over F , and the
group structure on SpecF [Λ] is given by F [Λ] → F [Λ] ⊗ F [Λ], [λ] 7→ [λ] ⊗ [λ] for all λ ∈ Λ
representing [λ] ∈ F [Λ]. Show that if we fix an isomorphism Λ ∼= Zn and hence an isomor-
phism F [Λ] ∼= F [X±1

1 , · · · , X±1
n ], the resulting isomorphism of F -varieties SpecF [Λ] ∼= Gnm

is a group variety isomorphism.

Lemma 20.8. Let A be a split torus over a non-archimedean local field F . Then X∗(A) =
X∗(A(F )), X∗(A) = X∗(A(F )). Moreover, Λ(A) = X∗(A), and if we identify A with Gnm so
that A(F ) ∼= (F×)n, the subgroup 0A(F ) ⊂ A(F ) is given by (O×

F )
n. In particular, 0A(F )

is compact.

Proof. The first claim follows from the fact that ΓF acts trivially on X∗(A). Identify A ∼=
Gnm and X∗(A) ∼= Zn. Then X∗(A) is also identified with Zn. Under these identifications,
the map HA : A(F )→ X∗(A) is the map

(F×)n → Zn, (x1, · · · , xn) 7→ (v(x1), · · · , v(xn)).

The statements about Λ(A) and 0A(F ) follow immediately. □

21. The split component

Let F be a field of characteristic zero.

Fact 21.1. Let Z be a diagonalizable group over F , and let Z0 be the identity connected
component of Z. Then Z has a maximal (with respect to containment) split sub-torus A. The
inclusions A ⊂ Z0 ⊂ Z corresponds to surjections X∗(Z) → X∗(Z0) → X∗(A) described
as follows: The group X∗(Z0) is the maximal free quotient of X∗(Z) (i.e., the quotient by
the torsion subgroup), equipped with the induced ΓF -action. (Note that the ΓF -action on
X∗(Z) automatically stabilizes the torsion subgroup.) The group X∗(A) is the maximal free
quotient of X∗(Z0)ΓF

, equipped with the trivial ΓF -action. Here for any ΓF -module M , we
write MΓF

for the group of ΓF -coinvariants, namely the quotient of M by the submodule
generated by {gm−m | g ∈ ΓF ,m ∈M}.

Exercise 21.2. Show that X∗(A) is also the maximal free quotient of X∗(Z)ΓF
.

Definition 21.3. Let G be a connected reductive group over F . By the split component of
G, we mean the maximal split sub-torus of ZG. We denote it by AG.

Example 21.4. Let G be the unitary group over F associated to a quadratic extension
E/F and a hermitian space over E. Then ZG = Z0

G = (ResE/F Gm)1, i.e., the kernel of the

norm map NE/F : ResE/F Gm → Gm. (In particular, ZG(F ) = {x ∈ E× | NE/F (x) = 1}.)
Recall that under X∗(·), the norm map NE/F corresponds to

X∗(NE/F ) : X
∗(Gm) = Z −→ X∗(ResE/F Gm) = Z⊕ Z, a 7−→ (a, a).

Here ΓF acts on Z⊕Z by its quotient Gal(E/F ) and the non-trivial element σ ∈ Gal(E/F )
acts by (a, b) 7→ (b, a). Hence

X∗(ZG) = coker(X∗(NE/F )) ∼= Z,

where ΓF acts by the quotient Gal(E/F ) and σ acts by a 7→ −a. Then X∗(ZG)ΓF
= Z/2Z,

and its maximal free quotient X∗(AG) is trivial. We conclude that AG is trivial in this case.



REPRESENTATIONS OF P-ADIC GROUPS 47

Lemma 21.5. Let M be a finitely generated abelian group together with a continuous ΓF -
action. Then the natural maps MΓF ↪→ M → MΓF

induce an isomorphism of Q-vector
spaces

MΓF ⊗Z Q ∼−→MΓF
⊗Z Q.

Proof. Let Γ be a finite quotient of ΓF such that the ΓF -action on M factors through Γ.
Then the inverse map is given by [m] 7→ (

∑
g∈Γ gm) ⊗ |Γ|−1, for any m ∈ M representing

[m] ∈MΓF
. □

Lect.30, Apr 12

Proposition 21.6. The following statements hold.

(1) The natural map X∗(G(F ))→ X∗(AG) (given by restriction along AG(F )→ G(F )
if we think of the elements as homomorphisms G(F ) → F× and AG(F ) → F×) is
injective and the image has finite index.

(2) If F is a non-archimedean local field, then 0AG(F ) = AG(F ) ∩ 0G(F ).

Proof. From G = ZGGder, we know that the map ZG → Gab is surjective and with finite
kernel (in the category of diagonalizable groups). Thus the map X∗(Gab) = X∗(G) →
X∗(ZG) is injective and the image has finite index. In particular, the map X∗(G)ΓF ⊗Q→
X∗(ZG)

ΓF ⊗ Q is an isomorphism. Now X∗(AG) is identified with the free quotient of
X∗(ZG)ΓF

, and X∗(G(F )) is identified with X∗(G)ΓF . Hence by Lemma 21.5 the natural
map X∗(G(F ))⊗Q→ X∗(AG)⊗Q is an isomorphism. Since X∗(G(F )) is torsion free, part
(1) follows.

For (2), the direction “⊂” follows immediately from the fact that any χ ∈ X∗(G(F ))
restricts to an element of X∗(AG). Conversely, let a ∈ AG(F )∩ 0G(F ) and let χ ∈ X∗(AG).
We need to show that |χ(a)| = 1. Now by part (1) there exists n such that χn lies in the
image of X∗(G(F ))→ X∗(AG). Hence |χn(a)| = 1, and it follows that |χ(a)| = 1. □

Corollary 21.7. The natural map X∗(AG) → X∗(G(F )) is injective and the image has
finite index.

Proof. By Proposition 21.6 (1) or its proof, the natural mapX∗(G(F ))⊗Q→ X∗(AG)⊗Q is
an isomorphism. By dualizing, we know that hte natural map X∗(AG)⊗Q→ X∗(G(F ))⊗Q
is an isomorphism. Since X∗(AG) is torsion free (being dual to the finite free Z-module
X∗(AG)), the corollary follows. □

Lemma 21.8. Let S → T be a surjection of tori over a non-archimedean local field F .
Then the cokernel of S(F )→ T (F ) is finite.

Sketch of proof. We have X∗(T ) ↪→ X∗(S). First assume that the cokernel X∗(S)/X∗(T )
is torsion free. Then ker(S → T ) is a torus U . Associated to the short exact sequence
1→ U → S → T → 1 we have a long exact sequence

1→ U(F )→ S(F )→ T (F )→ H1(F,U)→ · · ·
Since F is non-archimedean local, by Tate–Nakayama duality, the Galois cohomology group
H1(F,U) is isomorphic to the torsion part of X∗(U)ΓF

, and is hence finite.
In the general case, let T1 be the quotient torus of S such that X∗(T1) ⊂ X∗(S) is the

saturation of X∗(T ), i.e., X∗(T1) = {x ∈ X∗(S) | ∃n ∈ Z, nx ∈ X∗(T )}. (This makes
sense since the saturation of X∗(T ) in X∗(S) is indeed a ΓF -stable Z-submodule.) We have
surjections S → T1 → T . Then by the previous paragraph, the cokernel of S(F ) → T1(F )
is finite. It remains to show that the cokernel of T1(F ) → T (F ) is finite. Write ϕ for the
surjection T1 → T . We have n ·X∗(T1) ⊂ X∗(T ) ⊂ X∗(T1) for some n ∈ Z. Hence the n-th
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power map [n] : T1 → T1 factors (uniquely) through ϕ : T1 → T . Write [n] = ψ ◦ ϕ, where
ψ : T → T1. Since kerψ is finite, by the snake lemma applied to

1 // 1

��

// T1(F )

ϕ

��

id // T1(F )

[n]

��

// 1

1 // kerψ(F ) // T (F )
ψ // ψ(T (F )) // 1

we have reduced the problem to showing that [n] : T1(F )→ T1(F ) has finite cokernel.
Let E/F be a finite Galois extension such that the ΓF -action on X∗(T1) factors through

Gal(E/F ). Consider

M := Z[Gal(E/F )]⊗Z X
∗(T1) = X∗(ResE/F Gm)⊗Z X

∗(T1),

equipped with ΓF -action only on the first factor via left translation. Then we have a ΓF -
equivariant map M → X∗(T1), [g] ⊗ x 7→ gx. Note that M is just the direct sum of
r = rk(X∗(T1)) many copies of Z[Gal(E/F )] = X∗(ResE/F Gm). Hence we have a closed
F -embedding T1 → L := ResE/F Grm. By the snake lemma, in order to show that [n] :
T1(F )→ T1(F ) has finite cokernel, it suffices to show that [n] : L(F )/T1(F )→ L(F )/T1(F )
has finite kernel, and that [n] : L(F ) → L(F ) has finite cokernel. For the first statement,

we have L(F )/T1(F ) ⊂ (L/T1)(F ), and the latter is just a direct sum of copies of F
×
, so

clearly the n-th power map on that has finite kernel. For the second statement, it suffices
to show that the n-th power map on E× has finite cokernel. This is a basic property of
non-archimedean local fields. □

Remark 21.9. Over Q, we have a surjection of tori [2] : Gm → Gm, but the map [2] :
Q× → Q× has infinite cokernel. This does not happen for a non-archimedean local field.

Fact 21.10. Let ϕ : G→ H be a map of linear algebraic groups over a non-archimedean local
field F . Then ϕ(G(F )) ⊂ H(F ) is closed with respect to the non-archimedean topology. If ϕ
is surjective, then ϕ(F ) : G(F )→ H(F ) is an open map with respect to the non-archimedean
topology, and in particular ϕ(G(F )) ⊂ H(F ) is open (and hence closed).

Sketch of proof. To show the second statement, we know that ϕF : GF → HF induces a

surjection of F -vector spaces LieGF → LieHF by the surjectivity of ϕ. It follows that ϕ
induces a surjection of F -vector spaces LieG→ LieH. By a suitable version of the inverse
function theorem, this implies that ϕ(F ) is an open map (cf. [PR94, p. 133, Prop. 3.2]).
The first statement follows from the second statement applied to the image of ϕ, which is a
Zariski closed subgroup of H such that ϕ is a surjection from G to it. □

Lect.31, Apr 14

Definition 21.11. A torus T over a field F of characteristic zero is called anisotropic, if
X∗(T )ΓF = 0.

Lemma 21.12. Let T be a torus over F . Then there is a maximal anisotropic sub-torus
B ⊂ T . Moreover, if A is the maximal split sub-torus of T , then the multiplication map
A×B → T is surjective with finite kernel.

Proof. If B′ ⊂ T is anisotropic, then the map X∗(T ) → X∗(B′) is a surjection killing
X∗(T )ΓF . On the other hand, M = X∗(T )/X∗(T )ΓF is free and MΓF = 0 (exercise, using
that the ΓF -action factors through a finite quotient). Therefore B exists and corresponds
to the quotient X∗(T )→M .
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To show the second statement, it suffices to show that the map X∗(T )→ (X∗(A)⊗Q)⊕
(X∗(B) ⊗ Q) is an isomorphism. This follows immediately from the previous construction
of B, and Lemma 21.5. □

Example 21.13. Let T = ResE/F Gm. Then the maximal anisotropic sub-torus of T is the

norm-1 torus (ResE/F Gm)1.

Lemma 21.14. Let T be an anisotropic torus over a non-archimedean local field F . Then
T (F ) is compact.

Proof. As in the proof of Lemma 21.8, we have a closed F -embedding T ↪→ ResE/F Gnm.
Since T is anisotropic, it must be contained in the maximal anisotropic subgroup of the
right hand side, namely the n-th power of the norm-1 torus. Hence it suffices to show that
{x ∈ E× | NE/Fx = 1} is compact, which is clear. □

Corollary 21.15. Let T be a torus over a non-archimedean local field F . There is a finite-
index, closed (and hence open) subgroup of T (F ) of the form A(F )B(F ), where A ⊂ T is
the maximal split sub-torus, and B ⊂ T is the maximal anisotropic sub-torus. Moreover
B(F ) is compact.

Proof. Finite index follows from Lemma 21.8 and Lemma 21.12. Closedness follows from
Fact 21.10. Compactness of B(F ) is Lemma 21.14. □

Proposition 21.16. Let G be a connected reductive group over a non-archimedean local
field F . The subgroup 0G(F )AG(F ) ⊂ G(F ) is normal and of finite index. The group
0G(F ) ∩ ZG(F ) is compact. If ZG(F ) is compact, then 0G(F ) = G(F ).

Proof. Normality is clear. To show finite index, we have

G(F )/ 0G(F )AG ∼= coker(AG(F )→ Λ(G)) ≤ coker(AG(F )→ X∗(G(F ))).

Now the map AG(F ) → X∗(G(F )) factors as AG(F ) → X∗(AG) → X∗(G(F )), where the
first map is HAG

and surjective by Lemma 20.8, and the second map is the natural map
which is injective and the image has finite index by Corollary 21.7. Hence G(F )/0G(F )AG
is finite.

To show the second statement, first note that Z0
G(F ) is of finite index in ZG(F ) since the

quotient injects into (ZG/Z
0
G)(F ) which is finite. Also Z0

G(F ) is closed in ZG(F ) since it
is Zariski closed, and therefore also open. By Lemmas 21.8 and 21.14 applied to the torus
Z0
G, we know that Z0

G(F ), and hence ZG(F ), has a finite-index open subgroup of the form
AG(F )B(F ), with B(F ) compact. It suffices to show that 0G(F )∩AG(F )B(F ) is compact.
Since 0G(F ) contains all compact subgroups of G(F ), we have B(F ) ⊂ 0G(F ). Hence it
suffices to show that 0G(F )∩AG(F ) is compact. This follows from Proposition 21.6 (2) and
Lemma 20.8.

We now show the third statement. If ZG(F ) is compact, then AG(F ) is compact, and
hence AG(F ) ⊂ 0G(F ). Hence by the first statement, 0G(F ) is of finite index in G(F ). This
implies that they are equal since the quotient G(F )/0G(F ) = Λ(G) is torsion-free. □

22. Inertia classes of representations

Let G be a connected reductive group over a non-archimedean local field F . Denote
by Π(G) the set of isomorphism classes of smooth representations of G(F ), and denote by
Irr(G) ⊂ Π(G) the set of isomorphism classes of irreducible smooth representations. In
general, given (π, V ) ∈ M(G(F )) and a one-dimensional ω ∈ M(G(F )), we have π ⊗ ω ∈
M(G(F )). Concretely, if we think of ω as a smooth character G(F ) → C×, then the
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representation π ⊗ ω is on the same vector space V , and the map G(F )→ Aut(V ) is given
by g 7→ ω(g) · π(g). Clearly a subspace of V is a sub-representation with respect to π if and
only if it is a sub-representation with respect to π ⊗ ω. Hence π is irreducible if and only if
π⊗ω is irreducible. Also, when ω is fixed, the isomorphism class of π and the isomorphism
class of π ⊗ ω determine each other. We conclude that the abelian group of all smooth
characters G(F )→ C× acts on Π(G), stabilizing Irr(G).

Recall that χ(G) is the abelian group of characters ω : G→ C× killing 0G(F ), and each
such ω is smooth. Thus we have a twisting action of χ(G) on Π(G) and Irr(G).

Proposition 22.1. For each π ∈ Irr(G), the stabilizer of π in χ(G) is finite.

Proof. Recall that χ(G) ∼= HomZ(Λ(G),C×), where Λ(G) is the image of HG : G(F ) →
X∗(G(F )). Moreover, we have a commutative diagram

AG(F )
� � //

HAG

��

G(F )

HG

��
Λ(AG) = X∗(AG) // Λ(G) �

� // X∗(G(F ))

Identify AG with Gnm. Then the homomorphism HAG
: AG(F )→ X∗(AG) is identified with

the map (F×)n → Zn, (x1, · · · , xn) 7→ (vF (x1), · · · , vF (xn)). Thus if we fix a uniformizer
ϖ ∈ F , then HAG

has a section (which is a homomorphism) (k1, · · · , kn) 7→ (ϖk1 , · · · , ϖkn).
Denote the image of this section by C ⊂ AG(F ). By Schur’s Lemma, C acts on π via a
character λ : C → C×. Now if ω ∈ χ(G) stabilizes π, then it must stabilize λ. On the other
hand, ω sends λ to λ+ δ, where δ is the image of ω under the restriction map

χ(G) = HomZ(Λ(G),C×)→ HomZ(Λ(AG),C×) ∼= HomZ(C,C×).

We conclude that ω must lie in the kernel of the above map, i.e., ω is identified with a
character Λ(G)/Λ(AG) → C×. By Corollary 21.7, Λ(G)/Λ(AG) is finite, so there are only
finitely many choices of such ω. □

Lect.32, Apr 17
We call each χ(G)-orbit in Π(G) an inertia class. The above shows that each inertia class

in Irr(G) is a principal homogeneous space under χ(G)/∆, where ∆ is a finite subgroup of
χ(G) (depending on the inertia class). Recall that χ(G) has the canonical structure of a
complex torus, isomorphic to SpecC[Λ(G)]. We leave it as an exercise to show that χ(G)/∆
also has the canonical structure of a complex torus. Thus each inertia class in Irr(G) has
the canonical structure of a principal homogeneous space under a complex torus.

23. Parabolic and Levi subgroups

There is an inductive scheme of studying the representation theory of G(F ), for a con-
nected reductive group G over a non-archimedean local field F . Namely, inside the F -
algebraic group G there are distinguished subgroups called parabolic subgroups and Levi
subgroups, the two classes being closely related to each other. The Levi subgroups are
connected reductive groups of smaller dimensions than G. We shall define a smooth rep-
resentation of G(F ) to be supercuspidal if, roughly speaking, it does not “interact” with
representations of M(F ) for proper Levi subgroups M of G. The representation theory
for G(F ) is then divided into understanding the supercuspidal representations and under-
standing those representations that are constructed inductively from M(F ) for proper Levi
subgroups M . In general, the construction and classification of supercuspidal representa-
tions is indeed difficult. Nevertheless, they enjoy nice structural properties. Most notably,
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by a theorem of Harish-Chandra, they are exactly those representations that are “almost
compact”, in the sense that the restrictions to 0G(F ) are compact.

We now discuss parabolic and Levi subgroups in general. Let G be a connected reductive
group over a field F . In the following, by a subgroup of linear algebraic group over F we
always mean a (Zariski) closed F -subgroup variety.

Definition 23.1. By a parabolic subgroup of G, we mean a connected subgroup P ⊂ G such
that the homogeneous space G/P (with the natural algebraic variety structure) is projective.

Fact 23.2. Let P ⊂ G be a parabolic subgroup. Then there exists a subgroup M ⊂ P such
that P =M ⋉RuP . The choice of M is unique up to conjugation by elements of (RuP )(F ).
Such M is called a Levi factor of P .

Remark 23.3. We have M ∼= P/RuP , from which we know M is connected reductive.

It is customary to write NP or simply N for RuP , when P is fixed. We shall also write
simply P = MN to indicate that we have made the choice of a Levi factor M of P . The
decomposition P =MN is usually referred to as a Levi decomposition.

Example 23.4. In G = GLn, the parabolic subgroups are those subgroups that are G(F )-
conjugate to Pn1,··· ,nk

, where (n1, · · · , nk) is an ordered partition of n, and Pn1,··· ,nk
is

the group of invertible block upper triangular matrices with block sizes n1, · · · , nk on the
diagonal (counting from the left upper corner to the right lower corner). In Pn1,...,nk

, the
unipotent radical Nn1,··· ,nk

is the subgroup with identities matrices on the block diagonal.
A choice of Levi factor is given byMn1,··· ,nk

consisting of invertible block diagonal matrices.

Definition 23.5. By a Levi subgroup of G, we mean a Levi factor of a parabolic subgroup
of G.

Fact 23.6. There is a inclusion-reversing bijection from the set of all Levi subgroups of G
to the set of all split tori inside G containing AG, sending M to AM . The inverse map
sends A to the centralizer of A in G.

Fact 23.7. All maximal split tori in G (which automatically contain AG) are conjugate to
each other under G(F ). Equivalently, all minimal Levi subgroups of G are conjugate under
G(F ).

Fact 23.8. All minimal parabolic subgroups of G are conjugate to each under G(F ). If we
fix a minimal parabolic subgroup P0, then every parabolic subgroup P of G is G(F )-conjugate
to a unique parabolic subgroup P ′ containing P0. (The normalizer of P in G is P , so the
element of G(F ) conjugating P to P ′ is also unique up to multiplication by P (F ).) If we
further fix a Levi decomposition P0 = M0N0, then for every parabolic P containing P0, P
has a unique Levi factor containing M0.

Definition 23.9. Fix a minimal parabolic subgroup and a Levi decomposition P0 =M0N0.
Then parabolic subgroups of G containing P0 are called standard. For a standard parabolic
P , the unique Levi factor of it containingM0 is called the standard Levi factor of P . A Levi
subgroup of G is called standard, if it is the standard Levi factor of a standard parabolic
subgroup.

It is clear from the above discussion that every parabolic subgroup (resp. Levi subgroup)
of G is G(F )-conjugate to a standard one. Moreover, we have a surjective map from the set
of standard parabolic subgroups to the set of standard Levi subgroups, sending P to the
standard Levi factor of P , i.e., the unique Levi factor of P containing M0. This map is also
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injective. There is a combinatorial classification of all standard parabolic subgroups (hence
standard Levi subgroups) in terms of root systems. We will come back to this later when
needed.

However, we have the following subtlety: Every parabolic subgroup is G(F )-conjugate
to a unique standard one, but a Levi subgroup of G may be G(F )-conjugate to multiple
standard ones. In other words, there may exist two distinct standard parabolic subgroups
such that their standard Levi factors are G(F )-conjugate.

Definition 23.10. Two parabolic subgroups of G are called associated, if their Levi factors
are G(F )-conjugate.

By the above discussion, association is an equivalence relation between parabolic sub-
groups that is weaker than G(F )-conjugation.Lect.33, Apr 19

Fact 23.11. Fix a parabolic subgroup P ⊂ G and a Levi factor M . Then there is a unique
parabolic subgroup P̄ ⊂ G, called the opposite of P (with respect to M), with the property
that P ∩ P̄ = M . In this case, LieG = LieNP ⊕ LieM ⊕ LieNP̄ . The adjoint representa-
tion of AM on LieG (as an algebraic representation, by which we mean a homomorphism
from a linear algebraic group to the general linear group of a vector space; in this case
AM → GL(LieG)) is trivial on LieM and stabilizes LieNP and LieNP̄ . Moreover, the
representations of on LieNP and LieNP̄ decompose into one-dimensional representations
(just as any algebraic representation of a split torus)

LieNP ∼=
⊕

α∈R(AM ,NP )

X⊕m(α)
α , LieNP̄

∼=
⊕

α∈R(AM ,NP̄ )

X⊕m(α)
α

where R(AM , NP ), R(AM , NP̄ ) are subsets of X
∗(AM )−{0}, and Xα is the one-dimensional

representation AM → GL1 corresponding to α. Moreover, we have

R(AM , NP̄ ) = −R(AM , NP ).

Definition 23.12. Elements of R(AM , NP )∪R(AM , NP̄ ) are called roots, whereas elements
of R(AM , NP ) are called positive roots.

Example 23.13. Consider G = GL(V ),dimV = n. The parabolic subgroups of G are
in bijection with filtrations of V , where a filtration means a string of subspaces 0 ⊂ V1 ⊂
· · · ⊂ Vk = V . The parabolic subgroup corresponding to a filtration is the stabilizer of that
filtration in G. Let P be a parabolic subgroup, corresponding to a filtration 0 ⊂ V1 ⊂ · · · ⊂
Vk = V . Then the set of Levi factors of P correspond to splittings of this filtration, i.e.,
choices of a complement of Vi in Vi+1 for all i. Given such a splitting, we obtain a gradation
of V : V = W1 ⊕W2 · · · ⊕Wk, where Wi

∼= Vi/Vi−1. The corresponding Levi factor of P is
GL(W1) × · · ·GL(Wk) embedded in P ⊂ G in the obvious way. The Levi subgroups of G
are in bijection with gradations of V up to permuting the indexing of the summands.

The choice of a minimal Levi subgroup is equivalent to the choice of a basis of V up
to reordering and scaling its members. The choice of a minimal parabolic subgroup is
equivalent to the choice of a complete flag, i.e., a filtration 0 ⊂ V1 ⊂ · · · ⊂ Vn = V with
dimVi = i. The choice of a minimal parabolic P0 together with the choice of a Levi factor
M0, is equivalent to the choice of an ordered basis of V up to scaling its members. Fix an
ordered basis compatible with P0 and M0 in this sense. Then G is identified with GLn,
and P0 is the group of invertible upper triangular matrices, M0 is the group of invertible
diagonal matrices, and N0 = NP0

is the group of upper triangular matrices with 1’s on the
diagonal.
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Standard parabolic subgroups (and hence Levi subgroups) are classified by ordered par-
titions of n. Given such a partition n = n1 + · · · + nk, the corresponding standard par-
abolic P = Pn1,··· ,nk

is the group of invertible block upper triangular matrices of block
sizes n1, · · · , nk. The standard Levi M is the group of invertible block diagonal ma-
trices, and the unipotent radical of P is the group of block upper triangular matrices
with identity matrices on the block diagonal. The opposite parabolic P̄ is the group
of invertible block lower triangular matrices, and its unipotent radical is the subgroup
with identity matrices on the block diagonal. We have M ∼= GLn1

× · · · × GLnK
, and

AM ∼= Gkm,diag(z1In1
, · · · , zkInk

) 7→ (z1, · · · , zk).
We can canonically identify LieNP with the affine space of all block upper triangular

matrices with 0’s on the block diagonal. It has basis {Ei,j} where (i, j) runs through the
positions in the n × n matrix strictly above the block diagonal, and Ei,j is the elementary
matrix with 1 on the (i, j)-entry and 0 elsewhere. (E.g., P = P1,2 ⊂ GL3, then LieNP
has basis {E12, E13}.) Each Span(Ei,j) is an eigenspace for the action of AM ∼= Gkm, and
the corresponding root is (z1, · · · , zk) 7→ zu(i)/zu(j), where u(i) is such that n1 + · · · +
nu(i)−1 < i ≤ n1 + · · ·+ nu(u), and similarly for u(j). From this we see that R(AM , NP ) =
{(z1, · · · , zk) 7→ zi/zj | 1 ≤ i < j ≤ k}. Similarly, we check that

R(AM , NP̄ ) = −R(AM , NP ) = {(z1, · · · , zk) 7→ zj/zi | 1 ≤ i < j ≤ k}.

Two standard parabolics are associated if and only if the corresponding partitions are
obtained from each other by re-ordering.

24. Decompositions involving compact open subgroups

Let G be a connected reductive group over a non-archimedean local field F . Fix a minimal
parabolic and a Levi decomposition P0 =M0N0, and we shall use this to talk about standard
parabolic subgroups and standard Levi subgroups.

Consider a standard parabolic P = MN with standard Levi factor M . Recall that
X∗(AM ) = Λ(AM ) ↪→ Λ(M) ↪→ X∗(M(F )), and both inclusions have finite index. (E.g.,
G = GLn, M = GLn1 × · · · ×GLnk

. Then Λ(M) = X∗(M(F )), and the index of Λ(AM ) in
it is n1 · · ·nk.) Thus we have a canonical identification X∗(AM ) ⊗Z R ∼= X∗(M(F )) ⊗Z R,
and we denote them commonly by aM . Inside the R-vector space aM , we have a cone a+M
defined by the inequalities ⟨·, α⟩ ≥ 0, for all α ∈ R(AM , N). Let A+

M be the inverse image of
this cone under HAM

: AM (F )→ aM , and let M+ be the inverse image of this cone under
HM : M(F ) → aM . Similarly, we define A++

M and M++ using the interior a++
M of the cone

a+M , i.e., replacing the non-strict inequalities by the strict inequalities.

Explicitly, A+
M (resp. A++

M ) is the set of a ∈ AM (F ) such that all eigenvalues of a acting
on LieN (which are in F ) satisfy vF (·) ≥ 0 (resp. > 0). However, the sets M+ and M++

are harder to describe in this manner.

Example 24.1. Consider P = P1,2 ⊂ G = GL3. Then AM ∼= G2
m = {diag(z1, z2, z2) ∈

GL3} and M ∼= GL1×GL2 = {diag(g1, g2) ∈ GL3 | gi ∈ GLi}. We have

R(AM , NP ) = {(z1, z2) 7→ z1/z2}.

Hence A+
M = {(z1, z2) | vF (z1) ≥ vF (z2)}, and M+ = {(g1, g2) | vF (det g1) ≥ 1

2vF (det g2)}.
Indeed, we can identify X∗(AM ) with Z2 such that the map HAM

: AM (F )→ Z2 is (F×)2 ∋
(x1, x2) 7→ (vF (x1), vF (x2)), and we can identify X∗(M(F )) with Z2 such that the map
HM : M(F )→ Z2 is GL1(F )×GL2(F ) ∋ (g1, g2) 7→ (vF (det g1), vF (det g2)). But then the
map X∗(AM ) ↪→ X∗(M(F )) is not the identity map on Z2, but rather (a, b) 7→ (a, 2b).
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Lect.34, Apr 21
The discussion below on compact open subgroups of G(F ) belongs to the subject of

Bruhat–Tits theory, which has a vast literature. An entry point is [Tit79], with a more
recent update in [Yu09]. See also the very recently published book [KP23]. Our discussion
follows [Ren10, V.5].

Fact 24.2 (Iwasawa and Cartan decomposition). There exists a (maximal) compact open
subgroup K0 ⊂ G(F ) satisfying the following conditions:

(1) (Iwasawa decomposition.) We have G(F ) = P0(F )K0 = K0P0(F ).
(2) For each standard parabolic P =MN with standard Levi M , we have P (F )∩K0 =

(M(F ) ∩K0)(N(F ) ∩K0).
(3) (Cartan decomposition.) We have

G(F ) =
⋃

a∈M+
0

K0aK0.

Moreover, for a, b ∈M+
0 , we have K0aK0 = K0bK0 if and only if a, b have the same

image under HM0
: M0(F ) → Λ(M0) ⊂ X∗(M0(F )), i.e., a ≡ b mod 0M0(F ). In

particular, if for every λ ∈ Λ(M0) ∩ a+M0
we fix a lift λ̃ ∈M0(F ), then we have

G(F ) =
∐

λ∈Λ(M0)∩a+
M0

K0λ̃K0.

Remark 24.3. We say that K0 is special and adapted to M0, or to AM0
. (This notion

depends only on the choice of a minimal Levi subgroup M0 ⊂ G, not on P0.)

Exercise 24.4. Let K0 be as above. Using the Iwasawa decomposition and the fact that all
minimal parabolic subgroups are G(F )-conjugate, show that G(F ) = P ′

0(F )K0 = K0P
′
0(F )

for arbitrary minimal parabolic P ′
0 ⊂ G.

Remark 24.5. In the language of Bruhat–Tits theory, here K0 is the maximal compact
open subgroup associated with a special vertex in the apartment of AM0

. From the modern
point of view it is often more useful to replace K0 by the parahoric subgroup associated to
that vertex, which is a compact open subgroup of finite index in K0. Then the Iwasawa and
Cartan decompositions still hold, but in the Cartan decomposition the condition for two
double cosets to be the same is more refined: Instead of a, b having the same image under
HM0

, we require that they have the same image under the Kottwitz map M0(F )→ π1(M0),
which is a stronger condition.

Corollary 24.6. For any parabolic subgroup P ⊂ G, G(F )/P (F ) with the quotient topology
(induced by the non-archimedean topology on G(F )) is compact.

Fact 24.7 (Iwahori decomposition). There exists a neighborhood basis of 1 in G(F ) con-
sisting of compact open subgroups K ⊂ G(F ) satisfying the following properties:

(1) K is a normal subgroup of K0 in the previous fact.
(2) (Iwahori decomposition.) For each standard P =MN , let N̄ be the unipotent radical

of the opposite parabolic. Then we have

K = KN̄KMKN ,

where KN̄ = K ∩ N̄(F ),KM = K ∩ M(F ),KN = K ∩ N(F ). Moreover, for all
g ∈ M+, we have gKNg

−1 ⊂ KN and g−1KN̄g ⊂ KN̄ . Also KM is normal in
M(F ).



REPRESENTATIONS OF P-ADIC GROUPS 55

(3) Let m ∈ M++. Then mlKNm
−l → 1 for l → +∞ and mlKNm

−l → N(F ) for
l → −∞. Similarly for KN replaced by KN̄ , with “l → +∞” and “l → −∞”
switched.

(4) More generally, for every ϵ > 0, let M++(ϵ) be the set of m ∈ M++ satisfying the
“ϵ-strengthened” inequalities used to define M++. That is, in the definition of the
cone a++

M , we replace the inequalities ⟨·, α⟩ > 0 by ⟨·, α⟩ > ϵ,∀α ∈ R(AM , NP ). Then
for any open neighborhood U of 1 in N(F ) and every compact subset V in N(F ),
there exists (a very large) ϵ such that for all m ∈M++(ϵ), we have mKNm

−1 ⊂ U
and m−1KNm ⊃ V .

Remark 24.8. Here is the heuristics of why ml(K ∩ N(F ))−l → 1 as l → +∞, for m ∈
M++. By definition, all eigenvalues λ of the adjoint action ofm on LieNP satisfy vF (λ) > 0,
i.e., |λ|F < 1. Hence at the group level, the adjoint action of m on N(F ) is “shrinking”
everything to 1.

Example 24.9. For G = GLn and the standard choice of P0 = M0N0, we can take K0 =
GLn(OF ), and take the K’s in the Iwahori decomposition to be the principal congruence
subgroups 1+ϖkMn(OF ), k ≥ 1, where ϖ is a uniformizer. The Cartan decomposition has
the explicit form

GLn(F ) =
∐

k1≥···≥kn

GLn(OF ) diag(ϖk1 , · · · , ϖkn)GLn(OF ),

whereϖ is a uniformizer, and the disjoint union is over all n-tuples of non-increasing integers.

Exercise 24.10. Prove the three decompositions for GLn, with the above choices of K0,K.
(For the Cartan decomposition, use the Smith normal form of matrices in Mn(OF ).)

Corollary 24.11. For any parabolic subgroup P ⊂ G, NP (F ) is the union of an increasing
sequence of compact open subgroups.

Lect.35, Apr 24

25. Parabolic induction and the Jacquet module

Let P be a subgroup of an abstract group G. Let (π, V ) be a representation of P , i.e.,
V is a C-vector space (of arbitrary dimension) and π is a homomorphism P → AutC V .

We define a representation algIndGPπ of G, called the algebraic induction of π from P to G,
as follows. The underlying vector space is the space of all functions f : G → V satisfying
f(pg) = π(p)f(g) for all p ∈ p, g ∈ G. The action is given by right translation, i.e., for g ∈ G
and f ∈ algIndGPπ,

g · f : G −→ V, h 7−→ f(hg).

This construction is functorial in π in the following way: If we have a P -linear map ϕ :
(π, V )→ (π′, V ′), then we obtain a G-linear map IndGP (ϕ) : Ind

G
P π → IndGP π

′, f 7→ ϕ ◦ f .
Now let G be a connected reductive group over a non-archimedean local field F . Let

P ⊂ G be a parabolic subgroup. In the following we write M(G) for M(G(F )) = the
category of smooth G(F )-representations, and similarly for subgroups of G. We define a
functor

IndGP :M(P ) −→M(G)

by sending π ∈ M(P ) to the smooth part of the G(F )-representation algInd
G(F )
P (F ) π. Thus

the underlying vector space of IndGP π consists of functions f : G(F )→ V such that f(pg) =
π(p)f(g) for all p ∈ P (F ), g ∈ G(F ) and such that f is right invariant by some compact
open subgroup of G(F ) (which depends on f).
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Proposition 25.1. The functor IndGP preserves admissibility, and is exact.

Proof. Let (π, V ) ∈ M(P ), and let K ⊂ G(F ) be a compact open subgroup. If f ∈
(IndGP π)

K , then f is a right K-invariant function G(F ) → V satisfying f(pg) = π(p)f(g)
for all p ∈ P (F ), g ∈ G(F ). Thus f is determined by f(gi) where {gi} ⊂ G(F ) is a family
of representatives of P (F )\G(F )/K. By Corollary 24.6, P (F )\G(F )/K is finite, so we can
write {gi}ni=1. Now for each i = 1, · · · , n, define Ki := P (F ) ∩ giKg−1

i , which is a compact
open subgroup of P (F ). For pKi, we have

π(p)f(gi) = f(pgi) = f(gig
−1
i pgi) = f(gi),

where the last equality is because g−1
i pgi ∈ K. Hence we have obtained an injective linear

map

(IndGP π)
K −→

n⊕
i=1

V Ki , f 7−→ (f(gi))
n
i=1.(25.1)

It is easy to see that this map is also bijective.
Now if (π, V ) is admissible, then the RHS of (25.1) is finite dimensional, and so IndGP π

is admissible since K in the above discussion is arbitrary.
We now show that IndGP preserves is exact. Let 0 → V1 → V2 → V3 → 0 be a short

exact sequence in M(P ). Fix a compact open subgroup K, and let {gi} be as above. It

suffices to show that 0 → (IndGP V1)
K → (IndGP V2)

K → (IndGP V3)
K → 0 is exact. Using

the isomorphism (25.1) for V1, V2, V3 respectively, we reduce to showing that for each i =

1, · · · , n, the sequence 0 → V Ki
1 → V Ki

2 → V Ki
3 → 0 is exact. Only the surjectivity of

V Ki
2 → V Ki

3 is unclear. For this, use the averaging operator π2(eKi). □

Proposition 25.2 (Frobenius reciprocity). The restriction functor ResGP :M(G)→M(P )

is left adjoint to IndGP . That is, given (σ,W ) ∈ M(G) and (π, V ) ∈ M(P ), there is a
canonical bijection

Φ : HomP (F )(σ, π)
∼−→ HomG(F )(σ, Ind

G
P π)

which is functorial in σ and π.

Proof. Given α ∈ LHS, we define Φ(α) ∈ RHS as follows. For w ∈ (σ,W ), define Φ(α)(w) ∈
IndGP π to be the function f : G(F ) → V, g 7→ α(gw). For p ∈ P (F ), we have f(pg) =
α(pgw) = p ·α(gw) = p · f(g), where the second equality is because α is P (F ) linear. Hence

f indeed lies in algIndGP π. Moreover, since (σ,W ) is smooth, f is clearly right K-invariant

for some compact open subgroup K (as long as K fixes w). Hence f lies in IndGP π.
We now need to check that Φ(α) is G(F )-linear. Thus let g0 ∈ G. Then Φ(α)(g0w) : g 7→

α(gg0w) = f(gg0) = (g0 · f)(g).
To define Φ−1, let β ∈ RHS. Define Φ−1(β) : (σ,W )→ (π, V ), w 7→ β(w)(1). To check it

is P (F )-linear, let p ∈ P (F ). Then Φ−1(β)(pw) = β(pw)(1) = (p · β(w))(1) = β(w)(1 · p) =
β(w)(p · 1) = p · [β(w)(1)].

We leave it as an exercise to show that Φ and Φ−1 are indeed inverse maps, and that Φ
is functorial in σ, π. □

Let P be a parabolic subgroup of G, and fix a Levi decomposition P = MN . We have
a functor M(M) → M(P ) as follows: For each (π, V ) ∈ M(M), we extend the M(F )-
action on V trivially along N(F ) to get a P (F )-action on V ; equivalently, we identify
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M(F ) as the quotient P (F )/N(F ), and then pull-back the M(F )-representation to a P (F )-
representation. We then consider the composite functor

M(M) −→M(P )
IndG

P−−−→M(G).

By abuse of notation, we still denote this functor by IndGP . This functor is called the
parabolic induction, and it obviously still preserves admissibility and exact sequences as in
Proposition 25.1 (since the functorM(M)→M(P ) trivially has these properties).

Remark 25.3. One can also define IndGM :M(M)→M(G) by taking the smooth part of

algInd
G(F )
M(F ). This functor is different from IndGP :M(M) →M(G), and will never be con-

sidered in the sequel. For instance, for a compact open subgroup K of G(F ), (IndGM (triv))K

is the space of all functionsM(F )\G(F )/K → C, and this is in general infinite dimensional.

Thus IndGM does not preserve admissibility.

In the reverse direction, we consider the following composite functor

JN :M(G)
ResGP−−−→M(P )

(·)N−−−→M(M),

where the first functor is restriction from G(F ) to P (F ), and the second is taking N(F )-
coinvaiants. Let us explain the second functor: Let (V, π) ∈M(P ). Then

V (N) := span{π(n)v − v | n ∈ N(F ), v ∈ V }
is a sub-representation, and so the coinvariant space

VN := V/V (N)

is naturally a smooth P (F )-representation. Moreover, this P (F )-representation factors
through the quotient P (F )/N(F ) ∼= M(F ). We thus have the functor (·)N : M(P ) →
M(M). We call JN = (·)N ◦ ResGP the Jacquet module functor. For π ∈ M(G), the
representation JN (π) ∈M(M) is called the Jacquet module of π with respect to P =MN .

Proposition 25.4. The functor JN :M(G) →M(M) is left adjoint to IndGP :M(M) →
M(G).

Proof. Let σ ∈M(G), π ∈M(M). By Proposition 25.2, we have

HomP (F )(σ, π) ∼= HomG(F )(σ, Ind
G
P π).

Here on the two sides π is viewed as inM(P ). But since by definition N(F ) acts trivially
on π, the LHS is canonically identified with HomM(F )(σN , π) = HomM(F )(JN (σ), π). □

Lect.36, Apr 26

Lemma 25.5. Let (V, π) be a smooth representation of N(F ), and as before let V (N) =
span{π(n)v − v | n ∈ N(F ), v ∈ V }. Then V (N) =

⋃
K kerπ(eK), where K runs over

compact open subgroups of N(F ).

Proof. We use the fact that N(F ) is the union of an increasing sequence of compact open
subgroups, as in Corollary 24.11. Let v ∈ V (N). Then v =

∑r
i=1 nivi − vi for ni ∈

N(F ), vi ∈ W . Find a compact open subgroup K ⊂ N(F ) such that all ni are in K. Then
π(eK)nivi = π(eK)vi, and hence π(eK)v = 0. Conversely, let v ∈ V such that π(eK)v = 0
for some compact open subgroup K ⊂ N(F ). Recall that π(eK)v is the average over the
finite K-orbit of v. Say the K-orbit of v is {k1v, · · · , krv}. Then

∑
i kiv = 0, and hence

v =
−1
r

r∑
i=1

(kiv − v) ∈ V (N).
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□

Proposition 25.6. The functor JN :M(G)→M(M) is exact.

Proof. In general, taking co-invariants is right exact, so we only need to check that JN
preserves injections. Thus for V ∈ M(G) and a sub-representation W ⊂ V , we need
W ∩ V (N) =W (N). This follows immediately from Lemma 25.5. □

26. Normalization and transitivity

Let P = MN be a parabolic subgroup of G. Let δP : P (F ) → R>0 be the modulus
character on P (F ).

Fact 26.1. The character δP factors through P (F )/N(F ) ∼= M(F ). Moreover, for m ∈
M(F ), δP (m) = |det(Ad(m) | LieN)|−1

F . Here | · |F is the canonical normalization of the
absolute value on F .

If for π ∈ M(M) we denote by π′ its image in M(P ), then (π ⊗ δ−1/2
P )′ ∼= π′ ⊗ δ−1/2

P .
Here on the LHS δP is viewed as a character on M(F ). In the following we write both of

them simply as π ⊗ δ−1/2
P . We define the normalized parabolic induction functor to be

iGP :M(M) −→M(G), π 7−→ IndGP (π ⊗ δ
−1/2
P ).

Similarly, we define the normalized Jacquet module functor to be

rGP :M(G) −→M(M), π 7−→ JN (π)⊗ δ1/2P .

Corollary 26.2. The functor rGP is left adjoint to iGP . Both are exact, and iGP preserves
admissible representations.

The following is the main motivation for introducing iGP in place of IndGP .

Fact 26.3. The functor iGP is compatible with taking contragredient (i.e., iGP (π
∨) ∼= (iGPπ)

∨),
and it preserves unitary representations.

Remark 26.4. We explain the rough idea for compatibility with contragredient; the perse-
verance of unitarity is similar. Let us try and define a pairing between IndGP π and IndGP (π

∨)

in order to identify the latter with the contragredient of the former. If f ∈ IndGP π and

f ′ ∈ IndGP (π
∨), then we obtain a function F : G → C, g 7→ ⟨f(g), f ′(g)⟩. This function is

left P (F )-invariant. We would like to define ⟨f, f ′⟩ to be the “integration of F over the
compact set P (F )\G(F )”. However, there is not a well-behaved right G(F )-invariant func-
tional “

∫
P (F )\G(F )

” that takes a smooth function P (F )\G(F ) → C to a complex number.

The problem is precisely that G(F ) is unimodular while P (F ) is not. Instead, we have such
a right G(F )-invariant integral if the integrand is a function F : G(F ) → C that is not
left P (F )-invariant but rather satisfies F (pg) = δ−1

P (p)F (g) for p ∈ P (F ), g ∈ G(F ). Now
if we take f ∈ iGPπ and f ′ ∈ iGP (π

∨), then the function F (g) = ⟨f(g), f ′(g)⟩ does satisfy

F (pg) = δ−1
P (p)F (g).

Fact 26.5 (Transitivity). Let P =MN,Q = LU be standard parabolic subgroups of G with
standard Levi decompositions. Suppose that P ⊂ Q. Then M ⊂ L and N ⊃ U . Moreover,
P ∩ L is a parabolic subgroup of L and M is a Levi factor of it. We have iGP = iGQ ◦ iLP∩L,

and rGP = rLL∩P ◦ rGQ.
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27. Supercuspidal representations

Definition 27.1. We call (π, V ) ∈M(G) supercuspidal, if for all proper parabolic subgroups
P ⊂ G, we have VNP

= 0.

Remark 27.2. Clearly this is equivalent to the condition that for any standard proper
parabolic P = MN , we have rGP π = 0, or equivalently, JNπ = 0. By adjunction, this is
equivalent to the condition that for all σ ∈ M(M), we have HomG(F )(π, i

G
Pσ) = 0, and

equivalently for IndGP in place of iGP . Thus π is supercuspidal if and only if there is no
non-zero G(F )-map from π into any properly parabolically induced representations.

Theorem 27.3 (Harish-Chandra). Let (π, V ) ∈M(G). The following statements are equiv-
alent.

(1) (π, V ) is supercuspidal.
(2) The restriction of (π, V ) to 0G(F ) ⊂ G(F ) is a compact representation.
(3) Every matrix coefficient of (π, V ) is compactly supported modulo ZG(F ). That is,

the support has compact image in G(F )/ZG(F ).

Remark 27.4. If ZG(F ) is compact, then 0G(F ) = G(F ) by Proposition 21.16. Thus in
this case supercuspidal representations are the same as compact representations. The reason
that we do not want to make this assumption in our theory is that even if we do so, the
proper Levi subgroups M of G (if they exist) will no longer satisfy this assumption, because
AM is non-trivial.

Proof. Since 0G(F ) is open in G(F ), a vector in V ∗ is smooth with respect to the G(F )-
action if and only if it is smooth with respect to the 0G(F )-action. Hence the set of matrix
coefficients for π|0G(F ) is obtained by restricting the matrix coefficients for π to 0G(F ).
Hence the equivalence of (2) and (3) would follow if we show that a smooth function G(F )→
C is compactly supported modulo ZG(F ) if and only if its restriction to 0G(F ) is compactly
supported. The “only if” direction is true because ker(0G(F )→ G(F )/ZG(F )) = ZG(F ) ∩
0G(F ) is compact (Proposition 21.16). The “if” direction is true because ZG(F )

0G(F ) has
finite index in G(F ) (Proposition 21.16). Lect.37, Apr 28

“(2) ⇒ (1)”. Let P = MN be a standard proper parabolic, and we show that VN = 0.
Let v ∈ V . We need to show that v ∈ V (N).

Let K be a compact open subgroup of G(F ) satisfying Fact 24.7 and fixing v. For any
compact subgroup L of G(F ), we write γ(L) : V → V for the map sending a vector to the
average of the (finite) L-orbit of that vector. (If L is open, then γ(L) is just π(eL).) By
Lemma 25.5, in order to show that v ∈ V (N) it suffices to find a compact open subgroup
U ⊂ N(F ) such that γ(U)v = 0.

We claim that 0G(F ) ∩ A++
M ̸= ∅. Indeed, let s ∈ A++

M . Then any positive power of

s still lies in A++
M , while one of them satisfies HG(s

n) ∈ Λ(AG) ⊂ Λ(G), since Λ(AG) is
of finite index in Λ(G). Pick a ∈ AG(F ) such that HG(a) = HAG

(a) = HG(s
n). Then

t := a−1sn ∈ 0G(F ) ∩A++
M .

Let t ∈ 0G(F ) ∩ A++
M . The set {HAM

(tn) | n ≥ 1} is unbounded in aM . The map HAM

is continuous (with respect to the real vector space topology on aM ), so {tn | n ≥ 1} is not
contained in any compact subset of AM (F ). But π|0G(F ) is a compact representation, so

the map 0G(F ) → V, g 7→ π(eK)π(g)v is compactly supported. (Recall that K ⊂ 0G(F ).)
Therefore there exists n ≥ 1 such that π(eK)π(tn)v = 0. In particular π(et−nKtn)v = 0.
Now

t−nKtn = (t−nKN t
n)(t−nKM t

n)(t−nKN̄ t
n),
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where t−nKN t
n, t−nKM t

n, t−nKN̄ t
n are compact open subgroups of N(F ),M(F ), N̄(F )

respectively. By Exercise 27.6 below, we have

0 = π(et−nKtn)v = γ(t−nKtn)v = γ(t−nKN t
n)γ(t−nKM t

n)γ(t−nKN̄ t
n)v.

Now t−nKN̄ t
n ⊂ KN̄ ⊂ K (because Ad(t−1) is “shrinking” on N(F )) and t−nKM t

n =
KM ⊂ K because t is central in M(F ). Hence both γ(t−nKM t

n) and γ(t−nKN̄ t
n) fix v.

Therefore

γ(t−nKN t
n)v = 0.

But t−nKN t
n is a compact open subgroup of N(F ), so we are done.

“(1) ⇒ (2)”. Suppose (2) is false. Then there exist v ∈ V and λ ∈ V ∨ such that
the function ϕ : 0G(F ) → C, g 7→ ⟨λ, π(g)v⟩ is not compactly supported on 0G(F ).13 Let
{mi}i≥1 and P = MN be as in Lemma 27.5, applied to the support of ϕ. Since ϕ is bi-
invariant under a compact open subgroup K ′ of G(F ) (as long as K ′ fixes v and λ), and
since we may assume that K ′ is normal and of finite index in K0, we can find r, s ∈ K0

such that up to extracting a sub-sequence we have ϕ(rmis) ̸= 0 for all i. Replacing v, λ by
sv, r−1λ, we then have ϕ(mi) ̸= 0 for all i. We now find a sufficiently small compact open
subgroup K ⊂ G(F ) which fixes v and λ and satisfies Fact 24.7.

Since VN = 0, by Lemma 25.5 there is a compact open subgroup U ⊂ N(F ) satisfying
γ(U)v = 0. For sufficiently large i, we have m−1

i KNmi ⊃ U by Fact 24.7 (4), so we have

γ(m−1
i KNmi)v = 0. In particular, γ(KN )π(mi)v = 0. But λ is fixed by K and in particular

fixed by KN , so we have

0 ̸= ϕ(mi) = ⟨λ, π(mi)v⟩ = ⟨λ, γ(KN )π(mi)v⟩ = 0,

a contradiction. □

Lemma 27.5. Let C be a non-compact closed subset of 0G(F ). Let K0 be as in Fact 24.2.
Then there is a standard parabolic P = MN and a sequence {mi}i≥1 in M++ ∩ 0G(F )
such that mi ∈ M++(ϵi) for a sequence ϵi ∈ R>0 tending to +∞ (see Fact 24.7 (4) for the
notation) and such that C meets K0miK0 for all i.

Proof. Let P0 = M0N0 be the fixed minimal parabolic with M0 the fixed Levi factor. We
use the Cartan decomposition

G(F ) =
⋃

m∈M+
0

K0mK0.

Note that since K0 ⊂ 0G(F ), a double coset K0mK0 as above is a subset of 0G(F ) if and
only if m ∈M+

0 ∩ 0G(F ), if and only if K0mK0 ∩ 0G(F ) ̸= ∅.
Since C is non-compact and closed, it is not contained in any compact set, and so it meets

K0miK0 for a sequence {mi}i≥1 ⊂ M+
0 ∩ 0G(F ) such that {mi} is not contained in any

compact subset of G(F ). Since Λ(AM0
) is of finite index in Λ(M0), up to extracting a sub-

sequence we may assume that all mi are of the form m0ai for some fixed m0 ∈M+
0 ∩ 0G(F )

and for ai ∈ AM0
(F ) ∩ 0G(F ). We now use without proof the fact that

[
⋂

α∈R(AM0
,N0)

ker(α : AM0
→ Gm)]0 = AG.(27.1)

13This function is g 7→ ϕv,λ(g
−1) where ϕv,λ is the matrix coefficient associated with v, λ.
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Here [·]0 denotes taking the identity connected component under the Zariski topology. In
particular, the kernel of the map⊕

α∈R(AM0
,N0)

α : AM0(F ) ∩ 0G(F )→ (F×)⊕R(AM0
,N0)

contains AG(F ) ∩ 0G(F ) with finite index, and is therefore compact by Proposition 21.16.
Since {ai}i≥1 is not contained in any compact set, there exists α ∈ R(AM0

, N0) such that
{α(ai)}i≥1 does not lie in a compact subset of F×. We have a (split) short exact sequence

1→ O×
F → F× vF−−→ Z→ 0

with O×
F compact. Hence vF (α(ai)) takes infinitely many different values. But they are

bounded from below (as m0ai ∈ M+
0 ). Hence up to extracting a sub-sequence, we may

assume that vF (α(ai))→ +∞. Now R(AM0
, N0) has a minimal subset ∆, called the set of

simple roots, with the property that all elements of R(AM0
, N0) are sums of elements of ∆.

We may assume that α ∈ ∆. Then by the classification of standard parabolic subgroups,
there exists a (maximal proper) standard parabolic subgroup P =MN such that R(AM , N)
consists of only positive multiples of α|AM

. Then up to extracting a sub-sequence, we have
mi ∈M++ ∩ 0G(F ) and mi ∈M++(ϵi) for all i ≥ 1. □

Exercise 27.6. In general, for arbitrary two compact subgroups L1, L2 of G(F ) such that
L2 normalizes L1, we have a compact subgroup L1L2 = L2L1 of G(F ) and we have

γL1L2 = γL2 ◦ γL1 = γL1 ◦ γL2 .

Exercise 27.7. Prove (27.1) for G = GLn.

Exercise 27.8. For G = GLn and the standard choices of P0,M0, we have AM0
=M0 = the

diagonal torus, R(AM0
, N0) = {αi,j | 1 ≤ i < j ≤ n} where αi,j(diag(z1, · · · , zn)) = zi/zj .

Moreover ∆ = {α1,2, α2,3, · · · , αn−1,n}, and the standard parabolic corresponding to αi,i+1

is Pi,n−i.
Lect.38, May 1

Lemma 27.9. The functor rGP :M(G)→M(M) sends a finitely generated representation
to a finitely generated representation.

Proof. Let (π, V ) ∈ M(G) be generated by v1, · · · , vn. Let K ⊂ G(F ) be a compact open
subgroup fixing all vi. Let g1, · · · , gk ∈ G(F ) be representatives of P (F )\G(F )/K (which
is finite). Then as a P (F )-representation, (π, V ) is generated by {gjvi}. □

Proposition 27.10. Let (π, V ) ∈M(G) be irreducible. Then there is a standard parabolic
P =MN such that the following are satisfied:

(1) rGP π ̸= 0 and is supercuspidal.
(2) There exists an irreducible supercuspidal σ ∈M(M) such that π is a sub-representation

of iGPσ.

Proof. By transitivity of the Jacquet module functor, we can find P = MN satisfying (1)
by taking P to be minimal such that rGP π ̸= 0. (If π is supercuspidal, then we take P = G.)
By Lemma 27.9, rGP π is finitely generated, so it admits an irreducible quotient σ. By the
(right) exactness of the Jacquet module functor, σ is also supercuspidal. By adjunction,

HomG(F )(π, i
G
Pσ)
∼= HomM(F )(r

G
P π, σ) ̸= 0.

Since π is irreducible, this means that π is a sub-representation of iGPσ. □
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Remark 27.11. The second statement says that all irreducible representations “can be
built” from supercuspidal representations of Levi subgroups.

28. Results on admissibility

Theorem 28.1. Let (π, V ) ∈M(G) be irreducible. Then it is admissible.

Proof. By Proposition 27.10, we may assume that π = iGPσ for an irreducible supercuspidal
(σ,W ) ∈ M(M). Since iGP preserves admissibility, it suffices to show that σ is admissible.
Since every compact open subgroup ofM(F ) is contained in 0M(F ). It suffices to show that
σ is admissible as a 0M(F )-representation. We write σ′ for σ|0M(F ). We already know that
σ′ is compact, and recall that any finitely generated compact representation is admissible.
It remains to show that σ′ is finitely generated. Let v0 ∈W − {0}. Then σ is generated by
v0 as a M(F )-representation. Moreover, since σ is irreducible, by Schur’s lemma, ZM (F )
acts on σ by a character χ : ZM (F ) → C×. By Proposition 21.16, ZM (F ) 0M(F ) is
normal and of finite index in M(F ), so we can fix representatives g1, · · · , gr ∈ M(F ) of
(ZM (F ) 0M(F ))\M(F ). Every v ∈ W is a C-linear combination of M(F )-translates of v0,
so

v =

r∑
i=1

s∑
j=1

t∑
k=1

ci,j,kzjhkgiv0 =
∑

ci,j,kχ(zj)hkgiv0

for ci,j,k ∈ C, zj ∈ ZM (F ), hk ∈ 0M(F ). Thus v is a C-linear combination of 0M(F )-
translates of g1v0, · · · , grv0. Hence the 0M(F )-representation σ′ is finitely generated. □

Our next goal is to prove the following stronger result:

Theorem 28.2 (Uniform admissibility, Bernstein). Fix a compact open subgroup K ⊂
G(F ). Then there exists a constant N such that for every irreducible (π, V ) ∈ M(G) we
have dimV K ≤ N .

We need some preparation. Let K0 be as in Fact 24.2, and K be as in Fact 24.7.

Proposition 28.3. We have a decomposition

H(G(F ))K = H(K0)K ·D · C · H(K0)K ,

where D is a finite dimensional C-vector subspace, and C is a finitely generated commutative
C-algebra. Here the decomposition means that every element of H(G(F ))K can be written
as xyzw with x,w ∈ H(K0)K , y ∈ D, z ∈ C. Moreover, the number of generators of C
as a C-algebra is bounded from the above by the number of generators of X∗(AM0

)+ :=
X∗(AM0

) ∩ a+M0
as a monoid.14

If AM0
=M0, then D = C. In general, D accounts for the possible failure of the existence

of a group-theoretic section of M0(F )→ Λ(M0). We will sketch a proof of Proposition 28.3
later. We also need the following fact, whose proof is found in [BZ76, Lem. 4.10] or [Ren10,
C.I].

Fact 28.4 (Bernstein–Zelevinsky). Any commutative subalgebra of Mk×k(C) generated by

l elements has dimension ≤ k2−21−l

.

14The fact that X∗(AM0
)+ is indeed finitely generated as a monoid follows from Gordan’s lemma: Let

λ1, · · · , λk ∈ HomZ(Zn,Z). Then the monoid {x ∈ Zn | λix ≥ 0, ∀i} is finitely generated. (The statement
is equivalent if we allow λi ∈ HomZ(Zn,Q), but it becomes false if we allow λi : Zn → R to take irrational

values.)
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Proof of Theorem 28.2. Recall that V K is a simple unital H(G)K-module. Let k = dimV K ,
which is finite by Theorem 28.1. By Burnside’s theorem, for every algebraically closed field
C, every unital C-algebra R, and every simple R-module M that is finite dimensional over
C, the map R → EndC(M), r 7→ r · (·) is surjective. Hence π : H(G)K → EndC(V

K) is
surjective. Without loss of generality, we may assume that K is as in Fact 24.7. Then we
can apply Proposition 28.3. Clearly H(K0)K is finite dimensional (of dimension [K0 : K]).
Hence

k2 = dimπ(H(G)K) ≤ ddimπ(C)

for a constant d = [K0 : K]2 dimD > 0. By Fact 28.4, if l is the number of generators of C,
then

k2 ≤ dk2−21−l

,

from which

k ≤ d2
l−1

.

□

Exercise 28.5. For GLn, we have X∗(AM0
)+ ∼= {(a1, · · · , an) ∈ Zn | a1 ≥ · · · ≥ an}.

This monoid has generators (1, 0, · · · , 0), (1, 1, 0, · · · , 0), · · · , (1, · · · , 1), (−1, · · · ,−1). Also
AM0 = M0. Hence in the above proof we can take d = [K0 : K]2, and l = n + 1. Thus for
K as in Fact 24.7 and for irreducible (π, V ) ∈M(G) we have

dimV K ≤ [K0 : K]2
n+1

.
Lect.39, May 3

We now discuss the proof of Proposition 28.3. For each g ∈ G(F ), let

ag = ag,K := eK ∗ δg ∗ eK = eK ∗ (l(g)eK) ∈ H(G(F ))K .

If we fix a left Haar distribution onG and identifyH(G(F )) with theK-bi-invariant functions
in C∞

c (G), then

ag = vol(KgK)−11KgK .

HenceH(G(F ))K has a C-basis {ag} where g runs over a set of representatives ofK\G(F )/K.
The key to the proof of Proposition 28.3 is the following lemma, which will also be needed
later independently.

Lemma 28.6. For g1, g2 ∈M+
0 , we have ag1ag2 = ag1g2 .

Proof. We claim that for any (π, V ) ∈M(G), we have

π(eK)π(g1)π(eK)π(eK)π(g2)π(eK) = π(eK)π(g1)π(g2)π(eK).

The lemma then follows since we can take (π, V ) to be H(G(F )) itself. Similar to the proof
of Theorem 27.3, we compute (omitting the subscript 0 in M0, N0, N̄0):

LHS = π(eK)π(g1)γ(KN )γ(KM )γ(KN̄ )π(g2)π(eK)

= π(eK)γ(g1KNg
−1
1 )γ(g1KMg

−1
1 )π(g1g2)γ(g

−1
2 KN̄g2)π(eK).

Now g1KNg
−1
1 ⊂ KN ⊂ K and g1KMg

−1
1 = KM ⊂ K, so π(eK)γ(g1KNg

−1
1 )γ(g1KMg

−1
1 ) =

π(eK). Also g−1
2 KN̄g2 ⊂ KN̄ ⊂ K, so γ(g−1

2 KN̄g2)π(eK) = π(eK). □

Sketch of proof of Proposition 28.3. For simplicity, assume that AM0 =M0. We fix a group
theoretic section of HAM0

: AM0(F )→ X∗(AM0) (which exists since this map is isomorphic

to (F×)n → Zn, (xi) 7→ (vF (xi))), and in the following we use this section to identify
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X∗(AM0) with a subgroup of AM0(F ). Write X+ for X∗(AM0)
+, identified with a subgroup

of A+
M0

. Under our simplifying assumption, the Cartan decomposition is of the form

G(F ) =
∐
λ∈X+

K0λK0.

Fix {λ1, · · · , λr} to be a set of generators of the monoid X+. By the Cartan decomposition,
any g ∈ G(F ) is of the form k1λ

n1
1 · · ·λnr

r k2 for k1, k2 ∈ K0 and n1, · · · , nr ∈ N. Write h for
λn1
1 · · ·λnr

r . Then in C−∞
c (G(F )) we have

ag = eK ∗ δk1 ∗ δh ∗ δk2 ∗ eK = (eK ∗ δk1 ∗ eK) ∗ (eK ∗ δh ∗ eK) ∗ (eK ∗ δk2 ∗ eK) = ak1 ∗ah ∗ak2 ,

where the second equality follows from the fact that k1, k2 normalize K (from which eK ∗
δki = δki ∗ eK). We have aki ∈ H(K0)K . Define D = C, and define C to be the linear span
of aλ for λ ∈ X+. Then ah ∈ C, so by the above we get the decomposition

H(G(F ))K = H(K0)K · C · H(K0)K .

By Lemma 28.6, we have aλn1
1 ···λnr

r
= an1

λi
· · · anr

λr
∈ C, from which C is a commutative

algebra generated by aλi
. □

Remark 28.7. In general, if there exists a group theoretic section of HM0
: M0(F ) →

Λ(M0), then our proof of Proposition 28.3 immediately generalizes and gives rise to the
following variant of Proposition 28.3: We have

H(G(F ))K = H(K0)K · C · H(K0)K ,

where C is a finitely generated commutative sub-algebra, and the number of generators is
bounded by the number of generators of the monoid Λ(M0)

+ := Λ(M0)∩a+M0
. It is expected

by experts that such a group theoretic section always exists, but it seems that a complete
proof has not appeared in the literature.

Corollary 28.8. Fix a compact open subgroup K ⊂ G(F ). There is a compact subset
Ω ⊂ 0G(F ) such that for every irreducible supercuspidal representation (π, V ) ∈M(G) and
every K-bi-invariant matrix coefficient ϕ for π, we have supp(ϕ) ∩ 0G(F ) ⊂ Ω.

Sketch of proof. For simplicity assume that ZG = 1 (in particular G(F ) = 0G(F )) and
assume that AM0 = M0. For the proof in the general case see [Ren10, V.5.3]. Without
loss of generality, we may assume that K is as in Fact 24.7. We use the notation in the
proof of Proposition 28.3, and as in that proof we identify X+ with a subgroup of A+

M0
. In

particular, the Cartan decomposition is of the form

G(F ) =
∐
λ∈X+

K0λK0.

If ϕ is a K-bi-invariant matrix coefficient for (π, V ), then the function ϕ(g−1) is of the form
g 7→ ⟨λ, π(g)v⟩ = ⟨λ, π(ag)v⟩ for v ∈ V K , λ ∈ (V ∨)K . Hence we only need to show that for
every irreducible supercuspidal (π, V ), the map G(F ) → EndC(V ), g 7→ π(ag) is supported
on some compact Ω which is independent of (π, V ).

We claim that there is a constant integer N ≥ 1 independent of (π, V ) such that for every
non-trivial λ ∈ X+ we have π(aλ)

N = 0.
Assuming the claim, we finish the proof as follows. Pick a set of generators {λ1, · · · , λr}

of the monoid X+ with each λj non-trivial, and take Ω to be the union of K0λ
n1
1 · · ·λnr

r K0

over n1, · · · , nr ∈ {0, 1, · · · , N}. To see that this works, let g /∈ Ω. Then g = k1λ
n1
1 · · ·λnr

r k2
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with n1, · · · , nr ≥ 0 and some nj > N , and with k1, k2 ∈ K0. Since K0 normalizes K, and
by Lemma 28.6, we have

π(ag) = π(eK)π(k1)π(λ
n1
1 · · ·λnr

r )π(k2)π(eK) = π(k1)π(eK)π(λn1
1 · · ·λnr

r )π(eK)π(k2)

= π(k1)π(aλn1
1 ···λnr

r
)π(k2) = π(k1)π(aλ1)

n1 · · ·π(aλr )
nrπ(k2).

This is zero because π(aλj )
nj = 0.

To prove the claim, note that π(aλ)
k = π(aλk) by Lemma 28.6. When k → +∞,

λk ∈ A+
M0

leaves any given compact set because its image in X+ ⊂ aM0
, namely k · λ,

gets arbitrarily far away from the origin. Therefore, by the fact that π is supercuspidal
(= compact), and by the definition of compact representations, for every v ∈ V we have
π(aλ)

kv = π(aλk)v = 0 for sufficiently large k (in a way that a priori depends on (π, V ) and
v). But π(aλ) is determined by its restriction to V K , and the latter has dimension bounded
by some N which is independent of (π, V ) by Theorem 28.2. Hence π(aλ)

N = 0. □
Lect.40, May 5

29. The supercuspidal part of the category of smooth representations

Proposition 29.1. Let π ∈M(G) be irreducible. Write π0 for π|0G(F ) ∈M(0G(F )). The
following statements hold.

(1) π0 is a direct sum of finitely many irreducible representations of 0G(F ), and their
isomorphism classes form precisely one G(F )-orbit. (There may be multiplicities
in the irreducible decomposition of π0.) Here G(F ) acts on the set of isomorphism
classes of representations of 0G(F ) by its conjugation action on 0G(F ).

(2) Let π′ ∈ M(G) be another irreducible representation. The following statements are
equivalent:
(a) π0 ∼= π′

0.
(b) π ∼= π′ ⊗ ω for some ω ∈ χ(G) = Hom(G/0G(F ),C×), i.e., π and π′ lie in the

same inertia class.
(c) Hom0G(F )(π0, π

′
0) ̸= 0.

Proof. Part (1) is an easy consequence of the fact that 0G(F )ZG(F ) is of finite index in
G(F ), and the fact that ZG(F ) acts on π by a character by Schur’s lemma. We leave the
proof as an exercise. For (2), the implications (b) ⇒ (a) ⇒ (c) are trivial. We show (c) ⇒
(b). By (1) and Schur’s lemma, the space H = Hom0G(F )(π0, π

′
0) is finite dimensional. The

group G(F ) acts on it by g · f = π′(g) ◦ f ◦ π(g−1). This action factors through the abelian
group Λ(G) = G(F )/0G(F ), and therefore there is a common eigenvector f ∈ H. That is,

π(g)fπ′(g−1) = ω(g)f for some ω ∈ χ(G). But then f is an isomorphism π′ ⊗ ω ∼−→ π. □

Exercise 29.2. Prove part (1).

Definition 29.3. Let Irrsc be the set of isomorphism classes of irreducible supercuspi-
dal representations π ∈ M(G). Let Irr0sc be the set of isomorphism classes of irreducible
representations of 0G(F ) which appear in π|0G(F ) for some π ∈ Irrsc.

We know that every element of Irr0sc is (the isomorphism class of) an irreducible compact
representation. The converse is also true, but we will not need it.

Corollary 29.4. Fix a compact open subgroup K ⊂ G(F ). There are only finitely many
χ(G)-orbits of π ∈ Irrsc such that πK ̸= 0. There are only finitely many elements σ ∈ Irr0sc
such that σK ̸= 0.
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Proof. The two statements are equivalent to each other in view of Proposition 29.1. For each
σ ∈ Irr0sc satisfying σ

K ̸= 0, we can take a K-bi-invariant matrix coefficient for σ (because
(σ∨)K ∼= (σK)∗ ̸= 0), and for varying σ these functions on 0G(F ) are linearly independent of
each other by Exercise 15.17. However, all these functions are K-bi-invariant and supported
on a common compact subset Ω ⊂0 G(F ) which depends only on K, by Corollary 28.8. The
space of all K-bi-invariant functions on Ω is finite dimensional. Hence there are only finitely
many elements σ of Irr0sc such that σK ̸= 0. □

Theorem 29.5. We have

M(0G(F )) ∼=
( ⊕
σ∈Irr0sc

M(0G(F ))σ

)
⊕M(0G(F ))nsc,

whereM(0G(F ))σ is the full subcategory consisting of representations which are direct sums
of copies of σ, and M(0G(F ))nsc is the full subcategory of representations none of whose
subquotients are in Irr0sc.

Proof. Since Irr0sc is a subset of the set of isomorphism classes of irreducible compact rep-
resentations of 0G(F ), we only need to check that Irr0sc satisfies condition (FC) and then
apply Theorem 14.6. By Corollary 29.4, Irr0sc satisfies condition (FC). □

By Theorem 29.5 and some more work, we obtain the following:

Theorem 29.6. We have

M(G) ∼=M(G)sc ⊕M(G)ind ∼=
( ⊕

[π]∈Irrsc /χ(G)

M(G)[π]

)
⊕M(G)ind.

HereM(G)sc (resp.M(G)ind, resp.M(G)[π]) is the full subcategory consisting of objects all
of whose irreducible subquotients are supercuspidal (resp. not supercuspidal, resp. members
of [π]).

Let π ∈ Irrsc. Next we state without proof a structure theorem for the categoryM(G)[π].

Fix an irreducible 0G(F ) sub-representation (σ,W ) of π|0G(F ), and let Π be the compact

induction of σ from 0G(F ) to G(F ). That is, consider the space of functions f : G(F )→W
satisfying f(hg) = σ(h)f(g) for all h ∈ 0G(F ), g ∈ G(F ), and such that f is compactly
supported modulo 0G(F ) (meaning that the support of f has finite image in Λ(G)). Equip
this space with a G(F )-action by right translation. Then define Π to be the smooth part of
this G(F )-representation.

Theorem 29.7. The functor from M(G)[π] to the category of right unital modules of the
ring EndG(F )(Π), sending V to HomG(F )(Π, V ), is an equivalence. In particular, the center
of the categoryM(G)[π] is identified with the center of the ring EndG(F )(Π).

After more work, one obtains a geometric description of the center of M(G)[π] as fol-
lows. Recall that the inertia class [π] = χ(G) · π is a principal homogeneous space under
χ(G)/ Stabπ(χ(G)), which is a complex torus. In particular, the set [π] has a canonical
structure of (the complex points of) a complex affine algebraic variety. Let O([π]) denote
the ring of regular functions on this variety.

Theorem 29.8. The center of the category M(G)[π] is canonically identified with O([π]).
More precisely, let f ∈ O([π]) and π′ ∈ [π]. Clearly π′ is an (irreducible) object ofM(G)[π].
The endomorphism of π′ ∈ induced by f is the scalar f(π′) ∈ C.

Lect.41, May 8
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30. The Bernstein decomposition theorem

Definition 30.1. By a cuspidal datum for G, we mean a pair (M,σ) where M is a Levi
subgroup ofG (not necessarily standard) and σ is an irreducible supercuspidal representation
of M(F ). Two such pairs (M,σ), (M ′, σ′) are called associated, if there exists g ∈ G(F )

such that gMg−1 = M ′, and the isomorphism Int(g) : M(F )
∼−→ M ′(F ) takes σ to σ′.

Write Ω(G) for the set of cuspidal data modulo association.

Theorem 30.2. Let (M,σ), (M ′, σ′) be cuspidal data. Let P, P ′ be parabolic subgroups of

G having M and M ′ as Levi factors, respectively. Let π = iGPσ and π′ = iG
′

P ′σ′. Then π and
π′ are of finite length, and the Jordan–Hölder factors of π (counting multiplicities) depend
only on (M,σ), not on P . Moreover, the following are equivalent:

(1) (M,σ) and (M ′, σ′) are associated.
(2) HomG(F )(π, π

′) ̸= 0.
(3) π and π′ have the same Jordan–Hölder factors (counting multiplicities).
(4) π and π′ have at least one Jordan–Hölder factor in common.

We thus have a well defined map CS : Irr(G)→ Ω(G) sending π to (M,σ) such that π is
a subquotient of iGPσ for some P having M as a Levi factor. (Here CS stands for “cuspidal
support”.)

We now introduce an equivalence relation on the set of cuspidal data, which is coarser
than association. It is the equivalence relation generated by association, and the requirement
that (M,σ) ∼ (M,σ ⊗ ω) for all cuspidal data (M,σ) and all ω ∈ χ(M). Write B(G) for
the set of cuspidal data modulo this equivalence relation. We thus have a natural map

Ω(G) → B(G). Write IS for the composition Irr(G)
CS−−→ Ω(G) → B(G), standing for

“inertia support”.

Theorem 30.3. We have
M(G) =

⊕
s∈B(G)

M(G)s,

whereM(G)s is the full subcategory consisting of representations such that each irreducible
subquotient π satisfies IS(π) = s.

Remark 30.4. If s is represented by a cuspidal datum of the form (G, π), then

s = {(G, π′) | π′ ∈ [π] = χ(G) · π},
andM(G)s is the same asM(G)[π] as in Theorem 29.6.

Let s ∈ B(G), and let (M,σ) be a representative of s. With significantly more work,
we have the following structure theorem for M(G)s, generalizing Theorem 29.7. Fix an
irreducible sub-representation τ of σ|0M(F ), and let Σ be the compact induction of τ from
0M(F ) to M(F ). Let P ⊂ G be a parabolic subgroup having M as a Levi factor.

Theorem 30.5. The functor from M(G)s to the category of right unital modules of the
ring EndG(F )(i

G
PΣ), sending V to HomG(F )(i

G
PΣ, V ), is an equivalence. In particular, the

center ofM(G)s is identified with the center of the ring EndG(F )(i
G
PΣ).

We also have a geometric description of the center generalizing Theorem 29.8. We state
this result. The inverse image Ω(G)s of s in Ω(G) is the quotient of [σ] = χ(M) · σ by
the action of the stabilizer of [σ] in the finite group WG

M := NG(F )(M(F ))/M(F ). Here

WG
M acts on Irr(M) via the conjugation action of NG(F )(M(F )) on M(F ). In general, if

γ ∈ AutF (M), then γ permutes X∗(M(F )) and hence γ stabilizes 0M(F ). Therefore γ
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permutes χ(M) by an automorphism of the torus χ(M) (induced by the automorphism of
the free abelian group Λ(M) induced by γ). Thus if we pick a base point σ in an inertia
class [σ], then γ stabilizes [σ] if and only if γ(σ) = σ ⊗ ω0 for some ω0 ∈ χ(M), and in
that case γ(σ ⊗ ω) = σ ⊗ (ω0 · γ(ω)) for all ω ∈ χ(M). From this we see that γ acts on
[σ] via an algebraic variety automorphism of [σ]. Thus Ω(G)s is the quotient of the affine
algebraic variety [σ] by a finite subgroup of the automorphism group of the algebraic variety
[σ]. As such Ω(G)s obtains the structure of an affine algebraic variety. One checks that this
structure is independent of all choices.

Theorem 30.6. The center of M(G)s is identified with the ring of regular functions on
Ω(G)s. Let f be such a function and let π be an irreducible object of M(G)s. Then the
endomorphism of π induced by f is the scalar f(CS(π)).

Corollary 30.7. The category M(G)s is indecomposable, i.e., not a direct sum of two
sub-categories.

Proof. The center of this category has no idempotents, since the variety Ω(G)s is connected.
If M(G)[π] were decomposable, then the projection to a direct summand defines an idem-
potent in its center. □

31. Illustration of the geometric lemma

Finally, we say a few words on the proof of Theorem 30.2. The key is to understand,
when given two parabolic subgroups with Levi decompositions P =MN and Q = LU (none
assumed to be standard), and given σ an irreducible supercuspidal representation of M(F ),
the structure of rGQi

G
Pσ as an L(F )-representation. To this end we have the following result.

By general theory, there is a set WQ,P ⊂ G(F ) of representatives for P (F )\G(F )/Q(F )
such that for each w ∈ WQ,P , M ∩ w · Q is a parabolic subgroup of M with Levi factor
M ∩w ·L and unipotent radicalM ∩w ·U , and L∩w−1 ·P is a parabolic subgroup of L with
Levi factor L ∩ w−1 ·M and unipotent radical L ∩ w−1 ·N . (Here w · (· · · ) and w−1 · (· · · )
denote the conjugation action.)

Theorem 31.1 (Geometric lemma). The L(F )-representation rGQi
G
Pσ has a filtration, whose

associated graded pieces are

iLL∩w−1·P ◦ w
∗ ◦ rMM∩w·Q(σ),

where w∗ runs through WQ,P , and w∗ denotes the functorM(M ∩w ·L)→M(L∩w−1 ·M)

induced by the isomorphism of groups L∩w−1 ·M ∼−→M ∩w ·L given by conjugation by w.

We illustrate the theorem in the case where G = GL2, P = Q = the group of upper
triangular invertible matrices, and M = L = the diagonal torus. Then WP,P = {1, w =(
0 1
1 0

)
}, and the automorphism w : M → M is diag(a, b) 7→ diag(b, a). An irreducible

supercuspidal representation of M(F ) is just a one dimensional representation diag(a, b) 7→
χ1(a)χ2(b), where χ1, χ2 are smooth characters F× → C×. We denote this representation
by σχ1,χ2

. The functor w∗ sends σχ1,χ2
to σχ2,χ1

. Thus the theorem says that rGP i
G
Pσχ1,χ2

has a filtration with graded pieces

σχ1,χ2
, σχ2,χ1

.

We now prove this in the special case where χ1 = | · |−1/2, χ2 = | · |1/2, so that σχ1,χ2
=

δ
1/2
P . Then iGPσχ1,χ2

= IndGP triv, and this is the space of smooth functions on P (F )\G(F )
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equipped with the G(F )-action by right translation. The right N(F )-action on P (F )\G(F )

has two orbits, represented by

(
1 0
0 1

)
and

(
0 1
1 0

)
. In fact, P (F )\G(F ) ∼= P1(F ), and

the two orbits can be identified with A1(F ) and {∞}. Up to suitably choosing coordinates,
the action of N(F ) on A1(F ) is given by

N(F ) ∼= F ∋
(
1 x

1

)
: A1(F ) = F −→ A1(F ) = F, y 7−→ x+ y.

We have an exact sequence

0→ C∞
c (A1(F ))→ C∞

c (P1(F ))→ C∞
c ({∞})→ 0.

Taking N(F )-coinvariants, we get

0→ C∞
c (A1(F ))N(F ) → JN i

G
Pσχ1,χ2

→ triv→ 0.

The space C∞
c (A1(F ))N(F ) is identified with V := C∞

c (N(F ))N(F ). Clearly V is 1-dimensional
and generated by 1K for any compact open subgroup K ⊂ N(F ). If we fix a Haar distribu-
tion µ on N(F ), then the dual space of V has a basis l : V → C, f 7→ ⟨µ, f⟩. The action of
M(F ) on V is given as follows: For t = diag(a, b) ∈M(F ), it acts on V by f 7→ f ◦Ad(t−1),
where Ad(t−1) is the automorphism of N given by conjugation by t−1. Thus t : V → V
maps 1K to 1tKt−1 , which is equal to [tKt−1 : K]1K in V . (Here, for two compact open
subgroups K1,K2 of N(F ), we write [K1 : K2] for [K1 : K1 ∩ K2][K2 : K1 ∩ K2]

−1.) We
have

[tKt−1 : K] = |a/b| = δ−1
P (t).

We conclude that the M(F )-representation V is isomorphic to δ−1
P .

In conclusion, JN i
G
Pσχ1,χ2 has a filtration with graded pieces δ−1

P and triv. Twisting by

δ
1/2
P , we see that rGP i

G
Pσχ1,χ2

has a filtration with graded pieces δ
−1/2
P and δ

1/2
P , that is,

σχ1,χ2
and σχ2,χ1

.
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